Sample records for dispersion relation derived

  1. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehdian, H., E-mail: mehdian@khu.ac.ir; Hajisharifi, K.; Hasanbeigi, A.

    2015-11-15

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts,more » the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.« less

  2. The general dispersion relation of induced streaming instabilities in quantum outflow systems

    NASA Astrophysics Data System (ADS)

    Mehdian, H.; Hajisharifi, K.; Hasanbeigi, A.

    2015-11-01

    In this manuscript the dispersion relations of streaming instabilities, by using the unique property (neutralized in charge and current by default) of plasma shells colliding, have been generalized and studied. This interesting property for interpenetrating beams enables one to find the general dispersion relations without any restrictions used in the previous works in this area. In our previous work [H. Mehdian et al., ApJ. 801, 89 (2015)], employing the plasma shell concept and boost frame method, the general dispersion relation for filamentation instability has been derived in the relativistic classical regime. But in this paper, using the above mentioned concepts, the general dispersion relations (for each of streaming instabilities, filamentation, two-stream and multi-stream) in the non-relativistic quantum regime have been derived by employing the quantum fluid equations together with Maxwell equations. The derived dispersion relations enable to describe any arbitrary system of interacting two and three beams, justified neutralization condition, by choosing the inertial reference frame embedded on the one of the beams. Furthermore, by the numerical and analytical study of these dispersion relations, many new features of streaming instabilities (E.g. their cut-off wave numbers and growth rates) in terms of all involved parameters have been illustrated. The obtained results in this paper can be used to describe many astrophysical systems and laboratory astrophysics setting, such as collision of non-parallel plasma shells over a background plasma or the collision of three neutralized plasma slabs, and justifying the many plasma phenomena such as particle accelerations and induced fields.

  3. Plasma Dispersion Function for the Kappa Distribution

    NASA Technical Reports Server (NTRS)

    Podesta, John J.

    2004-01-01

    The plasma dispersion function is computed for a homogeneous isotropic plasma in which the particle velocities are distributed according to a Kappa distribution. An ordinary differential equation is derived for the plasma dispersion function and it is shown that the solution can be written in terms of Gauss' hypergeometric function. Using the extensive theory of the hypergeometric function, various mathematical properties of the plasma dispersion function are derived including symmetry relations, series expansions, integral representations, and closed form expressions for integer and half-integer values of K.

  4. Linear dispersion relation for the mirror instability in context of the gyrokinetic theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porazik, Peter; Johnson, Jay R.

    2013-10-15

    The linear dispersion relation for the mirror instability is discussed in context of the gyrokinetic theory. The objective is to provide a coherent view of different kinetic approaches used to derive the dispersion relation. The method based on gyrocenter phase space transformations is adopted in order to display the origin and ordering of various terms.

  5. Study on longitudinal dispersion relation in one-dimensional relativistic plasma: Linear theory and Vlasov simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, H.; Wu, S. Z.; Zhou, C. T.

    2013-09-15

    The dispersion relation of one-dimensional longitudinal plasma waves in relativistic homogeneous plasmas is investigated with both linear theory and Vlasov simulation in this paper. From the Vlasov-Poisson equations, the linear dispersion relation is derived for the proper one-dimensional Jüttner distribution. Numerically obtained linear dispersion relation as well as an approximate formula for plasma wave frequency in the long wavelength limit is given. The dispersion of longitudinal wave is also simulated with a relativistic Vlasov code. The real and imaginary parts of dispersion relation are well studied by varying wave number and plasma temperature. Simulation results are in agreement with establishedmore » linear theory.« less

  6. The General Fishbone Like Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Zonca, Fulvio

    2015-12-01

    The following sections are included: * Introduction * Motivation and outline * Fundamental equations * The collisionless gyrokinetic equation * Vorticity equation * Quasi-neutrality condition * Perpendicular Ampère's law * Studying collective modes in burning plasmas * Ideal plasma equilibrium in the low-β limit * Approximations for the energetic population * Characteristic frequencies of particle motions * Alfvén wave frequency and wavelength orderings * Applications of the general theoretical framework * The general fishbone like dispersion relation * Properties of the fishbone like dispersion relation * Derivation of the fishbone like dispersion relation * Special cases of the fishbone like dispersion relation * Toroidal Alfvén Eigenmodes (TAE) * Alfvén Cascades * Summary and discussions * Acknowledgments * References

  7. The effect of broadened linewidth induced by dispersion on the performance of resonant optical gyroscope

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Li, Wenxiu; Han, Peng; Chang, Xiaoyang; Liu, Jiaming; Lin, Jian; Xue, Xia; Zhu, Fang; Yang, Yang; Liu, Xiaojing; Zhang, Xiaofu; Huang, Anping; Xiao, Zhisong; Fang, Jiancheng

    2018-01-01

    Anomalous dispersion enhancement physical mechanism for Sagnac effect is described by special relativity derivation, and three kinds of definitions of minimum detectable angular rate of resonance optical gyroscope (ROG) are compared and the relations among them are investigated. The effect of linewidth broadening induced by anomalous dispersion on the sensitivity of ROG is discussed in this paper. Material dispersion-broadened resonance linewidth deteriorates the performance of a passive ROG and dispersion enhancement effect, while the sensitivity of a structural dispersion ROG is enhanced by two orders of magnitude even considering the dispersion-broadened resonance linewidth.

  8. Stable and unstable roots of ion temperature gradient driven mode using curvature modified plasma dispersion functions

    NASA Astrophysics Data System (ADS)

    Gültekin, Ö.; Gürcan, Ö. D.

    2018-02-01

    Basic, local kinetic theory of ion temperature gradient driven (ITG) mode, with adiabatic electrons is reconsidered. Standard unstable, purely oscillating as well as damped solutions of the local dispersion relation are obtained using a bracketing technique that uses the argument principle. This method requires computing the plasma dielectric function and its derivatives, which are implemented here using modified plasma dispersion functions with curvature and their derivatives, and allows bracketing/following the zeros of the plasma dielectric function which corresponds to different roots of the ITG dispersion relation. We provide an open source implementation of the derivatives of modified plasma dispersion functions with curvature, which are used in this formulation. Studying the local ITG dispersion, we find that near the threshold of instability the unstable branch is rather asymmetric with oscillating solutions towards lower wave numbers (i.e. drift waves), and damped solutions toward higher wave numbers. This suggests a process akin to inverse cascade by coupling to the oscillating branch towards lower wave numbers may play a role in the nonlinear evolution of the ITG, near the instability threshold. Also, using the algorithm, the linear wave diffusion is estimated for the marginally stable ITG mode.

  9. Analytical relation between effective mode field area and waveguide dispersion in microstructure fibers.

    PubMed

    Moenster, Mathias; Steinmeyer, Günter; Iliew, Rumen; Lederer, Falk; Petermann, Klaus

    2006-11-15

    For optical fibers exhibiting a radially symmetric refractive index profile, there exists an analytical relation that connects waveguide dispersion and the Petermann-II mode field radius. We extend the usefulness of this relation to the nonradially symmetric case of microstructure fibers in the anomalous dispersion regime, yielding a simple relation between dispersion and effective mode field area. Assuming a Gaussian mode distribution, we derive a fundamental upper limit for the effective mode field area that is required to obtain a certain amount of anomalous waveguide dispersion. This relation is demonstrated to show excellent agreement for fiber designs suited for supercontinuum generation and soliton lasers in the near infrared.

  10. The Theory of Thermodynamics for Chemical Reactions in Dispersed Heterogeneous Systems

    PubMed

    Yongqiang; Baojiao; Jianfeng

    1997-07-01

    In this paper, the expressions of Gibbs energy change, enthalpy change, entropy change, and equilibrium constant for chemical reactions in dispersed heterogeneous systems are derived using classical thermodynamics theory. The thermodynamical relations for the same reaction system between the dispersed and the block state are also derived. The effects of degree of dispersion on thermodynamical properties, reaction directions, and chemical equilibria are discussed. The results show that the present equation of thermodynamics for chemical reactions is only a special case of the above-mentioned formulas and that the effect of the dispersity of a heterogeneous system on the chemical reaction obeys the Le Chatelier principle of movement of equilibria.

  11. Dispersion relations for circular single and double dusty plasma chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tkachenko, D. V.; Misko, V. R.; Sheridan, T. E.

    2011-10-15

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branchesmore » of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.« less

  12. Dispersion relations for circular single and double dusty plasma chains

    NASA Astrophysics Data System (ADS)

    Tkachenko, D. V.; Sheridan, T. E.; Misko, V. R.

    2011-10-01

    We derive dispersion relations for a system of identical particles confined in a two-dimensional annular harmonic well and which interact through a Yukawa potential, e.g., a dusty plasma ring. When the particles are in a single chain (i.e., a one-dimensional ring), we find a longitudinal acoustic mode and a transverse optical mode which show approximate agreement with the dispersion relation for a straight configuration for large radii of the ring. When the radius decreases, the dispersion relations modify: there appears an anticrossing of the modes near the crossing point resulting in a frequency gap between the lower and upper branches of the modified dispersion relations. For the double chain (i.e., a two-dimensional zigzag configuration), the dispersion relation has four branches: longitudinal acoustic and optical and transverse acoustic and optical.

  13. Gyro-viscosity and linear dispersion relations in pair-ion magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, M.; Vranjes, J.; Departamento de Astrofisica, Universidad de La Laguna, Tenerife E38205

    2015-11-15

    A fluid theory has been developed by taking account of gyro-viscosity to study wave propagation characteristics in a homogeneous pair-ion magnetized plasma with a cylindrical symmetry. The exact dispersion relations derived by the Hankel-Fourier transformation are shown comparable with those observed in the experiment by Oohara and co-workers. The gyro-viscosity is responsible for the change in propagation characteristics of the ion cyclotron wave from forward to backward by suppressing the effect of the thermal pressure which normally causes the forward nature of dispersion. Although the experiment has been already explained by a kinetic theory by the present authors, the kineticmore » derivations are so involved because of exact particle orbits in phase space, finite Lamor radius effects, and higher order ion cyclotron resonances. The present fluid theory provides a simple and transparent structure to the dispersion relations since the gyro-viscosity is renormalized into the ion cyclotron frequency which itself indicates the backward nature of dispersion. The usual disadvantage of a fluid theory, which treats only fundamental modes of eigen-waves excited in a system and is not able to describe higher harmonics that a kinetic theory does, is compensated by simple derivations and clear picture based on the renormalization of the gyro-viscosity.« less

  14. Kinematics, turbulence, and star formation of z ˜ 1 strongly lensed galaxies seen with MUSE

    NASA Astrophysics Data System (ADS)

    Patrício, V.; Richard, J.; Carton, D.; Contini, T.; Epinat, B.; Brinchmann, J.; Schmidt, K. B.; Krajnović, D.; Bouché, N.; Weilbacher, P. M.; Pelló, R.; Caruana, J.; Maseda, M.; Finley, H.; Bauer, F. E.; Martinez, J.; Mahler, G.; Lagattuta, D.; Clément, B.; Soucail, G.; Wisotzki, L.

    2018-06-01

    We analyse a sample of eight highly magnified galaxies at redshift 0.6 < z < 1.5 observed with MUSE, exploring the resolved properties of these galaxies at sub-kiloparsec scales. Combining multiband HST photometry and MUSE spectra, we derive the stellar mass, global star formation rates (SFRs), extinction and metallicity from multiple nebular lines, concluding that our sample is representative of z ˜ 1 star-forming galaxies. We derive the 2D kinematics of these galaxies from the [O II ] emission and model it with a new method that accounts for lensing effects and fits multiple images simultaneously. We use these models to calculate the 2D beam-smearing correction and derive intrinsic velocity dispersion maps. We find them to be fairly homogeneous, with relatively constant velocity dispersions between 15 and 80 km s-1 and Gini coefficient of {≲ }0.3. We do not find any evidence for higher (or lower) velocity dispersions at the positions of bright star-forming clumps. We derive resolved maps of dust attenuation and attenuation-corrected SFRs from emission lines for two objects in the sample. We use this information to study the relation between resolved SFR and velocity dispersion. We find that these quantities are not correlated, and the high-velocity dispersions found for relatively low star-forming densities seems to indicate that, at sub-kiloparsec scales, turbulence in high-z discs is mainly dominated by gravitational instability rather than stellar feedback.

  15. Limit Theorems and Their Relation to Solute Transport in Simulated Fractured Media

    NASA Astrophysics Data System (ADS)

    Reeves, D. M.; Benson, D. A.; Meerschaert, M. M.

    2003-12-01

    Solute particles that travel through fracture networks are subject to wide velocity variations along a restricted set of directions. This may result in super-Fickian dispersion along a few primary scaling directions. The fractional advection-dispersion equation (FADE), a modification of the original advection-dispersion equation in which a fractional derivative replaces the integer-order dispersion term, has the ability to model rapid, non-Gaussian solute transport. The FADE assumes that solute particle motions converge to either α -stable or operator stable densities, which are modeled by spatial fractional derivatives. In multiple dimensions, the multi-fractional dispersion derivative dictates the order and weight of differentiation in all directions, which correspond to the statistics of large particle motions in all directions. This study numerically investigates the presence of super- Fickian solute transport through simulated two-dimensional fracture networks. An ensemble of networks is gen

  16. A space-time discretization procedure for wave propagation problems

    NASA Technical Reports Server (NTRS)

    Davis, Sanford

    1989-01-01

    Higher order compact algorithms are developed for the numerical simulation of wave propagation by using the concept of a discrete dispersion relation. The dispersion relation is the imprint of any linear operator in space-time. The discrete dispersion relation is derived from the continuous dispersion relation by examining the process by which locally plane waves propagate through a chosen grid. The exponential structure of the discrete dispersion relation suggests an efficient splitting of convective and diffusive terms for dissipative waves. Fourth- and eighth-order convection schemes are examined that involve only three or five spatial grid points. These algorithms are subject to the same restrictions that govern the use of dispersion relations in the constructions of asymptotic expansions to nonlinear evolution equations. A new eighth-order scheme is developed that is exact for Courant numbers of 1, 2, 3, and 4. Examples are given of a pulse and step wave with a small amount of physical diffusion.

  17. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with initial stresses.

    PubMed

    Guo, Xiao; Wei, Peijun

    2016-03-01

    The dispersion relations of elastic waves in a one-dimensional phononic crystal formed by periodically repeating of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are studied in this paper. The influences of initial stress on the dispersive relation are considered based on the incremental stress theory. First, the incremental stress theory of elastic solid is extended to the magneto-electro-elasto solid. The governing equations, constitutive equations, and boundary conditions of the incremental stresses in a magneto-electro-elasto solid are derived with consideration of the existence of initial stresses. Then, the transfer matrices of a pre-stressed piezoelectric slab and a pre-stressed piezomagnetic slab are formulated, respectively. The total transfer matrix of a single cell in the phononic crystal is obtained by the multiplication of two transfer matrixes related with two adjacent slabs. Furthermore, the Bloch theorem is used to obtain the dispersive equations of in-plane and anti-plane Bloch waves. The dispersive equations are solved numerically and the numerical results are shown graphically. The oblique propagation and the normal propagation situations are both considered. In the case of normal propagation of elastic waves, the analytical expressions of the dispersion equation are derived and compared with other literatures. The influences of initial stresses, including the normal initial stresses and shear initial stresses, on the dispersive relations are both discussed based on the numerical results. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Two-point derivative dispersion relations

    NASA Astrophysics Data System (ADS)

    Ferreira, Erasmo; Sesma, Javier

    2013-03-01

    A new derivation is given for the representation, under certain conditions, of the integral dispersion relations of scattering theory through local forms. The resulting expressions have been obtained through an independent procedure to construct the real part and consist of new mathematical structures of double infinite summations of derivatives. In this new form the derivatives are calculated at the generic value of the energy E and separately at the reference point E = m that is the lower limit of the integration. This new form may be more interesting in certain circumstances and directly shows the origin of the difficulties in convergence that were present in the old truncated forms called standard-derivative dispersion relations (DDR). For all cases in which the reductions of the double to single sums were obtained in our previous work, leading to explicit demonstration of convergence, these new expressions are seen to be identical to the previous ones. We present, as a glossary, the most simplified explicit results for the DDR's in the cases of imaginary amplitudes of forms (E/m)λ[ln (E/m)]n that cover the cases of practical interest in particle physics phenomenology at high energies. We explicitly study the expressions for the cases with λ negative odd integers, that require identification of cancelation of singularities, and provide the corresponding final results.

  19. Additional boundary conditions and surface exciton dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rimbey, P.R.

    1977-01-15

    The surface-exciton dispersion curves in ZnO are derived from the surface impedances developed by Fuchs and Kliewer (FK) and Rimbey and Mahan (RM) including retardation. There exists a distinctive splitting between the two dispersions, the FK additional boundary conditions having longitudinal character, the RM additional boundary conditions being transverse. Surface-mode attenuation due to spatial dispersion is more pronouced in the RM formalism, although inclusion of a phenomenological damping parameter does not alter either dispersion curve. (AIP)

  20. Nonlinear beat excitation of low frequency wave in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Mir, Zahid; Shahid, M.; Jamil, M.; Rasheed, A.; Shahbaz, A.

    2018-03-01

    The beat phenomenon due to the coupling of two signals at slightly different frequencies that generates the low frequency signal is studied. The linear dispersive properties of the pump and sideband are analyzed. The modified nonlinear dispersion relation through the field coupling of linear modes against the beat frequency is derived in the homogeneous quantum dusty magnetoplasmas. The dispersion relation is used to derive the modified growth rate of three wave parametric instability. Moreover, significant quantum effects of electrons through the exchange-correlation potential, the Bohm potential, and the Fermi pressure evolved in macroscopic three wave interaction are presented. The analytical results are interpreted graphically describing the significance of the work. The applications of this study are pointed out at the end of introduction.

  1. Redshift and lateshift from homogeneous and isotropic modified dispersion relations

    NASA Astrophysics Data System (ADS)

    Pfeifer, Christian

    2018-05-01

    Observables which would indicate a modified vacuum dispersion relations, possibly caused by quantum gravity effects, are a four momentum dependence of the cosmological redshift and the existence of a so called lateshift effect for massless or very light particles. Existence or non-existence of the latter is currently analyzed on the basis of the available observational data from gamma-ray bursts and compared to predictions of specific modified dispersion relation models. We consider the most general perturbation of the general relativistic dispersion relation of freely falling particles on homogeneous and isotropic spacetimes and derive the red- and lateshift to first order in the perturbation. Our result generalizes the existing formulae in the literature and we find that there exist modified dispersion relations causing both, one or none of the two effects to first order.

  2. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  3. Longitudinal dielectric function and dispersion relation of electrostatic waves in relativistic plasmas

    NASA Astrophysics Data System (ADS)

    Touil, B.; Bendib, A.; Bendib-Kalache, K.

    2017-02-01

    The longitudinal dielectric function is derived analytically from the relativistic Vlasov equation for arbitrary values of the relevant parameters z = m c 2 / T , where m is the rest electron mass, c is the speed of light, and T is the electron temperature in energy units. A new analytical approach based on the Legendre polynomial expansion and continued fractions was used. Analytical expression of the electron distribution function was derived. The real part of the dispersion relation and the damping rate of electron plasma waves are calculated both analytically and numerically in the whole range of the parameter z . The results obtained improve significantly the previous results reported in the literature. For practical purposes, explicit expressions of the real part of the dispersion relation and the damping rate in the range z > 30 and strongly relativistic regime are also proposed.

  4. Asymmetry in the Farley-Buneman dispersion relation caused by parallel electric fields

    NASA Astrophysics Data System (ADS)

    Forsythe, Victoriya V.; Makarevich, Roman A.

    2016-11-01

    An implicit assumption utilized in studies of E region plasma waves generated by the Farley-Buneman instability (FBI) is that the FBI dispersion relation and its solutions for the growth rate and phase velocity are perfectly symmetric with respect to the reversal of the wave propagation component parallel to the magnetic field. In the present study, a recently derived general dispersion relation that describes fundamental plasma instabilities in the lower ionosphere including FBI is considered and it is demonstrated that the dispersion relation is symmetric only for background electric fields that are perfectly perpendicular to the magnetic field. It is shown that parallel electric fields result in significant differences between the growth rates and phase velocities for propagation of parallel components of opposite signs. These differences are evaluated using numerical solutions of the general dispersion relation and shown to exhibit an approximately linear relationship with the parallel electric field near the E region peak altitude of 110 km. An analytic expression for the differences is also derived from an approximate version of the dispersion relation, with comparisons between numerical and analytic results agreeing near 110 km. It is further demonstrated that parallel electric fields do not change the overall symmetry when the full 3-D wave propagation vector is reversed, with no symmetry seen when either the perpendicular or parallel component is reversed. The present results indicate that moderate-to-strong parallel electric fields of 0.1-1.0 mV/m can result in experimentally measurable differences between the characteristics of plasma waves with parallel propagation components of opposite polarity.

  5. Two-dimensional dispersion of magnetostatic volume spin waves

    NASA Astrophysics Data System (ADS)

    Buijnsters, Frank J.; van Tilburg, Lennert J. A.; Fasolino, Annalisa; Katsnelson, Mikhail I.

    2018-06-01

    Owing to the dipolar (magnetostatic) interaction, long-wavelength spin waves in in-plane magnetized films show an unusual dispersion behavior, which can be mathematically described by the model of and and refinements thereof. However, solving the two-dimensional dispersion requires the evaluation of a set of coupled transcendental equations and one has to rely on numerics. In this work, we present a systematic perturbative analysis of the spin wave model. An expansion in the in-plane wavevector allows us to obtain explicit closed-form expressions for the dispersion relation and mode profiles in various asymptotic regimes. Moreover, we derive a very accurate semi-analytical expression for the dispersion relation of the lowest-frequency mode that is straightforward to evaluate.

  6. Dispersion relations for electromagnetic wave propagation in chiral plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, M. X.; Guo, B., E-mail: binguo@whut.edu.cn; Peng, L.

    2014-11-15

    The dispersion relations for electromagnetic wave propagation in chiral plasmas are derived using a simplified method and investigated in detail. With the help of the dispersion relations for each eignwave, we explore how the chiral plasmas exhibit negative refraction and investigate the frequency region for negative refraction. The results show that chirality can induce negative refraction in plasmas. Moreover, both the degree of chirality and the external magnetic field have a significant effect on the critical frequency and the bandwidth of the frequency for negative refraction in chiral plasmas. The parameter dependence of the effects is calculated and discussed.

  7. Influence of the refractive index and dispersion of spectacle lens on its imaging properties

    NASA Astrophysics Data System (ADS)

    Miks, Antonin; Novak, Jiri; Novak, Pavel

    2007-12-01

    The paper shows an influence of the refractive index and dispersion of the spectacle lens on its imaging properties. Relations are presented for calculation of radii of curvature of anastigmatic spectacle lenses and their chromatic aberration. Moreover, the formulas are derived for calculation of the change of astigmatism of spectacle lens due to dispersion of spectacle lens material.

  8. Explicitly covariant dispersion relations and self-induced transparency

    NASA Astrophysics Data System (ADS)

    Mahajan, S. M.; Asenjo, Felipe A.

    2017-02-01

    Explicitly covariant dispersion relations for a variety of plasma waves in unmagnetized and magnetized plasmas are derived in a systematic manner from a fully covariant plasma formulation. One needs to invoke relatively little known invariant combinations constructed from the ambient electromagnetic fields and the wave vector to accomplish the program. The implication of this work applied to the self-induced transparency effect is discussed. Some problems arising from the inconsistent use of relativity are pointed out.

  9. Eliminating time dispersion from seismic wave modeling

    NASA Astrophysics Data System (ADS)

    Koene, Erik F. M.; Robertsson, Johan O. A.; Broggini, Filippo; Andersson, Fredrik

    2018-04-01

    We derive an expression for the error introduced by the second-order accurate temporal finite-difference (FD) operator, as present in the FD, pseudospectral and spectral element methods for seismic wave modeling applied to time-invariant media. The `time-dispersion' error speeds up the signal as a function of frequency and time step only. Time dispersion is thus independent of the propagation path, medium or spatial modeling error. We derive two transforms to either add or remove time dispersion from synthetic seismograms after a simulation. The transforms are compared to previous related work and demonstrated on wave modeling in acoustic as well as elastic media. In addition, an application to imaging is shown. The transforms enable accurate computation of synthetic seismograms at reduced cost, benefitting modeling applications in both exploration and global seismology.

  10. Local Equilibrium and Retardation Revisited.

    PubMed

    Hansen, Scott K; Vesselinov, Velimir V

    2018-01-01

    In modeling solute transport with mobile-immobile mass transfer (MIMT), it is common to use an advection-dispersion equation (ADE) with a retardation factor, or retarded ADE. This is commonly referred to as making the local equilibrium assumption (LEA). Assuming local equilibrium, Eulerian textbook treatments derive the retarded ADE, ostensibly exactly. However, other authors have presented rigorous mathematical derivations of the dispersive effect of MIMT, applicable even in the case of arbitrarily fast mass transfer. We resolve the apparent contradiction between these seemingly exact derivations by adopting a Lagrangian point of view. We show that local equilibrium constrains the expected time immobile, whereas the retarded ADE actually embeds a stronger, nonphysical, constraint: that all particles spend the same amount of every time increment immobile. Eulerian derivations of the retarded ADE thus silently commit the gambler's fallacy, leading them to ignore dispersion due to mass transfer that is correctly modeled by other approaches. We then present a particle tracking simulation illustrating how poor an approximation the retarded ADE may be, even when mobile and immobile plumes are continually near local equilibrium. We note that classic "LEA" (actually, retarded ADE validity) criteria test for insignificance of MIMT-driven dispersion relative to hydrodynamic dispersion, rather than for local equilibrium. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  11. Anisotropic metamaterial waveguide driven by a cold and relativistic electron beam

    NASA Astrophysics Data System (ADS)

    Torabi, Mahmoud; Shokri, Babak

    2018-03-01

    We study the interaction of a cold and relativistic electron beam with a cylindrical waveguide loaded by an anisotropic and dispersive metamaterial layer. The general dispersion relation for the transverse magnetic (TM) mode, through the linear fluid model and Maxwell equations decomposition method, is derived. The effects of some metamaterial parameters on dispersion relation are presented. A qualitative discussion shows the possibility of monomodal propagation band widening and obtaining more control on dispersion relation behavior. Especially for epsilon negative near zero metamaterials, these effects are considerable. Finally, the anisotropy and metamaterial layer thickness impacts on wave growth rate for different metamaterials are considered. The results demonstrate that we can control both wave growth rate and voltage of saturation peak by metamaterial parameters.

  12. Generation of zonal magnetic fields by low-frequency dispersive electromagnetic waves in a nonuniform dusty magnetoplasma.

    PubMed

    Shukla, P K

    2004-04-01

    It is shown that zonal magnetic fields can be parametrically excited by low-frequency dispersive driftlike compressional electromagnetic (DDCEM) modes in a nonuniform dusty magnetoplasma. For this purpose, we derive a pair of coupled equations which exhibits the nonlinear coupling between DDCEM modes and zonal magnetic fields. The coupled mode equations are Fourier analyzed to derive a nonlinear dispersion relation. The latter depicts that zonal magnetic fields are nonlinearly generated at the expense of the low-frequency DDCEM wave energy. The relevance of our investigation to the transfer of energy from short scale DDCEM waves to long scale zonal magnetic field structures in dark molecular clouds is discussed.

  13. Jeans instability of inhomogeneous dusty plasma with polarization force, ionization and recombination

    NASA Astrophysics Data System (ADS)

    Jain, Shweta; Sharma, Prerana; Chhajlani, R. K.

    2017-05-01

    The self-gravitational Jeans instability has been studied in dusty plasma containing significant background of neutral pressure and recombination of ions and electrons on the dust surface. The full dynamics of charged dust grains, ions and neutral species are employed considering the electrons as Maxwellian. We have derived the general dispersion relation for collisional dusty plasma with ionization, recombination and polarization force. The general dispersion relation describes the effects of considered parameters which are solved in different dusty plasma situations. Further, the dispersion relation is solved numerically. The present work is applicable to understand the structure formation of interstellar molecular clouds in astrophysical plasma.

  14. Beyond Clausius-Mossotti - Wave propagation on a polarizable point lattice and the discrete dipole approximation. [electromagnetic scattering and absorption by interstellar grains

    NASA Technical Reports Server (NTRS)

    Draine, B. T.; Goodman, Jeremy

    1993-01-01

    We derive the dispersion relation for electromagnetic waves propagating on a lattice of polarizable points. From this dispersion relation we obtain a prescription for choosing dipole polarizabilities so that an infinite lattice with finite lattice spacing will mimic a continuum with dielectric constant. The discrete dipole approximation is used to calculate scattering and absorption by a finite target by replacing the target with an array of point dipoles. We compare different prescriptions for determining the dipole polarizabilities. We show that the most accurate results are obtained when the lattice dispersion relation is used to set the polarizabilities.

  15. Dispersion correction derived from first principles for density functional theory and Hartree-Fock theory.

    PubMed

    Guidez, Emilie B; Gordon, Mark S

    2015-03-12

    The modeling of dispersion interactions in density functional theory (DFT) is commonly performed using an energy correction that involves empirically fitted parameters for all atom pairs of the system investigated. In this study, the first-principles-derived dispersion energy from the effective fragment potential (EFP) method is implemented for the density functional theory (DFT-D(EFP)) and Hartree-Fock (HF-D(EFP)) energies. Overall, DFT-D(EFP) performs similarly to the semiempirical DFT-D corrections for the test cases investigated in this work. HF-D(EFP) tends to underestimate binding energies and overestimate intermolecular equilibrium distances, relative to coupled cluster theory, most likely due to incomplete accounting for electron correlation. Overall, this first-principles dispersion correction yields results that are in good agreement with coupled-cluster calculations at a low computational cost.

  16. Dispersion-relation-preserving finite difference schemes for computational acoustics

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1993-01-01

    Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.

  17. Dispersion relations with crossing symmetry for {pi}{pi} D- and F-wave amplitudes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaminski, R.

    A set of once subtracted dispersion relations with imposed crossing symmetry condition for the {pi}{pi} D- and F-wave amplitudes is derived and analyzed. An example of numerical calculations in the effective two-pion mass range from the threshold to 1.1 GeV is presented. It is shown that these new dispersion relations impose quite strong constraints on the analyzed {pi}{pi} interactions and are very useful tools to test the {pi}{pi} amplitudes. One of the goals of this work is to provide a complete set of equations required for easy use. Full analytical expressions are presented. Along with the well-known dispersion relations successfulmore » in testing the {pi}{pi} S- and P-wave amplitudes, those presented here for the D and F waves give a complete set of tools for analyses of the {pi}{pi} interactions.« less

  18. The Rayleigh-Taylor instability in a self-gravitating two-layer viscous sphere

    NASA Astrophysics Data System (ADS)

    Mondal, Puskar; Korenaga, Jun

    2018-03-01

    The dispersion relation of the Rayleigh-Taylor instability in the spherical geometry is of profound importance in the context of the Earth's core formation. Here we present a complete derivation of this dispersion relation for a self-gravitating two-layer viscous sphere. Such relation is, however, obtained through the solution of a complex transcendental equation, and it is difficult to gain physical insights directly from the transcendental equation itself. We thus also derive an empirical formula to compute the growth rate, by combining the Monte Carlo sampling of the relevant model parameter space with linear regression. Our analysis indicates that the growth rate of Rayleigh-Taylor instability is most sensitive to the viscosity of inner layer in a physical setting that is most relevant to the core formation.

  19. A robust approach for analysing dispersion of elastic waves in an orthotropic cylindrical shell

    NASA Astrophysics Data System (ADS)

    Kaplunov, J.; Nobili, A.

    2017-08-01

    Dispersion of elastic waves in a thin orthotropic cylindrical shell is considered, within the framework of classical 2D Kirchhoff-Love theory. In contrast to direct multi-parametric analysis of the lowest propagating modes, an alternative robust approach is proposed that simply requires evaluation of the evanescent modes (quasi-static edge effect), which, at leading order, do not depend on vibration frequency. A shortened dispersion relation for the propagating modes is then derived by polynomial division and its accuracy is numerically tested against the full Kirchhoff-Love dispersion relation. It is shown that the same shortened relation may be also obtained from a refined dynamic version of the semi-membrane theory for cylindrical shells. The presented results may be relevant for modelling various types of nanotubes which, according to the latest experimental findings, possess strong material anisotropy.

  20. Asymmetric spin-wave dispersion in ferromagnetic nanotubes induced by surface curvature

    NASA Astrophysics Data System (ADS)

    Otálora, Jorge A.; Yan, Ming; Schultheiss, Helmut; Hertel, Riccardo; Kákay, Attila

    2017-05-01

    We present a detailed analytical derivation of the spin wave (SW) dispersion relation in magnetic nanotubes with magnetization along the azimuthal direction. The obtained formula can be used to calculate the dispersion relation for any longitudinal and azimuthal mode. The obtained dispersion is asymmetric for all azimuthal modes traveling along the axial direction. As reported in our recent publication [Phys. Rev. Lett. 117, 227203 (2016), 10.1103/PhysRevLett.117.227203], the asymmetry is a curvature-induced effect originating from the dipole-dipole interaction. Here, we discuss the asymmetry of the dispersion for azimuthal modes by analyzing the SW asymmetry Δ f (kz) =fn(kz) -fn(-kz) , where fn(kz) is the eigenfrequency of a magnon with a longitudinal and azimuthal wave vectors, kz and n , respectively; and the dependence of the maximum asymmetry with the nanotube radius R . The analytical results are in perfect agreement with micromagnetic simulations. Furthermore, we show that the dispersion relation simplifies to the thin-film dispersion relation with in-plane magnetization when analyzing the three limiting cases: (i) kz=0 , (ii) kz≫1 /R , and (iii) kz≪1 /R . In the first case, for the zeroth-order modes the thin-film Kittel formula is obtained. For modes with higher order the dispersion relation for the Backward-Volume geometry is recovered. In the second case, for the zeroth-order mode the exchange dominated dispersion relation for SW in Damon-Esbach configuration is obtained. For the case kz≪1 /R , we find that the dispersion relation can be reduced to a formula similar to the Kalinikos-Slavin [J. Phys. C: Sol. State Phys. 19, 7013 (1986), 10.1088/0022-3719/19/35/014] type.

  1. What did Kramers and Kronig do and how did they do it?

    NASA Astrophysics Data System (ADS)

    Bohren, Craig F.

    2010-05-01

    Over time the account of how the Kramers-Kronig (dispersion) relations between the real and imaginary parts of response functions were derived in 1926 and 1927 has been transmogrified into anecdotes about what might have been done but was not. Although Kramers obtained both members of a pair of relations, Kronig obtained only one. Both authors appealed to specific models of an atomic gas rather than to the general arguments about linearity, causality and analyticity in modern model-independent derivations. Kramers merely speculated on whether the specific results he obtained might have a more general validity. Neither author showed that a signal cannot travel faster than cin any medium for which the dispersion relations are satisfied. Indeed, they did not mention, even obliquely, signal speeds and causality. Despite their magical aura, Kramers-Kronig relations are translations into somewhat cryptic frequency language of statements clearer in time language.

  2. Wave dispersion and propagation in state-based peridynamics

    NASA Astrophysics Data System (ADS)

    Butt, Sahir N.; Timothy, Jithender J.; Meschke, Günther

    2017-11-01

    Peridynamics is a nonlocal continuum model which offers benefits over classical continuum models in cases, where discontinuities, such as cracks, are present in the deformation field. However, the nonlocal characteristics of peridynamics leads to a dispersive dynamic response of the medium. In this study we focus on the dispersion properties of a state-based linear peridynamic solid model and specifically investigate the role of the peridynamic horizon. We derive the dispersion relation for one, two and three dimensional cases and investigate the effect of horizon size, mesh size (lattice spacing) and the influence function on the dispersion properties. We show how the influence function can be used to minimize wave dispersion at a fixed lattice spacing and demonstrate it qualitatively by wave propagation analysis in one- and two-dimensional models of elastic solids. As a main contribution of this paper, we propose to associate peridynamic non-locality expressed by the horizon with a characteristic length scale related to the material microstructure. To this end, the dispersion curves obtained from peridynamics are compared with experimental data for two kinds of sandstone.

  3. Dispersivity of Bidisperse Packings of Spheres and Evidence for Distinct Random Structures

    NASA Astrophysics Data System (ADS)

    Scheven, U. M.

    2018-05-01

    The intrinsic longitudinal and transverse dispersivity of bidisperse random packings of spheres with size ratio 5 ∶1 was determined by pulsed field gradient nuclear magnetic resonance, in the dilute regime where small spheres occupy between 0% and 5% of the packings' volume. Small spheres plugging pores systematically raise the mechanical transverse and longitudinal dispersivity above that of reference packings of monodisperse spheres. NMR-derived porosities, widths of velocity distributions, and dispersivities reveal distinct states of structural disorder above and below a relative sphere concentration n /N =1 , where n and N are the number densities of small and large spheres.

  4. High-Contrast Gratings based Spoof Surface Plasmons

    NASA Astrophysics Data System (ADS)

    Li, Zhuo; Liu, Liangliang; Xu, Bingzheng; Ning, Pingping; Chen, Chen; Xu, Jia; Chen, Xinlei; Gu, Changqing; Qing, Quan

    2016-02-01

    In this work, we explore the existence of spoof surface plasmons (SSPs) supported by deep-subwavelength high-contrast gratings (HCGs) on a perfect electric conductor plane. The dispersion relation of the HCGs-based SSPs is derived analyt- ically by combining multimode network theory with rigorous mode matching method, which has nearly the same form with and can be degenerated into that of the SSPs arising from deep-subwavelength metallic gratings (MGs). Numerical simula- tions validate the analytical dispersion relation and an effective medium approximation is also presented to obtain the same analytical dispersion formula. This work sets up a unified theoretical framework for SSPs and opens up new vistas in surface plasmon optics.

  5. Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    NASA Astrophysics Data System (ADS)

    Johnson, Robert W.

    2012-06-01

    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Only at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.

  6. Tunable Snell's law for spin waves in heterochiral magnetic films

    NASA Astrophysics Data System (ADS)

    Mulkers, Jeroen; Van Waeyenberge, Bartel; Milošević, Milorad V.

    2018-03-01

    Thin ferromagnetic films with an interfacially induced DMI exhibit nontrivial asymmetric dispersion relations that lead to unique and useful magnonic properties. Here we derive an analytical expression for the magnon propagation angle within the micromagnetic framework and show how the dispersion relation can be approximated with a comprehensible geometrical interpretation in the k space of the propagation of spin waves. We further explore the refraction of spin waves at DMI interfaces in heterochiral magnetic films, after deriving a generalized Snell's law tunable by an in-plane magnetic field, that yields analytical expressions for critical incident angles. The found asymmetric Brewster angles at interfaces of regions with different DMI strengths, adjustable by magnetic field, support the conclusion that heterochiral ferromagnetic structures are an ideal platform for versatile spin-wave guides.

  7. Mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K fluorescence yield and Kβ/Kα relative X-ray emission rate for Ti, V, Fe, Co, Ni, Cu and Zn measured with a tunable monochromatic X-ray source

    NASA Astrophysics Data System (ADS)

    Ménesguen, Y.; Lépy, M.-C.

    2010-08-01

    This work presents new measurements of mass attenuation coefficients in the range 3.8⩽E⩽11 keV, K-absorption jump-ratios, Kα and Kβ fluorescence yields for Ti, V, Fe, Co, Ni, Cu and Zn. We use the experimental facility SOLEX, a tunable monochromatic X-ray source combined with an energy-dispersive high-purity germanium detector. The results are compared with theoretical values as well as with other experimental data and show a relatively good agreement. However, the derived K-jump-ratios appear larger than those widely used in the XCOM database. The Kα and Kβ fluorescence yields and the corresponding relative emission rates Kβ/Kα are also derived, which was made possible by the use of energy-dispersive detectors with good spectral resolution.

  8. Effects of electromagnetic wiggler and ion channel guiding on equilibrium orbits and waves propagation in a free electron laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Amri, Hassan Ehsani; Mohsenpour, Taghi, E-mail: mohsenpour@umz.ac.ir

    2016-02-15

    In this paper, an analysis of equilibrium orbits for electrons by a simultaneous solution of the equation of motion and the dispersion relation for electromagnetic wave wiggler in a free-electron laser (FEL) with ion-channel guiding has been presented. A fluid model has been used to investigate interactions among all possible waves. The dispersion relation has been derived for electrostatic and electromagnetic waves with all relativistic effects included. This dispersion relation has been solved numerically. For group I and II orbits, when the transverse velocity is small, only the FEL instability is found. In group I and II orbits with relativelymore » large transverse velocity, new couplings between other modes are found.« less

  9. Surface-plasmon-polariton hybridized cavity modes in submicrometer slits in a thin Au film

    NASA Astrophysics Data System (ADS)

    Walther, R.; Fritz, S.; Müller, E.; Schneider, R.; Maniv, T.; Cohen, H.; Matyssek, C.; Busch, K.; Gerthsen, D.

    2016-06-01

    The excitation of cavity standing waves in double-slit structures in thin gold films, with slit lengths between 400 and 2560 nm, was probed with a strongly focused electron beam in a transmission electron microscope. The energies and wavelengths of cavity modes up to the 11 th mode order were measured with electron energy loss spectroscopy to derive the corresponding dispersion relation. For all orders, a significant redshift of mode energies accompanied by a wavelength elongation relative to the expected resonator energies and wavelengths is observed. The resultant dispersion relation is found to closely follow the well-known dispersion law of surface-plasmon polaritons (SPPs) propagating on a gold/air interface, thus providing direct evidence for the hybridized nature of the detected cavity modes with SPPs.

  10. Ion streaming instabilities with application to collisionless shock wave structure

    NASA Technical Reports Server (NTRS)

    Golden, K. I.; Linson, L. M.; Mani, S. A.

    1973-01-01

    The electromagnetic dispersion relation for two counterstreaming ion beams of arbitrary relative strength flowing parallel to a dc magnetic field is derived. The beams flow through a stationary electron background and the dispersion relation in the fluid approximation is unaffected by the electron thermal pressure. The dispersion relation is solved with a zero net current condition applied and the regions of instability in the k-U space (U is the relative velocity between the two ion beams) are presented. The parameters are then chosen to be applicable for parallel shocks. It was found that unstable waves with zero group velocity in the shock frame can exist near the leading edge of the shock for upstream Alfven Mach numbers greater than 5.5. It is suggested that this mechanism could generate sufficient turbulence within the shock layer to scatter the incoming ions and create the required dissipation for intermediate strength shocks.

  11. Dispersion relation of a surface wave at a rough metal-air interface

    DOE PAGES

    Kotelnikov, Igor; Stupakov, Gennady

    2016-11-28

    Here, we derived a dispersion relation of a surface wave at a rough metal-air interface. In contrast to previous publications, we assumed that an intrinsic surface impedance due to a finite electric conductivity of the metal can be of the same order as the roughness-induced impedance. We then applied our results to the analysis of a long-standing problem of the discrepancy between the experimental data on the propagation of surface waves in the terahertz range of frequencies and the classical Drude theory.

  12. Comment on ``Alternative approach to the solution of the dispersion relation for a generalized lattice Boltzmann equation''

    NASA Astrophysics Data System (ADS)

    Lallemand, Pierre; Luo, Li-Shi

    2008-12-01

    Recently Reis and Phillips [Phys. Rev. E 77, 026702 (2008)] proposed a perturbative method to solve the dispersion equation derived from the linearized lattice Boltzmann equation. We will demonstrate that the method proposed by Reis and Phillips is a reinvention of an existing method. We would also like to refute a number of claims made by Reis and Phillips.

  13. Dispersion transitions and pole-zero characteristics of finite inertially amplified acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Al Ba'ba'a, H.; DePauw, D.; Singh, T.; Nouh, M.

    2018-03-01

    This work presents a comprehensive analysis of wave dispersion patterns and band gap formation associated with Inertially Amplified Acoustic Metamaterials (IAAM). The findings explain the different mechanisms by which inertial amplification affect wave dispersion in the individual IAAM cell as well as the evolution of such effects in finite configurations of these cells. Derived expressions for acoustic wave dispersion in IAAMs reveal unique features including flat dispersion branches with zero group velocity and a transition from a metamaterial (local resonance) to a phononic behavior that is directly related to the location and magnitude of the inerter elements. Using a closed-form transfer function approach, the translation of such effects to IAAM realizations with a known number of cells is interpreted from the pole-zero distributions of the resultant finite structures. It is also shown that band gaps are not always necessarily enlarged in the presence of inertial amplification. Comparing with benchmark conventional acoustic metamaterials, the conditions leading up to favorable as well as inferior IAAM designs are fully derived. Finally, an alternative resonator-free acoustic metamaterial is presented and shown to exhibit local resonance effects under appropriately tuned conditions.

  14. S-Wave Normal Mode Propagation in Aluminum Cylinders

    USGS Publications Warehouse

    Lee, Myung W.; Waite, William F.

    2010-01-01

    Large amplitude waveform features have been identified in pulse-transmission shear-wave measurements through cylinders that are long relative to the acoustic wavelength. The arrival times and amplitudes of these features do not follow the predicted behavior of well-known bar waves, but instead they appear to propagate with group velocities that increase as the waveform feature's dominant frequency increases. To identify these anomalous features, the wave equation is solved in a cylindrical coordinate system using an infinitely long cylinder with a free surface boundary condition. The solution indicates that large amplitude normal-mode propagations exist. Using the high-frequency approximation of the Bessel function, an approximate dispersion relation is derived. The predicted amplitude and group velocities using the approximate dispersion relation qualitatively agree with measured values at high frequencies, but the exact dispersion relation should be used to analyze normal modes for full ranges of frequency of interest, particularly at lower frequencies.

  15. Potential formulation of the dispersion relation for a uniform, magnetized plasma with stationary ions in terms of a vector phasor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Robert W.

    2012-06-15

    The derivation of the helicon dispersion relation for a uniform plasma with stationary ions subject to a constant background magnetic field is reexamined in terms of the potential formulation of electrodynamics. Under the same conditions considered by the standard derivation, the nonlinear self-coupling between the perturbed electron flow and the potential it generates is addressed. The plane wave solution for general propagation vector is determined for all frequencies and expressed in terms of a vector phasor. The behavior of the solution as described in vacuum units depends upon the ratio of conductivity to the magnitude of the background field. Onlymore » at low conductivity and below, the cyclotron frequency can significant propagation occur as determined by the ratio of skin depth to wavelength.« less

  16. On the integrable elliptic cylindrical Kadomtsev-Petviashvili equation.

    PubMed

    Khusnutdinova, K R; Klein, C; Matveev, V B; Smirnov, A O

    2013-03-01

    There exist two versions of the Kadomtsev-Petviashvili (KP) equation, related to the Cartesian and cylindrical geometries of the waves. In this paper, we derive and study a new version, related to the elliptic cylindrical geometry. The derivation is given in the context of surface waves, but the derived equation is a universal integrable model applicable to generic weakly nonlinear weakly dispersive waves. We also show that there exist nontrivial transformations between all three versions of the KP equation associated with the physical problem formulation, and use them to obtain new classes of approximate solutions for water waves.

  17. Evaluation of regional and local atmospheric dispersion models for the analysis of traffic-related air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Fallah-Shorshani, Masoud; Shekarrizfard, Maryam; Hatzopoulou, Marianne

    2017-10-01

    Dispersion of road transport emissions in urban metropolitan areas is typically simulated using Gaussian models that ignore the turbulence and drag induced by buildings, which are especially relevant for areas with dense downtown cores. To consider the effect of buildings, street canyon models are used but often at the level of single urban corridors and small road networks. In this paper, we compare and validate two dispersion models with widely varying algorithms, across a modelling domain consisting of the City of Montreal, Canada accounting for emissions of more 40,000 roads. The first dispersion model is based on flow decomposition into the urban canopy sub-flow as well as overlying airflow. It takes into account the specific height and geometry of buildings along each road. The second model is a Gaussian puff dispersion model, which handles complex terrain and incorporates three-dimensional meteorology, but accounts for buildings only through variations in the initial vertical mixing coefficient. Validation against surface observations indicated that both models under-predicted measured concentrations. Average weekly exposure surfaces derived from both models were found to be reasonably correlated (r = 0.8) although the Gaussian dispersion model tended to underestimate concentrations around the roadways compared to the street canyon model. In addition, both models were used to estimate exposures of a representative sample of the Montreal population composed of 1319 individuals. Large differences were noted whereby exposures derived from the Gaussian puff model were significantly lower than exposures derived from the street canyon model, an expected result considering the concentration of population around roadways. These differences have large implications for the analyses of health effects associated with NO2 exposure.

  18. Comparison of Non-Parabolic Hydrodynamic Simulations for Semiconductor Devices

    NASA Technical Reports Server (NTRS)

    Smith, A. W.; Brennan, K. F.

    1996-01-01

    Parabolic drift-diffusion simulators are common engineering level design tools for semiconductor devices. Hydrodynamic simulators, based on the parabolic band approximation, are becoming more prevalent as device dimensions shrink and energy transport effects begin to dominate device characteristic. However, band structure effects present in state-of-the-art devices necessitate relaxing the parabolic band approximation. This paper presents simulations of ballistic diodes, a benchmark device, of Si and GaAs using two different non-parabolic hydrodynamic formulations. The first formulation uses the Kane dispersion relationship in the derivation of the conservation equations. The second model uses a power law dispersion relation {(hk)(exp 2)/2m = xW(exp Y)}. Current-voltage relations show that for the ballistic diodes considered. the non-parabolic formulations predict less current than the parabolic case. Explanations of this will be provided by examination of velocity and energy profiles. At low bias, the simulations based on the Kane formulation predict greater current flow than the power law formulation. As the bias is increased this trend changes and the power law predicts greater current than the Kane formulation. It will be shown that the non-parabolicity and energy range of the hydrodynamic model based on the Kane dispersion relation are limited due to the binomial approximation which was utilized in the derivation.

  19. Linear guided waves in a hyperbolic planar waveguide. Dispersion relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lyashko, E I; Maimistov, A I

    2015-11-30

    We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)

  20. The Meyer-Neldel rule and the statistical shift of the Fermi level in amorphous semiconductors

    NASA Astrophysics Data System (ADS)

    Kikuchi, Minoru

    1988-11-01

    The statistical model is used to study the origin of the Meyer-Neldel (MN) rule [σ0∝exp(AEσ)] in a tetrahedral amorphous system. It is shown that a deep minimum in the gap density of states spectrum can lead to the linearity of the Fermi energy F(T) to the derivative (dF/dkT), as required from the rule. An expression is derived which relates the constant A in the rule to the gap density of states spectrum. The dispersion ranges of σ0 and Eσ are found to be related with the constant A. Model calculations show a magnitude of A and a wide dispersion of σ0 and Eσ in fair agreement with the experimental observations. A discussion is given to what extent the MN rule is dependent on the gap density of states spectrum.

  1. Combined effects of trapped energetic ions and resistive layer damping on the stability of the resistive wall mode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Yuling; Liu, Yue, E-mail: Yueqiang.Liu@ccfe.ac.uk, E-mail: liuyue@dlut.edu.cn; Liu, Chao

    2016-01-15

    A dispersion relation is derived for the stability of the resistive wall mode (RWM), which includes both the resistive layer damping physics and the toroidal precession drift resonance damping from energetic ions in tokamak plasmas. The dispersion relation is numerically solved for a model plasma, for the purpose of systematic investigation of the RWM stability in multi-dimensional plasma parameter space including the plasma resistivity, the radial location of the resistive wall, as well as the toroidal flow velocity. It is found that the toroidal favorable average curvature in the resistive layer contributes a significant stabilization of the RWM. This stabilizationmore » is further enhanced by adding the drift kinetic contribution from energetic ions. Furthermore, two traditionally assumed inner layer models are considered and compared in the dispersion relation, resulting in different predictions for the stability of the RWM.« less

  2. Stellar Velocity Dispersion: Linking Quiescent Galaxies to Their Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    Zahid, H. Jabran; Sohn, Jubee; Geller, Margaret J.

    2018-06-01

    We analyze the Illustris-1 hydrodynamical cosmological simulation to explore the stellar velocity dispersion of quiescent galaxies as an observational probe of dark matter halo velocity dispersion and mass. Stellar velocity dispersion is proportional to dark matter halo velocity dispersion for both central and satellite galaxies. The dark matter halos of central galaxies are in virial equilibrium and thus the stellar velocity dispersion is also proportional to dark matter halo mass. This proportionality holds even when a line-of-sight aperture dispersion is calculated in analogy to observations. In contrast, at a given stellar velocity dispersion, the dark matter halo mass of satellite galaxies is smaller than virial equilibrium expectations. This deviation from virial equilibrium probably results from tidal stripping of the outer dark matter halo. Stellar velocity dispersion appears insensitive to tidal effects and thus reflects the correlation between stellar velocity dispersion and dark matter halo mass prior to infall. There is a tight relation (≲0.2 dex scatter) between line-of-sight aperture stellar velocity dispersion and dark matter halo mass suggesting that the dark matter halo mass may be estimated from the measured stellar velocity dispersion for both central and satellite galaxies. We evaluate the impact of treating all objects as central galaxies if the relation we derive is applied to a statistical ensemble. A large fraction (≳2/3) of massive quiescent galaxies are central galaxies and systematic uncertainty in the inferred dark matter halo mass is ≲0.1 dex thus simplifying application of the simulation results to currently available observations.

  3. Dispersion relations of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with functionally graded interlayers.

    PubMed

    Guo, Xiao; Wei, Peijun; Lan, Man; Li, Li

    2016-08-01

    The effects of functionally graded interlayers on dispersion relations of elastic waves in a one-dimensional piezoelectric/piezomagnetic phononic crystal are studied in this paper. First, the state transfer equation of the functionally graded interlayer is derived from the motion equation by the reduction of order (from second order to first order). The transfer matrix of the functionally graded interlayer is obtained by solving the state transfer equation with the spatial-varying coefficient. Based on the transfer matrixes of the piezoelectric slab, the piezomagnetic slab and the functionally graded interlayers, the total transfer matrix of a single cell is obtained. Further, the Bloch theorem is used to obtain the resultant dispersion equations of in-plane and anti-plane Bloch waves. The dispersion equations are solved numerically and the numerical results are shown graphically. Five kinds of profiles of functionally graded interlayers between a piezoelectric slab and a piezomagnetic slab are considered. It is shown that the functionally graded interlayers have evident influences on the dispersion curves and the band gaps. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Phonons and their dispersion in model ferroelastics Hg2Hal2

    NASA Astrophysics Data System (ADS)

    Roginskii, E. M.; Kvasov, A. A.; Markov, Yu. F.; Smirnov, M. B.

    2012-05-01

    Dispersion relations of the acoustic and optical phonon frequencies have been calculated and plotted, and the density of states of the phonon spectrum of Hg2Cl2 and Hg2Br2 crystals has been derived. The effect of hydrostatic pressure on the frequencies of acoustic and optical phonons and their dispersion has been theoretically analyzed. It has been found that an increase in the pressure leads to a strong softening of the slowest acoustic TA branch (the soft mode) at the X point of the Brillouin zone boundary, which is consistent with the phenomenological Landau theory and correlates with experiment.

  5. Laplace-Fourier-domain dispersion analysis of an average derivative optimal scheme for scalar-wave equation

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Bo

    2014-06-01

    By using low-frequency components of the damped wavefield, Laplace-Fourier-domain full waveform inversion (FWI) can recover a long-wavelength velocity model from the original undamped seismic data lacking low-frequency information. Laplace-Fourier-domain modelling is an important foundation of Laplace-Fourier-domain FWI. Based on the numerical phase velocity and the numerical attenuation propagation velocity, a method for performing Laplace-Fourier-domain numerical dispersion analysis is developed in this paper. This method is applied to an average-derivative optimal scheme. The results show that within the relative error of 1 per cent, the Laplace-Fourier-domain average-derivative optimal scheme requires seven gridpoints per smallest wavelength and smallest pseudo-wavelength for both equal and unequal directional sampling intervals. In contrast, the classical five-point scheme requires 23 gridpoints per smallest wavelength and smallest pseudo-wavelength to achieve the same accuracy. Numerical experiments demonstrate the theoretical analysis.

  6. On a New Theoretical Framework for RR Lyrae Stars. II. Mid-infrared Period–Luminosity–Metallicity Relations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeley, Jillian R.; Marengo, Massimo; Trueba, Nicolas

    2017-06-01

    We present new theoretical period–luminosity–metallicity (PLZ) relations for RR Lyræ stars (RRLs) at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range of metal abundances ( Z = 0.0001–0.0198). In deriving the light curves, we tested two sets of atmospheric models and found no significant difference between the resulting mean magnitudes. We also compare our theoretical relations to empirical relations derived from RRLs in both the field and in the globular cluster M4. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus, μ {submore » 0}, and extinction, A {sub V}, of both the individual Galactic RRL and of the cluster M4. The results for the Galactic RRL are consistent with trigonometric parallax measurements from Gaia ’ s first data release. For M4, we find a distance modulus of μ {sub 0} = 11.257 ± 0.035 mag with A {sub V}= 1.45 ± 0.12 mag, which is consistent with measurements from other distance indicators. This analysis has shown that, when considering a sample covering a range of iron abundances, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to ∼0.02 mag at mid-infrared wavelengths.« less

  7. Young dispersal of xerophil Nitraria lineages in intercontinental disjunctions of the Old World

    PubMed Central

    Zhang, Ming-Li; Temirbayeva, Kamshat; Sanderson, Stewart C.; Chen, Xi

    2015-01-01

    Many cases of intercontinental disjunct distributions of seed plants have been investigated, however few have concerned the continents of Eurasia (mainly Central Asia), Africa, and Australia, especially the xerophytic lineages are lacking. Nitraria (Nitrariaceae) is just one of these xerophytic lineages. Previous Nitraria studies have hypothesized either Africa as the ancient center, with dispersals to Australia and Eurasia, or alternatively Central Asia, due to a concentration of endemism and diversity there. Our findings show eastern Central Asia, i.e. the eastern Tethys, to be the correct place of origin. Dispersal westward to Africa occurred during the late Oligocene to Pliocene, whereas dispersal to Australia from western Central Asia was young since Pliocene 2.61 Ma. Two related tetraploids are indicated to have diversified in eastern Central Asia at approximately 5.89 Ma, while the Australian tetraploid N. billardieri, is an independently derived, recent dispersal from western Central Asia. PMID:26343223

  8. User's Guide for Monthly Vector Wind Profile Model

    NASA Technical Reports Server (NTRS)

    Adelfang, S. I.

    1999-01-01

    The background, theoretical concepts, and methodology for construction of vector wind profiles based on a statistical model are presented. The derived monthly vector wind profiles are to be applied by the launch vehicle design community for establishing realistic estimates of critical vehicle design parameter dispersions related to wind profile dispersions. During initial studies a number of months are used to establish the model profiles that produce the largest monthly dispersions of ascent vehicle aerodynamic load indicators. The largest monthly dispersions for wind, which occur during the winter high-wind months, are used for establishing the design reference dispersions for the aerodynamic load indicators. This document includes a description of the computational process for the vector wind model including specification of input data, parameter settings, and output data formats. Sample output data listings are provided to aid the user in the verification of test output.

  9. Extended Poisson process modelling and analysis of grouped binary data.

    PubMed

    Faddy, Malcolm J; Smith, David M

    2012-05-01

    A simple extension of the Poisson process results in binomially distributed counts of events in a time interval. A further extension generalises this to probability distributions under- or over-dispersed relative to the binomial distribution. Substantial levels of under-dispersion are possible with this modelling, but only modest levels of over-dispersion - up to Poisson-like variation. Although simple analytical expressions for the moments of these probability distributions are not available, approximate expressions for the mean and variance are derived, and used to re-parameterise the models. The modelling is applied in the analysis of two published data sets, one showing under-dispersion and the other over-dispersion. More appropriate assessment of the precision of estimated parameters and reliable model checking diagnostics follow from this more general modelling of these data sets. © 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Perturbation theory of dispersion-managed fiber solitons

    NASA Astrophysics Data System (ADS)

    Ferreira, Mário F. S.; Sousa, Mayra H.

    2007-05-01

    A variational approach with an arbitrary ansatz is used to derive the governing equations for the characteristic parameters of dispersion-managed solitons. The Gaussian pulses are considered as a particular case. Moreover, the adiabatic evolution equations of the dispersion-managed pulse parameters under perturbations are derived, considering an arbitrary pulse profile. The theory is applied to the case of Gaussian pulses under different types of perturbations, such as the amplifier noise, nonlinear interaction between pulses, and polarization-mode dispersion.

  11. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, Richard L.

    1996-01-01

    A method of dispersing a hydrocarbon includes the steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; autoclaving the bacterium to derive a dispersant solution therefrom; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures thereof; and autoclaving the bacterium to derive a dispersant solution therefrom.

  12. Methods for dispersing hydrocarbons using autoclaved bacteria

    DOEpatents

    Tyndall, R.L.

    1996-11-26

    A method of dispersing a hydrocarbon includes the following steps: providing a bacterium selected from the following group: ATCC 85527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; autoclaving the bacterium to derive a dispersant solution; and contacting the dispersant solution with a hydrocarbon to disperse the hydrocarbon. Moreover, a method for preparing a dispersant solution includes the following steps: providing a bacterium selected from the following group: ATCC 75527, ATCC 75529, and ATCC 55638, a mutant of any one of these bacteria possessing all the identifying characteristics of any one of these bacteria, and mixtures; and autoclaving the bacterium to derive a dispersant solution.

  13. Oceanic dispersion of Fukushima-derived Cs-137 in the coastal, offshore, and open oceans simulated by multiple oceanic general circulation models

    NASA Astrophysics Data System (ADS)

    Kawamura, H.; Furuno, A.; Kobayashi, T.; In, T.; Nakayama, T.; Ishikawa, Y.; Miyazawa, Y.; Usui, N.

    2017-12-01

    To understand the concentration and amount of Fukushima-derived Cs-137 in the ocean, this study simulates the oceanic dispersion of Cs-137 by an oceanic dispersion model SEA-GEARN-FDM developed at Japan Atomic Energy Agency (JAEA) and multiple oceanic general circulation models. The Cs-137 deposition amounts at the sea surface were used as the source term in oceanic dispersion simulations, which were estimated by atmospheric dispersion simulations with a Worldwide version of System for Prediction of Environmental Emergency Dose Information version II (WSPEEDI-II) developed at JAEA. The direct release from the Fukushima Daiichi Nuclear Power Plant into the ocean based on in situ Cs-137 measurements was used as the other source term in oceanic dispersion simulations. The simulated air Cs-137 concentrations qualitatively replicated those measured around the North Pacific. The accumulated Cs-137 ground deposition amount in the eastern Japanese Islands was consistent with that estimated by aircraft measurements. The oceanic dispersion simulations relatively well reproduced the measured Cs-137 concentrations in the coastal and offshore oceans during the first few months after the Fukushima disaster, and in the open ocean during the first year post-disaster. It was suggested that Cs-137 dispersed along the coast in the north-south direction during the first few months post-disaster, and were subsequently dispersed offshore by the Kuroshio Current and Kuroshio Extension. Mesoscale eddies accompanied by the Kuroshio Current and Kuroshio Extension played an important role in dilution of Cs-137. The Cs-137 amounts were quantified in the coastal, offshore, and open oceans during the first year post-disaster. It was demonstrated that Cs-137 actively dispersed from the coastal and offshore oceans to the open ocean, and from the surface layer to the deeper layer in the North Pacific.

  14. Collective modes in two-dimensional one-component-plasma with logarithmic interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khrapak, Sergey A.; Forschungsgruppe Komplexe Plasmen, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen; Joint Institute for High Temperatures, Russian Academy of Sciences, Moscow

    The collective modes of a familiar two-dimensional one-component-plasma with the repulsive logarithmic interaction between the particles are analysed using the quasi-crystalline approximation (QCA) combined with the molecular dynamic simulation of the equilibrium structural properties. It is found that the dispersion curves in the strongly coupled regime are virtually independent of the coupling strength. Arguments based on the excluded volume consideration for the radial distribution function allow us to derive very simple expressions for the dispersion relations, which show excellent agreement with the exact QCA dispersion over the entire domain of wavelengths. Comparison with the results of the conventional fluid analysismore » is performed, and the difference is explained.« less

  15. Chromotomography for a rotating-prism instrument using backprojection, then filtering.

    PubMed

    Deming, Ross W

    2006-08-01

    A simple closed-form solution is derived for reconstructing a 3D spatial-chromatic image cube from a set of chromatically dispersed 2D image frames. The algorithm is tailored for a particular instrument in which the dispersion element is a matching set of mechanically rotated direct vision prisms positioned between a lens and a focal plane array. By using a linear operator formalism to derive the Tikhonov-regularized pseudoinverse operator, it is found that the unique minimum-norm solution is obtained by applying the adjoint operator, followed by 1D filtering with respect to the chromatic variable. Thus the filtering and backprojection (adjoint) steps are applied in reverse order relative to an existing method. Computational efficiency is provided by use of the fast Fourier transform in the filtering step.

  16. New envelope solitons for Gerdjikov-Ivanov model in nonlinear fiber optics

    NASA Astrophysics Data System (ADS)

    Triki, Houria; Alqahtani, Rubayyi T.; Zhou, Qin; Biswas, Anjan

    2017-11-01

    Exact soliton solutions in a class of derivative nonlinear Schrödinger equations including a pure quintic nonlinearity are investigated. By means of the coupled amplitude-phase formulation, we derive a nonlinear differential equation describing the evolution of the wave amplitude in the non-Kerr quintic media. The resulting amplitude equation is then solved to get exact analytical chirped bright, kink, antikink, and singular soliton solutions for the model. It is also shown that the nonlinear chirp associated with these solitons is crucially dependent on the wave intensity and related to self-steepening and group velocity dispersion parameters. Parametric conditions on physical parameters for the existence of chirped solitons are also presented. These localized structures exist due to a balance among quintic nonlinearity, group velocity dispersion, and self-steepening effects.

  17. Methods for estimating dispersal probabilities and related parameters using marked animals

    USGS Publications Warehouse

    Bennetts, R.E.; Nichols, J.D.; Pradel, R.; Lebreton, J.D.; Kitchens, W.M.; Clobert, Jean; Danchin, Etienne; Dhondt, Andre A.; Nichols, James D.

    2001-01-01

    Deriving valid inferences about the causes and consequences of dispersal from empirical studies depends largely on our ability reliably to estimate parameters associated with dispersal. Here, we present a review of the methods available for estimating dispersal and related parameters using marked individuals. We emphasize methods that place dispersal in a probabilistic framework. In this context, we define a dispersal event as a movement of a specified distance or from one predefined patch to another, the magnitude of the distance or the definition of a `patch? depending on the ecological or evolutionary question(s) being addressed. We have organized the chapter based on four general classes of data for animals that are captured, marked, and released alive: (1) recovery data, in which animals are recovered dead at a subsequent time, (2) recapture/resighting data, in which animals are either recaptured or resighted alive on subsequent sampling occasions, (3) known-status data, in which marked animals are reobserved alive or dead at specified times with probability 1.0, and (4) combined data, in which data are of more than one type (e.g., live recapture and ring recovery). For each data type, we discuss the data required, the estimation techniques, and the types of questions that might be addressed from studies conducted at single and multiple sites.

  18. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, Lawrence L.; Bae, Jae-Heum

    1991-01-01

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes.

  19. Surface plasmon oscillations in a semi-bounded semiconductor plasma

    NASA Astrophysics Data System (ADS)

    M, SHAHMANSOURI; A, P. MISRA

    2018-02-01

    We study the dispersion properties of surface plasmon (SP) oscillations in a semi-bounded semiconductor plasma with the effects of the Coulomb exchange (CE) force associated with the spin polarization of electrons and holes as well as the effects of the Fermi degenerate pressure and the quantum Bohm potential. Starting from a quantum hydrodynamic model coupled to the Poisson equation, we derive the general dispersion relation for surface plasma waves. Previous results in this context are recovered. The dispersion properties of the surface waves are analyzed in some particular cases of interest and the relative influence of the quantum forces on these waves are also studied for a nano-sized GaAs semiconductor plasma. It is found that the CE effects significantly modify the behaviors of the SP waves. The present results are applicable to understand the propagation characteristics of surface waves in solid density plasmas.

  20. Absolute instability of polaron mode in semiconductor magnetoplasma

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Dubey, Swati; Ghosh, S.

    2018-01-01

    Using coupled mode theory under hydrodynamic regime, a compact dispersion relation is derived for polaron mode in semiconductor magnetoplasma. The propagation and amplification characteristics of the wave are explored in detail. The analysis deals with the behaviour of anomalous threshold and amplification derived from dispersion relation, as function of external parameters like doping concentration and applied magnetic field. The results of this investigation are hoped to be useful in understanding electron-longitudinal optical phonon interplay in polar n-type semiconductor plasmas under the influence of coupled collective cyclotron excitations. The best results in terms of smaller threshold and higher gain of polaron mode could be achieved by choosing moderate doping concentration in the medium at higher magnetic field. For numerical appreciation of the results, relevant data of III-V n-GaAs compound semiconductor at 77 K is used. Present study provides a qualitative picture of polaron mode in magnetized n-type polar semiconductor medium duly shined by a CO2 laser.

  1. On the damping of right hand circularly polarized waves in spin quantum plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iqbal, Z.; Hussain, A., E-mail: ah-gcu@yahoo.com; Department of Physics, Quaid-i-Azam University Islamabad, Islamabad 45320

    2014-12-15

    General dispersion relation for the right hand circularly polarized waves has been derived using non-relativistic spin quantum kinetic theory. Employing the derived dispersion relation, temporal and spatial damping of the right hand circularly polarized waves are studied for both the degenerate and non-degenerate plasma regimes for two different frequency domains: (i) k{sub ∥}v≫(ω+ω{sub ce}),(ω+ω{sub cg}) and (ii) k{sub ∥}v≪(ω+ω{sub ce}),(ω+ω{sub cg}). Comparison of the cold and hot plasma regimes shows that the right hand circularly polarized wave with spin-effects exists for larger k-values as compared to the spinless case, before it damps completely. It is also found that the spin-effectsmore » can significantly influence the phase and group velocities of the whistler waves in both the degenerate and non-degenerate regimes. The results obtained are also analyzed graphically for some laboratory parameters to demonstrate the physical significance of the present work.« less

  2. Observables and dispersion relations in κ-Minkowski spacetime

    NASA Astrophysics Data System (ADS)

    Aschieri, Paolo; Borowiec, Andrzej; Pachoł, Anna

    2017-10-01

    We revisit the notion of quantum Lie algebra of symmetries of a noncommutative spacetime, its elements are shown to be the generators of infinitesimal transformations and are naturally identified with physical observables. Wave equations on noncommutative spaces are derived from a quantum Hodge star operator. This general noncommutative geometry construction is then exemplified in the case of κ-Minkowski spacetime. The corresponding quantum Poincaré-Weyl Lie algebra of in-finitesimal translations, rotations and dilatations is obtained. The d'Alembert wave operator coincides with the quadratic Casimir of quantum translations and it is deformed as in Deformed Special Relativity theories. Also momenta (infinitesimal quantum translations) are deformed, and correspondingly the Einstein-Planck relation and the de Broglie one. The energy-momentum relations (dispersion relations) are consequently deduced. These results complement those of the phenomenological literature on the subject.

  3. Schottky diode model for non-parabolic dispersion in narrow-gap semiconductor and few-layer graphene

    NASA Astrophysics Data System (ADS)

    Ang, Yee Sin; Ang, L. K.; Zubair, M.

    Despite the fact that the energy dispersions are highly non-parabolic in many Schottky interfaces made up of 2D material, experimental results are often interpreted using the conventional Schottky diode equation which, contradictorily, assumes a parabolic energy dispersion. In this work, the Schottky diode equation is derived for narrow-gap semiconductor and few-layer graphene where the energy dispersions are highly non-parabolic. Based on Kane's non-parabolic band model, we obtained a more general Kane-Schottky scaling relation of J (T2 + γkBT3) which connects the contrasting J T2 in the conventional Schottky interface and the J T3 scaling in graphene-based Schottky interface via a non-parabolicity parameter, γ. For N-layer graphene of ABC -stacking and of ABA -stacking, the scaling relation follows J T 2 / N + 1 and J T3 respectively. Intriguingly, the Richardson constant extracted from the experimental data using an incorrect scaling can differ with the actual value by more than two orders of magnitude. Our results highlights the importance of using the correct scaling relation in order to accurately extract important physical properties, such as the Richardson constant and the Schottky barrier's height.

  4. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE PAGES

    Wolfram, Phillip J.; Ringler, Todd D.

    2017-08-14

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  5. Computing eddy-driven effective diffusivity using Lagrangian particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfram, Phillip J.; Ringler, Todd D.

    A novel method to derive effective diffusivity from Lagrangian particle trajectory data sets is developed and then analyzed relative to particle-derived meridional diffusivity for eddy-driven mixing in an idealized circumpolar current. Quantitative standard dispersion- and transport-based mixing diagnostics are defined, compared and contrasted to motivate the computation and use of effective diffusivity derived from Lagrangian particles. We compute the effective diffusivity by first performing scalar transport on Lagrangian control areas using stored trajectories computed from online Lagrangian In-situ Global High-performance particle Tracking (LIGHT) using the Model for Prediction Across Scales Ocean (MPAS-O). Furthermore, the Lagrangian scalar transport scheme is comparedmore » against an Eulerian scalar transport scheme. Spatially-variable effective diffusivities are computed from resulting time-varying cumulative concentrations that vary as a function of cumulative area. The transport-based Eulerian and Lagrangian effective diffusivity diagnostics are found to be qualitatively consistent with the dispersion-based diffusivity. All diffusivity estimates show a region of increased subsurface diffusivity within the core of an idealized circumpolar current and results are within a factor of two of each other. The Eulerian and Lagrangian effective diffusivities are most similar; smaller and more spatially diffused values are obtained with the dispersion-based diffusivity computed with particle clusters.« less

  6. Glycerol derivatives of cutin and suberin monomers: synthesis and self-assembly.

    PubMed

    Douliez, Jean-Paul; Barrault, Joël; Jerome, François; Heredia, Antonio; Navailles, Laurence; Nallet, Frédéric

    2005-01-01

    Glycerol derivatives of cutin and suberin monomers were synthesized by acid catalysis. Their dispersion in an aqueous solution was examined by phase contrast microscopy, neutron scattering, and solid state NMR. It is shown that the phase behavior strongly depends on the nature of the derivatives forming either lumps of aggregated membranes or well dispersed membranes.

  7. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  8. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE PAGES

    Garapati, K. V.; Bagherian, M.; Passian, A.; ...

    2018-01-03

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  9. Plasmon dispersion in a multilayer solid torus in terms of three-term vector recurrence relations and matrix continued fractions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garapati, K. V.; Bagherian, M.; Passian, A.

    Toroidal confinement, which has played a crucial role in magnetized plasmas and Tokamak physics, is emerging as an effective means to obtain useful electronic and optical response in solids. In particular, excitation of surface plasmons in metal nanorings by photons or electrons finds important applications due to the engendered field distribution and electromagnetic energy confinement. However, in contrast to the case of a plasma, often the solid nanorings are multilayered and/or embedded in a medium. The non-simply connected geometry of the torus results in surface modes that are not linearly independent. A three-term difference equation was recently shown to arisemore » when seeking the nonretarded plasmon dispersion relations for a stratified solid torus (Garapati et al 2017 Phys. Rev. B 95 165422). The reported generalized plasmon dispersion relations are here investigated in terms of the involved matrix continued fractions and their convergence properties including the determinant forms of the dispersion relations obtained for computing the plasmon eigenmodes. We also present the intricacies of the derivation and properties of the Green's function employed to solve the three term amplitude equation that determines the response of the toroidal structure to arbitrary external excitations.« less

  10. What Did Kramers and Kronig Do and How Did They Do It?

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2010-01-01

    Over time the account of how the Kramers-Kronig (dispersion) relations between the real and imaginary parts of response functions were derived in 1926 and 1927 has been transmogrified into anecdotes about what might have been done but was not. Although Kramers obtained both members of a pair of relations, Kronig obtained only one. Both authors…

  11. Segregation of acid plume pixels from background water pixels, signatures of background water and dispersed acid plumes, and implications for calculation of iron concentration in dense plumes

    NASA Technical Reports Server (NTRS)

    Bahn, G. S.

    1978-01-01

    Two files of data, obtained with a modular multiband scanner, for an acid waste dump into ocean water, were analyzed intensively. Signatures were derived for background water at different levels of effective sunlight intensity, and for different iron concentrations in the dispersed plume from the dump. The effect of increased sunlight intensity on the calculated iron concentration was found to be relatively important at low iron concentrations and relatively unimportant at high values of iron concentration in dispersed plumes. It was concluded that the basic equation for iron concentration is not applicable to dense plumes, particularly because lower values are indicated at the very core of the plume, than in the surrounding sheath, whereas radiances increase consistently from background water to dispersed plume to inner sheath to innermost core. It was likewise concluded that in the dense plume the iron concentration would probably best be measured by the higher wave length radiances, although the suitable relationship remains unknown.

  12. Joint inversion of surface wave dispersion and receiver functions for crustal structure in Oklahoma

    NASA Astrophysics Data System (ADS)

    Guo, Hao

    The surge in seismicity in Oklahoma starting in 2008 raises questions about the actual locations of the earthquakes in the upper crust. The key to answering this is an improved crustal model that explains as many observations as possible. Love and Rayleigh wave dispersion, teleseismic P-wave receiver functions and some unique transverse motions observed at distances less than 100 km that are characteristics of rays reverberating in a basin provide data to derive the crustal model. The surface wave dispersion data set consists of over 300,000 Love/Rayleigh phase/group values obtained from ambient noise cross-correlation of BH channels of the 133 Transportable Array (TA) stations of Earthscope to periods as short as 2 seconds. Station coverage is dense enough to perform the tomography on a 25*25 km grid that should be able to image shallow geological structures. In addition, receiver functions were obtained using teleseismic data recorded from 3 US Geological Survey Networks (GS) stations and 6 Oklahoma Seismic Network (OK) stations from 2011 to 2014. The 1-D S-wave velocity models derived by the joint inversion of surface wave dispersion and receiver functions with geological constraints are tested by fitting the independent transverse seismograms. This test also provides constraints on the earthquake depths in relation to the geological structure.

  13. Conformational change of Sos-derived proline-rich peptide upon binding Grb2 N-terminal SH3 domain probed by NMR

    NASA Astrophysics Data System (ADS)

    Ogura, Kenji; Okamura, Hideyasu

    2013-10-01

    Growth factor receptor-bound protein 2 (Grb2) is a small adapter protein composed of a single SH2 domain flanked by two SH3 domains. The N-terminal SH3 (nSH3) domain of Grb2 binds a proline-rich region present in the guanine nucleotide releasing factor, son of sevenless (Sos). Using NMR relaxation dispersion and chemical shift analysis methods, we investigated the conformational change of the Sos-derived proline-rich peptide during the transition between the free and Grb2 nSH3-bound states. The chemical shift analysis revealed that the peptide does not present a fully random conformation but has a relatively rigid structure. The relaxation dispersion analysis detected conformational exchange of several residues of the peptide upon binding to Grb2 nSH3.

  14. The Relation Between Black Hole Mass and Velocity Dispersion at z ~ 0.37

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Treu, T.

    2004-10-25

    The velocity dispersion of 7 Seyfert 1 galaxies at z {approx} 0.37 is measured using high signal-to-noise Keck spectra. Black hole (BH) mass estimates are obtained via an empirically calibrated photoionization method. We derive the BH mass velocity dispersion relationship at z {approx} 0.37. We find an offset with respect to the local relationship, in the sense of somewhat lower velocity dispersion at a fixed BH mass at z {approx} 0.37 than today, significant at the 97% level. The offset corresponds to {Delta}log {sigma} = -0.16 with rms scatter of 0.13 dex. If confirmed by larger samples and independent checksmore » on systematic uncertainties and selection effects, this result would be consistent with spheroids evolving faster than BHs in the past 4 Gyrs and inconsistent with pure luminosity evolution.« less

  15. Laser capillary spectrophotometric acquisition of bivariate drop size and concentration data for liquid-liquid dispersion

    DOEpatents

    Tavlarides, L.L.; Bae, J.H.

    1991-12-24

    A laser capillary spectrophotometric technique measures real time or near real time bivariate drop size and concentration distribution for a reactive liquid-liquid dispersion system. The dispersion is drawn into a precision-bore glass capillary and an appropriate light source is used to distinguish the aqueous phase from slugs of the organic phase at two points along the capillary whose separation is precisely known. The suction velocity is measured, as is the length of each slug from which the drop free diameter is calculated. For each drop, the absorptivity at a given wavelength is related to the molar concentration of a solute of interest, and the concentration of given drops of the organic phase is derived from pulse heights of the detected light. This technique permits on-line monitoring and control of liquid-liquid dispersion processes. 17 figures.

  16. Effect of microbubble-induced cavitation on the dispersion of sprays

    NASA Astrophysics Data System (ADS)

    van der Voort, D. D.; Dam, N. J.; Kunnen, R. P. J.; van Heijst, G. J. F.; Clercx, H. J. H.

    2017-03-01

    The presence of bubbles and voids inside nozzles has a large effect on the morphology and atomization of sprays. In this investigation the voids formed by microbubbles entering the nozzle are investigated using transparent glass nozzles, pressure transducers, and high-speed diffuse backlight imaging. A correlation is found between the magnitude of pressure pulses inside the nozzle and the size of the bubbles causing these pulses. This relation allows the prediction of cavity formation also in nontransparent nozzles, which allow more realistic conditions of operation. Subsequently, the direct measurements of dispersion derived from the spread of glowing fluid showed no significant increase of the dispersion compared to cavitation-free conditions. This indicates that, while the spray angle may increase, the turbulence (in both liquid and gas phase) that governs the dispersion remains the same and the cavitation bubble events do not have a significant impact on this process.

  17. Alfven wave cyclotron resonance heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, R.B.; Yosikawa, S.; Oberman, C.

    1981-02-01

    The resonance absorption of fast Alfven waves at the proton ctclotron resonance of a predominately deuterium plasma is investigated. An approximate dispersion relation is derived, valid in the vicinity of the resonance, which permits an exact calculation of transmission and reflection coefficients. For reasonable plasma parameters significant linear resonance absorption is found.

  18. Black Hole Scrambling from Hydrodynamics.

    PubMed

    Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo

    2018-06-08

    We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-N_{c} holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.

  19. Black Hole Scrambling from Hydrodynamics

    NASA Astrophysics Data System (ADS)

    Grozdanov, Sašo; Schalm, Koenraad; Scopelliti, Vincenzo

    2018-06-01

    We argue that the gravitational shock wave computation used to extract the scrambling rate in strongly coupled quantum theories with a holographic dual is directly related to probing the system's hydrodynamic sound modes. The information recovered from the shock wave can be reconstructed in terms of purely diffusionlike, linearized gravitational waves at the horizon of a single-sided black hole with specific regularity-enforced imaginary values of frequency and momentum. In two-derivative bulk theories, this horizon "diffusion" can be related to late-time momentum diffusion via a simple relation, which ceases to hold in higher-derivative theories. We then show that the same values of imaginary frequency and momentum follow from a dispersion relation of a hydrodynamic sound mode. The frequency, momentum, and group velocity give the holographic Lyapunov exponent and the butterfly velocity. Moreover, at this special point along the sound dispersion relation curve, the residue of the retarded longitudinal stress-energy tensor two-point function vanishes. This establishes a direct link between a hydrodynamic sound mode at an analytically continued, imaginary momentum and the holographic butterfly effect. Furthermore, our results imply that infinitely strongly coupled, large-Nc holographic theories exhibit properties similar to classical dilute gases; there, late-time equilibration and early-time scrambling are also controlled by the same dynamics.

  20. Power-law spatial dispersion from fractional Liouville equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarasov, Vasily E.

    2013-10-15

    A microscopic model in the framework of fractional kinetics to describe spatial dispersion of power-law type is suggested. The Liouville equation with the Caputo fractional derivatives is used to obtain the power-law dependence of the absolute permittivity on the wave vector. The fractional differential equations for electrostatic potential in the media with power-law spatial dispersion are derived. The particular solutions of these equations for the electric potential of point charge in this media are considered.

  1. Chirality-induced negative refraction in magnetized plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, B.

    2013-09-15

    Characteristic equations in magnetized plasma with chirality are derived in simple formulations and the dispersion relations for propagation parallel and perpendicular to the external magnetic field are studied in detail. With the help of the dispersion relations of each eigenwave, the author explores chirality-induced negative refraction in magnetized plasma and investigates the effects of parameters (i.e., chirality degree, external magnetic field, etc.) on the negative refraction. The results show that the chirality is the necessary and only one factor which leads to negative refraction without manipulating electrical permittivity and magnetic permeability. Both increasing the degree of chirality and reducing themore » external magnetic field can result in greater range negative refraction. Parameter dependence of the effects is calculated and discussed.« less

  2. Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method

    NASA Astrophysics Data System (ADS)

    Ampilogov, Dmitrii; Leble, Sergey

    2016-07-01

    We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.

  3. Study of the O-mode in a relativistic degenerate electron plasma

    NASA Astrophysics Data System (ADS)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  4. Approximation method for a spherical bound system in the quantum plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehramiz, A.; Sobhanian, S.; Mahmoodi, J.

    2010-08-15

    A system of quantum hydrodynamic equations has been used for investigating the dielectric tensor and dispersion equation of a semiconductor as a quantum magnetized plasma. Dispersion relations and their modifications due to quantum effects are derived for both longitudinal and transverse waves. The number of states and energy levels are analytically estimated for a spherical bound system embedded in a semiconductor quantum plasma. The results show that longitudinal waves decay rapidly and do not interact with the spherical bound system. The energy shifts caused by the spin-orbit interaction and the Zeeman effect are calculated.

  5. Ion pair-based dispersive liquid-liquid microextraction followed by high performance liquid chromatography as a new method for determining five folate derivatives in foodstuffs.

    PubMed

    Nojavan, Yones; Kamankesh, Marzieh; Shahraz, Farzaneh; Hashemi, Maryam; Mohammadi, Abdorreza

    2015-05-01

    A novel technique for simultaneous determination of five folate derivatives in various food matrices was developed by ion pair-based dispersive liquid-liquid microextraction (IP-DLLME) combined with high-performance liquid chromatography (HPLC). In the proposed method, N-methyl-N,N-dioctyloctan-1-ammonium chloride (aliquat-336) was used as an ion-pair reagent. Effective variables of microextraction process were optimized. Under optimum conditions, the method yielded a linear calibration curve ranging from 1-200 ng g(-1) with correlation coefficients (r(2)) higher than 0.98. The relative standard deviation for the seven analyses was 5.2-7.4%. Enrichment factors for the five folates ranged between 108-135. Limits of detection were 2-4.1 ng g(-1). A comparison of this method with other methods described that the new proposed method is rapid and accurate, and gives very good enrichment factors and detection limits for determining five folate derivatives. The newly developed method was successfully applied for the determination of five folate derivatives in wheat flour, egg yolk and orange juice samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  7. Reducing complexity when studying seed dispersal at community scales: a functional classification of vertebrate seed dispersers in tropical forests.

    PubMed

    Dennis, Andrew J; Westcott, David A

    2006-10-01

    The process of seed dispersal has a profound effect on vegetation structure and diversity in tropical forests. However, our understanding of the process and our ability to predict its outcomes at a community scale are limited by the frequently large number of interactions associated with it. Here, we outline an approach to dealing with this complexity that reduces the number of unique interactions considered by classifying the participants according to their functional similarity. We derived a classification of dispersers based on the nature of the dispersal service they provide to plants. We described the quantities of fruit handled, the quality of handling and the diversity of plants to which the service is provided. We used ten broad disperser traits to group 26 detailed measures for each disperser. We then applied this approach to vertebrate dispersers in Australia's tropical forests. Using this we also develop a classification that may be more generally applicable. For each disperser, data relating to each trait was obtained either from the field or published literature. First, we identified dispersers whose service outcomes were so distinct that statistical analysis was not required and assigned them to functional groups. The remaining dispersers were assigned to functional groups using cluster analysis. The combined processes created 15 functional groups from 65 vertebrate dispersers in Australian tropical forests. Our approach--grouping dispersers on the basis of the type of dispersal service provided and the fruit types it is provided to--represents a means of reducing the complexity encountered in tropical seed dispersal systems and could be effectively applied in community level studies. It also represents a useful tool for exploring changes in dispersal services when the distribution and abundance of animal populations change due to human impacts.

  8. Optimal variable-grid finite-difference modeling for porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Li, Haishan

    2014-12-01

    Numerical modeling of poroelastic waves by the finite-difference (FD) method is more expensive than that of acoustic or elastic waves. To improve the accuracy and computational efficiency of seismic modeling, variable-grid FD methods have been developed. In this paper, we derived optimal staggered-grid finite difference schemes with variable grid-spacing and time-step for seismic modeling in porous media. FD operators with small grid-spacing and time-step are adopted for low-velocity or small-scale geological bodies, while FD operators with big grid-spacing and time-step are adopted for high-velocity or large-scale regions. The dispersion relations of FD schemes were derived based on the plane wave theory, then the FD coefficients were obtained using the Taylor expansion. Dispersion analysis and modeling results demonstrated that the proposed method has higher accuracy with lower computational cost for poroelastic wave simulation in heterogeneous reservoirs.

  9. Quantum dust magnetosonic waves with spin and exchange correlation effects

    NASA Astrophysics Data System (ADS)

    Maroof, R.; Mushtaq, A.; Qamar, A.

    2016-01-01

    Dust magnetosonic waves are studied in degenerate dusty plasmas with spin and exchange correlation effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, spin magnetization energy, and exchange correlation, a generalized dispersion relation is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. The exchange-correlation potentials are used, based on the adiabatic local-density approximation, and can be described as a function of the electron density. For three different values of angle, the dispersion relation is reduced to three different modes under the low frequency magnetohydrodynamic assumptions. It is found that the effects of quantum corrections in the presence of dust concentration significantly modify the dispersive properties of these modes. The results are useful for understanding numerous collective phenomena in quantum plasmas, such as those in compact astrophysical objects (e.g., the cores of white dwarf stars and giant planets) and in plasma-assisted nanotechnology (e.g., quantum diodes, quantum free-electron lasers, etc.).

  10. Investigation of dispersion-relation-preserving scheme and spectral analysis methods for acoustic waves

    NASA Technical Reports Server (NTRS)

    Vanel, Florence O.; Baysal, Oktay

    1995-01-01

    Important characteristics of the aeroacoustic wave propagation are mostly encoded in their dispersion relations. Hence, a computational aeroacoustic (CAA) algorithm, which reasonably preserves these relations, was investigated. It was derived using an optimization procedure to ensure, that the numerical derivatives preserved the wave number and angular frequency of the differential terms in the linearized, 2-D Euler equations. Then, simulations were performed to validate the scheme and a compatible set of discretized boundary conditions. The computational results were found to agree favorably with the exact solutions. The boundary conditions were transparent to the outgoing waves, except when the disturbance source was close to a boundary. The time-domain data generated by such CAA solutions were often intractable until their spectra was analyzed. Therefore, the relative merits of three different methods were included in the study. For simple, periodic waves, the periodogram method produced better estimates of the steep-sloped spectra than the Blackman-Tukey method. Also, for this problem, the Hanning window was more effective when used with the weighted-overlapped-segment-averaging and Blackman-Tukey methods gave better results than the periodogram method. Finally, it was demonstrated that the representation of time domain-data was significantly dependent on the particular spectral analysis method employed.

  11. Subluminal group velocity and dispersion of Laguerre Gauss beams in free space.

    PubMed

    Bareza, Nestor D; Hermosa, Nathaniel

    2016-05-27

    That the speed of light in free space c is constant has been a pillar of modern physics since the derivation of Maxwell and in Einstein's postulate in special relativity. This has been a basic assumption in light's various applications. However, a physical beam of light has a finite extent such that even in free space it is by nature dispersive. The field confinement changes its wavevector, hence, altering the light's group velocity vg. Here, we report the subluminal vg and consequently the dispersion in free space of Laguerre-Gauss (LG) beam, a beam known to carry orbital angular momentum. The vg of LG beam, calculated in the paraxial regime, is observed to be inversely proportional to the beam's divergence θ0, the orbital order ℓ and the radial order p. LG beams of higher orders travel relatively slower than that of lower orders. As a consequence, LG beams of different orders separate in the temporal domain along propagation. This is an added effect to the dispersion due to field confinement. Our results are useful for treating information embedded in LG beams from astronomical sources and/or data transmission in free space.

  12. Medusa spectroscopy of A400, A576, A1767, and A2124

    NASA Technical Reports Server (NTRS)

    Hintzen, P.; Hill, J. M.; Lindley, D.; Scott, J. S.; Angel, J. R. P.

    1982-01-01

    Galaxy velocity data taken with the Steward Observatory multiple aperture fiber optic spectrograph are presented for four Abell clusters. The root-mean-square external errors in these velocities are about 100 km/s; accuracy which compares favorably with that obtained from single-object observations. It is expected that the recent adoption of a CCD detector should decrease external errors to about 50 km/s. All four of the clusters observed are known X-ray sources and the present data agree well with empirically derived velocity dispersion-X-ray luminosity relations for clusters of galaxies. Abell 400 is interesting in this regard, since both its X-ray luminosity and its velocity dispersion are quite small. Such objects are particularly important in determining the slope of the velocity dispersion-X-ray luminosity relation. The large microwave decrement observed in A576 was initially interpreted as due to Compton scattering of the microwave background by the X-ray-emitting intracluster gas. White and Silk have presented Einstein X-ray data which indicate that A576 contains too little gas to produce the observed microwave decrement by Compton scattering. The velocity dispersion obtained here for 47 members of this cluster strengthens their conclusion.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van de Sande, Jesse; Franx, Marijn; Labbe, Ivo

    Recent photometric studies have shown that early-type galaxies at fixed stellar mass were smaller and denser at earlier times. In this Letter, we assess that finding by deriving the dynamical mass of such a compact quiescent galaxy at z = 1.8. We have obtained a high-quality spectrum with full UV-NIR wavelength coverage of galaxy NMBS-C7447 using X-Shooter on the Very Large Telescope. We determined a velocity dispersion of 294 {+-} 51 km s{sup -1}. Given this velocity dispersion and the effective radius of 1.64 {+-} 0.15 kpc (as determined from Hubble Space Telescope Wide Field Camera 3 F160W observations) wemore » derive a dynamical mass of (1.7 {+-} 0.5) x 10{sup 11} M{sub sun}. Comparison of the full spectrum with stellar population synthesis models indicates that NMBS-C774 has a relatively young stellar population (0.40 Gyr) with little or no star formation and a stellar mass of M{sub *} {approx} 1.5 x 10{sup 11} M{sub sun}. The dynamical and photometric stellar masses are in good agreement. Thus, our study supports the conclusion that the mass densities of quiescent galaxies were indeed higher at earlier times, and this earlier result is not caused by systematic measurement errors. By combining available spectroscopic measurements at different redshifts, we find that the velocity dispersion at fixed dynamical mass was a factor of {approx}1.8 higher at z = 1.8 compared with z = 0. Finally, we show that the apparent discrepancies between the few available velocity dispersion measurements at z > 1.5 are consistent with the intrinsic scatter of the mass-size relation.« less

  14. The modelling of dispersion in 2-D tidal flow over an uneven bed

    NASA Astrophysics Data System (ADS)

    Kalkwijk, Jan P. Th.

    This paper deals with the effective mixing by topographic induced velocity variations in 2-D tidal flow. This type of mixing is characterized by tidally-averaged dispersion coefficients, which depend on the magnitude of the depth variations with respect to a mean depth, the velocity variations and the basic dispersion coefficients. The analysis is principally based on a Taylor type approximation (large clouds, small concentration variations) of the 2-D advection diffusion equation and a 2-D velocity field that behaves harmonically both in time and in space. Neglecting transient phenomena and applying time and space averaging the effective dispersion coefficients can be derived. Under certain circumstances it is possible to relate the velocity variations to the depth variations, so that finally effective dispersion coefficients can be determined using the power spectrum of the depth variations. In a special paragraph attention is paid to the modelling of sub-grid mixing in case of numerical integration of the advection-diffusion equation. It appears that the dispersion coefficients taking account of the sub-grid mixing are not only determined by the velocity variations within a certain grid cell, but also by the velocity variations at a larger scale.

  15. Crosswell electromagnetic modeling from impulsive source: Optimization strategy for dispersion suppression in convolutional perfectly matched layer

    PubMed Central

    Fang, Sinan; Pan, Heping; Du, Ting; Konaté, Ahmed Amara; Deng, Chengxiang; Qin, Zhen; Guo, Bo; Peng, Ling; Ma, Huolin; Li, Gang; Zhou, Feng

    2016-01-01

    This study applied the finite-difference time-domain (FDTD) method to forward modeling of the low-frequency crosswell electromagnetic (EM) method. Specifically, we implemented impulse sources and convolutional perfectly matched layer (CPML). In the process to strengthen CPML, we observed that some dispersion was induced by the real stretch κ, together with an angular variation of the phase velocity of the transverse electric plane wave; the conclusion was that this dispersion was positively related to the real stretch and was little affected by grid interval. To suppress the dispersion in the CPML, we first derived the analytical solution for the radiation field of the magneto-dipole impulse source in the time domain. Then, a numerical simulation of CPML absorption with high-frequency pulses qualitatively amplified the dispersion laws through wave field snapshots. A numerical simulation using low-frequency pulses suggested an optimal parameter strategy for CPML from the established criteria. Based on its physical nature, the CPML method of simply warping space-time was predicted to be a promising approach to achieve ideal absorption, although it was still difficult to entirely remove the dispersion. PMID:27585538

  16. An efficient method of reducing glass dispersion tolerance sensitivity

    NASA Astrophysics Data System (ADS)

    Sparrold, Scott W.; Shepard, R. Hamilton

    2014-12-01

    Constraining the Seidel aberrations of optical surfaces is a common technique for relaxing tolerance sensitivities in the optimization process. We offer an observation that a lens's Abbe number tolerance is directly related to the magnitude by which its longitudinal and transverse color are permitted to vary in production. Based on this observation, we propose a computationally efficient and easy-to-use merit function constraint for relaxing dispersion tolerance sensitivity. Using the relationship between an element's chromatic aberration and dispersion sensitivity, we derive a fundamental limit for lens scale and power that is capable of achieving high production yield for a given performance specification, which provides insight on the point at which lens splitting or melt fitting becomes necessary. The theory is validated by comparing its predictions to a formal tolerance analysis of a Cooke Triplet, and then applied to the design of a 1.5x visible linescan lens to illustrate optimization for reduced dispersion sensitivity. A selection of lenses in high volume production is then used to corroborate the proposed method of dispersion tolerance allocation.

  17. Transfer function of radio over fiber multimode fiber optic links considering third-order dispersion.

    PubMed

    Capmany, J; Gasulla, Ivana

    2007-08-20

    Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.

  18. Approximate Dispersion Relations for Waves on Arbitrary Shear Flows

    NASA Astrophysics Data System (ADS)

    Ellingsen, S. À.; Li, Y.

    2017-12-01

    An approximate dispersion relation is derived and presented for linear surface waves atop a shear current whose magnitude and direction can vary arbitrarily with depth. The approximation, derived to first order of deviation from potential flow, is shown to produce good approximations at all wavelengths for a wide range of naturally occuring shear flows as well as widely used model flows. The relation reduces in many cases to a 3-D generalization of the much used approximation by Skop (1987), developed further by Kirby and Chen (1989), but is shown to be more robust, succeeding in situations where the Kirby and Chen model fails. The two approximations incur the same numerical cost and difficulty. While the Kirby and Chen approximation is excellent for a wide range of currents, the exact criteria for its applicability have not been known. We explain the apparently serendipitous success of the latter and derive proper conditions of applicability for both approximate dispersion relations. Our new model has a greater range of applicability. A second order approximation is also derived. It greatly improves accuracy, which is shown to be important in difficult cases. It has an advantage over the corresponding second-order expression proposed by Kirby and Chen that its criterion of accuracy is explicitly known, which is not currently the case for the latter to our knowledge. Our second-order term is also arguably significantly simpler to implement, and more physically transparent, than its sibling due to Kirby and Chen.Plain Language SummaryIn order to answer key questions such as how the ocean surface affects the climate, erodes the coastline and transports nutrients, we must understand how waves move. This is not so easy when depth varying currents are present, as they often are in coastal waters. We have developed a modeling tool for accurately predicting wave properties in such situations, ready for use, for example, in the complex oceanographic computer models. Our method is robust and works well in situations where the tool currently used will fail. In addition to predicting the speed of waves of different lengths and directions, it is important to know something about how accurate the prediction is, and as a worst case, whether it is reasonable at all. This has not been possible before, but we provide a way to answer both questions in a straightforward manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1393483-dispersion-relation-hadronic-light-light-scattering-two-pion-contributions','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1393483-dispersion-relation-hadronic-light-light-scattering-two-pion-contributions"><span>Dispersion relation for hadronic light-by-light scattering: two-pion contributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano; ...</p> <p>2017-04-27</p> <p>In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1393483','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1393483"><span>Dispersion relation for hadronic light-by-light scattering: two-pion contributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Colangelo, Gilberto; Hoferichter, Martin; Procura, Massimiliano</p> <p></p> <p>In our third paper of a series dedicated to a dispersive treatment of the hadronic light-by-light (HLbL) tensor, we derive a partial-wave formulation for two-pion intermediate states in the HLbL contribution to the anomalous magnetic moment of the muon (g - 2) μ, including a detailed discussion of the unitarity relation for arbitrary partial waves. We show that obtaining a final expression free from unphysical helicity partial waves is a subtle issue, which we thoroughly clarify. As a by-product, we obtain a set of sum rules that could be used to constrain future calculations of γ*γ* → ππ. We validate the formalism extensively using the pion-box contribution, defined by two-pion intermediate states with a pion-pole left-hand cut, and demonstrate how the full known result is reproduced when resumming the partial waves. Using dispersive fits to high-statistics data for the pion vector form factor, we provide an evaluation of the full pion box, amore » $$π-box\\atop{μ}$$ =-15.9(2) × 10 -11. As an application of the partial-wave formalism, we present a first calculation of ππ-rescattering effects in HLbL scattering, with γ*γ* → ππ helicity partial waves constructed dispersively using ππ phase shifts derived from the inverse-amplitude method. In this way, the isospin-0 part of our calculation can be interpreted as the contribution of the f0(500) to HLbL scattering in (g - 2) μ. We also argue that the contribution due to charged-pion rescattering implements corrections related to the corresponding pion polarizability and show that these are moderate. Our final result for the sum of pion-box contribution and its S-wave rescattering corrections reads a$$π-box\\atop{μ}$$ + a$$ππ, π-pole LHC\\atop{μ, J=0}$$ = -24(1) × 10 -11.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUFM.H51K..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUFM.H51K..03W"><span>From Fractals to Fractional Vector Calculus: Measurement in the Correct Metric</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wheatcraft, S. W.; Meerschaert, M. M.; Mortensen, J.</p> <p>2005-12-01</p> <p>Traditional (stationary) stochastic theories have been fairly successful in reproducing transport behavior at relatively homogeneous field sites such as the Borden and Cape Code sites. However, the highly heterogeneous MADE site has produced tracer data that can not be adequately explained with traditional stochastic theories. In recent years, considerable attention has been focused on developing more sophisticated theories that can predict or reproduce the behavior of complex sites such as the MADE site. People began to realize that the model for geologic complexity may in many cases be very different than the model required for stochastic theory. Fractal approaches were useful in conceptualizing scale-invariant heterogeneity by demonstrating that scale dependant transport was just an artifact of our measurement system. Fractal media have dimensions larger than the dimension that measurement is taking place in, thus assuring the scale-dependence of parameters such as dispersivity. What was needed was a rigorous way to develop a theory that was consistent with the fractal dimension of the heterogeneity. The fractional advection-dispersion equation (FADE) was developed with this idea in mind. The second derivative in the dispersion term of the advection-dispersion equation is replaced with a fractional derivative. The order of differentiation, α, is fractional. Values of α in the range: 1 < α < 2 produce super-Fickian dispersion; in essence, the dispersion scaling is controlled by the value of α. When α = 2, the traditional advection-dispersion equation is recovered. The 1-D version of the FADE has been used successfully to back-predict tracer test behavior at several heterogeneous field sites, including the MADE site. It has been hypothesized that the order of differentiation in the FADE is equivalent to (or at least related to) the fractal dimension of the particle tracks (or geologic heterogeneity). With this way of thinking, one can think of the FADE as a governing equation written for the correct dimension, thus eliminating scale-dependent behavior. Before a generalized multi-dimensional form of the FADE can be developed, it has been necessary to develop a generalized fractional vector calculus. The authors have recently developed generalized canonical fractional forms of the gradient, divergence and curl. This fractional vector calculus will be useful in developing fractional forms of many governing equations in physics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyS...93b5601L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyS...93b5601L"><span>Broken degeneracy of low frequency surface waves in semi-bounded quantum plasmas including the quantum recoil effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Myoung-Jae; Jung, Young-Dae</p> <p>2018-02-01</p> <p>We present a derivation of the dispersion relation for electrostatic waves propagating at the interface of semi-bounded quantum plasma in which degenerate electrons are governed by the Wigner-Poisson system, while non-degenerate ions follow the classical fluid equations. We consider parameters for metallic plasmas in terms of the ratio of plasmon energy to Fermi energy. The dispersion relation is solved numerically and analyzed for various plasmon energies. The result shows that two-mode of waves can be possible: high- and low-mode. We have found that the degeneracy for high-mode wave would be broken when the plasmon energy is larger than the Fermi energy. We also discuss the characteristics of group velocities for high- and low-mode waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MS%26E..331a2021M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MS%26E..331a2021M"><span>Numerical analysis of THz radiation wave using upper hybrid wave wiggler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Malik, Pratibha; Sharma, Suresh C.; Panwar, Jyotsna; Sharma, Rinku</p> <p>2018-03-01</p> <p>A theory for upper hybrid wave induced by relativistic electron beam in magnetized plasma emits tuneable and coherent terahertz radiation. The nonlinear interaction with REB is used to generate terahertz radiation. The enhancement in the amplitude of THz wave is also observed when pre-bunched REB is used. The ponderomotive force applied on beam electrons due to radiation wave and upper wave wiggler modifies the dispersion relation. By solving the dispersion relation, we have derived the growth rate of the radiation wave. Numerical studies indicate that by increasing the beam energy the growth rate of the radiation wave decreases, while it increases with wiggler frequency. Besides this, the growth rate of the radiation wave increases with beam density and decreases with radiation frequency and static magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JChPh.127b4108A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JChPh.127b4108A"><span>On the exchange-hole model of London dispersion forces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ángyán, János G.</p> <p>2007-07-01</p> <p>First-principles derivation is given for the heuristic exchange-hole model of London dispersion forces by Becke and Johnson [J. Chem. Phys. 122, 154104 (2005)]. A one-term approximation is used for the dynamic charge density response function, and it is shown that a central nonempirical ingredient of the approximate nonexpanded dispersion energy is the charge density autocorrelation function, a two-particle property, related to the exchange-correlation hole. In the framework of a dipolar approximation of the Coulomb interaction around the molecular origin, one obtains the so-called Salem-Tang-Karplus approximation to the C6 dispersion coefficient. Alternatively, by expanding the Coulomb interaction around the center of charge (centroid) of the exchange-correlation hole associated with each point in the molecular volume, a multicenter expansion is obtained around the centroids of electron localization domains, always in terms of the exchange-correlation hole. In order to get a formula analogous to that of Becke and Johnson, which involves the exchange-hole only, further assumptions are needed, related to the difficulties of obtaining the expectation value of a two-electron operator from a single determinant. Thus a connection could be established between the conventional fluctuating charge density model of London dispersion forces and the notion of the "exchange-hole dipole moment" shedding some light on the true nature of the approximations implicit in the Becke-Johnson model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3496273','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3496273"><span>Modeling the combined influence of host dispersal and waterborne fate and transport on pathogen spread in complex landscapes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lu, Ding; McDowell, Julia Z.; Davis, George M.; Spear, Robert C.; Remais, Justin V.</p> <p>2012-01-01</p> <p>Environmental models, often applied to questions on the fate and transport of chemical hazards, have recently become important in tracing certain environmental pathogens to their upstream sources of contamination. These tools, such as first order decay models applied to contaminants in surface waters, offer promise for quantifying the fate and transport of pathogens with multiple environmental stages and/or multiple hosts, in addition to those pathogens whose environmental stages are entirely waterborne. Here we consider the fate and transport capabilities of the human schistosome Schistosoma japonicum, which exhibits two waterborne stages and is carried by an amphibious intermediate snail host. We present experimentally-derived dispersal estimates for the intermediate snail host and fate and transport estimates for the passive downstream diffusion of cercariae, the waterborne, human-infective parasite stage. Using a one dimensional advective transport model exhibiting first-order decay, we simulate the added spatial reach and relative increase in cercarial concentrations that dispersing snail hosts contribute to downstream sites. Simulation results suggest that snail dispersal can substantially increase the concentrations of cercariae reaching downstream locations, relative to no snail dispersal, effectively putting otherwise isolated downstream sites at increased risk of exposure to cercariae from upstream sources. The models developed here can be applied to other infectious diseases with multiple life-stages and hosts, and have important implications for targeted ecological control of disease spread. PMID:23162675</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29241761','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29241761"><span>Spatial distribution and optimal harvesting of an age-structured population in a fluctuating environment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Engen, Steinar; Lee, Aline Magdalena; Sæther, Bernt-Erik</p> <p>2018-02-01</p> <p>We analyze a spatial age-structured model with density regulation, age specific dispersal, stochasticity in vital rates and proportional harvesting. We include two age classes, juveniles and adults, where juveniles are subject to logistic density dependence. There are environmental stochastic effects with arbitrary spatial scales on all birth and death rates, and individuals of both age classes are subject to density independent dispersal with given rates and specified distributions of dispersal distances. We show how to simulate the joint density fields of the age classes and derive results for the spatial scales of all spatial autocovariance functions for densities. A general result is that the squared scale has an additive term equal to the squared scale of the environmental noise, corresponding to the Moran effect, as well as additive terms proportional to the dispersal rate and variance of dispersal distance for the age classes and approximately inversely proportional to the strength of density regulation. We show that the optimal harvesting strategy in the deterministic case is to harvest only juveniles when their relative value (e.g. financial) is large, and otherwise only adults. With increasing environmental stochasticity there is an interval of increasing length of values of juveniles relative to adults where both age classes should be harvested. Harvesting generally tends to increase all spatial scales of the autocovariances of densities. Copyright © 2017. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PhPl...19a4506K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PhPl...19a4506K"><span>Coupled modes in magnetized dense plasma with relativistic-degenerate electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, S. A.</p> <p>2012-01-01</p> <p>Low frequency electrostatic and electromagnetic waves are investigated in ultra-dense quantum magnetoplasma with relativistic-degenerate electron and non-degenerate ion fluids. The dispersion relation is derived for mobile as well as immobile ions by employing hydrodynamic equations for such plasma under the influence of electromagnetic forces and pressure gradient of relativistic-degenerate Fermi gas of electrons. The result shows the coexistence of shear Alfven and ion modes with relativistically modified dispersive properties. The relevance of results to the dense degenerate plasmas of astrophysical origin (for instance, white dwarf stars) is pointed out with brief discussion on ultra-relativistic and non-relativistic limits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16486072','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16486072"><span>Pulse propagation, dispersion, and energy in magnetic materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Scalora, Michael; D'Aguanno, Giuseppe; Mattiucci, Nadia; Akozbek, Neset; Bloemer, Mark J; Centini, Marco; Sibilia, Concita; Bertolotti, Mario</p> <p>2005-12-01</p> <p>We discuss pulse propagation effects in generic, electrically and magnetically dispersive media that may display large material discontinuities, such as a surface boundary. Using the known basic constitutive relations between the fields, and an explicit Taylor expansion to describe the dielectric susceptibility and magnetic permeability, we derive expressions for energy density and energy dissipation rates, and equations of motion for the coupled electric and magnetic fields. We then solve the equations of motion in the presence of a single interface, and find that in addition to the now-established negative refraction process an energy exchange occurs between the electric and magnetic fields as the pulse traverses the boundary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22472018-mhd-model-low-frequency-waves-tokamak-toroidal-plasma-rotation-problem-existence-global-geodesic-acoustic-modes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22472018-mhd-model-low-frequency-waves-tokamak-toroidal-plasma-rotation-problem-existence-global-geodesic-acoustic-modes"><span>MHD-model for low-frequency waves in a tokamak with toroidal plasma rotation and problem of existence of global geodesic acoustic modes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lakhin, V. P.; Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com, E-mail: vilkiae@gmail.com; Ilgisonis, V. I.</p> <p>2015-12-15</p> <p>A set of reduced linear equations for the description of low-frequency perturbations in toroidally rotating plasma in axisymmetric tokamak is derived in the framework of ideal magnetohydrodynamics. The model suitable for the study of global geodesic acoustic modes (GGAMs) is designed. An example of the use of the developed model for derivation of the integral conditions for GGAM existence and of the corresponding dispersion relation is presented. The paper is dedicated to the memory of academician V.D. Shafranov.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JCoPh.297..565M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JCoPh.297..565M"><span>On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meyers, M. D.; Huang, C.-K.; Zeng, Y.; Yi, S. A.; Albright, B. J.</p> <p>2015-09-01</p> <p>The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTD scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22465656-numerical-dispersion-electromagnetic-particle-cell-code-finite-grid-instability','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22465656-numerical-dispersion-electromagnetic-particle-cell-code-finite-grid-instability"><span>On the numerical dispersion of electromagnetic particle-in-cell code: Finite grid instability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meyers, M.D., E-mail: mdmeyers@physics.ucla.edu; Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, CA 90095; Huang, C.-K., E-mail: huangck@lanl.gov</p> <p></p> <p>The Particle-In-Cell (PIC) method is widely used in relativistic particle beam and laser plasma modeling. However, the PIC method exhibits numerical instabilities that can render unphysical simulation results or even destroy the simulation. For electromagnetic relativistic beam and plasma modeling, the most relevant numerical instabilities are the finite grid instability and the numerical Cherenkov instability. We review the numerical dispersion relation of the Electromagnetic PIC model. We rigorously derive the faithful 3-D numerical dispersion relation of the PIC model, for a simple, direct current deposition scheme, which does not conserve electric charge exactly. We then specialize to the Yee FDTDmore » scheme. In particular, we clarify the presence of alias modes in an eigenmode analysis of the PIC model, which combines both discrete and continuous variables. The manner in which the PIC model updates and samples the fields and distribution function, together with the temporal and spatial phase factors from solving Maxwell's equations on the Yee grid with the leapfrog scheme, is explicitly accounted for. Numerical solutions to the electrostatic-like modes in the 1-D dispersion relation for a cold drifting plasma are obtained for parameters of interest. In the succeeding analysis, we investigate how the finite grid instability arises from the interaction of the numerical modes admitted in the system and their aliases. The most significant interaction is due critically to the correct representation of the operators in the dispersion relation. We obtain a simple analytic expression for the peak growth rate due to this interaction, which is then verified by simulation. We demonstrate that our analysis is readily extendable to charge conserving models.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002PhyA..312..342C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002PhyA..312..342C"><span>Modeling self-consistent multi-class dynamic traffic flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cho, Hsun-Jung; Lo, Shih-Ching</p> <p>2002-09-01</p> <p>In this study, we present a systematic self-consistent multiclass multilane traffic model derived from the vehicular Boltzmann equation and the traffic dispersion model. The multilane domain is considered as a two-dimensional space and the interaction among vehicles in the domain is described by a dispersion model. The reason we consider a multilane domain as a two-dimensional space is that the driving behavior of road users may not be restricted by lanes, especially motorcyclists. The dispersion model, which is a nonlinear Poisson equation, is derived from the car-following theory and the equilibrium assumption. Under the concept that all kinds of users share the finite section, the density is distributed on a road by the dispersion model. In addition, the dynamic evolution of the traffic flow is determined by the systematic gas-kinetic model derived from the Boltzmann equation. Multiplying Boltzmann equation by the zeroth, first- and second-order moment functions, integrating both side of the equation and using chain rules, we can derive continuity, motion and variance equation, respectively. However, the second-order moment function, which is the square of the individual velocity, is employed by previous researches does not have physical meaning in traffic flow. Although the second-order expansion results in the velocity variance equation, additional terms may be generated. The velocity variance equation we propose is derived from multiplying Boltzmann equation by the individual velocity variance. It modifies the previous model and presents a new gas-kinetic traffic flow model. By coupling the gas-kinetic model and the dispersion model, a self-consistent system is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/378137','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/378137"><span>Method of dispersing a hydrocarbon using bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tyndall, R.L.</p> <p>1996-09-24</p> <p>A new protozoan derived microbial consortia and method for their isolation are provided. The isolated consortia and bacteria are useful for treating wastes such as trichloroethylene and trinitrotoluene. The isolated consortia, bacteria, and dispersants are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H11F1235C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H11F1235C"><span>Generalized analytical solutions to multispecies transport equations with scale-dependent dispersion coefficients subject to time-dependent boundary conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, J. S.; Chiang, S. Y.; Liang, C. P.</p> <p>2017-12-01</p> <p>It is essential to develop multispecies transport analytical models based on a set of advection-dispersion equations (ADEs) coupled with sequential first-order decay reactions for the synchronous prediction of plume migrations of both parent and its daughter species of decaying contaminants such as radionuclides, dissolved chlorinated organic compounds, pesticides and nitrogen. Although several analytical models for multispecies transport have already been reported, those currently available in the literature have primarily been derived based on ADEs with constant dispersion coefficients. However, there have been a number of studies demonstrating that the dispersion coefficients increase with the solute travel distance as a consequence of variation in the hydraulic properties of the porous media. This study presents novel analytical models for multispecies transport with distance-dependent dispersion coefficients. The correctness of the derived analytical models is confirmed by comparing them against the numerical models. Results show perfect agreement between the analytical and numerical models. Comparison of our new analytical model for multispecies transport with scale-dependent dispersion to an analytical model with constant dispersion is made to illustrate the effects of the dispersion coefficients on the multispecies transport of decaying contaminants.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26764628','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26764628"><span>Kubo formulas for dispersion in heterogeneous periodic nonequilibrium systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guérin, T; Dean, D S</p> <p>2015-12-01</p> <p>We consider the dispersion properties of tracer particles moving in nonequilibrium heterogeneous periodic media. The tracer motion is described by a Fokker-Planck equation with arbitrary spatially periodic (but constant in time) local diffusion tensors and drifts, eventually with the presence of obstacles. We derive a Kubo-like formula for the time-dependent effective diffusion tensor valid in any dimension. From this general formula, we derive expressions for the late time effective diffusion tensor and drift in these systems. In addition, we find an explicit formula for the late finite-time corrections to these transport coefficients. In one dimension, we give a closed analytical formula for the transport coefficients. The formulas derived here are very general and provide a straightforward method to compute the dispersion properties in arbitrary nonequilibrium periodic advection-diffusion systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23997206','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23997206"><span>Evolution of limited seed dispersal ability on gypsum islands.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schenk, John J</p> <p>2013-09-01</p> <p>Dispersal is a major feature of plant evolution that has many advantages but is not always favored. Wide dispersal, for example, leads to greater seed loss in oceanic-island endemics, and evolution has favored morphologies that limit dispersal. I tested the hypothesis that selection favored limited dispersal on gypsum islands in western North America, where edaphic communities are sparsely vegetated except for a specialized flora that competes poorly with the surrounding flora. • I applied a series of comparative phylogenetic approaches to gypsophilic species of Mentzelia section Bartonia (Loasaceae) to investigate the evolution of limited dispersal function in seed wings, which increase primary dispersal by wind. Through these tests, I determined whether narrowed wings were selected for in gypsophilic species. • Gypsophily was derived four to seven times. Seed area was not significantly correlated with gypsophily or wing area. Wing area was significantly smaller in the derived gypsum endemics, supporting the hypothesis in favor of limited dispersal function. A model-fitting approach identified two trait optima in wing area, with gypsum endemics having a lower optimum. • Evolution into novel ecologies influences morphological evolution. Morphological characters have been selected for limited dispersal following evolution onto gypsum islands. Selection for limited dispersal ability has occurred across animals and plants, both in oceanic and terrestrial systems, which suggests that reduced dispersal ability may be a general process: selection favors limited dispersal if the difference in survival between the habitat of the parent and the surrounding area is great enough.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005JLwT...23.1503L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005JLwT...23.1503L"><span>Analytical Characterization of SPM Impact on XPM-Induced Degradation in Dispersion-Compensated WDM Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luís, Ruben S.; Cartaxo, Adolfo V. T.</p> <p>2005-03-01</p> <p>This paper proposes the definition of a cross-phase modulation (XPM)-induced power penalty for intensity modulation/direct detection (IM-DD) systems as a function of the normalized variance of the XPM-induced IM. This allows the definition of 1-dB power penalty reference values. New expressions of the equivalent linear model transfer functions for the XPM-induced IM and phase modulation (PM) that include the influence of self-phase modulation (SPM) as well as group-velocity dispersion are derived. The new expressions allow a significant extension for higher powers and dispersion parameters of expressions derived in previous papers for single-segment and multisegment fiber systems with dispersion compensation. Good agreement between analytical results and numerical simulations is obtained. Consistency with work performed numerically and experimentally by other authors is shown, validating the proposed model. Using the proposed model, the influence of residual dispersion and SPM on the limitations imposed by XPM on the performance of dispersion-compensated systems is assessed. It is shown that inline residual dispersion may lead to performance improvement for a properly tuned total residual dispersion. The influence of SPM is shown to degrade the system performance when nonzero-dispersion-shifted fiber is used. However, systems using standard single-mode fiber may benefit from the presence of SPM.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017hst..prop15054V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017hst..prop15054V"><span>Getting the sigma in the M_BH - sigma relation right</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Marel, Roeland</p> <p>2017-08-01</p> <p>The relation between the mass of the central supermassive black hole (M_BH) and the velocity dispersion of its host spheroid (sigma) is fundamental for our understanding of galaxy evolution and its relation to their nuclei. Correspondingly many HST orbits have been invested in determining accurate M_BH masses. Surprisingly little has been done on standardizing the other axis, i.e. sigma measurements. These values are often derived from various long-slit datasets at different physical radii of the galaxy and no homogeneous definition has been given. We propose to remedy this situation by using our dataset of MUSE and PPAK kinematic maps out to 1 R_e of galaxies with a secure black hole mass. These data are useful for large scale kinematics, however, obtaining velocity dispersions at small radii is not possible. To measure velocity dispersions at small radii we require high-spatial resolution spectroscopy as provided by HST/STIS. In addtion, high-resolution photometric data is needed to define consistent apertures in each galaxy. We therefore propose to use the unique capabilities of HST and harvest years of efforts to collect archival spectroscopic and imaging data for BH host galaxies. This will allow creating a catalog of sigma values, calculated in various ways and at various radii and to re-calibrate the M_BH - sigma relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870613','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870613"><span>Method of dispersing a hydrocarbon using bacteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tyndall, Richard L.</p> <p>1996-01-01</p> <p>New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...608A..18G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...608A..18G"><span>Observational calibration of the projection factor of Cepheids. IV. Period-projection factor relation of Galactic and Magellanic Cloud Cepheids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gallenne, A.; Kervella, P.; Mérand, A.; Pietrzyński, G.; Gieren, W.; Nardetto, N.; Trahin, B.</p> <p>2017-11-01</p> <p>Context. The Baade-Wesselink (BW) method, which combines linear and angular diameter variations, is the most common method to determine the distances to pulsating stars. However, the projection factor, p-factor, used to convert radial velocities into pulsation velocities, is still poorly calibrated. This parameter is critical on the use of this technique, and often leads to 5-10% uncertainties on the derived distances. Aims: We focus on empirically measuring the p-factor of a homogeneous sample of 29 LMC and 10 SMC Cepheids for which an accurate average distances were estimated from eclipsing binary systems. Methods: We used the SPIPS algorithm, which is an implementation of the BW technique. Unlike other conventional methods, SPIPS combines all observables, i.e. radial velocities, multi-band photometry and interferometry into a consistent physical modelling to estimate the parameters of the stars. The large number and their redundancy insure its robustness and improves the statistical precision. Results: We successfully estimated the p-factor of several Magellanic Cloud Cepheids. Combined with our previous Galactic results, we find the following P-p relation: -0.08± 0.04(log P-1.18) + 1.24± 0.02. We find no evidence of a metallicity dependent p-factor. We also derive a new calibration of the period-radius relation, log R = 0.684± 0.007(log P-0.517) + 1.489± 0.002, with an intrinsic dispersion of 0.020. We detect an infrared excess for all stars at 3.6 μm and 4.5 μm, which might be the signature of circumstellar dust. We measure a mean offset of Δm3.6 = 0.057 ± 0.006 mag and Δm4.5 = 0.065 ± 0.008 mag. Conclusions: We provide a new P-p relation based on a multi-wavelength fit that can be used for the distance scale calibration from the BW method. The dispersion is due to the LMC and SMC width we took into account because individual Cepheids distances are unknown. The new P-R relation has a small intrinsic dispersion: 4.5% in radius. This precision will allow us to accurately apply the BW method to nearby galaxies. Finally, the infrared excesses we detect again raise the issue of using mid-IR wavelengths to derive period-luminosity relation and to calibrate the Hubble constant. These IR excesses might be the signature of circumstellar dust, and are never taken into account when applying the BW method at those wavelengths. Our measured offsets may give an average bias of 2.8% on the distances derived through mid-IR P-L relations.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A21I..01S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A21I..01S"><span>Scalar Dispersion from Point Sources in a Realistic Urban Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salesky, S.; Giometto, M. G.; Christen, A.; Parlange, M. B.</p> <p>2016-12-01</p> <p>Accurate modeling of scalar dispersion within and above urban canopies is critical to properly predict air quality and dispersion (e.g. accidental contaminant release) in urban environments. We perform large eddy simulations (LES) of scalar dispersion from point sources in a typical North American neighborhood using topography and foliage density derived from airborne LIDAR scans with 1 m resolution in Vancouver, BC, Canada. The added drag force due to trees is parameterized in the LES as a function of the leaf area density (LAD) profile. Conversely, drag from buildings is accounted for using a direct forcing approach immersed-boundary method. The scalar advection-diffusion equation is discretized in a finite-volume framework, and accurate mass conservation is enforced through a recently developed Cartesian cut cell method. Simulations are performed with trees for different values of LAD, representative of summer and winter conditions, as well as a case without trees. The effects of varying mean wind direction (derived from observed wind climatologies) on dispersion patterns are also considered. Scalar release locations in the LES are informed by spatially distributed measurements of carbon dioxide concentration; CO2 is used as a tracer for fossil fuel emissions, since source strengths are well-known and the contribution from biological processes in this setting is small (<10%). The effects of leaf area density, source height, and wind direction on scalar statistics including the growth of the mean concentration plume and the fraction that escapes the urban canopy layer will be considered. In a companion study, the presence of trees was found to strongly modify sweep and ejection patterns for the momentum flux; here we consider the related issue of how vegetation influences coherent structures responsible for scalar transport.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29704666','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29704666"><span>Resolving biomolecular motion and interactions by R2 and R1ρ relaxation dispersion NMR.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Walinda, Erik; Morimoto, Daichi; Sugase, Kenji</p> <p>2018-04-26</p> <p>Among the tools of structural biology, NMR spectroscopy is unique in that it not only derives a static three-dimensional structure, but also provides an atomic-level description of the local fluctuations and global dynamics around this static structure. A battery of NMR experiments is now available to probe the motions of proteins and nucleic acids over the whole biologically relevant timescale from picoseconds to hours. Here we focus on one of these methods, relaxation dispersion, which resolves dynamics on the micro- to millisecond timescale. Key biological processes that occur on this timescale include enzymatic catalysis, ligand binding, and local folding. In other words, relaxation-dispersion-resolved dynamics are often closely related to the function of the molecule and therefore highly interesting to the structural biochemist. With an astounding sensitivity of ∼0.5%, the method detects low-population excited states that are invisible to any other biophysical method. The kinetics of the exchange between the ground state and excited states are quantified in the form of the underlying exchange rate, while structural information about the invisible excited state is obtained in the form of its chemical shift. Lastly, the population of the excited state can be derived. This diversity in the information that can be obtained makes relaxation dispersion an excellent method to study the detailed mechanisms of conformational transitions and molecular interactions. Here we describe the two branches of relaxation dispersion, R 2 and R 1ρ , discussing their applicability, similarities, and differences, as well as recent developments in pulse sequence design and data processing. Copyright © 2018 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM13B2373Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM13B2373Z"><span>Electron Alfvén waves in collisionless magnetic reconnection with a guide field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, S.; Wang, X.; Xiao, C.; Pu, Z.</p> <p>2017-12-01</p> <p>It is well known that many wave modes may be related to some important reconnection issues, such as particle acceleration, the reconnection trigger, reconnection rate, etc. Here a new wave mode, the electron Alfvén wave, is introduced for the first time, with both theoretical derivations and observational data analysis. Firstly, we present a theoretical derivation of the dispersion relations of the electron Alfvén mode in a rescaled `Electron Fluid' model. Secondly, based on in situ measurements of the Magnetospheric Multiscale Mission (MMS) spacecraft, an electron Alfvén wave is identified in the electron dissipation region of a reconnection event at the magnetopause. In the last part, the excitation of the electron Alfven waves and some related reconnection issues are discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4802307','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4802307"><span>Structural and electronic properties of graphene nanoflakes on Au(111) and Ag(111)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tesch, Julia; Leicht, Philipp; Blumenschein, Felix; Gragnaniello, Luca; Fonin, Mikhail; Marsoner Steinkasserer, Lukas Eugen; Paulus, Beate; Voloshina, Elena; Dedkov, Yuriy</p> <p>2016-01-01</p> <p>We investigate the electronic properties of graphene nanoflakes on Ag(111) and Au(111) surfaces by means of scanning tunneling microscopy and spectroscopy as well as density functional theory calculations. Quasiparticle interference mapping allows for the clear distinction of substrate-derived contributions in scattering and those originating from graphene nanoflakes. Our analysis shows that the parabolic dispersion of Au(111) and Ag(111) surface states remains unchanged with the band minimum shifted to higher energies for the regions of the metal surface covered by graphene, reflecting a rather weak interaction between graphene and the metal surface. The analysis of graphene-related scattering on single nanoflakes yields a linear dispersion relation E(k), with a slight p-doping for graphene/Au(111) and a larger n-doping for graphene/Ag(111). The obtained experimental data (doping level, band dispersions around EF, and Fermi velocity) are very well reproduced within DFT-D2/D3 approaches, which provide a detailed insight into the site-specific interaction between graphene and the underlying substrate. PMID:27002297</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27258248','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27258248"><span>Hydrogen Bonding: Between Strengthening the Crystal Packing and Improving Solubility of Three Haloperidol Derivatives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Saluja, Hardeep; Mehanna, Ahmed; Panicucci, Riccardo; Atef, Eman</p> <p>2016-06-01</p> <p>The purpose of this study is to confirm the impact of polar functional groups on inter and intra-molecular hydrogen bonding in haloperidol (HP) and droperidol (DP) and, hence, their effects on dissolution using a new approach. To confirm our theory, a new molecule: deshydroxy-haloperidol (DHP) was designed and its synthesis was requested from a contract laboratory. The molecule was then studied and compared to DP and HP. Unlike DHP, both the HP and DP molecules have hydrogen donor groups, therefore, DHP was used to confirm the relative effects of the hydrogen donor group on solubility and crystal packing. The solid dispersions of the three structurally related molecules: HP, DP, and DHP were prepared using PVPK30, and characterized using XRPD and IR. A comparative dissolution study was carried out in aqueous medium. The absence of a hydrogen bonding donor group in DHP resulted in an unexpected increase in its aqueous solubility and dissolution rate from solid dispersion, which is attributed to weaker crystal pack. The increased dissolution rate of HP and DP from solid dispersions is attributed to drug-polymer hydrogen bonding that interferes with the drug-drug intermolecular hydrogen bonding and provides thermodynamic stability of the dispersed drug molecules. The drug-drug intermolecular hydrogen bond is the driving force for precipitation and crystal packing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20815794','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20815794"><span>Enthalpy relaxation studies of two structurally related amorphous drugs and their binary dispersions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bansal, Shyam Sunder; Kaushal, Aditya Mohan; Bansal, Arvind Kumar</p> <p>2010-11-01</p> <p>The purpose of the current study was to evaluate the enthalpy relaxation behavior of valdecoxib (VLB) and etoricoxib (ETB) and their binary dispersions to derive relaxation constants and to understand their molecular mobilities. Solid dispersions of VLB and ETB were prepared with 1%, 2%, 5%, 10%, 15%, and 20% (w/w) concentrations of polyvinylpyrrolidone (PVP) in situ using differential scanning calorimetry (DSC). Enthalpy relaxation studies were carried out with isothermal storage periods of 1, 2, 4, 6, 16, and 24 hours at 40°C and 0% relative humidity (RH). PVP increased the glass transition temperature (T(g)) and decreased the enthalpy relaxation. Significant differences between two drugs were observed with respect to their relaxation behavior which may be due to differences in intermolecular interactions as predicted by Couchman-Karasz equation and molecular mobility. Kohlrausch-Williams-Watts equation was found to be inadequate in describing complex molecular relaxations in binary dispersions. The enthalpy relaxation behavior of VLB and ETB was found to be significantly different. PVP stabilized VLB significantly; however, its effect on ETB was negligible. The extent of enthalpy relaxation was found to correlate with hydrogen bonding tendency of the drug molecules. The outcome can help in rational designing of amorphous systems with optimal performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20490600','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20490600"><span>Sound propagation in a monodisperse bubble cloud: from the crystal to the glass.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Devaud, M; Hocquet, T; Leroy, V</p> <p>2010-05-01</p> <p>We present a theoretical study of the propagation of a monochromatic pressure wave in an unbounded monodisperse bubbly liquid. We begin with the case of a regular bubble array--a bubble crystal--for which we derive a dispersion relation. In order to interpret the different branches of this relation, we introduce a formalism, the radiative picture, which is the adaptation to acoustics of the standard splitting of the electric field in an electrostatic and a radiative part in Coulomb gauge. In the case of an irregular or completely random array--a bubble glass--and at wavelengths large compared to the size of the bubble array spatial inhomogeneities, the difference between order and disorder is not felt by the pressure wave: a dispersion relation still holds, coinciding with that of a bubble crystal with the same bubble size and air volume fraction at the centre of its first Brillouin zone. This relation is discussed and compared to that obtained by Foldy in the framework of his multiscattering approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29740063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29740063"><span>Control of Love waves by resonant metasurfaces.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Palermo, Antonio; Marzani, Alessandro</p> <p>2018-05-08</p> <p>Metasurfaces of mechanical resonators have been successfully used to control in-plane polarized surface waves for filtering, waveguiding and lensing applications across different length scales. In this work, we extend the concept of metasurfaces to anti-plane surface waves existing in semi-infinite layered media, generally known as Love waves. By means of an effective medium approach, we derive an original closed-form dispersion relation for the metasurface. This relation reveals the possibility to control the Love waves dispersive properties by varying the resonators mechanical parameters. We exploit this capability to manipulate the metasurface refractive index and design two gradient index (GRIN) metalenses, i.e. a Luneburg lens and a Maxwell lens. We confirm the performance of the designed lenses using full 3D finite element simulations. Our work demonstrates the possibility of realizing wave control devices for anti-plane waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPlPh..81c9002Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPlPh..81c9002Z"><span>Dispersion relation and growth rate of a relativistic electron beam propagating through a Langmuir wave wiggler</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zirak, H.; Jafari, S.</p> <p>2015-06-01</p> <p>In this study, a theory of free-electron laser (FEL) with a Langmuir wave wiggler in the presence of an axial magnetic field has been presented. The small wavelength of the plasma wave (in the sub-mm range) allows obtaining higher frequency than conventional wiggler FELs. Electron trajectories have been obtained by solving the equations of motion for a single electron. In addition, a fourth-order Runge-Kutta method has been used to simulate the electron trajectories. Employing a perturbation analysis, the dispersion relation for an electromagnetic and space-charge waves has been derived by solving the momentum transfer, continuity, and wave equations. Numerical calculations show that the growth rate increases with increasing the e-beam energy and e-beam density, while it decreases with increasing the strength of the axial guide magnetic field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910031156&hterms=marginal&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmarginal"><span>Wave evolution in the marginal ice zone - Model predictions and comparisons with on-site and remote data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liu, A. K.; Holt, B.; Vachon, P. W.</p> <p>1989-01-01</p> <p>The ocean-wave dispersion relation and viscous attenuation by a sea ice cover were studied for waves in the marginal ice zone (MIZ). The Labrador ice margin experiment (Limex), conducted off the east coast of Newfoundland, Canada in March 1987, provided aircraft SAR, wave buoy, and ice property data. Based on the wave number spectrum from SAR data, the concurrent wave frequency spectrum from ocean buoy data, and accelerometer data on the ice during Limex '87, the dispersion relation has been derived and compared with the model. Accelerometers were deployed at the ice edge and into the ice pack. Data from the accelerometers were used to estimate wave energy attenuation rates and compared with the model. The model-data comparisons are reasonably good for the ice conditions observed during Limex' 87.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15935165','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15935165"><span>Relating coupled map lattices to integro-difference equations: dispersal-driven instabilities in coupled map lattices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>White, Steven M; White, K A Jane</p> <p>2005-08-21</p> <p>Recently there has been a great deal of interest within the ecological community about the interactions of local populations that are coupled only by dispersal. Models have been developed to consider such scenarios but the theory needed to validate model outcomes has been somewhat lacking. In this paper, we present theory which can be used to understand these types of interaction when population exhibit discrete time dynamics. In particular, we consider a spatial extension to discrete-time models, known as coupled map lattices (CMLs) which are discrete in space. We introduce a general form of the CML and link this to integro-difference equations via a special redistribution kernel. General conditions are then derived for dispersal-driven instabilities. We then apply this theory to two discrete-time models; a predator-prey model and a host-pathogen model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110012933','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110012933"><span>Nanotube Dispersions Made With Charged Surfactant</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuper, Cynthia; Kuzma, Mike</p> <p>2006-01-01</p> <p>Dispersions (including monodispersions) of nanotubes in water at relatively high concentrations have been formulated as prototypes of reagents for use in making fibers, films, and membranes based on single-walled carbon nanotubes (SWNTs). Other than water, the ingredients of a dispersion of this type include one or more charged surfactant(s) and carbon nanotubes derived from the HiPco(TradeMark) (or equivalent) process. Among reagents known to be made from HiPco(TradeMark)(or equivalent) SWNTs, these are the most concentrated and are expected to be usable in processing of bulk structures and materials. Test data indicate that small bundles of SWNTs and single SWNTs at concentrations up to 1.1 weight percent have been present in water plus surfactant. This development is expected to contribute to the growth of an industry based on applied carbon nanotechnology. There are expected to be commercial applications in aerospace, avionics, sporting goods, automotive products, biotechnology, and medicine.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22228040-mirror-force-induced-wave-dispersion-alfven-waves','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22228040-mirror-force-induced-wave-dispersion-alfven-waves"><span>Mirror force induced wave dispersion in Alfvén waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Damiano, P. A.; Johnson, J. R.</p> <p>2013-06-15</p> <p>Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror forcemore » effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhRvA..89c3840P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhRvA..89c3840P"><span>Generalized sub-Schawlow-Townes laser linewidths via material dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pillay, Jason Cornelius; Natsume, Yuki; Stone, A. Douglas; Chong, Y. D.</p> <p>2014-03-01</p> <p>A recent S-matrix-based theory of the quantum-limited linewidth, which is applicable to general lasers, including spatially nonuniform laser cavities operating above threshold, is analyzed in various limits. For broadband gain, a simple interpretation of the Petermann and bad-cavity factors is presented in terms of geometric relations between the zeros and poles of the S matrix. When there is substantial dispersion, on the frequency scale of the cavity lifetime, the theory yields a generalization of the bad-cavity factor, which was previously derived for spatially uniform one-dimensional lasers. This effect can lead to sub-Schawlow-Townes linewidths in lasers with very narrow gain widths. We derive a formula for the linewidth in terms of the lasing mode functions, which has accuracy comparable to the previous formula involving the residue of the lasing pole. These results for the quantum-limited linewidth are valid even in the regime of strong line pulling and spatial hole burning, where the linewidth cannot be factorized into independent Petermann and bad-cavity factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21386919-quantum-theory-spontaneous-stimulated-emission-surface-plasmons','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21386919-quantum-theory-spontaneous-stimulated-emission-surface-plasmons"><span>Quantum theory of spontaneous and stimulated emission of surface plasmons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Archambault, Alexandre; Marquier, Francois; Greffet, Jean-Jacques</p> <p>2010-07-15</p> <p>We introduce a quantization scheme that can be applied to surface waves propagating along a plane interface. An important result is the derivation of the energy of the surface wave for dispersive nonlossy media without invoking any specific model for the dielectric constant. Working in Coulomb's gauge, we use a modal representation of the fields. Each mode can be associated with a quantum harmonic oscillator. We have applied the formalism to derive quantum mechanically the spontaneous emission rate of surface plasmon by a two-level system. The result is in very good agreement with Green's tensor approach in the nonlossy case.more » Green's approach allows also to account for losses, so that the limitations of a quantum approach of surface plasmons are clearly defined. Finally, the issue of stimulated versus spontaneous emission has been addressed. Because of the increasing density of states near the asymptote of the dispersion relation, it is quantitatively shown that the stimulated emission probability is too small to obtain gain in this frequency region.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AtmEn..45.1876H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AtmEn..45.1876H"><span>Development of metamodels for predicting aerosol dispersion in ventilated spaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoque, Shamia; Farouk, Bakhtier; Haas, Charles N.</p> <p>2011-04-01</p> <p>Artificial neural network (ANN) based metamodels were developed to describe the relationship between the design variables and their effects on the dispersion of aerosols in a ventilated space. A Hammersley sequence sampling (HSS) technique was employed to efficiently explore the multi-parameter design space and to build numerical simulation scenarios. A detailed computational fluid dynamic</span>s (CFD) model was applied to simulate these scenarios. The results derived from the CFD simulations were used to train and test the metamodels. Feed forward ANN's were developed to map the relationship between the inputs and the outputs. The predictive ability of the neural network based metamodels was compared to linear and quadratic metamodels also derived from the same CFD simulation results. The ANN based metamodel performed well in predicting the independent data sets including data generated at the boundaries. Sensitivity analysis showed that particle tracking time to residence time and the location of input and output with relation to the height of the room had more impact than the other dimensionless groups on particle behavior.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA500767','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA500767"><span>Joint Observational Research on Nocturnal Atmospheric Dispersion of Aerosols (JORNADA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>physical processes in NBL . Research Progress: July 2008-January 2009 Objective 1. Analysis of the Stationarity of Mesoscale Turbulence in the...data allows for a more complete understanding of the nocturnal boundary layer ( NBL ). We have analyzed lidar measurements of plume meander and...dispersion and their relationship to the complexities of NBL structure. Plume Dispersion: Vertical plume dispersion parameters (σz) were derived</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1179062','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1179062"><span>BHR equations re-derived with immiscible particle effects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schwarzkopf, John Dennis; Horwitz, Jeremy A.</p> <p>2015-05-01</p> <p>Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied tomore » the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......106K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......106K"><span>Nonlinear Dispersive Elastic Waves in Solids: Exact, Approximate, and Numerical Solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khajehtourian, Romik</p> <p></p> <p>Wave motion lies at the heart of many disciplines in the physical sciences and engineering. For example, problems and applications involving light, sound, heat, or fluid flow are all likely to involve wave dynamics at some level. A particular class of problems is concerned with the propagation of elastic waves in a solid medium, such as a fiber-reinforced composite material responding to vibratory excitations, or soil and rock admitting seismic waves moments after the onset of an earthquake, or phonon transport in a semiconducting crystal like silicon. Regardless of the type of wave, the dispersion relation provides a fundamental characterization of the elastodynamic properties of the medium. The first part of the dissertation examines the propagation of a large-amplitude elastic wave in a one-dimensional homogeneous medium with a focus on the effects of inherent nonlinearities on the dispersion relation. Considering a thin rod, where the thickness is small compared to the wavelength, an exact, closed-form formulation is presented for the treatment of two types of nonlinearity in the strain-displacement gradient relation: Green-Lagrange and Hencky. The derived relation is then verified by direct time-domain simulations, examining both instantaneous dispersion (by direct observation) and short-term, pre-breaking dispersion (by Fourier transformation). A high-order perturbation analysis is also conducted yielding an explicit analytical space-time solution, which is shown to be spectrally accurate. The results establish a perfect match between theory and simulation and reveal that regardless of the strength of the nonlinearity, the dispersion relation fully embodies all information pertaining to the nonlinear harmonic generation mechanism that unfolds as an arbitrary-profiled wave evolves in the medium. In the second part of the dissertation, the analysis is extended to a continuous periodic thin rod exhibiting multiple phases or embedded local resonators. The extended method, which is based on a standard transfer-matrix formulation augmented with a nonlinear enrichment at the constitutive material level, yields an approximate band structure that is accurate to an amplitude that is roughly one eighth of the unit cell length. This approach represents a new paradigm for examining the balance between periodicity and nonlinearity in shaping the nature of wave motion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..95d3103P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..95d3103P"><span>Dispersive transport and symmetry of the dispersion tensor in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pride, Steven R.; Vasco, Donald W.; Flekkoy, Eirik G.; Holtzman, Ran</p> <p>2017-04-01</p> <p>The macroscopic laws controlling the advection and diffusion of solute at the scale of the porous continuum are derived in a general manner that does not place limitations on the geometry and time evolution of the pore space. Special focus is given to the definition and symmetry of the dispersion tensor that is controlling how a solute plume spreads out. We show that the dispersion tensor is not symmetric and that the asymmetry derives from the advective derivative in the pore-scale advection-diffusion equation. When flow is spatially variable across a voxel, such as in the presence of a permeability gradient, the amount of asymmetry can be large. As first shown by Auriault [J.-L. Auriault et al. Transp. Porous Med. 85, 771 (2010), 10.1007/s11242-010-9591-y] in the limit of low Péclet number, we show that at any Péclet number, the dispersion tensor Di j satisfies the flow-reversal symmetry Di j(+q ) =Dj i(-q ) where q is the mean flow in the voxel under analysis; however, Reynold's number must be sufficiently small that the flow is reversible when the force driving the flow changes sign. We also demonstrate these symmetries using lattice-Boltzmann simulations and discuss some subtle aspects of how to measure the dispersion tensor numerically. In particular, the numerical experiments demonstrate that the off-diagonal components of the dispersion tensor are antisymmetric which is consistent with the analytical dependence on the average flow gradients that we propose for these off-diagonal components.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AtmEn.142..351C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AtmEn.142..351C"><span>Aggregated GPS tracking of vehicles and its use as a proxy of traffic-related air pollution emissions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Shimon; Bekhor, Shlomo; Yuval; Broday, David M.</p> <p>2016-10-01</p> <p>Most air quality models use traffic-related variables as an input. Previous studies estimated nearby vehicular activity through sporadic traffic counts or via traffic assignment models. Both methods have previously produced poor or no data for nights, weekends and holidays. Emerging technologies allow the estimation of traffic through passive monitoring of location-aware devices. Examples of such devices are GPS transceivers installed in vehicles. In this work, we studied traffic volumes that were derived from such data. Additionally, we used these data for estimating ambient nitrogen dioxide concentrations, using a non-linear optimisation model that includes basic dispersion properties. The GPS-derived data show great potential for use as a proxy for pollutant emissions from motor-vehicles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16578743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16578743"><span>Theoretical foundations of the chronometric cosmology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Segal, I E</p> <p>1976-03-01</p> <p>The derivation of the redshift (z)-distance (r) relation in the chronometric theory of the Cosmos is amplified. The basic physical quantities are represented by precisely defined self-adjoint operators in global Hilbert spaces. Computations yielding explicit bounds for the deviation of the theoretical prediction from the relation z = tan(2)(r/2R) (where R denotes the radius of the universe), earlier derived employing less formal procedures, are carried out for: (a) a cut-off plane wave in two dimensions; (b) a scalar spherical wave in four dimensions; (c) the same as (b) with appropriate incorporation of the photon spin. Both this deviation and the (quantum) dispersion in redshift are shown to be unobservably small. A parallel classical treatment is possible and leads to similar results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025466','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025466"><span>Stochastic analysis of transverse dispersion in density‐coupled transport in aquifers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Welty, Claire; Kane, Allen C.; Kauffman, Leon J.</p> <p>2003-01-01</p> <p>Spectral perturbation techniques have been used previously to derive integral expressions for dispersive mixing in concentration‐dependent transport in three‐dimensional, heterogeneous porous media, where fluid density and viscosity are functions of solute concentration. Whereas earlier work focused on evaluating longitudinal dispersivity in isotropic media and incorporating the result in a mean one‐dimensional transport model, the emphasis of this paper is on evaluation of the complete dispersion tensor, including the more general case of anisotropic media. Approximate analytic expressions for all components of the macroscopic dispersivity tensor are derived, and the tensor is shown to be asymmetric. The tensor is separated into its symmetric and antisymmetric parts, where the symmetric part is used to calculate the principal components and principal directions of dispersivity, and the antisymmetric part of the tensor is shown to modify the velocity of the solute body compared to that of the background fluid. An example set of numerical simulations incorporating the tensor illustrates the effect of density‐coupled dispersivity on a sinking plume in an aquifer. The simulations show that the effective transverse vertical spreading in a sinking plume to be significantly greater than would be predicted by a standard density‐coupled transport model that does not incorporate the coupling in the dispersivity tensor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97g5439M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97g5439M"><span>Beyond local effective material properties for metamaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mnasri, K.; Khrabustovskyi, A.; Stohrer, C.; Plum, M.; Rockstuhl, C.</p> <p>2018-02-01</p> <p>To discuss the properties of metamaterials on physical grounds and to consider them in applications, effective material parameters are usually introduced and assigned to a given metamaterial. In most cases, only weak spatial dispersion is considered. It allows to assign local material properties, e.g., a permittivity and a permeability. However, this turned out to be insufficient. To solve this problem, we study here the effective properties of metamaterials with constitutive relations beyond a local response and take strong spatial dispersion into account. This research requires two contributions. First, bulk properties in terms of eigenmodes need to be studied. We particularly investigate the isofrequency surfaces of their dispersion relation are investigated and compared to those of an actual metamaterial. The significant improvement to effectively describe it provides evidence for the necessity to use nonlocal material laws in the effective description of metamaterials. Second, to be able to capitalize on such constitutive relations, also interface conditions need to be known. They are derived in this contribution for our form of the nonlocality using a generalized (weak) formulation of Maxwell's equations. Based on such interface conditions, Fresnel expressions are obtained that predict the amplitude of the reflected and transmitted plane wave upon illuminating a slab of such a nonlocal metamaterial. This all together offers the necessary means for the in-depth analysis of metamaterials characterized by strong spatial dispersion. The general formulation we choose here renders our approach applicable to a wide class of metamaterials.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15504519','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15504519"><span>Street canyon aerosol pollutant transport measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Longley, I D; Gallagher, M W; Dorsey, J R; Flynn, M; Bower, K N; Allan, J D</p> <p>2004-12-01</p> <p>Current understanding of dispersion in street canyons is largely derived from relatively simple dispersion models. Such models are increasingly used in planning and regulation capacities but are based upon a limited understanding of the transport of substances within a real canyon. In recent years, some efforts have been made to numerically model localised flow in idealised canyons (e.g., J. Appl. Meteorol. 38 (1999) 1576-89) and stepped canyons (Assimakopoulos V. Numerical modelling of dispersion of atmospheric pollution in and above urban canopies. PhD thesis, Imperial College, London, 2001) but field studies in real canyons are rare. To further such an understanding, a measurement campaign has been conducted in an asymmetric street canyon with busy one-way traffic in central Manchester in northern England. The eddy correlation method was used to determine fluxes of size-segregated accumulation mode aerosol. Measurements of aerosol at a static location were made concurrently with measurements on a platform lift giving vertical profiles. Size-segregated measurements of ultrafine and coarse particle concentrations were also made simultaneously at various heights. In addition, a small mobile system was used to make measurements of turbulence at various pavement locations within the canyon. From this data, various features of turbulent transport and dispersion in the canyon will be presented. The concentration and the ventilation fluxes of vehicle-related aerosol pollutants from the canyon will be related to controlling factors. The results will also be compared with citywide ventilation data from a separate measurement campaign conducted above the urban canopy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16880648','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16880648"><span>Effect of polyvinylpyrrolidone and sodium lauroyl isethionate on kaolinite suspension in an aqueous phase.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kwan, Chang-Chin; Chu, Wen-Hweu; Shimabayashi, Saburo</p> <p>2006-08-01</p> <p>Suspension of concentrated kaolinite (20 g/30 ml-medium) in the presence of polyvinylpyrrolidone (PVP) and sodium lauroyl isethionate (SLI) was allowed to evaluate its degree of dispersion based on their rheological studies. Flow curves at low shear rate, measured by means of cone-plate method, showed a non-Newtonian flow. Plastic viscosity and Bingham yield value were derived from the flow curves. Relative viscosity, effective volume fraction and void fraction of secondary particle were also obtained. Results of dispersity and fluidity of the suspension were explained. PVP acted as a flocculant at a concentration lower than 0.1% but as a dispersant at a higher concentration. The presence of SLI could decrease both the Bingham yield value and suspension viscosity. Cooperative and competitive effects of PVP and SLI were found. Results indicated that SLI enhanced the degree of dispersion of kaolinite when PVP was less than 0.1%. The suspension, however, showed a maximum flocculation (i.e., aggregation) at 4 mM SLI when the concentration of PVP was higher than 0.1%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhSen...8..176H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhSen...8..176H"><span>Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.</p> <p>2018-06-01</p> <p>The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1436377-nucleon-form-factors-dispersively-improved-chiral-effective-field-theory-ii-electromagnetic-form-factors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1436377-nucleon-form-factors-dispersively-improved-chiral-effective-field-theory-ii-electromagnetic-form-factors"><span>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Alarcon, J. M.; Weiss, C.</p> <p></p> <p>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory (more » $$\\chi$$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $$t > 4 M_\\pi^2$$ are constructed using the elastic unitarity relation and an $N/D$ representation. $$\\chi$$EFT is used to calculate the real unctions $$J_\\pm^1 (t) = f_\\pm^1(t)/F_\\pi(t)$$ (ratios of the complex $$\\pi\\pi \\rightarrow N \\bar N$$ partial-wave amplitudes and the timelike pion FF), which are free of $$\\pi\\pi$$ rescattering. Rescattering effects are included through the empirical timelike pion FF $$|F_\\pi(t)|^2$$. The method allows us to compute the isovector EM spectral functions up to $$t \\sim 1$$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $$\\sim$$0.5 GeV$^2$ for $$G_E$$, and up to $$\\sim$$0.2 GeV$^2$ for $$G_M$$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1436377-nucleon-form-factors-dispersively-improved-chiral-effective-field-theory-ii-electromagnetic-form-factors','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1436377-nucleon-form-factors-dispersively-improved-chiral-effective-field-theory-ii-electromagnetic-form-factors"><span>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Alarcon, J. M.; Weiss, C.</p> <p>2018-05-08</p> <p>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining Chiral Effective Field Theory (more » $$\\chi$$EFT) and dispersion analysis. The spectral functions on the two-pion cut at $$t > 4 M_\\pi^2$$ are constructed using the elastic unitarity relation and an $N/D$ representation. $$\\chi$$EFT is used to calculate the real unctions $$J_\\pm^1 (t) = f_\\pm^1(t)/F_\\pi(t)$$ (ratios of the complex $$\\pi\\pi \\rightarrow N \\bar N$$ partial-wave amplitudes and the timelike pion FF), which are free of $$\\pi\\pi$$ rescattering. Rescattering effects are included through the empirical timelike pion FF $$|F_\\pi(t)|^2$$. The method allows us to compute the isovector EM spectral functions up to $$t \\sim 1$$ GeV$^2$ with controlled accuracy (LO, NLO, and partial N2LO). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at $t = 0$ (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives with minimal uncertainties and explain their collective behavior. Finally, we estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-$Q^2$ FF data is achieved up to $$\\sim$$0.5 GeV$^2$ for $$G_E$$, and up to $$\\sim$$0.2 GeV$^2$ for $$G_M$$. Our results can be used to guide the analysis of low-$Q^2$ elastic scattering data and the extraction of the proton charge radius.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862991','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4862991"><span>Better Resolved Low Frequency Dispersions by the Apt Use of Kramers-Kronig Relations, Differential Operators, and All-In-1 Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van Turnhout, J.</p> <p>2016-01-01</p> <p>The dielectric spectra of colloidal systems often contain a typical low frequency dispersion, which usually remains unnoticed, because of the presence of strong conduction losses. The KK relations offer a means for converting ε′ into ε″ data. This allows us to calculate conduction free ε″ spectra in which the l.f. dispersion will show up undisturbed. This interconversion can be done on line with a moving frame of logarithmically spaced ε′ data. The coefficients of the conversion frames were obtained by kernel matching and by using symbolic differential operators. Logarithmic derivatives and differences of ε′ and ε″ provide another option for conduction free data analysis. These difference-based functions actually derived from approximations to the distribution function, have the additional advantage of improving the resolution power of dielectric studies. A high resolution is important because of the rich relaxation structure of colloidal suspensions. The development of all-in-1 modeling facilitates the conduction free and high resolution data analysis. This mathematical tool allows the apart-together fitting of multiple data and multiple model functions. It proved also useful to go around the KK conversion altogether. This was achieved by the combined approximating ε′ and ε″ data with a complex rational fractional power function. The all-in-1 minimization turned out to be also highly useful for the dielectric modeling of a suspension with the complex dipolar coefficient. It guarantees a secure correction for the electrode polarization, so that the modeling with the help of the differences ε′ and ε″ can zoom in on the genuine colloidal relaxations. PMID:27242997</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016hst..prop14721C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016hst..prop14721C"><span>The Fundamental Plane of Ultra-Massive Galaxies at z 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Conselice, Christopher</p> <p>2016-10-01</p> <p>The fundamental plane (FP), relating the effective radius, velocity dispersion, and surface brightness is a unique tool for studying the structural, stellar, and dark matter evolution of early-type galaxies, and can reveal how these galaxies have formed and evolved. Thus far, studies have been mostly limited to z<1.3, beyond which the absorption lines used to derive velocity dispersions are redshifted out of the optical. With the advent of sensitive NIR spectrographs on 8m telescopes, it is now possible for the first time to study the FP directly at the epoch (z 2), where lower redshift studies predict it to have formed. Through a large investment of time with the 8m - VLT NIR spectrograph X-SHOOTER, we have derived velocity dispersions for a unique sample of 11 quiescent galaxies at z=2, tripling the number of galaxies with such measurements. We propose to obtain WFC3/IR imaging of these galaxies, which when combined with our ground-based spectroscopy, will allow us to measure accurately the fundamental plane at z 2 for the first time through accurate sizes derived from surface brightness profile fits to the data. This measurement of the FP will further reveal the time-scales and methods of formation for the most massive early type galaxies. The HST observations will also allow us to measure the structures of these galaxies, to search for any extended envelopes or asymmetries, and to examine the properties of their satellite galaxies. Three of our systems also show hints of having close companions through our spectroscopy and WFC3/IR imaging is required to investigate this further.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599042-collisional-damping-geodesic-acoustic-mode-toroidal-rotation-viscous-damping','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599042-collisional-damping-geodesic-acoustic-mode-toroidal-rotation-viscous-damping"><span>Collisional damping of the geodesic acoustic mode with toroidal rotation. I. Viscous damping</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gong, Xueyu; Xie, Baoyi; Chen, You</p> <p>2016-03-15</p> <p>With the dispersion relation derived for the geodesic acoustic mode in toroidally rotating tokamak plasmas using the fluid model, the effect of the toroidal rotation on the collisional viscous damping of the geodesic acoustic mode is investigated. It is found that the collisional viscous damping of the geodesic acoustic mode has weak increase with respect to the toroidal Mach number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995ApJ...448..494F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995ApJ...448..494F"><span>On the Validity of the Streaming Model for the Redshift-Space Correlation Function in the Linear Regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fisher, Karl B.</p> <p>1995-08-01</p> <p>The relation between the galaxy correlation functions in real-space and redshift-space is derived in the linear regime by an appropriate averaging of the joint probability distribution of density and velocity. The derivation recovers the familiar linear theory result on large scales but has the advantage of clearly revealing the dependence of the redshift distortions on the underlying peculiar velocity field; streaming motions give rise to distortions of θ(Ω0.6/b) while variations in the anisotropic velocity dispersion yield terms of order θ(Ω1.2/b2). This probabilistic derivation of the redshift-space correlation function is similar in spirit to the derivation of the commonly used "streaming" model, in which the distortions are given by a convolution of the real-space correlation function with a velocity distribution function. The streaming model is often used to model the redshift-space correlation function on small, highly nonlinear, scales. There have been claims in the literature, however, that the streaming model is not valid in the linear regime. Our analysis confirms this claim, but we show that the streaming model can be made consistent with linear theory provided that the model for the streaming has the functional form predicted by linear theory and that the velocity distribution is chosen to be a Gaussian with the correct linear theory dispersion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2176176','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2176176"><span>A gharial from the Oligocene of Puerto Rico: transoceanic dispersal in the history of a non-marine reptile</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Vélez-Juarbe, Jorge; Brochu, Christopher A; Santos, Hernán</p> <p>2007-01-01</p> <p>The Indian gharial (Gavialis gangeticus) is not found in saltwater, but the geographical distribution of fossil relatives suggests a derivation from ancestors that lived in, or were at least able to withstand, saline conditions. Here, we describe a new Oligocene gharial, Aktiogavialis puertoricensis, from deltaic–coastal deposits of northern Puerto Rico. It is related to a clade of Neogene gharials otherwise restricted to South America. Its geological and geographical settings, along with its phylogenetic relationships, are consistent with two scenarios: (i) that a single trans-Atlantic dispersal event during the Tertiary explains the South American Neogene gharial assemblage and (ii) that stem gharials were coastal animals and their current restriction to freshwater settings is a comparatively recent environmental shift for the group. This discovery highlights the importance of including fossil information in a phylogenetic context when assessing the ecological history of modern organisms. PMID:17341454</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17235581','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17235581"><span>Dispersion relation in oscillatory reaction-diffusion systems with self-consistent flow in true slime mold.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yamada, H; Nakagaki, T; Baker, R E; Maini, P K</p> <p>2007-06-01</p> <p>In the large amoeboid organism Physarum, biochemical oscillators are spatially distributed throughout the organism and their collective motion exhibits phase waves, which carry physiological signals. The basic nature of this wave behaviour is not well-understood because, to date, an important effect has been neglected, namely, the shuttle streaming of protoplasm which accompanies the biochemical rhythms. Here we study the effects of self-consistent flow on the wave behaviour of oscillatory reaction-diffusion models proposed for the Physarum plasmodium, by means of numerical simulation for the dispersion relation and weakly nonlinear analysis for derivation of the phase equation. We conclude that the flow term is able to increase the speed of phase waves (similar to elongation of wave length). We compare the theoretical consequences with real waves observed in the organism and also point out the physiological roles of these effects on control mechanisms of intracellular communication.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1999PhPl....6..686S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1999PhPl....6..686S"><span>On the stability of self-gravitating magnetized dusty plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Salimullah, M.; Shukla, P. K.</p> <p>1999-03-01</p> <p>The effects of a homogeneous magnetic field and the plasma nonuniformity on the dispersion relations of various electrostatic waves in self-gravitating magnetized dusty plasmas have been investigated. For this purpose, the kinetic dielectric response functions for the electrons and ions distributions have been used and the dielectric response function for the magnetized dust grains has been derived from the hydrodynamic equations that include the self-gravitational potential. Thus, extremely massive charged dust grains are subjected to both the electromagnetic and gravitational forces. Analytical studies of the dispersion relations in various frequency and wave number regimes reveal that both the magnetic fields and plasma inhomogeneities contribute to the stability of a self-gravitating dusty plasma system. The results of this investigation should be useful in understanding the stability of dusty proto-stars and dusty dark molecular clouds, which are held in strong magnetic fields and equilibrium density gradients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptCo.411...88W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptCo.411...88W"><span>Hybrid grating-prism dispersion eraser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Cheng; Li, Shuai; Liu, Yanqi; Liu, Xingyan; Leng, Yuxin; Li, Ruxin</p> <p>2018-03-01</p> <p>A hybrid grating-prism dispersion eraser is proposed to achieve broadband dispersion compensation. A ray-tracing model is built up for its phase spectrum and derivatives. The numerical calculation shows that the eraser can compensate dispersion up to fourth-order. When it is used in chirped-pulse amplifiers, it can obtain aberration-free phase with above 120 nm bandwidth at 0 . 8 μm central wavelength and support near-Fourier-transform-limited femtosecond pulses output.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21972256','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21972256"><span>Molecular analyses of MADS-box genes trace back to Gymnosperms the invention of fleshy fruits.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovisetto, Alessandro; Guzzo, Flavia; Tadiello, Alice; Toffali, Ketti; Favretto, Alessandro; Casadoro, Giorgio</p> <p>2012-01-01</p> <p>Botanical fruits derive from ovaries and their most important function is to favor seed dispersal. Fleshy fruits do so by attracting frugivorous animals that disperse seeds together with their own excrements (endozoochory). Gymnosperms make seeds but have no ovaries to be transformed into fruits. Many species surround their seeds with fleshy structures and use endozoochory to disperse them. Such structures are functionally fruits and can derive from different anatomical parts. Ginkgo biloba and Taxus baccata fruit-like structures differ in their anatomical origin since the outer seed integument becomes fleshy in Ginkgo, whereas in Taxus, the fleshy aril is formed de novo. The ripening characteristics are different, with Ginkgo more rudimentary and Taxus more similar to angiosperm fruits. MADS-box genes are known to be necessary for the formation of flowers and fruits in Angiosperms but also for making both male and female reproductive structures in Gymnosperms. Here, a series of different MADS-box genes have been shown for the first time to be involved also in the formation of gymnosperm fruit-like structures. Apparently, the same gene types have been recruited in phylogenetically distant species to make fleshy structures that also have different anatomical origins. This finding indicates that the main molecular networks operating in the development of fleshy fruits have independently appeared in distantly related Gymnosperm taxa. Hence, the appearance of the seed habit and the accompanying necessity of seed dispersal has led to the invention of the fruit habit that thus seems to have appeared independently of the presence of flowers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6718702-new-method-simulate-effects-viscous-fingering-miscible-displacement-processes-porous-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6718702-new-method-simulate-effects-viscous-fingering-miscible-displacement-processes-porous-media"><span>A new method to simulate the effects of viscous fingering on miscible displacement processes in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vossoughi, S.; Green, D.W.; Smith, J.E.</p> <p></p> <p>Dispersion and viscous fingering are important parameters in miscible displacement. Effects of dispersion on concentration profiles in porous media can be simulated when the viscosity ratio is favorable. The capability to simulate viscous fingering is limited. This paper presents a new method to simulate effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law by using a concentration-dependent average viscosity andmore » relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible PV. A Langmuir-type model for polymer retention in the rock was used. The resulting convection-dispersion equation for displacement by polymer was solved numerically by the use of a finite-element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model: (1) an unfavorable viscosity ratio displacement, (2) stable displacement of glycerol by polymer solution, (3) unstable displacement of brine by a slug of polymer solution, and (4) a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005AGUSMNB33Q..18H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005AGUSMNB33Q..18H"><span>HABSEED: a Simple Spatially Explicit Meta-Populations Model Using Remote Sensing Derived Habitat Quality Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Heumann, B. W.; Guichard, F.; Seaquist, J. W.</p> <p>2005-05-01</p> <p>The HABSEED model uses remote sensing derived NPP as a surrogate for habitat quality as the driving mechanism for population growth and local seed dispersal. The model has been applied to the Sahel region of Africa. Results show that the functional response of plants to habitat quality alters population distribution. Plants more tolerant of medium quality habitat have greater distributions to the North while plants requiring only the best habitat are limited to the South. For all functional response types, increased seed production results in diminishing returns. Functional response types have been related to life history tradeoffs and r-K strategies based on the results. Results are compared to remote sensing derived vegetation land cover.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.118j6403R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.118j6403R"><span>Analytic Interatomic Forces in the Random Phase Approximation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ramberger, Benjamin; Schäfer, Tobias; Kresse, Georg</p> <p>2017-03-01</p> <p>We discuss that in the random phase approximation (RPA) the first derivative of the energy with respect to the Green's function is the self-energy in the G W approximation. This relationship allows us to derive compact equations for the RPA interatomic forces. We also show that position dependent overlap operators are elegantly incorporated in the present framework. The RPA force equations have been implemented in the projector augmented wave formalism, and we present illustrative applications, including ab initio molecular dynamics simulations, the calculation of phonon dispersion relations for diamond and graphite, as well as structural relaxations for water on boron nitride. The present derivation establishes a concise framework for forces within perturbative approaches and is also applicable to more involved approximations for the correlation energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NucFu..58d6005R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NucFu..58d6005R"><span>Geodesic acoustic mode driven by energetic particles with bump-on-tail distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ren, Haijun; Wang, Hao</p> <p>2018-04-01</p> <p>Energetic-particle-driven geodesic acoustic mode (EGAM) is analytically investigated by adopting the bump-on-tail distribution for energetic particles (EPs), which is created by the fact that the charge exchange time (τcx ) is sufficiently shorter than the slowing down time (τsl ). The dispersion relation is derived in the use of gyro-kinetic equations. Due to the finite ratio of the critical energy and the initial energy of EPs, defined as τc , the dispersion relation is numerically evaluated and the effect of finite τc is examined. Following relative simulation and experimental work, we specifically considered two cases: τsl/τcx = 3.4 and τsl/τcx = 20.4 . The pitch angle is shown to significantly enhance the growth rate and meanwhile, the real frequency is dramatically decreased with increasing pitch angle. The excitation of high-frequency EGAM is found, and this is consistent with both the experiment and the simulation. The number density effect of energetic particles, represented by \</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21895055','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21895055"><span>Nonlinear acoustic wave equations with fractional loss operators.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prieur, Fabrice; Holm, Sverre</p> <p>2011-09-01</p> <p>Fractional derivatives are well suited to describe wave propagation in complex media. When introduced in classical wave equations, they allow a modeling of attenuation and dispersion that better describes sound propagation in biological tissues. Traditional constitutive equations from solid mechanics and heat conduction are modified using fractional derivatives. They are used to derive a nonlinear wave equation which describes attenuation and dispersion laws that match observations. This wave equation is a generalization of the Westervelt equation, and also leads to a fractional version of the Khokhlov-Zabolotskaya-Kuznetsov and Burgers' equations. © 2011 Acoustical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2659712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2659712"><span>Larval dispersal connects fish populations in a network of marine protected areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Planes, Serge; Jones, Geoffrey P.; Thorrold, Simon R.</p> <p>2009-01-01</p> <p>Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms. PMID:19307588</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19307588','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19307588"><span>Larval dispersal connects fish populations in a network of marine protected areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Planes, Serge; Jones, Geoffrey P; Thorrold, Simon R</p> <p>2009-04-07</p> <p>Networks of no-take marine protected areas (MPAs) have been widely advocated for the conservation of marine biodiversity. But for MPA networks to be successful in protecting marine populations, individual MPAs must be self-sustaining or adequately connected to other MPAs via dispersal. For marine species with a dispersive larval stage, populations within MPAs require either the return of settlement-stage larvae to their natal reserve or connectivity among reserves at the spatial scales at which MPA networks are implemented. To date, larvae have not been tracked when dispersing from one MPA to another, and the relative magnitude of local retention and connectivity among MPAs remains unknown. Here we use DNA parentage analysis to provide the first direct estimates of connectivity of a marine fish, the orange clownfish (Amphiprion percula), in a proposed network of marine reserves in Kimbe Bay, Papua New Guinea. Approximately 40% of A. percula larvae settling into anemones in an island MPA at 2 different times were derived from parents resident in the reserve. We also located juveniles spawned by Kimbe Island residents that had dispersed as far as 35 km to other proposed MPAs, the longest distance that marine larvae have been directly tracked. These dispersers accounted for up to 10% of the recruitment in the adjacent MPAs. Our findings suggest that MPA networks can function to sustain resident populations both by local replenishment and through larval dispersal from other reserves. More generally, DNA parentage analysis provides a direct method for measuring larval dispersal for other marine organisms.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........71N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........71N"><span>RR Lyrae Stars as High-Precision Standard Candles in the Mid-Infrared</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Neeley, Jillian Rose</p> <p></p> <p>In this work, we provide the theoretical and empirical framework to establish RR Lyrae stars (RRL) as the anchor of a Population II distance scale. We present new theoretical period-luminosity-metallicity (PLZ) relations for RRL at Spitzer and WISE wavelengths. The PLZ relations were derived using nonlinear, time-dependent convective hydrodynamical models for a broad range in metal abundances (Z = 0.0001 to 0.0198). We also compare our theoretical relations to empirical relations derived from RRL in the field. Our theoretical PLZ relations were combined with multi-wavelength observations to simultaneously fit the distance modulus and extinction of each individual Galactic RRL in our sample. The results are consistent with trigonometric parallax measurements from the Gaia mission's first data release. This analysis has shown that when considering a sample covering a typical range of iron abundances for RRL, the metallicity spread introduces a dispersion in the PL relation on the order of 0.13 mag. However, if this metallicity component is accounted for in a PLZ relation, the dispersion is reduced to 0.02 mag at MIR wavelengths. On the empirical side, we present the analysis of five clusters from the Carnegie RR Lyrae Program (CRRP) sample (M4, NGC 3201, M5, M15, and M14). M4, the nearest one of the most well studied clusters, was used as a test case to develop a new data analysis pipeline for CRRP. Following the analysis of the five clusters, the resulting calibration PL relations are M[3.6] = -2.424 +/- 0.079 log P -1.205 +/- 0.057 and M [4.5] = -2.245 +/- 0.076 - 1.225 +/- 0.057. The slope of the PL relations was determined from the weighted average of the cluster results, and the zero point was fixed using five Galactic RRL with geometric parallaxes measured by Hubble Space Telescope. The dispersion of the RRL around the PL relations ranges from 0.05 mag in M4 to 0.3 mag in M14. The resulting band-averaged distance moduli for the five clusters agree well with results in the literature. The systematic uncertainty will be greatly reduced when parallaxes of more stars become available from the Gaia mission, and we are able to use the full CRRP sample of 55 Galactic RRL to calibrate the relation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJMPA..3250184F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJMPA..3250184F"><span>Leading components in forward elastic hadron scattering: Derivative dispersion relations and asymptotic uniqueness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fagundes, D. A.; Menon, M. J.; Silva, P. V. R. G.</p> <p>2017-11-01</p> <p>Forward amplitude analyses constitute an important approach in the investigation of the energy dependence of the total hadronic cross-section σtot and the ρ parameter. The standard picture indicates for σtot a leading log-squared dependence at the highest c.m. energies, in accordance with the Froissart-Lukaszuk-Martin bound and as predicted by the COMPETE Collaboration in 2002. Beyond this log-squared (L2) leading dependence, other amplitude analyses have considered a log-raised-to-gamma form (Lγ), with γ as a real free fit parameter. In this case, analytic connections with ρ can be obtained either through dispersion relations (derivative forms), or asymptotic uniqueness (Phragmén-Lindelöff theorems). In this work, we present a detailed discussion on the similarities and mainly the differences between the Derivative Dispersion Relation (DDR) and Asymptotic Uniqueness (AU) approaches and results, with focus on the Lγ and L2 leading terms. We also develop new Regge-Gribov fits with updated dataset on σtot and ρ from pp and p¯p scattering, including all available data in the region 5 GeV-8 TeV. The recent tension between the TOTEM and ATLAS results at 7 TeV and mainly at 8 TeV is discussed and considered in the data reductions. Our main conclusions are the following: (1) all fit results present agreement with the experimental data analyzed and the goodness-of-fit is slightly better in case of the DDR approach; (2) by considering only the TOTEM data at the LHC region, the fits with Lγ indicate γ ˜ 2.0 ± 0.2 (AU approach) and γ ˜ 2.3 ± 0.1 (DDR approach); (3) by including the ATLAS data the fits provide γ ˜ 1.9 ± 0.1 (AU) and γ ˜ 2.2 ± 0.2 (DDR); (4) in the formal and practical contexts, the DDR approach is more adequate for the energy interval investigated than the AU approach. A pedagogical and detailed review on the analytic results for σtot and ρ from the Regge-Gribov, DDR and AU approaches is presented. Formal and practical aspects related to forward amplitude analyses are also critically discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JMOp...65.1081Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JMOp...65.1081Y"><span>Compact cross-dispersion device based on a prism and a plane transmission grating</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yang, Qinghua; Wang, Weiqiang</p> <p>2018-05-01</p> <p>This paper presents a cross-dispersion prism-grating device using a plane transmission grating attached directly to a prism, which is different from traditional cross-dispersion grating-prism systems that are based on the reflection grating. Unlike conventional direct-vision grism or constant-dispersion grism in which both the prism and grating have the same dispersion direction, for this device the dispersion directions of the prism and grating are different. The analytical expressions for the cross-dispersion of this device are derived in detail and the formulas of the footprint of the dispersed spectra are given. The numerical results and ray-tracing simulations by ZEMAX are shown. The device provides a compact, small-sized and broadband cross-dispersion device used for the medium resolution spectrometer.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FlDyR..49b5512D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FlDyR..49b5512D"><span>Effect of small floating disks on the propagation of gravity waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>De Santi, F.; Olla, P.</p> <p>2017-04-01</p> <p>A dispersion relation for gravity waves in water covered by disk-like impurities embedded in a viscous matrix is derived. The macroscopic equations are obtained by ensemble-averaging the fluid equations at the disk scale in the asymptotic limit of long waves and low disk surface fraction. Various regimes are identified depending on the disk radii and the thickness and viscosity of the top layer. Semi-quantitative analysis in the close-packing regime suggests dramatic modification of the dynamics, with orders of magnitude increase in wave damping and wave dispersion. A simplified model working in this regime is proposed. Possible applications to wave propagation in an ice-covered ocean are discussed and comparison with field data is provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhLA..380.2580M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhLA..380.2580M"><span>Comment on "Propagation of a TE surface mode in a relativistic electron beam-quantum plasma system" [Phys. Lett. A 376 (2012) 169</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moradi, Afshin</p> <p>2016-07-01</p> <p>In a recent paper Abdel Aziz [Phys. Lett. A 376 (2012) 169] obtained the dispersion properties of TE surface modes propagating at the interface between a magnetized quantum plasma and vacuum in the Faraday configuration, where these TE surface waves are excited during the interaction of relativistic electron beam with magnetized quantum plasma. The present Comment points out that in the Faraday configuration the surface waves acquire both TM and TE components due to the cyclotron motion of electrons. Therefore, the TE surface waves cannot propagate on surface of the present system and the general dispersion relations for surface waves, derived by Abdel Aziz are incorrect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1240972','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1240972"><span>Viscous Rayleigh-Taylor instability in spherical geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mikaelian, Karnig O.</p> <p></p> <p>We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1240972-viscous-rayleigh-taylor-instability-spherical-geometry','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1240972-viscous-rayleigh-taylor-instability-spherical-geometry"><span>Viscous Rayleigh-Taylor instability in spherical geometry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Mikaelian, Karnig O.</p> <p>2016-02-08</p> <p>We consider viscous fluids in spherical geometry, a lighter fluid supporting a heavier one. Chandrasekhar [Q. J. Mech. Appl. Math. 8, 1 (1955)] analyzed this unstable configuration providing the equations needed to find, numerically, the exact growth rates for the ensuing Rayleigh-Taylor instability. He also derived an analytic but approximate solution. We point out a weakness in his approximate dispersion relation (DR) and offer one that is to some extent improved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870040136&hterms=midi&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmidi"><span>Nonlinear density waves in planetary rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borderies, Nicole; Goldreich, Peter; Tremaine, Scott</p> <p>1986-01-01</p> <p>The steady-state structure of planetary rings in the presence of density waves at the Lindblad resonances of a satellite is indicated. The study is based on the dispersion relation and damping rate for nonlinear density waves, derived by Shu et al. (1985) and by Borderies, Goldreich, and Tremaine (1985). It is shown that strong density waves lead to an enhancement of the background surface density in the wave zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20160009140&hterms=cosmology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcosmology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20160009140&hterms=cosmology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dcosmology"><span>The Atacama Cosmology Telescope: Dynamical Masses for 44 SZ-Selected Galaxy Clusters over 755 Square Degrees</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sifon, Cristobal; Battaglia, Nick; Hasselfield, Matthew; Menanteau, Felipe; Barrientos, L. Felipe; Bond, J. Richard; Crichton, Devin; Devlin, Mark J.; Dunner, Rolando; Hilton, Matt; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160009140'); toggleEditAbsImage('author_20160009140_show'); toggleEditAbsImage('author_20160009140_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160009140_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160009140_hide"></p> <p>2016-01-01</p> <p>We present galaxy velocity dispersions and dynamical mass estimates for 44 galaxy clusters selected via the Sunyaev-Zeldovich (SZ) effect by the Atacama Cosmology Telescope. Dynamical masses for 18 clusters are reported here for the first time. Using N-body simulations, we model the different observing strategies used to measure the velocity dispersions and account for systematic effects resulting from these strategies. We find that the galaxy velocity distributions may be treated as isotropic, and that an aperture correction of up to 7 per cent in the velocity dispersion is required if the spectroscopic galaxy sample is sufficiently concentrated towards the cluster centre. Accounting for the radial profile of the velocity dispersion in simulations enables consistent dynamical mass estimates regardless of the observing strategy. Cluster masses M200 are in the range (1 - 15) times 10 (sup 14) Solar Masses. Comparing with masses estimated from the SZ distortion assuming a gas pressure profile derived from X-ray observations gives a mean SZ-to-dynamical mass ratio of 1:10 plus or minus 0:13, but there is an additional 0.14 systematic uncertainty due to the unknown velocity bias; the statistical uncertainty is dominated by the scatter in the mass-velocity dispersion scaling relation. This ratio is consistent with previous determinations at these mass scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4521630','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4521630"><span>CONTRIBUTIONS OF CHEMICAL EXCHANGE TO T1ρ DISPERSION IN A TISSUE MODEL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cobb, Jared G.; Xie, Jingping; Gore, John C.</p> <p>2015-01-01</p> <p>Variations in T1ρ with locking-field strength (T1ρ dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of co-monomers, increasing stiffness, and in pH, modifying exchange rates. MR images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T1ρ at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T1ρ dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This paper demonstrates a new method to assess the structural and chemical effects on T1ρ relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. PMID:21590720</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25a2106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25a2106L"><span>Effects of finite electron temperature on gradient drift instabilities in partially magnetized plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lakhin, V. P.; Ilgisonis, V. I.; Smolyakov, A. I.; Sorokina, E. A.; Marusov, N. A.</p> <p>2018-01-01</p> <p>The gradient-drift instabilities of partially magnetized plasmas in plasma devices with crossed electric and magnetic fields are investigated in the framework of the two-fluid model with finite electron temperature in an inhomogeneous magnetic field. The finite electron Larmor radius (FLR) effects are also included via the gyroviscosity tensor taking into account the magnetic field gradient. This model correctly describes the electron dynamics for k⊥ρe>1 in the sense of Padé approximants (here, k⊥ and ρe are the wavenumber perpendicular to the magnetic field and the electron Larmor radius, respectively). The local dispersion relation for electrostatic plasma perturbations with the frequency in the range between the ion and electron cyclotron frequencies and propagating strictly perpendicular to the magnetic field is derived. The dispersion relation includes the effects of the equilibrium E ×B electron current, finite ion velocity, electron inertia, electron FLR, magnetic field gradients, and Debye length effects. The necessary and sufficient condition of stability is derived, and the stability boundary is found. It is shown that, in general, the electron inertia and FLR effects stabilize the short-wavelength perturbations. In some cases, such effects completely suppress the high-frequency short-wavelength modes so that only the long-wavelength low-frequency (with respect to the lower-hybrid frequency) modes remain unstable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1130722-upscaling-solute-transport-heterogeneous-media-non-uniform-flow-dispersion-fields','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1130722-upscaling-solute-transport-heterogeneous-media-non-uniform-flow-dispersion-fields"><span>Upscaling of Solute Transport in Heterogeneous Media with Non-uniform Flow and Dispersion Fields</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Xu, Zhijie; Meakin, Paul</p> <p>2013-10-01</p> <p>An analytical and computational model for non-reactive solute transport in periodic heterogeneous media with arbitrary non-uniform flow and dispersion fields within the unit cell of length ε is described. The model lumps the effect of non-uniform flow and dispersion into an effective advection velocity Ve and an effective dispersion coefficient De. It is shown that both Ve and De are scale-dependent (dependent on the length scale of the microscopic heterogeneity, ε), dependent on the Péclet number Pe, and on a dimensionless parameter α that represents the effects of microscopic heterogeneity. The parameter α, confined to the range of [-0.5, 0.5]more » for the numerical example presented, depends on the flow direction and non-uniform flow and dispersion fields. Effective advection velocity Ve and dispersion coefficient De can be derived for any given flow and dispersion fields, and . Homogenized solutions describing the macroscopic variations can be obtained from the effective model. Solutions with sub-unit-cell accuracy can be constructed by homogenized solutions and its spatial derivatives. A numerical implementation of the model compared with direct numerical solutions using a fine grid, demonstrated that the new method was in good agreement with direct solutions, but with significant computational savings.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25b2101B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25b2101B"><span>Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhakta, S.; Prajapati, R. P.</p> <p>2018-02-01</p> <p>The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19403534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19403534"><span>The scramble for Africa: pan-temperate elements on the African high mountains.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gehrke, Berit; Linder, H Peter</p> <p>2009-07-22</p> <p>The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23987452','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23987452"><span>Both solubility and chemical stability of curcumin are enhanced by solid dispersion in cellulose derivative matrices.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bin; Konecke, Stephanie; Wegiel, Lindsay A; Taylor, Lynne S; Edgar, Kevin J</p> <p>2013-10-15</p> <p>Amorphous solid dispersions (ASD) of curcumin (Cur) in cellulose derivative matrices, hydroxypropylmethylcellulose acetate succinate (HPMCAS), carboxymethylcellulose acetate butyrate (CMCAB), and cellulose acetate adipate propionate (CAAdP) were prepared in order to investigate the structure-property relationship and identify polymer properties necessary to effectively increase Cur aqueous solution concentration. XRD results indicated that all investigated solid dispersions were amorphous, even at a 9:1 Cur:polymer ratio. Both stability against crystallization and Cur solution concentration from these ASDs were significantly higher than those from physical mixtures and crystalline Cur. Remarkably, curcumin was also stabilized against chemical degradation in solution. Chemical stabilization was polymer-dependent, with stabilization in CAAdP>CMCAB>HPMCAS>PVP, while matrices enhanced solution concentration as PVP>HPMCAS>CMCAB≈CAAdP. HPMCAS/Cur dispersions have useful combinations of pH-triggered release profile, chemical stabilization, and strong enhancement of Cur solution concentration. Copyright © 2013 Elsevier Ltd. All rights reserved.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26074457','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26074457"><span>Dispersion analysis and measurement of circular cylindrical wedge-like acoustic waveguides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yu, Tai-Ho</p> <p>2015-09-01</p> <p>This study investigated the propagation of flexural waves along the outer edge of a circular cylindrical wedge, the phase velocities, and the corresponding mode displacements. Thus far, only approximate solutions have been derived because the corresponding boundary-value problems are complex. In this study, dispersion curves were determined using the bi-dimensional finite element method and derived through the separation of variables and the Hamilton principle. Modal displacement calculations clarified that the maximal deformations appeared at the outer edge of the wedge tip. Numerical examples indicated how distinct thin-film materials deposited on the outer surface of the circular cylindrical wedge influenced the dispersion curves. Additionally, dispersion curves were measured using a laser-induced guided wave, a knife-edge measurement scheme, and a two-dimensional fast Fourier transform method. Both the numerical and experimental results correlated closely, thus validating the numerical solution. Copyright © 2015 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21537064-electromagnetic-energy-momentum-dispersive-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21537064-electromagnetic-energy-momentum-dispersive-media"><span>Electromagnetic energy momentum in dispersive media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Philbin, T. G.</p> <p>2011-01-15</p> <p>The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields aremore » monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PEPI..270..168E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PEPI..270..168E"><span>Short-period surface-wave phase velocities across the conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ekström, G.</p> <p>2017-09-01</p> <p>Surface-wave phase-velocity maps for the full footprint of the USArray Transportable Array (TA) across the conterminous United States are developed and tested. Three-component, long-period continuous seismograms recorded on more than 1800 seismometers, most of which were deployed for 18 months or longer, are processed using a noise cross-correlation technique to derive inter-station Love and Rayleigh dispersion curves at periods between 5 and 40 s. The phase-velocity measurements are quality controlled using an automated algorithm and then used in inversions for Love and Rayleigh phase-velocity models at discrete periods on a 0.25°-by-0.25° pixel grid. The robustness of the results is examined using comparisons of maps derived from subsets of the data. A winter-summer division of the cross-correlation data results in small model differences, indicating relatively minor sensitivity of the results to seasonal variations in the distribution of noise sources. Division of the dispersion data based on inter-station azimuth does not result in geographically coherent model differences, suggesting that azimuthal anisotropy at the regional scale is weak compared with variations in isotropic velocities and does not substantially influence the results for isotropic velocities. The phase-velocity maps and dispersion measurements are documented and made available as data products of the 10-year-long USArray TA deployment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhyS...90c5405B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhyS...90c5405B"><span>Non-perturbative theory of dispersion interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boström, M.; Thiyam, P.; Persson, C.; Parsons, D. F.; Buhmann, S. Y.; Brevik, I.; Sernelius, Bo E.</p> <p>2015-03-01</p> <p>Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here, we present a full non-perturbative theory. In addition, we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009MNRAS.395.1549H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009MNRAS.395.1549H"><span>Testing fundamental physics with distant star clusters: theoretical models for pressure-supported stellar systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Haghi, Hosein; Baumgardt, Holger; Kroupa, Pavel; Grebel, Eva K.; Hilker, Michael; Jordi, Katrin</p> <p>2009-05-01</p> <p>We investigate the mean velocity dispersion and the velocity dispersion profile of stellar systems in modified Newtonian dynamics (MOND), using the N-body code N-MODY, which is a particle-mesh-based code with a numerical MOND potential solver developed by Ciotti, Londrillo & Nipoti. We have calculated mean velocity dispersions for stellar systems following Plummer density distributions with masses in the range of 104 to 109Msolar and which are either isolated or immersed in an external field. Our integrations reproduce previous analytic estimates for stellar velocities in systems in the deep MOND regime (ai, ae << a0), where the motion of stars is either dominated by internal accelerations (ai >> ae) or constant external accelerations (ae >> ai). In addition, we derive for the first time analytic formulae for the line-of-sight velocity dispersion in the intermediate regime (ai ~ ae ~ a0). This allows for a much-improved comparison of MOND with observed velocity dispersions of stellar systems. We finally derive the velocity dispersion of the globular cluster Pal14 as one of the outer Milky Way halo globular clusters that have recently been proposed as a differentiator between Newtonian and MONDian dynamics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..439.1133J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..439.1133J"><span>A mean-density model of ionic surfactants for the dispersion of carbon nanotubes in aqueous solutions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joung, Young Soo</p> <p>2018-05-01</p> <p>We propose a new analytical model of ionic surfactants used for the dispersion of carbon nanotubes (CNTs) in aqueous solutions. Although ionic surfactants are commonly used to facilitate the dispersion of CNTs in aqueous solutions, understanding the dispersion process is challenging and time-consuming owing to its complexity and nonlinearity. In this work, we develop a mean-density model of ionic surfactants to simplify the calculation of interaction forces between CNTs stabilized by ionic surfactants. Using this model, we can evaluate various interaction forces between the CNTs and ionic surfactants under different conditions. The dispersion mechanism is investigated by estimating the potential of mean force (PMF) as a function of van der Waals forces, electrostatic forces, interfacial tension, and osmotic pressure. To verify the proposed model, we compare the PMFs derived using our method with those derived from molecular dynamics simulations using comparable CNTs and ionic surfactants. Notably, for stable dispersions, the osmotic pressure and interfacial energy are important for long-range and short-range interactions, respectively, in comparison with the effect of electrostatic forces. Our model effectively prescribes specific surfactants and their concentrations to achieve stable aqueous suspensions of CNTs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018A%26A...613A..72G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018A%26A...613A..72G"><span>KMOS LENsing Survey (KLENS): Morpho-kinematic analysis of star-forming galaxies at z 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Girard, M.; Dessauges-Zavadsky, M.; Schaerer, D.; Cirasuolo, M.; Turner, O. J.; Cava, A.; Rodríguez-Muñoz, L.; Richard, J.; Pérez-González, P. G.</p> <p>2018-06-01</p> <p>We present results from the KMOS LENsing Survey (KLENS), which is exploiting gravitational lensing to study the kinematics of 24 star-forming galaxies at 1.4 < z < 3.5 with a median mass of log(M⋆/M⊙) = 9.6 and a median star formation rate (SFR) of 7.5 M⊙ yr-1. We find that 25% of these low mass/low SFR galaxies are rotation-dominated, while the majority of our sample shows no velocity gradient. When combining our data with other surveys, we find that the fraction of rotation-dominated galaxies increases with the stellar mass, and decreases for galaxies with a positive offset from the main sequence (higher specific star formation rate). We also investigate the evolution of the intrinsic velocity dispersion, σ0, as a function of the redshift, z, and stellar mass, M⋆, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal to 1). From the z - σ0 relation, we find that the redshift evolution of the velocity dispersion is mostly expected for massive galaxies (log(M⋆/M⊙) > 10). We derive a M⋆ - σ0 relation, using the Tully-Fisher relation, which highlights that a different evolution of the velocity dispersion is expected depending on the stellar mass, with lower velocity dispersions for lower masses, and an increase for higher masses, stronger at higher redshift. The observed velocity dispersions from this work and from comparison samples spanning 0 < z < 3.5 appear to follow this relation, except at higher redshift (z > 2), where we observe higher velocity dispersions for low masses (log(M⋆/M⊙) 9.6) and lower velocity dispersions for high masses (log(M⋆/M⊙) 10.9) than expected. This discrepancy could, for instance, suggest that galaxies at high redshift do not satisfy the stability criterion, or that the adopted parametrization of the specific star formation rate and molecular properties fail at high redshift. Based on KMOS observations made with the European Southern Observatory VLT/Antu telescope, Paranal, Chile, collected under the program ID No. 095.A-0962(A)+(B).The reduced datacubes (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/613/A72</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PlST...20c5301A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PlST...20c5301A"><span>Effect of polarization force on the Jeans instability in collisional dusty plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>A, ABBASI; M, R. RASHIDIAN VAZIRI</p> <p>2018-03-01</p> <p>The Jeans instability in collisional dusty plasmas has been analytically investigated by considering the polarization force effect. Instabilities due to dust-neutral and ion-neutral drags can occur in electrostatic waves of collisional dusty plasmas with self-gravitating particles. In this study, the effect of gravitational force on heavy dust particles is considered in tandem with both the polarization and electrostatic forces. The theoretical framework has been developed and the dispersion relation and instability growth rate have been derived, assuming the plane wave approximation. The derived instability growth rate shows that, in collisional dusty plasmas, the Jeans instability strongly depends on the magnitude of the polarization force.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29149556','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29149556"><span>Evaluating Force-Field London Dispersion Coefficients Using the Exchange-Hole Dipole Moment Model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mohebifar, Mohamad; Johnson, Erin R; Rowley, Christopher N</p> <p>2017-12-12</p> <p>London dispersion interactions play an integral role in materials science and biophysics. Force fields for atomistic molecular simulations typically represent dispersion interactions by the 12-6 Lennard-Jones potential using empirically determined parameters. These parameters are generally underdetermined, and there is no straightforward way to test if they are physically realistic. Alternatively, the exchange-hole dipole moment (XDM) model from density-functional theory predicts atomic and molecular London dispersion coefficients from first principles, providing an innovative strategy to validate the dispersion terms of molecular-mechanical force fields. In this work, the XDM model was used to obtain the London dispersion coefficients of 88 organic molecules relevant to biochemistry and pharmaceutical chemistry and the values compared with those derived from the Lennard-Jones parameters of the CGenFF, GAFF, OPLS, and Drude polarizable force fields. The molecular dispersion coefficients for the CGenFF, GAFF, and OPLS models are systematically higher than the XDM-calculated values by a factor of roughly 1.5, likely due to neglect of higher order dispersion terms and premature truncation of the dispersion-energy summation. The XDM dispersion coefficients span a large range for some molecular-mechanical atom types, suggesting an unrecognized source of error in force-field models, which assume that atoms of the same type have the same dispersion interactions. Agreement with the XDM dispersion coefficients is even poorer for the Drude polarizable force field. Popular water models were also examined, and TIP3P was found to have dispersion coefficients similar to the experimental and XDM references, although other models employ anomalously high values. Finally, XDM-derived dispersion coefficients were used to parametrize molecular-mechanical force fields for five liquids-benzene, toluene, cyclohexane, n-pentane, and n-hexane-which resulted in improved accuracy in the computed enthalpies of vaporization despite only having to evaluate a much smaller section of the parameter space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850..203P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850..203P"><span>The KMOS Cluster Survey (KCS). III. Fundamental Plane of Cluster Galaxies at z ≃ 1.80 in JKCS 041</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Prichard, Laura J.; Davies, Roger L.; Beifiori, Alessandra; Chan, Jeffrey C. C.; Cappellari, Michele; Houghton, Ryan C. W.; Mendel, J. Trevor; Bender, Ralf; Galametz, Audrey; Saglia, Roberto P.; Stott, John P.; Wilman, David J.; Lewis, Ian J.; Sharples, Ray; Wegner, Michael</p> <p>2017-12-01</p> <p>We present data for 16 galaxies in the overdensity JKCS 041 at z≃ 1.80 as part of the K-band Multi-Object Spectrograph (KMOS) Cluster Survey (KCS). With 20 hr integrations, we have obtained deep absorption-line spectra from which we derived velocity dispersions for seven quiescent galaxies. We combined photometric parameters derived from Hubble Space Telescope images with the dispersions to construct a fundamental plane (FP) for quiescent galaxies in JKCS 041. From the zero-point evolution of the FP, we derived a formation redshift for the galaxies of {z}{form}=3.0+/- 0.3, corresponding to a mean age of 1.4 ± 0.2 Gyr. We tested the effect of structural and velocity dispersion evolution on our FP zero-point and found a negligible contribution when using dynamical mass-normalized parameters (˜ 3 % ) but a significant contribution from stellar-mass-normalized parameters (˜ 42 % ). From the relative velocities of the galaxies, we probed the 3D structure of these 16 confirmed members of JKCS 041 and found that a group of galaxies in the southwest of the overdensity had systematically higher velocities. We derived ages for the galaxies in the different groups from the FP. We found that the east-extending group had typically older galaxies ({2.1}-0.2+0.3 Gyr) than those in the southwest group (0.3 ± 0.2 Gyr). Although based on small numbers, the overdensity dynamics, morphology, and age results could indicate that JKCS 041 is in formation and may comprise two merging groups of galaxies. This result could link large-scale structure to ages of galaxies for the first time at this redshift. Based on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory (ESO), Paranal, Chile (ESO program IDs: 095.A-0137(A) and 096.A-0189(A)).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22521818-relative-proper-motions-rho-ophiuchi-cluster','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22521818-relative-proper-motions-rho-ophiuchi-cluster"><span>RELATIVE PROPER MOTIONS IN THE RHO OPHIUCHI CLUSTER</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wilking, Bruce A.; Sullivan, Timothy; Vrba, Frederick J., E-mail: bwilking@umsl.edu, E-mail: tsullivan@umsl.edu, E-mail: fjv@nofs.navy.mil</p> <p>2015-12-10</p> <p>Near-infrared images optimized for astrometry have been obtained for four fields in the high-density L 1688 cloud core over a 12 year period. The targeted regions include deeply embedded young stellar objects (YSOs) and very low luminosity objects too faint and/or heavily veiled for spectroscopy. Relative proper motions in R.A. and decl. were computed for 111 sources and again for a subset of 65 YSOs, resulting in a mean proper motion of (0,0) for each field. Assuming each field has the same mean proper motion, YSOs in the four fields were combined to yield estimates of the velocity dispersions inmore » R.A. and decl. that are consistent with 1.0 km s{sup −1}. These values appear to be independent of the evolutionary state of the YSOs. The observed velocity dispersions are consistent with the dispersion in radial velocity derived for optically visible YSOs at the periphery of the cloud core and are consistent with virial equilibrium. The higher velocity dispersion of the YSOs in the plane of the sky relative to that of dense cores may be a consequence of stellar encounters due to dense cores and filaments fragmenting to form small groups of stars or the global collapse of the L 1688 cloud core. An analysis of the differential magnitudes of objects over the 12 year baseline has not only confirmed the near-infrared variability for 29 YSOs established by prior studies, but has also identified 18 new variability candidates. Four of these have not been previously identified as YSOs and may be newly identified cluster members.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JSV...400..550C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JSV...400..550C"><span>Wave propagation in magneto-electro-elastic multilayered plates with nonlocal effect</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jiangyi; Guo, Junhong; Pan, Ernian</p> <p>2017-07-01</p> <p>In this paper, analytical solutions for propagation of time-harmonic waves in three-dimensional, transversely isotropic, magnetoelectroelastic and multilayered plates with nonlocal effect are derived. We first convert the time-harmonic wave problem into a linear eigenvalue system, from which we obtain the general solutions of the extended displacements and stresses. The solutions are then employed to derive the propagator matrix which connects the field variables at the upper and lower interfaces of each layer. Making use of the continuity conditions of the physical quantities across the interface, the global propagator relation is assembled by propagating the solutions in each layer from the bottom to the top of the layered plate. From the global propagator matrix, the dispersion equation is obtained by imposing the traction-free boundary conditions on both the top and bottom surfaces of the layered plate. Dispersion curves and mode shapes in layered plates made of piezoelectric BaTiO3 and magnetostrictive CoFe2O4 materials are presented to show the influence of the nonlocal parameter, stacking sequence, as well as the orientation of incident wave on the time-harmonic field response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970022174&hterms=ghosts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dghosts','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970022174&hterms=ghosts&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dghosts"><span>Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen</p> <p>1997-01-01</p> <p>The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JHEP...07..055J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JHEP...07..055J"><span>Toward the classification of differential calculi on κ-Minkowski space and related field theories</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jurić, Tajron; Meljanac, Stjepan; Pikutić, Danijel; Štrajn, Rina</p> <p>2015-07-01</p> <p>Classification of differential forms on κ-Minkowski space, particularly, the classification of all bicovariant differential calculi of classical dimension is presented. By imposing super-Jacobi identities we derive all possible differential algebras compatible with the κ-Minkowski algebra for time-like, space-like and light-like deformations. Embedding into the super-Heisenberg algebra is constructed using non-commutative (NC) coordinates and one-forms. Particularly, a class of differential calculi with an undeformed exterior derivative and one-forms is considered. Corresponding NC differential calculi are elaborated. Related class of new Drinfeld twists is proposed. It contains twist leading to κ-Poincaré Hopf algebra for light-like deformation. Corresponding super-algebra and deformed super-Hopf algebras, as well as the symmetries of differential algebras are presented and elaborated. Using the NC differential calculus, we analyze NC field theory, modified dispersion relations, and discuss further physical applications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMMR43A..08S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMMR43A..08S"><span>Attenuation and Dispersion Analysis in Laboratory Measured Elastic Properties in the Middle East Carbonate Reservoir Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, R.</p> <p>2016-12-01</p> <p>Carbonate rocks are sensitive to circulation of fluid types that leads to diagenetic alterations and therefore to heterogeneity in distribution of porosity and permeability. These heterogeneities in turn, lead to heterogeneity in saturations varying from partial to patchy to uniform. Depending on the interaction between fluids and rock matrix, a weakening or strengthening in shear modulus of carbonate rocks can also develop (Eberli et al., 2003; Adam et al., 2006; Sharma et al., 2009; Sharma et al., 2013). Thus the elastic response over the production life of the carbonate reservoirs can change considerably. Efforts to couple fluid flow with varying seismic properties of these reservoirs are limited in success due to the differences between static elastic properties derived from reservoir simulation and dynamic elastic properties derived from inverted seismic. An additional limitation arises from the assumption that shear modulus does not change with fluid type and saturations. To overcome these limitations, we need to understand the relationships between the static and the dynamic elastic properties using laboratory measurements made at varying pressures, frequencies and with varying saturants. I will present the following results: 1) errors associated with using dynamic (2 - 2000 Hz and 1 MHz) elastic properties data for static ( 0 Hz) reservoir properties, 2) shear modulus variation in carbonates upon saturation with varying saturants The results will enable us to estimate, 1) distribution of stress-strain relations in reservoir rocks and 2) modulus dispersion to correct seismic-derived moduli as inputs for reservoir simulators. The results are critical to estimate, 1) modulus dispersion correction and 2) occurrence and amount of shear modulus variation with fluid change vital for rock stability analysis</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJ...827...12B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJ...827...12B"><span>Hubble Space Telescope Proper Motion (HSTPROMO) Catalogs of Galactic Globular Clusters. IV. Kinematic Profiles and Average Masses of Blue Straggler Stars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baldwin, A. T.; Watkins, L. L.; van der Marel, R. P.; Bianchini, P.; Bellini, A.; Anderson, J.</p> <p>2016-08-01</p> <p>We make use of the Hubble Space Telescope proper-motion catalogs derived by Bellini et al. to produce the first radial velocity dispersion profiles σ (R) for blue straggler stars (BSSs) in Galactic globular clusters (GCs), as well as the first dynamical estimates for the average mass of the entire BSS population. We show that BSSs typically have lower velocity dispersions than stars with mass equal to the main-sequence turnoff mass, as one would expect for a more massive population of stars. Since GCs are expected to experience some degree of energy equipartition, we use the relation σ \\propto {M}-η , where η is related to the degree of energy equipartition, along with our velocity dispersion profiles to estimate BSS masses. We estimate η as a function of cluster relaxation from recent Monte Carlo cluster simulations by Bianchini et al. and then derive an average mass ratio {M}{BSS}/{M}{MSTO}=1.50+/- 0.14 and an average mass {M}{BSS}=1.22+/- 0.12 M ⊙ from 598 BSSs across 19 GCs. The final error bars include any systematic errors that are random between different clusters, but not any potential biases inherent to our methodology. Our results are in good agreement with the average mass of {M}{BSS}=1.22+/- 0.06 M ⊙ for the 35 BSSs in Galactic GCs in the literature with properties that have allowed individual mass determination. Based on proprietary and archival observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A22C..08H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A22C..08H"><span>Simulation of Smoke-Haze Dispersion from Wildfires in South East Asia with a Lagrangian Particle Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hertwig, D.; Burgin, L.; Gan, C.; Hort, M.; Jones, A. R.; Shaw, F.; Witham, C. S.; Zhang, K.</p> <p>2014-12-01</p> <p>Biomass burning, often related to agricultural deforestation, not only affects local pollution levels but periodically deteriorates air quality in many South East Asian megacities due to the transboundary transport of smoke-haze. In June 2013, Singapore experienced the worst wildfire related air-pollution event on record following from the escalation of peatland fires in Sumatra. An extended dry period together with anomalous westerly winds resulted in severe and unhealthy pollution levels in Singapore that lasted for more than two weeks. Reacting to this event, the Met Office and the Meteorological Service Singapore have explored how to adequately simulate haze-pollution dispersion, with the aim to provide a reliable operational forecast for Singapore. Simulations with the Lagrangian particle model NAME (Numerical Atmospheric-dispersion Modelling Environment), running on numerical weather prediction data from the Met Office and Meteorological Service Singapore and emission data derived from satellite observations of the fire radiative power, are validated against PM10 observations in South East Asia. Comparisons of simulated concentrations with hourly averages of PM10 measurements in Singapore show that the model captures well the severe smoke-haze event in June 2013 and a minor episode in March 2014. Different quantitative satellite-derived emissions have been tested, with one source demonstrating a consistent factor of two under-prediction for Singapore. Confidence in the skill of the model system has been substantiated by further comparisons with data from monitoring sites in Malaysia, Brunei and Thailand. Following the validation study, operational smoke-haze pollution forecasts with NAME were launched in Singapore, in time for the 2014 fire season. Real-time bias correction and verification of this forecast will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..1612085M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..1612085M"><span>On the estimation of heating effects in the atmosphere because of seismic activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meister, Claudia-Veronika; Hoffmann, Dieter H. H.</p> <p>2014-05-01</p> <p>The dielectric model for waves in the Earth's ionosphere is further developed and applied to possible electro-magnetic phenomena in seismic regions. In doing so, in comparison to the well-known dielectric wave model by R.O. Dendy [Plasma dynamics, Oxford University Press, 1990] for homogeneous systems, the stratification of the atmosphere is taken into account. Moreover, within the frame of many-fluid magnetohydrodynamics also the momentum transfer between the charged and neutral particles is considered. Discussed are the excitation of Alfvén and magnetoacoustic waves, but also their variations by the neutral gas winds. Further, also other current driven waves like Farley-Buneman ones are studied. In the work, models of the altitudinal scales of the plasma parameters and the electromagnetic wave field are derived. In case of the electric wave field, a method is given to calculate the altitudinal scale based on the Poisson equation for the electric field and the magnetohydrodynamic description of the particles. Further, expressions are derived to estimate density, pressure, and temperatur changes in the E-layer because of the generation of the electromagnetic waves. Last not least, formulas are obtained to determine the dispersion and polarisation of the excited electromagnetic waves. These are applied to find quantitative results for the turbulent heating of the ionospheric E-layer. Concerning the calculation of the dispersion relation, in comparison to a former work by Meister et al. [Contr. Plasma Phys. 53 (4-5), 406-413, 2013], where a numerical double-iteration method was suggested to obtain results for the wave dispersion relations, now further analytical calculations are performed. In doing so, different polynomial dependencies of the wave frequencies from the wave vectors are treated. This helped to restrict the numerical calculations to only one iteration process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvC..97e5203A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvC..97e5203A"><span>Nucleon form factors in dispersively improved chiral effective field theory. II. Electromagnetic form factors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Alarcón, J. M.; Weiss, C.</p> <p>2018-05-01</p> <p>We study the nucleon electromagnetic form factors (EM FFs) using a recently developed method combining chiral effective field theory (χ EFT ) and dispersion analysis. The spectral functions on the two-pion cut at t >4 Mπ2 are constructed using the elastic unitarity relation and an N /D representation. χ EFT is used to calculate the real functions J±1(t ) =f±1(t ) /Fπ(t ) (ratios of the complex π π →N N ¯ partial-wave amplitudes and the timelike pion FF), which are free of π π rescattering. Rescattering effects are included through the empirical timelike pion FF | Fπ(t) | 2 . The method allows us to compute the isovector EM spectral functions up to t ˜1 GeV2 with controlled accuracy (leading order, next-to-leading order, and partial next-to-next-to-leading order). With the spectral functions we calculate the isovector nucleon EM FFs and their derivatives at t =0 (EM radii, moments) using subtracted dispersion relations. We predict the values of higher FF derivatives, which are not affected by higher-order chiral corrections and are obtained almost parameter-free in our approach, and explain their collective behavior. We estimate the individual proton and neutron FFs by adding an empirical parametrization of the isoscalar sector. Excellent agreement with the present low-Q2 FF data is achieved up to ˜0.5 GeV2 for GE, and up to ˜0.2 GeV2 for GM. Our results can be used to guide the analysis of low-Q2 elastic scattering data and the extraction of the proton charge radius.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22257159-response-comment-motion-helical-vortex-filament-superfluid-sup-he-under-extrinsic-form-local-induction-approximation-phys-fluids','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22257159-response-comment-motion-helical-vortex-filament-superfluid-sup-he-under-extrinsic-form-local-induction-approximation-phys-fluids"><span>Response to “Comment on ‘Motion of a helical vortex filament in superfluid {sup 4}He under the extrinsic form of the local induction approximation”’ [Phys. Fluids 26, 019101 (2014)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Van Gorder, Robert A., E-mail: rav@knights.ucf.edu</p> <p>2014-01-15</p> <p>I agree with the authors regarding their comments on the Donnelly-Glaberson instability for such helical filaments as those obtained in my paper. I also find merit in their derivation of the quantum LIA (local induction approximation) in the manner of the LIA of Boffetta et al. However, I disagree with the primary criticisms of Hietala and Hänninen. In particular, though they suggest LIA and local nonlinear equation modes are not comparable since the former class of models contains superfluid friction parameters, note that since these parameters are small one may take them to zero and consider a qualitative comparison ofmore » the models (which is what was done in my paper). Second, while Hietala and Hänninen criticize certain assumptions made in my paper (and the paper of Shivamoggi where the model comes from) since the results break-down when Ak → ∞, note that in my paper I state that any deviations from the central axis along which the filament is aligned must be sufficiently bounded in variation. Therefore, it was already acknowledged that Ak(=|Φ{sub x}|) should be sufficiently bounded, precluding the Ak → ∞ case. I also show that, despite what Hietala and Hänninen claim, the dispersion relation obtained in my paper is consistent with LIA, where applicable. Finally, while Hietala and Hänninen claim that the dispersion parameter should be complex valued, I show that their dispersion relation is wrong, since it was derived incorrectly (they assume the complex modulus of the potential function is constant, yet then use this to obtain a potential function with non-constant modulus)« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.894a2062G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.894a2062G"><span>Hydrodynamic dispersion in porous media with macroscopic disorder of parameters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goldobin, D. S.; Maryshev, B. S.</p> <p>2017-10-01</p> <p>We present an analytical derivation of the macroscopic hydrodynamic dispersion for flows in porous media with frozen disorder of macroscopic parameters: porosity and permeability. The parameter inhomogeneities generate inhomogeneities of filtration flow which perform fluid mixing and, on the large spacial scale, act as an additional effective diffusion (eddy diffusivity or hydrodynamic dispersion). The derivation is performed for the general case, where the only restrictions are (i) the spatial autocorrelation functions of parameter inhomogeneities decay with the distance r not slower than 1/rn with n > 1, and (ii) the amplitudes of inhomogeneities are small compared to the mean value of parameters. Our analytical findings are confirmed with the results of direct numerical simulation for the transport of a passive scalar in inhomogeneous filtration flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22342123-vi-band-follow-up-observations-ultra-long-period-cepheid-candidates-m31','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22342123-vi-band-follow-up-observations-ultra-long-period-cepheid-candidates-m31"><span>VI-band follow-up observations of ultra-long-period Cepheid candidates in M31</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ngeow, Chow-Choong; Yang, Michael Ting-Chang; Lin, Chi-Sheng</p> <p>2015-02-01</p> <p>The ultra-long-period Cepheids (ULPCs) are classical Cepheids with pulsation periods exceeding ≈80 days. The intrinsic brightness of ULPCs are ∼1 to ∼3 mag brighter than their shorter period counterparts. This makes them attractive in future distance scale work to derive distances beyond the limit set by the shorter period Cepheids. We have initiated a program to search for ULPCs in M31, using the single-band data taken from the Palomar Transient Factory, and identified eight possible candidates. In this work, we presented the VI-band follow-up observations of these eight candidates. Based on our VI-band light curves of these candidates and theirmore » locations in the color–magnitude diagram and the Period–Wesenheit diagram, we verify two candidates as being truly ULPCs. The six other candidates are most likely other kinds of long-period variables. With the two confirmed M31 ULPCs, we tested the applicability of ULPCs in distance scale work by deriving the distance modulus of M31. It was found to be μ{sub M31,ULPC}=24.30±0.76 mag. The large error in the derived distance modulus, together with the large intrinsic dispersion of the Period–Wesenheit (PW) relation and the small number of ULPCs in a given host galaxy, means that the question of the suitability of ULPCs as standard candles is still open. Further work is needed to enlarge the sample of calibrating ULPCs and reduce the intrinsic dispersion of the PW relation before re-considering ULPCs as suitable distance indicators.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16803063','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16803063"><span>Electromagnetic energy flux vector for a dispersive linear medium.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Crenshaw, Michael E; Akozbek, Neset</p> <p>2006-05-01</p> <p>The electromagnetic energy flux vector in a dispersive linear medium is derived from energy conservation and microscopic quantum electrodynamics and is found to be of the Umov form as the product of an electromagnetic energy density and a velocity vector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/48699','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/48699"><span>Nonturbulent dispersion processes in complex terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Michael A. Fosberg; Douglas G. Fox; E.A. Howard; Jack D. Cohen</p> <p>1976-01-01</p> <p>Mass divergence influences on plume dispersion modify classic Gaussian calculations by as much as a factor of two in complex terrain. The Gaussian plume was derived in flux form to include this process.Authors' response to comments and criticism received following this publication:</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.T51A2882W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.T51A2882W"><span>Tracking Ophiolite Gabbro from Origin To Dispersal: A Record of Tectonic and Surface Processes in Central Anatolia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Whitney, D.; Radwany, M.; Brocard, G. Y.; Umhoefer, P. J.</p> <p>2016-12-01</p> <p>Anatolia is festooned with ophiolitic rocks derived from Tethyan seaways; they mark sutures between Eurasia, Gondwana/Arabia, and continental ribbons and island arcs. Ophiolites are also dispersed between sutures, indicating tectonic transport of possibly 100s of kms. In Central Anatolia, isolated fragments of a Late-K ophiolite (Central Anatolian Ophiolite, CAO) have been assigned to northern (Izmir-Ankara-Erzincan) or southern (Inner-Tauride) sutures, with implications for the magnitude and direction of transport and relation of ophiolite obduction to regional metamorphism. Ophiolitic clasts (primarily gabbro) are widespread in sedimentary basins and alluvial terraces, suggesting that one or several erosional events almost completely removed a formerly extensive ophiolitic nappe. We have obtained petrologic and geochemical data from gabbro outcrops, gabbro clasts in conglomerates and gabbro cobbles on alluvial terraces near the Niĝde metamorphic dome to locate the paleosources and reconstruct ophiolite emplacement, erosion, and dispersal. Our new data show that gabbro currently cropping out at the northern margin of the Niĝde dome is geochemically similar to the CAO: Niĝde and CAO gabbro both have Ti/V <10 and depleted HFSE, typical of boninitic (forearc) magma, although Niĝde gabbro was metamorphosed at mid/upper amphibolite facies and the rest of the CAO at (sub)greenschist facies conditions. Whole-rock trace element data for gabbro clasts indicate that early-middle Miocene sediments were at least partly derived from Tauride ophiolites, whereas later Mio/Pliocene sediments - even those south of the topographic high of the Niĝde dome - were sourced entirely from the CAO to the north. These results show that the Miocene rise of the Central Anatolian plateau drove reorganization of sediment dispersal and topographic disconnection of Miocene depocenters from their CAO sources.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPlPh..84b7401B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPlPh..84b7401B"><span>Analytic study on low- external ideal infernal modes in tokamaks with large edge pressure gradients</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunetti, Daniele; Graves, J. P.; Lazzaro, E.; Mariani, A.; Nowak, S.; Cooper, W. A.; Wahlberg, C.</p> <p>2018-04-01</p> <p>The problem of pressure driven infernal type perturbations near the plasma edge is addressed analytically for a circular limited tokamak configuration which presents an edge flattened safety factor. The plasma is separated from a metallic wall, either ideally conducting or resistive, by a vacuum region. The dispersion relation for such types of instabilities is derived and discussed for two classes of equilibrium profiles for pressure and mass density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810024233','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810024233"><span>The damping of seismic waves and its determination from reflection seismograms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Engelhard, L.</p> <p>1979-01-01</p> <p>The damping in theoretical waveforms is described phenomenologically and a classification is proposed. A method for studying the Earth's crust was developed which includes this damping as derived from reflection seismograms. Seismic wave propagation by absorption, attenuation of seismic waves by scattering, and dispersion relations are considered. Absorption of seismic waves within the Earth as well as reflection and transmission of elastic waves seen through boundary layer absorption are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16486347','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16486347"><span>Localized excitations at the Mott insulator-superfluid interfaces for confined Bose-Einstein condensates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mariani, Eros; Stern, Ady</p> <p>2005-12-31</p> <p>In this Letter, we derive the dispersion relation of the surface waves at the interfaces between Mott-insulating and superfluid domains for a two-dimensional Bose-Einstein condensate in an optical lattice subjected to a confining potential. We then calculate their contribution to the heat capacity of the system and show how its low-temperature scaling allows an experimental test of the existence and properties of Mott insulator-superfluid domains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JApMe..41..488W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JApMe..41..488W"><span>Ensemble Simulations with Coupled Atmospheric Dynamic and Dispersion Models: Illustrating Uncertainties in Dosage Simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Warner, Thomas T.; Sheu, Rong-Shyang; Bowers, James F.; Sykes, R. Ian; Dodd, Gregory C.; Henn, Douglas S.</p> <p>2002-05-01</p> <p>Ensemble simulations made using a coupled atmospheric dynamic model and a probabilistic Lagrangian puff dispersion model were employed in a forensic analysis of the transport and dispersion of a toxic gas that may have been released near Al Muthanna, Iraq, during the Gulf War. The ensemble study had two objectives, the first of which was to determine the sensitivity of the calculated dosage fields to the choices that must be made about the configuration of the atmospheric dynamic model. In this test, various choices were used for model physics representations and for the large-scale analyses that were used to construct the model initial and boundary conditions. The second study objective was to examine the dispersion model's ability to use ensemble inputs to predict dosage probability distributions. Here, the dispersion model was used with the ensemble mean fields from the individual atmospheric dynamic model runs, including the variability in the individual wind fields, to generate dosage probabilities. These are compared with the explicit dosage probabilities derived from the individual runs of the coupled modeling system. The results demonstrate that the specific choices made about the dynamic-model configuration and the large-scale analyses can have a large impact on the simulated dosages. For example, the area near the source that is exposed to a selected dosage threshold varies by up to a factor of 4 among members of the ensemble. The agreement between the explicit and ensemble dosage probabilities is relatively good for both low and high dosage levels. Although only one ensemble was considered in this study, the encouraging results suggest that a probabilistic dispersion model may be of value in quantifying the effects of uncertainties in a dynamic-model ensemble on dispersion model predictions of atmospheric transport and dispersion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26818771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26818771"><span>Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Warner, Patricia A; Willis, Bette L; van Oppen, Madeleine J H</p> <p>2016-03-01</p> <p>Within populations of brooding sessile corals, sperm dispersal constitutes the mechanism by which gametes interact and mating occurs, and forms the first link in the network of processes that determine specieswide connectivity patterns. However, almost nothing is known about sperm dispersal for any internally fertilizing coral. In this study, we conducted a parentage analysis on coral larvae collected from an area of mapped colonies, to measure the distance sperm disperses for the first time in a reef-building coral and estimated the mating system characteristics of a recently identified putative cryptic species within the Seriatopora hystrix complex (ShA; Warner et al. 2015). We defined consensus criteria among several replicated methods (COLONY 2.0, CERVUS 3.0, MLTR v3.2) to maximize accuracy in paternity assignments. Thirteen progeny arrays indicated that this putative species produces exclusively sexually derived, primarily outcrossed larvae (mean t(m) = 0.999) in multiple paternity broods (mean r(p) = 0.119). Self-fertilization was directly detected at low frequency for all broods combined (2.8%), but comprised 23% of matings in one brood. Although over 82% of mating occurred between colonies within 10 m of each other (mean sperm dispersal = 5.5 m ± 4.37 SD), we found no evidence of inbreeding in the established population. Restricted dispersal of sperm compared to slightly greater larval dispersal appears to limit inbreeding among close relatives in this cryptic species. Our findings establish a good basis for further work on sperm dispersal in brooding corals and provide the first information about the mating system of a newly identified and abundant cryptic species. © 2016 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007ApPhB..88...93N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007ApPhB..88...93N"><span>Dispersion induced power fading for radio frequency signals and its application for fast online PMD and CD monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ning, G.; Shum, P.</p> <p>2007-06-01</p> <p>We derive the expressions for the power fading including first-order polarization mode dispersion (PMD), chromatic dispersion, chirp parameter as well as polarization-dependent chromatic dispersion (PCD), which is dependent on the angle of precession of output state of polarization around the PMD vector. From the expression for radio frequency (RF) signals power fading, we get the average power fading for chromatic dispersion, chirp parameter, first-order PMD and PCD for both double sideband (DSB) modulation and single sideband (SSB) modulation. We also demonstrate a fast PMD and chromatic dispersion monitoring technology with reduced polarization-dependent gain. The measured results agree well with theoretical analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9233E..1DY','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9233E..1DY"><span>Modulation instability induced by cross-phase modulation with higher-order dispersions and cubic-quintic nonlinearities in metamaterials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Chuanxi; Xue, Yan Ling; Liu, Ying</p> <p>2014-07-01</p> <p>Based on the dispersive Drude model in metamaterials (MMs), coupled nonlinear Schodinger equations are derived for two co-propagating optical waves with higher-order dispersions and cubic-quintic nonlinearities. And modulation instabilities induced by the cross -phase modulation (XMI) are studied. The impact of 3rd-, 4th-order of dispersion and quintic nonlinearity on the gain spectra of XMI is analyzed. It is shown that the 3rd-order dispersion has no effect on XMI and its gain spectra. With the increment of 4th-order dispersion, the gain spectra appear in higher frequency region (2nd spectrum region) and gain peaks become smaller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23571945','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23571945"><span>Photonic fractional Fourier transformer with a single dispersive device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cuadrado-Laborde, C; Carrascosa, A; Díez, A; Cruz, J L; Andres, M V</p> <p>2013-04-08</p> <p>In this work we used the temporal analog of spatial Fresnel diffraction to design a temporal fractional Fourier transformer with a single dispersive device, in this way avoiding the use of quadratic phase modulators. We demonstrate that a single dispersive passive device inherently provides the fractional Fourier transform of an incident optical pulse. The relationships linking the fractional Fourier transform order and scaling factor with the dispersion parameters are derived. We first provide some numerical results in order to prove the validity of our proposal, using a fiber Bragg grating as the dispersive device. Next, we experimentally demonstrate the feasibility of this proposal by using a spool of a standard optical fiber as the dispersive device.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ExG....49..187W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ExG....49..187W"><span>An implicit spatial and high-order temporal finite difference scheme for 2D acoustic modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Enjiang; Liu, Yang</p> <p>2018-01-01</p> <p>The finite difference (FD) method exhibits great superiority over other numerical methods due to its easy implementation and small computational requirement. We propose an effective FD method, characterised by implicit spatial and high-order temporal schemes, to reduce both the temporal and spatial dispersions simultaneously. For the temporal derivative, apart from the conventional second-order FD approximation, a special rhombus FD scheme is included to reach high-order accuracy in time. Compared with the Lax-Wendroff FD scheme, this scheme can achieve nearly the same temporal accuracy but requires less floating-point operation times and thus less computational cost when the same operator length is adopted. For the spatial derivatives, we adopt the implicit FD scheme to improve the spatial accuracy. Apart from the existing Taylor series expansion-based FD coefficients, we derive the least square optimisation based implicit spatial FD coefficients. Dispersion analysis and modelling examples demonstrate that, our proposed method can effectively decrease both the temporal and spatial dispersions, thus can provide more accurate wavefields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1523G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018MNRAS.tmp.1523G"><span>Physical properties and scaling relations of molecular clouds: the effect of stellar feedback</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grisdale, Kearn; Agertz, Oscar; Renaud, Florent; Romeo, Alessandro B.</p> <p>2018-06-01</p> <p>Using hydrodynamical simulations of entire galactic discs similar to the Milky Way, reaching 4.6{ pc} resolution, we study the origins of observed physical properties of giant molecular clouds (GMCs). We find that efficient stellar feedback is a necessary ingredient in order to develop a realistic interstellar medium (ISM), leading to molecular cloud masses, sizes, velocity dispersions and virial parameters in excellent agreement with Milky Way observations. GMC scaling relations observed in the Milky Way, such as the mass-size (M-R), velocity dispersion-size (σ-R), and the σ-RΣ relations, are reproduced in a feedback driven ISM when observed in projection, with M∝R2.3 and σ∝R0.56. When analysed in 3D, GMC scaling relations steepen significantly, indicating potential limitations of our understanding of molecular cloud 3D structure from observations. Furthermore, we demonstrate how a GMC population's underlying distribution of virial parameters can strongly influence the scatter in derived scaling relations. Finally, we show that GMCs with nearly identical global properties exist in different evolutionary stages, where a majority of clouds being either gravitationally bound or expanding, but with a significant fraction being compressed by external ISM pressure, at all times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27755691','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27755691"><span>Replicated landscape genetic and network analyses reveal wide variation in functional connectivity for American pikas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castillo, Jessica A; Epps, Clinton W; Jeffress, Mackenzie R; Ray, Chris; Rodhouse, Thomas J; Schwalm, Donelle</p> <p>2016-09-01</p> <p>Landscape connectivity is essential for maintaining viable populations, particularly for species restricted to fragmented habitats or naturally arrayed in metapopulations and facing rapid climate change. The importance of assessing both structural connectivity (physical distribution of favorable habitat patches) and functional connectivity (how species move among habitat patches) for managing such species is well understood. However, the degree to which functional connectivity for a species varies among landscapes, and the resulting implications for conservation, have rarely been assessed. We used a landscape genetics approach to evaluate resistance to gene flow and, thus, to determine how landscape and climate-related variables influence gene flow for American pikas (Ochotona princeps) in eight federally managed sites in the western United States. We used empirically derived, individual-based landscape resistance models in conjunction with predictive occupancy models to generate patch-based network models describing functional landscape connectivity. Metareplication across landscapes enabled identification of limiting factors for dispersal that would not otherwise have been apparent. Despite the cool microclimates characteristic of pika habitat, south-facing aspects consistently represented higher resistance to movement, supporting the previous hypothesis that exposure to relatively high temperatures may limit dispersal in American pikas. We found that other barriers to dispersal included areas with a high degree of topographic relief, such as cliffs and ravines, as well as streams and distances greater than 1-4 km depending on the site. Using the empirically derived network models of habitat patch connectivity, we identified habitat patches that were likely disproportionately important for maintaining functional connectivity, areas in which habitat appeared fragmented, and locations that could be targeted for management actions to improve functional connectivity. We concluded that climate change, besides influencing patch occupancy as predicted by other studies, may alter landscape resistance for pikas, thereby influencing functional connectivity through multiple pathways simultaneously. Spatial autocorrelation among genotypes varied across study sites and was largest where habitat was most dispersed, suggesting that dispersal distances increased with habitat fragmentation, up to a point. This study demonstrates how landscape features linked to climate can affect functional connectivity for species with naturally fragmented distributions, and reinforces the importance of replicating studies across landscapes. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413700B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413700B"><span>Preliminary results from DIMES: Dispersion in the ACC</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balwada, D.; Speer, K.; LaCasce, J. H.; Owens, B.</p> <p>2012-04-01</p> <p>The Diapycnal and Isopynal Mixing Experiment in the Southern Ocean (DIMES) is a CLIVAR process study designed to study mixing in the Antarctic Circumpolar Current. The experiment includes tracer release, float, and small-scale turbulence components. This presentation will report on some results of the float component, from floats deployed across the ACC in the Southeast Pacific Ocean. These are the first subsurface Lagrangian trajectories from the ACC. Floats were deployed to follow approximately a constant density surface for a period of 1-3 years. To help aid the experimental results virtual floats were advected using AVISO data and basic statistics were derived from both deployed and virtual float trajectories. Experimental design, initial results, comparison to virtual floats and single particle and relative dispersion calculations will be presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ApPhL..98h4101M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ApPhL..98h4101M"><span>Porous medium acoustics of wave-induced vorticity diffusion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Müller, T. M.; Sahay, P. N.</p> <p>2011-02-01</p> <p>A theory for attenuation and dispersion of elastic waves due to wave-induced generation of vorticity at pore-scale heterogeneities in a macroscopically homogeneous porous medium is developed. The diffusive part of the vorticity field associated with a viscous wave in the pore space—the so-called slow shear wave—is linked to the porous medium acoustics through incorporation of the fluid strain rate tensor of a Newtonian fluid in the poroelastic constitutive relations. The method of statistical smoothing is then used to derive dynamic-equivalent elastic wave velocities accounting for the conversion scattering process into the diffusive slow shear wave in the presence of randomly distributed pore-scale heterogeneities. The result is a simple model for wave attenuation and dispersion associated with the transition from viscosity- to inertia-dominated flow regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18033391','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18033391"><span>Efficient modeling of phase jitter in dispersion-managed soliton systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McKinstrie, C J; Xie, C; Lakoba, T I</p> <p>2002-11-01</p> <p>The variational method is used to derive correlation equations that model phase jitter in dispersion-managed soliton systems. The predictions of these correlation equations are consistent with numerical solutions of the nonlinear Schrödinger equation on which they are based.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NewA...61...84K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NewA...61...84K"><span>The Hall-induced stability of gravitating fluids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karmakar, P. K.; Goutam, H. P.</p> <p>2018-05-01</p> <p>We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA183369','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA183369"><span>Water Quality Criteria for Disperse Red 9</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-07-01</p> <p>reported in Chin and Borer 1983). The parent compound of Disperse Red 9 is 9,10-anthraquinone; many of the natural and synthetic derivatives of 9,10...and carbonaceous matter (Rubin et al. 1983). 14 The combustion products are a result of thermal decomposition, thermal rearrangement of the parent dye...with individuals becoming more sensitive to subsequent contact (Tatyrok 1965). Parent (1964) reported that Disperse Red 9 is only slightly toxic by</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18529166','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18529166"><span>The high-frequency dispersion coefficient for the Rayleigh velocity in a vertically inhomogeneous anisotropic half-space.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shuvalov, A L</p> <p>2008-05-01</p> <p>For an arbitrary anisotropic half-space with continuous vertical variation of material properties, an explicit closed-form expression for the coefficient B of high-frequency dispersion of the Rayleigh velocity v(R)(omega) approximately v(R)(0)(1+B/omega) is derived. The result involves two matrices, one consisting of the surface-traction derivatives in velocity and the other of its Wentzel-Kramers-Brillouin coefficients, which are contracted with an amplitude vector of the Rayleigh wave in the reference homogeneous half-space. The "ingredients" are routinely defined through the fundamental elasticity matrix and its first derivative, both taken at v=v(R)(0) and referred to the surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SurSc.622...51L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SurSc.622...51L"><span>Effects of van der Waals density functional corrections on trends in furfural adsorption and hydrogenation on close-packed transition metal surfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Bin; Cheng, Lei; Curtiss, Larry; Greeley, Jeffrey</p> <p>2014-04-01</p> <p>The hydrogenation of furfural to furfuryl alcohol on Pd(111), Cu(111) and Pt(111) is studied with both standard Density Functional Theory (DFT)-GGA functionals and with van der Waals-corrected density functionals. VdW-DF functionals, including optPBE, optB88, optB86b, and Grimme's method, are used to optimize the adsorption configurations of furfural, furfuryl alcohol, and related intermediates resulting from hydrogenation of furfural, and the results are compared to corresponding values determined with GGA functionals, including PW91 and PBE. On Pd(111) and Pt(111), the adsorption geometries of the intermediates are not noticeably different between the two classes of functionals, while on Cu(111), modest changes are seen in both the perpendicular distance and the orientation of the aromatic ring with respect to the planar surface. In general, the binding energies increase substantially in magnitude as a result of van der Waals contributions on all metals. In contrast, however, dispersion effects on the kinetics of hydrogenation are relatively small. It is found that activation barriers are not significantly affected by the inclusion of dispersion effects, and a Brønsted-Evans-Polanyi relationship developed solely from PW91 calculations on Pd(111) is capable of describing corresponding results on Cu(111) and Pt(111), even when the dispersion effects are included. Finally, the reaction energies and barriers derived from the dispersion-corrected and pure GGA calculations are used to plot simple potential energy profiles for furfural hydrogenation to furfuryl alcohol on the three considered metals, and an approximately constant downshift of the energetics due to the dispersion corrections is observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22457790','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22457790"><span>Patterns of diversity in soft-bodied meiofauna: dispersal ability and body size matter.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M Antonio</p> <p>2012-01-01</p> <p>Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far from being complete.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21847222','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21847222"><span>High-order FDTD methods for transverse electromagnetic systems in dispersive inhomogeneous media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Shan</p> <p>2011-08-15</p> <p>This Letter introduces a novel finite-difference time-domain (FDTD) formulation for solving transverse electromagnetic systems in dispersive media. Based on the auxiliary differential equation approach, the Debye dispersion model is coupled with Maxwell's equations to derive a supplementary ordinary differential equation for describing the regularity changes in electromagnetic fields at the dispersive interface. The resulting time-dependent jump conditions are rigorously enforced in the FDTD discretization by means of the matched interface and boundary scheme. High-order convergences are numerically achieved for the first time in the literature in the FDTD simulations of dispersive inhomogeneous media. © 2011 Optical Society of America</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CPM.....5..227B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CPM.....5..227B"><span>Electrical percolation threshold of magnetostrictive inclusions in a piezoelectric matrix composite as a function of relative particle size</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barbero, Ever J.; Bedard, Antoine Joseph</p> <p>2018-04-01</p> <p>Magnetoelectric composites can be produced by embedding magnetostrictive particles in a piezoelectric matrix derived from a piezoelectric powder precursor. Ferrite magnetostrictive particles, if allowed to percolate, can short the potential difference generated in the piezoelectric phase. Modeling a magnetoelectric composite as an aggregate of bi-disperse hard shells, molecular dynamics was used to explore relationships among relative particle size, particle affinity, and electrical percolation with the goal of maximizing the percolation threshold. It is found that two factors raise the percolation threshold, namely the relative size of magnetostrictive to piezoelectric particles, and the affinity between the magnetostrictive and piezoelectric particles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1418479-dispersion-controlled-permeable-surfaces-surface-properties-scaling','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1418479-dispersion-controlled-permeable-surfaces-surface-properties-scaling"><span>Dispersion controlled by permeable surfaces: surface properties and scaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Ling, Bowen; Tartakovsky, Alexandre M.; Battiato, Ilenia</p> <p>2016-08-25</p> <p>Permeable and porous surfaces are common in natural and engineered systems. Flow and transport above such surfaces are significantly affected by the surface properties, e.g. matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. In this work, we focus on mass transport in a two-dimensional channel with permeable porous walls under fully developed laminar flow conditions. By means of perturbation theory and asymptotic analysis, we derive the set of upscaled equations describing mass transport in the coupled channel–porous-matrix system and an analytical expression relating the dispersion coefficient with the properties of themore » surface, namely porosity and permeability. Our analysis shows that their impact on the dispersion coefficient strongly depends on the magnitude of the Péclet number, i.e. on the interplay between diffusive and advective mass transport. Additionally, we demonstrate different scaling behaviours of the dispersion coefficient for thin or thick porous matrices. Our analysis shows the possibility of controlling the dispersion coefficient, i.e. transverse mixing, by either active (i.e. changing the operating conditions) or passive mechanisms (i.e. controlling matrix effective properties) for a given Péclet number. By elucidating the impact of matrix porosity and permeability on solute transport, our upscaled model lays the foundation for the improved understanding, control and design of microporous coatings with targeted macroscopic transport features.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21590720','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21590720"><span>Contributions of chemical exchange to T1ρ dispersion in a tissue model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cobb, Jared G; Xie, Jingping; Gore, John C</p> <p>2011-12-01</p> <p>Variations in T(1ρ) with locking-field strength (T(1ρ) dispersion) may be used to estimate proton exchange rates. We developed a novel approach utilizing the second derivative of the dispersion curve to measure exchange in a model system of cross-linked polyacrylamide gels. These gels were varied in relative composition of comonomers, increasing stiffness, and in pH, modifying exchange rates. Magnetic resonance images were recorded with a spin-locking sequence as described by Sepponen et al. These measurements were fit to a mono-exponential decay function yielding values for T(1ρ) at each locking-field measured. These values were then fit to a model by Chopra et al. for estimating exchange rates. For low stiffness gels, the calculated exchange values increased by a factor of 4 as pH increased, consistent with chemical exchange being the dominant contributor to T(1ρ) dispersion. Interestingly, calculated chemical exchange rates also increased with stiffness, likely due to modified side-chain exchange kinetics as the composition varied. This article demonstrates a new method to assess the structural and chemical effects on T(1ρ) relaxation dispersion with a suitable model. These phenomena may be exploited in an imaging context to emphasize the presence of nuclei of specific exchange rates, rather than chemical shifts. Copyright © 2011 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/63440','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/63440"><span>Bacteria isolated from amoebae/bacteria consortium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tyndall, R.L.</p> <p>1995-05-30</p> <p>New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869906','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869906"><span>Bacteria isolated from amoebae/bacteria consortium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tyndall, Richard L.</p> <p>1995-01-01</p> <p>New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvE..97e2207W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvE..97e2207W"><span>Generation of localized patterns in anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion via a variational approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wamba, Etienne; Tchakoutio Nguetcho, Aurélien S.</p> <p>2018-05-01</p> <p>We use the time-dependent variational method to examine the formation of localized patterns in dynamically unstable anharmonic lattices with cubic-quintic nonlinearities and fourth-order dispersion. The governing equation is an extended nonlinear Schrödinger equation known for modified Frankel-Kontorova models of atomic lattices and here derived from an extended Bose-Hubbard model of bosonic lattices with local three-body interactions. In presence of modulated waves, we derive and investigate the ordinary differential equations for the time evolution of the amplitude and phase of dynamical perturbation. Through an effective potential, we find the modulationally unstable domains of the lattice and discuss the effect of the fourth-order dispersion in the dynamics. Direct numerical simulations are performed to support our analytical results, and a good agreement is found. Various types of localized patterns, including breathers and solitonic chirped-like pulses, form in the system as a result of interplay between the cubic-quintic nonlinearities and the second- and fourth-order dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011APS..DFDR25003A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011APS..DFDR25003A"><span>The Effect of Orifice Eccentricity on Instability of Liquid Jets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Amini, Ghobad; Dolatabadi, Ali</p> <p>2011-11-01</p> <p>The hydrodynamic instability of inviscid jets issuing from elliptic orifices is studied. A linear stability analysis is presented for liquid jets that includes the effect of the surrounding gas and an explicit dispersion equation is derived for waves on an infinite uniform jet column. Elliptic configuration has two extreme cases; round jet when ratio of minor to major axis is unity and plane sheet when this ratio approaches zero. Dispersion equation of elliptic jet is approximated for large and small aspect ratios considering asymptotic of the dispersion equation. In case of aspect ratio equal to one, the dispersion equation is analogous to one of the circular jets derived by Yang. In case of aspect ratio approaches zero, the behavior of waves is qualitatively similar to that of long waves on a two dimensional liquid jets and the varicose and sinuous modes are predicted. The growth rate of initial disturbances for various azimuthal modes has been presented in a wide range of disturbances. PhD Candidate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30b2104K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30b2104K"><span>Soliton solutions to the fifth-order Korteweg-de Vries equation and their applications to surface and internal water waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khusnutdinova, K. R.; Stepanyants, Y. A.; Tranter, M. R.</p> <p>2018-02-01</p> <p>We study solitary wave solutions of the fifth-order Korteweg-de Vries equation which contains, besides the traditional quadratic nonlinearity and third-order dispersion, additional terms including cubic nonlinearity and fifth order linear dispersion, as well as two nonlinear dispersive terms. An exact solitary wave solution to this equation is derived, and the dependence of its amplitude, width, and speed on the parameters of the governing equation is studied. It is shown that the derived solution can represent either an embedded or regular soliton depending on the equation parameters. The nonlinear dispersive terms can drastically influence the existence of solitary waves, their nature (regular or embedded), profile, polarity, and stability with respect to small perturbations. We show, in particular, that in some cases embedded solitons can be stable even with respect to interactions with regular solitons. The results obtained are applicable to surface and internal waves in fluids, as well as to waves in other media (plasma, solid waveguides, elastic media with microstructure, etc.).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6944977','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6944977"><span>Integration of photovoltaic units into electric utility grids: experiment information requirements and selected issues</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p>1980-09-01</p> <p>A number of investigations, including those conducted by The Aerospace Corporation and other contractors, have led to the recognition of technical, economic, and institutional issues relating to the interface between solar electric technologies and electric utility systems. These issues derive from three attributes of solar electric power concepts, including (1) the variability and unpredictability of the solar resources, (2) the dispersed nature of those resources which suggests the feasible deployment of small dispersed power units, and (3) a high initial capital cost coupled with relatively low operating costs. It is imperative that these integration issues be pursued in parallel withmore » the development of each technology if the nation's electric utility systems are to effectively utilize these technologies in the near to intermediate term. Analyses of three of these issues are presented: utility information requirements, generation mix and production cost impacts, and rate structures in the context of photovoltaic units integrated into the utility system. (WHK)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22043477-interesting-features-nonlinear-shock-equations-dissipative-pair-ion-electron-plasmas','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22043477-interesting-features-nonlinear-shock-equations-dissipative-pair-ion-electron-plasmas"><span>Interesting features of nonlinear shock equations in dissipative pair-ion-electron plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Masood, W.; National Centre for Physics; Rizvi, H.</p> <p>2011-09-15</p> <p>Two dimensional nonlinear electrostatic waves are studied in unmagnetized, dissipative pair-ion-electron plasmas in the presence of weak transverse perturbation. The dissipation in the system is taken into account by incorporating the kinematic viscosity of both positive and negative ions. In the linear case, a biquadratic dispersion relation is obtained, which yields the fast and slow modes in a pair-ion-electron plasma. It is shown that the limiting cases of electron-ion and pair-ion can be retrieved from the general biquadratic dispersion relation, and the differences in the characters of the waves propagating in both the cases are also highlighted. Using the smallmore » amplitude approximation method, the nonlinear Kadomtsev Petviashvili Burgers as well as Burgers-Kadomtsev Petviashvili equations are derived and their applicability for pair-ion-electron plasma is explained in detail. The present study may have relevance to understand the formation of two dimensional electrostatic shocks in laboratory produced pair-ion-electron plasmas.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013JTePh..58.1721K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013JTePh..58.1721K"><span>Rosenzweig instability in a thin layer of a magnetic fluid</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korovin, V. M.</p> <p>2013-12-01</p> <p>A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900009611','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900009611"><span>Asymptotic boundary conditions for dissipative waves: General theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hagstrom, Thomas</p> <p>1990-01-01</p> <p>An outstanding issue in the computational analysis of time dependent problems is the imposition of appropriate radiation boundary conditions at artificial boundaries. Accurate conditions are developed which are based on the asymptotic analysis of wave propagation over long ranges. Employing the method of steepest descents, dominant wave groups are identified and simple approximations to the dispersion relation are considered in order to derive local boundary operators. The existence of a small number of dominant wave groups may be expected for systems with dissipation. Estimates of the error as a function of domain size are derived under general hypotheses, leading to convergence results. Some practical aspects of the numerical construction of the asymptotic boundary operators are also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017InJPh..91..581R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017InJPh..91..581R"><span>Arbitrary electron acoustic waves in degenerate dense plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rahman, Ata-ur; Mushtaq, A.; Qamar, A.; Neelam, S.</p> <p>2017-05-01</p> <p>A theoretical investigation is carried out of the nonlinear dynamics of electron-acoustic waves in a collisionless and unmagnetized plasma whose constituents are non-degenerate cold electrons, ultra-relativistic degenerate electrons, and stationary ions. A dispersion relation is derived for linear EAWs. An energy integral equation involving the Sagdeev potential is derived, and basic properties of the large amplitude solitary structures are investigated in such a degenerate dense plasma. It is shown that only negative large amplitude EA solitary waves can exist in such a plasma system. The present analysis may be important to understand the collective interactions in degenerate dense plasmas, occurring in dense astrophysical environments as well as in laser-solid density plasma interaction experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890063397&hterms=interfacial+structures&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinterfacial%2Bstructures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890063397&hterms=interfacial+structures&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dinterfacial%2Bstructures"><span>Interfacial wave theory for dendritic structure of a growing needle crystal. I - Local instability mechanism. II - Wave-emission mechanism at the turning point</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Xu, Jian-Jun</p> <p>1989-01-01</p> <p>The complicated dendritic structure of a growing needle crystal is studied on the basis of global interfacial wave theory. The local dispersion relation for normal modes is derived in a paraboloidal coordinate system using the multiple-variable-expansion method. It is shown that the global solution in a dendrite growth process incorporates the morphological instability factor and the traveling wave factor.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19860035930&hterms=disciplinary+process+disciplinary+procedures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisciplinary%2Bprocess%2Bdisciplinary%2Bprocedures','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19860035930&hterms=disciplinary+process+disciplinary+procedures&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Ddisciplinary%2Bprocess%2Bdisciplinary%2Bprocedures"><span>Concepts for a global resources information system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Billingsley, F. C.; Urena, J. L.</p> <p>1984-01-01</p> <p>The objective of the Global Resources Information System (GRIS) is to establish an effective and efficient information management system to meet the data access requirements of NASA and NASA-related scientists conducting large-scale, multi-disciplinary, multi-mission scientific investigations. Using standard interfaces and operating guidelines, diverse data systems can be integrated to provide the capabilities to access and process multiple geographically dispersed data sets and to develop the necessary procedures and algorithms to derive global resource information.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980ApOpt..19.1987B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980ApOpt..19.1987B"><span>Dispersion of TE modes in slab waveguides with reference to double heterostructure semiconductor lasers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buus, J.</p> <p>1980-06-01</p> <p>The group index for TE modes in an asymmetrical slab waveguide is investigated, and a simple analytical expression is derived. It is shown that the product of the phase and group indices is related to the power fraction in each of the three layers of the waveguide. The results are of interest in the analysis of double heterostructure semiconductor lasers. Theoretical and experimental results for lasers emitting at 1.55 microns are compared.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRCM...27..637N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRCM...27..637N"><span>Propagation behavior of two transverse surface waves in a three-layer piezoelectric/piezomagnetic structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nie, Guoquan; Liu, Jinxi; Liu, Xianglin</p> <p>2017-10-01</p> <p>Propagation of transverse surface waves in a three-layer system consisting of a piezoelectric/piezomagnetic (PE/PM) bi-layer bonded on an elastic half-space is theoretically investigated in this paper. Dispersion relations and mode shapes for transverse surface waves are obtained in closed form under electrically open and shorted boundary conditions at the upper surface. Two transverse surface waves related both to Love-type wave and Bleustein-Gulyaev (B-G) type wave propagating in corresponding three-layer structure are discussed through numerically solving the derived dispersion equation. The results show that Love-type wave possesses the property of multiple modes, it can exist all of the values of wavenumber for every selected thickness ratios regardless of the electrical boundary conditions. The presence of PM interlayer makes the phase velocity of Love-type wave decrease. There exist two modes allowing the propagation of B-G type wave under electrically shorted circuit, while only one mode appears in the case of electrically open circuit. The modes of B-G type wave are combinations of partly normal dispersion and partly anomalous dispersion whether the electrically open or shorted. The existence range of mode for electrically open case is greatly related to the thickness ratios, with the thickness of PM interlayer increasing the wavenumber range for existence of B-G type wave quickly shortened. When the thickness ratio is large enough, the wavenumber range of the second mode for electrically shorted circuit is extremely narrow which can be used to remove as an undesired mode. The propagation behaviors and mode shapes of transverse surface waves can be regulated by the modification of the thickness of PM interlayer. The obtained results provide a theoretical prediction and basis for applications of PE-PM composites and acoustic wave devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPhCS.944a2062K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPhCS.944a2062K"><span>Analytical solution of the problem of acceleration of cargo by a bridge crane with constant acceleration at elimination of swings of a cargo rope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Korytov, M. S.; Shcherbakov, V. S.; Titenko, V. V.</p> <p>2018-01-01</p> <p>Limitation of the swing of the bridge crane cargo rope is a matter of urgency, as it can significantly improve the efficiency and safety of the work performed. In order to completely dampen the pendulum swing after the break-up of a bridge or a bridge-crane freight cart to maximum speed, it is necessary, in the normal repulsion control of the electric motor, to split the process of dispersion into a minimum of three gaps. For a dynamic system of swinging of a bridge crane on a flexible cable hanger in a separate vertical plane, an analytical solution was obtained to determine the temporal dependence of the cargo rope angle relative to the gravitational vertical when the cargo suspension point moves with constant acceleration. The resulting analytical dependence of the cargo rope angle and its first derivative can break the process of dispersing the cargo suspension point into three stages of dispersal and braking with various accelerations and enter maximum speed of movement of the cargo suspension point. In doing so, the condition of eliminating the swings of the cargo rope relative to the gravitational vertical is fulfilled. Provides examples of the maximum speed output constraints-to-time when removing the rope swing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2686662','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2686662"><span>The scramble for Africa: pan-temperate elements on the African high mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gehrke, Berit; Linder, H. Peter</p> <p>2009-01-01</p> <p>The composition of isolated floras has long been thought to be the result of relatively rare long-distance dispersal events. However, it has recently become apparent that the recruitment of lineages may be relatively easy and that many dispersal events from distant but suitable habitats have occurred, even at an infraspecific level. The evolution of the flora on the high mountains of Africa has been attributed to the recruitment of taxa not only from the African lowland flora or the Cape Floristic Region, but also to a large extent from other areas with temperate climates. We used the species rich, pan-temperate genera Carex, Ranunculus and Alchemilla to explore patterns in the number of recruitment events and region of origin. Molecular phylogenetic analyses, parametric bootstrapping and ancestral area optimizations under parsimony indicate that there has been a high number of colonization events of Carex and Ranunculus into Africa, but only two introductions of Alchemilla. Most of the colonization events have been derived from Holarctic ancestors. Backward dispersal out of Africa seems to be extremely rare. Thus, repeated colonization from the Northern Hemisphere in combination with in situ radiation has played an important role in the composition of the flora of African high mountains. PMID:19403534</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004AAS...204.1707B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004AAS...204.1707B"><span>Mining the Sloan Digital Sky Survey to trace the M-sigma correlation below 106 solar masses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Barth, A. J.; Greene, J. E.; Ho, L. C.</p> <p>2004-05-01</p> <p>Do dwarf galaxies and late-type spirals host central black holes with masses below 106 M⊙? Stellar-dynamical detections of black holes with such low masses are only possible for the very nearest galaxies, but in more distant objects the presence of a black hole can still be inferred if its accretion luminosity can be detected. NGC 4395 and POX 52 are two examples of Seyfert galaxies with black hole masses well below 106 M⊙, but very little is known about the demographics of such objects. We have searched the Sloan DR1 archives to identify Seyfert galaxies that are likely to have black hole masses below 106 M⊙, using the luminosity-radius relation and the broad-line widths to derive virial mass estimates for the black holes (Greene & Ho 2004). To examine the host galaxy properties, we have begun a program to measure their stellar velocity dispersions using the ESI spectrograph at Keck. Here we present preliminary results from this project, including 12 newly identified Seyfert galaxies having stellar velocity dispersions below 70 km s-1. The masses and velocity dispersions of these objects are consistent with an extrapolation of the local M--σ relation to masses below 106 M⊙.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JHEP...03..056D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JHEP...03..056D"><span>Diffusion for holographic lattices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Donos, Aristomenis; Gauntlett, Jerome P.; Ziogas, Vaios</p> <p>2018-03-01</p> <p>We consider black hole spacetimes that are holographically dual to strongly coupled field theories in which spatial translations are broken explicitly. We discuss how the quasinormal modes associated with diffusion of heat and charge can be systematically constructed in a long wavelength perturbative expansion. We show that the dispersion relation for these modes is given in terms of the thermoelectric DC conductivity and static susceptibilities of the dual field theory and thus we derive a generalised Einstein relation from Einstein's equations. A corollary of our results is that thermodynamic instabilities imply specific types of dynamical instabilities of the associated black hole solutions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/869319','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/869319"><span>Method of separating bacteria from free living amoebae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Tyndall, Richard L.</p> <p>1994-01-01</p> <p>New protozoan derived microbial consortia and method for their isolation are provided. Consortia and bacteria isolated therefrom are useful for treating wastes such as trichloroethylene and trinitrotoluene. Consortia, bacteria isolated therefrom, and dispersants isolated therefrom are useful for dispersing hydrocarbons such as oil, creosote, wax, and grease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26197108','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26197108"><span>Molecular surface area based predictive models for the adsorption and diffusion of disperse dyes in polylactic acid matrix.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Suxin; Chen, Jiangang; Wang, Bijia; Yang, Yiqi</p> <p>2015-11-15</p> <p>Two predictive models were presented for the adsorption affinities and diffusion coefficients of disperse dyes in polylactic acid matrix. Quantitative structure-sorption behavior relationship would not only provide insights into sorption process, but also enable rational engineering for desired properties. The thermodynamic and kinetic parameters for three disperse dyes were measured. The predictive model for adsorption affinity was based on two linear relationships derived by interpreting the experimental measurements with molecular structural parameters and compensation effect: ΔH° vs. dye size and ΔS° vs. ΔH°. Similarly, the predictive model for diffusion coefficient was based on two derived linear relationships: activation energy of diffusion vs. dye size and logarithm of pre-exponential factor vs. activation energy of diffusion. The only required parameters for both models are temperature and solvent accessible surface area of the dye molecule. These two predictive models were validated by testing the adsorption and diffusion properties of new disperse dyes. The models offer fairly good predictive ability. The linkage between structural parameter of disperse dyes and sorption behaviors might be generalized and extended to other similar polymer-penetrant systems. Copyright © 2015 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29422328','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29422328"><span>Impact of Acoustic Radiation Force Excitation Geometry on Shear Wave Dispersion and Attenuation Estimates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lipman, Samantha L; Rouze, Ned C; Palmeri, Mark L; Nightingale, Kathryn R</p> <p>2018-04-01</p> <p>Shear wave elasticity imaging (SWEI) characterizes the mechanical properties of human tissues to differentiate healthy from diseased tissue. Commercial scanners tend to reconstruct shear wave speeds for a region of interest using time-of-flight methods reporting a single shear wave speed (or elastic modulus) to the end user under the assumptions that tissue is elastic and shear wave speeds are not dependent on the frequency content of the shear waves. Human tissues, however, are known to be viscoelastic, resulting in dispersion and attenuation. Shear wave spectroscopy and spectral methods have been previously reported in the literature to quantify shear wave dispersion and attenuation, commonly making an assumption that the acoustic radiation force excitation acts as a cylindrical source with a known geometric shear wave amplitude decay. This work quantifies the bias in shear dispersion and attenuation estimates associated with making this cylindrical wave assumption when applied to shear wave sources with finite depth extents, as commonly occurs with realistic focal geometries, in elastic and viscoelastic media. Bias is quantified using analytically derived shear wave data and shear wave data generated using finite-element method models. Shear wave dispersion and attenuation bias (up to 15% for dispersion and 41% for attenuation) is greater for more tightly focused acoustic radiation force sources with smaller depths of field relative to their lateral extent (height-to-width ratios <16). Dispersion and attenuation errors associated with assuming a cylindrical geometric shear wave decay in SWEI can be appreciable and should be considered when analyzing the viscoelastic properties of tissues with acoustic radiation force source distributions with limited depths of field. Copyright © 2018 World Federation for Ultrasound in Medicine and Biology. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006PhyA..367..181M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006PhyA..367..181M"><span>Fractional vector calculus for fractional advection dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meerschaert, Mark M.; Mortensen, Jeff; Wheatcraft, Stephen W.</p> <p>2006-07-01</p> <p>We develop the basic tools of fractional vector calculus including a fractional derivative version of the gradient, divergence, and curl, and a fractional divergence theorem and Stokes theorem. These basic tools are then applied to provide a physical explanation for the fractional advection-dispersion equation for flow in heterogeneous porous media.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23039412','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23039412"><span>A more fundamental approach to the derivation of nonlinear acoustic wave equations with fractional loss operators (L).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Prieur, Fabrice; Vilenskiy, Gregory; Holm, Sverre</p> <p>2012-10-01</p> <p>A corrected derivation of nonlinear wave propagation equations with fractional loss operators is presented. The fundamental approach is based on fractional formulations of the stress-strain and heat flux definitions but uses the energy equation and thermodynamic identities to link density and pressure instead of an erroneous fractional form of the entropy equation as done in Prieur and Holm ["Nonlinear acoustic wave equations with fractional loss operators," J. Acoust. Soc. Am. 130(3), 1125-1132 (2011)]. The loss operator of the obtained nonlinear wave equations differs from the previous derivations as well as the dispersion equation, but when approximating for low frequencies the expressions for the frequency dependent attenuation and velocity dispersion remain unchanged.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880004384&hterms=AI+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAI%252C%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880004384&hterms=AI+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3DAI%252C%2Bdata"><span>Abundance and distribution of ultramafic microbreccia in Moses Rock Dike: Quantitative application of AIS data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mustard, John F.; Pieters, Carle M.</p> <p>1987-01-01</p> <p>Moses Rock dike is a Tertiary diatreme containing serpentinized ultramafic microbreccia (SUM). Field evidence indicates the SUM was emplaced first followed by breccias derived from the Permian strata exposed in the walls of the diatreme and finally by complex breccias containing basement and mantle derived rocks. SUM is found primarily dispersed throughout the matrix of the diatreme. Moses Rock dike was examined with Airborne Imaging Spectrometer (AIS) to map the distribution and excess of SUM in the matrix and to better understand the nature of the eruption which formed this explosive volcanic feature. AIS data was calibrated by dividing the suite of AIS data by data from an internal standard area and then multiplying this relative reflectance data by the absolute bidirectional reflectance of a selected sample from the standard area which was measured in the lab. From the calibrated AIS data the minerals serpentine, gypsum, and illite as well as desert varnish and the lithologies SUM and other sandstones were identified. SUM distribution and abundance in the matrix of the diatreme were examined in detail and two distinct styles of SUM dispersion were observed. The two styles are discussed in detail.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22489892-characteristics-surface-plasma-wave-self-gravitating-magnetized-dusty-plasma-slab','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22489892-characteristics-surface-plasma-wave-self-gravitating-magnetized-dusty-plasma-slab"><span>Characteristics of the surface plasma wave in a self-gravitating magnetized dusty plasma slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588</p> <p>2015-11-15</p> <p>The dispersion properties of surface dust ion-acoustic waves in a self-gravitating magnetized dusty plasma slab are investigated. The dispersion relation is derived by using the low-frequency magnetized dusty dielectric function and the surface wave dispersion integral for the slab geometry. We find that the self-gravitating effect suppresses the frequency of surface dust ion-acoustic wave for the symmetric mode in the long wavelength regime, whereas it hardly changes the frequency for the anti-symmetric mode. As the slab thickness and the wave number increase, the surface wave frequency slowly decreases for the symmetric mode but increases significantly for the anti-symmetric mode. Themore » influence of external magnetic field is also investigated in the case of symmetric mode. We find that the strength of the magnetic field enhances the frequency of the symmetric-mode of the surface plasma wave. The increase of magnetic field reduces the self-gravitational effect and thus the self-gravitating collapse may be suppressed and the stability of dusty objects in space is enhanced.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhL.112q1107Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhL.112q1107Y"><span>Surface plasmon dispersion in a mid-infrared Ge/Si quantum dot photodetector coupled with a perforated gold metasurface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yakimov, A. I.; Kirienko, V. V.; Armbrister, V. A.; Bloshkin, A. A.; Dvurechenskii, A. V.</p> <p>2018-04-01</p> <p>The photodetection improvement previously observed in mid-infrared (IR) quantum dot photodetectors (QDIPs) coupled with periodic metal metasurfaces is usually attributed to the surface light trapping and confinement due to generation of surface plasmon waves (SPWs). In the present work, a Ge/Si QDIP integrated with a metal plasmonic structure is fabricated to experimentally measure the photoresponse enhancement and verify that this enhancement is caused by the excitation of the mid-IR surface plasmons. A 50 nm-thick gold film perforated with a 1.2 μm-period two-dimensional square array of subwavelength holes is employed as a plasmonic coupler to convert the incident electromagnetic IR radiation into SPWs. Measurements of the polarization and angular dependencies of the photoresponse allow us to determine the dispersion of plasmon modes. We find that experimental dispersion relations agree well with that derived from a computer simulation for fundamental plasmon resonance, which indicates that the photodetection improvement in the mid-IR spectral region is actually caused by the excitations of surface plasmon Bloch waves.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97p5421L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97p5421L"><span>Probing quasi-one-dimensional band structures by plasmon spectroscopy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lichtenstein, T.; Mamiyev, Z.; Braun, C.; Sanna, S.; Schmidt, W. G.; Tegenkamp, C.; Pfnür, H.</p> <p>2018-04-01</p> <p>The plasmon dispersion is inherently related to the continuum of electron-hole pair excitations. Therefore, the comparison of this continuum, as derived from band structure calculations, with experimental data of plasmon dispersion, can yield direct information about the form of the occupied as well as the unoccupied band structure in the vicinity of the Fermi level. The relevance of this statement is illustrated by a detailed analysis of plasmon dispersions in quasi-one-dimensional systems combining experimental electron energy loss spectroscopy with quantitative density-functional theory (DFT) calculations. Si(557)-Au and Si(335)-Au with single atomic chains per terrace are compared with the Si(775)-Au system, which has a double Au chain on each terrace. We demonstrate that both hybridization between Si surface states and the Au chains as well as electronic correlations lead to increasing deviations from the nearly free electron picture that is suggested by a too simple interpretation of data of angular resolved photoemission (ARPES) of these systems, particularly for the double chain system. These deviations are consistently predicted by the DFT calculations. Thus also dimensional crossover can be explained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JMOp...63.1552H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JMOp...63.1552H"><span>Nonlinear surface waves at ferrite-metamaterial waveguide structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hissi, Nour El Houda; Mokhtari, Bouchra; Eddeqaqi, Noureddine Cherkaoui; Shabat, Mohammed Musa; Atangana, Jacques</p> <p>2016-09-01</p> <p>A new ferrite slab made of a metamaterial (MTM), surrounded by a nonlinear cover cladding and a ferrite substrate, was shown to support unusual types of electromagnetic surface waves. We impose the boundary conditions to derive the dispersion relation and others necessary to formulate the proposed structure. We analyse the dispersion properties of the nonlinear surface waves and we calculate the associated propagation index and the film-cover interface nonlinearity. In the calculation, several sets of the permeability of the MTM are considered. Results show that the waves behaviour depends on the values of the permeability of the MTM, the thickness of the waveguide and the film-cover interface nonlinearity. It is also shown that the use of the singular solutions to the electric field equation allows to identify several new properties of surface waves which do not exist in conventional waveguide.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16880672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16880672"><span>Physical stability of amorphous acetanilide derivatives improved by polymer excipients.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Miyazaki, Tamaki; Yoshioka, Sumie; Aso, Yukio</p> <p>2006-08-01</p> <p>Crystallization rates of drug-polymer solid dispersions prepared with acetaminophen (ACA) and p-aminoacetanilide (AAA) as model drugs, and polyvinylpyrrolidone and polyacrylic acid (PAA) as model polymers were measured in order to further examine the significance of drug-polymer interactions. The crystallization of AAA and ACA was inhibited by mixing those polymers. The most effective inhibition was observed with solid dispersions of AAA and PAA. The combination of AAA and PAA showed a markedly longer enthalpy relaxation time relative to drug alone as well as a higher T(g) than predicted by the Gordon-Taylor equation, indicating the existence of a strong interaction between the two components. These observations suggest that crystallization is effectively inhibited by combinations of drug and polymer that show a strong intermolecular interaction due to proton transfer between acidic and basic functional groups.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599095-influence-electron-spin-interaction-electrostatic-space-charge-wave-cylindrical-waveguide-quantum-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599095-influence-electron-spin-interaction-electrostatic-space-charge-wave-cylindrical-waveguide-quantum-plasma"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hong, Woo-Pyo; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180–3590</p> <p></p> <p>The influence of electron spin-interaction on the propagation of the electrostatic space-charge quantum wave is investigated in a cylindrically bounded quantum plasma. The dispersion relation of the space-charge quantum electrostatic wave is derived including the influence of the electron spin-current in a cylindrical waveguide. It is found that the influence of electron spin-interaction enhances the wave frequency for large wave number regions. It is shown that the wave frequencies with higher-solution modes are always smaller than those with lower-solution modes in small wave number domains. In addition, it is found that the wave frequency increases with an increase of themore » radius of the plasma cylinder as well as the Fermi wave number. We discuss the effects due to the quantum and geometric on the variation of the dispersion properties of the space-charge plasma wave.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010029','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010029"><span>Hyperbolic Method for Dispersive PDEs: Same High-Order of Accuracy for Solution, Gradient, and Hessian</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki</p> <p>2016-01-01</p> <p>In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993iue..prop.4552M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993iue..prop.4552M"><span>Main-Sequence O Stars in NGC 6231: Enhanced Winds</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Morrison, Nancy D.</p> <p></p> <p>Three late O-type main-sequence stars in the open cluster NGC 6231 will be observed with IUE at high dispersion, and their C IV and N V resonance-line profiles will be studied. From low-dispersion IUE observations, 10 members of the cluster have been found to have anomalously strong C IV resonance lines for their spectral types. Massa, Savage, and Cassinelli (1984) observed two of these "UV peculiar" stars (spectral types B0.5 V and B1 V) at high dispersion. They found that the C IV lines have a strong, broad, shortward-shifted absorption component, which suggests a greatly enhanced wind relative to the average for the spectral type. They proposed that the enhancement is due to an overabundance of C. Recently, however, Grigsby, Gordon, Morrison, and Zimba (1992) showed from optical spectra that these stars have normal C abundances. Thus, there is not yet a convincing explanation for these strikingly anomalous stellar winds. By extending the temperature range over which the phenomenon has been studied at high dispersion, however, we expect to gain new physical information. From wind modeling of the line profiles, we will derive mass-loss rates and terminal velocities, and we will test whether these winds are described by radiation-driven wind theory.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25737134','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25737134"><span>Minimizing the cost of translocation failure with decision-tree models that predict species' behavioral response in translocation sites.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ebrahimi, Mehregan; Ebrahimie, Esmaeil; Bull, C Michael</p> <p>2015-08-01</p> <p>The high number of failures is one reason why translocation is often not recommended. Considering how behavior changes during translocations may improve translocation success. To derive decision-tree models for species' translocation, we used data on the short-term responses of an endangered Australian skink in 5 simulated translocations with different release conditions. We used 4 different decision-tree algorithms (decision tree, decision-tree parallel, decision stump, and random forest) with 4 different criteria (gain ratio, information gain, gini index, and accuracy) to investigate how environmental and behavioral parameters may affect the success of a translocation. We assumed behavioral changes that increased dispersal away from a release site would reduce translocation success. The trees became more complex when we included all behavioral parameters as attributes, but these trees yielded more detailed information about why and how dispersal occurred. According to these complex trees, there were positive associations between some behavioral parameters, such as fight and dispersal, that showed there was a higher chance, for example, of dispersal among lizards that fought than among those that did not fight. Decision trees based on parameters related to release conditions were easier to understand and could be used by managers to make translocation decisions under different circumstances. © 2015 Society for Conservation Biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70012449','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70012449"><span>A sediment-dispersal model for the South Texas continental shelf, northwest Gulf of Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Shideler, G.L.</p> <p>1978-01-01</p> <p>Textural-distribution patterns of sea-floor sediments on the South Texas continental shelf between Matagorda Bay and the U.S.-Mexico international boundary were evaluated as part of a regional environmental-studies program. Sediment textural gradients support a conceptual model for the regional sediment-dispersal system, which is characterized by both net offshore transport and net south-trending coastwise transport components on a wind-dominated shelf. Coastwise transport results in the net southward migration of both palimpsest sandy mud composing the ancestral Brazos-Colorado delta flank in the northern sector, and modern mud composing the central sector; these migrating sediments are encroaching southward onto immobile relict muddy sands composing the ancestral Rio Grande delta in the southern sector. In the proposed model, the suspension transport of modern silt-enriched mud derived mainly from coastal sources is the dominant dispersal mechanism. Net offshore transport is attributed both to diffusion, and to the advective ebb-tide discharge of turbid lagoonal-estuarine waters from coastal inlets. Net southward transport is attributed mainly to advection by seasonally residual coastwise drift currents reflecting a winter-dominated hydraulic regime. Frequent winter storms characterized by relatively high-speed northerly winds that accompany the passage of cold fronts appear to be dominant regional dispersal agents. ?? 1978.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23581712','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23581712"><span>Faraday rotation dispersion microscopy imaging of diamagnetic and chiral liquids with pulsed magnetic field.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Suwa, Masayori; Nakano, Yusuke; Tsukahara, Satoshi; Watarai, Hitoshi</p> <p>2013-05-21</p> <p>We have constructed an experimental setup for Faraday rotation dispersion imaging and demonstrated the performance of a novel imaging principle. By using a pulsed magnetic field and a polarized light synchronized to the magnetic field, quantitative Faraday rotation images of diamagnetic organic liquids in glass capillaries were observed. Nonaromatic hydrocarbons, benzene derivatives, and naphthalene derivatives were clearly distinguished by the Faraday rotation images due to the difference in Verdet constants. From the wavelength dispersion of the Faraday rotation images in the visible region, it was found that the resonance wavelength in the UV region, which was estimated based on the Faraday B-term, could be used as characteristic parameters for the imaging of the liquids. Furthermore, simultaneous acquisition of Faraday rotation image and natural optical rotation image was demonstrated for chiral organic liquids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29424046','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29424046"><span>Highly Dispersed Metal Carbide on ZIF-Derived Pyridinic-N-Doped Carbon for CO2 Enrichment and Selective Hydrogenation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yunhua; Cai, Xiaohu; Chen, Sijing; Zhang, Hua; Zhang, Kevin H L; Hong, Jinqing; Chen, Binghui; Kuo, Dong-Hau; Wang, Wenju</p> <p>2018-03-22</p> <p>Catalytic conversion of CO 2 into chemicals is a critical issue for energy and environmental research. Among such reactions, converting CO 2 into CO has been regarded as a significant foundation to generate a liquid fuels and chemicals on a large scale. In this work, zeolitic imidazolate framework-derived N-doped carbon-supported metal carbide catalysts (M/ZIF-8-C; M=Ni, Fe, Co and Cu) with highly dispersed metal carbide were prepared for selective CO 2 hydrogenation. Under the same metal loadings, catalytic activity for CO 2 hydrogenation to CO follows the order: Ni/ZIF-8-C≈Fe/ZIF-8-C>Co/ZIF-8-C>Cu/ZIF-8-C. These catalysts are composed of carbide or metal supported on pyridinic N sites within the N-doped carbon structure. ZIF-8-derived pyridinic nitrogen and carbide effect CO 2 adsorption, whereas dispersed Ni or Fe carbide and metal species serve as an active site for CO 2 hydrogenation. The supported Ni catalyst exhibits extraordinary catalytic performance, which results from high dispersion of the metal and exposure of the carbide. Based on high-sensitivity low-energy ion scattering (HS-LEIS) and line scan results, density functional theory (DFT) was used to understand reaction mechanism of selective CO 2 hydrogenation over Ni/ZIF-8-C. The product CO is derived mainly from the direct cleavage of C-O bonds in CO 2 * rather than decomposition of COOH*. The CO* desorption energy on Ni/ZIF-8-C is lower than that for further hydrogenation and dissociation. Comparison of Ni/ZIF-8-C with ZIF-8-C indicates that the combined effects of the highly dispersed metal or carbide and weak CO adsorption result in high CO selectivity for CO 2 hydrogenation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4401622','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4401622"><span>Effects of Diffusion in Magnetically Inhomogeneous Media on Rotating Frame Spin-Lattice Relaxation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Spear, John T.; Gore, John C.</p> <p>2014-01-01</p> <p>In an aqueous medium containing magnetic inhomogeneities, diffusion amongst the intrinsic susceptibility gradients contributes to the relaxation rate R1ρ of water protons to a degree that depends on the magnitude of the local field variations ΔBz, the geometry of the perturbers inducing these fields, and the rate of diffusion of water, D. This contribution can be reduced by using stronger locking fields, leading to a dispersion in R1ρ that can be analyzed to derive quantitative characteristics of the material. A theoretical expression was recently derived to describe these effects for the case of sinusoidal local field variations of a well-defined spatial frequency q. To evaluate the degree to which this dispersion may be extended to more realistic field patterns, finite difference Bloch-McConnell simulations were performed with a variety of three-dimensional structures to reveal how simple geometries affect the dispersion of spin-locking measurements. Dispersions were fit to the recently derived expression to obtain an estimate of the correlation time of the field variations experienced by the spins, and from this the mean squared gradient and an effective spatial frequency were obtained to describe the fields. This effective spatial frequency was shown to vary directly with the second moment of the spatial frequency power spectrum of the ΔBz field, which is a measure of the average spatial dimension of the field variations. These results suggest the theory may be more generally applied to more complex media to derive useful descriptors of the nature of field inhomogeneities. The simulation results also confirm that such diffusion effects disperse over a range of locking fields of lower amplitude than typical chemical exchange effects, and should be detectable in a variety of magnetically inhomogeneous media including regions of dense microvasculature within biological tissues. PMID:25462950</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013ApJ...771...40B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013ApJ...771...40B"><span>Stellar Diameters and Temperatures. III. Main-sequence A, F, G, and K Stars: Additional High-precision Measurements and Empirical Relations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyajian, Tabetha S.; von Braun, Kaspar; van Belle, Gerard; Farrington, Chris; Schaefer, Gail; Jones, Jeremy; White, Russel; McAlister, Harold A.; ten Brummelaar, Theo A.; Ridgway, Stephen; Gies, Douglas; Sturmann, Laszlo; Sturmann, Judit; Turner, Nils H.; Goldfinger, P. J.; Vargas, Norm</p> <p>2013-07-01</p> <p>Based on CHARA Array measurements, we present the angular diameters of 23 nearby, main-sequence stars, ranging from spectral types A7 to K0, 5 of which are exoplanet host stars. We derive linear radii, effective temperatures, and absolute luminosities of the stars using Hipparcos parallaxes and measured bolometric fluxes. The new data are combined with previously published values to create an Angular Diameter Anthology of measured angular diameters to main-sequence stars (luminosity classes V and IV). This compilation consists of 125 stars with diameter uncertainties of less than 5%, ranging in spectral types from A to M. The large quantity of empirical data is used to derive color-temperature relations to an assortment of color indices in the Johnson (BVR J I J JHK), Cousins (R C I C), Kron (R K I K), Sloan (griz), and WISE (W 3 W 4) photometric systems. These relations have an average standard deviation of ~3% and are valid for stars with spectral types A0-M4. To derive even more accurate relations for Sun-like stars, we also determined these temperature relations omitting early-type stars (T eff > 6750 K) that may have biased luminosity estimates because of rapid rotation; for this subset the dispersion is only ~2.5%. We find effective temperatures in agreement within a couple of percent for the interferometrically characterized sample of main-sequence stars compared to those derived via the infrared flux method and spectroscopic analysis.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750008280','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750008280"><span>The electromagnetic interchange mode in a partially ionized collisional plasma. [spread F region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, M. K.; Kennel, C. F.</p> <p>1974-01-01</p> <p>A collisional electromagnetic dispersion relation is derived from two-fluid theory for the interchange mode coupled to the Alfven, acoustic, drift and entropy modes in a partially ionized plasma. The fundamental electromagnetic nature of the interchange model is noted; coupling to the intermediate Alfven mode is strongly stabilizing for finite k sub z. Both ion viscous and ion-neutral stabilization are included, and it was found that collisions destroy the ion finite Larmor radius cutoff at short perpendicular wavelengths.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2004Nonli..17..925B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2004Nonli..17..925B"><span>Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media: II. The nonlinear theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bona, J. L.; Chen, M.; Saut, J.-C.</p> <p>2004-05-01</p> <p>In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PApGe.173.2899C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PApGe.173.2899C"><span>Phase-Shifted Based Numerical Method for Modeling Frequency-Dependent Effects on Seismic Reflections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Xuehua; Qi, Yingkai; He, Xilei; He, Zhenhua; Chen, Hui</p> <p>2016-08-01</p> <p>The significant velocity dispersion and attenuation has often been observed when seismic waves propagate in fluid-saturated porous rocks. Both the magnitude and variation features of the velocity dispersion and attenuation are frequency-dependent and related closely to the physical properties of the fluid-saturated porous rocks. To explore the effects of frequency-dependent dispersion and attenuation on the seismic responses, in this work, we present a numerical method for seismic data modeling based on the diffusive and viscous wave equation (DVWE), which introduces the poroelastic theory and takes into account diffusive and viscous attenuation in diffusive-viscous-theory. We derive a phase-shift wave extrapolation algorithm in frequencywavenumber domain for implementing the DVWE-based simulation method that can handle the simultaneous lateral variations in velocity, diffusive coefficient and viscosity. Then, we design a distributary channels model in which a hydrocarbon-saturated sand reservoir is embedded in one of the channels. Next, we calculated the synthetic seismic data to analytically and comparatively illustrate the seismic frequency-dependent behaviors related to the hydrocarbon-saturated reservoir, by employing DVWE-based and conventional acoustic wave equation (AWE) based method, respectively. The results of the synthetic seismic data delineate the intrinsic energy loss, phase delay, lower instantaneous dominant frequency and narrower bandwidth due to the frequency-dependent dispersion and attenuation when seismic wave travels through the hydrocarbon-saturated reservoir. The numerical modeling method is expected to contribute to improve the understanding of the features and mechanism of the seismic frequency-dependent effects resulted from the hydrocarbon-saturated porous rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22099675','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22099675"><span>Rapid determination of pyridine derivatives by dispersive liquid-liquid microextraction coupled with gas chromatography/gas sensor based on nanostructured conducting polypyrrole.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pirsa, Sajad; Alizadeh, Naader</p> <p>2011-12-15</p> <p>Polypyrrole (PPy) gas sensor has been prepared by polymerization of pyrrole on surfaces of commercial polymer fibers in the presence of an oxidizing agent. The sensing behavior of PPy gas sensor was investigated in the presence of pyridine derivatives. The resistive responses of the PPy gas sensor to pyridine derivatives were in the order of quinoline>pyridine>4-methyl pyridine and 2-methyl pyridine. The PPy gas sensor was used as gas chromatography (GC) detector and exhibited linear responses to pyridine derivatives in the ranges 40-4,000 ng. Dispersive liquid-liquid microextraction (DLLME) combined with GC/PPy gas sensor has been developed for simultaneous determination of pyridine derivatives and quinoline. The purposed method was used for determination of pyridine derivatives from cigarette smoke. The GC runs were completed in 4 min. The reproducibility of this method is suitable and good standard deviations were obtained. RSD value is less than 10% for all analytes. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BoLMe.135..229C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BoLMe.135..229C"><span>Tracer Flux Balance at an Urban Canyon Intersection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carpentieri, Matteo; Robins, Alan G.</p> <p>2010-05-01</p> <p>Despite their importance for pollutant dispersion in urban areas, the special features of dispersion at street intersections are rarely taken into account by operational air quality models. Several previous studies have demonstrated the complex flow patterns that occur at street intersections, even with simple geometry. This study presents results from wind-tunnel experiments on a reduced scale model of a complex but realistic urban intersection, located in central London. Tracer concentration measurements were used to derive three-dimensional maps of the concentration field within the intersection. In combination with a previous study (Carpentieri et al., Boundary-Layer Meteorol 133:277-296, 2009) where the velocity field was measured in the same model, a methodology for the calculation of the mean tracer flux balance at the intersection was developed and applied. The calculation highlighted several limitations of current state-of-the-art canyon dispersion models, arising mainly from the complex geometry of the intersection. Despite its limitations, the proposed methodology could be further developed in order to derive, assess and implement street intersection dispersion models for complex urban areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1474..143K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1474..143K"><span>Derivation of nonlinear wave equations for ultrasound beam in nonuniform bubbly liquids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kanagawa, Tetsuya; Yano, Takeru; Kawahara, Junya; Kobayashi, Kazumichi; Watanabe, Masao; Fujikawa, Shigeo</p> <p>2012-09-01</p> <p>Weakly nonlinear propagation of diffracted ultrasound beams in a nonuniform bubbly liquid is theoretically studied based on the method of multiple scales with the set of scaling relations of some physical parameters. It is assumed that the spatial distribution of the number density of bubbles in an initial state at rest is a slowly varying function of space coordinates and the amplitude of its variation is small compared with a mean number density. As a result, a Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation with dispersion and nonuniform effects for a low frequency case and a nonlinear Schrödinger (NLS) equation with dissipation, diffraction, and nonuniform effects for a high frequency case, are derived from the basic equations of bubbly flows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080004544','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080004544"><span>Stable powders made from photosensitive polycrystalline complexes of heterocyclic monomers and their polymers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor); Hodko, Dalibor (Inventor)</p> <p>1999-01-01</p> <p>The present invention relates to a low electronic conductivity polymer composition having well dispersed metal granules, a stable powder made from photosensitive polycrystalline complexes of pyrrole, or its substituted derivatives and silver cations for making the polymer composition, and methods of forming the stable powder and polymer composition, respectively. A polycrystalline complex of silver and a monomer, such as pyrrole, its substituted derivatives or combinations thereof, is precipitated in the form of a stable photosensitive powder upon addition of the monomer to a solvent solution, such as toluene containing an electron acceptor. The photosensitive powder can be stored in the dark until needed. The powder may be dissolved in a solvent, cast onto a substrate and photopolymerized.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11416197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11416197"><span>The effect of cultivation on the size, shape, and persistence of disease patches in fields.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Truscott, J E; Gilligan, C A</p> <p>2001-06-19</p> <p>Epidemics of soil-borne plant disease are characterized by patchiness because of restricted dispersal of inoculum. The density of inoculum within disease patches depends on a sequence comprising local amplification during the parasitic phase followed by dispersal of inoculum by cultivation during the intercrop period. The mechanisms that control size, shape, and persistence have received very little rigorous attention in epidemiological theory. Here we derive a model for dispersal of inoculum in soil by cultivation that takes account into the discrete stochastic nature of the system in time and space. Two parameters, probability of movement and mean dispersal distance, characterize lateral dispersal of inoculum by cultivation. The dispersal parameters are used in combination with the characteristic area and dimensions of host plants to identify criteria that control the shape and size of disease patches. We derive a critical value for the probability of movement for the formation of cross-shaped patches and show that this is independent of the amount of inoculum. We examine the interaction between local amplification of inoculum by parasitic activity and subsequent dilution by dispersal and identify criteria whereby asymptomatic patches may persist as inoculum falls below a threshold necessary for symptoms to appear in the subsequent crop. The model is motivated by the spread of rhizomania, an economically important soil-borne disease of sugar beet. However, the results have broad applicability to a very wide range of diseases that survive as discrete units of inoculum. The application of the model to patch dynamics of weed seeds and local introductions of genetically modified seeds is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AcO....37..611B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AcO....37..611B"><span>When should fig fruit produce volatiles? Pattern in a ripening process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Borges, Renee M.; Ranganathan, Yuvaraj; Krishnan, Anusha; Ghara, Mahua; Pramanik, Gautam</p> <p>2011-11-01</p> <p>Ripe fruit need to signal their presence to attract dispersal agents. Plants may employ visual and/or olfactory sensory channels to signal the presence of ripe fruit. Visual signals of ripe fruit have been extensively investigated. However, the volatile signatures of ripe fruit that use olfactorily-oriented dispersers have been scarcely investigated. Moreover, as in flowers, where floral scents are produced at times when pollinators are active (diurnal versus nocturnal), whether plants can modulate the olfactory signal to produce fruit odours when dispersers are active in the diel cycle is completely unknown. We investigated day-night differences in fruit odours in two species of figs, Ficus racemosa and Ficus benghalensis. The volatile bouquet of fruit of F. racemosa that are largely dispersed by bats and other mammals was dominated by fatty acid derivatives such as esters. In this species in which the ripe fig phase is very short, and where the figs drop off soon after ripening, there were no differences between day and night in fruit volatile signature. The volatile bouquet of fruit of F. benghalensis that has a long ripening period, however, and that remain attached to the tree for extended periods when ripe, showed an increase in fatty acid derivatives such as esters and of benzenoids such as benzaldehyde at night when they are dispersed by bats, and an elevation of sesquiterpenes during the day when they are dispersed by birds. For the first time we provide data that suggest that the volatile signal produced by fruit can show diel differences based on the activity period of the dispersal agent.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22488782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22488782"><span>Toxicity of crude oil chemically dispersed in a wave tank to embryos of Atlantic herring (Clupea harengus).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Greer, Colleen D; Hodson, Peter V; Li, Zhengkai; King, Thomas; Lee, Kenneth</p> <p>2012-06-01</p> <p>Tests of crude oil toxicity to fish are often chronic, exposing embryos from fertilization to hatch to oil solutions prepared using standard mixing procedures. However, during oil spills, fish are not often exposed for long periods and the dynamic nature of the ocean is not easily replicated in the lab. Our objective was to determine if brief exposures of Atlantic herring (Clupea harengus) embryos to dispersed oil prepared by standard mixing procedures was as toxic as oil dispersed in a more realistic model system. Embryos were first exposed to chemically dispersed Alaska North Slope crude and Arabian light crude oil for 2.4 h to 14 d from fertilization to determine if exposure time affected toxicity. Toxicity increased with exposure time, but 2.4-h exposures at realistic concentrations of oil induced blue-sac disease and reduced the percentage of normal embryos at hatch; there was little difference in toxicity between the two oils. Secondly, oil was chemically dispersed in a wave tank to determine if the resultant oil solutions were as toxic to herring embryos as laboratory-derived dispersed oil using a single exposure period of 24 h. Samples taken 15 min postdispersion were more toxic than laboratory-prepared solutions, but samples taken at 5, 30, and 60 min postdispersion were less toxic. Overall, the laboratory- and wave tank-derived solutions of dispersed oil provided similar estimates of toxicity despite differences in the methods for preparing test solutions, suggesting that laboratory and wave tank data are a reliable basis for ecological risk assessments of spilled oil. Copyright © 2012 SETAC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JLwT...24.2038X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JLwT...24.2038X"><span>Analytical Optimization of the Net Residual Dispersion in SPM-Limited Dispersion-Managed Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xiao, Xiaosheng; Gao, Shiming; Tian, Yu; Yang, Changxi</p> <p>2006-05-01</p> <p>Dispersion management is an effective technique to suppress the nonlinear impairment in fiber transmission systems, which includes tuning the amounts of precompensation, residual dispersion per span (RDPS), and net residual dispersion (NRD) of the systems. For self-phase modulation (SPM)-limited systems, optimizing the NRD is necessary because it can greatly improve the system performance. In this paper, an analytical method is presented to optimize NRD for SPM-limited dispersion-managed systems. The method is based on the correlation between the nonlinear impairment and the output pulse broadening of SPM-limited systems; therefore, dispersion-managed systems can be optimized through minimizing the output single-pulse broadening. A set of expressions is derived to calculate the output pulse broadening of the SPM-limited dispersion-managed system, from which the analytical result of optimal NRD is obtained. Furthermore, with the expressions of pulse broadening, how the nonlinear impairment depends on the amounts of precompensation and RDPS can be revealed conveniently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1230048-evolution-velocity-dispersion-along-cold-collisionless-flows','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1230048-evolution-velocity-dispersion-along-cold-collisionless-flows"><span>Evolution of velocity dispersion along cold collisionless flows</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Banik, Nilanjan; Sikivie, Pierre</p> <p>2016-05-01</p> <p>We found that the infall of cold dark matter onto a galaxy produces cold collisionless flows and caustics in its halo. If a signal is found in the cavity detector of dark matter axions, the flows will be readily apparent as peaks in the energy spectrum of photons from axion conversion, allowing the densities, velocity vectors and velocity dispersions of the flows to be determined. We also discuss the evolution of velocity dispersion along cold collisionless flows in one and two dimensions. A technique is presented for obtaining the leading behaviour of the velocity dispersion near caustics. The results aremore » used to derive an upper limit on the energy dispersion of the Big Flow from the sharpness of its nearby caustic, and a prediction for the dispersions in its velocity components.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhyA..492.1007S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhyA..492.1007S"><span>Development of an analytical Lagrangian model for passive scalar dispersion in low-wind speed meandering conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stefanello, M. B.; Degrazia, G. A.; Mortarini, L.; Buligon, L.; Maldaner, S.; Carvalho, J. C.; Acevedo, O. C.; Martins, L. G. N.; Anfossi, D.; Buriol, C.; Roberti, D.</p> <p>2018-02-01</p> <p>Describing the effects of wind meandering motions on the dispersion of scalars is a challenging task, since this type of flow represents a physical state characterized by multiple scales. In this study, a Lagrangian stochastic diffusion model is derived to describe scalar transport during the horizontal wind meandering phenomenon that occurs within a planetary boundary layer. The model is derived from the linearization of the Langevin equation, and it employs a heuristic functional form that represents the autocorrelation function of meandering motion. The new solutions, which describe the longitudinal and lateral wind components, were used to simulate tracer experiments that were performed in low-wind speed conditions. The results of the comparison indicate that the new model can effectively reproduce the observed concentrations of the contaminants, and therefore, it can satisfactorily describe enhanced dispersion effects due to the presence of meandering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014199','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014199"><span>An oxide dispersion strengthened Ni-W-Al alloy with superior high temperature strength</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Glasgow, T. K.</p> <p>1976-01-01</p> <p>An experimental oxide dispersion strengthened (ODS) alloy, WAZ-D, derived from the WAZ-20 composition was produced by the mechanical alloying process. Cast WAZ-20 is strengthened by both a high refractory metal content, and 70 volume percent of gamma prime. The ODS alloy WAZ-D was responsive to variables of alloy content, of attritor processing, of consolidation by extrusion, and of heat treatment. The best material produced had large highly elongated grains. It exhibited tensile strengths generally superior to a comparable cast alloy. The ODS alloy exhibited high temperature stress rupture life considerably superior to any known cast superalloy. Tensile and rupture ductility were low, as was intermediate temperature rupture life. Very low creep rates were noted and some specimens failed with essentially no third stage creep. Also the benefit derived from the oxide dispersion, far out-weighed that from the elongated microstructure alone.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1843e0006F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1843e0006F"><span>Droplet size in flow: Theoretical model and application to polymer blends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fortelný, Ivan; Jůza, Josef</p> <p>2017-05-01</p> <p>The paper is focused on prediction of the average droplet radius, R, in flowing polymer blends where the droplet size is determined by dynamic equilibrium between the droplet breakup and coalescence. Expressions for the droplet breakup frequency in systems with low and high contents of the dispersed phase are derived using available theoretical and experimental results for model blends. Dependences of the coalescence probability, Pc, on system parameters, following from recent theories, is considered and approximate equation for Pc in a system with a low polydispersity in the droplet size is proposed. Equations for R in systems with low and high contents of the dispersed phase are derived. Combination of these equations predicts realistic dependence of R on the volume fraction of dispersed droplets, φ. Theoretical prediction of the ratio of R to the critical droplet radius at breakup agrees fairly well with experimental values for steadily mixed polymer blends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27137060','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27137060"><span>Spatial and temporal pulse propagation for dispersive paraxial optical systems.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marcus, G</p> <p>2016-04-04</p> <p>The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec.261148-1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. In addition, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporally is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29716274','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29716274"><span>Interface waves in multilayered plates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Bing; Li, Ming-Hang; Lu, Tong</p> <p>2018-04-01</p> <p>In this paper, the characteristic equation of interface waves in multilayered plates is derived. With a reasonable assumption undertaken for the potential functions of longitudinal and shear waves in the nth layer medium, the characteristic equation of interface waves in the N-layered plate is derived and presented in a determinant form. The particle displacement and stress components are further presented in explicit forms. The dispersion curves and wave structures of interface waves in both a three-layered Al-Steel-Ti and a four-layered Steel-Al-Steel-Ti plate are displayed subsequently. It is observed in dispersion curves that obvious dispersion occurs on the low frequency band, whereas the phase velocities converge to the corresponding true Stoneley wave mode velocities at high frequency, and the number of interface wave modes equals the number of interfaces in multilayered plates (if all individual interfaces satisfy the existence condition of Stoneley waves). The wave structures reveal that the displacement components of interface waves are relatively high at interfaces, and the amplitude distribution varies from frequency to frequency. In the end, a similarly structured three-layered Al-Steel-Ti plate is tested. In this experiment, theoretical group velocity and experimental group velocity are compared. According to the discussion and comparison, the predicted group velocities are in good agreement with the experimental results. Thus, the theory of interface wave in multilayered plates is proved. As a result, the proposed theoretical approach represents a leap forward in the understanding of how to promote the characteristic study and practical applications of interface waves in multilayered structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/835303','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/835303"><span>Numerical and Physical Modelling of Bubbly Flow Phenomena - Final Report to the Department of Energy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Andrea Prosperetti</p> <p></p> <p>This report describes the main features of the results obtained in the course of this project. A new approach to the systematic development of closure relations for the averaged equations of disperse multiphase flow is outlined. The focus of the project is on spatially non-uniform systems and several aspects in which such systems differ from uniform ones are described. Then, the procedure used in deriving the closure relations is given and some explicit results shown. The report also contains a list of publications supported by this grant and a list of the persons involved in the work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7183040-correlation-functions-ising-model-eight-vertex-model','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7183040-correlation-functions-ising-model-eight-vertex-model"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ko, L.F.</p> <p></p> <p>Calculations for the two-point correlation functions in the scaling limit for two statistical models are presented. In Part I, the Ising model with a linear defect is studied for T < T/sub c/ and T > T/sub c/. The transfer matrix method of Onsager and Kaufman is used. The energy-density correlation is given by functions related to the modified Bessel functions. The dispersion expansion for the spin-spin correlation functions are derived. The dominant behavior for large separations at T not equal to T/sub c/ is extracted. It is shown that these expansions lead to systems of Fredholm integral equations. Inmore » Part II, the electric correlation function of the eight-vertex model for T < T/sub c/ is studied. The eight vertex model decouples to two independent Ising models when the four spin coupling vanishes. To first order in the four-spin coupling, the electric correlation function is related to a three-point function of the Ising model. This relation is systematically investigated and the full dispersion expansion (to first order in four-spin coupling) is obtained. The results is a new kind of structure which, unlike those of many solvable models, is apparently not expressible in terms of linear integral equations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3557596','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3557596"><span>A fractal approach to dynamic inference and distribution analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>van Rooij, Marieke M. J. W.; Nash, Bertha A.; Rajaraman, Srinivasan; Holden, John G.</p> <p>2013-01-01</p> <p>Event-distributions inform scientists about the variability and dispersion of repeated measurements. This dispersion can be understood from a complex systems perspective, and quantified in terms of fractal geometry. The key premise is that a distribution's shape reveals information about the governing dynamics of the system that gave rise to the distribution. Two categories of characteristic dynamics are distinguished: additive systems governed by component-dominant dynamics and multiplicative or interdependent systems governed by interaction-dominant dynamics. A logic by which systems governed by interaction-dominant dynamics are expected to yield mixtures of lognormal and inverse power-law samples is discussed. These mixtures are described by a so-called cocktail model of response times derived from human cognitive performances. The overarching goals of this article are twofold: First, to offer readers an introduction to this theoretical perspective and second, to offer an overview of the related statistical methods. PMID:23372552</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMFM..tmp...36N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMFM..tmp...36N"><span>Solvability of the Initial Value Problem to the Isobe-Kakinuma Model for Water Waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nemoto, Ryo; Iguchi, Tatsuo</p> <p>2017-09-01</p> <p>We consider the initial value problem to the Isobe-Kakinuma model for water waves and the structure of the model. The Isobe-Kakinuma model is the Euler-Lagrange equations for an approximate Lagrangian which is derived from Luke's Lagrangian for water waves by approximating the velocity potential in the Lagrangian. The Isobe-Kakinuma model is a system of second order partial differential equations and is classified into a system of nonlinear dispersive equations. Since the hypersurface t=0 is characteristic for the Isobe-Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold for the existence of the solution. Under this necessary condition and a sign condition, which corresponds to a generalized Rayleigh-Taylor sign condition for water waves, on the initial data, we show that the initial value problem is solvable locally in time in Sobolev spaces. We also discuss the linear dispersion relation to the model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SurSc.629...28Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SurSc.629...28Y"><span>A first-principles study of methyl lactate adsorption on the chiral Cu (643) surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yuk, Simuck F.; Asthagiri, Aravind</p> <p>2014-11-01</p> <p>We used dispersion-corrected density function theory (DFT) to investigate the enantiospecific adsorption of R- and S-methyl lactate on the chiral Cu (643)R surface. Initial study of methyl lactate adsorbed on the Cu (111) surface revealed that the most strongly bound states are associated with interaction of the hydroxyl and alkoxide group with the surface. Using dispersion-corrected DFT-derived pre-factors and desorption energies within the Redhead analysis predicts peak temperatures that are in relatively good agreement with experimental values for molecular methyl lactate desorption from both the Cu (111) and Cu (643)R surface. The global minimum of S-methyl lactate is more firmly bound by 9.5 kJ/mol over its enantiomer on the Cu (643)R surface, with a peak temperature difference of 25 K versus an experimental value of 12 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930053275&hterms=growth+population&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpopulation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930053275&hterms=growth+population&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dgrowth%2Bpopulation"><span>On the stability of nongyrotropic ion populations - A first (analytic and simulation) assessment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brinca, A. L.; Borda De Agua, L.; Winske, D.</p> <p>1993-01-01</p> <p>The wave and dispersion equations for perturbations propagating parallel to an ambient magnetic field in magnetoplasmas with nongyrotropic ion populations show, in general, the occurrence of coupling between the parallel (left- and right-hand circularly polarized electromagnetic and longitudinal electrostatic) eigenmodes of the associated gyrotropic medium. These interactions provide a means to driving linearly one mode with free-energy sources of other modes in homogeneous media. Different types of nongyrotropy bring about distinct classes of coupling. The stability of a hydrogen magnetoplasma with anisotropic, nongyrotropic protons that only couple the electromagnetic modes to each other is investigated analytically (via solution of the derived dispersion equation) and numerically (via simulation with a hybrid code). Nongyrotropy enhances growth and enlarges the unstable spectral range relative to the corresponding gyrotropic situation. The relevance of the properties of nongyrotropic populations to space plasma environments is also discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600135-thz-electromagnetic-radiation-driven-intense-relativistic-electron-beam-based-ion-focus-regime','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600135-thz-electromagnetic-radiation-driven-intense-relativistic-electron-beam-based-ion-focus-regime"><span>THz electromagnetic radiation driven by intense relativistic electron beam based on ion focus regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhou, Qing; Xu, Jin; Zhang, Wenchao</p> <p></p> <p>The simulation study finds that the relativistic electron beam propagating through the plasma background can produce electromagnetic (EM) radiation. With the propagation of the electron beam, the oscillations of the beam electrons in transverse and longitudinal directions have been observed simultaneously, which provides the basis for the electromagnetic radiation. The simulation results clearly show that the electromagnetic radiation frequency can reach up to terahertz (THz) wave band which may result from the filter-like property of plasma background, and the electromagnetic radiation frequency closely depends on the plasma density. To understand the above simulation results physically, the dispersion relation of themore » beam-plasma system has been derived using the field-matching method, and the dispersion curves show that the slow wave modes can couple with the electron beam effectively in THz wave band, which is an important theoretical evidence of the EM radiation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22614131-analytical-numerical-treatment-resistive-drift-instability-plasma-slab','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22614131-analytical-numerical-treatment-resistive-drift-instability-plasma-slab"><span>Analytical and numerical treatment of resistive drift instability in a plasma slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mirnov, V. V., E-mail: vvmirnov@wisc.edu; Sauppe, J. P.; Hegna, C. C.</p> <p></p> <p>An analytic approach combining the effect of equilibrium diamagnetic flows and the finite ionsound gyroradius associated with electron−ion decoupling and kinetic Alfvén wave dispersion is derived to study resistive drift instabilities in a plasma slab. Linear numerical computations using the NIMROD code are performed with cold ions and hot electrons in a plasma slab with a doubly periodic box bounded by two perfectly conducting walls. A linearly unstable resistive drift mode is observed in computations with a growth rate that is consistent with the analytic dispersion relation. The resistive drift mode is expected to be suppressed by magnetic shear inmore » unbounded domains, but the mode is observed in numerical computations with and without magnetic shear. In the slab model, the finite slab thickness and the perfectly conducting boundary conditions are likely to account for the lack of suppression.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3338459','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3338459"><span>Model-Derived Dispersal Pathways from Multiple Source Populations Explain Variability of Invertebrate Larval Supply</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Domingues, Carla P.; Nolasco, Rita; Dubert, Jesus; Queiroga, Henrique</p> <p>2012-01-01</p> <p>Background Predicting the spatial and temporal patterns of marine larval dispersal and supply is a challenging task due to the small size of the larvae and the variability of oceanographic processes. Addressing this problem requires the use of novel approaches capable of capturing the inherent variability in the mechanisms involved. Methodology/Principal Findings In this study we test whether dispersal and connectivity patterns generated from a bio-physical model of larval dispersal of the crab Carcinus maenas, along the west coast of the Iberian Peninsula, can predict the highly variable daily pattern of wind-driven larval supply to an estuary observed during the peak reproductive season (March–June) in 2006 and 2007. Cross-correlations between observed and predicted supply were significant (p<0.05) and strong, ranging from 0.34 to 0.81 at time lags of −6 to +5 d. Importantly, the model correctly predicted observed cross-shelf distributions (Pearson r = 0.82, p<0.001, and r = 0.79, p<0.01, in 2006 and 2007) and indicated that all supply events were comprised of larvae that had been retained within the inner shelf; larvae transported to the outer shelf and beyond never recruited. Estimated average dispersal distances ranged from 57 to 198 km and were only marginally affected by mortality. Conclusions/Significance The high degree of predicted demographic connectivity over relatively large geographic scales is consistent with the lack of genetic structuring in C. maenas along the Iberian Peninsula. These findings indicate that the dynamic nature of larval dispersal can be captured by mechanistic biophysical models, which can be used to provide meaningful predictions of the patterns and causes of fine-scale variability in larval supply to marine populations. PMID:22558225</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25604788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25604788"><span>Application of a neutral community model to assess structuring of the human lung microbiome.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Venkataraman, Arvind; Bassis, Christine M; Beck, James M; Young, Vincent B; Curtis, Jeffrey L; Huffnagle, Gary B; Schmidt, Thomas M</p> <p>2015-01-20</p> <p>DNA from phylogenetically diverse microbes is routinely recovered from healthy human lungs and used to define the lung microbiome. The proportion of this DNA originating from microbes adapted to the lungs, as opposed to microbes dispersing to the lungs from other body sites and the atmosphere, is not known. We use a neutral model of community ecology to distinguish members of the lung microbiome whose presence is consistent with dispersal from other body sites and those that deviate from the model, suggesting a competitive advantage to these microbes in the lungs. We find that the composition of the healthy lung microbiome is consistent with predictions of the neutral model, reflecting the overriding role of dispersal of microbes from the oral cavity in shaping the microbial community in healthy lungs. In contrast, the microbiome of diseased lungs was readily distinguished as being under active selection. We also assessed the viability of microbes from lung samples by cultivation with a variety of media and incubation conditions. Bacteria recovered by cultivation from healthy lungs represented species that comprised 61% of the 16S rRNA-encoding gene sequences derived from bronchoalveolar lavage samples. Neutral distribution of microbes is a distinguishing feature of the microbiome in healthy lungs, wherein constant dispersal of bacteria from the oral cavity overrides differential growth of bacteria. No bacterial species consistently deviated from the model predictions in healthy lungs, although representatives of many of the dispersed species were readily cultivated. In contrast, bacterial populations in diseased lungs were identified as being under active selection. Quantification of the relative importance of selection and neutral processes such as dispersal in shaping the healthy lung microbiome is a first step toward understanding its impacts on host health. Copyright © 2015 Venkataraman et al.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28208401','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28208401"><span>Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Carrasco, José A; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A</p> <p>2017-01-01</p> <p>We study the critical behavior and the ground-state entanglement of a large class of su(1|1) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1+1)-dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1+1)-dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PDU....18..115N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PDU....18..115N"><span>Energy scale of Lorentz violation in Rainbow Gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nilsson, Nils A.; Dąbrowski, Mariusz P.</p> <p>2017-12-01</p> <p>We modify the standard relativistic dispersion relation in a way which breaks Lorentz symmetry-the effect is predicted in a high-energy regime of some modern theories of quantum gravity. We show that it is possible to realise this scenario within the framework of Rainbow Gravity which introduces two new energy-dependent functions f1(E) and f2(E) into the dispersion relation. Additionally, we assume that the gravitational constant G and the cosmological constant Λ also depend on energy E and introduce the scaling function h(E) in order to express this dependence. For cosmological applications we specify the functions f1 and f2 in order to fit massless particles which allows us to derive modified cosmological equations. Finally, by using Hubble+SNIa+BAO(BOSS+Lyman α)+CMB data, we constrain the energy scale ELV to be at least of the order of 1016 GeV at 1 σ which is the GUT scale or even higher 1017 GeV at 3 σ. Our claim is that this energy can be interpreted as the decoupling scale of massless particles from spacetime Lorentz violating effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvE..95a2129C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvE..95a2129C"><span>Supersymmetric spin chains with nonmonotonic dispersion relation: Criticality and entanglement entropy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Carrasco, José A.; Finkel, Federico; González-López, Artemio; Rodríguez, Miguel A.</p> <p>2017-01-01</p> <p>We study the critical behavior and the ground-state entanglement of a large class of su (1 |1 ) supersymmetric spin chains with a general (not necessarily monotonic) dispersion relation. We show that this class includes several relevant models, with both short- and long-range interactions of a simple form. We determine the low temperature behavior of the free energy per spin, and deduce that the models considered have a critical phase in the same universality class as a (1 +1 ) -dimensional conformal field theory (CFT) with central charge equal to the number of connected components of the Fermi sea. We also study the Rényi entanglement entropy of the ground state, deriving its asymptotic behavior as the block size tends to infinity. In particular, we show that this entropy exhibits the logarithmic growth characteristic of (1 +1 ) -dimensional CFTs and one-dimensional (fermionic) critical lattice models, with a central charge consistent with the low-temperature behavior of the free energy. Our results confirm the widely believed conjecture that the critical behavior of fermionic lattice models is completely determined by the topology of their Fermi surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26834782','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26834782"><span>Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zollanvari, Amin; Dougherty, Edward R</p> <p>2016-12-01</p> <p>In classification, prior knowledge is incorporated in a Bayesian framework by assuming that the feature-label distribution belongs to an uncertainty class of feature-label distributions governed by a prior distribution. A posterior distribution is then derived from the prior and the sample data. An optimal Bayesian classifier (OBC) minimizes the expected misclassification error relative to the posterior distribution. From an application perspective, prior construction is critical. The prior distribution is formed by mapping a set of mathematical relations among the features and labels, the prior knowledge, into a distribution governing the probability mass across the uncertainty class. In this paper, we consider prior knowledge in the form of stochastic differential equations (SDEs). We consider a vector SDE in integral form involving a drift vector and dispersion matrix. Having constructed the prior, we develop the optimal Bayesian classifier between two models and examine, via synthetic experiments, the effects of uncertainty in the drift vector and dispersion matrix. We apply the theory to a set of SDEs for the purpose of differentiating the evolutionary history between two species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..DPPU10036M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..DPPU10036M"><span>Analytical and numerical treatment of drift-tearing modes in plasma slab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mirnov, V. V.; Hegna, C. C.; Sovinec, C. R.; Howell, E. C.</p> <p>2016-10-01</p> <p>Two-fluid corrections to linear tearing modes includes 1) diamagnetic drifts that reduce the growth rate and 2) electron and ion decoupling on short scales that can lead to fast reconnection. We have recently developed an analytical model that includes effects 1) and 2) and important contribution from finite electron parallel thermal conduction. Both the tendencies 1) and 2) are confirmed by an approximate analytic dispersion relation that is derived using a perturbative approach of small ion-sound gyroradius ρs. This approach is only valid at the beginning of the transition from the collisional to semi-collisional regimes. Further analytical and numerical work is performed to cover the full interval of ρs connecting these two limiting cases. Growth rates are computed from analytic theory with a shooting method. They match the resistive MHD regime with the dispersion relations known at asymptotically large ion-sound gyroradius. A comparison between this analytical treatment and linear numerical simulations using the NIMROD code with cold ions and hot electrons in plasma slab is reported. The material is based on work supported by the U.S. DOE and NSF.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150020884','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150020884"><span>Criteria for Yielding of Dispersion-Strengthened Alloys</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ansell, G. S.; Lenel, F. V.</p> <p>1960-01-01</p> <p>A dislocation model is presented in order to account for the yield behavior of alloys with a finely dispersed second-phase. The criteria for yielding used in the model, is that appreciable yielding occurs in these alloys when the shear stress due to piled-up groups of dislocations is sufficient to fracture or plastically deform the dispersed second-phase particles, relieving the back stress on the dislocation sources. Equations derived on the basis of this model, predict that the yield stress of the alloys varies as the reciprocal square root of the mean free path between dispersed particles. Experimental data is presented for several SAP-Type alloys, precipitation-hardened alloys and steels which are in good agreement with the yield strength variation as a function of dispersion spacing predicted by this theoretical treatment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21452991-bright-dark-solitons-normal-dispersion-regime-inhomogeneous-optical-fibers-soliton-interaction-soliton-control','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21452991-bright-dark-solitons-normal-dispersion-regime-inhomogeneous-optical-fibers-soliton-interaction-soliton-control"><span>Bright and dark solitons in the normal dispersion regime of inhomogeneous optical fibers: Soliton interaction and soliton control</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu Wenjun; Tian Bo, E-mail: tian.bupt@yahoo.com.c; State Key Laboratory of Software Development Environment, Beijing University of Aeronautics and Astronautics, Beijing 100191</p> <p>2010-08-15</p> <p>Symbolically investigated in this paper is a nonlinear Schroedinger equation with the varying dispersion and nonlinearity for the propagation of optical pulses in the normal dispersion regime of inhomogeneous optical fibers. With the aid of the Hirota method, analytic one- and two-soliton solutions are obtained. Relevant properties of physical and optical interest are illustrated. Different from the previous results, both the bright and dark solitons are hereby derived in the normal dispersion regime of the inhomogeneous optical fibers. Moreover, different dispersion profiles of the dispersion-decreasing fibers can be used to realize the soliton control. Finally, soliton interaction is discussed withmore » the soliton control confirmed to have no influence on the interaction. The results might be of certain value for the study of the signal generator and soliton control.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70032514','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70032514"><span>Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Zhang, K.; Luo, Y.; Xia, J.; Chen, C.</p> <p>2011-01-01</p> <p>Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P and S waves. ?? 2011 Elsevier Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3311549','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3311549"><span>Patterns of Diversity in Soft-Bodied Meiofauna: Dispersal Ability and Body Size Matter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Curini-Galletti, Marco; Artois, Tom; Delogu, Valentina; De Smet, Willem H.; Fontaneto, Diego; Jondelius, Ulf; Leasi, Francesca; Martínez, Alejandro; Meyer-Wachsmuth, Inga; Nilsson, Karin Sara; Tongiorgi, Paolo; Worsaae, Katrine; Todaro, M. Antonio</p> <p>2012-01-01</p> <p>Background Biogeographical and macroecological principles are derived from patterns of distribution in large organisms, whereas microscopic ones have often been considered uninteresting, because of their supposed wide distribution. Here, after reporting the results of an intensive faunistic survey of marine microscopic animals (meiofauna) in Northern Sardinia, we test for the effect of body size, dispersal ability, and habitat features on the patterns of distribution of several groups. Methodology/Principal Findings As a dataset we use the results of a workshop held at La Maddalena (Sardinia, Italy) in September 2010, aimed at studying selected taxa of soft-bodied meiofauna (Acoela, Annelida, Gastrotricha, Nemertodermatida, Platyhelminthes and Rotifera), in conjunction with data on the same taxa obtained during a previous workshop hosted at Tjärnö (Western Sweden) in September 2007. Using linear mixed effects models and model averaging while accounting for sampling bias and potential pseudoreplication, we found evidence that: (1) meiofaunal groups with more restricted distribution are the ones with low dispersal potential; (2) meiofaunal groups with higher probability of finding new species for science are the ones with low dispersal potential; (3) the proportion of the global species pool of each meiofaunal group present in each area at the regional scale is negatively related to body size, and positively related to their occurrence in the endobenthic habitat. Conclusion/Significance Our macroecological analysis of meiofauna, in the framework of the ubiquity hypothesis for microscopic organisms, indicates that not only body size but mostly dispersal ability and also occurrence in the endobenthic habitat are important correlates of diversity for these understudied animals, with different importance at different spatial scales. Furthermore, since the Western Mediterranean is one of the best-studied areas in the world, the large number of undescribed species (37%) highlights that the census of marine meiofauna is still very far from being complete. PMID:22457790</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17240403','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17240403"><span>Integrating individual movement behaviour into dispersal functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Heinz, Simone K; Wissel, Christian; Conradt, Larissa; Frank, Karin</p> <p>2007-04-21</p> <p>Dispersal functions are an important tool for integrating dispersal into complex models of population and metapopulation dynamics. Most approaches in the literature are very simple, with the dispersal functions containing only one or two parameters which summarise all the effects of movement behaviour as for example different movement patterns or different perceptual abilities. The summarising nature of these parameters makes assessing the effect of one particular behavioural aspect difficult. We present a way of integrating movement behavioural parameters into a particular dispersal function in a simple way. Using a spatial individual-based simulation model for simulating different movement behaviours, we derive fitting functions for the functional relationship between the parameters of the dispersal function and several details of movement behaviour. This is done for three different movement patterns (loops, Archimedean spirals, random walk). Additionally, we provide measures which characterise the shape of the dispersal function and are interpretable in terms of landscape connectivity. This allows an ecological interpretation of the relationships found.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70026753','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70026753"><span>Utilization of high-frequency Rayleigh waves in near-surface geophysics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xia, J.; Miller, R.D.; Park, C.B.; Ivanov, J.; Tian, G.; Chen, C.</p> <p>2004-01-01</p> <p>Shear-wave velocities can be derived from inverting the dispersive phase velocity of the surface. The multichannel analysis of surface waves (MASW) is one technique for inverting high-frequency Rayleigh waves. The process includes acquisition of high-frequency broad-band Rayleigh waves, efficient and accurate algorithms designed to extract Rayleigh-wave dispersion curves from Rayleigh waves, and stable and efficient inversion algorithms to obtain near-surface S-wave velocity profiles. MASW estimates S-wave velocity from multichannel vertical compoent data and consists of data acquisition, dispersion-curve picking, and inversion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70022085','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70022085"><span>Use of chlorine-36 to determine regional-scale aquifer dispersivity, eastern Snake River Plain aquifer, Idaho/USA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cecil, L.D.; Welhan, J.A.; Green, J.R.; Grape, S.K.; Sudicky, E.R.</p> <p>2000-01-01</p> <p>Chlorine-36 (36Cl) derived from processed nuclear waste that was disposed at the US Department of Energy's Idaho National Engineering and Environmental Laboratory (INEEL) through a deep injection well in 1958, was detected 24-28 yr later in groundwater monitoring wells approximately 26 km downgradient from the source. Groundwater samples covering the period 1966-1995 were selected from the US Geological Survey's archived-sample library at the INEEL and analyzed for 36Cl by accelerator mass spectrometry (AMS). The smaller 36Cl peak concentrations in water from the far-field monitoring wells relative to the input suggest that aquifer dispersivity may be large. However, the sharpness of the 1958 disposal peak of 36Cl is matched by the measured 36Cl concentrations in water from these wells. This implies that a small aquifer dispersivity may be attributed to preferential groundwater flowpaths. Assuming that tracer arrival times at monitoring wells are controlled by preferential flow, a 1-D system-response model was used to estimate dispersivity by comparing the shape of predicted 36Cl-concentration curves to the shape of 36Cl-concentration curves measured in water from these observation wells. The comparisons suggest that a 1-D dispersivity of 5 m provides the best fit to the tracer data. Previous work using a 2-D equivalent porous-media model concluded that longitudinal dispersivity (equivalent to 1-D dispersivity in our model) was 90 m (Ackerman, 1991). A 90 m dispersivity value eliminates the 1958 disposal peak in our model output curves. The implications of the arrival of 36Cl at downgradient monitoring wells are important for three reasons: (1) the arrival times and associated 36Cl concentrations provide quantitative constraints on residence times, velocities, and dispersivities in the aquifer; (2) they help to refine our working hypotheses of groundwater flow in this aquifer and (3) they may suggest a means of estimating the distribution of preferential flowpaths in the aquifer. ?? 2000 Elsevier Science B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1304724','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1304724"><span>Viscous effects on the Rayleigh-Taylor instability with background temperature gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gerashchenko, Sergiy; Livescu, Daniel</p> <p></p> <p>Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1304724-viscous-effects-rayleigh-taylor-instability-background-temperature-gradient','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1304724-viscous-effects-rayleigh-taylor-instability-background-temperature-gradient"><span>Viscous effects on the Rayleigh-Taylor instability with background temperature gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gerashchenko, Sergiy; Livescu, Daniel</p> <p>2016-07-28</p> <p>Here we studied the growth rate of the compressible Rayleigh-Taylor instability in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. Anmore » analytical solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ=0. Compared to Θ=0 case, the role of Θ<0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ>0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ<0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MNRAS.462.1697A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MNRAS.462.1697A"><span>Age-velocity dispersion relations and heating histories in disc galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aumer, Michael; Binney, James; Schönrich, Ralph</p> <p>2016-10-01</p> <p>We analyse the heating of stellar discs by non-axisymmetric structures and giant molecular clouds (GMCs) in N-body simulations of growing disc galaxies. The analysis resolves long-standing discrepancies between models and data by demonstrating the importance of distinguishing between measured age-velocity dispersion relations (AVRs) and the heating histories of the stars that make up the AVR. We fit both AVRs and heating histories with formulae ∝tβ and determine the exponents βR and βz derived from in-plane and vertical AVRs and tilde{β }_R and tilde{β }_z from heating histories. Values of βz are in almost all simulations larger than values of tilde{β }_z, whereas values of βR are similar to or mildly larger than values of tilde{β }_R. Moreover, values of βz (tilde{β }_z) are generally larger than values of βR (tilde{β }_R). The dominant cause of these relations is the decline over the life of the disc in importance of GMCs as heating agents relative to spiral structure and the bar. We examine how age errors and biases in solar neighbourhood surveys influence the measured AVR: they tend to decrease β values by smearing out ages and thus measured dispersions. We compare AVRs and velocity ellipsoid shapes σz/σR from simulations to solar neighbourhood data. We conclude that for the expected disc mass and dark halo structure, combined GMC and spiral/bar heating can explain the AVR of the Galactic thin disc. Strong departures of the disc mass or the dark halo structure from expectation spoil fits to the data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JChPh.144w4502W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JChPh.144w4502W"><span>Corresponding-states behavior of an ionic model fluid with variable dispersion interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weiss, Volker C.</p> <p>2016-06-01</p> <p>Guggenheim's corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroy and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Zc. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%-40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Zc as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22660755-corresponding-states-behavior-ionic-model-fluid-variable-dispersion-interactions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22660755-corresponding-states-behavior-ionic-model-fluid-variable-dispersion-interactions"><span>Corresponding-states behavior of an ionic model fluid with variable dispersion interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weiss, Volker C., E-mail: volker.weiss@bccms.uni-bremen.de</p> <p>2016-06-21</p> <p>Guggenheim’s corresponding-states approach for simple fluids leads to a remarkably universal representation of their thermophysical properties. For more complex fluids, such as polar or ionic ones, deviations from this type of behavior are to be expected, thereby supplying us with valuable information about the thermodynamic consequences of the interaction details in fluids. Here, the gradual transition of a simple fluid to an ionic one is studied by varying the relative strength of the dispersion interactions compared to the electrostatic interactions among the charged particles. In addition to the effects on the reduced surface tension that were reported earlier [F. Leroymore » and V. C. Weiss, J. Chem. Phys. 134, 094703 (2011)], we address the shape of the coexistence curve and focus on properties that are related to and derived from the vapor pressure. These quantities include the enthalpy and entropy of vaporization, the boiling point, and the critical compressibility factor Z{sub c}. For all of these properties, the crossover from simple to characteristically ionic fluid is seen once the dispersive attraction drops below 20%–40% of the electrostatic attraction (as measured for two particles at contact). Below this threshold, ionic fluids display characteristically low values of Z{sub c} as well as large Guggenheim and Guldberg ratios for the reduced enthalpy of vaporization and the reduced boiling point, respectively. The coexistence curves are wider and more skewed than those for simple fluids. The results for the ionic model fluid with variable dispersion interactions improve our understanding of the behavior of real ionic fluids, such as inorganic molten salts and room temperature ionic liquids, by gauging the importance of different types of interactions for thermodynamic properties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24251377','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24251377"><span>Thiazolidinedione derivatives as novel agents against Propionibacterium acnes biofilms.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brackman, G; Forier, K; Al Quntar, A A A; De Canck, E; Enk, C D; Srebnik, M; Braeckmans, K; Coenye, T</p> <p>2014-03-01</p> <p>The aim of the present study was to determine the effect of two thiazolidinedione derivatives on Propionibacterium acnes biofilm formation in vitro and to assess their effect on the susceptibility of P. acnes biofilms towards antimicrobials. The compounds were shown to have a moderate to strong antibiofilm activity when used in subinhibitory concentrations. These compounds do not affect P. acnes attachment but lead to increased dispersal of biofilm cells. This dispersal results in an increased killing of the P. acnes biofilm cells by conventional antimicrobials. The antibiofilm effect and the effect on biofilm susceptibility of the thiazolidinedione-derived quorum sensing inhibitors were clearly demonstrated. Propionibacterium acnes infections are difficult to treat due to the presence of biofilms at the infection site and the associated resistance towards conventional antimicrobials. Our results indicate that these thiazolidinedione derivatives can be promising leads used for the treatment of P. acnes infections and as anti-acne drugs. © 2013 The Society for Applied Microbiology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1251566-spatial-temporal-pulse-propagation-dispersive-paraxial-optical-systems','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1251566-spatial-temporal-pulse-propagation-dispersive-paraxial-optical-systems"><span>Spatial and temporal pulse propagation for dispersive paraxial optical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marcus, G.</p> <p>2016-04-01</p> <p>The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1251566','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1251566"><span>Spatial and temporal pulse propagation for dispersive paraxial optical systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Marcus, G.</p> <p></p> <p>The formalism for pulse propagation through dispersive paraxial optical systems first presented by Kostenbauder (IEEE J. Quant. Elec. 261148–1157 (1990)) using 4 × 4 ray-pulse matrices is extended to 6 × 6 matrices and includes non-separable spatial-temporal couplings in both transverse dimensions as well as temporal dispersive effects up to a quadratic phase. The eikonal in a modified Huygens integral in the Fresnell approximation is derived and can be used to propagate pulses through complicated dispersive optical systems within the paraxial approximation. Additionally, a simple formula for the propagation of ultrashort pulses having a Gaussian profile both spatially and temporallymore » is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3401967','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3401967"><span>Molecular dispersion spectroscopy – new capabilities in laser chemical sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Nikodem, Michal; Wysocki, Gerard</p> <p>2012-01-01</p> <p>Laser spectroscopic techniques suitable for molecular dispersion sensing enable new applications and strategies in chemical detection. This paper discusses the current state-of-the art and provides an overview of recently developed chirped laser dispersion spectroscopy (CLaDS) based techniques. CLaDS and its derivatives allow for quantitative spectroscopy of trace-gases and enable new capabilities such as extended dynamic range of concentration measurements, high immunity to photodetected intensity fluctuations, or capability of direct processing of spectroscopic signals in optical domain. Several experimental configurations based on quantum cascade lasers and examples of molecular spectroscopic data are presented to demonstrate capabilities of molecular dispersion spectroscopy in the mid-infrared spectral region. PMID:22809459</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70129070','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70129070"><span>Inverse grading and hydraulic equivalence in grain-flow deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Sallenger, A. H.</p> <p>1979-01-01</p> <p>Inversely graded grain-flow deposits are characterized by a hydraulic equivalence that differs from that based on settling velocities or entrainment. Dispersive equivalence, derived from the dispersive pressure hypothesis on how inverse grading develops, was found to agree reasonably well with observed relationships between grain sizes and densities in grain-flow deposits. Furthermore, observed relationships in deposits formed in subaerial and subaqueous environments were found to be independent of fluid density as is required by dispersive equivalence. The results suggest that dispersive pressure controls the development of the inverse grading common to beach foreshore laminations, slip-face foreset strata, the basal parts of some coarse-grained turbidites, and other diverse deposits.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016APS..MARX23004L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016APS..MARX23004L"><span>Low-energy phonon dispersion in LaFe4Sb12</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Leithe-Jasper, Andreas; Boehm, Martin; Mutka, Hannu; Koza, Michael M.</p> <p></p> <p>We studied the vibrational dynamics of a single crystal of LaFe4Sb12 by three-axis inelastic neutron spectroscopy. The dispersion of phonons with wave vectors q along [ xx 0 ] and [ xxx ] directions in the energy range of eigenmodes with high amplitudes of lanthanum vibrations, i.e., at ℏω < 12 meV is identified. Symmetry-avoided anticrossing dispersion of phonons is established in both monitored directions and distinct eigenstates at high-symmetry points and at the Brillouin-zone center are discriminated. The experimentally derived phonon dispersion and intensities are compared with and backed up by ab initio lattice dynamics calculations. results of the computer model match well with the experimental data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvA..97d3605I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvA..97d3605I"><span>Capillary-wave dynamics and interface structure modulation in binary Bose-Einstein condensate mixtures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Indekeu, Joseph O.; Van Thu, Nguyen; Lin, Chang-You; Phat, Tran Huu</p> <p>2018-04-01</p> <p>The localized low-energy interfacial excitations, or interfacial Nambu-Goldstone modes, of phase-segregated binary mixtures of Bose-Einstein condensates are investigated analytically. To this end a double-parabola approximation (DPA) is performed on the Lagrangian density in Gross-Pitaevskii theory for a system in a uniform potential. This DPA entails a model in which analytic expressions are obtained for the excitations underlying capillary waves or ripplons for arbitrary strength K (>1 ) of the phase segregation. The dispersion relation ω (k ) ∝k3 /2 is derived directly from the Bogoliubov-de Gennes equations in the limit that the wavelength 2 π /k is much larger than the interface width. The proportionality constant in the dispersion relation provides the static interfacial tension. A correction term in ω (k ) of order k5 /2 is calculated analytically within the DPA model. The combined result is tested against numerical diagonalization of the exact Bogoliubov-de Gennes equations. Satisfactory agreement is obtained in the range of physically relevant wavelengths. The ripplon dispersion relation is relevant to state-of-the-art experiments using (quasi)uniform optical-box traps. Furthermore, within the DPA model explicit expressions are obtained for the structural deformation of the interface due to the passing of the capillary wave. It is found that the amplitude of the wave is enhanced by an amount that is quadratic in the ratio of the phase velocity ω /k to the sound velocity c . For generic mixtures consisting of condensates with unequal healing lengths, an additional modulation is predicted of the common value of the condensate densities at the interface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApJ...853..136K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApJ...853..136K"><span>Magneto-acoustic Waves in a Magnetic Slab Embedded in an Asymmetric Magnetic Environment: The Effects of Asymmetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zsámberger, Noémi Kinga; Allcock, Matthew; Erdélyi, Róbert</p> <p>2018-02-01</p> <p>Modeling the behavior of magnetohydrodynamic waves in a range of magnetic geometries mimicking solar atmospheric waveguides, from photospheric flux tubes to coronal loops, can offer a valuable contribution to the field of solar magneto-seismology. The present study uses an analytical approach to derive the dispersion relation for magneto-acoustic waves in a magnetic slab of homogeneous plasma enclosed on its two sides by semi-infinite plasma of different densities, temperatures, and magnetic field strengths, providing an asymmetric plasma environment. This is a step further in the generalization of the classic magnetic slab model, which is symmetric about the slab, was developed by Roberts, and is an extension of the work by Allcock & Erdélyi where a magnetic slab is sandwiched in an asymmetric nonmagnetic plasma environment. In contrast to the symmetric case, the dispersion relation governing the asymmetric slab cannot be factorized into separate sausage and kink eigenmodes. The solutions obtained resemble these well-known modes; however, their properties are now mixed. Therefore we call these modes quasi-sausage and quasi-kink modes. If conditions on the two sides of the slab do not differ strongly, then a factorization of the dispersion relation can be achieved for the further analytic study of various limiting cases representing a solar environment. In the current paper, we examine the incompressible limit in detail and demonstrate its possible application to photospheric magnetic bright points. After the introduction of a mechanical analogy, we reveal a relationship between the external plasma and magnetic parameters, which allows for the existence of quasi-symmetric modes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJTP...57.1224J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJTP...57.1224J"><span>Hamiltonian of Mean Force and Dissipative Scalar Field Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jafari, Marjan; Kheirandish, Fardin</p> <p>2018-04-01</p> <p>Quantum dynamics of a dissipative scalar field is investigated. Using the Hamiltonian of mean force, internal energy, free energy and entropy of a dissipative scalar field are obtained. It is shown that a dissipative massive scalar field can be considered as a free massive scalar field described by an effective mass and dispersion relation. Internal energy of the scalar field, as the subsystem, is found in the limit of low temperature and weak and strong couplings to an Ohimc heat bath. Correlation functions for thermal and coherent states are derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InJPh..92..519T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InJPh..92..519T"><span>Binary photonic crystal for refractometric applications (TE case)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Taya, Sofyan A.; Shaheen, Somaia A.</p> <p>2018-04-01</p> <p>In this work, a binary photonic crystal is proposed as a refractometric sensor. The dispersion relation and the sensitivity are derived for transverse electric (TE) mode. In our analysis, the first layer is considered to be the analyte layer and the second layer is assumed to be left-handed material (LHM), dielectric or metal. It is found that the sensitivity of the LHM structure is the highest among other structures. It is possible for LHM photonic crystal to achieve a sensitivity improvement of 412% compared to conventional slab waveguide sensor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPlPh..84a9016M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPlPh..84a9016M"><span>Gyrokinetic stability of electron-positron-ion plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mishchenko, A.; Zocco, A.; Helander, P.; Könies, A.</p> <p>2018-02-01</p> <p>The gyrokinetic stability of electron-positron plasmas contaminated by an ion (proton) admixture is studied in a slab geometry. The appropriate dispersion relation is derived and solved. Stable K-modes, the universal instability, the ion-temperature-gradient-driven instability, the electron-temperature-gradient-driven instability and the shear Alfvén wave are considered. It is found that the contaminated plasma remains stable if the contamination degree is below some threshold and that the shear Alfvén wave can be present in a contaminated plasma in cases where it is absent without ion contamination.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28151583','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28151583"><span>Synthesis of Highly Active Sub-Nanometer Pt@Rh Core-Shell Nanocatalyst via a Photochemical Route: Porous Titania Nanoplates as a Superior Photoactive Support.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhan, Wen-Wen; Zhu, Qi-Long; Dang, Song; Liu, Zheng; Kitta, Mitsunori; Suenaga, Kazutomo; Zheng, Lan-Sun; Xu, Qiang</p> <p>2017-04-01</p> <p>Sub-nanometer Pt@Rh nanoparticles highly dispersed on MIL-125-derived porous TiO 2 nanoplates are successfully prepared for the first time by a photochemical route, where the porous TiO 2 nanoplates with a relatively high specific surface area play a dual role as both effective photoreductant and catalyst support. The resulting Pt@Rh/p-TiO 2 can be utilized as a highly active catalyst. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27324617','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27324617"><span>Short-Term Grafting of Human Neural Stem Cells: Electrophysiological Properties and Motor Behavioral Amelioration in Experimental Parkinsons Disease.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martnez-Serrano, Alberto; Pereira, Marta P; Avaliani, Natalia; Nelke, Anna; Kokaia, Merab; Ramos-Moreno, Tania</p> <p>2016-12-13</p> <p>Cell replacement therapy in Parkinsons disease (PD) still lacks a study addressing the acquisition of electrophysiological properties of human grafted neural stem cells and their relation with the emergence of behavioral recovery after transplantation in the short term. Here we study the electrophysiological and biochemical profiles of two ventral mesencephalic human neural stem cell (NSC) clonal lines (C30-Bcl-XL and C32-Bcl-XL) that express high levels of Bcl-XL to enhance their neurogenic capacity, after grafting in an in vitro parkinsonian model. Electrophysiological recordings show that the majority of the cells derived from the transplants are not mature at 6 weeks after grafting, but 6.7% of the studied cells showed mature electrophysiological profiles. Nevertheless, parallel in vivo behavioral studies showed a significant motor improvement at 7 weeks postgrafting in the animals receiving C30-Bcl-XL, the cell line producing the highest amount of TH+ cells. Present results show that, at this postgrafting time point, behavioral amelioration highly correlates with the spatial dispersion of the TH+ grafted cells in the caudate putamen. The spatial dispersion, along with a high number of dopaminergic-derived cells, is crucial for behavioral improvements. Our findings have implications for long-term standardization of stem cell-based approaches in Parkinsons disease.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015BrJPh..45..633N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015BrJPh..45..633N"><span>Ion Streaming Instabilities in Pair Ion Plasma and Localized Structure with Non-Thermal Electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nasir Khattak, M.; Mushtaq, A.; Qamar, A.</p> <p>2015-12-01</p> <p>Pair ion plasma with a fraction of non-thermal electrons is considered. We investigate the effects of the streaming motion of ions on linear and nonlinear properties of unmagnetized, collisionless plasma by using the fluid model. A dispersion relation is derived, and the growth rate of streaming instabilities with effect of streaming motion of ions and non-thermal electrons is calculated. A qausi-potential approach is adopted to study the characteristics of ion acoustic solitons. An energy integral equation involving Sagdeev potential is derived during this process. The presence of the streaming term in the energy integral equation affects the structure of the solitary waves significantly along with non-thermal electrons. Possible application of the work to the space and laboratory plasmas are highlighted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHEP...04..002C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHEP...04..002C"><span>Positive signs in massive gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheung, Clifford; Remmen, Grant N.</p> <p>2016-04-01</p> <p>We derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. The high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small island in the parameter space of ghost-free massive gravity. While the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1327304','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1327304"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheung, Clifford; Remmen, Grant N.</p> <p></p> <p>Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanot..29s4002A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanot..29s4002A"><span>Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor–acceptor bulk heterojunction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen</p> <p>2018-05-01</p> <p>7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate–adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2‧:5‧,2″:5″,2″‧-quaterthiophene (4T), a 4T:TAT donor–acceptor bulk heterojunction with a considerable HOMO-level offset at the donor–acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016OptEn..55d6105T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016OptEn..55d6105T"><span>Impairment assessment of orthogonal frequency division multiplexing over dispersion-managed links in backbone and backhaul networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamilarasan, Ilavarasan; Saminathan, Brindha; Murugappan, Meenakshi</p> <p>2016-04-01</p> <p>The past decade has seen the phenomenal usage of orthogonal frequency division multiplexing (OFDM) in the wired as well as wireless communication domains, and it is also proposed in the literature as a future proof technique for the implementation of flexible resource allocation in cognitive optical networks. Fiber impairment assessment and adaptive compensation becomes critical in such implementations. A comprehensive analytical model for impairments in OFDM-based fiber links is developed. The proposed model includes the combined impact of laser phase fluctuations, fiber dispersion, self phase modulation, cross phase modulation, four-wave mixing, the nonlinear phase noise due to the interaction of amplified spontaneous emission with fiber nonlinearities, and the photodetector noises. The bit error rate expression for the proposed model is derived based on error vector magnitude estimation. The performance analysis of the proposed model is presented and compared for dispersion compensated and uncompensated backbone/backhaul links. The results suggest that OFDM would perform better for uncompensated links than the compensated links due to the negligible FWM effects and there is a need for flexible compensation. The proposed model can be employed in cognitive optical networks for accurate assessment of fiber-related impairments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29460856','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29460856"><span>Ultraviolet photoelectron spectroscopy reveals energy-band dispersion for π-stacked 7,8,15,16-tetraazaterrylene thin films in a donor-acceptor bulk heterojunction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aghdassi, Nabi; Wang, Qi; Ji, Ru-Ru; Wang, Bin; Fan, Jian; Duhm, Steffen</p> <p>2018-05-11</p> <p>7,8,15,16-tetraazaterrylene (TAT) thin films grown on highly oriented pyrolytic graphite (HOPG) substrates were studied extensively with regard to their intrinsic and interfacial electronic properties by means of ultraviolet photoelectron spectroscopy (UPS). Merely weak substrate-adsorbate interaction occurs at the TAT/HOPG interface, with interface energetics being only little affected by the nominal film thickness. Photon energy-dependent UPS performed perpendicular to the molecular planes of TAT multilayer films at room temperature clearly reveals band-like intermolecular dispersion of the TAT highest occupied molecular orbital (HOMO) energy. Based on a comparison with a tight-binding model, a relatively narrow bandwidth of 54 meV is derived, which points to the presence of an intermediate regime between hopping and band-like hole transport. Upon additional deposition of 2,2':5',2″:5″,2″'-quaterthiophene (4T), a 4T:TAT donor-acceptor bulk heterojunction with a considerable HOMO-level offset at the donor-acceptor interface is formed. The 4T:TAT bulk heterojunction likewise exhibits intermolecular dispersion of the TAT HOMO energy, yet with a significant decreased bandwidth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AIPC.1447..571P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AIPC.1447..571P"><span>The temperature dependent collective dynamics of liquid sodium</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Patel, A. B.; Khambholja, S. G.; Bhatt, N. K.; Thakore, B. Y.; Vyas, P. R.; Jani, A. R.</p> <p>2012-06-01</p> <p>Liquid alkali metals show, near the melting point, an upward bending of the dispersion relation at small momentum transfer values. This so-called positive dispersion can be described within generalized hydrodynamics as a visco-elastic reaction of the liquid. There is a speculation that long-living clusters could be the physical reason behind this phenomenon. To shed light on this question a treatment of pseudopotential theory on liquid sodium was performed at different temperatures starting at the melting point. In the present study, we used the modified empty core potential due to Hasegawa et al. (J. Non-Cryst. Solids, 117/118 (1990) 300) along with a local field correction due to Ichimaru-Utsumi (IU) to explain electron-ion interaction. The potential used is composed of a full electron-ion interaction and a repulsive delta function, which represents the orthogonalisation effect due to the s core states. The temperature dependence of pair potential is calculated by using the damping term exp(-πkBTr/2kF). While the expression for phonon dispersions are derived within the memory function formalism. Results thus obtained are well compared with the other theoretical and experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol29/pdf/CFR-2012-title40-vol29-part300-appC.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title40-vol29/pdf/CFR-2012-title40-vol29-part300-appC.pdf"><span>40 CFR Appendix C to Part 300 - Swirling Flask Dispersant Effectiveness Test, Revised Standard Dispersant Toxicity Test, and...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-07-01</p> <p>... the SIM mode at a scan rate of 1.5 scans/second to maximize the linear quantitative range and... Research Group, Texas A&M University, 833 Graham Rd., College Station, TX, 77845, (409) 690-0095. 8... following information is contained in the detailed quantitative reports: average RRF derived from the...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10053E..2WP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10053E..2WP"><span>Tissue dispersion measurement techniques using optical coherence tomography</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Photiou, Christos; Pitris, Costas</p> <p>2017-02-01</p> <p>Dispersion, a result of wavelength-dependent index of refraction variations, causes pulse-width broadening with detrimental effects in many pulsed-laser applications. It is also considered to be one of the major causes of resolution degradation in Optical Coherence Tomography (OCT). However, dispersion is material dependent and, in tissue, Group Velocity Dispersion (GVD) could be used, for example, to detect changes associated with early cancer and result in more accurate disease diagnosis. In this summary we compare different techniques for estimating the GVD from OCT images, in order to evaluate their accuracy and applicability in highly scattering samples such as muscle and adipose tissue. The methods investigated included estimation of the GVD from (i) the point spread function (PSF) degradation, (ii) the shift (walk-off) between images taken at different center wavelengths and (iii) the second derivative of the spectral phase. The measurements were degraded by the presence of strong Mie scattering and speckle noise with the most robust being the PSF degradation and the least robust the phase derivative method. If the GVD is to be used to provide sensitive diagnostic information from highly scattering human tissues, it would be preferable to use the resolution degradation as an estimator of GVD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JChPh.137d4109M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JChPh.137d4109M"><span>Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Marianski, Mateusz; Asensio, Amparo; Dannenberg, J. J.</p> <p>2012-07-01</p> <p>We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran ϕ and ψ and C = O…N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95** to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3416875','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3416875"><span>Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Marianski, Mateusz; Asensio, Amparo; Dannenberg, J. J.</p> <p>2012-01-01</p> <p>We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran ϕ and ψ and C = O…N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95** to aug-cc-pVTZ (which would not be possible with systems as large as the peptides). PMID:22852599</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22852599','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22852599"><span>Comparison of some dispersion-corrected and traditional functionals as applied to peptides and conformations of cyclohexane derivatives.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Marianski, Mateusz; Asensio, Amparo; Dannenberg, J J</p> <p>2012-07-28</p> <p>We compare the energetic and structural properties of fully optimized α-helical and antiparallel β-sheet polyalanines and the energetic differences between axial and equatorial conformations of three cyclohexane derivatives (methyl, fluoro, and chloro) as calculated using several functionals designed to treat dispersion (B97-D, ωB97x-D, M06, M06L, and M06-2X) with other traditional functionals not specifically parametrized to treat dispersion (B3LYP, X3LYP, and PBE1PBE) and with experimental results. Those functionals developed to treat dispersion significantly overestimate interaction enthalpies of folding for the α-helix and predict unreasonable structures that contain Ramachandran φ and ψ and C = O...N H-bonding angles that are out of the bounds of databases compiled the β-sheets. These structures are consistent with overestimation of the interaction energies. For the cyclohexanes, these functionals overestimate the stabilities of the axial conformation, especially when used with smaller basis sets. Their performance improves when the basis set is improved from D95∗∗ to aug-cc-pVTZ (which would not be possible with systems as large as the peptides).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1198485-derivation-multiparameter-gamma-model-analyzing-residence-time-distribution-function-nonideal-flow-systems-alternative-advection-dispersion-equation','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1198485-derivation-multiparameter-gamma-model-analyzing-residence-time-distribution-function-nonideal-flow-systems-alternative-advection-dispersion-equation"><span>Derivation of a Multiparameter Gamma Model for Analyzing the Residence-Time Distribution Function for Nonideal Flow Systems as an Alternative to the Advection-Dispersion Equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Embry, Irucka; Roland, Victor; Agbaje, Oluropo; ...</p> <p>2013-01-01</p> <p>A new residence-time distribution (RTD) function has been developed and applied to quantitative dye studies as an alternative to the traditional advection-dispersion equation (AdDE). The new method is based on a jointly combined four-parameter gamma probability density function (PDF). The gamma residence-time distribution (RTD) function and its first and second moments are derived from the individual two-parameter gamma distributions of randomly distributed variables, tracer travel distance, and linear velocity, which are based on their relationship with time. The gamma RTD function was used on a steady-state, nonideal system modeled as a plug-flow reactor (PFR) in the laboratory to validate themore » effectiveness of the model. The normalized forms of the gamma RTD and the advection-dispersion equation RTD were compared with the normalized tracer RTD. The normalized gamma RTD had a lower mean-absolute deviation (MAD) (0.16) than the normalized form of the advection-dispersion equation (0.26) when compared to the normalized tracer RTD. The gamma RTD function is tied back to the actual physical site due to its randomly distributed variables. The results validate using the gamma RTD as a suitable alternative to the advection-dispersion equation for quantitative tracer studies of non-ideal flow systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24735437','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24735437"><span>Selfing ability and dispersal are positively related, but not affected by range position: a multispecies study on southern African Asteraceae.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>de Waal, C; Rodger, J G; Anderson, B; Ellis, A G</p> <p>2014-05-01</p> <p>Dispersal and breeding system traits are thought to affect colonization success. As species have attained their present distribution ranges through colonization, these traits may vary geographically. Although several theories predict associations between dispersal ability, selfing ability and the relative position of a population within its geographic range, there is little theoretical or empirical consensus on exactly how these three variables are related. We investigated relationships between dispersal ability, selfing ability and range position across 28 populations of 13 annual, wind-dispersed Asteraceae species from the Namaqualand region of South Africa. Controlling for phylogeny, relative dispersal ability--assessed from vertical fall time of fruits--was positively related to an index of autofertility--determined from hand-pollination experiments. These findings support the existence of two discrete syndromes: high selfing ability associated with good dispersal and obligate outcrossing associated with lower dispersal ability. This is consistent with the hypothesis that selection for colonization success drives the evolution of an association between these traits. However, no general effect of range position on dispersal or breeding system traits was evident. This suggests selection on both breeding system and dispersal traits acts consistently across distribution ranges. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Ap%26SS.363...47I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Ap%26SS.363...47I"><span>Star-formation rate in compact star-forming galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Izotova, I. Y.; Izotov, Y. I.</p> <p>2018-03-01</p> <p>We use the data for the Hβ emission-line, far-ultraviolet (FUV) and mid-infrared 22 μm continuum luminosities to estimate star formation rates < SFR > averaged over the galaxy lifetime for a sample of about 14000 bursting compact star-forming galaxies (CSFGs) selected from the Data Release 12 (DR12) of the Sloan Digital Sky Survey (SDSS). The average coefficient linking < SFR > and the star formation rate SFR0 derived from the Hβ luminosity at zero starburst age is found to be 0.04. We compare < SFR > s with some commonly used SFRs which are derived adopting a continuous star formation during a period of {˜} 100 Myr, and find that the latter ones are 2-3 times higher. It is shown that the relations between SFRs derived using a geometric mean of two star-formation indicators in the UV and IR ranges and reduced to zero starburst age have considerably lower dispersion compared to those with single star-formation indicators. We suggest that our relations for < SFR > determination are more appropriate for CSFGs because they take into account a proper temporal evolution of their luminosities. On the other hand, we show that commonly used SFR relations can be applied for approximate estimation within a factor of {˜} 2 of the < SFR > averaged over the lifetime of the bursting compact galaxy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29517977','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29517977"><span>Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-An; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X; Xie, Xi</p> <p>2018-05-04</p> <p>Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Nanot..29r5705H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Nanot..29r5705H"><span>Nanospikes functionalization as a universal strategy to disperse hydrophilic particles in non-polar media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hang, Tian; Chen, Hui-Jiuan; Wang, Ji; Lin, Di-an; Wu, Jiangming; Liu, Di; Cao, Yuhong; Yang, Chengduan; Liu, Chenglin; Xiao, Shuai; Gu, Meilin; Pan, Shuolin; Wu, Mei X.; Xie, Xi</p> <p>2018-05-01</p> <p>Dispersion of hydrophilic particles in non-polar media has many important applications yet remains difficult. Surfactant or amphiphilic functionalization was conventionally applied to disperse particles but is highly dependent on the particle/solvent system and may induce unfavorable effects and impact particle hydrophilic nature. Recently 2 μm size polystyrene microbeads coated with ZnO nanospikes have been reported to display anomalous dispersity in phobic media without using surfactant or amphiphilic functionalization. However, due to the lack of understanding whether this phenomenon was applicable to a wider range of conditions, little application has been derived from it. Here the anomalous dispersity phenomenons of hydrophilic microparticles covered with nanospikes were systematically assessed at various conditions including different particle sizes, material compositions, particle morphologies, solvent hydrophobicities, and surface polar groups. Microparticles were functionalized with nanospikes through hydrothermal route, followed by dispersity test in hydrophobic media. The results suggest nanospikes consistently prevent particle aggregation in various particle or solvent conditions, indicating the universal applicability of the anomalous dispersion phenomenons. This work provides insight on the anomalous dispersity of hydrophilic particles in various systems and offers potential application to use this method for surfactant-free dispersions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22121796-gravitational-potential-near-sun-from-segue-dwarf-kinematics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22121796-gravitational-potential-near-sun-from-segue-dwarf-kinematics"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang Lan; Liu Chao; Zhao Gang</p> <p></p> <p>To constrain the Galactic gravitational potential near the Sun ({approx}1.5 kpc), we derive and model the spatial and velocity distributions for a sample of 9000 K-dwarfs with spectra from SDSS/SEGUE, which yield radial velocities and abundances ([Fe/H] and [{alpha}/Fe]). We first derive the spatial density distribution for three abundance-selected sub-populations of stars accounting for the survey's selection function. The vertical profiles of these sub-populations are simple exponentials and their vertical dispersion profile is nearly isothermal. To model these data, we apply the 'vertical' Jeans equation, which relates the observable tracer number density and vertical velocity dispersion to the gravitational potentialmore » or vertical force. We explore a number of functional forms for the vertical force law, fit the dispersion and density profiles of all abundance-selected sub-populations simultaneously in the same potential, and explore all parameter co-variances using a Markov Chain Monte Carlo technique. Our fits constrain a disk mass scale height {approx}< 300 pc and the total surface mass density to be 67 {+-} 6 M{sub Sun} pc{sup -2} at |z| = 1.0 kpc of which the contribution from all stars is 42 {+-} 5 M{sub Sun} pc{sup -2} (assuming a contribution from cold gas of 13 M{sub Sun} pc{sup -2}). We find significant constraints on the local dark matter density of 0.0065 {+-} 0.0023 M{sub Sun} pc{sup -3} (0.25 {+-} 0.09 GeV cm{sup -3}). Together with recent experiments this firms up the best estimate of 0.0075 {+-} 0.0021 M{sub Sun} pc{sup -3} (0.28 {+-} 0.08 GeV cm{sup -3}), consistent with global fits of approximately round dark matter halos to kinematic data in the outskirts of the Galaxy.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984iue..prop.1881S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984iue..prop.1881S"><span>The Evolution of Stellar Chromospheres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simon, Theodore</p> <p>1984-07-01</p> <p>59 Vir (GO V) and 31 Com (GO III) are among the youngest G stars for which high dispersion spectra can be obtained with the short-wavelength camera of IUE. Their ages are estimated to be 0.2 Gyr (31 Com is a member of the Coma cluster). 59 Vir was observed at low resolution in a study of the relation between ultraviolet chromospheric activity and age in solar dwarf stars. 31 Com was observed as an example of a young yellow giant making its first crossing of the Hertzsprung Gap. Their spectra show bright chromospheric and transition region emission lines. We request observing time in this proposal to secure doubleshift (up to 16 hours) high dispersion exposures of each star with the SWP camera. These observations will allow us to resolve the profiles of individual chromospheric and transition region emission lines. From radiative transfer calculations, emission measure analyses, and line flux ratios, we will derive temperature, density, and velocity field models in the chromosphere and transition region. We will investigate the energy balance of these atmospheres in order to compare their non-thermal energy requirements with results derived for older solar-type dwarfs and more highly evolved yellow and red giants. With precautions to ensure the fidelity of the wavelength scale, we will also look far differential velocity shifts between TR and chromospheric lines, which may arise from global atmospheric circulation patterns. We have shown in previous work that redshifted TR lines are most clearly seen in giant stars and that the downflows causing the line shifts may affect the energy balance of giant atmospheres. As one of the very few normal G giants whose spectrum can be studied at high dispersion, 31 Com is important to such studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/875744','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/875744"><span>Finite Difference Modeling of Wave Progpagation in Acoustic TiltedTI Media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Zhang, Linbin; Rector III, James W.; Hoversten, G. Michael</p> <p>2005-03-21</p> <p>Based on an acoustic assumption (shear wave velocity is zero) and a dispersion relation, we derive an acoustic wave equation for P-waves in tilted transversely isotropic (TTI) media (transversely isotropic media with a tilted symmetry axis). This equation has fewer parameters than an elastic wave equation in TTI media and yields an accurate description of P-wave traveltimes and spreading-related attenuation. Our TTI acoustic wave equation is a fourth-order equation in time and space. We demonstrate that the acoustic approximation allows the presence of shear waves in the solution. The substantial differences in traveltime and amplitude between data created using VTImore » and TTI assumptions is illustrated in examples.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhFl...30d2106L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhFl...30d2106L"><span>Faraday waves in a Hele-Shaw cell</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Jing; Li, Xiaochen; Chen, Kaijie; Xie, Bin; Liao, Shijun</p> <p>2018-04-01</p> <p>We investigate Faraday waves in a Hele-Shaw cell via experimental, numerical, and theoretical studies. Inspired by the Kelvin-Helmholtz-Darcy theory, we develop the gap-averaged Navier-Stokes equations and end up with the stable standing waves with half frequency of the external forced vibration. To overcome the dependency of a numerical model on the experimental parameter of wave length, we take two-phase flow into consideration and a novel dispersion relation is derived. The numerical results compare well with our experimental data, which effectively validates our proposed mathematical model. Therefore, this model can produce robust solutions of Faraday wave patterns and resolve related physical phenomena, which demonstrates the practical importance of the present study.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.7984E..2RT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.7984E..2RT"><span>Lattice dynamics approach to determine the dependence of the time-of-flight of transversal polarized acoustic waves on external stress</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tarar, K. S.; Pluta, M.; Amjad, U.; Grill, W.</p> <p>2011-04-01</p> <p>Based on the lattice dynamics approach the dependence of the time-of-flight (TOF) on stress has been modeled for transversal polarized acoustic waves. The relevant dispersion relation is derived from the appropriate mass-spring model together with the dependencies on the restoring forces including the effect of externally applied stress. The lattice dynamics approach can also be interpreted as a discrete and strictly periodic lumped circuit. In that case the modeling represents a finite element approach. In both cases the properties relevant for wavelengths large with respect to the periodic structure can be derived from the respective limit relating also to low frequencies. The model representing a linear chain with stiffness to shear and additional stiffness introduced by extensional stress is presented and compared to existing models, which so far represent each only one of the effects treated here in combination. For a string this effect is well known from musical instruments. The counteracting effects are discussed and compared to experimental results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AcSpA.175..177K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AcSpA.175..177K"><span>Synthesis and photophysical properties of halogenated derivatives of (dibenzoylmethanato)boron difluoride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kononevich, Yuriy N.; Surin, Nikolay M.; Sazhnikov, Viacheslav A.; Svidchenko, Evgeniya A.; Aristarkhov, Vladimir M.; Safonov, Andrei A.; Bagaturyants, Alexander A.; Alfimov, Mikhail V.; Muzafarov, Aziz M.</p> <p>2017-03-01</p> <p>A series of (dibenzoylmethanato)boron difluoride (BF2DBM) derivatives with a halogen atom in one of the phenyl rings at the para-position were synthesized and used to elucidate the effects of changing the attached halogen atom on the photophysical properties of BF2DBM. The room-temperature absorption and fluorescence maxima of fluoro-, chloro-, bromo- and iodo-substituted derivatives of BF2DBM in THF are red-shifted by about 2-10 nm relative to the corresponding peaks of the parent BF2DBM. The fluorescence quantum yields of the halogenated BF2DBMs (except the iodinated derivative) are larger than that of the unsubstituted BF2DBM. All the synthesized compounds are able to form fluorescent exciplexes with benzene and toluene (emission maxima at λem = 433 and 445 nm, respectively). The conformational structure and electronic spectral properties of halogenated BF2DBMs have been modeled by DFT/TDDFT calculations at the PBE0/SVP level of theory. The structure and fluorescence spectra of exciplexes were calculated using the CIS method with empirical dispersion correction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1378920-improved-rotated-staggered-grid-finite-difference-method-fourth-order-temporal-accuracy-elastic-wave-modeling-anisotropic-media','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1378920-improved-rotated-staggered-grid-finite-difference-method-fourth-order-temporal-accuracy-elastic-wave-modeling-anisotropic-media"><span>An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Gao, Kai; Huang, Lianjie</p> <p>2017-08-31</p> <p>The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1378920-improved-rotated-staggered-grid-finite-difference-method-fourth-order-temporal-accuracy-elastic-wave-modeling-anisotropic-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1378920-improved-rotated-staggered-grid-finite-difference-method-fourth-order-temporal-accuracy-elastic-wave-modeling-anisotropic-media"><span>An improved rotated staggered-grid finite-difference method with fourth-order temporal accuracy for elastic-wave modeling in anisotropic media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gao, Kai; Huang, Lianjie</p> <p></p> <p>The rotated staggered-grid (RSG) finite-difference method is a powerful tool for elastic-wave modeling in 2D anisotropic media where the symmetry axes of anisotropy are not aligned with the coordinate axes. We develop an improved RSG scheme with fourth-order temporal accuracy to reduce the numerical dispersion associated with prolonged wave propagation or a large temporal step size. The high-order temporal accuracy is achieved by including high-order temporal derivatives, which can be converted to high-order spatial derivatives to reduce computational cost. Dispersion analysis and numerical tests show that our method exhibits very low temporal dispersion even with a large temporal step sizemore » for elastic-wave modeling in complex anisotropic media. Using the same temporal step size, our method is more accurate than the conventional RSG scheme. In conclusion, our improved RSG scheme is therefore suitable for prolonged modeling of elastic-wave propagation in 2D anisotropic media.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014PhDT........70R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014PhDT........70R"><span>An Updated Comprehensive Risk Analysis for Radioisotopes Identified of High Risk to National Security in the Event of a Radiological Dispersion Device Scenario</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Robinson, Alexandra R.</p> <p></p> <p>An updated global survey of radioisotope production and distribution was completed and subjected to a revised "down-selection methodology" to determine those radioisotopes that should be classified as potential national security risks based on availability and key physical characteristics that could be exploited in a hypothetical radiological dispersion device. The potential at-risk radioisotopes then were used in a modeling software suite known as Turbo FRMAC, developed by Sandia National Laboratories, to characterize plausible contamination maps known as Protective Action Guideline Zone Maps. This software also was used to calculate the whole body dose equivalent for exposed individuals based on various dispersion parameters and scenarios. Derived Response Levels then were determined for each radioisotope using: 1) target doses to members of the public provided by the U.S. EPA, and 2) occupational dose limits provided by the U.S. Nuclear Regulatory Commission. The limiting Derived Response Level for each radioisotope also was determined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ZNatA..65..315G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ZNatA..65..315G"><span>Higher-Order Nonlinear Effects on Wave Structures in a Multispecies Plasma with Nonisothermal Electrons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gill, Tarsem Singh; Bala, Parveen; Kaur, Harvinder</p> <p>2010-04-01</p> <p>In the present investigation, we have studied ion-acoustic solitary waves in a plasma consisting of warm positive and negative ions and nonisothermal electron distribution. We have used reductive perturbation theory (RPT) and derived a dispersion relation which supports only two ion-acoustic modes, viz. slow and fast. The expression for phase velocities of these modes is observed to be a function of parameters like nonisothermality, charge and mass ratio, and relative temperature of ions. A modified Korteweg-de Vries (KdV) equation with a (1+1/2) nonlinearity, also known as Schamel-mKdV model, is derived. RPT is further extended to include the contribution of higher-order terms. The results of numerical computation for such contributions are shown in the form of graphs in different parameter regimes for both, slow and fast ion-acoustic solitary waves having several interesting features. For the departure from the isothermally distributed electrons, a generalized KdV equation is derived and solved. It is observed that both rarefactive and compressive solitons exist for the isothermal case. However, nonisothermality supports only the compressive type of solitons in the given parameter regime.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ZNatA..72.1159D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ZNatA..72.1159D"><span>Solitons, Lie Group Analysis and Conservation Laws of a (3+1)-Dimensional Modified Zakharov-Kuznetsov Equation in a Multicomponent Magnetised Plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Du, Xia-Xia; Tian, Bo; Chai, Jun; Sun, Yan; Yuan, Yu-Qiang</p> <p>2017-11-01</p> <p>In this paper, we investigate a (3+1)-dimensional modified Zakharov-Kuznetsov equation, which describes the nonlinear plasma-acoustic waves in a multicomponent magnetised plasma. With the aid of the Hirota method and symbolic computation, bilinear forms and one-, two- and three-soliton solutions are derived. The characteristics and interaction of the solitons are discussed graphically. We present the effects on the soliton's amplitude by the nonlinear coefficients which are related to the ratio of the positive-ion mass to negative-ion mass, number densities, initial densities of the lower- and higher-temperature electrons and ratio of the lower temperature to the higher temperature for electrons, as well as by the dispersion coefficient, which is related to the ratio of the positive-ion mass to the negative-ion mass and number densities. Moreover, using the Lie symmetry group theory, we derive the Lie point symmetry generators and the corresponding symmetry reductions, through which certain analytic solutions are obtained via the power series expansion method and the (G'/G) expansion method. We demonstrate that such an equation is strictly self-adjoint, and the conservation laws associated with the Lie point symmetry generators are derived.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4672791','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4672791"><span>Chemical dispersants can suppress the activity of natural oil-degrading microorganisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kleindienst, Sara; Seidel, Michael; Ziervogel, Kai; Grim, Sharon; Loftis, Kathy; Harrison, Sarah; Malkin, Sairah Y.; Perkins, Matthew J.; Field, Jennifer; Sogin, Mitchell L.; Dittmar, Thorsten; Passow, Uta; Medeiros, Patricia M.; Joye, Samantha B.</p> <p>2015-01-01</p> <p>During the Deepwater Horizon oil well blowout in the Gulf of Mexico, the application of 7 million liters of chemical dispersants aimed to stimulate microbial crude oil degradation by increasing the bioavailability of oil compounds. However, the effects of dispersants on oil biodegradation rates are debated. In laboratory experiments, we simulated environmental conditions comparable to the hydrocarbon-rich, 1,100 m deep plume that formed during the Deepwater Horizon discharge. The presence of dispersant significantly altered the microbial community composition through selection for potential dispersant-degrading Colwellia, which also bloomed in situ in Gulf deep waters during the discharge. In contrast, oil addition to deepwater samples in the absence of dispersant stimulated growth of natural hydrocarbon-degrading Marinobacter. In these deepwater microcosm experiments, dispersants did not enhance heterotrophic microbial activity or hydrocarbon oxidation rates. An experiment with surface seawater from an anthropogenically derived oil slick corroborated the deepwater microcosm results as inhibition of hydrocarbon turnover was observed in the presence of dispersants, suggesting that the microcosm findings are broadly applicable across marine habitats. Extrapolating this comprehensive dataset to real world scenarios questions whether dispersants stimulate microbial oil degradation in deep ocean waters and instead highlights that dispersants can exert a negative effect on microbial hydrocarbon degradation rates. PMID:26553985</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70033132','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70033132"><span>Multiple proximate and ultimate causes of natal dispersal in white-tailed deer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Long, E.S.; Diefenbach, D.R.; Rosenberry, C.S.; Wallingford, B.D.</p> <p>2008-01-01</p> <p>Proximate and ultimate causes of dispersal in vertebrates vary, and relative importance of these causes is poorly understood. Among populations, inter- and intrasexual social cues for dispersal are thought to reduce inbreeding and local mate competition, respectively, and specific emigration cue may affect dispersal distance, such that inbreeding avoidance dispersal tends to be farther than dispersal to reduce local competition. To investigate potential occurrence of multiple proximate and ultimate causes of dispersal within populations, we radio-marked 363 juvenile male white-tailed deer (Odocoileus virginianus) in 2 study areas in Pennsylvania. Natal dispersal probability and distance were monitored over a 3-year period when large-scale management changes reduced density of adult females and increased density of adult males. Most dispersal (95-97%) occurred during two 12-week periods: spring, when yearling males still closely associate with related females, and prior to fall breeding season, when yearling males closely associate with other breeding-age males. Following changes to sex and age structure that reduced potential for inbreeding and increased potential for mate competition, annual dispersal probability did not change; however, probability of spring dispersal decreased, whereas probability of fall dispersal increased. Spring dispersal distances were greater than fall dispersal distances, suggesting that adaptive inbreeding avoidance dispersal requires greater distance than mate competition dispersal where opposite-sex relatives are philopatric and populations are not patchily distributed. Both inbreeding avoidance and mate competition are important ultimate causes of dispersal of white-tailed deer, but ultimate motivations for dispersal are proximately cued by different social mechanisms and elicit different responses in dispersers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPhCS.872a2048S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPhCS.872a2048S"><span>Water repellent properties of dispersed metals containing low-dimensional forms of ammonium compounds on the surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Syrkov, A. G.; Kabirov, V. R.; Silivanov, M. O.</p> <p>2017-07-01</p> <p>For the first time the change of the water repellent properties of dispersed copper, modified using quaternary ammonium compounds on 24 h time scale in saturated water vapours was studied. Exponential time dependences of the water repellent properties of dispersed copper with adsopted QAC were derived and characterized. It was established that the samples modified in mixed and consistent modes by both modifiers reach the saturation state faster than others, due to the small number of hydrophilic centers on the surface of metals. The last conclusion was confirmed by the distribution spectra of centers of adsorption, which were obtained by the adsorption of acid-base indicators for more dispersed samples based on aluminum powder.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/10496667','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/10496667"><span>Does the dose-solubility ratio affect the mean dissolution time of drugs?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lánský, P; Weiss, M</p> <p>1999-09-01</p> <p>To present a new model for describing drug dissolution. On the basis of the new model to characterize the dissolution profile by the distribution function of the random dissolution time of a drug molecule, which generalizes the classical first order model. Instead of assuming a constant fractional dissolution rate, as in the classical model, it is considered that the fractional dissolution rate is a decreasing function of the dissolved amount controlled by the dose-solubility ratio. The differential equation derived from this assumption is solved and the distribution measures (half-dissolution time, mean dissolution time, relative dispersion of the dissolution time, dissolution time density, and fractional dissolution rate) are calculated. Finally, instead of monotonically decreasing the fractional dissolution rate, a generalization resulting in zero dissolution rate at time origin is introduced. The behavior of the model is divided into two regions defined by q, the ratio of the dose to the solubility level: q < 1 (complete dissolution of the dose, dissolution time) and q > 1 (saturation of the solution, saturation time). The singular case q = 1 is also treated and in this situation the mean as well as the relative dispersion of the dissolution time increase to infinity. The model was successfully fitted to data (1). This empirical model is descriptive without detailed physical reasoning behind its derivation. According to the model, the mean dissolution time is affected by the dose-solubility ratio. Although this prediction appears to be in accordance with preliminary application, further validation based on more suitable experimental data is required.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/7119063-heavy-metal-contamination-greenland-fjord-system-mine-wastes','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7119063-heavy-metal-contamination-greenland-fjord-system-mine-wastes"><span>Heavy metal contamination of a Greenland Fjord system by mine wastes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Loring, D.H.; Asmund, G.</p> <p></p> <p>Since 1973, about 500,000 tons/yr of metal-rich particulate tailings from a lead/zinc flotation mill have been discharged through a submarine outfall into a two-fjord system on the west coast of Greenland. Differential solubilization of particulate metals by seawater, seasonal water mixing, and sill exchange tailings dispersal processes have resulted in high, but seasonally variable, Zn, Cd, and Pb contamination of the water and suspended particulate matter (SPM). Chemical partition of the SPM shows that most of the Pb, but relatively low proportions of Zn and Cd are weakly bound to the SPM. Such particulate metal characteristics allow the real timemore » effects of tailings discharges and dispersal on the system to be traced even in the sediments where tailings accumulation is very slow. Fjord seaweeds and blue mussels also contain varying amounts of Zn, Pb, and Cd, depending on the metal and their location relative to the tailings outfall. They apparently responded almost instantly to the metal contamination as did the water and SPM. High Pb concentrations in the fjord mussels most likely derive from the preferential uptake of available particulate Pb, whereas the seaweeds appear to derive most of their heavy metal concentrations from the dissolved phase. The evidence from this and other sites, and from experimental work, indicates that any discharge of Pb-particles into the marine environment, either directly as mine wastes or indirectly from natural runoff from current and former lead mining sites, results in immediate lead contamination of the in situ mussel population. 20 refs., 4 figs., 5 tab.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007JPlPh..73..981P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007JPlPh..73..981P"><span>Magnetosonic solitons in space plasmas: dark or bright solitons?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhotelov, O. A.; Onishchenko, O. G.; Balikhin, M. A.; Stenflo, L.; Shukla, P. K.</p> <p>2007-12-01</p> <p>The nonlinear theory of large-amplitude magnetosonic (MS) waves in highβ space plasmas is revisited. It is shown that solitary waves can exist in the form of `bright' or `dark' solitons in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion, which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived.It takes into account general plasma equilibria, such as the Dory-Guest-Harris (DGH) or Kennel-Ashour-Abdalla (KA) loss-cone equilibria, as well as distributions with a power-law velocity dependence that can be modelled by κdistributions. It is shown that in a bi-Maxwellian plasma the dispersion is negative, i.e. the phase velocity decreases with an increase of the wavenumber. This means that the solitary solution in this case has the form of a `bright' soliton with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas, such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to existing satellite wave observations is outlined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFMNG31B1596P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFMNG31B1596P"><span>Magnetosonic Solitons in Non-Maxwellian Space Plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhotelov, O. A.; Balikhin, M.; Onishchenko, O. G.</p> <p>2006-12-01</p> <p>The nonlinear theory of large-amplitude magnetosonic (MS) waves in high-beta space plasmas is developed. It is shown that solitary waves can exist in the form of magnetic humps and holes in which the magnetic field is increased or decreased relative to the background magnetic field. This depends on the shape of the equilibrium ion velocity distribution function. The basic parameter that controls the nonlinear structure is the wave dispersion which can be either positive or negative. A general dispersion relation for MS waves propagating perpendicularly to the external magnetic field in a plasma with an arbitrary velocity distribution function is derived. It takes into account general plasma equilibria such as the Dory-Guest-Harris or Kennel- Ashour-Abdalla loss cone equilibria, as well as distributions with a power law velocity dependence that can be modelled by kappa-distributions. It is shown that in Maxwellian and bi-Maxwellian plasmas the dispersion is negative, i.e. the phase velocity decreases with an increase of the wave number. This means that the solitary solution in this case has the form of a magnetic hump with the magnetic field increased. On the contrary, in some non-Maxwellian plasmas such as those with ring-type ion distributions or DGH plasmas, the solitary solution may have the form of a magnetic hole. The results of similar investigations based on nonlinear Hall-MHD equations are reviewed. The relevance of our theoretical results to experimental observations is outlined</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599060-start-current-dielectric-loaded-grating-smith-purcell-radiation','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599060-start-current-dielectric-loaded-grating-smith-purcell-radiation"><span>Start current of dielectric-loaded grating in Smith-Purcell radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liu, Wenxin, E-mail: lwenxin@mail.ie.ac.cn; Wang, Yong, E-mail: wangyong3845@sina.com; Cao, Miaomiao, E-mail: mona486@yeah.net</p> <p></p> <p>In this paper, a three-dimensional dielectric loaded grating (DLG) is proposed for the Smith-Purcell (SP) device. Taking into the considerations of thickness and width of electron beam, the dispersion equation is derived by using field matches method. The complex frequency is obtained by the numerical solution of dispersion equation, in which the imaginary part represents linear growth rate. The impacts of the electron beam filling factor (EBFF) on growth rate are discussed under the condition that the beam current and beam current density are kept as constants, respectively. In addition, the start current for SP oscillator is obtained by usingmore » the dispersion relation combined with boundary conditions. The relationship between the start current and other parameters is discussed and compared with the conventional metal grating. The results show that with the increasing of EBFF, the peak growth rate increases rapidly firstly and then decreases slowly, in which the current and current density are kept as constants, respectively. For the SP oscillator, the start current is increased with the shifting up beam voltage, but it is decreased with the improved EBFF, and only it has a slightly increasing trend when EBFF is close to 1. In addition, the start current is decreased with the increasing of relative dielectric constant, which indicates that by introducing DLG, the start current can be effectively reduced. Theoretical results are in good agreement with that of the simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPlPh..83b9001D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPlPh..83b9001D"><span>Photon polarizability and its effect on the dispersion of plasma waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dodin, I. Y.; Ruiz, D. E.</p> <p>2017-04-01</p> <p>High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1353397-photon-polarizability-its-effect-dispersion-plasma-waves','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1353397-photon-polarizability-its-effect-dispersion-plasma-waves"><span>Photon polarizability and its effect on the dispersion of plasma waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Dodin, I. Y.; Ruiz, D. E.</p> <p>2017-03-06</p> <p>High-frequency photons travelling in plasma exhibit a linear polarizability that can influence the dispersion of linear plasma waves. We present a detailed calculation of this effect for Langmuir waves as a characteristic example. Here, two alternative formulations are given. In the first formulation, we calculate the modified dispersion of Langmuir waves by solving the governing equations for the electron fluid, where the photon contribution enters as a ponderomotive force. In the second formulation, we provide a derivation based on the photon polarizability. Then, the calculation of ponderomotive forces is not needed, and the result is more general.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27857395','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27857395"><span>Towards an analytical framework for tailoring supercontinuum generation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Castelló-Lurbe, David; Vermeulen, Nathalie; Silvestre, Enrique</p> <p>2016-11-14</p> <p>A fully analytical toolbox for supercontinuum generation relying on scenarios without pulse splitting is presented. Furthermore, starting from the new insights provided by this formalism about the physical nature of direct and cascaded dispersive wave emission, a unified description of this radiation in both normal and anomalous dispersion regimes is derived. Previously unidentified physics of broadband spectra reported in earlier works is successfully explained on this basis. Finally, a foundry-compatible few-millimeters-long silicon waveguide allowing octave-spanning supercontinuum generation pumped at telecom wavelengths in the normal dispersion regime is designed, hence showcasing the potential of this new analytical approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/804126-dispersive-effects-from-comparison-electron-positron-scattering-from','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/804126-dispersive-effects-from-comparison-electron-positron-scattering-from"><span>Dispersive effects from a comparison of electron and positron scattering from</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Paul Gueye; M. Bernheim; J. F. Danel</p> <p>1998-05-01</p> <p>Dispersive effects have been investigated by comparing elastic scattering of electrons and positrons from {sup 12}C at the Saclay Linear Accelerator. The results demonstrate that dispersive effects at energies of 262 MeV and 450 MeV are less than 2% below the first diffraction minimum [0.95 < q{sub eff} (fm{sup -1}) < 1.66] in agreement with the prediction of Friar and Rosen. At the position of this minimum (q{sub eff} = 1.84 fm{sup -1}), the deviation between the positron scattering cross section and the cross section derived from the electron results is -44% {+-} 30%.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AAS...200.1705S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AAS...200.1705S"><span>QSO Emission Lines and the Black Hole-Galaxy Bulge Relation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shields, G. A.; Gebhardt, K.; Salviander, S.; Wills, B. J.; Yuan, M.; Xie, B.; Dietrich, M.</p> <p>2002-05-01</p> <p>Supermassive black holes in galactic nuclei have masses closely related to the properties of the host galaxy bulge. In particular, MBH varies as the fourth power of σ , the stellar velocity dispersion (Tremaine et al. 2002, ApJ in press, and references therein). The origin of the black hole-bulge relation is unknown, although theoretical suggestions abound. An important clue would be provided by knowledge of how the relation has evolved over cosmic time. This requires measurement of black hole masses and galactic potentials at large look-back times, which is difficult to do directly. However, black hole masses may be derived from the continuum luminosity and the widths of the broad Balmer lines of QSOs (e.g., Kaspi et al. 2000, ApJ 533, 631), and σ may be derived from the widths of the narrow [O III] lines (Nelson 2000, ApJ, 544, L91). We have carried out this program for a set of published and unpublished observations of Seyfert galaxies and QSOs. Results for low redshift objects support the use of this method to derive MBH and σ . The few available measurements of high redshift QSOs are consistent little or no change in the MBH-σ relation between the present and redshifts up to z = 3.3, when the universe was only two billion years old. This material is based in part upon work supported by the Texas Advanced Research Program under Grant No. 003658-0177-2001.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NucFu..57e6013W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NucFu..57e6013W"><span>High frequency fishbone driven by passing energetic ions in tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Feng; Yu, L. M.; Fu, G. Y.; Shen, Wei</p> <p>2017-05-01</p> <p>High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835-8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energy δ {{W}k} is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work (Wang 2001 Phys. Rev. Lett. 86 5286-8). For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. Numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold {βc} for instability and decrease mode frequency.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1358035-high-frequency-fishbone-driven-passing-energetic-ions-tokamak-plasmas','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1358035-high-frequency-fishbone-driven-passing-energetic-ions-tokamak-plasmas"><span>High frequency fishbone driven by passing energetic ions in tokamak plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wang, Feng; Yu, L. M.; Fu, G. Y.; ...</p> <p>2017-03-22</p> <p>High frequency fishbone instability driven by passing energetic ions was first reported in the Princeton beta experiment with tangential neutral-beam-injection (Heidbrink et al 1986 Phys. Rev. Lett. 57 835–8). It could play an important role for ITER-like burning plasmas, where α particles are mostly passing particles. In this work, a generalized energetic ion distribution function and finite drift orbit width effect are considered to improve the theoretical model for passing particle driving fishbone instability. For purely passing energetic ions with zero drift orbit width, the kinetic energymore » $$\\delta {{W}_{k}}$$ is derived analytically. The derived analytic expression is more accurate as compared to the result of previous work. For a generalized energetic ion distribution function, the fishbone dispersion relation is derived and is solved numerically. As a result, numerical results show that broad and off-axis beam density profiles can significantly increase the beam ion beta threshold $${{\\beta}_{c}}$$ for instability and decrease mode frequency.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27861772','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27861772"><span>Three-dimensional habitat structure and landscape genetics: a step forward in estimating functional connectivity.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Milanesi, P; Holderegger, R; Bollmann, K; Gugerli, F; Zellweger, F</p> <p>2017-02-01</p> <p>Estimating connectivity among fragmented habitat patches is crucial for evaluating the functionality of ecological networks. However, current estimates of landscape resistance to animal movement and dispersal lack landscape-level data on local habitat structure. Here, we used a landscape genetics approach to show that high-fidelity habitat structure maps derived from Light Detection and Ranging (LiDAR) data critically improve functional connectivity estimates compared to conventional land cover data. We related pairwise genetic distances of 128 Capercaillie (Tetrao urogallus) genotypes to least-cost path distances at multiple scales derived from land cover data. Resulting β values of linear mixed effects models ranged from 0.372 to 0.495, while those derived from LiDAR ranged from 0.558 to 0.758. The identification and conservation of functional ecological networks suffering from habitat fragmentation and homogenization will thus benefit from the growing availability of detailed and contiguous data on three-dimensional habitat structure and associated habitat quality. © 2016 by the Ecological Society of America.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26207934','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26207934"><span>Waterborne Colloidal Polymer/Silica Hybrid Dispersions and Their Assembly into Mesoporous Poly(melamine-formaldehyde) Xerogels.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Schwarz, Dana; Weber, Jens</p> <p>2015-08-04</p> <p>The acid-catalyzed polycondensation of oligo(melamine-formaldehyde) in aqueous phase and in the presence of silica nanoparticles leads to a stable dispersion of coexisting silica and polymer nanoparticles. The dispersion can be processed into mesoporous xerogels (SBET ≈ 200 m(2) g(-1)), whose porosity can be enhanced by etching of silica up to specific surface areas of >400 m(2) g(-1). The formation mechanism and the characteristics of the hybrid dispersion are crucial to the materials derived from it and analyzed in detail using a variety of experimental techniques (electron and force microscopy, light and X-ray scattering, ultracentrifugation, and spectroscopy). The transformation of the dispersion into xerogels by electrostatic destabilization is described. Furthermore, the obtained materials are characterized with regard to their porosity and morphology using microscopy and porosimetry. The impact of selected synthesis parameters on the obtained properties is discussed, and it was found (most interestingly) that stable porosity was only observed if silica nanoparticles were present within the dispersion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22663706-accurate-recovery-velocity-dispersion-from-radio-interferometers','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22663706-accurate-recovery-velocity-dispersion-from-radio-interferometers"><span>Accurate Recovery of H i Velocity Dispersion from Radio Interferometers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ianjamasimanana, R.; Blok, W. J. G. de; Heald, George H., E-mail: roger@mpia.de, E-mail: blok@astron.nl, E-mail: George.Heald@csiro.au</p> <p>2017-05-01</p> <p>Gas velocity dispersion measures the amount of disordered motion of a rotating disk. Accurate estimates of this parameter are of the utmost importance because the parameter is directly linked to disk stability and star formation. A global measure of the gas velocity dispersion can be inferred from the width of the atomic hydrogen (H i) 21 cm line. We explore how several systematic effects involved in the production of H i cubes affect the estimate of H i velocity dispersion. We do so by comparing the H i velocity dispersion derived from different types of data cubes provided by Themore » H i Nearby Galaxy Survey. We find that residual-scaled cubes best recover the H i velocity dispersion, independent of the weighting scheme used and for a large range of signal-to-noise ratio. For H i observations, where the dirty beam is substantially different from a Gaussian, the velocity dispersion values are overestimated unless the cubes are cleaned close to (e.g., ∼1.5 times) the noise level.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70174357','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70174357"><span>Dispersion in tidally averaged transport equation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Cheng, R.T.; Casulli, V.</p> <p>1992-01-01</p> <p>A general governing inter-tidal transport equation for conservative solutes has been derived without invoking the weakly nonlinear approximation. The governing inter-tidal transport equation is a convection-dispersion equation in which the convective velocity is a mean Lagrangian residual current, and the inter-tidal dispersion coefficient is defined by a dispersion patch. When the weakly nonlinear condition is violated, the physical significance of the Stokes' drift, as used in tidal dynamics, becomes questionable. For nonlinear problems, analytical solutions for the mean Lagrangian residual current and for the inter-tidal dispersion coefficient do not exist, they must be determined numerically. A rectangular tidal inlet with a constriction is used in the first example. The solutions of the residual currents and the computed properties of the inter-tidal dispersion coefficient are used to illuminate the mechanisms of the inter-tidal transport processes. Then, the present formulation is tested in a geometrically complex tidal estuary – San Francisco Bay, California. The computed inter-tidal dispersion coefficients are in the range between 5×104 and 5×106 cm2/sec., which are consistent with the values reported in the literature</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JHyd..456..101C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JHyd..456..101C"><span>Generalized analytical solutions to sequentially coupled multi-species advective-dispersive transport equations in a finite domain subject to an arbitrary time-dependent source boundary condition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chen, Jui-Sheng; Liu, Chen-Wuing; Liang, Ching-Ping; Lai, Keng-Hsin</p> <p>2012-08-01</p> <p>SummaryMulti-species advective-dispersive transport equations sequentially coupled with first-order decay reactions are widely used to describe the transport and fate of the decay chain contaminants such as radionuclide, chlorinated solvents, and nitrogen. Although researchers attempted to present various types of methods for analytically solving this transport equation system, the currently available solutions are mostly limited to an infinite or a semi-infinite domain. A generalized analytical solution for the coupled multi-species transport problem in a finite domain associated with an arbitrary time-dependent source boundary is not available in the published literature. In this study, we first derive generalized analytical solutions for this transport problem in a finite domain involving arbitrary number of species subject to an arbitrary time-dependent source boundary. Subsequently, we adopt these derived generalized analytical solutions to obtain explicit analytical solutions for a special-case transport scenario involving an exponentially decaying Bateman type time-dependent source boundary. We test the derived special-case solutions against the previously published coupled 4-species transport solution and the corresponding numerical solution with coupled 10-species transport to conduct the solution verification. Finally, we compare the new analytical solutions derived for a finite domain against the published analytical solutions derived for a semi-infinite domain to illustrate the effect of the exit boundary condition on coupled multi-species transport with an exponential decaying source boundary. The results show noticeable discrepancies between the breakthrough curves of all the species in the immediate vicinity of the exit boundary obtained from the analytical solutions for a finite domain and a semi-infinite domain for the dispersion-dominated condition.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22140007','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22140007"><span>Determination of sulfonamides in livers using matrix solid-phase dispersion extraction high-performance liquid chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Yupu; Xu, Xu; Qi, Xiao; Gao, Wenquan; Sun, Shuo; Li, Xiaotian; Jiang, Chengfei; Yu, Aimin; Zhang, Hanqi; Yu, Yong</p> <p>2012-01-01</p> <p>The matrix solid-phase dispersion (MSPD) was applied for extracting seven sulfonamides (SAs) in liver samples. The separation and determination were carried out by high-performance liquid chromatography. The analytes were derivated with fluorescamine and detected with fluorescence detector. The types of dispersion adsorbents for MSPD were examined and the highest recovery was obtained when the diatomaceous earth was used as the dispersion adsorbent and the mass ratio of dispersion adsorbent to sample was 3:1. The acetone was used as the elution solvent. Under the optimal conditions, the linear range for determining the SAs in liver samples was 5.0-1000.0 ng/g. The porcine, chicken and cattle liver samples were analyzed and the average recoveries of seven SAs were higher than 84.6%. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17714501','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17714501"><span>The evolution of dispersal in a Levins' type metapopulation model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jansen, Vincent A A; Vitalis, Renaud</p> <p>2007-10-01</p> <p>We study the evolution of the dispersal rate in a metapopulation model with extinction and colonization dynamics, akin to the model as originally described by Levins. To do so we extend the metapopulation model with a description of the within patch dynamics. By means of a separation of time scales we analytically derive a fitness expression from first principles for this model. The fitness function can be written as an inclusive fitness equation (Hamilton's rule). By recasting this equation in a form that emphasizes the effects of competition we show the effect of the local competition and the local population size on the evolution of dispersal. We find that the evolution of dispersal cannot be easily interpreted in terms of avoidance of kin competition, but rather that increased dispersal reduces the competitive ability. Our model also yields a testable prediction in term of relatedness and life-history parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...835..271B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...835..271B"><span>The BRAVE Program. I. Improved Bulge Stellar Velocity Dispersion Estimates for a Sample of Active Galaxies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batiste, Merida; Bentz, Misty C.; Manne-Nicholas, Emily R.; Onken, Christopher A.; Bershady, Matthew A.</p> <p>2017-02-01</p> <p>We present new bulge stellar velocity dispersion measurements for 10 active galaxies with secure MBH determinations from reverberation mapping. These new velocity dispersion measurements are based on spatially resolved kinematics from integral-field (IFU) spectroscopy. In all but one case, the field of view of the IFU extends beyond the effective radius of the galaxy, and in the case of Mrk 79 it extends to almost one half the effective radius. This combination of spatial resolution and field of view allows for secure determinations of stellar velocity dispersion within the effective radius for all 10 target galaxies. Spatially resolved maps of the first (V) and second (σ⋆) moments of the line of sight velocity distribution indicate the presence of kinematic substructure in most cases. In future projects we plan to explore methods of correcting for the effects of kinematic substructure in the derived bulge stellar velocity dispersion measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995JaJAP..34.5615S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995JaJAP..34.5615S"><span>Refractive Index Dispersion in Ternary Germanate Glasses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sakaguchi, Shigeki; Todoroki, Shinichi; Rigout, Nathalie</p> <p>1995-10-01</p> <p>The refractive index dispersion in germanate oxyfluoride glasses of GeO2-P2O5-MF2 (M=Ca, Zn), which are developed for optical fiber application, is investigated in the 0.4-4 µ m wavelength range by the minimum deviation method. The prepared glasses have a GeO2 content varying from 80 to 30 mol%. The dispersion curves for these glasses tend to shift to shorter wavelengths as the GeO2 content is decreased. Material dispersions are also derived from the refractive index measurements and the zero-material dispersion wavelengths (λ0) are found in the vicinity of 1.5 µ m. On the basis of the empirical relationship between λ0 and the minimum loss wavelength (λ0), the λ min values are located at around 1.8 µ m. A minimum loss of as low as 0.08 dB/km is expected for the present germanate glasses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850018855','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850018855"><span>Conducting a thermal conductivity survey</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Allen, P. B.</p> <p>1985-01-01</p> <p>A physically transparent approximate theory of phonon decay rates is presented starting from a pair potential model of the interatomic forces in an insulator or semiconductor. The theory applies in the classical regime and relates the 3-phonon decay rate to the third derivative of the pair potential. Phonon dispersion relations do not need to be calculated, as sum rules relate all the needed quantities directly to the pair potential. The Brillouin zone averaged phonon lifetime turns out to involve a dimensionless measure of the anharmonicity multiplied by an effective density of states for 3-phonon decay. Results are given for rare gas and alkali halide crystals. For rare gases, the results are in good agreement with more elaborate perturbation calculations. Comparison to experimental data on phonon linewidths and thermal conductivity are made.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.C11C0776D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.C11C0776D"><span>Ice shelf structure from dispersion curve analysis of passive-source seismic data, Ross Ice Shelf, Antarctica</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Diez, A.; Bromirski, P. D.; Gerstoft, P.; Stephen, R. A.; Anthony, R. E.; Aster, R. C.; Cai, C.; Nyblade, A.; Wiens, D.</p> <p>2015-12-01</p> <p>An L-shaped array of three-component short period seismic stations was deployed at the Ross Ice Shelf, Antarctica approximately 100 km south of the ice edge, near 180° longitude, from November 18 through 28, 2014. Polarization analysis of data from these stations clearly shows propagating waves from below the ice shelf for frequencies below 2 Hz. Energy above 2 Hz is dominated by Rayleigh and Love waves propagating from the north. Frequency-slowness plots were calculated using beamforming. Resulting Love and Rayleigh wave dispersion curves were inverted for the shear wave velocity profile, from which we derive a density profile. The derived shear wave velocity profiles differ within the firn for the inversions using Rayleigh and Love wave dispersion curves. This difference is attributed to an effective anisotropy due to fine layering. The layered structure of firn, ice, water, and ocean floor results in a characteristic dispersion curve pattern below 7 Hz. We investigate the observed structures in more detail by forward modeling of Rayleigh wave dispersion curves for representative firn, ice, water, sediment structures. Rayleigh waves are observed when wavelengths are long enough to span the distance from the ice shelf surface to the seafloor. Our results show that the analysis of high frequency Rayleigh waves on an ice shelf has the ability to resolve ice shelf thickness, water column thickness, and the physical properties of the underlying ocean floor using passive-source seismic data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JOpt...18f5102S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JOpt...18f5102S"><span>Extending of flat normal dispersion profile in all-solid soft glass nonlinear photonic crystal fibres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard</p> <p>2016-06-01</p> <p>The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3990620','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3990620"><span>The Trajectory of Dispersal Research in Conservation Biology. Systematic Review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Driscoll, Don A.; Banks, Sam C.; Barton, Philip S.; Ikin, Karen; Lentini, Pia; Lindenmayer, David B.; Smith, Annabel L.; Berry, Laurence E.; Burns, Emma L.; Edworthy, Amanda; Evans, Maldwyn J.; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C.; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R.; Westgate, Martin J.</p> <p>2014-01-01</p> <p>Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research. PMID:24743447</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24743447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24743447"><span>The trajectory of dispersal research in conservation biology. Systematic review.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Driscoll, Don A; Banks, Sam C; Barton, Philip S; Ikin, Karen; Lentini, Pia; Lindenmayer, David B; Smith, Annabel L; Berry, Laurence E; Burns, Emma L; Edworthy, Amanda; Evans, Maldwyn J; Gibson, Rebecca; Heinsohn, Rob; Howland, Brett; Kay, Geoff; Munro, Nicola; Scheele, Ben C; Stirnemann, Ingrid; Stojanovic, Dejan; Sweaney, Nici; Villaseñor, Nélida R; Westgate, Martin J</p> <p>2014-01-01</p> <p>Dispersal knowledge is essential for conservation management, and demand is growing. But are we accumulating dispersal knowledge at a pace that can meet the demand? To answer this question we tested for changes in dispersal data collection and use over time. Our systematic review of 655 conservation-related publications compared five topics: climate change, habitat restoration, population viability analysis, land planning (systematic conservation planning) and invasive species. We analysed temporal changes in the: (i) questions asked by dispersal-related research; (ii) methods used to study dispersal; (iii) the quality of dispersal data; (iv) extent that dispersal knowledge is lacking, and; (v) likely consequences of limited dispersal knowledge. Research questions have changed little over time; the same problems examined in the 1990s are still being addressed. The most common methods used to study dispersal were occupancy data, expert opinion and modelling, which often provided indirect, low quality information about dispersal. Although use of genetics for estimating dispersal has increased, new ecological and genetic methods for measuring dispersal are not yet widely adopted. Almost half of the papers identified knowledge gaps related to dispersal. Limited dispersal knowledge often made it impossible to discover ecological processes or compromised conservation outcomes. The quality of dispersal data used in climate change research has increased since the 1990s. In comparison, restoration ecology inadequately addresses large-scale process, whilst the gap between knowledge accumulation and growth in applications may be increasing in land planning. To overcome apparent stagnation in collection and use of dispersal knowledge, researchers need to: (i) improve the quality of available data using new approaches; (ii) understand the complementarities of different methods and; (iii) define the value of different kinds of dispersal information for supporting management decisions. Ambitious, multi-disciplinary research programs studying many species are critical for advancing dispersal research.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1327304-positive-signs-massive-gravity','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1327304-positive-signs-massive-gravity"><span>Positive signs in massive gravity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Cheung, Clifford; Remmen, Grant N.</p> <p>2016-04-01</p> <p>Here, we derive new constraints on massive gravity from unitarity and analyticity of scattering amplitudes. Our results apply to a general effective theory defined by Einstein gravity plus the leading soft diffeomorphism-breaking corrections. We calculate scattering amplitudes for all combinations of tensor, vector, and scalar polarizations. Furthermore, the high-energy behavior of these amplitudes prescribes a specific choice of couplings that ameliorates the ultraviolet cutoff, in agreement with existing literature. We then derive consistency conditions from analytic dispersion relations, which dictate positivity of certain combinations of parameters appearing in the forward scattering amplitudes. These constraints exclude all but a small islandmore » in the parameter space of ghost-free massive gravity. And while the theory of the "Galileon" scalar mode alone is known to be inconsistent with positivity constraints, this is remedied in the full massive gravity theory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25a2113S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25a2113S"><span>Modulated heavy nucleus-acoustic waves and associated rogue waves in a degenerate relativistic quantum plasma system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sultana, S.; Islam, S.; Mamun, A. A.; Schlickeiser, R.</p> <p>2018-01-01</p> <p>A theoretical and numerical investigation has been carried out on amplitude modulated heavy nucleus-acoustic envelope solitons (HNAESs) in a degenerate relativistic quantum plasma (DRQP) system containing relativistically degenerate electrons and light nuclei, and non-degenerate mobile heavy nuclei. The cubic nonlinear Schrödinger equation, describing the nonlinear dynamics of the heavy nucleus-acoustic waves (HNAWs), is derived by employing a multi-scale perturbation technique. The dispersion relation for the HNAWs is derived, and the criteria for the occurrence of modulational instability of the HNAESs are analyzed. The localized structures (viz., envelope solitons and associated rogue waves) are found to be formed in the DRQP system under consideration. The basic features of the amplitude modulated HNAESs and associated rogue waves formed in realistic DRQP systems are briefly discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22451242-nonlinear-schrodinger-equation-propagation-weakly-nonlinear-waves-optical-fibers-water-surface','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22451242-nonlinear-schrodinger-equation-propagation-weakly-nonlinear-waves-optical-fibers-water-surface"><span>The nonlinear Schrödinger equation and the propagation of weakly nonlinear waves in optical fibers and on the water surface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chabchoub, A., E-mail: achabchoub@swin.edu.au; Kibler, B.; Finot, C.</p> <p>2015-10-15</p> <p>The dynamics of waves in weakly nonlinear dispersive media can be described by the nonlinear Schrödinger equation (NLSE). An important feature of the equation is that it can be derived in a number of different physical contexts; therefore, analogies between different fields, such as for example fiber optics, water waves, plasma waves and Bose–Einstein condensates, can be established. Here, we investigate the similarities between wave propagation in optical Kerr media and water waves. In particular, we discuss the modulation instability (MI) in both media. In analogy to the water wave problem, we derive for Kerr-media the Benjamin–Feir index, i.e. amore » nondimensional parameter related to the probability of formation of rogue waves in incoherent wave trains.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017FrASS...4...13S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017FrASS...4...13S"><span>Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki</p> <p>2017-09-01</p> <p>We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4911949','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4911949"><span>Myiarchus flycatchers are the primary seed dispersers of Bursera longipes in a Mexican dry forest</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Almazán-Núñez, R. Carlos; Eguiarte, Luis E.; Arizmendi, María del Coro</p> <p>2016-01-01</p> <p>We evaluated the seed dispersal of Bursera longipes by birds along a successional gradient of tropical dry forest (TDF) in southwestern Mexico. B. longipes is an endemic tree to the TDF in the Balsas basin. The relative abundance of frugivorous birds, their frequency of visits to B. longipes and the number of removed fruits were recorded at three study sites with different stages of forest succession (early, intermediate and mature) characterized by distinct floristic and structural elements. Flycatchers of the Myiarchus and Tyrannus genera removed the majority of fruits at each site. Overall, visits to B. longipes were less frequent at the early successional site. Birds that function as legitimate dispersers by consuming whole seeds and regurgitating or defecating intact seeds in the process also remove the pseudoaril from seeds, thereby facilitating the germination process. The highest germination percentages were recorded for seeds that passed through the digestive system of two migratory flycatchers: M. cinerascens and M. nutingii. Perch plants, mainly composed of legumes (e.g., Eysenhardtia polystachya, Acacia cochliacantha, Calliandra eryophylla, Mimosa polyantha), serve also as nurse plants since the number of young individuals recruited from B. longipes was higher under these than expected by chance. This study shows that Myiarchus flycatchers are the most efficient seed dispersers of B. longipes across all successional stages. This suggests a close mutualistic relationship derived from adaptive processes and local specializations throughout the distribution of both taxa, as supported by the geographic mosaic theory of coevolution. PMID:27326382</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25362270','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25362270"><span>Coupled-oscillator theory of dispersion and Casimir-Polder interactions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Berman, P R; Ford, G W; Milonni, P W</p> <p>2014-10-28</p> <p>We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength. However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r(-4), a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called "remarkable formula" for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O'Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28597993','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28597993"><span>One-Step Extraction and Hydrolysis of Flavonoid Glycosides in Rape Bee Pollen Based on Soxhlet-Assisted Matrix Solid Phase Dispersion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tu, Xijuan; Ma, Shuangqin; Gao, Zhaosheng; Wang, Jing; Huang, Shaokang; Chen, Wenbin</p> <p>2017-11-01</p> <p>Flavonoids are frequently found as glycosylated derivatives in plant materials. To determine contents of flavonoid aglycones in these matrices, procedures for the extraction and hydrolysis of flavonoid glycosides are required. The current sample preparation method is both labour and time consuming. Develop a modified matrix solid phase dispersion (MSPD) procedure as an alternative methodology for the one-step extraction and hydrolysis of flavonoid glycosides. HPLC-DAD was applied for demonstrating the one-step extraction and hydrolysis of flavonoids in rape bee pollen. The obtained contents of flavonoid aglycones (quercetin, kaempferol, isorhamnetin) were used for the optimisation and validation of the method. The extraction and hydrolysis were accomplished in one step. The procedure completes in 2 h with silica gel as dispersant, a 1:2 ratio of sample to dispersant, and 60% aqueous ethanol with 0.3 M hydrochloric acid as the extraction solution. The relative standard deviations (RSDs) of repeatability were less than 5%, and the recoveries at two fortified levels were between 88.3 and 104.8%. The proposed methodology is simple and highly efficient, with good repeatability and recovery. Compared with currently available methods, the present work has advantages of using less time and labour, higher extraction efficiency, and less consumption of the acid catalyst. This method may have applications for the one-step extraction and hydrolysis of bioactive compounds from plant materials. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/990267','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/990267"><span>Dispersion relations for 1D high-gain FELs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Webb, S.D.; Litvinenko, V.N.</p> <p>2010-08-23</p> <p>We present analytical results for the one-dimensional dispersion relation for high-gain FELs. Using kappa-n distributions, we obtain analytical relations between the dispersion relations for various order kappa distributions. Since an exact solution exists for the kappa-1 (Lorentzian) distribution, this provides some insight into the number of modes on the way to the Gaussian distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA245817','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA245817"><span>Slip Casting and Green Body Evaluation of 6% Yttria, 2% Alumina Silicon Nitride</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1991-12-01</p> <p>Slurries containing this lignosulphonate wood derivative did not exhibit uniform rheological behavior. Some of the slips with high solids...the Figure 3 axes for easier comparison. Reference 2 also notes a marked shear-sensitivity decrease in slurries containing a lignosulphonate dispersant...Any advantage to using lignosulphonate dispersants must be weighed against the difficulty of burning the additives out of the resultant green bodies</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3325970','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3325970"><span>DNA Fingerprinting Validates Seed Dispersal Curves from Observational Studies in the Neotropical Legume Parkia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Heymann, Eckhard W.; Lüttmann, Kathrin; Michalczyk, Inga M.; Saboya, Pedro Pablo Pinedo; Ziegenhagen, Birgit; Bialozyt, Ronald</p> <p>2012-01-01</p> <p>Background Determining the distances over which seeds are dispersed is a crucial component for examining spatial patterns of seed dispersal and their consequences for plant reproductive success and population structure. However, following the fate of individual seeds after removal from the source tree till deposition at a distant place is generally extremely difficult. Here we provide a comparison of observationally and genetically determined seed dispersal distances and dispersal curves in a Neotropical animal-plant system. Methodology/Principal Findings In a field study on the dispersal of seeds of three Parkia (Fabaceae) species by two Neotropical primate species, Saguinus fuscicollis and Saguinus mystax, in Peruvian Amazonia, we observationally determined dispersal distances. These dispersal distances were then validated through DNA fingerprinting, by matching DNA from the maternally derived seed coat to DNA from potential source trees. We found that dispersal distances are strongly right-skewed, and that distributions obtained through observational and genetic methods and fitted distributions do not differ significantly from each other. Conclusions/Significance Our study showed that seed dispersal distances can be reliably estimated through observational methods when a strict criterion for inclusion of seeds is observed. Furthermore, dispersal distances produced by the two primate species indicated that these primates fulfil one of the criteria for efficient seed dispersers. Finally, our study demonstrated that DNA extraction methods so far employed for temperate plant species can be successfully used for hard-seeded tropical plants. PMID:22514748</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...597A..24R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...597A..24R"><span>Probing the dynamical and X-ray mass proxies of the cluster of galaxies Abell S1101</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rabitz, Andreas; Zhang, Yu-Ying; Schwope, Axel; Verdugo, Miguel; Reiprich, Thomas H.; Klein, Matthias</p> <p>2017-01-01</p> <p>Context. The galaxy cluster Abell S1101 (S1101 hereafter) deviates significantly from the X-ray luminosity versus velocity dispersion relation (L-σ) of galaxy clusters in our previous study. Given reliable X-ray luminosity measurement combining XMM-Newton and ROSAT, this could most likely be caused by the bias in the velocity dispersion due to interlopers and low member statistic in the previous sample of member galaxies, which was solely based on 20 galaxy redshifts drawn from the literature. Aims: We intend to increase the galaxy member statistics to perform precision measurements of the velocity dispersion and dynamical mass of S1101. We aim for a detailed substructure and dynamical state characterization of this cluster, and a comparison of mass estimates derived from (I) the velocity dispersion (Mvir), (II) the caustic mass computation (Mcaustic), and (III) mass proxies from X-ray observations and the Sunyaev-Zel'dovich (SZ) effect. Methods: We carried out new optical spectroscopic observations of the galaxies in this cluster field with VIMOS, obtaining a sample of 60 member galaxies for S1101. We revised the cluster redshift and velocity dispersion measurements based on this sample and also applied the Dressler-Shectman substructure test. Results: The completeness of cluster members within r200 was significantly improved for this cluster. Tests for dynamical substructure do not show evidence of major disturbances or merging activities in S1101. We find good agreement between the dynamical cluster mass measurements and X-ray mass estimates, which confirms the relaxed state of the cluster displayed in the 2D substructure test. The SZ mass proxy is slightly higher than the other estimates. The updated measurement of σ erased the deviation of S1101 in the L-σ relation. We also noticed a background structure in the cluster field of S1101. This structure is a galaxy group that is very close to the cluster S1101 in projection but at almost twice its redshift. However the mass of this structure is too low to significantly bias the observed bolometric X-ray luminosity of S1101. Hence, we can conclude that the deviation of S1101 in the L-σ relation in our previous study can be explained by low member statistics and galaxy interlopers, which are known to introduce biases in the estimated velocity dispersion. We have made use of VLT/VIMOS observations taken with the ESO Telescope at the Paranal Observatory under programme 087.A-0096.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016TCry...10.2099B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016TCry...10.2099B"><span>Dispersion in deep polar firn driven by synoptic-scale surface pressure variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buizert, Christo; Severinghaus, Jeffrey P.</p> <p>2016-09-01</p> <p>Commonly, three mechanisms of firn air transport are distinguished: molecular diffusion, advection, and near-surface convective mixing. Here we identify and describe a fourth mechanism, namely dispersion driven by synoptic-scale surface pressure variability (or barometric pumping). We use published gas chromatography experiments on firn samples to derive the along-flow dispersivity of firn, and combine this dispersivity with a dynamical air pressure propagation model forced by surface air pressure time series to estimate the magnitude of dispersive mixing in the firn. We show that dispersion dominates mixing within the firn lock-in zone. Trace gas concentrations measured in firn air samples from various polar sites confirm that dispersive mixing occurs. Including dispersive mixing in a firn air transport model suggests that our theoretical estimates have the correct order of magnitude, yet may overestimate the true dispersion. We further show that strong barometric pumping, such as at the Law Dome site, may reduce the gravitational enrichment of δ15N-N2 and other tracers below gravitational equilibrium, questioning the traditional definition of the lock-in depth as the depth where δ15N enrichment ceases. Last, we propose that 86Kr excess may act as a proxy for past synoptic activity (or paleo-storminess) at the site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017WRR....53.5659S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017WRR....53.5659S"><span>Quantifying the distribution of tracer discharge from boreal catchments under transient flow using the kinematic pathway approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Soltani, S. S.; Cvetkovic, V.</p> <p>2017-07-01</p> <p>This focuses on solute discharge from boreal catchments with relatively shallow groundwater table and topography-driven groundwater flow. We explore whether a simplified semianalytical approach can be used for predictive modeling of the statistical distribution of tracer discharge. The approach is referred to as the "kinematic pathways approach" (KPA). This approach uses hydrological and tracer inputs and topographical and hydrogeological information; the latter regards average aquifer depth to the less permeable bedrock. A characteristic velocity of water flow through the catchment is further obtained from the overall water balance in the catchment. For the waterborne tracer transport through the catchment, morphological dispersion is accounted for by topographical analysis of the distribution of pathway lengths to the catchment outlet. Macrodispersion is accounted for heuristically by assuming an effective Péclet number. Distribution of water travel times through the catchment reflect the dispersion on both levels and are derived in both a forward mode (transit time from input to outlet) and a backward mode (water age when arriving at outlet arrival). The forward distribution of water travel times is further used for the tracer discharge modeling by convolution. The approach is applied to modeling of a 23 year long chloride data series for a specific catchment Kringlan (Sweden), and for generic modeling to better understand the dependence of the tracer discharge distribution on different dispersion aspects. The KPA is found to provide reasonable estimates of tracer discharge distribution, and particularly of extreme values, depending on method for determining the pathway length distribution. As a possible alternative analytical model of tracer transport through a catchment, the reservoir approach generally results in large tracer dispersion. This implies that tracer discharge distributions obtained from a mixed reservoir approach and from KPA are only compatible under large dispersion conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApJ...850..140T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApJ...850..140T"><span>Ionized Gas Outflows in Infrared-bright Dust-obscured Galaxies Selected with WISE and SDSS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Toba, Yoshiki; Bae, Hyun-Jin; Nagao, Tohru; Woo, Jong-Hak; Wang, Wei-Hao; Wagner, Alexander Y.; Sun, Ai-Lei; Chang, Yu-Yen</p> <p>2017-12-01</p> <p>We present the ionized gas properties of infrared (IR)-bright dust-obscured galaxies (DOGs) that show an extreme optical/IR color, {(i-[22])}{AB}> 7.0, selected with the Sloan Digital Sky Survey (SDSS) and Wide-field Infrared Survey Explorer (WISE). For 36 IR-bright DOGs that show [O III]λ5007 emission in the SDSS spectra, we performed a detailed spectral analysis to investigate their ionized gas properties. In particular, we measured the velocity offset (the velocity with respect to the systemic velocity measured from the stellar absorption lines) and the velocity dispersion of the [O III] line. We found that the derived velocity offset and dispersion of most IR-bright DOGs are larger than those of Seyfert 2 galaxies (Sy2s) at z< 0.3, meaning that the IR-bright DOGs show relatively strong outflows compared to Sy2s. This can be explained by the difference in IR luminosity contributed from active galactic nuclei, {L}{IR} (AGN), because we found that (i) {L}{IR} (AGN) correlates with the velocity offset and dispersion of [O III] and (ii) our IR-bright DOG sample has larger {L}{IR} (AGN) than Sy2s. Nevertheless, the fact that about 75% IR-bright DOGs have a large (>300 km s-1) velocity dispersion, which is a larger fraction compared to other AGN populations, suggests that IR-bright DOGs are good laboratories to investigate AGN feedback. The velocity offset and dispersion of [O III] and [Ne III]λ3869 are larger than those of [O II]λ3727, which indicates that the highly ionized gas tends to show stronger outflows.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFMOS52A0900H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFMOS52A0900H"><span>Dispersal of Sediment in the Western Adriatic during Energetic Wintertime Forcing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Harris, C. K.; Sherwood, C. R.; Mullenbach, B. L.; Pullen, J. D.</p> <p>2003-12-01</p> <p>EuroSTRATAFORM aims to relate sediment delivery and reworking to seabed morphology and stratigraphy through observations and modeling of water column transport. The Po River dominates buoyancy and sediment input into the Adriatic Sea, but small Apeninne rivers (the Chienti, Pescara, etc.) may produce locally important signals. Sedimentation is influenced by fluvial supply, resuspension by waves and currents, and transport by oceanographic currents forced by winds and buoyancy. Transport is likely highest during times of energetic forcing; including Bora events with northeasterly winds and Sirocco events with southeasterly winds. It is difficult, from field measurements alone, to characterize dispersal and convergence patterns over the relevant spatial scales. We applied a three-dimensional hydrodynamic model that includes fluvial delivery, transport, resuspension, and deposition of sediment to quantify sediment dispersal with a 2-km resolution over the entire Adriatic. Circulation calculations were driven by spatially- and temporally-varying wind fields for the Fall / Winter of 2002 / 2003 and realistic Po and Apennine river discharges. Waves were hindcast with the SWAN model. Dispersion of both resuspended and river-derived sediment was estimated for periods that contained intense Bora and Sirocco winds. Predicted sediment dispersal rates and patterns are sensitive to forcing winds, buoyancy flux, and wave patterns. Higher sediment flux was predicted during Bora conditions than during Sirocco conditions. Sirocco winds weaken the Western Adriatic Coastal Current (WACC), and because they tend to concentrate over the Eastern Adriatic, they often fail to create especially energetic waves in the Western Adriatic. Bora wind conditions, on the other hand, intensify the WACC and can build high wave energies over the northwestern Adriatic. Most of the sediment transport occurs during Bora, with a net southward flux. These predictions will be compared to field observations made as part of the EuroSTRATAFORM experiment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29179655','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29179655"><span>Robust inference under the beta regression model with application to health care studies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ghosh, Abhik</p> <p>2017-01-01</p> <p>Data on rates, percentages, or proportions arise frequently in many different applied disciplines like medical biology, health care, psychology, and several others. In this paper, we develop a robust inference procedure for the beta regression model, which is used to describe such response variables taking values in (0, 1) through some related explanatory variables. In relation to the beta regression model, the issue of robustness has been largely ignored in the literature so far. The existing maximum likelihood-based inference has serious lack of robustness against outliers in data and generate drastically different (erroneous) inference in the presence of data contamination. Here, we develop the robust minimum density power divergence estimator and a class of robust Wald-type tests for the beta regression model along with several applications. We derive their asymptotic properties and describe their robustness theoretically through the influence function analyses. Finite sample performances of the proposed estimators and tests are examined through suitable simulation studies and real data applications in the context of health care and psychology. Although we primarily focus on the beta regression models with a fixed dispersion parameter, some indications are also provided for extension to the variable dispersion beta regression models with an application.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JPS...348...30W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JPS...348...30W"><span>Platinum group metal-free electrocatalysts: Effects of synthesis on structure and performance in proton-exchange membrane fuel cell cathodes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Workman, Michael J.; Dzara, Michael; Ngo, Chilan; Pylypenko, Svitlana; Serov, Alexey; McKinney, Sam; Gordon, Jonathan; Atanassov, Plamen; Artyushkova, Kateryna</p> <p>2017-04-01</p> <p>Development of platinum group metal free catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) requires understanding of the interactions between surface chemistry and performance, both of which are strongly dependent on synthesis conditions. To elucidate these complex relationships, a set of Fe-N-C catalysts derived from the same set of precursor materials is fabricated by varying several key synthetic parameters under controlled conditions. The results of physicochemical characterization are presented and compared with the results of rotating disk electrode (RDE) analysis and fuel cell testing. We find that electrochemical performance is strongly correlated with three key properties related to catalyst composition: concentrations of 1) atomically dispersed Fe species, 2) species in which N is bound to Fe, and 3) surface oxides. Not only are these factors related to performance, these types of chemical species are shown to correlate with each other. This study provides evidence supporting the role of iron coordinated with nitrogen as an active species for the ORR, and offers synthetic pathways to increase the density of atomically dispersed iron species and surface oxides for optimum performance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoJI.212.1890M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoJI.212.1890M"><span>A propagator matrix method for the Rayleigh-Taylor instability of multiple layers: a case study on crustal delamination in the early Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mondal, Puskar; Korenaga, Jun</p> <p>2018-03-01</p> <p>The dispersion relation of the Rayleigh-Taylor instability, a gravitational instability associated with unstable density stratification, is of profound importance in various geophysical contexts. When more than two layers are involved, a semi-analytical technique based on the biharmonic formulation of Stokes flow has been extensively used to obtain such dispersion relation. However, this technique may become cumbersome when applied to lithospheric dynamics, where a number of layers are necessary to represent the continuous variation of viscosity over many orders of magnitude. Here, we present an alternative and more efficient method based on the propagator matrix formulation of Stokes flow. With this approach, the original instability problem is reduced to a compact eigenvalue equation whose size is solely determined by the number of primary density contrasts. We apply this new technique to the stability of the early crust, and combined with the Monte Carlo sensitivity analysis, we derive an empirical formula to compute the growth rate of the Rayleigh-Taylor instability for this particular geophysical setting. Our analysis indicates that the likelihood of crustal delamination hinges critically on the effective viscosity of eclogite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sir/2009/5142/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sir/2009/5142/"><span>High-Frequency Normal Mode Propagation in Aluminum Cylinders</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Lee, Myung W.; Waite, William F.</p> <p>2009-01-01</p> <p>Acoustic measurements made using compressional-wave (P-wave) and shear-wave (S-wave) transducers in aluminum cylinders reveal waveform features with high amplitudes and with velocities that depend on the feature's dominant frequency. In a given waveform, high-frequency features generally arrive earlier than low-frequency features, typical for normal mode propagation. To analyze these waveforms, the elastic equation is solved in a cylindrical coordinate system for the high-frequency case in which the acoustic wavelength is small compared to the cylinder geometry, and the surrounding medium is air. Dispersive P- and S-wave normal mode propagations are predicted to exist, but owing to complex interference patterns inside a cylinder, the phase and group velocities are not smooth functions of frequency. To assess the normal mode group velocities and relative amplitudes, approximate dispersion relations are derived using Bessel functions. The utility of the normal mode theory and approximations from a theoretical and experimental standpoint are demonstrated by showing how the sequence of P- and S-wave normal mode arrivals can vary between samples of different size, and how fundamental normal modes can be mistaken for the faster, but significantly smaller amplitude, P- and S-body waves from which P- and S-wave speeds are calculated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22600038-effect-turbulence-dissipation-space-charge-wave-bounded-turbulent-plasma-column','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22600038-effect-turbulence-dissipation-space-charge-wave-bounded-turbulent-plasma-column"><span>Effect of turbulence on the dissipation of the space-charge wave in a bounded turbulent plasma column</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lee, Myoung-Jae; Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr; Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 15588</p> <p></p> <p>The dispersion relation and the dissipation process of the space-charge wave propagating in a bounded plasma such as a cylindrical waveguide are investigated by employing the longitudinal dielectric permittivity that contains the diffusivity based on the Dupree theory of turbulent plasma. We derived the dispersion relation for space-charge wave in terms of the radius of cylindrical waveguide and the roots of the Bessel function of the first kind which appears as the boundary condition. We find that the wave frequency for a lower-order root of the Bessel function is higher than that of a higher-order root. We also find thatmore » the dissipation is greatest for the lowest-order root, but it is suppressed significantly as the order of the root increases. The wave frequency and the dissipation process are enhanced as the radius of cylindrical waveguide increases. However, they are always smaller than the case of bulk plasma. We find that the diffusivity of turbulent plasma would enhance the damping of space-charge waves, especially, in the range of small wave number. For a large wave number, the diffusivity has little effect on the damping.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvB..97n4409C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvB..97n4409C"><span>Thermoelastic enhancement of the magnonic spin Seebeck effect in thin films and bulk samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chotorlishvili, L.; Wang, X.-G.; Toklikishvili, Z.; Berakdar, J.</p> <p>2018-04-01</p> <p>A nonuniform temperature profile may generate a pure spin current in magnetic films, as observed, for instance, in the spin Seebeck effect. In addition, thermally induced elastic deformations may set in that could affect the spin current. A self-consistent theory of the magnonic spin Seebeck effect including thermally activated magnetoelastic effects is presented, and analytical expressions for the thermally activated deformation tensor and dispersion relations for coupled magnetoelastic modes are obtained. We derive analytical results for bulk (three-dimensional) systems and thin magnetic (two-dimensional) films. We observe that the displacement vector and the deformation tensor in bulk systems decay asymptotically as u ˜1 /R2 and ɛ ˜1 /R3 , respectively, while the decays in thin magnetic films proceed slower, following u ˜1 /R and ɛ ˜1 /R2 . The dispersion relations evidence a strong anisotropy in the magnetic excitations. We observe that a thermoelastic steady-state deformation may lead to both an enchantment and a reduction of the gap in the magnonic spectrum. The reduction of the gap increases the number of magnons contributing to the spin Seebeck effect and offers new possibilities for the thermoelastic control of the spin Seebeck effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMPSo.102..165B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMPSo.102..165B"><span>Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bacigalupo, Andrea; Gambarotta, Luigi</p> <p>2017-05-01</p> <p>Dispersive waves in two-dimensional blocky materials with periodic microstructure made up of equal rigid units, having polygonal centro-symmetric shape with mass and gyroscopic inertia, connected with each other through homogeneous linear interfaces, have been analyzed. The acoustic behavior of the resulting discrete Lagrangian model has been obtained through a Floquet-Bloch approach. From the resulting eigenproblem derived by the Euler-Lagrange equations for harmonic wave propagation, two acoustic branches and an optical branch are obtained in the frequency spectrum. A micropolar continuum model to approximate the Lagrangian model has been derived based on a second-order Taylor expansion of the generalized macro-displacement field. The constitutive equations of the equivalent micropolar continuum have been obtained, with the peculiarity that the positive definiteness of the second-order symmetric tensor associated to the curvature vector is not guaranteed and depends both on the ratio between the local tangent and normal stiffness and on the block shape. The same results have been obtained through an extended Hamiltonian derivation of the equations of motion for the equivalent continuum that is related to the Hill-Mandel macro homogeneity condition. Moreover, it is shown that the hermitian matrix governing the eigenproblem of harmonic wave propagation in the micropolar model is exact up to the second order in the norm of the wave vector with respect to the same matrix from the discrete model. To appreciate the acoustic behavior of some relevant blocky materials and to understand the reliability and the validity limits of the micropolar continuum model, some blocky patterns have been analyzed: rhombic and hexagonal assemblages and running bond masonry. From the results obtained in the examples, the obtained micropolar model turns out to be particularly accurate to describe dispersive functions for wavelengths greater than 3-4 times the characteristic dimension of the block. Finally, in consideration that the positive definiteness of the second order elastic tensor of the micropolar model is not guaranteed, the hyperbolicity of the equation of motion has been investigated by considering the Legendre-Hadamard ellipticity conditions requiring real values for the wave velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26690111','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26690111"><span>Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gaffer, Hatem E; Khalifa, Mohamed E</p> <p>2015-12-09</p> <p>The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EGUGA..15.8143M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EGUGA..15.8143M"><span>Direct measurement of nonlinear dispersion relation for water surface waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Magnus Arnesen Taklo, Tore; Trulsen, Karsten; Elias Krogstad, Harald; Gramstad, Odin; Nieto Borge, José Carlos; Jensen, Atle</p> <p>2013-04-01</p> <p>The linear dispersion relation for water surface waves is often taken for granted for the interpretation of wave measurements. High-resolution spatiotemporal measurements suitable for direct validation of the linear dispersion relation are on the other hand rarely available. While the imaging of the ocean surface with nautical radar does provide the desired spatiotemporal coverage, the interpretation of the radar images currently depends on the linear dispersion relation as a prerequisite, (Nieto Borge et al., 2004). Krogstad & Trulsen (2010) carried out numerical simulations with the nonlinear Schrödinger equation and its generalizations demonstrating that the nonlinear evolution of wave fields may render the linear dispersion relation inadequate for proper interpretation of observations, the reason being that the necessary domain of simultaneous coverage in space and time would allow significant nonlinear evolution. They found that components above the spectral peak can have larger phase and group velocities than anticipated by linear theory, and that the spectrum does not maintain a thin dispersion surface. We have run laboratory experiments and accurate numerical simulations designed to have sufficient resolution in space and time to deduce the dispersion relation directly. For a JONSWAP spectrum we find that the linear dispersion relation can be appropriate for the interpretation of spatiotemporal measurements. For a Gaussian spectrum with narrower bandwidth we find that the dynamic nonlinear evolution in space and time causes the directly measured dispersion relation to deviate from the linear dispersion surface in good agreement with our previous numerical predictions. This work has been supported by RCN grant 214556/F20. Krogstad, H. E. & Trulsen, K. (2010) Interpretations and observations of ocean wave spectra. Ocean Dynamics 60:973-991. Nieto Borge, J. C., Rodríguez, G., Hessner, K., Izquierdo, P. (2004) Inversion of marine radar images for surface wave analysis. J. Atmos. Ocean. Tech. 21:1291-1300.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21458553','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21458553"><span>Higuchi equation: derivation, applications, use and misuse.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Siepmann, Juergen; Peppas, Nicholas A</p> <p>2011-10-10</p> <p>Fifty years ago, the legendary Professor Takeru Higuchi published the derivation of an equation that allowed for the quantification of drug release from thin ointment films, containing finely dispersed drug into a perfect sink. This became the famous Higuchi equation whose fiftieth anniversary we celebrate this year. Despite the complexity of the involved mass transport processes, Higuchi derived a very simple equation, which is easy to use. Based on a pseudo-steady-state approach, a direct proportionality between the cumulative amount of drug released and the square root of time can be demonstrated. In contrast to various other "square root of time" release kinetics, the constant of proportionality in the classical Higuchi equation has a specific, physically realistic meaning. The major benefits of this equation include the possibility to: (i) facilitate device optimization, and (ii) to better understand the underlying drug release mechanisms. The equation can also be applied to other types of drug delivery systems than thin ointment films, e.g., controlled release transdermal patches or films for oral controlled drug delivery. Later, the equation was extended to other geometries and related theories have been proposed. The aim of this review is to highlight the assumptions the derivation of the classical Higuchi equation is based on and to give an overview on the use and potential misuse of this equation as well as of related theories. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170002242&hterms=fourier&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfourier','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170002242&hterms=fourier&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfourier"><span>Fourier Transform Methods. Chapter 4</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kaplan, Simon G.; Quijada, Manuel A.</p> <p>2015-01-01</p> <p>This chapter describes the use of Fourier transform spectrometers (FTS) for accurate spectrophotometry over a wide spectral range. After a brief exposition of the basic concepts of FTS operation, we discuss instrument designs and their advantages and disadvantages relative to dispersive spectrometers. We then examine how common sources of error in spectrophotometry manifest themselves when using an FTS and ways to reduce the magnitude of these errors. Examples are given of applications to both basic and derived spectrophotometric quantities. Finally, we give recommendations for choosing the right instrument for a specific application, and how to ensure the accuracy of the measurement results..</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApPhB.124...25H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApPhB.124...25H"><span>Enhancement of output power in a two-section periodical circular waveguide structure using magnetized plasma and a relativistic electron beam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hasanbeigi, A.; Ashrafi, A.; Mehdian, H.</p> <p>2018-02-01</p> <p>In the present paper, the excitation of electromagnetic wave by relativistic electron beam, as a radiation source, in a two-section periodical plasma waveguide is investigated. The dispersion relation of TM wave is derived and then solved numerically. Next, the effect of plasma, as an extra controlling parameter, on this radiation source is investigated. Results show that the presence of magnetized plasma can lead to significant increase in output power and it can be an extra parameter for tuning the frequency by varying the plasma density.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5458962','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5458962"><span>Optical Isolator Utilizing Surface Plasmons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zayets, Vadym; Saito, Hidekazu; Ando, Koji; Yuasa, Shinji</p> <p>2012-01-01</p> <p>Feasibility of usage of surface plasmons in a new design of an integrated optical isolator has been studied. In the case of surface plasmons propagating at a boundary between a transition metal and a double-layer dielectric, there is a significant difference of optical loss for surface plasmons propagating in opposite directions. Utilizing this structure, it is feasible to fabricate a competitive plasmonic isolator, which benefits from a broad wavelength operational bandwidth and a good technological compatibility for integration into the Photonic Integrated Circuits (PIC). The linear dispersion relation was derived for plasmons propagating in a multilayer magneto-optical slab. PMID:28817012</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21274173-ion-acoustic-waves-pair-ion-plasma-linear-nonlinear-analyses','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21274173-ion-acoustic-waves-pair-ion-plasma-linear-nonlinear-analyses"><span>Ion acoustic waves in pair-ion plasma: Linear and nonlinear analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Saeed, R.; Mushtaq, A.</p> <p>2009-03-15</p> <p>Linear and nonlinear properties of low frequency ion acoustic wave (IAW) in pair-ion plasma in the presence of electrons are investigated. The dispersion relation and Kadomtsev-Petviashvili equation for linear/nonlinear IAW are derived from sets of hydrodynamic equations where the ion pairs are inertial while electrons are Boltzmannian. The dispersion curves for various concentrations of electrons are discussed and compared with experimental results. The predicted linear IAW propagates at the same frequencies as those of the experimentally observed IAW if n{sub e0}{approx}10{sup 4} cm{sup -3}. It is found that nonlinear profile of the ion acoustic solitary waves is significantly affected bymore » the percentage ratio of electron number density and temperature. It is also determined that rarefactive solitary waves can propagate in this system. It is hoped that the results presented in this study would be helpful in understanding the salient features of the finite amplitude localized ion acoustic solitary pulses in a laboratory fullerene plasma.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EP%26S...67...28L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EP%26S...67...28L"><span>Anisotropic Rayleigh-wave phase velocities beneath northern Vietnam</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Legendre, Cédric P.; Zhao, Li; Huang, Win-Gee; Huang, Bor-Shouh</p> <p>2015-02-01</p> <p>We explore the Rayleigh-wave phase-velocity structure beneath northern Vietnam over a broad period range of 5 to 250 s. We use the two-stations technique to derive the dispersion curves from the waveforms of 798 teleseismic events recoded by a set of 23 broadband seismic stations deployed in northern Vietnam. These dispersion curves are then inverted for both isotropic and azimuthally anisotropic Rayleigh-wave phase-velocity maps in the frequency range of 10 to 50 s. Main findings include a crustal expression of the Red River Shear Zone and the Song Ma Fault. Northern Vietnam displays a northeast/southwest dichotomy in the lithosphere with fast velocities beneath the South China Block and slow velocities beneath the Simao Block and between the Red River Fault and the Song Da Fault. The anisotropy in the region is relatively simple, with a high amplitude and fast directions parallel to the Red River Shear Zone in the western part. In the eastern part, the amplitudes are generally smaller and the fast axis displays more variations with periods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010BoLMe.135..301L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010BoLMe.135..301L"><span>Estimating Variances of Horizontal Wind Fluctuations in Stable Conditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Luhar, Ashok K.</p> <p>2010-05-01</p> <p>Information concerning the average wind speed and the variances of lateral and longitudinal wind velocity fluctuations is required by dispersion models to characterise turbulence in the atmospheric boundary layer. When the winds are weak, the scalar average wind speed and the vector average wind speed need to be clearly distinguished and both lateral and longitudinal wind velocity fluctuations assume equal importance in dispersion calculations. We examine commonly-used methods of estimating these variances from wind-speed and wind-direction statistics measured separately, for example, by a cup anemometer and a wind vane, and evaluate the implied relationship between the scalar and vector wind speeds, using measurements taken under low-wind stable conditions. We highlight several inconsistencies inherent in the existing formulations and show that the widely-used assumption that the lateral velocity variance is equal to the longitudinal velocity variance is not necessarily true. We derive improved relations for the two variances, and although data under stable stratification are considered for comparison, our analysis is applicable more generally.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150009156&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dionosphere','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150009156&hterms=ionosphere&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dionosphere"><span>Measurement and Mitigation of the Ionosphere in L-Band Interferometric SAR Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rosen, Paul A.; Hensley, Scott; Chen, Curtis</p> <p>2010-01-01</p> <p>Satellite-based repeat-pass Interferometric Synthetic Aperture Radar (InSAR) provides a synoptic high spatial resolution perspective of Earth's changing surface, permitting one to view large areas quickly and efficiently. By measuring relative phase change from one observation to the next on a pixel-by-pixel basis, maps of deformation and change can be derived. Variability of the atmosphere and the ionosphere leads to phase/time delays that are present in the data that can mask many of the subtle deformation signatures of interest, so methods for mitigation of these effects are important. Many of these effects have been observed in existing ALOS PALSAR data, and studies are underway to characterize and mitigate the ionosphere using these data. Since the ionosphere is a dispersive medium, it is possible in principle distinguish the ionospheric signatures from the non-dispersive effects of deformation and the atmosphere. In this paper, we describe a method for mapping the ionosphere in InSAR data based on a multi-frequency split-spectrum processing technique.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1983PhDT........26N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1983PhDT........26N"><span>Trajectory and Relative Dispersion Case Studies and Statistics from the Green River Mesoscale Deformation, Dispersion, and Dissipation Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Niemann, Brand Lee</p> <p></p> <p>A major field program to study beta-mesoscale transport and dispersion over complex mountainous terrain was conducted during 1969 with the cooperation of three government agencies at the White Sands Missile Range in central Utah. The purpose of the program was to measure simultaneously on a large number of days the synoptic and mesoscale wind fields, the relative dispersion between pairs of particle trajectories and the rate of small scale turbulence dissipation. The field program included measurements during more than 60 days in the months of March, June, and November. The large quantity of data generated from this program has been processed and analyzed to provide case studies and statistics to evaluate and refine Lagrangian variable trajectory models. The case studies selected to illustrate the complexities of mesoscale transport and dispersion over complex terrain include those with terrain blocking, lee waves, and stagnation, as well as those with large vertical wind shears and horizontal wind field deformation. The statistics of relative particle dispersion were computed and compared to the classical theories of Richardson and Batchelor and the more recent theories of Lin and Kao among others. The relative particle dispersion was generally found to increase with travel time in the alongwind and crosswind directions, but in a more oscillatory than sustained or even accelerated manner as predicted by most theories, unless substantial wind shears or finite vertical separations between particles were present. The relative particle dispersion in the vertical was generally found to be small and bounded even when substantial vertical motions due to lee waves were present because of the limiting effect of stable temperature stratification. The data show that velocity shears have a more significant effect than turbulence on relative particle dispersion and that sufficient turbulence may not always be present above the planetary boundary layer for "wind direction shear induced dispersion" to become effective horizontal dispersion by vertical mixing over the shear layer. The statistics of relative particle dispersion in the three component directions have been summarized and stratified by flow parameters for use in practical prediction problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/1001184','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/1001184"><span>Dispersal patterns of red foxes relative to population density</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Allen, Stephen H.; Sargeant, Alan B.</p> <p>1993-01-01</p> <p>Factors affecting red fox (Vulpes vulpes) dispersal patterns are poorly understood but warranted investigation because of the role of dispersal in rebuilding depleted populations and transmission of diseases. We examined dispersal patterns of red foxes in North Dakota based on recoveries of 363 of 854 foxes tagged as pups and relative to fox density. Foxes were recovered up to 8.6 years after tagging; 79% were trapped or shot. Straight-line distances between tagging and recovery locations ranged from 0 to 302 km. Mean recovery distances increased with age and were greater for males than females, but longest individual recovery distances were by females. Dispersal distances were not related to population density for males (P = 0.36) or females (P = 0.96). The proportion of males recovered that dispersed was inversely related to population density (r = -0.94; n = 5; P = 0.02), but not the proportion of females (r = -0.49; n = 5; P = 0.40). Dispersal directions were not uniform for either males (P = 0.003) or females (P = 0.006); littermates tended to disperse in similar directions (P = 0.09). A 4-lane interstate highway altered dispersal directions (P = 0.001). Dispersal is a strong innate behavior of red foxes (especially males) that results in many individuals of both sexes traveling far from natal areas. Because dispersal distance was unaffected by fox density, populations can be rebuilt and diseases transmitted long distances regardless of fox abundance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JAG...143..141L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JAG...143..141L"><span>Study of the low-frequency dispersion of permittivity and resistivity in tight rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liu, Hongqi; Jie, Tian; Li, Bo; Youming, Deng; Chunning, Qiu</p> <p>2017-08-01</p> <p>The road to understanding the frequency dispersion (relaxation) of permittivity and resistivity in tight rocks remains relatively uncharted. Our team from Da'anzhai Group, Jurassic formation, Sichuan Basin carried out practical research to explore this phenomenon. The research was conducted under laboratory conditions for a selection of low frequencies, with ranges between 0.1 Hz to 1 kHz. Our research has shown that, although both the permittivity and resistivity decrease as the frequency increases, the two individual metrics display different behaviours when compared with each other. While the degree of resistivity variation is minimal, to the point that it is redundant, the permittivity, on the other hand, demonstrates something that is scientifically noteworthy. Permittivity has a distinctive dispersion degree across the entire sample of frequencies and the difference between the minimum and maximum frequencies is several orders of magnitude. An additional, and unexpected, learning from our research is that the level of frequency dispersion increases as the water saturation and concentration increases. In this paper, a collection of equations has been formulated to describe this relationship. These equations particularly shed light on the areas of rock porosity and saturation. They also show that the degree of frequency dispersion of permittivity or resistivity can be used as a function of water saturation and concentration. Two new variables are introduced here, DR and DC, to demonstrate the relaxation law quantitatively. In our practical research, we have characterised the relationship between the saturation and concentration with dielectric relaxation, using three different concentrations of DR and DC and five different saturations of NaCl solution. In difference to conventional Archie's multiple experimental parameters, we have established a new formula to derive the saturation from Rp and Cp, or from DR and DC directly. Two important frequencies were also further investigated for Cp dispersion: first is the critical frequency, which marks the dispersion speed change from steep phase to steady phase, and second is the zero-frequency, which marks the dispersion when it approaches zero. All tight rocks were measured under the same conditions, with the results displaying the same pattern of variations. The results have led us to believe that Cp's frequency dispersion at low-frequencies provides a new methodology to characterise tight rocks.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995PhDT.......146H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995PhDT.......146H"><span>Viscothermal Coupling Effects on Sound Attenuation in Concentrated Colloidal Dispersions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Han, Wei</p> <p>1995-11-01</p> <p>This thesis describes a Unified Coupled Phase Continuum (UCPC) model to analyze sound propagation through aerosols, emulsions and suspensions in terms of frequency dependent attenuation coefficient and sound speed. Expressions for the viscous and thermal coupling coefficients explicitly account for the effects of particle size, shape factor, orientation as well as concentration and the sound frequency. The UCPC model also takes into account the intrinsic acoustic absorption within the fluid medium due to its viscosity and heat conductivity. The effective complex wave number as a function of frequency is derived. A frequency- and concentration-dependent complex Nusselt number for the interfacial thermal coupling coefficient is derived using an approximate similarity between the 'viscous skin drag' and 'heat conduction flux' associated with the discontinuous suspended phase, on the basis of a cell model. The theoretical predictions of attenuation spectra provide satisfactory agreement with reported experimental data on two concentrated suspensions (polystyrene latex and kaolin pigment), two concentrated emulsions (toluene -in-water, n-hexadecane-in-water), and two aerosols (oleic acid droplets-in-nitrogen, alumina-in-air), covering a wide range of relative magnitudes (from 10^ {-3} to 10^{3}) of thermal versus viscous contributions, for dispersed phase volume fractions as high as 50%. The relative differences between the additive result of separate viscous and thermal loss estimates and combined viscothermal absorption results are also presented. Effects of particle shape on viscous attenuation of sound in concentrated suspensions of non-spherical clay particles are studied. Attenuation spectra for 18 frequencies from 3 to 100 MHz are measured and analyzed for eleven kaolin clay slurries with solid concentrations ranging from 0.6% to 35% (w/w). A modified viscous drag coefficient that considers frequency, concentration, particle size, shape and orientation of spheroids, is developed and applied to estimate the viscous attenuation coefficients. With incorporation of particle size and shape distributions (PSSD), predictions agree quantitatively with observed attenuation coefficients. The effects of particle aspect ratio and orientation become more evident as particle concentrations and frequencies are increased. The UCPC model combined with the ultrasonic spectroscopy techniques can provide for theoretical and experimental frameworks in characterization of concentrated colloidal dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JHyd..540..129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JHyd..540..129L"><span>An analytical model for solute transport in an infiltration tracer test in soil with a shallow groundwater table</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liang, Ching-Ping; Hsu, Shao-Yiu; Chen, Jui-Sheng</p> <p>2016-09-01</p> <p>It is recommended that an in-situ infiltration tracer test is considered for simultaneously determining the longitudinal and transverse dispersion coefficients in soil. Analytical solutions have been derived for two-dimensional advective-dispersive transport in a radial geometry in the literature which can be used for interpreting the result of such a tracer test. However, these solutions were developed for a transport domain with an unbounded-radial extent and an infinite thickness of vadose zone which might not be realistically manifested in the actual solute transport during a field infiltration tracer test. Especially, the assumption of infinite thickness of vadose zone should be invalid for infiltration tracer tests conducted in soil with a shallow groundwater table. This paper describes an analytical model for interpreting the results of an infiltration tracer test based on improving the transport domain with a bounded-radial extent and a finite thickness of vadose zone. The analytical model is obtained with the successive application of appropriate integral transforms and their corresponding inverse transforms. A comparison of the newly derived analytical solution against the previous analytical solutions in which two distinct sets of radial extent and thickness of vadose zone are considered is conducted to determine the influence of the radial and exit boundary conditions on the solute transport. The results shows that both the radial and exit boundary conditions substantially affect the trailing segment of the breakthrough curves for a soil medium with large dispersion coefficients. Previous solutions derived for a transport domain with an unbounded-radial and an infinite thickness of vadose zone boundary conditions give lower concentration predictions compared with the proposed solution at late times. Moreover, the differences between two solutions are amplified when the observation positions are near the groundwater table. In addition, we compare our solution against the approximate solutions that derived from the previous analytical solution and has been suggested to serve as fast tools for simultaneously estimating the longitudinal and transverse dispersion coefficients. The results indicate that the approximate solutions offer predictions that are markedly distinct from our solution for the entire range of dispersion coefficient values. Thus, it is not appropriate to use the approximate solution for interpreting the results of an infiltration tracer test.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22661390-virial-black-hole-mass-estimates-agns-from-sdss-broadband-photometry-single-epoch-spectra','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22661390-virial-black-hole-mass-estimates-agns-from-sdss-broadband-photometry-single-epoch-spectra"><span>VIRIAL BLACK HOLE MASS ESTIMATES FOR 280,000 AGNs FROM THE SDSS BROADBAND PHOTOMETRY AND SINGLE-EPOCH SPECTRA</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kozłowski, Szymon, E-mail: simkoz@astrouw.edu.pl</p> <p>2017-01-01</p> <p>We use the Sloan Digital Sky Survey (SDSS) Quasar Data Release 12 (DR12Q), containing nearly 300,000 active galactic nuclei (AGNs), to calculate the monochromatic luminosities at 5100, 3000, and 1350 Å, derived from the broadband extinction-corrected SDSS magnitudes. After matching these sources to their counterparts from the SDSS Quasar Data Release 7 (DR7Q), we find very high correlations between our luminosities and DR7Q spectra-based luminosities with minute mean offsets (∼0.01 dex) and dispersions of differences of 0.11, 0.10, and 0.12 dex, respectively, across a luminosity range of 2.5 dex. We then estimate the black hole (BH) masses of the AGNsmore » using the broad line region radius–disk luminosity relations and the FWHM of the Mg ii and C iv emission lines, to provide a catalog of 283,033 virial BH mass estimates (132,451 for Mg ii, 213,071 for C iv, and 62,489 for both) along with the estimates of the bolometric luminosity and Eddington ratio for 0.1 <  z  < 5.5 and for roughly a quarter of the sky covered by SDSS. The BH mass estimates from Mg ii turned out to be closely matched to the ones from DR7Q with a dispersion of differences of 0.34 dex across a BH mass range of ∼2 dex. We uncovered a bias in the derived C iv FWHMs from DR12Q as compared to DR7Q, which we correct empirically. The C iv BH mass estimates should be used with caution because the C iv line is known to cause problems in the estimation of BH mass from single-epoch spectra. Finally, after the FWHM correction, the AGN BH mass estimates from C iv closely match the DR7Q ones (with a dispersion of 0.28 dex), and more importantly the Mg ii and C iv BH masses agree internally with a mean offset of 0.07 dex and a dispersion of 0.39 dex.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23711908','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23711908"><span>Seed dispersal of the Australian cycad Macrozamia miquelii (Zamiaceae): are cycads megafauna-dispersed "grove forming" plants?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hall, John A; Walter, Gimme H</p> <p>2013-06-01</p> <p>Plants that invest in large, heavy seeds and colorful, fleshy fruits or analogous structures seem adapted for dispersal by large vertebrates. Some such plants, like Australian cycads in the genus Macrozamia, do not disperse well, which could be explained by seed-dispersal relationships with megafauna that are rare or extinct in contemporary ecosystems. Such plants provide an opportunity to investigate the ecological consequences of low seed-dispersal distances. • We investigated seed dispersal of Macrozamia miquelii in Central Queensland by tracking the fate of marked seeds, identifying the dispersal fauna and quantifying population demography and spatial structure. • We found that 70-100% of marked seeds remained within 1 m of maternal females (cycads are dioecious). Of the 812 seeds recovered (from 840 originally marked) only 24 dispersed >1 m from maternal females, the greatest observed dispersal being 5 m. We found an average of 2.2 seedlings and 0.7 juveniles within 1.5 m of mature females, which suggests that most seeds that remain in the vicinity of maternal females perish. Within-stand densities ranged between 1000 and 5000 plants/ha. The brushtail possum Trichosurus vulpecula was the only animal observed to move the seeds. • Macrozamia are adapted for dispersal by megafauna that are rare or absent in contemporary ecosystems. We argue that Macrozamia are "grove forming" plants that derive ecological benefit from existing as high-density, spatially discrete populations, the function of megafaunal dispersal adaptations being the infrequent dispersal of seeds en masse to establish new such groves in the landscape.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5454045-new-method-simulate-effects-viscous-fingering-miscible-displacement-processes-porous-media','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5454045-new-method-simulate-effects-viscous-fingering-miscible-displacement-processes-porous-media"><span>A new method to simulate the effects of viscous fingering on miscible displacement processes in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Vossoughi, S.; Green, D.W.; Smith, J.E.</p> <p></p> <p>This paper presents a new method to simulate the effects of viscous fingering on miscible displacement processes in porous media. The method is based on the numerical solution of a general form of the convection-dispersion equation. In this equation the convection term is represented by a fractional flow function. The fractional flow function is derived from Darcy's law using a concentration-dependent, average viscosity and relative flow area to each fluid at any point in the bed. The method was extended to the description of a polymer flood by including retention and inaccessible pore volume. A Langmuir-type model for polymer retentionmore » in the rock was used. The resulting convection-dispersion equation for displacement by polymer was then solved numerically by the use of a finite element method with linear basis functions and Crank-Nicholson derivative approximation. History matches were performed on four sets of laboratory data to verify the model. These were: an unfavorable viscosity ratio displacement, stable displacement of glycerol by polymer solution, unstable displacement of brine by a slug of polymer solution, and a favorable viscosity ratio displacement. In general, computed results from the model matched laboratory data closely. Good agreement of the model with experiments over a significant range of variables lends support to the analysis.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JPSJ...87e3701N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JPSJ...87e3701N"><span>Temperature Effect on the Dispersion Relation of Nonequilibrium Exciton-Polariton Condensates in a CuBr Microcavity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakayama, Masaaki; Tamura, Kazuki</p> <p>2018-05-01</p> <p>We observed the dispersion relation of nonequilibrium exciton-polariton condensates at 10 and 80 K in a CuBr microcavity using angle-resolved photoluminescence spectroscopy. The dispersion relation consists of dispersionless and dispersive parts in small and large in-plane wave vector regions, respectively. It was found that the cutoff wave vector of the dispersionless region at 80 K is larger than that at 10 K. From quantitative analysis of the dispersion relation based on a theory for nonequilibrium condensation, we show that the larger cutoff wave vector results from an increase in the effective relaxation rate of the Bogoliubov mode in equilibrium condensation; namely, a degree of nonequilibrium at 80 K is higher than that at 10 K.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011513','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011513"><span>Chemical Sharpening, Shortening, and Unzipping of Boron Nitride Nanotubes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Liao, Yunlong; Chen, Zhongfang; Connell, John W.; Fay, Catharine C.; Park, Cheol; Kim, Jae-Woo; Lin, Yi</p> <p>2014-01-01</p> <p>Boron nitride nanotubes (BNNTs), the one-dimensional member of the boron nitride nanostructure family, are generally accepted to be highly inert to oxidative treatments and can only be covalently modifi ed by highly reactive species. Conversely, it is discovered that the BNNTs can be chemically dispersed and their morphology modifi ed by a relatively mild method: simply sonicating the nanotubes in aqueous ammonia solution. The dispersed nanotubes are significantly corroded, with end-caps removed, tips sharpened, and walls thinned. The sonication treatment in aqueous ammonia solution also removes amorphous BN impurities and shortened BNNTs, resembling various oxidative treatments of carbon nanotubes. Importantly, the majority of BNNTs are at least partially longitudinally cut, or "unzipped". Entangled and freestanding BN nanoribbons (BNNRs), resulting from the unzipping, are found to be approximately 5-20 nm in width and up to a few hundred nanometers in length. This is the fi rst chemical method to obtain BNNRs from BNNT unzipping. This method is not derived from known carbon nanotube unzipping strategies, but is unique to BNNTs because the use of aqueous ammonia solutions specifi cally targets the B-N bond network. This study may pave the way for convenient processing of BNNTs, previously thought to be highly inert, toward controlling their dispersion, purity, lengths, and electronic properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22265507','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22265507"><span>Simultaneous determination of four synthesized metabolites of mequindox in urine samples using ultrasound-assisted dispersive liquid-liquid microextraction combined with high-performance liquid chromatography.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhang, Jiaheng; Gao, Haixiang; Peng, Bing; Li, Yubo; Li, Songqing; Zhou, Zhiqiang</p> <p>2012-01-15</p> <p>A novel pretreatment method termed ultrasound-assisted dispersive liquid-liquid microextraction (UADLLME) coupled with high-performance liquid chromatography-ultraviolet detector (HPLC-UV) was applied for the detection of four synthesized metabolites of mequindox in pig urine samples. A total volume of 200 μL of methanol (dispersant) and 60 μL of 1,1,2,2-tetrachloroethane (extract) were injected into 5.0 mL of urine sample and then emulsified by ultrasound treatment for 4 min to form a cloudy solution. The effect of several factors on the recovery of each metabolite was investigated by a fitting derivation method for the first time. Under optimum conditions, the method yields a linear calibration curve in the concentration range from 0.5 to 500 μg/L and a limit of detection (LOD) of 0.16-0.28 μg/L for target analytes. The recoveries ranged from 72.0% to 91.3% with a relative standard deviation (RSD) of less than 5.2%. The enrichment factors for the four compounds ranged from 75 to 95. Two pig urine samples were successfully analyzed using the proposed method. Copyright © 2011 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132..528I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132..528I"><span>Optical solitons, explicit solutions and modulation instability analysis with second-order spatio-temporal dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Inc, Mustafa; Isa Aliyu, Aliyu; Yusuf, Abdullahi; Baleanu, Dumitru</p> <p>2017-12-01</p> <p>This paper obtains the dark, bright, dark-bright or combined optical and singular solitons to the nonlinear Schrödinger equation (NLSE) with group velocity dispersion coefficient and second-order spatio-temporal dispersion coefficient, which arises in photonics and waveguide optics and in optical fibers. The integration algorithm is the sine-Gordon equation method (SGEM). Furthermore, the explicit solutions of the equation are derived by considering the power series solutions (PSS) theory and the convergence of the solutions is guaranteed. Lastly, the modulation instability analysis (MI) is studied based on the standard linear-stability analysis and the MI gain spectrum is obtained.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SeScT..31l5013F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SeScT..31l5013F"><span>Frequency dispersion of capacitance-voltage characteristics in wide bandgap semiconductor-electrolyte junctions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Frolov, D. S.; Zubkov, V. I.</p> <p>2016-12-01</p> <p>The frequency dispersion of capacitance-voltage characteristics and derived charge carrier concentration with application to the junction between an electrolyte and wide band-gap semiconductors are investigated. To expand the measurement frequency range, the precision LCR-meter Agilent E4980A was connected to the electrochemical cell ECVPro Nanometrics via a specially designed switch unit. The influence of series resistance and degree of dopant ionization on the frequency dispersion of CV-measured characteristics are discussed. It was shown that in wide band-gap semiconductors one can get both total and ionized dopant concentration, depending on the test frequency choice for capacitance measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvB..93l1114G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvB..93l1114G"><span>Analysis in temporal regime of dispersive invisible structures designed from transformation optics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gralak, B.; Arismendi, G.; Avril, B.; Diatta, A.; Guenneau, S.</p> <p>2016-03-01</p> <p>A simple invisible structure made of two anisotropic homogeneous layers is analyzed theoretically in temporal regime. The frequency dispersion is introduced and analytic expression of the transient part of the field is derived for large times when the structure is illuminated by a causal excitation. This expression shows that the limiting amplitude principle applies with transient fields decaying as the power -3 /4 of the time. The quality of the cloak is then reduced at short times and remains preserved at large times. The one-dimensional theoretical analysis is supplemented with full-wave numerical simulations in two-dimensional situations which confirm the effect of dispersion.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26245197','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26245197"><span>Historical biogeography resolves the origins of endemic Arabian toad lineages (Anura: Bufonidae): Evidence for ancient vicariance and dispersal events with the Horn of Africa and South Asia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Portik, Daniel M; Papenfuss, Theodore J</p> <p>2015-08-06</p> <p>The Arabian Peninsula is home to a unique fauna that has assembled and evolved throughout the course of major geophysical events, including the separation of the Arabian Plate from Africa and subsequent collision with Eurasia. Opportunities for faunal exchanges with particular continents occurred in temporally distinct periods, and the presence of African, Western Eurasian, and South Asian derived taxa on the Arabian Peninsula signifies the complexity of these historical biogeographic events. The six true toad species (family Bufonidae) endemic to Arabian Peninsula present a considerable taxonomic and biogeographic challenge because they are part of a global bufonid radiation, including several genera surrounding the Arabian Peninsula, and difficult to discriminate morphologically. As they could be derived from African, Western Eurasian, or South Asian toad groups, elucidating their evolutionary relationships has important implications for historical biogeography. Here, we analyze a global molecular data set of 243 bufonid lineages, with an emphasis on new sampling from the Horn of Africa, Western Eurasia, South Asia, and the Arabian Peninsula, to reconstruct the evolutionary relationships of the Arabian species. We produce a robust time-calibrated phylogeny to infer the biogeographic history of this group on and around the Arabian Peninsula. Our phylogenetic analyses indicate two of the endemic Arabian toad species, "Bufo" tihamicus and "Bufo" arabicus, evolved independently within the African genus Amietophrynus. We confirm the Arabian species Duttaphrynus dhufarensis is of South Asian origin, but do not find evidence for the Asian genus Duttaphrynus being present in the Horn of Africa, discrediting a previously proposed Asian bufonid dispersal event to Africa. We also do not find evidence of the African genus Amietophrynus occurring in South Asia, suggesting that unlike many other vertebrate taxa, toads have not used the Arabian Peninsula as a stepping-stone for trans-continental dispersal. Our divergence dating estimates strongly suggest the formation of the Red Sea drove simultaneous divergences between two of the Arabian species (A. tihamicus comb. nov. and A. arabicus comb. nov.) and their xclosest mainland African relatives in the Early Miocene. We estimate the divergence of D. dhufarensis with its closest South Asian relatives occurred in the mid to Late Miocene, suggesting the temporary or permanent land connections between the Arabian plate and Eurasia facilitated dispersal of this lineage to the Arabian Peninsula. The Arabian bufonid assemblage, despite being comparatively depauperate with respect to surrounding continents, exemplifies the faunal pattern of the Arabian Peninsula, namely being a complex admixture of African, Western Eurasian, and South Asian elements. The historical biogeographic patterns exhibited by Arabian toads and their allies are concordant with studies of other vertebrate taxa, building support for the role of major geological events in driving simultaneous vicariance and dispersal events around the Arabian Peninsula. Although many taxa or groups exhibiting disjunct Afro-Arabian distributions appear to have dispersed more recently from the Horn of Africa via a southern land bridge or overwater dispersal, both Amietophrynus tihamicus and A. arabicus likely represent true African relicts resulting from vicariance associated with the Red Sea formation, a pattern that so far is rare among the vertebrate species investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1980AIPC...65..402F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1980AIPC...65..402F"><span>Fundamental aspects of the phase retrieval problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ferwerda, H. A.</p> <p>1980-12-01</p> <p>A review is given of the fundamental aspects of the phase retrieval problem in optical imaging for one dimension. The phase problem is treated using the fact that the wavefunction in the image-plane is a band-limited entire function of order 1. The ambiguity of the phase reconstruction is formulated in terms of the complex zeros of entire functions. Procedures are given how the relevant zeros might be determined. When the zeros are known one can derive dispersion relations which relate the phase of the wavefunction to the intensity distribution. The phase problem of coherence theory is similar to the previously discussed problem and is briefly touched upon. The extension of the phase problem to two dimensions is not straight-forward and still remains to be solved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599930-low-frequency-surface-waves-semi-bounded-magnetized-quantum-plasma','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599930-low-frequency-surface-waves-semi-bounded-magnetized-quantum-plasma"><span>Low-frequency surface waves on semi-bounded magnetized quantum plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Moradi, Afshin, E-mail: a.moradi@kut.ac.ir</p> <p>2016-08-15</p> <p>The propagation of low-frequency electrostatic surface waves on the interface between a vacuum and an electron-ion quantum plasma is studied in the direction perpendicular to an external static magnetic field which is parallel to the interface. A new dispersion equation is derived by employing both the quantum magnetohydrodynamic and Poisson equations. It is shown that the dispersion equations for forward and backward-going surface waves are different from each other.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3919056','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3919056"><span>Approximate Solution of Time-Fractional Advection-Dispersion Equation via Fractional Variational Iteration Method</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>İbiş, Birol</p> <p>2014-01-01</p> <p>This paper aims to obtain the approximate solution of time-fractional advection-dispersion equation (FADE) involving Jumarie's modification of Riemann-Liouville derivative by the fractional variational iteration method (FVIM). FVIM provides an analytical approximate solution in the form of a convergent series. Some examples are given and the results indicate that the FVIM is of high accuracy, more efficient, and more convenient for solving time FADEs. PMID:24578662</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ResPh...8.1216S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ResPh...8.1216S"><span>Dispersive solitary wave solutions of Kadomtsev-Petviashvili and modified Kadomtsev-Petviashvili dynamical equations in unmagnetized dust plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seadawy, A. R.; El-Rashidy, K.</p> <p>2018-03-01</p> <p>The Kadomtsev-Petviashvili (KP) and modified KP equations are two of the most universal models in nonlinear wave theory, which arises as a reduction of system with quadratic nonlinearity which admit weakly dispersive waves. The generalized extended tanh method and the F-expansion method are used to derive exact solitary waves solutions of KP and modified KP equations. The region of solutions are displayed graphically.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960021417&hterms=averaged+lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Daveraged%2Blagrangian','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960021417&hterms=averaged+lagrangian&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Daveraged%2Blagrangian"><span>The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Webb, G. M.; Brio, M.; Zank, G. P.</p> <p>1995-01-01</p> <p>In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22416113-experimental-theoretical-investigation-first-order-hyperpolarizability-class-triarylamine-derivatives','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22416113-experimental-theoretical-investigation-first-order-hyperpolarizability-class-triarylamine-derivatives"><span>Experimental and theoretical investigation of the first-order hyperpolarizability of a class of triarylamine derivatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Silva, Daniel L., E-mail: dlsilva.physics@gmail.com, E-mail: deboni@ifsc.usp.br; Instituto de Física, Universidade de São Paulo, CP 66318, 05314-970 São Paulo, SP; Fonseca, Ruben D.</p> <p>2015-02-14</p> <p>This paper reports on the static and dynamic first-order hyperpolarizabilities of a class of push-pull octupolar triarylamine derivatives dissolved in toluene. We have combined hyper-Rayleigh scattering experiment and the coupled perturbed Hartree-Fock method implemented at the Density Functional Theory (DFT) level of theory to determine the static and dynamic (at 1064 nm) first-order hyperpolarizability (β{sub HRS}) of nine triarylamine derivatives with distinct electron-withdrawing groups. In four of these derivatives, an azoaromatic unit is inserted and a pronounceable increase of the first-order hyperpolarizability is reported. Based on the theoretical results, the dipolar/octupolar character of the derivatives is determined. By using amore » polarizable continuum model in combination with the DFT calculations, it was found that although solvated in an aprotic and low dielectric constant solvent, due to solvent-induced polarization and the frequency dispersion effect, the environment substantially affects the first-order hyperpolarizability of all derivatives investigated. This statement is supported due to the solvent effects to be essential for the better agreement between theoretical results and experimental data concerning the dynamic first-order hyperpolarizability of the derivatives. The first-order hyperpolarizability of the derivatives was also modeled using the two- and three-level models, where the relationship between static and dynamic first hyperpolarizabilities is given by a frequency dispersion model. Using this approach, it was verified that the dynamic first hyperpolarizability of the derivatives is satisfactorily reproduced by the two-level model and that, in the case of the derivatives with an azoaromatic unit, the use of a damped few-level model is essential for, considering also the molecular size of such derivatives, a good quantitative agreement between theoretical results and experimental data to be observed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvA..96f3834P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvA..96f3834P"><span>Mass-polariton theory of light in dispersive media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Partanen, Mikko; Tulkki, Jukka</p> <p>2017-12-01</p> <p>We have recently shown that the electromagnetic pulse in a medium is made of mass-polariton (MP) quasiparticles, which are quantized coupled states of the field and an atomic mass density wave (MDW) [M. Partanen et al., Phys. Rev. A 95, 063850 (2017), 10.1103/PhysRevA.95.063850]. In this work, we generalize the MP theory of light for dispersive media assuming that absorption and scattering losses are very small. Following our previous work, we present two different approaches to the coupled state of light: (1) the MP quasiparticle theory, which is derived by only using the fundamental conservation laws and the Lorentz transformation; (2) the classical optoelastic continuum dynamics (OCD), which is a generalization of the electrodynamics of continuous media to include the dynamics of the medium under the influence of optical forces. We show that the total momentum and the transferred mass of the light pulse can be determined in a straightforward way if we know the field energy of the pulse and the dispersion relation of the medium. In analogy to the nondispersive case, we also find unambiguous correspondence between the MP and OCD theories. For the coupled MP state of a single photon and the medium, we obtain the total MP momentum pMP=npℏ ω /c , where np is the phase refractive index. The field's share of the MP momentum is equal to pfield=ℏ ω /(ngc ) , where ng is the group refractive index and the share of the MDW is equal to pMDW=pMP-pfield . Thus, as in a nondispersive medium, the total momentum of the MP is equal to the Minkowski momentum and the field's share of the momentum is equal to the Abraham momentum. We also show that the correspondence between the MP and OCD models and the conservation of momentum at interfaces gives an unambiguous formula for the optical force. The dynamics of the light pulse and the related MDW lead to nonequilibrium of the medium and to relaxation of the atomic density by sound waves in the same way as for nondispersive media. We also carry out simulations for optimal measurements of atomic displacements related to the MDW in silicon. In the simulations, we consider different waveguide cross sections and optical pulse widths and account for the breakdown threshold irradiance of materials. We also compare the MP theory to previous theories of the momentum of light in a dispersive medium. We show that our generalized MP theory resolves all the problems related to the Abraham-Minkowski dilemma in a dispersive medium.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986STIN...8712820S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986STIN...8712820S"><span>Generalization of one-dimensional solute transport: A stochastic-convective flow conceptualization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simmons, C. S.</p> <p>1986-04-01</p> <p>A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problem can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22360412-expression-purification-crystallization-preliminary-ray-crystallographic-analysis-resuscitation-promoting-factor-from-mycobacterium-tuberculosis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22360412-expression-purification-crystallization-preliminary-ray-crystallographic-analysis-resuscitation-promoting-factor-from-mycobacterium-tuberculosis"><span>Expression, purification, crystallization and preliminary X-ray crystallographic analysis of a resuscitation-promoting factor from Mycobacterium tuberculosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ruggiero, Alessia; Tizzano, Barbara; Geerlof, Arie</p> <p>2007-10-01</p> <p>The first crystallization of a resuscitation-promoting factor has been performed. Multiwavelength anomalous dispersion experiments have been carried out to obtain experimental phases using data at 2.9 Å resolution from a selenomethionine derivative. The resuscitation-promoting factor RpfB, the most complex of the five resuscitation-promoting factors produced by M. tuberculosis, is devoted to bacterial reactivation from the dormant state. RpfB consists of 362 residues predicted to form five domains. An RpfB fragment containing the protein catalytic domain and a G5 domain has been successfully crystallized using vapour-diffusion methods. This is the first crystallographic study of a resuscitation-promoting factor. Crystals of this proteinmore » belong to space group I422, with unit-cell parameters a = 97.63, b = 97.63, c = 114.87 Å. Diffraction data have also been collected from a selenomethionine derivative at 2.9 Å resolution. Model building using the phases derived from the multiwavelength anomalous dispersion experiment is in progress.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005104"><span>Comparison of low-altitude wind-shear statistics derived from measured and proposed standard wind profiles</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Usry, J. W.</p> <p>1983-01-01</p> <p>Wind shear statistics were calculated for a simulated set of wind profiles based on a proposed standard wind field data base. Wind shears were grouped in altitude in altitude bands of 100 ft between 100 and 1400 ft and in wind shear increments of 0.025 knot/ft. Frequency distributions, means, and standard deviations for each altitude band were derived for the total sample were derived for both sets. It was found that frequency distributions in each altitude band for the simulated data set were more dispersed below 800 ft and less dispersed above 900 ft than those for the measured data set. Total sample frequency of occurrence for the two data sets was about equal for wind shear values between +0.075 knot/ft, but the simulated data set had significantly larger values for all wind shears outside these boundaries. It is shown that normal distribution in both data sets neither data set was normally distributed; similar results are observed from the cumulative frequency distributions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJD...71..108S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJD...71..108S"><span>Effective potentials for H2O-He and H2O-Ar systems. Isotropic induction-dispersion potentials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Starikov, Vitali I.; Petrova, Tatiana M.; Solodov, Alexander M.; Solodov, Alexander A.; Deichuli, Vladimir M.</p> <p>2017-05-01</p> <p>The vibrational and rotational dependence of the effective isotropic interaction potential of H2O-He and H2O-Ar systems, taken in the form of Lennard-Jones 6-12 potential has been analyzed. The analysis is based on the experimental line broadening (γ) and line shift (δ) coefficients obtained for different vibrational bands of H2O molecule perturbed by He and Ar. The first and second derivatives of the function C(1)(q) for the long-range part of the induction-dispersion potential with respect to the dimensionless normal coordinates q were calculated using literature information for the dipole moment and mean polarizability functions μ(q) and α(q), respectively. These derivatives have been used in the calculations of the quantities which determine the vibrational and rotational dependence of the long-range part of the effective isotropic potential. The optimal set of the derivatives for the function C(1)(q) is proposed. The comparison with the experimental data has been performed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29460497','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29460497"><span>Atomically dispersed metal sites in MOF-based materials for electrocatalytic and photocatalytic energy conversion.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liang, Zibin; Qu, Chong; Xia, Dingguo; Zou, Ruqiang; Xu, Qiang</p> <p>2018-02-19</p> <p>Metal sites play an essential role for both electrocatalytic and photocatalytic energy conversion applications. The highly ordered arrangements of the organic linkers and metal nodes and the well-defined pore structures of metal-organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Besides, porous carbon materials doped with ADMSs can be derived from these ADMS-incorporated MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF-derived carbon materials possess unique merits over the molecular or the bulk metal-based catalysts, bridging the gap between homogeneous and heterogeneous catalysts for energy conversion applications. In this review, recent progress and perspective of design and incorporation of ADMSs in pristine MOFs and MOF-derived materials for energy conversion applications are highlighted, which will hopefully promote further developments of advanced MOF-based catalysts in foreseeable future. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S21C0737K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S21C0737K"><span>Implication of Broadband Dispersion Measurements in Constraining Upper Mantle Velocity Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kuponiyi, A.; Kao, H.; Cassidy, J. F.; Darbyshire, F. A.; Dosso, S. E.; Gosselin, J. M.; Spence, G.</p> <p>2017-12-01</p> <p>Dispersion measurements from earthquake (EQ) data are traditionally inverted to obtain 1-D shear-wave velocity models, which provide information on deep earth structures. However, in many cases, EQ-derived dispersion measurements lack short-period information, which theoretically should provide details of shallow structures. We show that in at least some cases short-period information, such as can be obtained from ambient seismic noise (ASN) processing, must be combined with EQ dispersion measurements to properly constrain deeper (e.g. upper-mantle) structures. To verify this, synthetic dispersion data are generated using hypothetical velocity models under four scenarios: EQ only (with and without deep low-velocity layers) and combined EQ and ASN data (with and without deep low-velocity layers). The now "broadband" dispersion data are inverted using a trans-dimensional Bayesian framework with the aim of recovering the initial velocity models and assessing uncertainties. Our results show that the deep low-velocity layer could only be recovered from the inversion of the combined ASN-EQ dispersion measurements. Given this result, we proceed to describe a method for obtaining reliable broadband dispersion measurements from both ASN and EQ and show examples for real data. The implication of this study in the characterization of lithospheric and upper mantle structures, such as the Lithosphere-Asthenosphere Boundary (LAB), is also discussed.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010WRR....46.2515S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010WRR....46.2515S"><span>Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Servan-Camas, Borja; Tsai, Frank T.-C.</p> <p>2010-02-01</p> <p>This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70019338','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70019338"><span>Direct simulation of groundwater age</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Goode, Daniel J.</p> <p>1996-01-01</p> <p>A new method is proposed to simulate groundwater age directly, by use of an advection-dispersion transport equation with a distributed zero-order source of unit (1) strength, corresponding to the rate of aging. The dependent variable in the governing equation is the mean age, a mass-weighted average age. The governing equation is derived from residence-time-distribution concepts for the case of steady flow. For the more general case of transient flow, a transient governing equation for age is derived from mass-conservation principles applied to conceptual “age mass.” The age mass is the product of the water mass and its age, and age mass is assumed to be conserved during mixing. Boundary conditions include zero age mass flux across all noflow and inflow boundaries and no age mass dispersive flux across outflow boundaries. For transient-flow conditions, the initial distribution of age must be known. The solution of the governing transport equation yields the spatial distribution of the mean groundwater age and includes diffusion, dispersion, mixing, and exchange processes that typically are considered only through tracer-specific solute transport simulation. Traditional methods have relied on advective transport to predict point values of groundwater travel time and age. The proposed method retains the simplicity and tracer-independence of advection-only models, but incorporates the effects of dispersion and mixing on volume-averaged age. Example simulations of age in two idealized regional aquifer systems, one homogeneous and the other layered, demonstrate the agreement between the proposed method and traditional particle-tracking approaches and illustrate use of the proposed method to determine the effects of diffusion, dispersion, and mixing on groundwater age.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015WRR....51.1860B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015WRR....51.1860B"><span>From analytical solutions of solute transport equations to multidimensional time-domain random walk (TDRW) algorithms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bodin, Jacques</p> <p>2015-03-01</p> <p>In this study, new multi-dimensional time-domain random walk (TDRW) algorithms are derived from approximate one-dimensional (1-D), two-dimensional (2-D), and three-dimensional (3-D) analytical solutions of the advection-dispersion equation and from exact 1-D, 2-D, and 3-D analytical solutions of the pure-diffusion equation. These algorithms enable the calculation of both the time required for a particle to travel a specified distance in a homogeneous medium and the mass recovery at the observation point, which may be incomplete due to 2-D or 3-D transverse dispersion or diffusion. The method is extended to heterogeneous media, represented as a piecewise collection of homogeneous media. The particle motion is then decomposed along a series of intermediate checkpoints located on the medium interface boundaries. The accuracy of the multi-dimensional TDRW method is verified against (i) exact analytical solutions of solute transport in homogeneous media and (ii) finite-difference simulations in a synthetic 2-D heterogeneous medium of simple geometry. The results demonstrate that the method is ideally suited to purely diffusive transport and to advection-dispersion transport problems dominated by advection. Conversely, the method is not recommended for highly dispersive transport problems because the accuracy of the advection-dispersion TDRW algorithms degrades rapidly for a low Péclet number, consistent with the accuracy limit of the approximate analytical solutions. The proposed approach provides a unified methodology for deriving multi-dimensional time-domain particle equations and may be applicable to other mathematical transport models, provided that appropriate analytical solutions are available.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMMR11C1891M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMMR11C1891M"><span>High Pressure Strength Study on NaCl</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group</p> <p>2010-12-01</p> <p>Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1238594-rayleigh-taylor-instability-spherical-interfaces-between-viscous-fluids-fluid-vacuum-interface','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1238594-rayleigh-taylor-instability-spherical-interfaces-between-viscous-fluids-fluid-vacuum-interface"><span>Rayleigh-Taylor instability at spherical interfaces between viscous fluids: Fluid/vacuum interface</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Terrones, Guillermo; Carrara, Mark D.</p> <p>2015-05-01</p> <p>For a spherical interface of radius R separating two different homogeneous regions of incompressible viscous fluids under the action of a radially directed acceleration, we perform a linear stability analysis in terms of spherical surface harmonics Y n to derive the dispersion relation. The instability behavior is investigated by computing the growth rates and the most-unstable modes as a function of the spherical harmonic degree n. This general methodology is applicable to the entire parameter space spanned by the Atwood number, the viscosity ratio, and the dimensionless number B = (α RΡ² 2/μ² ²)¹ /³ R (where α R, Ρmore » 2 and μ 2 are the local radial acceleration at the interface, and the density and viscosity of the denser overlying fluid, respectively). While the mathematical formulation here is general, this paper focuses on instability that arises at a spherical viscous fluid/vacuum interface as there is a great deal to be learned from the effects of one-fluid viscosity and sphericity alone. To quantify and understand the effect that curvature and radial accelerationhave on the Rayleigh-Taylor instability, a comparison of the growth rates, under homologous driving conditions, between the planar and spherical interfaces is performed. The derived dispersion relation for the planar interface accounts for an underlying finite fluid region of thickness L and normal acceleration α R. Under certain conditions, the development of the most-unstable modes at a spherical interface can take place via the superposition of two adjacent spherical harmonics Y n and Y n+1. This bimodality in the evolution of disturbances in the linear regime does not have a counterpart in the planar configuration where the most-unstable modes are associated with a unique wave number.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29484806','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29484806"><span>Application of response surface methodology to vortex-assisted dispersive liquid-liquid extraction for the determination of nicotine and cotinine in urine by gas chromatography-tandem mass spectrometry.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yuan, Yue; Wang, Yan; Yang, Mingqi; Xu, Yicong; Chen, Weina; Zou, Xiaoli; Zheng, Bo</p> <p>2018-05-01</p> <p>A method of vortex-assisted dispersive liquid-liquid extraction coupled with gas chromatography and tandem mass spectrometry for the determination of nicotine and cotinine in urine was developed. Response surface methodology was applied to obtain the optimum extraction conditions. In this method, Plackett-Burman design was utilized to evaluate the impact of five selected factors on pretreatment procedure. Then, three main factors were optimized using a Box-Behnken design. The optimized method showed good linearities at 1-2000 μg/L with correlation coefficients of 0.9998 for nicotine and 0.9986 for cotinine. Recovery was 91.4-106 and 91.7-108% for nicotine and cotinine, respectively. The intraday relative standard derivations of determination were 1.47-4.06% for nicotine and 0.41-3.16% for cotinine, and interday relative standard derivations were 3.03-6.70% for nicotine and 1.64-6.38% for cotinine. The method detection limits for nicotine and cotinine were 0.33 and 0.34 μg/L, respectively. A total of 87 urine samples from smokers and nonsmokers were tested with the proposed method. Urinary nicotine and cotinine were 23.0-6.67 × 10 3 and 18.4-4.17 × 10 3  μg/(g·cr) for smokers and 1.31-286 and 1.39-131 μg/(g·cr) for nonsmokers, respectively. The method is sensitive, suitable and reliable for the determination of nicotine and cotinine in urine and meets the requirements for evaluating short-term tobacco exposure. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ApJS..227...30N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ApJS..227...30N"><span>The Palomar Transient Factory and RR Lyrae: The Metallicity–Light Curve Relation Based on ab-type RR Lyrae in the Kepler Field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ngeow, Chow-Choong; Yu, Po-Chieh; Bellm, Eric; Yang, Ting-Chang; Chang, Chan-Kao; Miller, Adam; Laher, Russ; Surace, Jason; Ip, Wing-Huen</p> <p>2016-12-01</p> <p>The wide-field synoptic sky surveys, known as the Palomar Transient Factory (PTF) and the intermediate Palomar Transient Factory (iPTF), will accumulate a large number of known and new RR Lyrae. These RR Lyrae are good tracers to study the substructure of the Galactic halo if their distance, metallicity, and galactocentric velocity can be measured. Candidates of halo RR Lyrae can be identified from their distance and metallicity before requesting spectroscopic observations for confirmation. This is because both quantities can be obtained via their photometric light curves, because the absolute V-band magnitude for RR Lyrae is correlated with metallicity, and the metallicity can be estimated using a metallicity–light curve relation. To fully utilize the PTF and iPTF light-curve data in related future work, it is necessary to derive the metallicity–light curve relation in the native PTF/iPTF R-band photometric system. In this work, we derived such a relation using the known ab-type RR Lyrae located in the Kepler field, and it is found to be {[{Fe}/{{H}}]}PTF}=-4.089{--}7.346P+1.280{φ }31 (where P is pulsational period and {φ }31 is one of the Fourier parameters describing the shape of the light curve), with a dispersion of 0.118 dex. We tested our metallicity–light curve relation with new spectroscopic observations of a few RR Lyrae in the Kepler field, as well as several data sets available in the literature. Our tests demonstrated that the derived metallicity–light curve relation could be used to estimate metallicities for the majority of the RR Lyrae, which are in agreement with the published values.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994JHyd..158..305H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994JHyd..158..305H"><span>The effect of solute size on diffusive-dispersive transport in porous media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hu, Qinhong; Brusseau, Mark L.</p> <p>1994-06-01</p> <p>The purpose of this work was to investigate the effect of solute size on diffusive-dispersive transport in porous media. Miscible displacement experiments were performed with tracers of various sizes (i.e. tritiated water ( 3H 2O), pentafluorobenzoate (PFBA), and 2,4-dichlorophenoxyacetic acid (2,4-D)) and a homogeneous, nonreactive sand for pore-water velocities varying by three orders of magnitude (70, 7, 0.66, and 0.06 cm h -1). Hydrodynamic dispersion is the predominant source of dispersion for higher pore-water velocities (exceeding 1 cm h -1), and dispersivity is, therefore, essentially independent of solute size. In this case, the practice of using a small-sized tracer, such as 3H 2O, to characterize the dispersive properties of a soil is valid. The contribution of axial diffusion becomes significant at pore-water velocities lower than 0.1 cm h -1. At a given velocity below this value, the contribution of axial diffusion is larger for 3H 2O, with its larger coefficient of molecular diffusion, than it is for PFBA and 2,4-D. The apparent dispersivities are, therefore, a function of solute size. The use of a tracer-derived dispersivity for solutes of different sizes would not be valid in this case. For systems where diffusion is important, compounds such as PFBA are the preferred tracers for representing advective-dispersive transport of many organic contaminants of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20345672','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20345672"><span>Female-biased dispersal alone can reduce the occurrence of inbreeding in black grouse (Tetrao tetrix).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lebigre, C; Alatalo, R V; Siitari, H</p> <p>2010-05-01</p> <p>Although inbreeding depression and mechanisms for kin recognition have been described in natural bird populations, inbreeding avoidance through mate choice has rarely been reported suggesting that sex-biased dispersal is the main mechanism reducing the risks of inbreeding. However, a full understanding of the effect of dispersal on the occurrence of inbred matings requires estimating the inbreeding risks prior to dispersal. Combining pairwise relatedness measures and kinship assignments, we investigated in black grouse whether the observed occurrence of inbred matings was explained by active kin discrimination or by female-biased dispersal. In this large continuous population, copulations between close relatives were rare. As female mate choice was random for relatedness, females with more relatives in the local flock tended to mate with genetically more similar males. To quantify the initial risks of inbreeding, we measured the relatedness to the males of females captured in their parental flock and virtually translocated female hatchlings in their parental and to more distant flocks. These tests indicated that dispersal decreased the likelihood of mating with relatives and that philopatric females had higher inbreeding risks than the actual breeding females. As females do not discriminate against relatives, the few inbred matings were probably due to the variance in female dispersal propensity and dispersal distance. Our results support the view that kin discrimination mate choice is of little value if dispersal effectively reduces the risks of inbreeding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006ChPhL..23.2807Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006ChPhL..23.2807Z"><span>Model Equation for Acoustic Nonlinear Measurement of Dispersive Specimens at High Frequency</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Dong; Kushibiki, Junichi; Zou, Wei</p> <p>2006-10-01</p> <p>We present a theoretical model for acoustic nonlinearity measurement of dispersive specimens at high frequency. The nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation governs the nonlinear propagation in the SiO2/specimen/SiO2 multi-layer medium. The dispersion effect is considered in a special manner by introducing the frequency-dependant sound velocity in the KZK equation. Simple analytic solutions are derived by applying the superposition technique of Gaussian beams. The solutions are used to correct the diffraction and dispersion effects in the measurement of acoustic nonlinearity of cottonseed oil in the frequency range of 33-96 MHz. Regarding two different ultrasonic devices, the accuracies of the measurements are improved to ±2.0% and ±1.3% in comparison with ±9.8% and ±2.9% obtained from the previous plane wave model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740180','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4740180"><span>Pure-quartic solitons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Blanco-Redondo, Andrea; Martijn, de Sterke C.; Sipe, J.E.; Krauss, Thomas F.; Eggleton, Benjamin J.; Husko, Chad</p> <p>2016-01-01</p> <p>Temporal optical solitons have been the subject of intense research due to their intriguing physics and applications in ultrafast optics and supercontinuum generation. Conventional bright optical solitons result from the interaction of anomalous group-velocity dispersion and self-phase modulation. Here we experimentally demonstrate a class of bright soliton arising purely from the interaction of negative fourth-order dispersion and self-phase modulation, which can occur even for normal group-velocity dispersion. We provide experimental and numerical evidence of shape-preserving propagation and flat temporal phase for the fundamental pure-quartic soliton and periodically modulated propagation for the higher-order pure-quartic solitons. We derive the approximate shape of the fundamental pure-quartic soliton and discover that is surprisingly Gaussian, exhibiting excellent agreement with our experimental observations. Our discovery, enabled by precise dispersion engineering, could find applications in communications, frequency combs and ultrafast lasers. PMID:26822758</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhyA..442..122N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhyA..442..122N"><span>Traffic dispersion through a series of signals with irregular split</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nagatani, Takashi</p> <p>2016-01-01</p> <p>We study the traffic behavior of a group of vehicles moving through a sequence of signals with irregular splits on a roadway. We present the stochastic model of vehicular traffic controlled by signals. The dynamic behavior of vehicular traffic is clarified by analyzing traffic pattern and travel time numerically. The group of vehicles breaks up more and more by the irregularity of signal's split. The traffic dispersion is induced by the irregular split. We show that the traffic dispersion depends highly on the cycle time and the strength of split's irregularity. Also, we study the traffic behavior through the series of signals at the green-wave strategy. The dependence of the travel time on offset time is derived for various values of cycle time. The region map of the traffic dispersion is shown in (cycle time, offset time)-space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JHyd..555..697L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JHyd..555..697L"><span>Taylor dispersion in wind-driven current</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Gang; Wang, Ping; Jiang, Wei-Quan; Zeng, Li; Li, Zhi; Chen, G. Q.</p> <p>2017-12-01</p> <p>Taylor dispersion associated with wind-driven currents in channels, shallow lakes and estuaries is essential to hydrological environmental management. For solute dispersion in a wind-driven current, presented in this paper is an analytical study of the evolution of concentration distribution. The concentration moments are intensively derived for an accurate presentation of the mean concentration distribution, up to the effect of kurtosis. The vertical divergence of concentration is then deduced by Gill's method of series expansion up to the fourth order. Based on the temporal evolution of the vertical concentration distribution, the dispersion process in the wind-driven current is concretely characterized. The uniform shear leads to a special symmetrical distribution of mean concentration free of skewness. The non-uniformity of vertical concentration is caused by convection and smeared out gradually by the effect of diffusion, but fails to disappear even at large times.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRCM...28..411W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRCM...28..411W"><span>Nonautonomous solitons for an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Yong-Yan; Su, Chuan-Qi; Liu, Xue-Qing; Li, Jian-Guang</p> <p>2018-07-01</p> <p>Under investigation in this paper is an extended forced Korteweg-de Vries equation with variable coefficients in the fluid or plasma. Lax pair, bilinear forms, and bilinear Bäcklund transformations are derived. Based on the bilinear forms, the first-, second-, and third-order nonautonomous soliton solutions are derived. Propagation and interaction of the nonautonomous solitons are investigated and influence of the variable coefficients is also discussed: Amplitude of the first-order nonautonomous soliton is determined by the spectral parameter and perturbed factor; there exist two kinds of the solitons, namely the elevation and depression solitons, depending on the sign of the spectral parameter; the background where the nonautonomous soliton exists is influenced by the perturbed factor and external force coefficient; breather solutions can be constructed under the conjugate condition, and period of the breather is related to the dispersive and nonuniform coefficients.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JMOp...64.1717Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JMOp...64.1717Z"><span>Stable diffraction-management soliton in a periodic structure with alternating left-handed and right-handed media</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Jinggui</p> <p>2017-09-01</p> <p>In this paper, we first derive a modified two-dimensional non-linear Schrödinger equation including high-order diffraction (HOD) suitable for the propagation of optical beam near the low-diffraction regime in Kerr non-linear media with spatial dispersion. Then, we apply our derived physical model to a designed two-dimensional configuration filled with alternate layers of a left-handed material (LHM) and a right-handed media by employing the mean-field theory. It is found that the periodic structure including LHM may experience diminished, cancelled, and even reversed diffraction behaviours through engineering the relative thickness between both media. In particular, the variational method analytically predicts that close to the zero-diffraction regime, such periodic structure can support stable diffraction-management solitons whose beamwidth and peak amplitude evolve periodically with the help of HOD effect. Numerical simulation based on the split-step Fourier method confirms the analytical results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890013026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890013026"><span>Absorbing boundary conditions for second-order hyperbolic equations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jiang, Hong; Wong, Yau Shu</p> <p>1989-01-01</p> <p>A uniform approach to construct absorbing artificial boundary conditions for second-order linear hyperbolic equations is proposed. The nonlocal boundary condition is given by a pseudodifferential operator that annihilates travelling waves. It is obtained through the dispersion relation of the differential equation by requiring that the initial-boundary value problem admits the wave solutions travelling in one direction only. Local approximation of this global boundary condition yields an nth-order differential operator. It is shown that the best approximations must be in the canonical forms which can be factorized into first-order operators. These boundary conditions are perfectly absorbing for wave packets propagating at certain group velocities. A hierarchy of absorbing boundary conditions is derived for transonic small perturbation equations of unsteady flows. These examples illustrate that the absorbing boundary conditions are easy to derive, and the effectiveness is demonstrated by the numerical experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25a2117I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25a2117I"><span>Numerical analysis of two-fluid tearing mode instability in a finite aspect ratio cylinder</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ito, Atsushi; Ramos, Jesús J.</p> <p>2018-01-01</p> <p>The two-fluid resistive tearing mode instability in a periodic plasma cylinder of finite aspect ratio is investigated numerically for parameters such that the cylindrical aspect ratio and two-fluid effects are of order unity, hence the real and imaginary parts of the mode eigenfunctions and growth rate are comparable. Considering a force-free equilibrium, numerical solutions of the complete eigenmode equations for general aspect ratios and ion skin depths are compared and found to be in very good agreement with the corresponding analytic solutions derived by means of the boundary layer theory [A. Ito and J. J. Ramos, Phys. Plasmas 24, 072102 (2017)]. Scaling laws for the growth rate and the real frequency of the mode are derived from the analytic dispersion relation by using Taylor expansions and Padé approximations. The cylindrical finite aspect ratio effect is inferred from the scaling law for the real frequency of the mode.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22127091-biases-physical-parameter-estimates-through-differential-lensing-magnification','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22127091-biases-physical-parameter-estimates-through-differential-lensing-magnification"><span>BIASES IN PHYSICAL PARAMETER ESTIMATES THROUGH DIFFERENTIAL LENSING MAGNIFICATION</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Er Xinzhong; Ge Junqiang; Mao Shude, E-mail: xer@nao.cas.cn</p> <p>2013-06-20</p> <p>We study the lensing magnification effect on background galaxies. Differential magnification due to different magnifications of different source regions of a galaxy will change the lensed composite spectra. The derived properties of the background galaxies are therefore biased. For simplicity, we model galaxies as a superposition of an axis-symmetric bulge and a face-on disk in order to study the differential magnification effect on the composite spectra. We find that some properties derived from the spectra (e.g., velocity dispersion, star formation rate, and metallicity) are modified. Depending on the relative positions of the source and the lens, the inferred results canmore » be either over- or underestimates of the true values. In general, for an extended source at strong lensing regions with high magnifications, the inferred physical parameters (e.g., metallicity) can be strongly biased. Therefore, detailed lens modeling is necessary to obtain the true properties of the lensed galaxies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1418786','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1418786"><span>Corrections to the General (2,4) and (4,4) FDTD Schemes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Meierbachtol, Collin S.; Smith, William S.; Shao, Xuan-Min</p> <p></p> <p>The sampling weights associated with two general higher order FDTD schemes were derived by Smith, et al. and published in a IEEE Transactions on Antennas and Propagation article in 2012. Inconsistencies between governing equations and their resulting solutions were discovered within the article. In an effort to track down the root cause of these inconsistencies, the full three-dimensional, higher order FDTD dispersion relation was re-derived using Mathematica TM. During this process, two errors were identi ed in the article. Both errors are highlighted in this document. The corrected sampling weights are also provided. Finally, the original stability limits provided formore » both schemes are corrected, and presented in a more precise form. It is recommended any future implementations of the two general higher order schemes provided in the Smith, et al. 2012 article should instead use the sampling weights and stability conditions listed in this document.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19730006017','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19730006017"><span>Lagrangian description of warm plasmas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kim, H.</p> <p>1970-01-01</p> <p>Efforts are described to extend the averaged Lagrangian method of describing small signal wave propagation and nonlinear wave interaction, developed by earlier workers for cold plasmas, to the more general conditions of warm collisionless plasmas, and to demonstrate particularly the effectiveness of the method in analyzing wave-wave interactions. The theory is developed for both the microscopic description and the hydrodynamic approximation to plasma behavior. First, a microscopic Lagrangian is formulated rigorously, and expanded in terms of perturbations about equilibrium. Two methods are then described for deriving a hydrodynamic Lagrangian. In the first of these, the Lagrangian is obtained by velocity integration of the exact microscopic Lagrangian. In the second, the expanded hydrodynamic Lagrangian is obtained directly from the expanded microscopic Lagrangian. As applications of the microscopic Lagrangian, the small-signal dispersion relations and the coupled mode equations are derived for all possible waves in a warm infinite, weakly inhomogeneous magnetoplasma, and their interactions are examined.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25107427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25107427"><span>The effect of polymeric excipients on the physical properties and performance of amorphous dispersions: Part I, free volume and glass transition.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Jinjiang; Zhao, Junshu; Tao, Li; Wang, Jennifer; Waknis, Vrushali; Pan, Duohai; Hubert, Mario; Raghavan, Krishnaswamy; Patel, Jatin</p> <p>2015-02-01</p> <p>To investigate the structural effect of polymeric excipients on the behavior of free volume of drug-polymer dispersions in relation to glass transition. Two drugs (indomethacin and ketoconazole) were selected to prepare amorphous dispersions with PVP, PVPVA, HPC, and HPMCAS through spray drying. The physical attributes of the dispersions were characterized using SEM and PXRD. The free volume (hole-size) of the dispersions along with drugs and polymers was measured using positron annihilation lifetime spectroscopy (PALS). Their glass transition temperatures (Tgs) were determined using DSC and DMA. FTIR spectra were recorded to identify hydrogen bonding in the dispersions. The chain structural difference-flexible (PVP and PVPVA) vs. inflexible (HPC and HPMCAS)-significantly impacts the free volume and Tgs of the dispersions as well as their deviation from ideality. Relative to Tg, free volume seems to be a better measure of hydrogen bonding interaction for the dispersions of PVP, HPC, and HPMCAS. The free volume of polymers and their dispersions in general appears to be related to their conformations in solution. Both the backbone chain rigidity of polymers as well as drug-polymer interaction can impact the free volume and glass transition behaviors of the dispersions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22599963-viscous-effects-rayleigh-taylor-instability-background-temperature-gradient','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22599963-viscous-effects-rayleigh-taylor-instability-background-temperature-gradient"><span>Viscous effects on the Rayleigh-Taylor instability with background temperature gradient</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Gerashchenko, S.; Livescu, D., E-mail: livescu@lanl.gov</p> <p></p> <p>The growth rate of the compressible Rayleigh-Taylor instability is studied in the presence of a background temperature gradient, Θ, using a normal mode analysis. The effect of Θ variation is examined for three interface types corresponding to the combinations of the viscous properties of the fluids (inviscid-inviscid, viscous-viscous, and viscous-inviscid) at different Atwood numbers, At, and when at least one of the fluids' viscosity is non-zero, as a function of the Grashof number. For the general case, the resulting ordinary differential equations are solved numerically; however, dispersion relations for the growth rate are presented for several limiting cases. An analyticalmore » solution is found for the inviscid-inviscid interface and the corresponding dispersion equation for the growth rate is obtained in the limit of large Θ. For the viscous-inviscid case, a dispersion relation is derived in the incompressible limit and Θ = 0. Compared to Θ = 0 case, the role of Θ < 0 (hotter light fluid) is destabilizing and becomes stabilizing when Θ > 0 (colder light fluid). The most pronounced effect of Θ ≠ 0 is found at low At and/or at large perturbation wavelengths relative to the domain size for all interface types. On the other hand, at small perturbation wavelengths relative to the domain size, the growth rate for the Θ < 0 case exceeds the infinite domain incompressible constant density result. The results are applied to two practical examples, using sets of parameters relevant to Inertial Confinement Fusion coasting stage and solar corona plumes. The role of viscosity on the growth rate reduction is discussed together with highlighting the range of wavenumbers most affected by viscosity. The viscous effects further increase in the presence of background temperature gradient, when the viscosity is temperature dependent.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11755266','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11755266"><span>The mechanisms of drug release from solid dispersions in water-soluble polymers.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Craig, Duncan Q M</p> <p>2002-01-14</p> <p>Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23546220','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23546220"><span>Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G</p> <p>2013-05-01</p> <p>We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25487088','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25487088"><span>Initial community and environment determine the response of bacterial communities to dispersant and oil contamination.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ortmann, Alice C; Lu, YueHan</p> <p>2015-01-15</p> <p>Bioremediation of seawater by natural bacterial communities is one potential response to coastal oil spills, but the success of the approach may vary, depending on geographical location, oil composition and the timing of spill. The short term response of coastal bacteria to dispersant, oil and dispersed oil was characterized using 16S rRNA gene tags in two mesocosm experiments conducted two months apart. Despite differences in the amount of oil-derived alkanes across the treatments and experiments, increases in the contributions of hydrocarbon degrading taxa and decreases in common estuarine bacteria were observed in response to dispersant and/or oil. Between the two experiments, the direction and rates of changes in particulate alkane concentrations differed, as did the magnitude of the bacterial response to oil and/or dispersant. Together, our data underscore large variability in bacterial responses to hydrocarbon pollutants, implying that bioremediation success varies with starting biological and environmental conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18373659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18373659"><span>Natal dispersal patterns are not associated with inbreeding avoidance in the Seychelles warbler.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eikenaar, C; Komdeur, J; Richardson, D S</p> <p>2008-07-01</p> <p>In this study, we test whether patterns of territory inheritance, social mate choice and female-biased natal dispersal act as inbreeding avoidance mechanisms in the cooperatively breeding Seychelles warbler. Our results show that Seychelles warblers do not reduce the likelihood of inbreeding by avoiding related individuals as mates. The occurrence of natural and experimentally induced territory inheritance did not depend on whether the remaining breeder was a parent of the potential inheritor or an unrelated breeder. Furthermore, dispersing individuals were no less related to their eventual mates than expected given the pool of candidates they could mate with. The female bias in natal dispersal distance observed in the Seychelles warbler does not facilitate inbreeding avoidance because, contrary to our prediction, there was no sex difference in the clustering of related opposite sex breeders around the natal territories of dispersers. As a result, the chance of females mating with relatives was not reduced by their greater dispersal distance compared with that of males.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5477491','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5477491"><span>All-optical observation and reconstruction of spin wave dispersion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji</p> <p>2017-01-01</p> <p>To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992SSCom..83..153T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992SSCom..83..153T"><span>On the local field method with the account of spatial dispersion. Application to the optical activity theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tyu, N. S.; Ekhilevsky, S. G.</p> <p>1992-07-01</p> <p>For the perfect molecular crystals the equations of the local field method (LFM) with the account of spatial dispersion are formulated. They are used to derive the expression for the crystal polarizability tensor. For the first time within the framework of this method the formula for the gyrotropy tensor of an arbitrary optically active molecular crystal is obtained. This formula is analog of well known relationships of Lorentz-Lorenz.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25172113','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25172113"><span>Reciprocity principle for scattered fields from discontinuities in waveguides.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pau, Annamaria; Capecchi, Danilo; Vestroni, Fabrizio</p> <p>2015-01-01</p> <p>This study investigates the scattering of guided waves from a discontinuity exploiting the principle of reciprocity in elastodynamics, written in a form that applies to waveguides. The coefficients of reflection and transmission for an arbitrary mode can be derived as long as the principle of reciprocity is satisfied at the discontinuity. Two elastodynamic states are related by the reciprocity. One is the response of the waveguide in the presence of the discontinuity, with the scattered fields expressed as a superposition of wave modes. The other state is the response of the waveguide in the absence of the discontinuity oscillating according to an arbitrary mode. The semi-analytical finite element method is applied to derive the needed dispersion relation and wave mode shapes. An application to a solid cylinder with a symmetric double change of cross-section is presented. This model is assumed to be representative of a damaged rod. The coefficients of reflection and transmission of longitudinal waves are investigated for selected values of notch length and varying depth. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MAR.Y8010B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MAR.Y8010B"><span>Probing topological Fermi-Arcs and bulk boundary correspondence in the Weyl semimetal TaAs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Batabyal, Rajib; Morali, Noam; Avraham, Nurit; Sun, Yan; Schmidt, Marcus; Felser, Claudia; Stern, Ady; Yan, Binghai; Beidenkopf, Haim</p> <p></p> <p>The relation between surface Fermi-arcs and bulk Weyl cones in a Weyl semimetal, uniquely allows to study the notion of bulk to surface correspondence. We visualize these topological Fermi arc states on the surface of the Weyl semi-metal tantalum arsenide using scanning tunneling spectroscopy. Its surface hosts 12 Fermi arcs amongst several other surface bands of non-topological origin. We detect the possible scattering processes of surface bands in which Fermi arcs are involved including intra- and inter arc scatterings and arc-trivial scatterings. Each of the measured scattering processes entails additional information on the unique nature of Fermi arcs in tantalum arsenide: their contour, their energy-momentum dispersion and its relation with the bulk Weyl nodes. We further identify a sharp distinction between the wave function's spatial distribution of topological versus trivial bands. The non-topological surface bands, which are derived from the arsenic dangling bonds, are tightly bound to the arsenic termination layer. In contrast, the Fermi-arc bands reside on the deeper tantalum layer, penetrating into the bulk, which is predominantly derived from tantalum orbitals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22667701-getting-super-excited-modified-dispersion-relations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22667701-getting-super-excited-modified-dispersion-relations"><span>Getting super-excited with modified dispersion relations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ashoorioon, Amjad; Casadio, Roberto; Geshnizjani, Ghazal</p> <p></p> <p>We demonstrate that in some regions of parameter space, modified dispersion relations can lead to highly populated excited states, which we dub as 'super-excited' states. In order to prepare such super-excited states, we invoke dispersion relations that have negative slope in an interim sub-horizon phase at high momenta. This behaviour of quantum fluctuations can lead to large corrections relative to the Bunch-Davies power spectrum, which mimics highly excited initial conditions. We identify the Bogolyubov coefficients that can yield these power spectra. In the course of this computation, we also point out the shortcomings of the gluing method for evaluating themore » power spectrum and the Bogolyubov coefficients. As we discuss, there are other regions of parameter space, where the power spectrum does not get modified. Therefore, modified dispersion relations can also lead to so-called 'calm excited states'. We conclude by commenting on the possibility of obtaining these modified dispersion relations within the Effective Field Theory of Inflation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005PhDT.......189B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005PhDT.......189B"><span>Lagrangian averaging, nonlinear waves, and shock regularization</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bhat, Harish S.</p> <p></p> <p>In this thesis, we explore various models for the flow of a compressible fluid as well as model equations for shock formation, one of the main features of compressible fluid flows. We begin by reviewing the variational structure of compressible fluid mechanics. We derive the barotropic compressible Euler equations from a variational principle in both material and spatial frames. Writing the resulting equations of motion requires certain Lie-algebraic calculations that we carry out in detail for expository purposes. Next, we extend the derivation of the Lagrangian averaged Euler (LAE-alpha) equations to the case of barotropic compressible flows. The derivation in this thesis involves averaging over a tube of trajectories etaepsilon centered around a given Lagrangian flow eta. With this tube framework, the LAE-alpha equations are derived by following a simple procedure: start with a given action, expand via Taylor series in terms of small-scale fluid fluctuations xi, truncate, average, and then model those terms that are nonlinear functions of xi. We then analyze a one-dimensional subcase of the general models derived above. We prove the existence of a large family of traveling wave solutions. Computing the dispersion relation for this model, we find it is nonlinear, implying that the equation is dispersive. We carry out numerical experiments that show that the model possesses smooth, bounded solutions that display interesting pattern formation. Finally, we examine a Hamiltonian partial differential equation (PDE) that regularizes the inviscid Burgers equation without the addition of standard viscosity. Here alpha is a small parameter that controls a nonlinear smoothing term that we have added to the inviscid Burgers equation. We show the existence of a large family of traveling front solutions. We analyze the initial-value problem and prove well-posedness for a certain class of initial data. We prove that in the zero-alpha limit, without any standard viscosity, solutions of the PDE converge strongly to weak solutions of the inviscid Burgers equation. We provide numerical evidence that this limit satisfies an entropy inequality for the inviscid Burgers equation. We demonstrate a Hamiltonian structure for the PDE.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22310725-coupled-oscillator-theory-dispersion-casimir-polder-interactions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22310725-coupled-oscillator-theory-dispersion-casimir-polder-interactions"><span>Coupled-oscillator theory of dispersion and Casimir-Polder interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Berman, P. R.; Ford, G. W.; Milonni, P. W.</p> <p>2014-10-28</p> <p>We address the question of the applicability of the argument theorem (of complex variable theory) to the calculation of two distinct energies: (i) the first-order dispersion interaction energy of two separated oscillators, when one of the oscillators is excited initially and (ii) the Casimir-Polder interaction of a ground-state quantum oscillator near a perfectly conducting plane. We show that the argument theorem can be used to obtain the generally accepted equation for the first-order dispersion interaction energy, which is oscillatory and varies as the inverse power of the separation r of the oscillators for separations much greater than an optical wavelength.more » However, for such separations, the interaction energy cannot be transformed into an integral over the positive imaginary axis. If the argument theorem is used incorrectly to relate the interaction energy to an integral over the positive imaginary axis, the interaction energy is non-oscillatory and varies as r{sup −4}, a result found by several authors. Rather remarkably, this incorrect expression for the dispersion energy actually corresponds to the nonperturbative Casimir-Polder energy for a ground-state quantum oscillator near a perfectly conducting wall, as we show using the so-called “remarkable formula” for the free energy of an oscillator coupled to a heat bath [G. W. Ford, J. T. Lewis, and R. F. O’Connell, Phys. Rev. Lett. 55, 2273 (1985)]. A derivation of that formula from basic results of statistical mechanics and the independent oscillator model of a heat bath is presented.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70028859','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70028859"><span>Water dispersal of vegetative bulbils of the invasive exotic Dioscorea oppositifolia L. in southern Illinois</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Thomas, J.R.; Gibson, D.J.; Middleton, B.A.</p> <p>2005-01-01</p> <p>Riparian corridors promote dispersal of several species of exotic invasives worldwide. Dispersal plays a role in the colonization of exotic invasive species into new areas and this study was conducted to determine if the invasiveness of Dioscorea oppositifolia L. (Chinese yam) is facilitated by secondary dispersal of vegetative diaspores (bulbils) by water. Since seed production of this plant has not been observed in the United States, bulbils represent the only means of dispersal to new habitats. Dispersal was monitored by placing aquatic traps, tethered bulbils, and painted bulbil caches in a tributary of Drury Creek, Giant City State Park, Illinois. Results indicate that high-energy flow in the creek accelerated secondary dispersal of bulbils downstream and onto the floodplain. The longest recorded dispersal distance was 206.2 m downstream. Dispersal distance of tethered bulbils was not related to rainfall or flow velocity in the creek; however the total number of bulbils trapped was positively related to flow velocity. We conclude that secondary dispersal by water in streams can facilitate dispersal of vegetative bulbils of this exotic species.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/6243886-amplification-chromosomal-dispersion-human-endogenous-retroviral-sequences','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6243886-amplification-chromosomal-dispersion-human-endogenous-retroviral-sequences"><span>Amplification and chromosomal dispersion of human endogenous retroviral sequences</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Steele, P.E.; Martin, M.A.; Rabson, A.B.</p> <p>1986-09-01</p> <p>Endogenous retroviral sequences have undergone amplification events involving both viral and flanking cellular sequences. The authors cloned members of an amplified family of full-length endogenous retroviral sequences. Genomic blotting, employing a flanking cellular DNA probe derived from a member of this family, revealed a similar array of reactive bands in both humans and chimpanzees, indicating that an amplification event involving retroviral and associated cellular DNA sequences occurred before the evolutionary separation of these two primates. Southern analyses of restricted somatic cell hybrid DNA preparations suggested that endogenous retroviral segments are widely dispersed in the human genome and that amplification andmore » dispersion events may be linked.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EPJP..132...29S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EPJP..132...29S"><span>Travelling-wave solutions of a weakly nonlinear two-dimensional higher-order Kadomtsev-Petviashvili dynamical equation for dispersive shallow-water waves</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Seadawy, Aly R.</p> <p>2017-01-01</p> <p>The propagation of three-dimensional nonlinear irrotational flow of an inviscid and incompressible fluid of the long waves in dispersive shallow-water approximation is analyzed. The problem formulation of the long waves in dispersive shallow-water approximation lead to fifth-order Kadomtsev-Petviashvili (KP) dynamical equation by applying the reductive perturbation theory. By using an extended auxiliary equation method, the solitary travelling-wave solutions of the two-dimensional nonlinear fifth-order KP dynamical equation are derived. An analytical as well as a numerical solution of the two-dimensional nonlinear KP equation are obtained and analyzed with the effects of external pressure flow.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EPJC...74.3180H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EPJC...74.3180H"><span>Dispersive analysis of the pion transition form factor</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hoferichter, M.; Kubis, B.; Leupold, S.; Niecknig, F.; Schneider, S. P.</p> <p>2014-11-01</p> <p>We analyze the pion transition form factor using dispersion theory. We calculate the singly-virtual form factor in the time-like region based on data for the cross section, generalizing previous studies on decays and scattering, and verify our result by comparing to data. We perform the analytic continuation to the space-like region, predicting the poorly-constrained space-like transition form factor below , and extract the slope of the form factor at vanishing momentum transfer . We derive the dispersive formalism necessary for the extension of these results to the doubly-virtual case, as required for the pion-pole contribution to hadronic light-by-light scattering in the anomalous magnetic moment of the muon.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JMMM..386..111R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JMMM..386..111R"><span>Synthesis of water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 and its catalytic application in Kabachnik-Fields multicomponent reaction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rostamnia, Sadegh; Doustkhah, Esmail</p> <p>2015-07-01</p> <p>Water-dispersed magnetic nanoparticles (H2O-DMNPs) of β-cyclodextrin modified Fe3O4 were successfully synthesized. β-Cyclodextrin acts as stabilizer and structure directing agent of Fe3O4. Subsequently, the dispersion of Fe3O4@β-CD was applied for the Kabachnik-Fields multicomponent reaction through three-component synthesis of an amine, aldehyde, and dimethylphosphonate. β-CD had also a drastic effect in accelerating the catalysis of phosphonate synthesis. By this protocol, phosphonate derivatives were synthesized in high yields and the catalyst was recycled for 10 successful runs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvL.119s6802K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvL.119s6802K"><span>Dispersive Readout of Adiabatic Phases</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohler, Sigmund</p> <p>2017-11-01</p> <p>We propose a protocol for the measurement of adiabatic phases of periodically driven quantum systems coupled to an open cavity that enables dispersive readout. It turns out that the cavity transmission exhibits peaks at frequencies determined by a resonance condition that involves the dynamical and the geometric phase. Since these phases scale differently with the driving frequency, one can determine them by fitting the peak positions to the theoretically expected behavior. For the derivation of the resonance condition and for a numerical study, we develop a Floquet theory for the dispersive readout of ac driven quantum systems. The feasibility is demonstrated for two test cases that generalize Landau-Zener-Stückelberg-Majorana interference to two-parameter driving.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhPl...25f3106B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhPl...25f3106B"><span>Influence of nonlinear detuning at plasma wavebreaking threshold on backward Raman compression of non-relativistic laser pulses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Balakin, A. A.; Fraiman, G. M.; Jia, Q.; Fisch, N. J.</p> <p>2018-06-01</p> <p>Taking into account the nonlinear dispersion of the plasma wave, the fluid equations for the three-wave (Raman) interaction in plasmas are derived. It is found that, in some parameter regimes, the nonlinear detuning resulting from the plasma wave dispersion during Raman compression limits the plasma wave amplitude to noticeably below the generally recognized wavebreaking threshold. Particle-in-cell simulations confirm the theoretical estimates. For weakly nonlinear dispersion, the detuning effect can be counteracted by pump chirping or, equivalently, by upshifting slightly the pump frequency, so that the frequency-upshifted pump interacts with the seed at the point where the plasma wave enters the nonlinear stage.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>