Method for improve x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, Robert M.; Cohen, Isadore
1990-01-01
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys which comprises covering part of a predetermined area of the surface of a nickel-base alloy with a dispersion, exposing the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample.
Compact energy dispersive X-ray microdiffractometer for diagnosis of neoplastic tissues
NASA Astrophysics Data System (ADS)
Sosa, C.; Malezan, A.; Poletti, M. E.; Perez, R. D.
2017-08-01
An energy dispersive X-ray microdiffractometer with capillary optics has been developed for characterizing breast cancer. The employment of low divergence capillary optics helps to reduce the setup size to a few centimeters, while providing a lateral spatial resolution of 100 μm. The system angular calibration and momentum transfer resolution were assessed by a detailed study of a polycrystalline reference material. The performance of the system was tested by means of the analysis of tissue-equivalent samples previously characterized by conventional X-ray diffraction. In addition, a simplified correction model for an appropriate comparison of the diffraction spectra was developed and validated. Finally, the system was employed to evaluate normal and neoplastic human breast samples, in order to determine their X-ray scatter signatures. The initial results indicate that the use of this compact energy dispersive X-ray microdiffractometer combined with a simplified correction procedure is able to provide additional information to breast cancer diagnosis.
Reconstructive colour X-ray diffraction imaging--a novel TEDDI imaging method.
Lazzari, Olivier; Jacques, Simon; Sochi, Taha; Barnes, Paul
2009-09-01
Tomographic Energy-Dispersive Diffraction Imaging (TEDDI) enables a unique non-destructive mapping of the interior of bulk objects, exploiting the full range of X-ray signals (diffraction, fluorescence, scattering, background) recorded. By analogy to optical imaging, a wide variety of features (structure, composition, orientation, strain) dispersed in X-ray wavelengths can be extracted and colour-coded to aid interpretation. The ultimate aim of this approach is to realise real-time high-definition colour X-ray diffraction imaging, on the timescales of seconds, so that one will be able to 'look inside' optically opaque apparatus and unravel the space/time-evolution of the materials chemistry taking place. This will impact strongly on many fields of science but there are currently two barriers to this goal: speed of data acquisition (a 2D scan currently takes minutes to hours) and loss of image definition through spatial distortion of the X-ray sampling volume. Here we present a data-collection scenario and reconstruction routine which overcomes the latter barrier and which has been successfully applied to a phantom test object and to real materials systems such as a carbonating cement block. These procedures are immediately transferable to the promising technology of multi-energy-dispersive-detector-arrays which are planned to deliver the other breakthrough, that of one-two orders of magnitude improvement in data acquisition rates, that will be needed to realise real-time high-definition colour X-ray diffraction imaging.
Method for improving x-ray diffraction determinations of residual stress in nickel-base alloys
Berman, R.M.; Cohen, I.
1988-04-26
A process for improving the technique of measuring residual stress by x-ray diffraction in pieces of nickel-base alloys is discussed. Part of a predetermined area of the surface of a nickel-base alloy is covered with a dispersion. This exposes the covered and uncovered portions of the surface of the alloy to x-rays by way of an x-ray diffractometry apparatus, making x-ray diffraction determinations of the exposed surface, and measuring the residual stress in the alloy based on these determinations. The dispersion is opaque to x-rays and serves a dual purpose, since it masks off unsatisfactory signals such that only a small portion of the surface is measured, and it supplies an internal standard by providing diffractogram peaks comparable to the peaks of the nickel alloy so that the alloy peaks can be very accurately located regardless of any sources of error external to the sample. 2 figs.
Toward in situ x-ray diffraction imaging at the nanometer scale
NASA Astrophysics Data System (ADS)
Zatsepin, Nadia A.; Dilanian, Ruben A.; Nikulin, Andrei Y.; Gable, Brian M.; Muddle, Barry C.; Sakata, Osami
2008-08-01
We present the results of preliminary investigations determining the sensitivity and applicability of a novel x-ray diffraction based nanoscale imaging technique, including simulations and experiments. The ultimate aim of this nascent technique is non-destructive, bulk-material characterization on the nanometer scale, involving three dimensional image reconstructions of embedded nanoparticles and in situ sample characterization. The approach is insensitive to x-ray coherence, making it applicable to synchrotron and laboratory hard x-ray sources, opening the possibility of unprecedented nanometer resolution with the latter. The technique is being developed with a focus on analyzing a technologically important light metal alloy, Al-xCu (where x is 2.0-5.0 %wt). The mono- and polycrystalline samples contain crystallographically oriented, weakly diffracting Al2Cu nanoprecipitates in a sparse, spatially random dispersion within the Al matrix. By employing a triple-axis diffractometer in the non-dispersive setup we collected two-dimensional reciprocal space maps of synchrotron x-rays diffracted from the Al2Cu nanoparticles. The intensity profiles of the diffraction peaks confirmed the sensitivity of the technique to the presence and orientation of the nanoparticles. This is a fundamental step towards in situ observation of such extremely sparse, weakly diffracting nanoprecipitates embedded in light metal alloys at early stages of their growth.
High-pressure Irreversible Amorphization of La1/3NbO3
DOE Office of Scientific and Technical Information (OSTI.GOV)
I Halevy; A Hen; A Broide
2011-12-31
The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.
Laser-induced Multi-energy Processing in Diamond Growth
2012-05-01
microscopy (SEM) and energy dispersive X - ray (EDX) measurements, Drs. Yi Liu and Shah Valloppilly from Nebraska Center for Materials and Nanoscience...NCMN) at UNL for help on X - Ray diffraction (XRD) measurements, and Professor Steve W. Martin and Dr. Young Sik Kim from the Department of Material...spectroscopy and X - ray diffraction ................... 62 4.4 Conclusions
New software to model energy dispersive X-ray diffraction in polycrystalline materials
NASA Astrophysics Data System (ADS)
Ghammraoui, B.; Tabary, J.; Pouget, S.; Paulus, C.; Moulin, V.; Verger, L.; Duvauchelle, Ph.
2012-02-01
Detection of illicit materials, such as explosives or drugs, within mixed samples is a major issue, both for general security and as part of forensic analyses. In this paper, we describe a new code simulating energy dispersive X-ray diffraction patterns in polycrystalline materials. This program, SinFullscat, models diffraction of any object in any diffractometer system taking all physical phenomena, including amorphous background, into account. Many system parameters can be tuned: geometry, collimators (slit and cylindrical), sample properties, X-ray source and detector energy resolution. Good agreement between simulations and experimental data was obtained. Simulations using explosive materials indicated that parameters such as the diffraction angle or the energy resolution of the detector have a significant impact on the diffraction signature of the material inspected. This software will be a convenient tool to test many diffractometer configurations, providing information on the one that best restores the spectral diffraction signature of the materials of interest.
Diffractive-refractive optics: (+,-,-,+) X-ray crystal monochromator with harmonics separation.
Hrdý, Jaromír; Mikulík, Petr; Oberta, Peter
2011-03-01
A new kind of two channel-cut crystals X-ray monochromator in dispersive (+,-,-,+) position which spatially separates harmonics is proposed. The diffracting surfaces are oriented so that the diffraction is inclined. Owing to refraction the diffracted beam is sagittally deviated. The deviation depends on wavelength and is much higher for the first harmonics than for higher harmonics. This leads to spatial harmonics separation. The idea is supported by ray-tracing simulation.
Symposium N: Materials and Devices for Thermal-to-Electric Energy Conversion
2010-08-24
X - ray diffraction, transmission electron microscopy, scanning electron microscopy, and dynamic light scattering. Thermal conductivity measurements...SEM), X - ray diffraction (XRD) measurements as well as Raman spectroscopy. The results from these techniques indicate a clear modification...was examined by using scanning electron microscope (SEM; HITACHI S-4500 model) attached with an energy dispersive x - ray spectroscopy. The electrical
Monochromator for continuous spectrum x-ray radiation
Staudenmann, J.L.; Liedl, G.L.
1983-12-02
A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5/sup 0/ to 86.5/sup 0/, and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive.
Monochromator for continuous spectrum x-ray radiation
Staudenmann, Jean-Louis; Liedl, Gerald L.
1987-07-07
A monochromator for use with synchrotron x-ray radiation comprises two diffraction means which can be rotated independently and independent means for translationally moving one diffraction means with respect to the other. The independence of the rotational and translational motions allows Bragg angles from 3.5.degree. to 86.5.degree., and facilitates precise and high-resolution monochromatization over a wide energy range. The diffraction means are removably mounted so as to be readily interchangeable, which allows the monochromator to be used for both non-dispersive and low dispersive work.
Abboud, A; Kirchlechner, C; Keckes, J; Conka Nurdan, T; Send, S; Micha, J S; Ulrich, O; Hartmann, R; Strüder, L; Pietsch, U
2017-06-01
The full strain and stress tensor determination in a triaxially stressed single crystal using X-ray diffraction requires a series of lattice spacing measurements at different crystal orientations. This can be achieved using a tunable X-ray source. This article reports on a novel experimental procedure for single-shot full strain tensor determination using polychromatic synchrotron radiation with an energy range from 5 to 23 keV. Microbeam X-ray Laue diffraction patterns were collected from a copper micro-bending beam along the central axis (centroid of the cross section). Taking advantage of a two-dimensional energy-dispersive X-ray detector (pnCCD), the position and energy of the collected Laue spots were measured for multiple positions on the sample, allowing the measurement of variations in the local microstructure. At the same time, both the deviatoric and hydrostatic components of the elastic strain and stress tensors were calculated.
2016-07-11
composites with x - ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), Rutherford backscattering spectroscopy...RBS), particle-induced x - ray emission (PIXE), and energy dispersive x - ray spectroscopy (EDX). This work complements earlier works on CdSe...sample shows only In2Se3 and CdIn2Se4 XRD peaks (Figure 1.4e), it is stoichiometrically Figure 1.4. X - ray diffraction patterns of (a) γ-In2Se3
NASA Astrophysics Data System (ADS)
Konstantinidis, A.; Anaxagoras, T.; Esposito, M.; Allinson, N.; Speller, R.
2012-03-01
X-ray diffraction studies are used to identify specific materials. Several laboratory-based x-ray diffraction studies were made for breast cancer diagnosis. Ideally a large area, low noise, linear and wide dynamic range digital x-ray detector is required to perform x-ray diffraction measurements. Recently, digital detectors based on Complementary Metal-Oxide- Semiconductor (CMOS) Active Pixel Sensor (APS) technology have been used in x-ray diffraction studies. Two APS detectors, namely Vanilla and Large Area Sensor (LAS), were developed by the Multidimensional Integrated Intelligent Imaging (MI-3) consortium to cover a range of scientific applications including x-ray diffraction. The MI-3 Plus consortium developed a novel large area APS, named as Dynamically Adjustable Medical Imaging Technology (DynAMITe), to combine the key characteristics of Vanilla and LAS with a number of extra features. The active area (12.8 × 13.1 cm2) of DynaMITe offers the ability of angle dispersive x-ray diffraction (ADXRD). The current study demonstrates the feasibility of using DynaMITe for breast cancer diagnosis by identifying six breast-equivalent plastics. Further work will be done to optimize the system in order to perform ADXRD for identification of suspicious areas of breast tissue following a conventional mammogram taken with the same sensor.
NASA Astrophysics Data System (ADS)
Abishek, N. S.; Naik, K. Gopalakrishna
2018-05-01
Bismuth telluride (Bi2Te3) nanoparticles were synthesized by the hydrothermal method at 200 °C for 24 h. The synthesized Bi2Te3 nanoparticles were irradiated with gamma rays at doses of 50 kGy and 100 kGy. The structural characterization of the pre-irradiated and post-irradiated samples was carried out by X-ray diffraction technique and was found to have rhombohedral phase having R3 ¯m (166) space group. The X-ray diffraction peaks were found to shift towards lower diffraction angle with gamma ray irradiation. The morphologies and compositions of the grown Bi2Te3 nanoparticles were studied using Field Emission Scanning Electron Microscope and X-ray energy dispersive analysis, respectively. The possible cause for the shift in the X-ray diffraction peaks with gamma ray irradiation has been discussed in the present work.
NASA Astrophysics Data System (ADS)
Matsuda, Kazuhiro; Tamura, Kozaburo; Katoh, Masahiro; Inui, Masanori
2004-03-01
We have developed a sample cell for x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures. All parts of the cell are made of molybdenum which is resistant to the chemical corrosion of alkali metals. Single crystalline molybdenum disks electrolytically thinned down to 40 μm were used as the walls of the cell through which x rays pass. The crystal orientation of the disks was controlled in order to reduce the background from the cell. All parts of the cell were assembled and brazed together using a high-temperature Ru-Mo alloy. Energy dispersive x-ray diffraction measurements have been successfully carried out for fluid rubidium up to 1973 K and 16.2 MPa. The obtained S(Q) demonstrates the applicability of the molybdenum cell to x-ray diffraction measurements of fluid alkali metals at high temperatures and high pressures.
Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing; Bruck, Andrea M.; Bock, David C.
2017-01-01
ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.
Energy Dispersive X-ray Diffraction (EDXRD) of Li1.1V3O8 Electrochemical Cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qing; Bruck, Andrea M.; Bock, David C.
ABSTRACT In this study, we conducted the first energy dispersive x-ray diffraction (EDXRD) experiments on Li/Li 1.1V 3O 8coin cells discharged to different lithiation levels in order to investigate the phase transitions upon electrochemical reduction. The phase transformation from layered Li-poor α to Li-rich α to defect rock-salt β phase was confirmed with cells of different lithiation stages. No spatial localization of phase formation was observed throughout the cathodes under the conditions of this measurement.
Crystal structure and density of helium to 232 kbar
NASA Technical Reports Server (NTRS)
Mao, H. K.; Wu, Y.; Jephcoat, A. P.; Hemley, R. J.; Bell, P. M.; Bassett, W. A.
1988-01-01
The properties of helium and hydrogen at high pressure are topics of great interest to the understanding of planetary interiors. These materials constitute 95 percent of the entire solar system. A technique was presented for the measurement of X-ray diffraction from single-crystals of low-Z condenses gases in a diamond-anvil cell at high pressure. The first such single-crystal X-ray diffraction measurements on solid hydrogen to 26.5 GPa were presented. The application of this technique to the problem of the crystal structure, equation of state, and phase diagram of solid helium is reported. Crucial for X-ray diffraction studies of these materials is the use of a synchrotron radiation source which provides high brillance, narrow collimation of the incident and diffracted X-ray beams to reduce the background noise, and energy-dispersive diffraction techniques with polychromatic (white) radiation, which provides high detection efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronov, D.L.; Warwick, T.; Gullikson, E. M.
2016-07-27
High-resolution Resonant Inelastic X-ray Scattering (RIXS) requires diffraction gratings with very exacting characteristics. The gratings should provide both very high dispersion and high efficiency which are conflicting requirements and extremely challenging to satisfy in the soft x-ray region for a traditional grazing incidence geometry. To achieve high dispersion one should increase the groove density of a grating; this however results in a diffraction angle beyond the critical angle range and results in drastic efficiency loss. The problem can be solved by use of multilayer coated blazed gratings (MBG). In this work we have investigated the diffraction characteristics of MBGs viamore » numerical simulations and have developed a procedure for optimization of grating design for a multiplexed high resolution imaging spectrometer for RIXS spectroscopy to be built in sector 6 at the Advanced Light Source (ALS). We found that highest diffraction efficiency can be achieved for gratings optimized for 4{sup th} or 5{sup th} order operation. Fabrication of such gratings is an extremely challenging technological problem. We present a first experimental prototype of these gratings and report its performance. High order and high line density gratings have the potential to be a revolutionary new optical element that should have great impact in the area of soft x-ray RIXS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szlachetko, J.; Institute of Physics, Jan Kochanowski University, 25-406 Kielce; Nachtegaal, M.
2012-10-15
We report on the design and performance of a wavelength-dispersive type spectrometer based on the von Hamos geometry. The spectrometer is equipped with a segmented-type crystal for x-ray diffraction and provides an energy resolution in the order of 0.25 eV and 1 eV over an energy range of 8000 eV-9600 eV. The use of a segmented crystal results in a simple and straightforward crystal preparation that allows to preserve the spectrometer resolution and spectrometer efficiency. Application of the spectrometer for time-resolved resonant inelastic x-ray scattering and single-shot x-ray emission spectroscopy is demonstrated.
Sun, Xin-Yuan; Xue, Jun-Fa; Xia, Zhi-Yue; Ouyang, Jian-Ming
2015-06-01
This study aimed to analyse the components of nanocrystallites in urines of patients with uric acid (UA) stones. X-ray diffraction (XRD), Fourier transform infrared spectroscopy, high-resolution transmission electron microscopy (HRTEM), fast Fourier transformation (FFT) of HRTEM, and energy dispersive X-ray spectroscopy (EDS) were performed to analyse the components of these nanocrystallites. XRD and FFT showed that the main component of urinary nanocrystallites was UA, which contains a small amount of calcium oxalate monohydrate and phosphates. EDS showed the characteristic absorption peaks of C, O, Ca and P. The formation of UA stones was closely related to a large number of UA nanocrystallites in urine. A combination of HRTEM, FFT, EDS and XRD analyses could be performed accurately to analyse the components of urinary nanocrystallites.
X-ray diffraction study of elemental thulium to 86 GPa
NASA Astrophysics Data System (ADS)
Pravica, Michael; Romano, Edward; Quine, Zachary; Pravica, Walter
2006-03-01
We have studied the structures and equation of state of elemental thulium up to 86 GPa in a diamond anvil cell using angular-dispersive x-ray powder diffraction methods at the Advanced Photon Source. This is part of a study of phase transitions in the lanthanide-series metals using cyclohexane as a quasi-hydrostatic medium. We present evidence of a series of phase transitions that appear to follow the anticipated hcp ->Sm-type -> dhcp -> distorted fcc sequence of transitions and show the equation of state derived from the x-ray fit data.
NASA Astrophysics Data System (ADS)
Crews, Chiaki C. E.; O'Flynn, Daniel; Sidebottom, Aiden; Speller, Robert D.
2015-06-01
The prevalence of counterfeit and substandard medicines has been growing rapidly over the past decade, and fast, nondestructive techniques for their detection are urgently needed to counter this trend. In this study, energy-dispersive X-ray diffraction (EDXRD) combined with chemometrics was assessed for its effectiveness in quantitative analysis of compressed powder mixtures. Although EDXRD produces lower-resolution diffraction patterns than angular-dispersive X-ray diffraction (ADXRD), it is of interest for this application as it carries the advantage of allowing the analysis of tablets within their packaging, due to the higher energy X-rays used. A series of caffeine, paracetamol and microcrystalline cellulose mixtures were prepared with compositions between 0 - 100 weight% in 20 weight% steps (22 samples in total, including a centroid mixture), and were pressed into tablets. EDXRD spectra were collected in triplicate, and a principal component analysis (PCA) separated these into their correct positions in the ternary mixture design. A partial least-squares (PLS) regression model calibrated using this training set was validated using both segmented cross-validation, and with a test set of six samples (mixtures in 8:1:1 and 5⅓:2⅓:2⅓ ratios) - the latter giving a root-mean square error of prediction (RMSEP) of 1.30, 2.25 and 2.03 weight% for caffeine, paracetamol and cellulose respectively. These initial results are promising, with RMSEP values on a par with those reported in the ADXRD literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ying, E-mail: liu.ying.48r@st.kyoto-u.ac.jp; Imashuku, Susumu; Sasaki, Nobuharu
In this study, a portable total reflection x-ray fluorescence (TXRF) spectrometer was used to analyze unknown laboratory hazards that precipitated on exterior surfaces of cooling pipes and fume hood pipes in chemical laboratories. With the aim to examine the accuracy of TXRF analysis for the determination of elemental composition, analytical results were compared with those of wavelength-dispersive x-ray fluorescence spectrometry, scanning electron microscope and energy-dispersive x-ray spectrometry, energy-dispersive x-ray fluorescence spectrometry, inductively coupled plasma atomic emission spectrometry, x-ray diffraction spectrometry (XRD), and x-ray photoelectron spectroscopy (XPS). Detailed comparison of data confirmed that the TXRF method itself was not sufficient tomore » determine all the elements (Z > 11) contained in the samples. In addition, results suggest that XRD should be combined with XPS in order to accurately determine compound composition. This study demonstrates that at least two analytical methods should be used in order to analyze the composition of unknown real samples.« less
NASA Astrophysics Data System (ADS)
Vasilev, A. A.; Dzidziguri, E. L.; Muratov, D. G.; Zhilyaeva, N. A.; Efimov, M. N.; Karpacheva, G. P.
2018-04-01
Metal-carbon nanocomposites consisting of FeCo alloy nanoparticles dispersed in a carbon matrix were synthesized by the thermal decomposition method of a precursor based on polyvinyl alcohol and metals salts. The synthesized powders were investigated by X-ray diffraction (XRD), X-ray fluorescent spectrometry (XRFS), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Surface characteristics of materials were measured by BET-method. The morphology and dispersity of metal nanoparticles were studied depending on the metals ratio in the composite.
Hydrothermal synthesis of tungsten doped tin dioxide nanocrystals
NASA Astrophysics Data System (ADS)
Zhou, Cailong; Li, Yufeng; Chen, Yiwen; Lin, Jing
2018-01-01
Tungsten doped tin dioxide (WTO) nanocrystals were synthesized through a one-step hydrothermal method. The structure, composition and morphology of WTO nanocrystals were characterized by x-ray diffraction, x-ray photoelectron spectroscopy, energy dispersive x-ray spectroscopy, UV-vis diffuse reflectance spectra, zeta potential analysis and high-resolution transmission electron microscopy. Results show that the as-prepared WTO nanocrystals were rutile-type structure with the size near 13 nm. Compared with the undoped tin dioxide nanocrystals, the WTO nanocrystals possessed better dispersity in ethanol phase and formed transparent sol.
Infrastructure development for radioactive materials at the NSLS-II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, D. J.; Weidner, R.; Ghose, S. K.
2018-02-01
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this article, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. We describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Infrastructure development for radioactive materials at the NSLS-II
Sprouster, David J.; Weidner, R.; Ghose, S. K.; ...
2017-11-04
The X-ray Powder Diffraction (XPD) Beamline at the National Synchrotron Light Source-II is a multipurpose instrument designed for high-resolution, high-energy X-ray scattering techniques. In this paper, the capabilities, opportunities and recent developments in the characterization of radioactive materials at XPD are described. The overarching goal of this work is to provide researchers access to advanced synchrotron techniques suited to the structural characterization of materials for advanced nuclear energy systems. XPD is a new beamline providing high photon flux for X-ray Diffraction, Pair Distribution Function analysis and Small Angle X-ray Scattering. The infrastructure and software described here extend the existing capabilitiesmore » at XPD to accommodate radioactive materials. Such techniques will contribute crucial information to the characterization and quantification of advanced materials for nuclear energy applications. Finally, we describe the automated radioactive sample collection capabilities and recent X-ray Diffraction and Small Angle X-ray Scattering results from neutron irradiated reactor pressure vessel steels and oxide dispersion strengthened steels.« less
Variable magnification variable dispersion glancing incidence imaging x-ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard B. (Inventor)
1991-01-01
A variable magnification variable dispersion glancing incidence x-ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x-ray and extreme ultraviolet radiation sources includes a pirmary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carries each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a mutlilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x-ray sensitive photogrpahic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
Variable magnification variable dispersion glancing incidence imaging x ray spectroscopic telescope
NASA Technical Reports Server (NTRS)
Hoover, Richard (Inventor)
1990-01-01
A variable magnification variable dispersion glancing incidence x ray spectroscopic telescope capable of multiple high spatial revolution imaging at precise spectral lines of solar and stellar x ray and extreme ultraviolet radiation sources includes a primary optical system which focuses the incoming radiation to a primary focus. Two or more rotatable carriers each providing a different magnification are positioned behind the primary focus at an inclination to the optical axis, each carrier carrying a series of ellipsoidal diffraction grating mirrors each having a concave surface on which the gratings are ruled and coated with a multilayer coating to reflect by diffraction a different desired wavelength. The diffraction grating mirrors of both carriers are segments of ellipsoids having a common first focus coincident with the primary focus. A contoured detector such as an x ray sensitive photographic film is positioned at the second respective focus of each diffraction grating so that each grating may reflect the image at the first focus to the detector at the second focus. The carriers are selectively rotated to position a selected mirror for receiving radiation from the primary optical system, and at least the first carrier may be withdrawn from the path of the radiation to permit a selected grating on the second carrier to receive radiation.
X-ray diffraction gratings: Precise control of ultra-low blaze angle via anisotropic wet etching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voronov, Dmitriy L.; Naulleau, Patrick; Gullikson, Eric M.
2016-07-25
Diffraction gratings are used from micron to nanometer wavelengths as dispersing elements in optical instruments. At shorter wavelengths, crystals can be used as diffracting elements, but due to the 3D nature of the interaction with light are wavelength selective rather than wavelength dispersing. There is an urgent need to extend grating technology into the x-ray domain of wavelengths from 1 to 0.1 nm, but this requires the use of gratings that have a faceted surface in which the facet angles are very small, typically less than 1°. Small facet angles are also required in the extreme ultra-violet and soft x-ray energymore » ranges in free electron laser applications, in order to reduce power density below a critical damage threshold. In this work, we demonstrate a technique based on anisotropic etching of silicon designed to produce very small angle facets with a high degree of perfection.« less
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri
2016-02-01
X-ray echo spectroscopy, a counterpart of neutron spin echo, is being introduced here to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a pointlike x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-0.02 meV ultrahigh-resolution IXS applications (resolving power >108 ) with broadband ≃5 - 13 meV dispersing systems are introduced featuring more than 103 signal enhancement. The technique is general, applicable in different photon frequency domains.
Illicit drug detection using energy dispersive x-ray diffraction
NASA Astrophysics Data System (ADS)
Cook, E. J.; Griffiths, J. A.; Koutalonis, M.; Gent, C.; Pani, S.; Horrocks, J. A.; George, L.; Hardwick, S.; Speller, R.
2009-05-01
Illicit drugs are imported into countries in myriad ways, including via the postal system and courier services. An automated system is required to detect drugs in parcels for which X-ray diffraction is a suitable technique as it is non-destructive, material specific and uses X-rays of sufficiently high energy to penetrate parcels containing a range of attenuating materials. A database has been constructed containing the measured powder diffraction profiles of several thousand materials likely to be found in parcels. These include drugs, cutting agents, packaging and other innocuous materials. A software model has been developed using these data to predict the diffraction profiles which would be obtained by X-ray diffraction systems with a range of suggested detector (high purity germanium, CZT and scintillation), source and collimation options. The aim of the model was to identify the most promising system geometries, which was done with the aid of multivariate analysis (MVA). The most promising systems were constructed and tested. The diffraction profiles of a range of materials have been measured and used to both validate the model and to identify the presence of drugs in sample packages.
Crystal Structure, Magnetic and Optical Properties of Mn-Doped BiFeO₃ by Hydrothermal Synthesis.
Zhang, Ning; Wei, Qinhua; Qin, Laishun; Chen, Da; Chen, Zhi; Niu, Feng; Wang, Jiangying; Huanag, Yuexiang
2017-01-01
In this paper, Mn doped BiFeO₃ were firstly synthesized by hydrothermal process. The influence of Mn doping on structural, optical and magnetic properties of BiFeO₃ was studied. The different amounts of Mn doping in BiFeO₃ were characterized by X-ray diffraction, Scanning Electron Microscope, Energy Dispersive X-ray Spectroscope, UV-Vis diffuse reflectance spectroscopy and magnetic measurements. The X-ray diffraction (XRD) patterns confirmed the formation of pure phase rhombohedral structure in BiFe(1−x) Mn (x) O₃ (x = 0.01, 0.03, 0.05, 0.07) samples. The morphologies and chemical compositions of as-prepared samples could be observed by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray Spectroscope (EDS). A relative large saturated magnetization (Ms) of 0.53 emu/g for x = 0.07 sample was obtained at room temperature, which is considered to be Mn ions doping. UV-Vis diffuse reflectance spectroscopy showed strong absorption of light in the range of 200–1000 nm, indicating the optical band gap in the visible region for these samples. This implied that BiFe(1−x) Mn(x)O₃ may be a potential photocatalyst for utilizing solar energy.
Single photon energy dispersive x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando
2014-03-15
With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signalmore » from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.« less
Crystals for astronomical X-ray spectroscopy
NASA Technical Reports Server (NTRS)
Burek, A.
1976-01-01
Crystal spectrometric properties and the factors that affect their measurement are discussed. Theoretical and experimental results on KAP are summarized and theoretical results based on the dynamical theory of X-ray diffraction are given for the acid phthalates as well as for the commonly used planes of ADP, PET and EDDT. Anomalous dispersion is found to be important for understanding the details of crystal Bragg reflection properties at long X-ray wavelengths and some important effects are pointed out. The theory of anomalous dispersion is applied to explain the anomalous reflectivity exhibited by KAP at 23.3 A.
Monolayer dispersion of CoO on Al2O3 probed by positronium atom
NASA Astrophysics Data System (ADS)
Liu, Z. W.; Zhang, H. J.; Chen, Z. Q.
2014-02-01
CoO/Al2O3 catalysts were prepared by wet impregnation method with CoO contents ranging from 0 wt% to 24 wt%. X-ray diffraction and X-ray photoelectron spectroscopy measurements suggest formation of CoO after calcined in N2. Quantitative X-ray diffraction analysis indicates monolayer dispersion capacity of CoO in CoO/Al2O3 catalysts to be about 3 wt%. Positron annihilation lifetime and coincidence Doppler broadening measurements were performed to study the dispersion state of CoO on Al2O3. The positron lifetime measurements reveal two long lifetime components τ3 and τ4, which correspond to ortho-positronium annihilation lifetime in microvoids and large pores, respectively. It was found that the positronium atom is very sensitive to the dispersion state of CoO on Al2O3. The presence of CoO significantly decreases both the lifetime and the intensity of τ4. Detailed analysis of the coincidence Doppler broadening measurements suggests that with the CoO content lower than the monolayer dispersion, spin conversion reaction of positronium is induced by CoO. When the cobalt content is higher than the monolayer dispersion capacity, inhibition of positronium formation becomes the dominate effect.
Synthesis and characterization of nanocrystalline graphite from coconut shell with heating process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wachid, Frischa M., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Perkasa, Adhi Y., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id; Prasetya, Fandi A., E-mail: frischamw@yahoo.com, E-mail: adhiyudhaperkasa@yahoo.com, E-mail: afandisar@yahoo.com, E-mail: nurulrosyidah92@gmail.com, E-mail: darminto@physics.its.ac.id
Graphite were synthesized and characterized by heating process of coconut shell with varying temperature (400, 800 and 1000°C) and holding time (3 and 5 hours). After heating process, the samples were characterized by X-ray diffraction (XRD) and analyzed by X'pert HighScore Plus Software, Scanning Electron Microcope-Energy Dispersive X-Ray (SEM-EDX) and Transmission Electron Microscope-Energy Dispersive X-Ray (TEM-EDX). Graphite and londsdaelite phase were analyzed by XRD. According to EDX analysis, the sample was heated in 1000°C got the highest content of carbon. The amorphous carbon and nanocrystalline graphite were observed by SEM-EDX and TEM-EDX.
Park, Young-Joon; Ryu, Dong-Sung; Li, Dong Xun; Quan, Qi Zhe; Oh, Dong Hoon; Kim, Jong Oh; Seo, Youn Gee; Lee, Young-Im; Yong, Chul Soon; Woo, Jong Soo; Choi, Han-Gon
2009-06-01
To develop a novel tacrolimus-loaded solid dispersion with improved solubility, various solid dispersions were prepared with various ratios of water, sodium lauryl sulfate, citric acid and carboxylmethylcellulose-Na using spray drying technique. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy, differential scanning calorimetery and powder X-ray diffraction. Furthermore, their solubility and dissolution were evaluated compared to drug powder. The solid dispersion at the tacrolimus/CMC-Na/sodium lauryl sulfate/citric acid ratio of 3/24/3/0.2 significantly improved the drug solubility and dissolution compared to powder. The scanning electron microscopy result suggested that carriers might be attached to the surface of drug in this solid dispersion. Unlike traditional solid dispersion systems, the crystal form of drug in this solid dispersion could not be converted to amorphous form, which was confirmed by the analysis of DSC and powder X-ray diffraction. Thus, the solid dispersion system with water, sodium lauryl sulfate, citric acid and CMC-Na should be a potential candidate for delivering a poorly water-soluble tacrolimus with enhanced solubility and no convertible crystalline.
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-01-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed. PMID:27359147
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka; Okajima, Koji; Fukuda, Asahi; Oide, Mao; Yamamoto, Masaki; Nakasako, Masayoshi
2016-07-01
Coherent X-ray diffraction imaging (CXDI) allows internal structures of biological cells and cellular organelles to be analyzed. CXDI experiments have been conducted at 66 K for frozen-hydrated biological specimens at the SPring-8 Angstrom Compact Free-Electron Laser facility (SACLA). In these cryogenic CXDI experiments using X-ray free-electron laser (XFEL) pulses, specimen particles dispersed on thin membranes of specimen disks are transferred into the vacuum chamber of a diffraction apparatus. Because focused single XFEL pulses destroy specimen particles at the atomic level, diffraction patterns are collected through raster scanning the specimen disks to provide fresh specimen particles in the irradiation area. The efficiency of diffraction data collection in cryogenic experiments depends on the quality of the prepared specimens. Here, detailed procedures for preparing frozen-hydrated biological specimens, particularly thin membranes and devices developed in our laboratory, are reported. In addition, the quality of the frozen-hydrated specimens are evaluated by analyzing the characteristics of the collected diffraction patterns. Based on the experimental results, the internal structures of the frozen-hydrated specimens and the future development for efficient diffraction data collection are discussed.
Risk and benefit of diffraction in Energy Dispersive X-ray fluorescence mapping
NASA Astrophysics Data System (ADS)
Nikonow, Wilhelm; Rammlmair, Dieter
2016-11-01
Energy dispersive X-ray fluorescence mapping (μ-EDXRF) is a fast and non-destructive method for chemical quantification and therefore used in many scientific fields. The combination of spatial and chemical information is highly valuable for understanding geological processes. Problems occur with crystalline samples due to diffraction, which appears according to Bragg's law, depending on the energy of the X-ray beam, the incident angle and the crystal parameters. In the spectra these peaks can overlap with element peaks suggesting higher element concentrations. The aim of this study is to investigate the effect of diffraction, the possibility of diffraction removal and potential geoscientific applications for X-ray mapping. In this work the μ-EDXRF M4 Tornado from Bruker was operated with a Rh-tube and polychromatic beam with two SDD detectors mounted each at ± 90° to the tube. Due to the polychromatic beam the Bragg condition fits for several mineral lattice planes. Since diffraction depends on the angle, it is shown that a novel correction approach can be applied by measuring from two different angles and calculating the minimum spectrum of both detectors gaining a better limit of quantification for this method. Furthermore, it is possible to use the diffraction information for separation of differently oriented crystallites within a monomineralic aggregate and obtain parameters like particle size distribution for the sample, as it is done by thin section image analysis in cross-polarized light. Only with μ-EDXRF this can be made on larger samples without preparation of thin sections.
X-ray diffraction study of elemental erbium to 70 GPa
NASA Astrophysics Data System (ADS)
Pravica, Michael G.; Romano, Edward; Quine, Zachary
2005-12-01
We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp→Sm-type→doublehcp(dhcp)→distorted fcc sequence. In particular, we present evidence for the predicted dhcp→distorted fcc transition above 63GPa . Equation of state data are also presented up to 70GPa .
Gazder, Azdiar A; Al-Harbi, Fayez; Spanke, Hendrik Th; Mitchell, David R G; Pereloma, Elena V
2014-12-01
Using a combination of electron back-scattering diffraction and energy dispersive X-ray spectroscopy data, a segmentation procedure was developed to comprehensively distinguish austenite, martensite, polygonal ferrite, ferrite in granular bainite and bainitic ferrite laths in a thermo-mechanically processed low-Si, high-Al transformation-induced plasticity steel. The efficacy of the ferrite morphologies segmentation procedure was verified by transmission electron microscopy. The variation in carbon content between the ferrite in granular bainite and bainitic ferrite laths was explained on the basis of carbon partitioning during their growth. Copyright © 2014 Elsevier B.V. All rights reserved.
Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles
NASA Astrophysics Data System (ADS)
Okada, Koichi; Kohiki, Shigemi; Nishi, Sachio; Shimooka, Hirokazu; Deguchi, Hiroyuki; Mitome, Masanori; Bando, Yoshio; Shishido, Toetsu
2007-09-01
Transmission electron microscopy revealed that Fe3O4 nanoparticles with diameter of ≈200 nm dispersed in Fe doped indium tin oxide (Fe@ITO) powders exhibiting co-occurrence of room temperature ferromagnetism and superparamagnetism. Although we observed no X-ray diffraction peak from Fe related compounds for Fe0.19@ITO (ITO: In1.9Sn0.1O3) powders, the powders showed both hysteresis loop in field dependent magnetization at 300 K and divergence of zero-field-cooled magnetization from field-cooled magnetization. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy demonstrated that the nanoparticle with diameter of ≈200 nm consists of Fe and oxygen. Transmission electron diffraction revealed that crystal structure of the nanoparticle is inverse spinel type Fe3O4. The Fe3O4 crystalline phase by electron diffraction is consistent with the saturation magnetization of 1.3 μB/Fe and magnetic anomaly at ≈110 K observed for the powders.
Growth of single crystalline delafossite LaCuO2 by the travelling-solvent floating zone method
NASA Astrophysics Data System (ADS)
Mohan, A.; Büchner, B.; Wurmehl, S.; Hess, C.
2014-09-01
Single crystals of LaCuO2 have been grown for the first time using the travelling-solvent floating zone method. The crystal was grown in an Ar-atmosphere by reduction of La2Cu2O5, which was used as the feed rod composition for the growth. The grown crystal has been characterized with regard to phase purity and single crystallinity using powder X-ray diffraction, energy dispersive X-ray analysis, Laue diffraction and scanning electron microscopy.
X-ray diffraction study of elemental erbium to 70 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pravica, Michael G.; Romano, Edward; Quine, Zachary
2005-12-01
We have investigated phase transitions in elemental erbium in a diamond anvil cell (DAC) up to 70 GPa using angular-dispersive x-ray powder diffraction methods. We present evidence of a series of phase transitions that appear to follow the anticipated hcp{yields}Sm-type{yields}double hcp (dhcp){yields}distorted fcc sequence. In particular, we present evidence for the predicted dhcp{yields}distorted fcc transition above 63 GPa. Equation of state data are also presented up to 70 GPa.
X-ray echo spectroscopy (Conference Presentation)
NASA Astrophysics Data System (ADS)
Shvyd'ko, Yuri V.
2016-09-01
X-ray echo spectroscopy, a counterpart of neutron spin-echo, was recently introduced [1] to overcome limitations in spectral resolution and weak signals of the traditional inelastic x-ray scattering (IXS) probes. An image of a point-like x-ray source is defocused by a dispersing system comprised of asymmetrically cut specially arranged Bragg diffracting crystals. The defocused image is refocused into a point (echo) in a time-reversal dispersing system. If the defocused beam is inelastically scattered from a sample, the echo signal acquires a spatial distribution, which is a map of the inelastic scattering spectrum. The spectral resolution of the echo spectroscopy does not rely on the monochromaticity of the x-rays, ensuring strong signals along with a very high spectral resolution. Particular schemes of x-ray echo spectrometers for 0.1-meV and 0.02-meV ultra-high-resolution IXS applications (resolving power > 10^8) with broadband 5-13 meV dispersing systems will be presented featuring more than 1000-fold signal enhancement. The technique is general, applicable in different photon frequency domains. [1.] Yu. Shvyd'ko, Phys. Rev. Lett. 116, accepted (2016), arXiv:1511.01526.
NASA Astrophysics Data System (ADS)
Van de Voorde, Lien; Vekemans, Bart; Verhaeven, Eddy; Tack, Pieter; De Wolf, Robin; Garrevoet, Jan; Vandenabeele, Peter; Vincze, Laszlo
2015-08-01
A new, commercially available, mobile system combining X-ray diffraction and X-ray fluorescence has been evaluated which enables both elemental analysis and phase identification simultaneously. The instrument makes use of a copper or molybdenum based miniature X-ray tube and a silicon-Pin diode energy-dispersive detector to count the photons originating from the samples. The X-ray tube and detector are both mounted on an X-ray diffraction protractor in a Bragg-Brentano θ:θ geometry. The mobile instrument is one of the lightest and most compact instruments of its kind (3.5 kg) and it is thus very useful for in situ purposes such as the direct (non-destructive) analysis of cultural heritage objects which need to be analyzed on site without any displacement. The supplied software allows both the operation of the instrument for data collection and in-depth data analysis using the International Centre for Diffraction Data database. This paper focuses on the characterization of the instrument, combined with a case study on pigment identification and an illustrative example for the analysis of lead alloyed printing letters. The results show that this commercially available light-weight instrument is able to identify the main crystalline phases non-destructively, present in a variety of samples, with a high degree of flexibility regarding sample size and position.
Measurement of strain in Al-Cu interconnect lines with x-ray microdiffraction
NASA Astrophysics Data System (ADS)
Solak, H. H.; Vladimirsky, Y.; Cerrina, F.; Lai, B.; Yun, W.; Cai, Z.; Ilinski, P.; Legnini, D.; Rodrigues, W.
1999-07-01
We report measurement of strain in patterned Al-Cu interconnect lines with x-ray microdiffraction technique with a ˜1 μm spatial resolution. Monochromatized x rays from an undulator were focused on the sample using a phase fresnel zone plate and diffracted light was collected by an area detector in a symmetric, angle dispersive x-ray diffraction geometry. Measurements were made before and after the line sample was stressed for electromigration. Results show an increase in inter- and intra-grain strain variation after the testing. Differences in strain behavior of grains with (111) and (200) crystallographic planes parallel to the substrate surface were observed. A position dependent variation of strain after the testing was measured whereas no such dependence was found before the testing.
Kobayashi, Amane; Sekiguchi, Yuki; Takayama, Yuki; Oroguchi, Tomotaka; Shirahama, Keiya; Torizuka, Yasufumi; Manoda, Masahiro; Nakasako, Masayoshi; Yamamoto, Masaki
2016-05-01
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speed higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.
Sealed-tube synthesis and phase diagram of Li{sub x}TiS{sub 2} (0 ≤ x ≤1)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ziping; National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Science, Beijing 100190; Dong, Cheng, E-mail: chengdon@aphy.iphy.ac.cn
2015-01-15
Graphical abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S aslithium source. A schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed based on the DTA and XRD data. - Abstract: We reported a new method to prepare Li{sub x}TiS{sub 2} (0 ≤ x ≤ 1) at 600 °C in sealed tube using Li{sub 2}S as lithium source. The Li{sub x}TiS{sub 2} samples were characterized by powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and differential thermal analysis. Themore » variations of the lattice parameters with lithium content x in Li{sub x}TiS{sub 2} were determined by X-ray powder diffraction analysis for both 1T and 3R phases. The phase transition between low-temperature 1T phase and high-temperature 3R phase was confirmed by the powder X-ray diffraction analysis. Based on the differential thermal analysis and X-ray diffraction results, a schematic phase diagram of the Li{sub x}TiS{sub 2} system has been constructed, providing a guideline to synthesize Li{sub x}TiS{sub 2} in 1T structure or 3R structure.« less
National Synchrotron Light Source annual report 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
CheMin Instrument Performance and Calibration on Mars
NASA Technical Reports Server (NTRS)
Vaniman, D. T.; Blake, D. F.; Morookian, J. M.; Yen, A. S.; Ming, D. W.; Morris, R. V.; Achilles, C. N.; Bish, D. L.; Chipera, S. J.; Morrison, S. M.;
2013-01-01
The CheMin (Chemistry and Mineralogy) instrument on the Mars Science Laboratory rover Curiosity uses a CCD detector and a Co-anode X-ray tube source to acquire both mineralogy (from the pattern of Co diffraction) and chemical information (from energies of fluoresced X-rays). A key component of the CheMin instrument is the ability to move grains within sample cells during analysis, providing multiple, random grain orientations that disperse diffracted X-ray photons along Debye rings rather than producing discrete Laue spots. This movement is accomplished by piezoelectric vibration of the sample cells. A cryocooler is used to maintain the CCD at a temperature at about -50 C in order to obtain energy resolution better than 250 eV, allowing discrimination of diffracted Co K X-rays from Fe K and other fluorescent X-rays. A detailed description of CheMin is provided in [1]. The CheMin flight model (FM) is mounted within the body of Curiosity and has been operating on Mars since August 6, 2012. An essentially identical sister instrument, the CheMin demonstration model (DM), is operated in a Mars environment chamber at JPL.
NASA Astrophysics Data System (ADS)
YangDai, Tianyi; Zhang, Li
2016-02-01
Energy dispersive X-ray diffraction (EDXRD) combined with hybrid discriminant analysis (HDA) has been utilized for classifying the liquid materials for the first time. The XRD spectra of 37 kinds of liquid contrabands and daily supplies were obtained using an EDXRD test bed facility. The unique spectra of different samples reveal XRD's capability to distinguish liquid contrabands from daily supplies. In order to create a system to detect liquid contrabands, the diffraction spectra were subjected to HDA which is the combination of principal components analysis (PCA) and linear discriminant analysis (LDA). Experiments based on the leave-one-out method demonstrate that HDA is a practical method with higher classification accuracy and lower noise sensitivity than the other methods in this application. The study shows the great capability and potential of the combination of XRD and HDA for liquid contrabands classification.
X-ray diffraction and X-ray K absorption near edge studies of copper (II) complexes with amino acids
NASA Astrophysics Data System (ADS)
Sharma, P. K.; Mishra, Ashutosh; Malviya, Varsha; Kame, Rashmi; Malviya, P. K.
2017-05-01
Synthesis of copper (II) complexes [CuL1L2X].nH2O, where n=1, 2,3 (X=Cl,Br,NO3) (L1is 2,2’-bipyridine and L2 is L-tyrosine) by the chemical root method. The XRD data for the samples have been recorded. EXAFS spectra have also been recorded at the K-edge of Cu using the dispersive beam line BL-8 at 2.5 Gev Indus-2 Synchrotron radiation source at RRCAT, Indore, India. XRD and EXAFS data have been analysed using the computer software. X-ray diffraction studies of all complexes indicate their crystalline nature. Lattice parameter, bond length, particle size have been determined from XRD data.
Symposium U: Thermoelectric Power Generation. Held in Boston, Massachusetts on November 26-29, 2007
2008-04-01
including X - ray /electron diffraction, TGA analysis, Raman / Fourier Transform Infrared Spectroscopy, electron microscopy, Rutherford back-scattering and...Energy dispersive X - ray analysis were performed on the treated sample. The results revealed that a surface layer (from 10 nm to up to micron in...nanoparticles into a matrix of bulk Bi2Te 3 material via a hot pressing process. These nanocomposites have been examined by SEM and X - ray powder
MgO-Al2O3-ZrO2 Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Shaoo, Naba K.; Shapiro, Alan P.
1998-01-01
The process-parameter-dependent optical and structural properties of MgO-Al2O3-ZrO2 ternary mixed-composite material were investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases, and process- dependent material composition of films were investigated through the use of atomic force microscopy, x-ray diffraction analysis, and energy-dispersive x-ray analysis. Energy-dispersive x-ray analysis made evident the correlation between the optical constants and the process-dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
National Synchrotron Light Source annual report 1991. Volume 1, October 1, 1990--September 30, 1991
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hulbert, S.L.; Lazarz, N.M.
1992-04-01
This report discusses the following research conducted at NSLS: atomic and molecular science; energy dispersive diffraction; lithography, microscopy and tomography; nuclear physics; UV photoemission and surface science; x-ray absorption spectroscopy; x-ray scattering and crystallography; x-ray topography; workshop on surface structure; workshop on electronic and chemical phenomena at surfaces; workshop on imaging; UV FEL machine reviews; VUV machine operations; VUV beamline operations; VUV storage ring parameters; x-ray machine operations; x-ray beamline operations; x-ray storage ring parameters; superconducting x-ray lithography source; SXLS storage ring parameters; the accelerator test facility; proposed UV-FEL user facility at the NSLS; global orbit feedback systems; and NSLSmore » computer system.« less
X-ray and neutron diffraction anomalies preceding martensitic phase transformation in AuCuZn2 alloys
NASA Astrophysics Data System (ADS)
Nagasawa, A.; Makita, T.; Nakanishi, N.; Iizumi, M.; Morii, Y.
1988-04-01
The present paper gives the results obtained by the X-ray and neutron diffraction studies on the single crystals of the beta-1 AuCuZn2 alloys. As precursor phenomena, the dispersion relation of the [110] TA1 phonon exhibits significant dip near 2/3 [110] q max position and anomalous peaks appear around 1/3 and 2/3 [110] q max positions. Characteristics of the interplanar force constants, obtained by the analysis of the dispersion relation, and the positions of the anomalous peaks predict the martensite structures to be formed in the beta phase alloys. In the present case, both the 6R and 18R martensites will be formed by cooling and/or under the stress field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobayashi, Amane; Sekiguchi, Yuki; Oroguchi, Tomotaka
Coherent X-ray diffraction imaging (CXDI) is a technique for structure analyses of non-crystalline particles with dimensions ranging from micrometer to sub-micrometer. We have developed a diffraction apparatus named TAKASAGO-6 for use in single-shot CXDI experiments of frozen-hydrated non-crystalline biological particles at cryogenic temperature with X-ray free electron laser pulses provided at a repetition rate of 30 Hz from the SPring-8 Angstrom Compact free-electron LAser. Specimen particles are flash-cooled after being dispersed on thin membranes supported by specially designed disks. The apparatus is equipped with a high-speed translation stage with a cryogenic pot for raster-scanning of the disks at a speedmore » higher than 25 μm/33 ms. In addition, we use devices assisting the easy transfer of cooled specimens from liquid-nitrogen storages to the cryogenic pot. In the current experimental procedure, more than 20 000 diffraction patterns can be collected within 1 h. Here we report the key components and performance of the diffraction apparatus. Based on the efficiency of the diffraction data collection and the structure analyses of metal particles, biological cells, and cellular organelles, we discuss the future application of this diffraction apparatus for structure analyses of biological specimens.« less
Synthesis of samarium doped gadolinium oxide nanorods, its spectroscopic and physical properties
NASA Astrophysics Data System (ADS)
Boopathi, G.; Gokul Raj, S.; Ramesh Kumar, G.; Mohan, R.; Mohan, S.
2018-06-01
One-dimensional samarium doped gadolinium oxide [Sm:Gd2O3] nanorods have been synthesized successfully through co-precipitation technique in aqueous solution. The as-synthesized and calcined products were characterized by using powder X-ray diffraction pattern, Fourier transform Raman spectroscopy, thermogravimetric/differential thermal analysis, scanning electron microscopy with energy-dispersive X-ray analysis, transmission electron microscopy, Fourier transform infrared spectroscopy, Ultraviolet-Visible spectrometry, photoluminescence spectrophotometer and X-ray photoelectron spectroscopy techniques. The obtained results are discussed in detailed manner.
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; ...
2012-11-05
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as wellmore » as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ 1,3 XES spectra of Mn II and Mn 2 III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. Furthermore, the technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.« less
Alonso-Mori, Roberto; Kern, Jan; Gildea, Richard J.; Sokaras, Dimosthenis; Weng, Tsu-Chien; Lassalle-Kaiser, Benedikt; Tran, Rosalie; Hattne, Johan; Laksmono, Hartawan; Hellmich, Julia; Glöckner, Carina; Echols, Nathaniel; Sierra, Raymond G.; Schafer, Donald W.; Sellberg, Jonas; Kenney, Christopher; Herbst, Ryan; Pines, Jack; Hart, Philip; Herrmann, Sven; Grosse-Kunstleve, Ralf W.; Latimer, Matthew J.; Fry, Alan R.; Messerschmidt, Marc M.; Miahnahri, Alan; Seibert, M. Marvin; Zwart, Petrus H.; White, William E.; Adams, Paul D.; Bogan, Michael J.; Boutet, Sébastien; Williams, Garth J.; Zouni, Athina; Messinger, Johannes; Glatzel, Pieter; Sauter, Nicholas K.; Yachandra, Vittal K.; Yano, Junko; Bergmann, Uwe
2012-01-01
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this “probe-before-destroy” approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ1,3 XES spectra of MnII and Mn2III,IV complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II. PMID:23129631
Catharanthus roseus: a natural source for the synthesis of silver nanoparticles
Mukunthan, KS; Elumalai, EK; Patel, Trupti N; Murty, V Ramachandra
2011-01-01
Objective To develop a simple rapid procedure for bioreduction of silver nanoparticles (AgNPs) using aqueous leaves extracts of Catharanthus roseus (C. roseus). Methods Characterization were determined by using UV-Vis spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 67 nm to 48 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centered cubic geometry. Conclusions C. roseus demonstrates strong potential for synthesis of silver nanoparticles by rapid reduction of silver ions (Ag+ to Ag0). This study provides evidence for developing large scale commercial production of value-added products for biomedical/nanotechnology-based industries. PMID:23569773
NASA Astrophysics Data System (ADS)
Cook, Emily Jane
2008-12-01
This thesis presents the analysis of low angle X-ray scatter measurements taken with an energy dispersive system for substance identification, imaging and system control. Diffraction measurements were made on illicit drugs, which have pseudo- crystalline structures and thus produce diffraction patterns comprising a se ries of sharp peaks. Though the diffraction profiles of each drug are visually characteristic, automated detection systems require a substance identification algorithm, and multivariate analysis was selected as suitable. The software was trained with measured diffraction data from 60 samples covering 7 illicit drugs and 5 common cutting agents, collected with a range of statistical qual ities and used to predict the content of 7 unknown samples. In all cases the constituents were identified correctly and the contents predicted to within 15%. Soft tissues exhibit broad peaks in their diffraction patterns. Diffraction data were collected from formalin fixed breast tissue samples and used to gen erate images. Maximum contrast between healthy and suspicious regions was achieved using momentum transfer windows 1.04-1.10 and 1.84-1.90 nm_1. The resulting images had an average contrast of 24.6% and 38.9% compared to the corresponding transmission X-ray images (18.3%). The data was used to simulate the feedback for an adaptive imaging system and the ratio of the aforementioned momentum transfer regions found to be an excellent pa rameter. Investigation into the effects of formalin fixation on human breast tissue and animal tissue equivalents indicated that fixation in standard 10% buffered formalin does not alter the diffraction profiles of tissue in the mo mentum transfer regions examined, though 100% unbuffered formalin affects the profile of porcine muscle tissue (a substitute for glandular and tumourous tissue), though fat is unaffected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, S.R.; Wilkinson, E.J.
Deposits found on intrauterine contraceptive devices (IUDs) were studied by scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray microanalysis. All seven devices, including five plastic and two copper IUDs, were coated with a crust containing cellular, acellular, and fibrillar material. The cellular material was composed of erythrocytes, leukocytes, cells of epithelial origin, sperm, and bacteria. Some of the bacteria were filamentous, with acute-angle branching. The fibrillar material appeared to be fibrin. Most of the acellular material was amorphous; calcite was identified by x-ray diffraction, and x-ray microanalysis showed only calcium. Some of the acellular material, particularly that on themore » IUD side of the crust, was organized in spherulitic crystals and was identified as calcium phosphate by x-ray microanalysis. The crust was joined to the IUD surface by a layer of fibrillar and amorphous material. It is suggested that the initial event in the formation of calcific deposits on IUD surfaces is the deposition of an amorphous and fibrillar layer. Various types of cells present in the endometrial environment adhere to this layer and then calcify. Thus, the deposition of calcific material on the IUDs is a calcification phenomenon, not unlike the formation of plaque on teeth.« less
Fan, Jiadong; Sun, Zhibin; Zhang, Jian; Huang, Qingjie; Yao, Shengkun; Zong, Yunbing; Kohmura, Yoshiki; Ishikawa, Tetsuya; Liu, Hong; Jiang, Huaidong
2015-06-16
Novel coherent diffraction microscopy provides a powerful lensless imaging method to obtain a better understanding of the microorganism at the nanoscale. Here we demonstrated quantitative imaging of intact unstained magnetotactic bacteria using coherent X-ray diffraction microscopy combined with an iterative phase retrieval algorithm. Although the signal-to-noise ratio of the X-ray diffraction pattern from single magnetotactic bacterium is weak due to low-scattering ability of biomaterials, an 18.6 nm half-period resolution of reconstructed image was achieved by using a hybrid input-output phase retrieval algorithm. On the basis of the quantitative reconstructed images, the morphology and some intracellular structures, such as nucleoid, polyβ-hydroxybutyrate granules, and magnetosomes, were identified, which were also confirmed by scanning electron microscopy and energy dispersive spectroscopy. With the benefit from the quantifiability of coherent diffraction imaging, for the first time to our knowledge, an average density of magnetotactic bacteria was calculated to be ∼1.19 g/cm(3). This technique has a wide range of applications, especially in quantitative imaging of low-scattering biomaterials and multicomponent materials at nanoscale resolution. Combined with the cryogenic technique or X-ray free electron lasers, the method could image cells in a hydrated condition, which helps to maintain their natural structure.
Structural properties of barium stannate
NASA Astrophysics Data System (ADS)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.; Krogstad, M. J.; Gim, Y.; Rong, Y.; Zhang, Junjie; Parshall, D.; Zheng, H.; Cooper, S. L.; Feygenson, M.; Yang, Wenge; Chen, Yu-Sheng
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported by density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.
Tomography with energy dispersive diffraction
NASA Astrophysics Data System (ADS)
Stock, S. R.; Okasinski, J. S.; Woods, R.; Baldwin, J.; Madden, T.; Quaranta, O.; Rumaiz, A.; Kuczewski, T.; Mead, J.; Krings, T.; Siddons, P.; Miceli, A.; Almer, J. D.
2017-09-01
X-ray diffraction can be used as the signal for tomographic reconstruction and provides a cross-sectional map of the crystallographic phases and related quantities. Diffraction tomography has been developed over the last decade using monochromatic x-radiation and an area detector. This paper reports tomographic reconstruction with polychromatic radiation and an energy sensitive detector array. The energy dispersive diffraction (EDD) geometry, the instrumentation and the reconstruction process are described and related to the expected resolution. Results of EDD tomography are presented for two samples containing hydroxyapatite (hAp). The first is a 3D-printed sample with an elliptical crosssection and contains synthetic hAp. The second is a human second metacarpal bone from the Roman-era cemetery at Ancaster, UK and contains bio-hAp which may have been altered by diagenesis. Reconstructions with different diffraction peaks are compared. Prospects for future EDD tomography are also discussed.
Structural analysis of aluminium substituted nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Singh, H. S.; Sangwa, Neha
2018-05-01
Aluminium substituted nickel ferrite nanoparticles were synthesized by High Energy Ball milling (HEBM) of the mixture of α-NiO, α-Al2O3 and α-Fe2O3 followed by annealing at 1000˚C. X-ray diffraction (XRD) and Energy dispersive spectroscopy analysis (EDS) characterization was done for Aluminium substituted nickel ferrite. The structural analysis reveals the formation of the single phase compound. The average grain size was estimated by X-ray diffraction technique ranges from 30 to 10 nm with the increasing concentration of Aluminium. EDS spectra conforms the homogeneous mixing and purity of ferrite.
Lin, Song; Wang, Run-Ze; Yi, Ying; Wang, Zheng; Hao, Li-Mei; Wu, Jin-Hui; Hu, Guo-Han; He, Hua
2014-01-01
Submicrometer-scale poly(vinyl alcohol) (PVA) nanofibrous mats loaded with aligned and narrowly dispersed silver nanoparticles (AgNPs) are obtained via the electrospinning process from pure water. This facile and green procedure did not need any other chemicals or organic solvents. The doped AgNPs are narrowly distributed, 4.3±0.7 nm and their contents on the nanofabric mats can be easily tuned via in situ ultraviolet light irradiation or under preheating conditions, but with different particle sizes and size distributions. The morphology, loading concentrations, and dispersities of AgNPs embedded within PVA nanofiber mats are characterized by transmission electron microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, and X-ray diffraction, respectively. Moreover, the biocidal activities and cytotoxicity of the electrospun nanofiber mats are determined by zone of inhibition, dynamic shaking method, and cell counting kit (CCK)-8 assay tests.
Micro-XRF for characterization of Moroccan glazed ceramics and Portuguese tiles
NASA Astrophysics Data System (ADS)
Guilherme, A.; Manso, M.; Pessanha, S.; Zegzouti, A.; Elaatmani, M.; Bendaoud, R.; Coroado, J.; dos Santos, J. M. F.; Carvalho, M. L.
2013-02-01
A set of enamelled terracotta samples (Zellij) collected from five different monuments in Morocco were object of study. With the aim of characterizing these typically Moroccan artistic objects, X-ray spectroscopic techniques were used as analytical tool to provide elemental and compound information. A lack of information about these types of artistic ceramics is found by the research through international scientific journals, so this investigation is an opportunity to fulfill this gap. For this purpose, micro-Energy Dispersive X-ray Fluorescence (μ-EDXRF), and wavelength dispersive X-ray Fluorescence (WDXRF) and X-ray Diffraction (XRD) were the chosen methods. As complementary information, a comparison with other sort of artistic pottery objects is given, more precisely with Portuguese glazed wall tiles (Azulejos), based in the Islamic pottery traditions. Differences between these two types of decorative pottery were found and presented in this manuscript.
NASA Astrophysics Data System (ADS)
Naraginti, Saraschandra; Stephen, Finian Bernard; Radhakrishnan, Adhithya; Sivakumar, A.
2015-01-01
Catalytic activity of Zr and Ag co-doped TiO2 nanoparticles on the reduction of 4-nitrophenol, degradation of methylene blue and methyl orange was studied using sodium borohydride as reducing agent. The nanoparticles were characterized using X-ray diffraction, energy dispersive X-ray, high resolution transmission electron microscopy, selected area electron diffraction and UV-Vis spectroscopy. The rate of the reduction/degradation was found to increase with increasing amount of the photocatalyst which could be attributed to higher dispersity and small size of the nanoparticles. The catalytic activity of Zr and Ag co-doped TiO2 nanoparticles showed no significant difference even after recycling the catalyst four times indicating a promising potential for industrial application of the prepared photocatalyst.
NASA Astrophysics Data System (ADS)
Pandav, R. S.; Patil, R. P.; Chavan, S. S.; Mulla, I. S.; Hankare, P. P.
2016-11-01
Nanocrystalline NiFe2-xMnxO4 (2≥x≥0) ferrites were prepared by sol-gel method. X-ray diffraction patterns reveal that synthesized compounds are in single phase cubic spinel lattice for all the composition. The surface morphology of all the samples were studied by scanning electron microscopy. The particle size measured from transmission electron microscopy and X-ray diffraction patterns confirms the nanosized dimension of the as-prepared powder. The elemental analysis was carried out by energy dispersive X-ray analysis technique. Magnetic properties such as saturation magnetization, coercivity and remanence are studied as a function of increasing Mn concentration at room temperature. The saturation magnetization shows a decreasing trend with increase in Mn content. The substitution of manganese in the nickel ferrite affects the structural and magnetic properties of cubic spinels.
Sethia, Sundeep; Squillante, Emilio
2002-09-01
Solid dispersions of carbamazepine (CBZ) were formulated by supercritical fluid processing (SCP) and conventional solvent evaporation in polyethylene glycol (PEG) 8000 with either Gelucire 44/14 or vitamin E TPGS NF (d-alpha-tocopheryl PEG 1000 succinate). Formulations were evaluated by dissolution, scanning electron microscopy, powder X-ray diffraction, and differential scanning calorimetry, and excipient cytotoxicity in Caco-2 cells by MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt] assay. CBZ release was enhanced from supercritical fluid-treated CBZ and the CBZ/PEG 8000 (1:5), CBZ/PEG 8000/TPGS or Gelucire 44/14 (1:4:1) solid dispersions. The radically altered morphologies of SCP samples seen by scanning electron microscopy suggested polymorphic change that was confirmed by the X-ray diffraction and differential scanning calorimetry. Disappearance of the characteristic CBZ melting peak indicated that CBZ was dissolved inside the carrier system. Polymorphic change of CBZ during SCP led to faster dissolution. Therefore, SCP provides advantages over solid dispersions prepared by conventional processes. Copyright 2002 Wiley-Liss Inc.
NASA Technical Reports Server (NTRS)
Morris, R. V.; Achilles, C. N.; Chipera, S. J.; Ming, D. W.; Rampe, E. B.
2013-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. Piezoelectric vibration of the cell is used to randomize the sample to reduce preferred orientation effects. Instrument details are provided in [1, 2, 3]. Analyses of rock and soil samples by the Mars Exploration Rovers (MER) show nanophase ferric oxide (npOx) is a significant component of the Martian global soil [4] and is thought to be one of the major contributing phases that the Curiosity rover will encounter if a soil sample is analyzed in Gale Crater. Because of the nature of this material, npOx will likely contribute to an X-ray amorphous or short-order component of a XRD pattern measured by the CheMin instrument.
Styles, Mark J; Rowles, Matthew R; Madsen, Ian C; McGregor, Katherine; Urban, Andrew J; Snook, Graeme A; Scarlett, Nicola V Y; Riley, Daniel P
2012-01-01
This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed.
Self-referenced coherent diffraction x-ray movie of Ångstrom- and femtosecond-scale atomic motion
Glownia, J. M.; Natan, A.; Cryan, J. P.; ...
2016-10-03
Time-resolved femtosecond x-ray diffraction patterns from laser-excited molecular iodine are used to create a movie of intramolecular motion with a temporal and spatial resolution of 30 fs and 0.3 Å. This high fidelity is due to interference between the nonstationary excitation and the stationary initial charge distribution. The initial state is used as the local oscillator for heterodyne amplification of the excited charge distribution to retrieve real-space movies of atomic motion on ångstrom and femtosecond scales. This x-ray interference has not been employed to image internal motion in molecules before. In conclusion, coherent vibrational motion and dispersion, dissociation, and rotationalmore » dephasing are all clearly visible in the data, thereby demonstrating the stunning sensitivity of heterodyne methods.« less
Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited).
Bentley, C; Allan, P; Brent, K; Bruce, N; Hoarty, D; Meadowcroft, A; Percival, J; Opie, C
2016-11-01
Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.
Preparation of Al-Ti Master Alloys by Aluminothermic Reduction of TiO2 in Cryolite Melts at 960°C
NASA Astrophysics Data System (ADS)
Liu, Aimin; Xie, Kaiyu; Li, Liangxing; Shi, Zhongning; Hu, Xianwei; Xu, Junli; Gao, Bingliang; Wang, Zhaowen
Al-Ti master alloys were prepared by aluminothermic reduction between the dissolved titanium dioxide and aluminum in cryolite melts at 960°C. The kinetic analysis by differential scanning calorimetry indicated that the apparent activation energy of the reaction of reducing titanium dioxide by aluminium is 22.3 kJ/mol, and the reaction order is 0.5. The products were analyzed by means of X-ray diffraction, X-ray fluorescence, scanning electron microscopy and energy dispersive spectrometer. Results from X-ray diffraction showed that the phase compositions of produced alloys are Al and Al3Ti. In addition, Al-Ti master alloys containing 2-6 mass% Ti were formed at different reduction time of 2-5h in aluminothermic reduction experiment.
Photometric study of single-shot energy-dispersive x-ray diffraction at a laser plasma facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoidn, O. R.; Seidler, G. T., E-mail: seidler@uw.edu
The low repetition rates and possible shot-to-shot variations in laser-plasma studies place a high value on single-shot diagnostics. For example, white-beam scattering methods based on broadband backlighter x-ray sources are used to determine changes in the structure of laser-shocked crystalline materials by the evolution of coincidences of reciprocal lattice vectors and kinematically allowed momentum transfers. Here, we demonstrate that white-beam techniques can be extended to strongly disordered dense plasma and warm dense matter systems where reciprocal space is only weakly structured and spectroscopic detection is consequently needed to determine the static structure factor and thus, the ion-ion radial distribution function.more » Specifically, we report a photometric study of energy-dispersive x-ray diffraction (ED-XRD) for structural measurement of high energy density systems at large-scale laser facilities such as OMEGA and the National Ignition Facility. We find that structural information can be obtained in single-shot ED-XRD experiments using established backlighter and spectrometer technologies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreeva, M. A., E-mail: Mandreeva1@yandex.ru; Repchenko, Yu. L., E-mail: kent160@mail.ru; Smekhova, A. G.
2015-06-15
The spectral dependence of the Bragg peak position under conditions of extremely asymmetric diffraction has been analyzed in the kinematical and dynamical approximations of the diffraction theory. Simulations have been performed for the L{sub 3} absorption edge of yttrium in a single-crystal YFe{sub 2} film; they have shown that the magneto-optical constants (or, equivalently, the dispersion corrections to the atomic scattering factor) for hard X-rays can be determined from this dependence. Comparison with the experimental data obtained for a Nb(4 nm)/YFe{sub 2}(40 nm〈110〉)/Fe(1.5 nm)/Nb(50 nm)/sapphire sample at the European Synchrotron Radiation Facility has been made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH{sub 4}. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10{sup −3} S{sup −1} by NaBH{sub 4} using Spectrophotometer.
NASA Astrophysics Data System (ADS)
Krutyakov, Yurii A.; Zherebin, Pavel M.; Kudrinskiy, Alexey A.; Zubavichus, Yan V.; Presniakov, Mikhail Yu; Yapryntsev, Alexey D.; Karabtseva, Anastasia V.; Mikhaylov, Dmitry M.; Lisichkin, Georgii V.
2016-09-01
A simple synthetic procedure for high-stable dispersions of porous composite Ag/AgCl nanoparticles stabilized with amphoteric surfactant sodium tallow amphopolycarboxyglycinate has been proposed for the first time. The prepared samples were characterized by UV-vis spectroscopy, x-ray powder diffraction (XRD), x-ray photoelectron spectroscopy, small area electron diffraction (SAED), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and electron probe micro-analysis. In addition, measurements (carried out at the Kurchatov synchrotron radiation source stations) of the Ag K-edge extended x-ray absorption fine structure (EXAFS) and x-ray absorption near edge structure (XANES) spectra and XRD of the prepared nanoparticles have been performed. The obtained results suggest that small-sized Ag clusters are homogeneously distributed in the mass of the AgCl nanoparticle (~80 nm) formed during the synthesis. The Ag/AgCl dispersion demonstrates photocatalytic activity (with respect to methyl orange) and high bactericidal activity against E. coli. This activity is superior to the activity of both Ag and AgCl nanoparticles stabilized by the same surfactant. Thus, porous composite Ag/AgCl nanoparticles can be used as a multifunctional agent that is able to remove both pollutants and bacterium from water.
Structural Properties of Barium Stannate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phelan, D.; Han, F.; Lopez-Bezanilla, A.
2018-06-01
BaSnO3 has attracted attention as a transparent conducting oxide with high room temperature carrier mobility. We report a series of measurements that were carried out to assess the structure of BaSnO3 over a variety of length scales. Measurements included single crystal neutron and x-ray diffraction, Rietveld and pair distribution analysis of neutron powder diffraction, Raman scattering, and high-pressure x-ray diffraction. Results from the various diffraction probes indicate that both the long-range and local structures are consistent with the cubic symmetry. The diffraction data under pressure was consistent with a robustly cubic phase up to 48.9 GPa, which is supported bymore » density functional calculations. Additionally, transverse phonon velocities were determined from measured dispersion of the transverse acoustic phonon branches, the results of which are in good agreement with previous theoretical estimates and ultrasound measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gröschel, A., E-mail: alexander.groeschel@fau.de; Will, J.; Bergmann, C.
Annealed Czochralski Silicon wafers containing SiO{sub x} precipitates have been studied by high energy X-ray diffraction in a defocused Laue setup using a laboratory tungsten tube. The energy dispersive evaluation of the diffracted Bragg intensity of the 220 reflection within the framework of the statistical dynamical theory yields the static Debye-Waller factor E of the crystal, which gives access to the strain induced by the SiO{sub x} precipitates. The results are correlated with precipitate densities and sizes determined from transmission electron microscopy measurements of equivalent wafers. This allows for the determination of the constrained linear misfit ε between precipitate andmore » crystal lattice. For samples with octahedral precipitates the values ranging from ε = 0.39 (+0.28/−0.12) to ε = 0.48 (+0.34/−0.16) indicate that self-interstitials emitted into the matrix during precipitate growth contribute to the lattice strain. In this case, the expected value calculated from literature values is ε = 0.26 ± 0.05. Further, the precise evaluation of Pendellösung oscillations in the diffracted Bragg intensity of as-grown wafers reveals a thermal Debye-Waller parameter for the 220 reflection B{sup 220}(293 K) of 0.5582 ± 0.0039 Å{sup 2} for a structure factor based on spherically symmetric scattering contributions.« less
NASA Astrophysics Data System (ADS)
Ellmer, K.; Seeger, S.; Mientus, R.
2006-08-01
By rapid thermal crystallization of an amorphous WS3+x film, deposited by reactive magnetron sputtering at temperatures below 150 °C, layer-type semiconducting tungsten disulfide films (WS2) were grown. The rapid crystallization was monitored in real-time by in situ energy-dispersive X-ray diffraction. The films crystallize very fast (>40 nm/s), provided that a thin nickel film acts as nucleation seeds. Experiments on different substrates and the onset of the crystallization only at a temperature between 600 and 700 °C points to the decisive role of seeds for the textured growth of WS2, most probably liquid NiSx drops. The rapidly crystallized WS2 films exhibit a pronounced (001) texture with the van der Waals planes oriented parallel to the surface, leading to photoactive layers with a high hole mobility of about 80 cm2/Vs making such films suitable as absorbers for thin film solar cells.
Microchemical Analysis Of Space Operation Debris
NASA Technical Reports Server (NTRS)
Cummings, Virginia J.; Kim, Hae Soo
1995-01-01
Report discusses techniques used in analyzing debris relative to space shuttle operations. Debris collected from space shuttle, expendable launch vehicles, payloads carried by space shuttle, and payloads carried by expendable launch vehicles. Optical microscopy, scanning electron microscopy with energy-dispersive spectrometry, analytical electron microscopy with wavelength-dispersive spectrometry, and X-ray diffraction chosen as techniques used in examining samples of debris.
Room temperature chemical synthesis of lead selenide thin films with preferred orientation
NASA Astrophysics Data System (ADS)
Kale, R. B.; Sartale, S. D.; Ganesan, V.; Lokhande, C. D.; Lin, Yi-Feng; Lu, Shih-Yuan
2006-11-01
Room temperature chemical synthesis of PbSe thin films was carried out from aqueous ammoniacal solution using Pb(CH3COO)2 as Pb2+ and Na2SeSO3 as Se2- ion sources. The films were characterized by a various techniques including, X-ray diffraction (XRD), energy dispersive X-ray analysis (EDAX), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED), Fast Fourier transform (FFT) and UV-vis-NIR techniques. The study revealed that the PbSe thin film consists of preferentially oriented nanocubes with energy band gap of 0.5 eV.
Bhadra, S.; Hertzberg, B. J.; Croft, M.; ...
2015-03-13
The coefficient of restitution of alkaline batteries had been shown to increase as a function of depth of discharge. In this work, using non-destructive mechanical testing, the change in coefficient of restitution is compared to in situ energy-dispersive x-ray diffraction data to determine the cause of the macroscopic change in coefficient of restitution. The increase in coefficient of restitution correlates to the formation of a percolation pathway of ZnO within the anode of the cell, and that the coefficient of restitution saturates at a value of 0.63 ± .05 at 50% state if charge when the anode has densified intomore » porous ZnO solid. Of note is the sensitivity of coefficient of restitution to the amount of ZnO formation that rivals the sensitivity on in situ energy-dispersive x-ray diffraction spectroscopy.« less
Vogt, Frederick G; Williams, Glenn R
2012-07-01
Nanocrystalline drug-polymer dispersions are of significant interest in pharmaceutical delivery. The purpose of this work is to demonstrate the applicability of methods based on two-dimensional (2D) and multinuclear solid-state NMR (SSNMR) to a novel nanocrystalline pharmaceutical dispersion of ebselen with polyvinylpyrrolidone-vinyl acetate (PVP-VA), after initial characterization with other techniques. A nanocrystalline dispersion of ebselen with PVP-VA was prepared and characterized by powder X-ray diffraction (PXRD), confocal Raman microscopy and mapping, and differential scanning calorimetry (DSC), and then subjected to detailed 1D and 2D SSNMR analysis involving ¹H, ¹³C, and ⁷⁷Se isotopes and ¹H spin diffusion. PXRD was used to show that dispersion contains nanocrystalline ebselen in the 35-60 nm size range. Confocal Raman microscopy and spectral mapping were able to detect regions where short-range interactions may occur between ebselen and PVP-VA. Spin diffusion effects were analyzed using 2D SSNMR experiments and are able to directly detect interactions between ebselen and the surrounding PVP-VA. The methods used here, particularly the 2D SSNMR methods based on spin diffusion, provided detailed structural information about a nanocrystalline polymer dispersion of ebselen, and should be useful in other studies of these types of materials.
Tanaka, Y; Collins, S P; Lovesey, S W; Matsumami, M; Moriwaki, T; Shin, S
2010-03-31
Many proteins, sugars and pharmaceuticals crystallize into two forms that are mirror images of each other (enantiomers) like our right and left hands. Tellurium is one enantiomer having a space group pair, P3(1)21 (right-handed screw) and P3(2)21 (left-handed screw). X-ray diffraction with dispersion correction terms has been playing an important role in determining the handedness of enantiomers for a long time. However, this approach is not applicable for an elemental crystal such as tellurium or selenium. We have demonstrated that positive and negative circularly polarized x-rays at the resonant energy of tellurium can be used to absolutely distinguish right from left tellurium. This method is applicable to chiral motifs that occur in biomolecules, liquid crystals, ferroelectrics and antiferroelectrics, multiferroics, etc.
Insights from soft X-rays: the chlorine and sulfur sub-structures of a CK2alpha/DRB complex.
Raaf, Jennifer; Issinger, Olaf-Georg; Niefind, Karsten
2008-09-01
The diffraction pattern of a protein crystal is normally a product of the interference of electromagnetic waves scattered by electrons of the crystalline sample. The diffraction pattern undergoes systematic changes in case additionally X-ray absorption occurs, meaning if the wavelength of the primary X-ray beam is relatively close to the absorption edge of selected elements of the sample. The resulting effects are summarized as "anomalous dispersion" and can be always observed with "soft" X-rays (wavelength around 2 A) since they match the absorption edges of sulfur and chlorine. A particularly useful application of this phenomenon is the experimental detection of the sub-structures of the anomalous scatterers in protein crystals. We demonstrate this here with a crystal of a C-terminally truncated variant of human CK2alpha to which two molecules of the inhibitor 5,6-dichloro-1-beta-D-ribo-furanosyl-benzimidazole (DRB) are bound. The structure of this co-crystal has been solved recently. For this study we measured an additional diffraction data set at a wavelength of 2 A which showed strong anomalous dispersion effects. On the basis of these effects we detected all sulfur atoms of the protein, the two liganded DRB molecules and a total of 16 additional chloride ions some of them emerging at positions filled with water molecules in previous structure determinations. A number of chloride ions are bound to structural and functional important locations fitting to the constitutive activity and the acidophilic substrate specificity of the enzyme.
Research of the Dispersity of the Functional Sericite/Methylphenyl- Silicone Resin
Jiang, B.; Zhu, C. C.; Huang, Y. D.
2015-01-01
In order to improve the homogeneity and dispersity of the sericite in methylphenyl-silicone resin, the agglomerate state of the sericites was controlled effectively. The dispersive model of the sericite in methylphenyl-silicone resin was designed also. First, the modified sericite was prepared using hexadecyl trimethyl ammonium bromide as the intercalating agent. Then, functional sericite was incorporated into methylphenyl-silicone by terminal hydroxyl. The structure and dispersive performance of the hybrid polymers was charactered by analytical instruments. Scanning electron microscopy and Transmission electron microscope, Laser scanning confocal microscope and X-ray diffraction analysis showed that functional sericite was dispersed homogeneously in methylphenyl-silicone resin matrix. X-ray photoelectron spectroscopy analysis showed that the absorption peaks of the Si-OH band of methylphenyl-silicone resin were decreased and the Si-O-Si band was increased. This change evidently showed a significant role to enhance the reaction degree of the functional sericite in methylphenyl-silicone resin. PMID:26061002
NASA Astrophysics Data System (ADS)
Crozet, C.; Verdier, M.; Lay, S.; Antoni-Zdziobek, A.
2018-07-01
α/γ phase transformations occurring in Fe-10Cu-xNi alloys (0 ≤ x ≤ 15 in mass%) were studied using X-ray diffraction, scanning electron microscopy, electron back scattered diffraction, transmission electron microscopy and chemical analysis, combining X-ray microanalysis with energy dispersive spectrometry in the scanning electron microscope and electron microprobe analysis with wavelength dispersive spectrometry. The influence of cooling rate on the microstructure was investigated using ice-brine quenching and 2 °C/min slow cooling rate performed with dilatometry. Ni addition induces metastable transformations on cooling: massive and bainitic ferrite are formed depending on the alloy composition and cooling rate. Moreover, most of the Cu phase precipitates on cooling giving rise to a fine distribution of Cu particles in the ferrite grains. For both cooling conditions, the hardness increases with increasing Ni content and a higher hardness is obtained in the quenched alloy for each composition. The change in hardness is correlated to the effect of Ni solid solution, transformation structure and size of Cu particles.
Diffractive-refractive optics: X-ray splitter.
Hrdý, Jaromír
2010-01-01
The possibility of splitting a thin (e.g. undulator) X-ray beam based on diffraction-refraction effects is discussed. The beam is diffracted from a crystal whose diffracting surface has the shape of a roof with the ridge lying in the plane of diffraction. The crystal is cut asymmetrically. One half of the beam impinges on the left-hand part of the roof and the other half impinges on the right-hand side of the roof. Owing to refraction the left part of the beam is deviated to the left whereas the right part is deviated to the right. The device proposed consists of two channel-cut crystals with roof-like diffraction surfaces; the crystals are set in a dispersive position. The separation of the beams after splitting is calculated at a distance of 10 m from the crystals for various asymmetry and inclination angles. It is shown that such a splitting may be utilized for long beamlines. Advantages and disadvantages of this method are discussed.
Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M
2013-01-01
In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375
NASA Astrophysics Data System (ADS)
Ward, Antony J.; Pujari, Ajit A.; Costanzo, Lorenzo; Masters, Anthony F.; Maschmeyer, Thomas
2011-12-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%.
Large-Scale Synthesis of Tin-Doped Indium Oxide Nanofibers Using Water as Solvent
NASA Astrophysics Data System (ADS)
Altecor, Aleksey; Mao, Yuanbing; Lozano, Karen
2012-09-01
Here we report the successful fabrication of tin-doped indium oxide (ITO) nanofibers using a scalable Forcespinning™ method. In this environmentally-friendly process, water was used as the only solvent for both Polyvinylpyrrolidone (PVP, the sacrificial polymer) and the metal chloride precursor salts. The obtained precursor nanofiber mats were calcinated at temperatures ranging from 500-800°C to produce ITO nanofibers with diameters as small as 400 nm. The developed ITO nanofibers were characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy and X-ray diffraction analysis.
Kern, Jan; Hattne, Johan; Tran, Rosalie; Alonso-Mori, Roberto; Laksmono, Hartawan; Gul, Sheraz; Sierra, Raymond G.; Rehanek, Jens; Erko, Alexei; Mitzner, Rolf; Wernet, Phillip; Bergmann, Uwe; Sauter, Nicholas K.; Yachandra, Vittal; Yano, Junko
2014-01-01
X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL. PMID:24914169
Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui
2016-11-01
We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Theodorakou, Chrysoula; Farquharson, Michael J.
2009-08-01
The motivation behind this study is to assess whether angular dispersive x-ray diffraction (ADXRD) data, processed using multivariate analysis techniques, can be used for classifying secondary colorectal liver cancer tissue and normal surrounding liver tissue in human liver biopsy samples. The ADXRD profiles from a total of 60 samples of normal liver tissue and colorectal liver metastases were measured using a synchrotron radiation source. The data were analysed for 56 samples using nonlinear peak-fitting software. Four peaks were fitted to all of the ADXRD profiles, and the amplitude, area, amplitude and area ratios for three of the four peaks were calculated and used for the statistical and multivariate analysis. The statistical analysis showed that there are significant differences between all the peak-fitting parameters and ratios between the normal and the diseased tissue groups. The technique of soft independent modelling of class analogy (SIMCA) was used to classify normal liver tissue and colorectal liver metastases resulting in 67% of the normal tissue samples and 60% of the secondary colorectal liver tissue samples being classified correctly. This study has shown that the ADXRD data of normal and secondary colorectal liver cancer are statistically different and x-ray diffraction data analysed using multivariate analysis have the potential to be used as a method of tissue classification.
Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays
NASA Technical Reports Server (NTRS)
Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.
2003-01-01
Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.
NASA Astrophysics Data System (ADS)
Mureşan-Pop, M.; Pop, M. M.; Borodi, G.; Todea, M.; Nagy-Simon, T.; Simon, S.
2017-08-01
Three solid dispersion forms of Myricetin combined with the Polyvinylpyrrolidone were successfully prepared by spray drying method, and characterized by X-ray powder diffraction, thermal analysis, infrared spectroscopy and optical microscopy. Zeta potential measurements provided indications on solid dispersions stability in aqueous suspension related to their storage at elevated temperature and relative humidity, which depends on the Myricetin load. By increase of Myricetin load, the stability of the solid dispersion is impeded due to growth of Myricetin monohydrate crystals. The amorphous dispersions with 10% and 50% Myricetin load are stable and, compared to pure Myricetin, their aqueous solubility is enhanced by a factor of 47 and 13, respectively. The dispersion with 80% Myricetin load is unstable on storage, and this behavior acts in conjunction with the development of Myricetin monohydrate crystals. Single-crystal X-ray diffraction results obtained for Myricetin monohydrate reveal a structure of an infinite 2D network of hydrogen-bonded molecules involving all six hydroxyl groups of Myricetin. The water molecules are positioned in between the infinite chains, and contribute via H-bonds to robust crystal packing. The calculated needle-like morphology of monohydrate form is in agreement with the optical microscopy results. The study shows that the solid amorphous dispersions with up to 50% Myricetin load are a viable option for achieving substantial solubility improvement of Myricetin, and supports their potential use in pharmaceutical applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazuritskiy, M. I., E-mail: mazurmik@gmail.com; Lerer, A. M.; Makhno, P. V.
The angular distribution of the X-ray intensity at the exit of microchannel plates at grazing incidence of monochromatic radiation on the walls of microcapillaries has been investigated. The angles and energies of the primary radiation quanta at which the synchrotron beam excites X-ray fluorescence propagating inside polycapillary structures have been determined. The angular dependences of the intensity distribution of X-rays transmitted through the microcapillaries have been studied theoretically and experimentally for energies corresponding to the region of anomalous dispersion near the L{sub 2,3} absorption edges of silicon. The propagation of waves in hollow polycapillary waveguides, the excitation of X-ray fluorescence,more » and the X-ray diffraction at the exit of microchannel plates have been modeled mathematically. The mathematical model takes into account the presence of a transition layer on the microchannel surface.« less
Poly(vinylpyrrolidone) coated iron nanoparticles in polar aprotic solvent.
Ban, Zhihui; Cushing, Brian L; O'Connor, Charles J
2008-04-01
Poly(vinylpyrrolidone) (PVP) coated iron nanoparticles which show well-defined core-shell structures have been successfully synthesized in a polar aprotic solvent. In this approach, PVP was employed not as capping agent, but as coating polymer directly applied to the metallic (iron) core nanoparticles. The morphologies, structures, compositions and magnetic properties of the products were investigated by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDXS), SQUID magnetometry and FTIR spectroscopy.
Photosynthetic microorganism-mediated synthesis of akaganeite (beta-FeOOH) nanorods.
Brayner, Roberta; Yéprémian, Claude; Djediat, Chakib; Coradin, Thibaud; Herbst, Fréderic; Livage, Jacques; Fiévet, Fernand; Couté, Alain
2009-09-01
Common Anabaena and Calothrix cyanobacteria and Klebsormidium green algae are shown to form intracellularly akaganeite beta-FeOOH nanorods of well-controlled size and unusual morphology at room temperature. X-ray diffraction (XRD), transmission electron microscopy (TEM), and scanning electron microscopy X-ray energy dispersive spectrometry (SEM-EDS) analyses are used to investigate particle structure, size, and morphology. A mechanism involving iron-siderophore complex formation is proposed and compared with iron biomineralization in magnetotactic bacteria.
NASA Astrophysics Data System (ADS)
Dhanavel, S.; Nivethaa, E. A. K.; Esther, G.; Narayanan, V.; Stephen, A.
2016-05-01
Chitosan supported Palladium nanoparticles were synthesized by a simple cost effective chemical reduction method using NaBH4. The prepared nanocomposite was characterized by X-Ray diffraction analysis, FESEM and Energy dispersive spectroscopy analysis of X-rays (EDAX). The catalytic performance of the nanocomposite was evaluated on the reduction of 2-Nitrophenol to the 2-Amino phenol with rate constant 1.08 × 10-3 S-1 by NaBH4 using Spectrophotometer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adhikari, R., E-mail: rajdeep.adhikari@jku.at; Capuzzo, G.; Bonanni, A., E-mail: alberta.bonanni@jku.at
Polarization induced degenerate n-type doping with electron concentrations up to ∼10{sup 20 }cm{sup −3} is achieved in graded Al{sub x}Ga{sub 1−x}N layers (x: 0% → 37%) grown on unintentionally doped and on n-doped GaN:Si buffer/reservoir layers by metal organic vapor phase epitaxy. High resolution x-ray diffraction, transmission electron microscopy, and electron dispersive x-ray spectroscopy confirm the gradient in the composition of the Al{sub x}Ga{sub 1−x}N layers, while Hall effect studies reveal the formation of a three dimensional electron slab, whose conductivity can be adjusted through the GaN(:Si) buffer/reservoir.
Room temperature synthesis of Cu₂O nanospheres: optical properties and thermal behavior.
Nunes, Daniela; Santos, Lídia; Duarte, Paulo; Pimentel, Ana; Pinto, Joana V; Barquinha, Pedro; Carvalho, Patrícia A; Fortunato, Elvira; Martins, Rodrigo
2015-02-01
The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.
Thampi, VV Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating. PMID:26491312
Thampi, V V Anusha; Dhandapani, P; Manivasagam, Geetha; Subramanian, B
2015-01-01
Thin films of titanium carbonitride (TiCN) were fabricated by DC magnetron sputtering on medical grade steel. The biocompatibility of the coating was further enhanced by growing hydroxyapatite crystals over the TiCN-coated substrates using biologically activated ammonia from synthetic urine. The coatings were characterized using X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy (SEM)-energy dispersive spectroscopy, and Raman spectroscopy. The electrochemical behavior of the coatings was determined in simulated body fluid. In addition, hemocompatibility was assessed by monitoring the attachment of platelets on the coating using SEM. The wettability of the coatings was measured in order to correlate with biocompatibility results. Formation of a coating with granular morphology and the preferred orientation was confirmed by SEM and X-ray diffraction results. The hydroxyapatite coating led to a decrease in thrombogenicity, resulting in controlled blood clot formation, hence demonstrating the hemocompatibility of the coating.
Controlled vapor crystal growth of N a4I r3O8 : A three-dimensional quantum spin liquid candidate
NASA Astrophysics Data System (ADS)
Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; Ren, Yang; Chen, Yu-Sheng; Dally, Rebecca; Wilson, Stephen D.; Islam, Zahirul; Mitchell, J. F.
2018-04-01
We report the successful bulk single-crystal growth of the hyperkagome lattice iridate N a4I r3O8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q =(1 /3 ,1 /3 ,1 /3 ) based on the cubic substructure with cell parameter a =8.986 (1 )Å . This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ions at the notionally disordered Na sites as a plausible origin for the observed superlattice.
Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.; ...
2018-04-24
In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Hong; Zhang, Junjie; Stoumpos, Constantinos C.
In this work, we report the successful bulk single-crystal growth of the hyperkagome lattice iridate Na 4Ir 3O 8 (Na438) by vapor transport using a sealed aluminum oxide tube as a container. Crystals were characterized by magnetization, x-ray diffraction, and energy-dispersive x-ray measurements, confirming their identity and properties. Single-crystal x-ray diffraction experiments revealed superlattice peaks indexed on a propagation vector q=(1/3,1/3,1/3) based on the cubic substructure with cell parameter a=8.986(1)Å. This superlattice is three-dimensional and fully coherent. Polarization analysis rules out spin and/or orbital order as the underlying origin of the modulation and points to long-range ordering of Na ionsmore » at the notionally disordered Na sites as a plausible origin for the observed superlattice.« less
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-28
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more.
Takayama, Yuki; Maki-Yonekura, Saori; Oroguchi, Tomotaka; Nakasako, Masayoshi; Yonekura, Koji
2015-01-01
In this decade coherent X-ray diffraction imaging has been demonstrated to reveal internal structures of whole biological cells and organelles. However, the spatial resolution is limited to several tens of nanometers due to the poor scattering power of biological samples. The challenge is to recover correct phase information from experimental diffraction patterns that have a low signal-to-noise ratio and unmeasurable lowest-resolution data. Here, we propose a method to extend spatial resolution by enhancing diffraction signals and by robust phasing. The weak diffraction signals from biological objects are enhanced by interference with strong waves from dispersed colloidal gold particles. The positions of the gold particles determined by Patterson analysis serve as the initial phase, and this dramatically improves reliability and convergence of image reconstruction by iterative phase retrieval. A set of calculations based on current experiments demonstrates that resolution is improved by a factor of two or more. PMID:25627480
Self catalytic growth of indium oxide (In2O3) nanowires by resistive thermal evaporation.
Kumar, R Rakesh; Rao, K Narasimha; Rajanna, K; Phani, A R
2014-07-01
Self catalytic growth of Indium Oxide (In2O3) nanowires (NWs) have been grown by resistive thermal evaporation of Indium (In) in the presence of oxygen without use of any additional metal catalyst. Nanowires growth took place at low substrate temperature of 370-420 degrees C at an applied current of 180-200 A to the evaporation boat. Morphology, microstructures, and compositional studies of the grown nanowires were performed by employing field emission scanning electron microscopy (FESEM), X-Ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) respectively. Nanowires were uniformly grown over the entire Si substrate and each of the nanowire is capped with a catalyst particle at their end. X-ray diffraction study reveals the crystalline nature of the grown nanowires. Transmission electron microscopy study on the nanowires further confirmed the single crystalline nature of the nanowires. Energy dispersive X-ray analysis on the nanowires and capped nanoparticle confirmed that Indium act as catalyst for In2O3 nanowires growth. A self catalytic Vapor-Liquid-Solid (VLS) growth mechanism was responsible for the growth of In2O3 nanowires. Effect of oxygen partial pressure variation and variation of applied currents to the evaporation boat on the nanowires growth was systematically studied. These studies concluded that at oxygen partial pressure in the range of 4 x 10(-4), 6 x 10(-4) mbar at applied currents to the evaporation boat of 180-200 A were the best conditions for good nanowires growth. Finally, we observed another mode of VLS growth along with the standard VLS growth mode for In2O3 nanowires similar to the growth mechanism reported for GaAs nanowires.
Code of Federal Regulations, 2014 CFR
2014-07-01
... x-rays are dispersed spatially by crystal diffraction on the basis of wavelength. The crystal and detector are made to synchronously rotate and the detector then receives only one wavelength at a time. The...
Code of Federal Regulations, 2012 CFR
2012-07-01
... x-rays are dispersed spatially by crystal diffraction on the basis of wavelength. The crystal and detector are made to synchronously rotate and the detector then receives only one wavelength at a time. The...
Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis
NASA Astrophysics Data System (ADS)
Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide
2015-02-01
Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.
2011-01-01
Highly dispersed cobalt-silicon mixed oxide [Co-SiO2] nanosphere was successfully prepared with a modified reverse-phase microemulsion method. This material was characterized in detail by X-ray diffraction, transmission electron microscopy, Fourier transform infrared, ultraviolet-visible diffuse reflectance spectra, X-ray absorption spectroscopy near-edge structure, and N2 adsorption-desorption measurements. High valence state cobalt could be easily obtained without calcination, which is fascinating for the catalytic application for its strong oxidation ability. In the selective oxidation of cyclohexane, Co-SiO2 acted as an efficient catalyst, and good activity could be obtained under mild conditions. PMID:22067075
Jędrzejczyk, Roman J.; Dziedzicka, Anna; Kuterasiński, Łukasz; Sitarz, Maciej
2017-01-01
The aim of this study was to obtain nanocrystalline mixed metal-oxide–ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser’s addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature. PMID:28686190
Production of oxygen from lunar ilmenite
NASA Technical Reports Server (NTRS)
Shadman, F.; Zhao, Y.
1991-01-01
The kinetics and the mechanism of reduction of synthetic ilmenite by hydrogen in the temperature range of 807 to 1014 C were investigated. At temperatures below 876 C, the temporal profiles of conversion have a sigmoidal shape and indicate the presence of three different stages (induction, acceleration, and deceleration) during the reduction reaction. The apparent activation energy for the reaction is 22.3 kcal/mole, whereas the intrinsic activation energy is 16.9 kcal/mole. Scanning electron microscopy and energy dispersive x-ray analyses show that the diffusion of Fe product away from the reaction front and through the TiO2 phase, followed by the nucleation and growth of a separate Fe phase is an important step affecting the process kinetics. X-ray diffraction and wavelength dispersive x-ray results indicate that the TiO2 can be reduced to lower oxides of titanium at temperatures higher than 876 C.
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.; ...
2017-06-05
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
Determining and Controlling the Magnesium Composition in CdTe/CdMgTe Heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeBlanc, E. G.; Edirisooriya, M.; Ogedengbe, O. S.
The relationships between Mg composition, band gap, and lattice characteristics are investigated for Cd 1-xMg xTe barrier layers using a combination of cathodoluminescence, energy dispersive x-ray spectroscopy, variable angle spectral ellipsometry, and atom probe tomography. The use of a simplified, yet accurate, variable angle spectral ellipsometry analysis is shown to be appropriate for fast determination of composition in thin Cd 1-xMg xTe layers. The validity of using high-resolution x-ray diffraction for CdTe/Cd 1-xMg xTe double heterostructures is discussed. Furthermore, the stability of CdTe/Cd 1-xMg xTe heterostructures are investigated with respect to thermal processing.
Room-temperature synthesis and photoluminescence of hexagonal CePO4 nanorods
NASA Astrophysics Data System (ADS)
Zhu, J.; Zhang, K.; Zhao, H. Y.
2018-01-01
Hexagonal CePO4 nanorods were synthesized via a simple chemical precipitation route at room-temperature without the presence of surfactants and then characterized by powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectrometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) spectroscopy. Hexagonal CePO4 nanorods exhibit strong ultraviolet absorption and ultraviolet luminescence, which correspond to the electronic transitions between 4f and 5d state of Ce3+ ions.
Pressure-induced phase transition in GaN nanocrystals
NASA Astrophysics Data System (ADS)
Cui, Q.; Pan, Y.; Zhang, W.; Wang, X.; Zhang, J.; Cui, T.; Xie, Y.; Liu, J.; Zou, G.
2002-11-01
High-pressure in situ energy-dispersive x-ray diffraction experiments on GaN nanocrystals with 50 nm diameter have been carried out using a synchrotron x-ray source and a diamond-anvil cell up to about 79 GPa at room temperature. A pressure-induced first-order structural phase transition from the wurtzite-type structure to the rock-salt-type structure starts at about 48.8 GPa. The rock-salt-type phase persists to the highest pressure in our experimental range.
Takayama, Yuki; Inui, Yayoi; Sekiguchi, Yuki; Kobayashi, Amane; Oroguchi, Tomotaka; Yamamoto, Masaki; Matsunaga, Sachihiro; Nakasako, Masayoshi
2015-07-01
Coherent X-ray diffraction imaging (CXDI) is a lens-less technique for visualizing the structures of non-crystalline particles with the dimensions of submicrometer to micrometer at a resolution of several tens of nanometers. We conducted cryogenic CXDI experiments at 66 K to visualize the internal structures of frozen-hydrated chloroplasts of Cyanidioschyzon merolae using X-ray free electron laser (XFEL) as a coherent X-ray source. Chloroplast dispersed specimen disks at a number density of 7/(10×10 µm(2)) were flash-cooled with liquid ethane without staining, sectioning or chemical labeling. Chloroplasts are destroyed at atomic level immediately after the diffraction by XFEL pulses. Thus, diffraction patterns with a good signal-to-noise ratio from single chloroplasts were selected from many diffraction patterns collected through scanning specimen disks to provide fresh specimens into the irradiation area. The electron density maps of single chloroplasts projected along the direction of the incident X-ray beam were reconstructed by using the iterative phase-retrieval method and multivariate analyses. The electron density map at a resolution of 70 nm appeared as a C-shape. In addition, the fluorescence image of proteins stained with Flamingo™ dye also appeared as a C-shape as did the autofluorescence from Chl. The similar images suggest that the thylakoid membranes with an abundance of proteins distribute along the outer membranes of chloroplasts. To confirm the present results statistically, a number of projection structures must be accumulated through high-throughput data collection in the near future. Based on the results, we discuss the feasibility of XFEL-CXDI experiments in the structural analyses of cellular organelles. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Quantitative Electron Probe Microanalysis: State of the Art
NASA Technical Reports Server (NTRS)
Carpernter, P. K.
2005-01-01
Quantitative electron-probe microanalysis (EPMA) has improved due to better instrument design and X-ray correction methods. Design improvement of the electron column and X-ray spectrometer has resulted in measurement precision that exceeds analytical accuracy. Wavelength-dispersive spectrometer (WDS) have layered-dispersive diffraction crystals with improved light-element sensitivity. Newer energy-dispersive spectrometers (EDS) have Si-drift detector elements, thin window designs, and digital processing electronics with X-ray throughput approaching that of WDS Systems. Using these systems, digital X-ray mapping coupled with spectrum imaging is a powerful compositional mapping tool. Improvements in analytical accuracy are due to better X-ray correction algorithms, mass absorption coefficient data sets,and analysis method for complex geometries. ZAF algorithms have ban superceded by Phi(pz) algorithms that better model the depth distribution of primary X-ray production. Complex thin film and particle geometries are treated using Phi(pz) algorithms, end results agree well with Monte Carlo simulations. For geological materials, X-ray absorption dominates the corretions end depends on the accuracy of mass absorption coefficient (MAC) data sets. However, few MACs have been experimentally measured, and the use of fitted coefficients continues due to general success of the analytical technique. A polynomial formulation of the Bence-Albec alpha-factor technique, calibrated using Phi(pz) algorithms, is used to critically evaluate accuracy issues and can be also be used for high 2% relative and is limited by measurement precision for ideal cases, but for many elements the analytical accuracy is unproven. The EPMA technique has improved to the point where it is frequently used instead of the petrogaphic microscope for reconnaissance work. Examples of stagnant research areas are: WDS detector design characterization of calibration standards, and the need for more complete treatment of the continuum X-ray fluorescence correction.
2011-01-01
A series of mesoporous silicas impregnated with nanocrystalline sulphated zirconia was prepared by a sol-gel process using an ionic liquid-templated route. The physicochemical properties of the mesoporous sulphated zirconia materials were studied using characterisation techniques such as inductively coupled optical emission spectroscopy, X-ray diffraction, transmission electron microscopy, energy-dispersive X-ray microanalysis, elemental analysis and X-ray photoelectron spectroscopy. Analysis of the new silicas indicates isomorphous substitution of silicon with zirconium and reveals the presence of extremely small (< 10 nm) polydispersed zirconia nanoparticles in the materials with zirconium loadings from 27.77 to 41.4 wt.%. PMID:21711725
NASA Astrophysics Data System (ADS)
Guignot, N.; Itié, J.; Zerbino, P.; Delmotte, A.; Moreno, T.
2013-12-01
The PSICHE beamline (for 'Pressure, Structure and Imaging by Contrast at High Energy') is a new facility opened for high pressure experiments at synchrotron SOLEIL (St-Aubin, France). With its source, optics, detectors and 3 experimental stations, it can handle a large variety of experimental setups. High energy photons are produced with an in-vacuum wiggler. The white beam obtained, with photons energy ranging continuously from 15 to 80 keV (from a 2.75 GeV machine), is used on the first experimental station for energy dispersive X-ray diffraction (EDX) measurements using different pressure cells. The main setup is a 1200 tons load capacity multi-anvil press featuring a (100) DIA compression module with a 15° horizontal aperture, allowing measurements up to 30° in 2theta by rotating the press. Other setups are a Paris-Edinburgh (PE) large volume press and diamond anvil cells (DACs). On the detection side we have a rotating Ge detector, based on the CAESAR design described by Wang et al. (2004) (combination of EDX and angular dispersive X-ray diffraction, ADX). One of the difficulties when building such setups is the rotation mechanism which cannot be physically attached to the rotation axis, potentially leading to large circle of confusions on the horizontal position of this axis. Thanks to translation corrections done at each angle step, the circle of confusion is minimized to 3x6 μm2 along the 35° travel, making possible measurements on very small objects. Combining EDX and ADX has a lot of advantages and we will present our first results obtained using this setup. The PSICHE focusing optics and monochromator are also used to focus monochromatic beams (up to 52 keV) on 2 different experimental stations. The first focal point at 31 m gives a beam size of 100x50 μm2 (HxV) and is useful for low pressure experiments and experiments done with the PE press associated with Soller slits. A PerkinElmer flatpanel detector can be precisely scanned in 3 directions, making ADX measurements at the highest possible resolution on this beamline. This station will also be used for diffraction tomography experiments. The second focal point at 37.6 m is located behind KB mirrors on the third experimental station. 10x10 μm2 beam sizes (full width) are expected. This station will be used for DAC experiments, with or without our future laser heating setup. Finally, parallel beams can be produced with sizes up to 15x5 mm2 (HxV) for tomography experiments, in pink (filtered white) beam or monochromatic beam. We plan to use rotating anvils presses such as the rotoPEc (J. Philippe et al., 2013) to take full advantage of this beam mode, but it can be opened to other techniques. The PSICHE beamline is opened for users since July 2013. Some stations are not available yet, and will be opened through 2014 and 2015. References X. Dong et al., Ray tracing application in hard x-ray optical development: Soleil first wiggler beamline (PSICHÉ) case" (2011), Proc. SPIE 8141, 814113 Y. Wang et al., A new technique for angle-dispersive powder diffraction using an energy-dispersive setup and synchrotron radiation (2004), J. Appl. Cryst. 37, 947-956 J. Philippe, Y. Le Godec, F. Bergame et M. Morand, Patent INPI 11 62335 (2013)
NASA Astrophysics Data System (ADS)
Vančo, Ľubomír; Kadlečíková, Magdaléna; Breza, Juraj; Čaplovič, Ľubomír; Gregor, Miloš
2013-01-01
In this paper we studied the material composition of the ground layer of a neoclassical painting. We used Raman spectroscopy (RS) as a prime method. Thereafter scanning electron microscopy combined with energy dispersive spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD) were employed as complementary techniques. The painting inspected was of the side altar in King St. Stephen's Church in Galanta (Slovakia), signed and dated by Jos. Chr. Mayer 1870. Analysis was carried out on both covered and uncovered ground layers. Four principal compounds (barite, lead white, calcite, dolomite) and two minor compounds (sphalerite, quartz) were identified. This ground composition is consistent with the 19th century painting technique used in Central Europe consisting of white pigments and white fillers. Transformation of lead white occurred under laser irradiation. Subdominant Raman peaks of the components were measured. The observed results elucidate useful partnership of RS and SEM-EDS measurements supported by X-ray powder diffraction as well as possibilities and limitations of non-destructive analysis of covered lower layers by RS.
NASA Technical Reports Server (NTRS)
Archilles, Cherie; Ming, D. W.; Morris, R. V.; Blake, D. F.
2011-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) is an miniature X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of detecting the mineralogical and elemental compositions of rocks, outcrops and soils on the surface of Mars. CheMin uses a microfocus-source Co X-ray tube, a transmission sample cell, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CRISM and OMEGA have identified the presence of phyllosilicates at several locations on Mars including the four candidate MSL landing sites. The objective of this study was to conduct preliminary studies to determine the CheMin detection limit of smectite in a smectite/olivine mixed mineral system.
Mercuric iodide detector systems for identifying substances by x-ray energy dispersive diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwanczyk, J.S.; Patt, B.E.; Wang, Y.J.
The use of mercuric iodide arrays for energy-dispersive x-ray diffraction (EDXRD) spectroscopy is now being investigated by the authors for inspection of specific crystalline powders in substances ranging from explosives to illicit drugs. Mercuric iodide has been identified as the leading candidate for replacing the Ge detectors previously employed in the development of this technique because HgI{sub 2} detectors: operate at or near room temperature; without the bulky apparatus associated with cryogenic cooling; and offer excellent spectroscopy performance with extremely high efficiency. Furthermore, they provide the practicality of constructing optimal array geometries necessary for these measurements. Proof of principle experimentsmore » have been performed using a single-HgI{sub 2} detector spectrometer. An energy resolution of 655 eV (FWHM) has been obtained for 60 keV gamma line from an {sup 241}Am source. The EDXRD signatures of various crystalline powdered compounds have been measured and the spectra obtained show the excellent potential of mercuric iodide for this application.« less
NASA Astrophysics Data System (ADS)
Pinto, C.; Galdámez, A.; Barahona, P.; Moris, S.; Peña, O.
2018-06-01
Selenospinels, CuCr2-xMxSe4 (M = Zr and Sn), were synthesized via conventional solid-state reactions. The crystal structure of CuCr1.5Sn0.5Se4, CuCr1.7Sn0.3Se4, CuCr1.5Zr0.5Se4, and CuCr1.8Zr0.2Se4 were determined using single-crystal X-ray diffraction. All the phases crystallized in a cubic spinel-type structure. The chemical compositions of the single-crystals were examined using energy-dispersive X-ray analysis (EDS). Powder X-ray diffraction patterns of CuCr1.3Sn0.7Se4 and CuCr1.7Sn0.3Se4 were consistent with phases belonging to the Fd 3 bar m Space group. An analysis of the vibrational properties on the single-crystals was performed using Raman scattering measurements. The magnetic properties showed a spin glass behavior with increasing Sn content and ferromagnetic order for CuCr1.7Sn0.3Se4.
Diffraction enhanced kinetic depth X-ray imaging
NASA Astrophysics Data System (ADS)
Dicken, A.
An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction approach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional source of information obtained from object disparity is explored as an alternative means of calculating sample loci. This offers a greater level of integration between these two complimentary techniques as object disparity could be used to reinforce the results produced by the linear diffraction geometry.
Green synthesis of BiVO4 nanorods via aqueous extracts of Callistemon viminalis
NASA Astrophysics Data System (ADS)
Mohamed, H. E. A.; Sone, B. T.; Fuku, X. G.; Dhlamini, M. S.; Maaza, M.
2018-05-01
Nowadays, the development of efficient green chemistry methods for synthesis of metal oxides nanoparticles has become a major focus of researchers. These methods are being investigated in order to find an eco-friendly technique for production of well-characterized nanoparticles. In this contribution we report for the first time, the synthesis and structural characterization of n-type Bismuth vanadate (BiVO4) nanoparticles using aqueous extracts of Callistemon viminalis as a chelating agent. To ascertain the formation of BiVO4, X-Ray diffraction analysis (XRD), Scanning Electron Microscopy (SEM), High Resolution Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Electron Dispersion X-ray Spectroscopy (EDS), Fourier Transform Infra-red Spectroscopy (FTIR), and Photoluminescence spectroscopy (PL) were carried out.
Rotator Phases of n-Heptane under High Pressure: Raman Scattering and X-ray Diffraction Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
C Ma; Q Zhou; F Li
2011-12-31
We performed high-pressure Raman scattering and angle-dispersive synchrotron X-ray diffraction measurements on n-heptane at room temperature. It has been found that n-heptane undergoes a liquid to rotator phase III (R{sub III}) transition at 1.2 GPa and then transforms into another rotator phase R{sub IV} at about 3 GPa. As the pressure reaches 7.5 GPa, a transition from an orientationally disordered R{sub IV} phase to an ordered crystalline state starts and is completed around 14.5 GPa. Our results clearly present the high-pressure phase transition sequence (liquid-R{sub III}-R{sub IV}-crystal) of n-heptane, similar to that of normal alkanes.
Phase transition studies of germanium to 1. 25 Mbar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Y.K.; Brister, K.E.; Desgreniers, S.
1986-05-05
New phase transitions in Ge were observed by energy-dispersive x-ray diffraction techniques for pressures up to 125 GPa (1.25 Mbar) as follows: the ..beta..-Sn structure to the simple hexagonal (sh) phase at 75 +- 3 GPa and to the double hexagonal close-packed structure (dhcp) at 102 +- 5 GPa. These are the highest pressures for which a crystalline structure change has been directly observed in any material by x-ray diffraction. Total-energy pseudopotential calculations predict 84 +- 10 GPa for the ..beta..-Sn to sh phase transition and 105 +- 21 GPa for sh to hcp (not dhcp) transition. The role ofmore » 3d core electrons in increasing the transformation pressures in Ge, as compared to Si, is emphasized.« less
Diffraction leveraged modulation of X-ray pulses using MEMS-based X-ray optics
Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore
2016-08-09
A method and apparatus are provided for implementing Bragg-diffraction leveraged modulation of X-ray pulses using MicroElectroMechanical systems (MEMS) based diffractive optics. An oscillating crystalline MEMS device generates a controllable time-window for diffraction of the incident X-ray radiation. The Bragg-diffraction leveraged modulation of X-ray pulses includes isolating a particular pulse, spatially separating individual pulses, and spreading a single pulse from an X-ray pulse-train.
Yuan, Kuo; Song, Tianqun; Wang, Dawei; Zou, Ye; Li, Jinfeng; Zhang, Xiaotao; Tang, Zhiyong; Hu, Wenping
2018-01-25
In this work, we synthesized a series of microcrystalline Mn x N 100-x -MOF-74 (N = Fe, Co and Ni) materials by a one-pot reaction. Powder X-ray diffraction (PXRD) patterns of Mn x N 100-x -MOF-74 matched well with those of single-metal MOF-74, and the scanning electron microscopy (SEM) images exhibited homogeneous nanocrystallites aggregated together. The amounts and dispersion of metals were analyzed by using inductively coupled plasma (ICP) and energy-dispersive X-ray spectroscopy (EDS), separately. Mn x N 100-x -MOF-74 could remain crystalline and efficiently catalyze the epoxidation of alkenes in DMF with NaHCO 3 and 30% H 2 O 2 . In particular, Mn 29.39 Fe 70.61 -MOF-74 can achieve almost 100% conversion for styrene with 95.0% selectivity towards styrene oxide and be reused at least five times without loss of activity.
High-pressure studies with x-rays using diamond anvil cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guoyin; Mao, Ho Kwang
2016-11-22
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. Thesemore » HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.« less
High-pressure studies with x-rays using diamond anvil cells
NASA Astrophysics Data System (ADS)
Shen, Guoyin; Mao, Ho Kwang
2017-01-01
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials’ properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Extended asymmetric-cut multilayer X-ray gratings.
Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša
2015-06-15
The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.
Electrorheological crystallization of proteins and other molecules
Craig, G.D.; Rupp, B.
1996-06-11
An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an X-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the X-ray diffraction pattern. 4 figs.
Electrorheological crystallization of proteins and other molecules
Craig, George D.; Rupp, Bernhard
1996-01-01
An electrorheological crystalline mass of a molecule is formed by dispersing the molecule in a dispersion fluid and subjecting the molecule dispersion to a uniform electrical field for a period of time during which time an electrorheological crystalline mass is formed. Molecules that may be used to form an electrorheological crystalline mass include any organic or inorganic molecule which has a permanent dipole and/or which is capable of becoming an induced dipole in the presence of an electric field. The molecules used to form the electrorheological crystalline mass are preferably macromolecules, such as biomolecules, such as proteins, nucleic acids, carbohydrates, lipoproteins and viruses. Molecules are crystallized by a method in which an electric field is maintained for a period of time after the electrorheological crystalline mass has formed during which time at least some of the molecules making up the electrorheological crystalline mass form a crystal lattice. The three dimensional structure of a molecule is determined by a method in which an electrorheological crystalline mass of the molecule is formed, an x-ray diffraction pattern of the electrorheological crystalline mass is obtained and the three dimensional structure of the molecule is calculated from the x-ray diffraction pattern.
NASA Astrophysics Data System (ADS)
Kehres, Jan; Lyksborg, Mark; Olsen, Ulrik L.
2017-09-01
Energy dispersive X-ray diffraction (EDXRD) can be applied for identification of liquid threats in luggage scanning in security applications. To define the instrumental design, the framework for data reduction and analysis and test the performance of the threat detection in various scenarios, a flexible laboratory EDXRD test setup was build. A data set of overall 570 EDXRD spectra has been acquired for training and testing of threat identification algorithms. The EDXRD data was acquired with limited count statistics and at multiple detector angles and merged after correction and normalization. Initial testing of the threat detection algorithms with this data set indicate the feasibility of detection levels of > 95 % true positive with < 6 % false positive alarms.
NASA Astrophysics Data System (ADS)
Goudarzi, Mojgan; Mir, Noshin; Mousavi-Kamazani, Mehdi; Bagheri, Samira; Salavati-Niasari, Masoud
2016-09-01
In this work, two natural sources, including pomegranate peel extract and cochineal dye were employed for the synthesis of silver nanoparticles. The natural silver complex from pomegranate peel extract resulted in nano-sized structures through solution-phase method, but this method was not efficient for cochineal dye-silver precursor and the as-formed products were highly agglomerated. Therefore, an alternative facile solid-state approach was investigated as for both natural precursors and the results showed successful production of well-dispersed nanoparticles with narrow size distribution for cochineal dye-silver precursor. The products were characterized by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy dispersive X-ray microanalysis (EDX), and Transmission Electron Microscopy (TEM).
Ha, Eun-Sol; Kim, Jeong-Soo; Baek, In-Hwan; Yoo, Jin-Wook; Jung, Yunjin; Moon, Hyung Ryong; Kim, Min-Soo
2015-01-01
In the present study, solid dispersion nanoparticles with a hydrophilic polymer and surfactant were developed using the supercritical antisolvent (SAS) process to improve the dissolution and oral absorption of megestrol acetate. The physicochemical properties of the megestrol acetate solid dispersion nanoparticles were characterized using scanning electron microscopy, differential scanning calorimetry, powder X-ray diffraction, and a particle-size analyzer. The dissolution and oral bioavailability of the nanoparticles were also evaluated in rats. The mean particle size of all solid dispersion nanoparticles that were prepared was <500 nm. Powder X-ray diffraction and differential scanning calorimetry measurements showed that megestrol acetate was present in an amorphous or molecular dispersion state within the solid dispersion nanoparticles. Hydroxypropylmethyl cellulose (HPMC) solid dispersion nanoparticles significantly increased the maximum dissolution when compared with polyvinylpyrrolidone K30 solid dispersion nanoparticles. The extent and rate of dissolution of megestrol acetate increased after the addition of a surfactant into the HPMC solid dispersion nanoparticles. The most effective surfactant was Ryoto sugar ester L1695, followed by D-α-tocopheryl polyethylene glycol 1000 succinate. In this study, the solid dispersion nanoparticles with a drug:HPMC:Ryoto sugar ester L1695 ratio of 1:2:1 showed >95% rapid dissolution within 30 minutes, in addition to good oral bioavailability, with approximately 4.0- and 5.5-fold higher area under the curve (0-24 hours) and maximum concentration, respectively, than raw megestrol acetate powder. These results suggest that the preparation of megestrol acetate solid dispersion nanoparticles using the supercritical antisolvent process is a promising approach to improve the dissolution and absorption properties of megestrol acetate.
Nilmoung, Sukunya; Kidkhunthod, Pinit; Maensiri, Santi
2015-11-01
Carbon/NiFe2O4 composite nanofibers have been successfully prepared by electrospinning method using a various concentration solution of Ni and Fe nitrates dispersed into polyacrylonitride (PAN) solution in N,N' dimethylformamide. The phase and mophology of PAN/NiFe2O4 composite samples were characterized and investigated by X-ray diffraction and scanning electron microscopy. The magnetic properties of the prepared samples were measured at ambient temperature by a vibrating sample magnetometer. It is found that all composite samples exhibit ferromagnetism. This could be local-structurally explained by the existed oxidation states of Ni2+ and Fe3+ in the samples. Moreover, local environments around Ni and Fe ions could be revealed by X-ray absorption spectroscopy (XAS) measurement including X-ray absorption near edge structure (XANES) and Extended X-ray absorption fine structure (EXAFS).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Häusler, I., E-mail: ines.haeusler@bam.de; Dörfel, I., E-mail: Ilona.doerfel@bam.de; Peplinski, B., E-mail: Burkhard.peplinski@bam.de
A model system was used to simulate the properties of tribofilms which form during automotive braking. The model system was prepared by ball milling of a blend of 70 vol.% iron oxides, 15 vol.% molybdenum disulfide and 15 vol.% graphite. The resulting mixture was characterized by X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and various transmission electron microscopic (TEM) methods, including energy dispersive X-ray spectroscopy (EDXS), high resolution investigations (HRTEM) with corresponding simulation of the HRTEM images, diffraction methods such as scanning nano-beam electron diffraction (SNBED) and selected area electron diffraction (SAED). It could be shown that the ballmore » milling caused a reduction of the grain size of the initial components to the nanometer range. Sometimes even amorphization or partial break-down of the crystal structure was observed for MoS{sub 2} and graphite. Moreover, chemical reactions lead to a formation of surface coverings of the nanoparticles by amorphous material, molybdenum oxides, and iron sulfates as derived from XPS. - Highlights: • Ball milling of iron oxides, MoS{sub 2}, and graphite to simulate a tribofilm • Increasing coefficient of friction after ball milling of the model blend • Drastically change of the diffraction pattern of the powder mixture • TEM & XPS showed the components of the milled mixture and the process during milling. • MoS{sub 2} and graphite suffered a loss in translation symmetry or became amorphous.« less
Solvothermal synthesis of Au@Fe3O4 nanoparticles for antibacterial applications
NASA Astrophysics Data System (ADS)
Kelgenbaeva, Zhazgul; Abdullaeva, Zhypargul; Murzubraimov, Bektemir
2018-04-01
We present Au@Fe3O4 nanoparticles obtained from Fe nanoparticles and HAuCl4 using a simple solvothermal method. Trisodium citrate (C6H5Na3O7*2H2O) served as a reducing agent for Au. X-ray diffraction analysis, electronic microscopes and energy-dispersive X-ray spectroscopy revealed cubic structure, elemental composition (Au, Fe and O) and spherical shape of nanoparticles. Antibacterial activity of the sample was tested against E. coli bacteria and obtained results were discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malik, Hitendra K., E-mail: hkmalik@physics.iitd.ac.in; Singh, Omveer; Dahiya, Raj P.
We have established a hot cathode arc discharge plasma system, where different stainless steel samples can be treated by monitoring the plasma parameters and nitriding parameters independently. In the present work, a mixture of 70% N{sub 2} and 30% H{sub 2} gases was fed into the plasma chamber and the treatment time and substrate temperature were optimized for treating 304L Stainless Steel samples. Various physical techniques such as x-ray diffraction, energy dispersive x-ray spectroscopy and micro-vickers hardness tester were employed to determine the structural, surface composition and surface hardness of the treated samples.
Growth and microtopographic study of CuInSe{sub 2} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chauhan, Sanjaysinh M.; Chaki, Sunil, E-mail: sunilchaki@yahoo.co.in; Deshpande, M. P.
2016-05-23
The CuInSe{sub 2} single crystals were grown by chemical vapour transport (CVT) technique using iodine as transporting agent. The elemental composition of the as-grown CuInSe{sub 2} single crystals was determined by energy dispersive analysis of X-ray (EDAX). The unit cell crystal structure and lattice parameters were determined by X-ray diffraction (XRD) technique. The surface microtopographic study of the as-grown CuInSe{sub 2} single crystals surfaces were done to study the defects, growth mechanism, etc. of the CVT grown crystals.
Preparation of carbon nanotubes/BiOBr composites with higher visible light photocatalytic activity
NASA Astrophysics Data System (ADS)
You, Y. J.; Zhang, Y. X.; Li, R. R.; Li, C. H.
2014-12-01
A novel flower-like photocatalyst CNTs/BiOBr was successfully prepared by a facile hydrothermal method. The morphology and the physicochemical properties of the prepared samples were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDX), and UV-visible diffuse reflectance spectroscopy (UV-vis DRS). The photocatalytic activity was evaluated by degradation of Rhodamin B (RhB) dye. It was demonstrated that CNTs/BiOBr photocatalyst could effectively photodegrade RhB under visible light (VL) irradiation.
Nanoscale interfacial mixing of Au/Bi layers using MeV ion beams
NASA Astrophysics Data System (ADS)
Prusty, Sudakshina; Siva, V.; Ojha, S.; Kabiraj, D.; Sahoo, P. K.
2017-05-01
We have studied nanoscale mixing of thermally deposited double bilayer films of Au/Bi after irradiating them by 1.5 MeV Au2+ ions. Post irradiation effects on the morphology and elemental identification in these films are studied by Scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDS). Glancing angle X-ray diffraction (GAXRD) of the samples indicate marginal changes in the irradiated samples due to combined effect of nuclear and electronic energy loss. The interfacial mixing is studied by Rutherford backscattering (RBS).
ITEP MEVVA ion beam for rhenium silicide production.
Kulevoy, T; Gerasimenko, N; Seleznev, D; Kropachev, G; Kozlov, A; Kuibeda, R; Yakushin, P; Petrenko, S; Medetov, N; Zaporozhan, O
2010-02-01
The rhenium silicides are very attractive materials for semiconductor industry. In the Institute for Theoretical and Experimental Physics (ITEP) at the ion source test bench the research program of rhenium silicide production by ion beam implantation are going on. The investigation of silicon wafer after implantation of rhenium ion beam with different energy and with different total dose were carried out by secondary ions mass spectrometry, energy-dispersive x-ray microanalysis, and x-ray diffraction analysis. The first promising results of rhenium silicide film production by high intensity ion beam implantation are presented.
Synthesis and Raman scattering of GaN nanorings, nanoribbons and nanowires
NASA Astrophysics Data System (ADS)
Li, Z. J.; Chen, X. L.; Li, H. J.; Tu, Q. Y.; Yang, Z.; Xu, Y. P.; Hu, B. Q.
Low-dimensional GaN materials, including nanorings, nanoribbons and smooth nanowires have been synthesized by reacting gallium and ammonia using Ag particles as a catalyst on the substrate of MgO single crystals. They were characterized by field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). EDX, XRD indicated that the low-dimensional nanomaterials were wurtzite GaN. New features are found in Raman scatterings for these low-dimensional GaN materials, which are different from the previous observations of GaN materials.
Ponarulselvam, S; Panneerselvam, C; Murugan, K; Aarthi, N; Kalimuthu, K; Thangamani, S
2012-01-01
Objective To develop a novel approach for the green synthesis of silver nanoparticles using aqueous leaves extracts of Catharanthus roseus (C. roseus) Linn. G. Don which has been proven active against malaria parasite Plasmodium falciparum (P. falciparum). Methods Characterizations were determined by using ultraviolet-visible (UV-Vis) spectrophotometry, scanning electron microscopy (SEM), energy dispersive X-ray and X-ray diffraction. Results SEM showed the formation of silver nanoparticles with an average size of 35–55 nm. X-ray diffraction analysis showed that the particles were crystalline in nature with face centred cubic structure of the bulk silver with the broad peaks at 32.4, 46.4 and 28.0. Conclusions It can be concluded that the leaves of C. roseus can be good source for synthesis of silver nanoparticle which shows antiplasmodial activity against P. falciparum. The important outcome of the study will be the development of value added products from medicinal plants C. roseus for biomedical and nanotechnology based industries. PMID:23569974
Tungsten tetraboride, an inexpensive superhard material
Mohammadi, Reza; Lech, Andrew T.; Xie, Miao; Weaver, Beth E.; Yeung, Michael T.; Tolbert, Sarah H.; Kaner, Richard B.
2011-01-01
Tungsten tetraboride (WB4) is an interesting candidate as a less expensive member of the growing group of superhard transition metal borides. WB4 was successfully synthesized by arc melting from the elements. Characterization using powder X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDX) indicates that the as-synthesized material is phase pure. The zero-pressure bulk modulus, as measured by high-pressure X-ray diffraction for WB4, is 339 GPa. Mechanical testing using microindentation gives a Vickers hardness of 43.3 ± 2.9 GPa under an applied load of 0.49 N. Various ratios of rhenium were added to WB4 in an attempt to increase hardness. With the addition of 1 at.% Re, the Vickers hardness increased to approximately 50 GPa at 0.49 N. Powders of tungsten tetraboride with and without 1 at.% Re addition are thermally stable up to approximately 400 °C in air as measured by thermal gravimetric analysis. PMID:21690363
NASA Astrophysics Data System (ADS)
Bontempi, E.; Colombi, P.; Depero, L. E.; Cartechini, L.; Presciutti, F.; Brunetti, B. G.; Sgamellotti, A.
2006-06-01
Lustre is known as one of the most significant decorative techniques of Medieval and Renaissance pottery in the Mediterranean basin, characterized by brilliant gold and red metallic reflections and iridescence effects. Previous studies by various techniques (SEM-EDS and TEM, UV-VIS, XRF, RBS and EXAFS) demonstrated that lustre consists of a heterogeneous metal-glass composite film, formed by Cu and Ag nanoparticles dispersed within the outer layer of a tin-opacified lead glaze. In the present work the investigation of an original gold lustre sample from Deruta has been carried out by means of glancing-incidence X-ray diffraction techniques (GIXRD). The study was aimed at providing information on structure and depth distribution of Ag nanoparticles. Exploiting the capability of controlling X-ray penetration in the glaze by changing the incidence angle, we used GIXRD measurements to estimate non-destructively thickness and depth of silver particles present in the first layers of the glaze.
NASA Astrophysics Data System (ADS)
Tu, Xiaofeng; Zhou, Yingke; Song, Yijie
2017-04-01
The three-dimensional porous LiFePO4 modified with uniformly dispersed nitrogen-doped carbon nanotubes has been successfully prepared by a freeze-drying method. The morphology and structure of the porous composites are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performances are evaluated using the constant current charge/discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The nitrogen-doped carbon nanotubes are uniformly dispersed inside the porous LiFePO4 to construct a superior three-dimensional conductive network, which remarkably increases the electronic conductivity and accelerates the diffusion of lithium ion. The porous composite displays high specific capacity, good rate capability and excellent cycling stability, rendering it a promising positive electrode material for high-performance lithium-ion batteries.
Facile synthesis and photocatalytic activity of bi-phase dispersible Cu-ZnO hybrid nanoparticles
NASA Astrophysics Data System (ADS)
Liu, Xiao; Liu, HongLing; Zhang, WenXing; Li, XueMei; Fang, Ning; Wang, XianHong; Wu, JunHua
2015-04-01
Bi-phase dispersible Cu-ZnO hybrid nanoparticles were synthesized by one-pot non-aqueous nanoemulsion with the use of poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The transmission electron microscopy (TEM) and X-ray diffraction (XRD) show high crystallinity of the Cu-ZnO hybrid nanoparticles and an average particle size of ~19.4 nm. The ultraviolet-visible light absorbance spectrometry (UV-vis) and photoluminescence spectrophotometry (PL) demonstrate well dispersibility and excellent optical performance of Cu-ZnO hybrid nanoparticles both in organic and aqueous solvent. The X-ray photoelectron spectroscopy (XPS) confirms Cu1+ and Cu2+ in ZnO. The observation using Sudan red (III) as probe molecule reveals that the Cu-ZnO hybrid nanoparticles possess enhanced photocatalytic activity and stability which are promising for potential applications in photocatalysis.
NASA Astrophysics Data System (ADS)
Kusch, Gunnar; Mehnke, Frank; Enslin, Johannes; Edwards, Paul R.; Wernicke, Tim; Kneissl, Michael; Martin, Robert W.
2017-03-01
Detailed knowledge of the dopant concentration and composition of wide band gap Al x Ga{}1-x{{N}} layers is of crucial importance for the fabrication of ultra violet light emitting diodes. This paper demonstrates the capabilities of wavelength dispersive x-ray (WDX) spectroscopy in accurately determining these parameters and compares the results with those from high resolution x-ray diffraction (HR-XRD) and secondary ion mass spectrometry (SIMS). WDX spectroscopy has been carried out on different silicon-doped wide bandgap Al x Ga{}1-x{{N}} samples (x between 0.80 and 1). This study found a linear increase in the Si concentration with the SiH4/group-III ratio, measuring Si concentrations between 3× {10}18 cm-3 and 2.8× {10}19 cm-3, while no direct correlation between the AlN composition and the Si incorporation ratio was found. Comparison between the composition obtained by WDX and by HR-XRD showed very good agreement in the range investigated, while comparison of the donor concentration between WDX and SIMS found only partial agreement, which we attribute to a number of effects.
NASA Technical Reports Server (NTRS)
Uchida, Hinako; Righter, Kevin; Lavina, Barbara; Nowell, Matthew M.; Wright, Stuart I.; Downs, Robert T.; Yang, Hexiong
2007-01-01
A magnesium vanadate spinel crystal, ideally MgV2O4, synthesized at 1 bar, 1200 C and equilibrated under FMQ + 1.3 log f(sub o2) condition, was investigated using single-crystal X-ray diffraction, electron microprobe, and electron backscatter (EBSD). The initial X-ray structure refinements gave tetrahedral and octahedral site occupancies, along with the presence of 0.053 apfu Mg at an interstitial octahedral site . Back-scattered electron (BSE) images and electron microprobe analyses revealed the existence of an Mg-rich phase in the spinel matrix, which was too small (less than or equal to 3microns) for an accurate chemical determination. The EBSD analysis combined with X-ray energy dispersive spectroscop[y (XEDS) suggested that the Mg-rich inclusions are periclase oriented coherently with the spinel matrix. The final structure refinements were optimized by subtracting the X-ray intensity contributions (approx. 9%) of periclase reflections, which eliminated the interstitial Mg. This study provides insight into possible origins of refined interstitial cations reported in the the literature for spinel, and points to the difficulty of using only X-ray diffraction data to distinguish a spinel with interstitial cations from one with coherently oriented MgO inclusions.
Portable X-ray diffractometer equipped with XRF for archaeometry
NASA Astrophysics Data System (ADS)
Uda, M.; Ishizaki, A.; Satoh, R.; Okada, K.; Nakajima, Y.; Yamashita, D.; Ohashi, K.; Sakuraba, Y.; Shimono, A.; Kojima, D.
2005-09-01
A portable X-ray diffractometer equipped with an X-ray fluorescence spectrometer was improved so as to get a diffraction pattern and a fluorescence spectrum simultaneously in air from one and the same small area on a specimen. Here, diffraction experiments were performed in two modes, i.e. an angle rotation mode and an energy dispersive mode. In the latter a diffraction pattern and a fluorescence spectrum were simultaneously recorded in a short time, 100 s or less, on one display. The diffractometer was tested in the field to confirm its performance. Targets chosen for this purpose were a bronze mirror from the Eastern Han Dynasty (25-220), and a stupa and its pedestal which are part of the painted statue of "Tamonten holding a stupa" from the Heian Period (794-1192), enshrined in the Engyouji temple founded in 996. The bronze mirror was identified as a product of the Han Dynasty from its chemical composition and the existence of the δ phase in the Cu-Sn alloy. The stupa and its pedestal were decorated with gold powder and gold leaf, respectively. From the XRF data of the pedestal, the underlying layer of gold leaf seems to have been painted with emerald green.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bains, Jasleen; Boulanger, Martin J., E-mail: mboulang@uvic.ca
2008-05-01
Preliminary X-ray diffraction studies of a novel ring-cleaving enzyme from B. xenovorans LB400 encoded by the benzoate-oxidation (box) pathway. The assimilation of aromatic compounds by microbial species requires specialized enzymes to cleave the thermodynamically stable ring. In the recently discovered benzoate-oxidation (box) pathway in Burkholderia xenovorans LB400, this is accomplished by a novel dihydrodiol lyase (BoxC{sub C}). Sequence analysis suggests that BoxC{sub C} is part of the crotonase superfamily but includes an additional uncharacterized region of approximately 115 residues that is predicted to mediate ring cleavage. Processing of X-ray diffraction data to 1.5 Å resolution revealed that BoxC{sub C} crystallizedmore » with two molecules in the asymmetric unit of the P2{sub 1}2{sub 1}2{sub 1} space group, with a solvent content of 47% and a Matthews coefficient of 2.32 Å{sup 3} Da{sup −1}. Selenomethionine BoxC{sub C} has been purified and crystals are currently being refined for anomalous dispersion studies.« less
CCD sensors in synchrotron X-ray detectors
NASA Astrophysics Data System (ADS)
Strauss, M. G.; Naday, I.; Sherman, I. S.; Kraimer, M. R.; Westbrook, E. M.; Zaluzec, N. J.
1988-04-01
The intense photon flux from advanced synchrotron light sources, such as the 7-GeV synchrotron being designed at Argonne, require integrating-type detectors. Charge-coupled devices (CCDs) are well suited as synchrotron X-ray detectors. When irradiated indirectly via a phosphor followed by reducing optics, diffraction patterns of 100 cm 2 can be imaged on a 2 cm 2 CCD. With a conversion efficiency of ˜ 1 CCD electron/X-ray photon, a peak saturation capacity of > 10 6 X-rays can be obtained. A programmable CCD controller operating at a clock frequency of 20 MHz has been developed. The readout rate is 5 × 10 6 pixels/s and the shift rate in the parallel registers is 10 6 lines/s. The test detector was evaluated in two experiments. In protein crystallography diffraction patterns have been obtained from a lysozyme crystal using a conventional rotating anode X-ray generator. Based on these results we expect to obtain at a synchrotron diffraction images at a rate of ˜ 1 frame/s or a complete 3-dimensional data set from a single crystal in ˜ 2 min. In electron energy-loss spectroscopy (EELS), the CCD was used in a parallel detection mode which is similar to the mode array detectors are used in dispersive EXAFS. With a beam current corresponding to 3 × 10 9 electron/s on the detector, a series of 64 spectra were recorded on the CCD in a continuous sequence without interruption due to readout. The frame-to-frame pixel signal fluctuations had σ = 0.4% from which DQE = 0.4 was obtained, where the detector conversion efficiency was 2.6 CCD electrons/X-ray photon. These multiple frame series also showed the time-resolved modulation of the electron microscope optics by stray magnetic fields.
NASA Astrophysics Data System (ADS)
Brown, L. D.; Abdulaziz, R.; Jervis, R.; Bharath, V. J.; Atwood, R. C.; Reinhard, C.; Connor, L. D.; Simons, S. J. R.; Inman, D.; Brett, D. J. L.; Shearing, P. R.
2015-09-01
The electrochemical reduction of uranium dioxide to metallic uranium has been investigated in lithium chloride-potassium chloride eutectic molten salt. Laboratory based electrochemical studies have been coupled with in situ energy dispersive X-ray diffraction, for the first time, to deduce the reduction pathway. No intermediate phases were identified using the X-ray diffraction before, during or after electroreduction to form α-uranium. This suggests that the electrochemical reduction occurs via a single, 4-electron-step, process. The rate of formation of α-uranium is seen to decrease during electrolysis and could be a result of a build-up of oxygen anions in the molten salt. Slow transport of O2- ions away from the UO2 working electrode could impede the electrochemical reduction.
NASA Astrophysics Data System (ADS)
Palancher, H.; Wieschalla, N.; Martin, P.; Tucoulou, R.; Sabathier, C.; Petry, W.; Berar, J.-F.; Valot, C.; Dubois, S.
2009-03-01
Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm-2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.
Nanobelt formation of magnesium hydroxide sulfate hydrate via a soft chemistry process.
Zhou, Zhengzhi; Sun, Qunhui; Hu, Zeshan; Deng, Yulin
2006-07-13
The nanobelt formation of magnesium hydroxide sulfate hydrate (MHSH) via a soft chemistry approach using carbonate salt and magnesium sulfate as reactants was successfully demonstrated. X-ray diffraction (XRD), energy dispersion X-ray spectra (EDS), selected area electron diffraction (SAED), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis revealed that the MHSH nanobelts possessed a thin belt structure (approximately 50 nm in thickness) and a rectangular cross profile (approximately 200 nm in width). The MHSH nanobelts suffered decomposition under electron beam irradiation during TEM observation and formed MgO with the pristine nanobelt morphology preserved. The formation process of the MHSH nanobelts was studied by tracking the morphology of the MHSH nanobelts during the reaction. A possible chemical reaction mechanism is proposed.
Phase transformations and equation of state of praseodymium metal to 103 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chesnut, Gary N.; Vohra, Yogesh K.
2000-08-01
Pressure-induced structural phase transformations in a trivalent rare-earth metal praseodymium (Pr) were studied at room temperature in a diamond anvil cell to 103 GPa by energy dispersive x-ray diffraction using a synchrotron source. Our x-ray diffraction studies document the following crystal structure sequence: dhcp{yields}fcc{yields}distorted fcc(hR24 type){yields}monoclinic(C2/m){yields}{alpha}-uranium with increasing pressure. We measure a 16.7% volume collapse at the transition to the {alpha}-uranium phase at 20 GPa. The high-pressure {alpha}-uranium phase in Pr was found to be stable to the highest pressure of 103 GPa, which corresponds to a volume compression V/V{sub 0}=0.407. (c) 2000 The American Physical Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostrov, David A., E-mail: ostroda@pathology.ufl.edu; Hernández Prada, José A.; Haire, Robert N.
2007-12-01
A highly diversified novel immune-type receptor from catfish, NITR10, was crystallized to reveal novel mechanisms of immune recognition. X-ray diffraction data from crystals of a novel immune-type receptor (NITR10 from the catfish Ictalurus punctatus) were collected to 1.65 Å resolution and reduced to the primitive hexagonal lattice. Native and selenomethionine derivatives of NITR10 crystallized under different conditions yielded P3{sub 1}21 crystals. SeMet NITR10 was phased to a correlation coefficient of 0.77 by SAD methods and experimental electron-density maps were calculated to 1.65 Å. Five NITR10 molecules are predicted to be present in the asymmetric unit based on the Matthews coefficient.
Manufacturing and characterization of Ni-free N-containing ODS austenitic alloy
NASA Astrophysics Data System (ADS)
Mori, A.; Mamiya, H.; Ohnuma, M.; Ilavsky, J.; Ohishi, K.; Woźniak, Jarosław; Olszyna, A.; Watanabe, N.; Suzuki, J.; Kitazawa, H.; Lewandowska, M.
2018-04-01
Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and alloy contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small-angle X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 °C. Sintering at 1000 °C for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128 nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.
Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.
Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less
Manufacturing and characterization of Ni-free N-containing ODS austenitic alloys
Kowalska-Mori, A.; Mamiya, H.; Ohnuma, M.; ...
2018-01-17
Ni-free N-containing oxide dispersion strengthened (ODS) austenitic alloys were manufactured by mechanical alloying (MA) followed by spark plasma sintering (SPS). The phase evolutions during milling under a nitrogen atmosphere and after sintering were studied by X-ray diffraction (XRD). Transmission electron microcopy (TEM) and contrast variation analysis (ACV), including small-angle neutron scattering (SANS) and ultra-small X-ray scattering (USAXS), revealed the existence of nanoparticles with a diameter of 3-51 nm for the samples sintered at 950 ºC. Sintering at 1000 ºC for 5 and 15 min caused slight growth and a significant coarsening of the nanoparticles, up to 70 nm and 128more » nm, respectively. The ACV analysis indicated the existence of two populations of Y2O3, ε-martensite and MnO. The dispersive X-ray spectrometry (EDS) confirmed two kinds of nanoparticles, Y2O3 and MnO. The material was characterized by superior micro-hardness, of above 500 HV0.1.« less
Micro and Nano Systems for Space Exploration
NASA Technical Reports Server (NTRS)
Manohara, Harish
2007-01-01
This slide presentation reviews the use of micro and nano systems in Space exploration. Included are: an explanation of the rationales behind nano and micro technologies for space exploration, a review of how the devices are fabricated, including details on lithography with more information on Electron Beam (E-Beam) lithography, and X-ray lithography, a review of micro gyroscopes and inchworm Microactuator as examples of the use of MicroElectoMechanical (MEMS) technology. Also included is information on Carbon Nanotubes, including a review of the CVD growth process. These micro-nano systems have given rise to the next generation of miniature X-ray Diffraction, X-ray Fluorescence instruments, mass spectrometers, and terahertz frequency vacuum tube oscillators and amplifiers, scanning electron microscopes and energy dispersive x-ray spectroscope. The nanotechnology has also given rise to coating technology, such as silicon nanotip anti-reflection coating.
NASA Astrophysics Data System (ADS)
Matsushita, T.; Takahashi, T.; Shirasawa, T.; Arakawa, E.; Toyokawa, H.; Tajiri, H.
2011-11-01
To conduct time-resolved measurements in the wide momentum transfer (q = 4π sinθ/λ, θ: the glancing angle of the x-ray beam, λ: x-ray wavelength) range of interest, we developed a method that can simultaneously measure the whole profile of x-ray diffraction and crystal truncation rod scattering of interest with no need of rotation of the specimen, detector, and monochromator crystal during the measurement. With a curved crystal polychromator (Si 111 diffraction), a horizontally convergent x-ray beam having a one-to-one correlation between wavelength (energy: 16.24-23.0 keV) and direction is produced. The convergent x-ray beam components of different wavelengths are incident on the specimen in a geometry where θ is the same for all the x-ray components and are diffracted within corresponding vertical scattering planes by a specimen ([GaAs(12ML)/AlAs(8 ML)]50 on GaAs(001) substrate) placed at the focal point. Although θ is the same for all the directions, q continuously varies because λ changes as a function of direction. The normalized horizontal intensity distribution across the beam, as measured using a two-dimensional pixel array detector downstream of the specimen, represents the reflectivity curve profile both near to and far from the Bragg point. As for the crystal truncation rod scattering around the 002 reflection, the diffraction profile from the Bragg peak down to reflectivity of 1.0 × 10-9 was measured with a sufficient data collection time (1000-2000 s). With data collection times of 100, 10, 1.0, and 0.1 s, profiles down to a reflectivity of ˜6 × 10-9, ˜2 × 10-8, ˜8 × 10-8, and ˜8 × 10-7 were measured, respectively. To demonstrate the time-resolving capability of the system, reflectivity curves were measured with time resolutions of 1.0 s while rotating the specimen. We have also measured the diffraction profile around the 113 reflection in the non-specular reflection geometry.
Kasaboğlu, Oğuzcan; Er, Nuray; Tümer, Celal; Akkocaoğlu, Murat
2004-10-01
Sialoliths are common in the submandibular gland and its duct system. The exact cause of formation of a sialolith is still a matter of debate. The aim of this study was to analyze 6 sialoliths ultrastructurally to determine their development mechanism in the submandibular salivary glands. Six sialoliths retrieved from the hilus and duct of the submandibular salivary glands of 6 patients with sialadenitis were analyzed ultrastructurally by scanning electron microscope and x-ray diffractometer. Scanning electron microscope revealed mainly irregular, partly rudely hexagonal, needle-like and plate-shaped crystals. The cross-section from the surface to the inner part of the sialoliths showed no organic material. X-ray diffraction showed that the sialoliths were composed of hydroxyapatite crystals. Energy dispersive x-ray microanalysis showed that all of the samples contained high levels of Ca and P, and small amounts of Mg, Na, Cl, Si, Fe, and K. The main structures of the submandibular sialoliths were found to be hydroxyapatite crystals. No organic cores were observed in the central parts of the sialoliths. In accordance with these preliminary results, sialoliths in the submandibular salivary glands may arise secondary to sialadenitis, but not via a luminal organic nidus.
NASA Astrophysics Data System (ADS)
Adhikary, Jaydeep; Das, Balaram; Chatterjee, Sourav; Dash, Sandeep Kumar; Chattopadhyay, Sourav; Roy, Somenath; Chen, Jeng-Wei; Chattopadhyay, Tanmay
2016-06-01
One copper and two silver containing one hetero tri-nuclear precursor compound [Cu(Imdz)4(Ag(CN)2)2] (1) (Imdz = Imidazole) has been synthesized and characterized by single crystal X-ray diffraction. Simple pyrolysis of the complex at 550 °C for 4 h afforded Ag/CuO nanoparticles (NPs). The synthesized nanoparticles were characterized by ultraviolet-visible (UV-Vis), Fourier transform infrared (FT-IR), X-ray powder diffraction (XRPD), dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photo electron spectroscopy (XPS). Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) have been employed as model microbial species to study the anti-microbial activity of the synthesized NPs. The NPs showed potent anti-microbial activity evidenced from the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) values. Very high level of cell uptake and then generation of reactive oxygen species (ROS) are the origin of such strong antimicrobial activity for the NPs. However, the cytotoxicity level of the NPs towards normal human cell is very low.
Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura
2005-12-01
The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.
Distribution of Al atoms in the clathrate-I phase Ba8AlxSi46-x at x = 6.9.
Bobnar, Matej; Böhme, Bodo; Wedel, Michael; Burkhardt, Ulrich; Ormeci, Alim; Prots, Yurii; Drathen, Christina; Liang, Ying; Nguyen, Hong Duong; Baitinger, Michael; Grin, Yuri
2015-07-28
The clathrate-I phase Ba8AlxSi46-x has been structurally characterized at the composition x = 6.9 (space group Pm3[combining macron]n, no. 223, a = 10.4645(2) Å). A crystal structure model comprising the distribution of aluminium and silicon atoms in the clathrate framework was established: 5.7 Al atoms and 0.3 Si atoms occupy the crystallographic site 6c, while 1.2 Al atoms and 22.8 Si atoms occupy site 24k. The atomic distribution was established based on a combination of (27)Al and (29)Si NMR experiments, X-ray single-crystal diffraction and wavelength-dispersive X-ray spectroscopy.
Antibacterial Carbon Nanotubes by Impregnation with Copper Nanostructures
NASA Astrophysics Data System (ADS)
Palza, Humberto; Saldias, Natalia; Arriagada, Paulo; Palma, Patricia; Sanchez, Jorge
2017-08-01
The addition of metal-based nanoparticles on carbon nanotubes (CNT) is a relevant method producing multifunctional materials. In this context, CNT were dispersed in an ethanol/water solution containing copper acetate for their impregnation with different copper nanostructures by either a non-thermal or a thermal post-synthesis treatment. Our simple method is based on pure CNT in an air atmosphere without any other reagents. Particles without thermal treatment were present as a well-dispersed layered copper hydroxide acetate nanostructures on CNT, as confirmed by scanning and transmission (TEM) electron microscopies, and showing a characteristic x-ray diffraction peak at 6.6°. On the other hand, by thermal post-synthesis treatment at 300°C, these layered nanostructures became Cu2O nanoparticles of around 20 nm supported on CNT, as confirmed by TEM images and x-ray diffraction peaks. These copper nanostructures present on the CNT surface rendered antibacterial behavior to the resulting hybrid materials against both Staphylococcus aureus and Escherichia coli. These findings present for the first time a simple method for producing antibacterial CNT by direct impregnation of copper nanostructures.
Micro X-ray diffraction analysis of thin films using grazing-exit conditions.
Noma, T; Iida, A
1998-05-01
An X-ray diffraction technique using a hard X-ray microbeam for thin-film analysis has been developed. To optimize the spatial resolution and the surface sensitivity, the X-ray microbeam strikes the sample surface at a large glancing angle while the diffracted X-ray signal is detected with a small (grazing) exit angle. Kirkpatrick-Baez optics developed at the Photon Factory were used, in combination with a multilayer monochromator, for focusing X-rays. The focused beam size was about 10 x 10 micro m. X-ray diffraction patterns of Pd, Pt and their layered structure were measured. Using a small exit angle, the signal-to-background ratio was improved due to a shallow escape depth. Under the grazing-exit condition, the refraction effect of diffracted X-rays was observed, indicating the possibility of surface sensitivity.
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-11
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contactsmore » for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Lasty, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (ΔD inter LP(r)) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.« less
NASA Astrophysics Data System (ADS)
de Araujo, Gabriel L. B.; Benmore, Chris J.; Byrn, Stephen R.
2017-04-01
For many years, the idea of analyzing atom-atom contacts in amorphous drug-polymer systems has been of major interest, because this method has always had the potential to differentiate between amorphous systems with domains and amorphous systems which are molecular mixtures. In this study, local structure of ionic and noninonic interactions were studied by High-Energy X-ray Diffraction and Pair Distribution Function (PDF) analysis in amorphous solid dispersions of lapatinib in hypromellose phthalate (HPMCP) and hypromellose (HPMC-E3). The strategy of extracting lapatinib intermolecular drug interactions from the total PDF x-ray pattern was successfully applied allowing the detection of distinct nearest neighbor contacts for the HPMC-E3 rich preparations showing that lapatinib molecules do not cluster in the same way as observed in HPMC-P, where ionic interactions are present. Orientational correlations up to nearest neighbor molecules at about 4.3 Å were observed for polymer rich samples; both observations showed strong correlation to the stability of the systems. Finally, the superior physical stability of 1:3 LP:HPMCP was consistent with the absence of significant intermolecular interactions in (Δ) in the range of 3.0 to 6.0 Å, which are attributed to C-C, C-N and C-O nearest neighbor contacts present in drug-drug interactions.
Synthesis of novel CeO2-BiVO4/FAC composites with enhanced visible-light photocatalytic properties.
Zhang, Jin; Wang, Bing; Li, Chuang; Cui, Hao; Zhai, Jianping; Li, Qin
2014-09-01
To utilize visible light more effectively in photocatalytic reactions, a fly ash cenosphere (FAC)-supported CeO2-BiVO4 (CeO2-BiVO4/FAC) composite photocatalyst was prepared by modified metalorganic decomposition and impregnation methods. The physical and photophysical properties of the composite have been characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), and UV-Visible diffuse reflectance spectra. The XRD patterns exhibited characteristic diffraction peaks of both BiVO4 and CeO2 crystalline phases. The XPS results showed that Ce was present as both Ce(4+) and Ce(3+) oxidation states in CeO2 and dispersed on the surface of BiVO4 to constitute a p-n heterojunction composite. The absorption threshold of the CeO2-BiVO4/FAC composite shifted to a longer wavelength in the UV-Vis absorption spectrum compared to the pure CeO2 and pure BiVO4. The composites exhibited enhanced photocatalytic activity for Methylene Blue (MB) degradation under visible light irradiation. It was found that the 7.5wt.% CeO2-BiVO4/FAC composite showed the highest photocatalytic activity for MB dye wastewater treatment. Copyright © 2014. Published by Elsevier B.V.
Semi-insulating GaN Substrates for High-frequency Device Fabrication
2008-06-18
of the undoped and iron-doped samples were probed by X-ray diffraction (XRD) measurements using a Philips X’pert MRD triple axis diffracted beam system...diode laser. The light emitted by the samples was dispersed by a Princeton/Acton Trivista 557 triple spectrometer fit with an LN2 cool OMA V InGaAs... point out that the relative intensity of all these bands decreases with increasing of the iron doping. This observation is consistent with the change in
NASA Astrophysics Data System (ADS)
Arun, B.; Athira, M.; Akshay, V. R.; Sudakshina, B.; Mutta, Geeta R.; Vasundhara, M.
2018-02-01
We have investigated the structural, magnetic and magnetocaloric properties of nanocrystalline Pr-deficient Pr1-xSrxMnO3-δ Perovskite manganites. Rietveld refinement of the X-ray powder diffraction patterns confirms that all the studied compounds have crystallized into an orthorhombic structure with Pbnm space group. Transmission electron microscopy analysis reveals nanocrystalline compounds with crystallite size less than 50 nm. The selected area electron diffraction patterns reveal the highly crystalline nature of the compounds and energy dispersive X-ray spectroscopic analysis shows that the obtained compositions are nearly identical with the nominal one. The oxygen stoichiometry is estimated by iodometric titration method and stoichiometric compositions are confirmed by X-ray Fluorescence Spectrometry analysis. A large bifurcation is observed in the ZFC/FC curves and Arrott plots not show a linear relation but have a convex curvature nature. The temperature dependence of inverse magnetic susceptibility at higher temperature confirms the existence of ferromagnetic clusters. The experimental results reveal that the reduction of crystallite size to nano metric scale in Pr-deficient manganites adversely influences structural, magnetic and magnetocaloric properties as compared to its bulk counterparts reported earlier.
Effect of PbO on optical properties of tellurite glass
NASA Astrophysics Data System (ADS)
Elazoumi, S. H.; Sidek, H. A. A.; Rammah, Y. S.; El-Mallawany, R.; Halimah, M. K.; Matori, K. A.; Zaid, M. H. M.
2018-03-01
Binary (1 - x)(TeO2) - x(PbO), x = 0, 0.10, 0.15, 0.20, 0.25, 0.30 mol% glass system was fabricated using melt quenching method. X-ray diffraction (XRD) technique was employed to confirm the amorphous nature. The microanalysis of the major components was performed using energy dispersive EDX and X-ray spectrometry. Both the molar volume and the density were measured. FTIR and UV spectra were recorded at 400-4000 cm-1 and 220-800 nm, respectively. The optical band gap (Eopt), Urbach's energy (Eu), index of refraction (n) were calculated using absorption spectrum fitting (ASF) and derivation of absorption spectrum fitting (DASF) methods. Molar refraction Rm and molecular polarizability αm have been calculated according to (ASF) method.
Diffraction studies of the high pressure phases of GaAs and GaP
NASA Technical Reports Server (NTRS)
Baublitz, M., Jr.; Ruoff, A. L.
1982-01-01
High pressure structural phase transitions of GaAs and GaP have been studied by energy dispersive X-ray diffraction with the radiation from the Cornell High Energy Synchrotron Source. GaAs began to transform at 172 + or - 7 kbar to an orthorhombic structure possibly belonging to space group Fmmm. GaP transformed to a tetragonal beta-Sn type phase at 215 + or - 8 kbar. Although pressure transmitting media were used to minimize shear stresses in the specimens, the high pressure diffraction results were interpreted as showing evidence for planar defects in the specimens.
NASA Astrophysics Data System (ADS)
Chen, Zewu
This thesis describes the experimental work in the fabrication of doubly-curved mica diffractors and their applications in monochromatic microprobe x-ray fluorescence analysis and wavelength dispersive spectrometry. Three-dimension focusing of x-rays can be achieved by diffraction from a doubly-curved diffractor. A Johann point-focusing mica diffractor was fabricated for focusing the Cu Kα1 radiation and characterized by using a microfocus x-ray source. The intensity of the focused beam was measured to be 1.01 × 108 photons/s at the focal spot. The spot size of the focused beam was measured by the knife edge scan method. A Cu Kα1 focal spot of 43 μm x 68 μm has been obtained. Monochromatic microprobe x-ray fluorescence (MMXRF) analysis was performed by using the focused Cu Kα1 radiation. The microfocus x-ray source was operated at 30 kV and 0.1 mA. MMXRF spectra of bulk specimens of GaAs, Si, ZnSe, Mg and 40 μm thick Muscovite were recorded with a Si(Li) energy dispersive detector. Exceptional high signal-to-background ratios were observed. Due to the low background, detection limits as low as 1.6 ppm were predicted for a measurement time of 500 s for bulk specimens. The detector background was determined by recording a spectrum from an Fe55 source and was found to be a significant contribution to the total observed background. A wavelength dispersive spectrometer was designed and constructed for the use in a JEOL transmission electron microscope. A logarithmic spiral of revolution diffractor was fabricated and used explored for measurement of Ca concentration in the TEM. Bench tests were carried out by using the microfocus x-ray source. Preliminary data of tests in the TEM indicated that the spectrometer may give better performance than EDS systems previously used.
Synthesis of ZnO nanoparticles by a green process and the investigation of their physical properties
NASA Astrophysics Data System (ADS)
Nethavhanani, T.; Diallo, A.; Madjoe, R.; Kotsedi, L.; Maaza, M.
2018-05-01
This contribution reports on the synthesis and the physical properties of ZnO nanoparticles prepared using a green chemistry process. Aspalathus Linearis's extract was used as an effective chelating agent. The whole reaction process for the ZnO nanoparticle was conducted at room temperature. The microstructural properties of ZnO was investigated using X-ray diffraction, furthermore Electron Dispersive X-rays Spectroscopy was employed as quantitative elemental analysis. From the Transmission Electron Microscopy results, the ZnO nanoparticles were found to be highly crystalline with an average diameter of 23.7 nm.
Characterization of double oxide system Cu-Cr-O supported on γ-Al2O3
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Z.; Kolev, H.; Krstić, J.; Dimitrov, D.; Ivanov, K.; Loncarević, D.; Jovanović, D.; Mitov, I.
2009-09-01
Series of alumina supported chromium-copper catalysts were prepared by co-impregnation method. The samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy and UV-visible diffuse reflectance spectroscopy. Dispersion and porosity was also obtained. The experimental and catalytic test results have drawn a conclusion that an interaction between copper and chromium ions takes place. This interaction is responsible for the enhanced catalytic activity of studied catalysts in reaction of total oxidation of industrial formaldehyde production exhaust gas, which contains CO, dimethyl ether and methanol as main components.
Boehmite nanostructures preparation by hydrothermal method from anodic aluminium oxide membrane.
Yang, X; Wang, J Y; Pan, H Y
2009-02-01
Boehmite nanostructures were successfully synthesized from porous anodic aluminium oxide (AAO) membrane by a simple and efficient hydro-thermal method. The experiment used high purity alumina as raw material, and the whole reaction process avoided superfluous impurities to be introduced. Thus, the purity of Boehmite products was ensured. The examinations of the morphology and structure were carried out by atomic force microscope (AFM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Composition of the specimens was analyzed using energy dispersive X-ray spectroscope (EDX) and X-ray diffraction (XRD). Based on these observations the growth process was analyzed.
Barbosa, Michelle C; Messmer, Nigel R; Brazil, Tayra R; Marciano, Fernanda R; Lobo, Anderson O
2013-07-01
Nanohydroxyapatite (nHAp) powders were produced via aqueous precipitation by adopting four different experimental conditions, assisted or non-assisted by ultrasound irradiation (UI). The nHAp powders were characterized by X-ray diffraction, energy-dispersive X-ray fluorescence, Raman and attenuated total reflection Fourier transform infrared spectroscopies, which showed typical surface chemical compositions of nHAp. Analysis found strong connections between UI and the crystallization process, crystal growth properties, as well as correlations between calcination and substitution reactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Composition, speciation and distribution of iron minerals in Imperata cylindrica.
Amils, Ricardo; de la Fuente, Vicenta; Rodríguez, Nuria; Zuluaga, Javier; Menéndez, Nieves; Tornero, Jesús
2007-05-01
A comparative study of the roots, rhizomes and leaves of an iron hyperaccumulator plant, Imperata cylindrica, isolated from the banks of an extreme acidic environment, using complementary techniques: Mösbauer spectroscopy (MS), X-ray diffraction (XRD), scanning electron microscopy (SEM) coupled to energy-dispersive X-ray microanalysis (EDAX) and transmission electron microscopy (TEM), has shown that two main biominerals, jarosite and ferrihydrate-ferritin, accumulate in the different tissues. Jarosite accumulates mainly in roots and rhizomes, while ferritin has been detected in all the structures. A model of iron management in I. cylindrica is presented.
Iyyappan, E; Wilson, P; Sheela, K; Ramya, R
2016-06-01
Hydroxyapatite (HA) particles were synthesized using Ca(NO3)2·4H2O and (NH4)2HPO4 as precursors with varying contents of non-ionic surfactant viz., triton X-100 (organic modifier) via co-precipitation method followed by hydrothermal treatment. The prepared HA particles have been characterized by X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), Energy Dispersive X-ray Analysis (EDX), High Resolution Scanning Electron Microscopy (HRSEM), High Resolution Transmission Electron Microscopy (HRTEM) and Nitrogen adsorption-desorption experiments. The XRD and FTIR studies indicate the formation of HA phase in all the synthesized samples. The specific roles of triton X-100 and hydrothermal treatment in dispersing and in directing the crystal growth respectively have been discussed by comparing the observations from individual experiments using triton X-100 and hydrothermal treatment with that of combined protocol involving both. The plausible mechanism for the individual roles of both triton X-100 and hydrothermal treatment have been proposed. Copyright © 2016 Elsevier B.V. All rights reserved.
X-ray diffraction from shock-loaded polycrystals.
Swift, Damian C
2008-01-01
X-ray diffraction was demonstrated from shock-compressed polycrystalline metals on nanosecond time scales. Laser ablation was used to induce shock waves in polycrystalline foils of Be, 25-125 microm thick. A second laser pulse was used to generate a plasma x-ray source by irradiation of a Ti foil. The x-ray source was collimated to produce a beam of controllable diameter, which was directed at the Be sample. X-rays were diffracted from the sample, and detected using films and x-ray streak cameras. The diffraction angle was observed to change with shock pressure. The diffraction angles were consistent with the uniaxial (elastic) and isotropic (plastic) compressions expected for the loading conditions used. Polycrystalline diffraction will be used to measure the response of the crystal lattice to high shock pressures and through phase changes.
X-ray diffraction of solid tin to 1.2 TPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lazicki, A.; Rygg, J. R.; Coppari, F.
2015-08-12
In this study, we report direct in situ measurements of the crystal structure of tin between 0.12 and 1.2 TPa, the highest stress at which a crystal structure has ever been observed. Using angle-dispersive powder x-ray diffraction, we find that dynamically compressed Sn transforms to the body-centered-cubic (bcc) structure previously identified by ambient-temperature quasistatic-compression studies and by zero-kelvin density-functional theory predictions between 0.06 and 0.16 TPa. However, we observe no evidence for the hexagonal close-packed (hcp) phase found by those studies to be stable above 0.16 TPa. Instead, our results are consistent with bcc up to 1.2 TPa. We conjecturemore » that at high temperature bcc is stabilized relative to hcp due to differences in vibrational free energy.« less
Synthesis of zirconia (ZrO2) nanowires via chemical vapor deposition
NASA Astrophysics Data System (ADS)
Baek, M. K.; Park, S. J.; Choi, D. J.
2017-02-01
Monoclinic zirconia nanowires were synthesized by chemical vapor deposition using ZrCl4 powder as a starting material at 1200 °C and 760 Torr. Graphite was employed as a substrate, and an Au thin film was pre-deposited on the graphite as a catalyst. The zirconia nanostructure morphology was observed through scanning electron microscopy and transmission electron microscopy. Based on X-ray diffraction, selected area electron diffraction, and Raman spectroscopy data, the resulting crystal structure was found to be single crystalline monoclinic zirconia. The homogeneous distributions of Zr, O and Au were studied by scanning transmission electron microscopy with energy dispersive X-ray spectroscopy mapping, and there was no metal droplet at the nanowire tips despite the use of an Au metal catalyst. This result is apart from that of conventional metal catalyzed nanowires.
A chemical reduction approach to the synthesis of copper nanoparticles
NASA Astrophysics Data System (ADS)
Khan, Ayesha; Rashid, Audil; Younas, Rafia; Chong, Ren
2016-11-01
Development of improved methods for the synthesis of copper nanoparticles is of high priority for the advancement of material science and technology. Herein, starch-protected zero-valent copper (Cu) nanoparticles have been successfully synthesized by a novel facile route. The method is based on the chemical reduction in aqueous copper salt using ascorbic acid as reducing agent at low temperature (80 °C). X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray spectroscopy measurements were taken to investigate the size, structure and composition of synthesized Cu nanocrystals, respectively. Average crystallite size of Cu nanocrystals calculated from the major diffraction peaks using the Scherrer formula is about 28.73 nm. It is expected that the outcomes of the study take us a step closer toward designing rational strategies for the synthesis of nascent Cu nanoparticles without inert gas protection.
Synthesis and characterization of hollow spherical copper phosphide (Cu 3P) nanopowders
NASA Astrophysics Data System (ADS)
Liu, Shuling; Qian, Yitai; Xu, Liqiang
2009-03-01
In this paper, hollow spherical Cu 3P nanopowders were synthesized by using copper sulfate pentahydrate (CuSO 4ṡ5H 2O) and yellow phosphorus in a mixed solvent of glycol, ethanol and water at 140-180 ∘C for 12 h. X-ray powder diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), electron diffraction pattern (ED) and transmission electronic microscopy (TEM) studies show that the as-synthesized nanocrystal is pure hexagonal phase Cu 3P with a hollow spherical morphology. Based on the TEM observations, a possible aggregation growth mechanism was proposed for the formation of Cu 3P hollow structures. Meanwhile, the effects of some key factors such as solvents, reaction temperature and reaction time on the final formation of the Cu 3P hollow structure were also discussed.
Structural and optical properties of WTe2 single crystals synthesized by DVT technique
NASA Astrophysics Data System (ADS)
Dixit, Vijay; Vyas, Chirag; Pathak, V. M.; Soalanki, G. K.; Patel, K. D.
2018-05-01
Layered transition metal di-chalcogenide (LTMDCs) crystals have attracted much attention due to their potential in optoelectronic device applications recently due to realization of their monolayer based structures. In the present investigation we report growth of WTe2 single crystals by direct vapor transport (DVT) technique. These crystals are then characterized by energy dispersive analysis of x-rays (EDAX) to study stoichiometric composition after growth. The structural properties are studied by x-ray diffraction (XRD) and selected area electron diffraction (SAED) is used to confirm orthorhombic structure of grown WTe2 crystal. Surface morphological properties of the crystals are also studied by scanning electron microscope (SEM). The optical properties of the grown crystals are studied by UV-Visible spectroscopy which gives direct band gap of 1.44 eV for grown WTe2 single crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Meinan; Su, Chi-Cheung; Feng, Zhenxing
2017-04-26
A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2-trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut-off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X-ray absorption near edge structure andmore » X-ray diffraction.« less
NASA Astrophysics Data System (ADS)
Anagnostopoulos, D. F.; Siozios, A.; Patsalas, P.
2018-02-01
X-ray fluorescence spectra of Al based films are measured, using a lab-scale wavelength dispersive flat crystal spectrometer. Various structures of AlN films were studied, like single layered, capped, stratified, nanostructured, crystalline, or amorphous. By optimizing the set-up for enhanced energy resolution and detection efficiency, the measured line shapes of Κα, Kβ, and KLL radiative Auger transitions are shown to be adequately detailed to allow chemical characterization. The chemistry identification is based on the pattern comparison of the emitted line shape from the chemically unknown film and the reference line shapes from standard materials, recorded under identical experimental conditions. The ultimate strength of lab-scale high resolution X-ray fluorescence spectroscopy on film analysis is verified, in cases that ordinary applied techniques like X-ray photoelectron and X-ray diffraction fail, while the characterization refers to the non-destructive determination of the bulk properties of the film and not to its surface, as the probed depth is in the micrometer range.
Akbulut, Songul; Grieken, Renevan; Kılıc, Mehmet A; Cevik, Ugur; Rotondo, Giuliana G
2013-03-01
Soils are complex mixtures of organic, inorganic materials, and metal compounds from anthropogenic sources. In order to identify the pollution sources, their magnitude and development, several X-ray analytical methods were applied in this study. The concentrations of 16 elements were determined in all the soil samples using energy dispersive X-ray fluorescence spectrometry. Soils of unknown origin were observed by scanning electron microscopy equipped with a Si(Li) X-ray detector using Monte Carlo simulation approach. The mineralogical analyses were carried out using X-ray diffraction spectrometry. Due to the correlations between heavy metals and oxide compounds, the samples were analyzed also by electron probe microanalyzer (EPMA) in order to have information about their oxide contents. On the other hand, soil pH and salinity levels were identified owing to their influence between heavy metal and soil-surface chemistry. Moreover, the geoaccumulation index (I (geo)) enables the assessment of contamination by comparing current and pre-industrial concentrations.
Single-pulse x-ray diffraction using polycapillary optics for in situ dynamic diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maddox, B. R., E-mail: maddox3@llnl.gov; Akin, M. C., E-mail: akin1@llnl.gov; Teruya, A.
2016-08-15
Diagnostic use of single-pulse x-ray diffraction (XRD) at pulsed power facilities can be challenging due to factors such as the high flux and brightness requirements for diffraction and the geometric constraints of experimental platforms. By necessity, the x-ray source is usually positioned very close, within a few inches of the sample. On dynamic compression platforms, this puts the x-ray source in the debris field. We coupled x-ray polycapillary optics to a single-shot needle-and-washer x-ray diode source using a laser-based alignment scheme to obtain high-quality x-ray diffraction using a single 16 ns x-ray pulse with the source >1 m from themore » sample. The system was tested on a Mo sample in reflection geometry using 17 keV x-rays from a Mo anode. We also identified an anode conditioning effect that increased the x-ray intensity by 180%. Quantitative measurements of the x-ray focal spot produced by the polycapillary yielded a total x-ray flux on the sample of 3.3 ± 0.5 × 10{sup 7} molybdenum Kα photons.« less
Culver, Sean P.; Greaney, Matthew J.; Tinoco, Antonio; ...
2015-07-24
Here, a series of compositionally complex scheelite-structured nanocrystals of the formula A 1-xA’ xWO 4 (A = Ca, Sr, Ba) have been prepared under benign synthesis conditions using the vapor diffusion sol–gel method. Discrete nanocrystals with sub-20 nm mean diameters were obtained after kinetically controlled hydro- lysis and polycondensation at room temperature, followed by composition-dependent thermal aging at or below 60 °C. Rietveld analysis of X-ray diffraction data and Raman spectroscopy verified the synthesis of continuous and phase-pure nanocrystal solid solutions across the entire composition space for A 1-xA’ xWO 4, where 0 ≤ x ≤ 1. Elemental analysis bymore » X-ray photoelectron and inductively coupled plasma- atomic emission spectroscopies demonstrated excellent agreement between the nominal and experi- mentally determined elemental stoichiometries, while energy dispersive X-ray spectroscopy illustrated good spatial elemental homogeneity within these nanocrystals synthesized under benign conditions.« less
Brominated carbon black: An EDXD study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carbone, Marilena; Gontrani, Lorenzo, E-mail: lorenzo.gontrani@uniroma1.it
2014-06-19
An energy dispersive X-Ray study of pure and brominated carbon black was carried out. The analysis of the diffraction patterns reveals that the low bromine load (ca.1% mol) is trapped into the structure, without significantly modifying it. This allows the application of the difference methods, widely tested for electrolyte solutions, inorganic matrices containing metals and isomorphic substitutions.
Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide
Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.
1974-01-01
The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.
Van Nijlen, T; Brennan, K; Van den Mooter, G; Blaton, N; Kinget, R; Augustijns, P
2003-03-26
The purpose of this study was to enhance the dissolution rate of artemisinin in order to improve the intestinal absorption characteristics. The effect of: (1) micronisation and (2) formation of solid dispersions with PVPK25 was assessed in an in vitro dissolution system [dissolution medium: water (90%), ethanol (10%) and sodium lauryl sulphate (0.1%)]. Coulter counter analysis was used to measure particle size. X-ray diffraction and DSC were used to analyse the physical state of the powders. Micronisation by means of a jet mill and supercritical fluid technology resulted in a significant decrease in particle size as compared to untreated artemisinin. All powders appeared to be crystalline. The dissolution rate of the micronised forms improved in comparison to the untreated form, but showed no difference in comparison to mechanically ground artemisinin. Solid dispersions of artemisinin with PVPK25 as a carrier were prepared by the solvent method. Both X-ray diffraction and DSC showed that the amorphous state was reached when the amount of PVPK25 was increased to 67%. The dissolution rate of solid dispersions with at least 67% of PVPK25 was significantly improved in comparison to untreated and mechanically ground artemisinin. Modulation of the dissolution rate of artemisinin was obtained by both particle size reduction and formation of solid dispersions. The effect of particle size reduction on the dissolution rate was limited. Solid dispersions could be prepared by using a relatively small amount of PVPK25. The formation of solid dispersions with PVPK25 as a carrier appears to be a promising method to improve the intestinal absorption characteristics of artemisinin. Copyright 2003 Elsevier Science B.V.
NASA Technical Reports Server (NTRS)
Blake, David F. (Inventor); Bryson, Charles (Inventor); Freund, Friedmann (Inventor)
1996-01-01
An x-ray diffraction apparatus for use in analyzing the x-ray diffraction pattern of a sample is introduced. The apparatus includes a beam source for generating a collimated x-ray beam having one or more discrete x-ray energies, a holder for holding the sample to be analyzed in the path of the beam, and a charge-coupled device having an array of pixels for detecting, in one or more selected photon energy ranges, x-ray diffraction photons produced by irradiating such a sample with said beam. The CCD is coupled to an output unit which receives input information relating to the energies of photons striking each pixel in the CCD, and constructs the diffraction pattern of photons within a selected energy range striking the CCD.
Wan, Caichao; Li, Jian
2016-08-01
Green porous and lightweight cellulose aerogels have been considered as promising candidates to substitute some petrochemical host materials to support various nanomaterials. In this work, waste wheat straw was collected as feedstock to fabricate cellulose hydrogels, and a green inexpensive NaOH/polyethylene glycol solution was used as cellulose solvent. Prior to freeze-drying treatment, the cellulose hydrogels were integrated with polypyrrole and silver nanoparticles by easily-operated in-situ oxidative polymerization of pyrrole using silver ions as oxidizing agent. The tri-component hybrid aerogels were characterized by scanning electron microscope, transmission electron microscope, energy dispersive X-ray spectroscopy, selected area electron diffraction, X-ray photoelectron spectroscopy, and X-ray diffraction. Moreover, the antibacterial activity of the hybrid aerogels against Escherichia coli (Gram-negative), Staphylococcus aureus (Gram-positive) and Listeria monocytogenes (intracellular bacteria) was qualitatively and quantitatively investigated by parallel streak method and determination of minimal inhibitory concentration, respectively. This work provides an example of combining cellulose aerogels with nanomaterials, and helps to develop novel forms of cellulose-based functional materials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Synthesis and characterization of Ce, Cu co-doped ZnS nanoparticles
NASA Astrophysics Data System (ADS)
Harish, G. S.; Sreedhara Reddy, P.
2015-09-01
Ce, Cu co-doped ZnS nanoparticles were prepared at room temperature using a chemical co-precipitation method. The prepared nanoparticles were characterized by X- ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) and high resolution Raman spectroscopic techniques. Transmission electron microscopy (TEM) and X-ray diffraction studies showed that the diameter of the particles was around 2-3 nm. Broadened XRD peaks revealed the formation of nanoparticles with a face centered cubic (fcc) structure. DRS studies confirmed that the band gap increased with an increase in the dopant concentration. The Raman spectra of undoped and Ce, Cu ions co-doped ZnS nanoparticles showed longitudinal optical mode and transverse optical mode. Compared with the Raman modes (276 and 351 cm-1) of undoped ZnS nanoparticles, the Raman modes of Ce, Cu co- doped ZnS nanoparticles were slightly shifted towards lower frequency. PL spectra of the samples showed remarkable enhancement in the intensity upon doping.
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source.
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-05-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50-150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics.
X-ray diffraction, Raman, and photoacoustic studies of ZnTe nanocrystals
NASA Astrophysics Data System (ADS)
Ersching, K.; Campos, C. E. M.; de Lima, J. C.; Grandi, T. A.; Souza, S. M.; da Silva, D. L.; Pizani, P. S.
2009-06-01
Nanocrystalline ZnTe was prepared by mechanical alloying. X-ray diffraction (XRD), energy dispersive spectroscopy, Raman spectroscopy, and photoacoustic absorption spectroscopy techniques were used to study the structural, chemical, optical, and thermal properties of the as-milled powder. An annealing of the mechanical alloyed sample at 590 °C for 6 h was done to investigate the optical properties in a defect-free sample (close to bulk form). The main crystalline phase formed was the zinc-blende ZnTe, but residual trigonal tellurium and hexagonal ZnO phases were also observed for both as-milled and annealed samples. The structural parameters, phase fractions, average crystallite sizes, and microstrains of all crystalline phases were obtained from Rietveld analyses of the X-ray patterns. Raman results corroborate the XRD results, showing the longitudinal optical phonons of ZnTe (even at third order) and those modes of trigonal Te. Nonradiative surface recombination and thermal bending heat transfer mechanisms were proposed from photoacoustic analysis. An increase in effective thermal diffusivity coefficient was observed after annealing and the carrier diffusion coefficient, the surface recombination velocity, and the recombination time parameters remained the same.
Na0.44MnO2 nanorods as a cathode material for Na-ion batteries
NASA Astrophysics Data System (ADS)
Avci, Sevda; Oz, Erdinc; Demirel, Serkan; Altin, Emine; Altin, Serdar; Bayri, Ali; Yakinci, Eyyuphan
2014-03-01
Lithium-ion batteries have dominated the rechargeable battery market because of their high energy and power capability. On the other hand, sodium is one of the more abundant elements on Earth unlike Li. Moreover, Na has similar chemical properties to Li, indicating that Na-ion batteries can be an alternative to Li counterparts. With that respect, we have synthesized Na0.44MnO2 nanorods as cathode materials for Na-ion batteries. We have investigated the effects of structural, electrical, and magnetic properties on battery performance. We report the synthesis conditions and growth mechanism of the nanorods. The structure and the morphology of the materials were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), and atomic force microscopy (AFM) techniques. Temperature dependent structural changes were determined via in situ X-ray diffraction and TG-DTA measurements showing structural changes above room temperature. This work is funded by The Scientific and Technological Research Council of Turkey with Grant No:112M487.
I12: the Joint Engineering, Environment and Processing (JEEP) beamline at Diamond Light Source
Drakopoulos, Michael; Connolley, Thomas; Reinhard, Christina; Atwood, Robert; Magdysyuk, Oxana; Vo, Nghia; Hart, Michael; Connor, Leigh; Humphreys, Bob; Howell, George; Davies, Steve; Hill, Tim; Wilkin, Guy; Pedersen, Ulrik; Foster, Andrew; De Maio, Nicoletta; Basham, Mark; Yuan, Fajin; Wanelik, Kaz
2015-01-01
I12 is the Joint Engineering, Environmental and Processing (JEEP) beamline, constructed during Phase II of the Diamond Light Source. I12 is located on a short (5 m) straight section of the Diamond storage ring and uses a 4.2 T superconducting wiggler to provide polychromatic and monochromatic X-rays in the energy range 50–150 keV. The beam energy enables good penetration through large or dense samples, combined with a large beam size (1 mrad horizontally × 0.3 mrad vertically). The beam characteristics permit the study of materials and processes inside environmental chambers without unacceptable attenuation of the beam and without the need to use sample sizes which are atypically small for the process under study. X-ray techniques available to users are radiography, tomography, energy-dispersive diffraction, monochromatic and white-beam two-dimensional diffraction/scattering and small-angle X-ray scattering. Since commencing operations in November 2009, I12 has established a broad user community in materials science and processing, chemical processing, biomedical engineering, civil engineering, environmental science, palaeontology and physics. PMID:25931103
Development of ultrahigh-resolution inelastic x-ray scattering optics
NASA Astrophysics Data System (ADS)
Huang, Xian-Rong; Zhong, Zhong; Cai, Yong Q.; Coburn, S.
2008-08-01
One of the major goals of the National Synchrotron Light Source II project is to achieve ultrahigh energy resolution up to 0.1 meV for medium-energy inelastic X-ray scattering spectroscopy based on the angular dispersion optics employing extremely asymmetric backscattering geometry. In this papaer, we describe the complete monochromatization mechanisms underlying the new optics. We have also designed and tested a CDW-CDW prototype under ambient condition, with which we have successfully demonstrated the important angular dispersion effect, the Borrman enhanced transmission effect, and other optical principles involved in every step of the entire diffraction process, and found good agreement with the theoretical expectations. These studies indicate that the new optics are feasible in principle but face some technical challenges that need to be solved by our future systematic research and development activities before their practical applications.
NASA Astrophysics Data System (ADS)
Fuad, A.; Fatriani, N.; Yogihati, C. I.; Taufiq, A.; Latifah, E.
2018-04-01
Silicon carbide (SiC) fibers were synthesized by electrospinning method from SiC nanoparticles dispersed in polymer solutions, i.e., polyethylene glycol (PEG) and polyvinyl alcohol (PVA). The SiC nanoparticle used in this research was synthesized from sucrose and natural silica via a sonochemical method. The natural silica was extracted from local pyrophyllite by a sol-gel method. The characterization was performed via x-ray fluorescence (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM). The XRD characterization results showed that the sample possessed a β-SiC phase and formed a cubic-structured crystal with a lattice parameter of a = b = c = 4.3448 Å. The use of PEG and PVA in the electrospinning process resulted in fractal and fiber structured SiC, respectively.
NASA Astrophysics Data System (ADS)
Subba Rao, Y.; Kotakadi, Venkata S.; Prasad, T. N. V. K. V.; Reddy, A. V.; Sai Gopal, D. V. R.
2013-02-01
A simple method for the green synthesis of silver nanoparticles (AgNPs) using aqueous extract of Lakshmi tulasi (Ocimum sanctum) leaf as a reducing and stabilizing agent. AgNPs were rapidly synthesized using aqueous extract of tulasi leaf with AgNO3 solution within 15 min. The green synthesized AgNPs were characterized using physic-chemical techniques viz., UV-Vis, X-ray diffraction (XRD), scanning electron microscope (SEM) coupled with X-ray energy dispersive spectroscopy (EDX) and Fourier transform-infrared spectroscopy (FT-IR). Characterization data reveals that the particles were crystalline in nature and triangle shaped with an average size of 42 nm. The zeta potential of AgNPs were found to be -55.0 mV. This large negative zeta potential value indicates repulsion among AgNPs and their dispersion stability.
U-PuO2, U-PuC, U-PuN cermet fuel for fast reactor
NASA Astrophysics Data System (ADS)
Mishra, Sudhir; Kaity, Santu; Banerjee, Joydipta; Nandi, Chiranjeet; Dey, G. K.; Khan, K. B.
2018-02-01
Cermet fuel combines beneficial properties of both ceramic and metal and attracts global interest for research as a candidate fuel for nuclear reactors. In the present study, U matrix PuC/PuN/PuO2 cermet for fast reactor have been fabricated on laboratory scale by the powder metallurgy route. Characterization of the fuel has been carried out using Dilatometer, Differential Thermal analysis (DTA), X-ray diffractometer and Optical microscope. X ray diffraction study of the fuel reveals presence of different phases. The PuN dispersed cermet was observed to have high solidus temperature as compared to PuC and PuO2 dispersed cermet. Swelling was observed in U matrix PuO2 cermet which also showed higher thermal expansion. Among the three cermets studied, U matrix PuC cermet showed maximum thermal conductivity.
Size-dependent antimicrobial properties of the cobalt ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Žalnėravičius, Rokas; Paškevičius, Algimantas; Kurtinaitiene, Marija; Jagminas, Arūnas
2016-10-01
The growing resistance of bacteria to conventional antibiotics elicited considerable interest to non-typical drugs. In this study, antimicrobial investigations were performed on low-size dispersion cobalt ferrite nanoparticles (Nps) fabricated by co-precipitation approach in several average sizes, in particular, 15.0, 5.0, and 1.65 nm. A variety of experimental tests demonstrated that the size of these Nps is determinant for antimicrobial efficiency against S. cerevisiae and several Candida species, in particular, C. parapsilosis, C. krusei, and C. albicans. The small and ultra-small fractions of CoFe2O4 Nps possess especially strong antimicrobial activity against all tested microorganisms. The possible reasons are discussed. Nps were characterized by means of transmission and high-resolution transmission electron microscopy, X-ray diffraction, energy dispersive X-ray spectroscopy and atomic force microscopy, chemical analysis and magnetic measurements.
High-pressure studies of cycloheptane up to 30 GPa
NASA Astrophysics Data System (ADS)
Ma, Chunli; Cui, Qiliang; Liu, Zhenxian
2013-06-01
High-pressure synchrotron angle dispersive x-ray diffraction, Raman scattering and infrared absorption studies have been performed on cycloheptane (C7H14) up to 30 GPa at room temperature by using diamond anvil cell techniques. The synchrotron x-ray diffraction results indicate that the liquid cyclopentane undergoes two phase transitions at around 0.5 and 1.0 GPa, respectively. Then, it gradually turns into glass state starting from 3.0 GPa. The features of the Raman scattering and infrared absorption show no significant changes with increasing pressure below 3 GPa. This implies that the two phases observed by the x-ray diffraction can be attributed to plastic phases in which the cycloheptane molecules are held in an ordered structure while the molecular orientation is disordered. Up on further compression, all Raman and infrared bands begin broadening around 3.0 GPa that provide further evidence on the transition to glass state. Our results also suggest different paths on phase transitions under isothermal compression at room temperature compare to that previously reported under isobaric cooling at ambient pressure. This work was supported by the NSF of China (91014004, 11004074,11074089), the specialized Research Fund for the Doctoral Program of Higher Education (20110061110011, 20100061120093), and the National Basic Research Program of China (2011CB808200).
Real-time X-ray Diffraction: Applications to Materials Characterization
NASA Technical Reports Server (NTRS)
Rosemeier, R. G.
1984-01-01
With the high speed growth of materials it becomes necessary to develop measuring systems which also have the capabilities of characterizing these materials at high speeds. One of the conventional techniques of characterizing materials was X-ray diffraction. Film, which is the oldest method of recording the X-ray diffraction phenomenon, is not quite adequate in most circumstances to record fast changing events. Even though conventional proportional counters and scintillation counters can provide the speed necessary to record these changing events, they lack the ability to provide image information which may be important in some types of experiment or production arrangements. A selected number of novel applications of using X-ray diffraction to characterize materials in real-time are discussed. Also, device characteristics of some X-ray intensifiers useful in instantaneous X-ray diffraction applications briefly presented. Real-time X-ray diffraction experiments with the incorporation of image X-ray intensification add a new dimension in the characterization of materials. The uses of real-time image intensification in laboratory and production arrangements are quite unlimited and their application depends more upon the ingenuity of the scientist or engineer.
NASA Astrophysics Data System (ADS)
Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.; Donkov, N.; Ghaemi, M. H.; Szkodo, M.; Antoszkiewicz, M.; Szyfelbain, M.; Czaban, A.
2018-03-01
The ion-beam assisted deposition (IBAD) is an advanced method capable of producing crystalline coatings at low temperatures. We determined the characteristics of hydroxyapatite Ca10(PO4)6(OH)2 target and coatings formed by IBAD using X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and energy dispersive X-ray (EDX). The composition of the coatings’ cross-section and surface was close to those of the target. The XPS spectra showed that the binding energy values of Ca (2p1/2, 2p3/2), P (2p3/2), and O 1s levels are related to the hydroxyapatite phase. The coatings demonstrate an optimal H/E ratio, and a good resistance to scratch tests.
NASA Astrophysics Data System (ADS)
Shen, M. J.; Wang, X. J.; Zhang, M. F.
2012-10-01
A ceramic coating was formed on the surface of AZ31 magnesium alloy by plasma electrolytic oxidation (PEO) in the silicate solution with and without borax doped. The composition, morphology, elements and roughness as well as mechanical property of the coating were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectrometry (EDS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and reciprocal-sliding tribometer. The results show that the PEO coating is mainly composed of magnesia. When using borax dope, boron element is permeating into the coating and the boron containing phase exist in the form of amorphous. In addition, the microhardness and compactness of the PEO coating are improved significantly due to doped borax.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation
NASA Astrophysics Data System (ADS)
Borowiec, Joanna; Gillin, William P.; Willis, Maureen A. C.; Boi, Filippo S.; He, Y.; Wen, J. Q.; Wang, S. L.; Schulz, Leander
2018-02-01
In this study, a direct sulfidation reaction of ammonium perrhenate (NH4ReO4) leading to a synthesis of rhenium disulfide (ReS2) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS2. The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1Tʹ) ReS2 with a low degree of layer stacking.
Room temperature synthesis of ReS2 through aqueous perrhenate sulfidation.
Borowiec, Joanna; Gillin, William P; Willis, Maureen A C; Boi, Filippo S; He, Y; Wen, J Q; Wang, S L; Schulz, Leander
2018-01-11
In this study, a direct sulfidation reaction of ammonium perrhenate (NH 4 ReO 4 ) leading to a synthesis of rhenium disulfide (ReS 2 ) is demonstrated. These findings reveal the first example of a simplistic bottom-up approach to the chemical synthesis of crystalline ReS 2 . The reaction presented here takes place at room temperature, in an ambient and solvent-free environment and without the necessity of a catalyst. The atomic composition and structure of the as-synthesized product were characterized using several analysis techniques including energy dispersive x-ray spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction, transmission electron microscopy, Raman spectroscopy, thermogravimetric analysis and differential scanning calorimetry. The results indicated the formation of a lower symmetry (1T') ReS 2 with a low degree of layer stacking.
NASA Astrophysics Data System (ADS)
Li, Naixu; Chen, Yong; Shen, Quanhao; Yang, Bin; Liu, Ming; Wei, Lingfei; Tian, Wei; Zhou, Jiancheng
2018-05-01
We report a simple and efficient method for the preparation of highly dispersed Au nanoparticles (< 5 nm) on TS-1 substrate. The synthesis relies on the use of NaBH4 as a reductant for rapid Au atom generation, as well as PVA as a capping agent confining the particle size and dispersion. The samples were characterized by N2 physisorption, inductively coupled plasma mass spectrometry, power X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, CO pulse chemisorption and thermogravimetric analysis. The size of Au particles can be controlled in the range of 3-5 nm. The supported catalyst shows both good activity and selectivity for propylene oxide (PO) generation from direct propylene epoxidation. An optimal performance with PO formation rate of 102.94 gPO h-1 kg-1cat and selectivity of 84.83% is achieved over 2.0 wt% Au/TS-1 catalyst, which is prepared by controlling PVA/Au3+ mass ratio of 1.5/1 and NaBH4/Au3+ mole ratio of 5/1. After 50 h test at 200 °C, no significant decrement of both catalytic activity and PO selectivity can be observed, indicating the excellent thermally stability of the catalyst. Furthermore, a possible reaction mechanism is described on basis of the previous researches and our experimental results.
Radiation damage free ghost diffraction with atomic resolution
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.; ...
2017-12-21
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Radiation damage free ghost diffraction with atomic resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zheng; Medvedev, Nikita; Chapman, Henry N.
The x-ray free electron lasers can enable diffractive structural determination of protein nanocrystals and single molecules that are too small and radiation-sensitive for conventional x-ray diffraction. However the electronic form factor may be modified during the ultrashort x-ray pulse due to photoionization and electron cascade caused by the intense x-ray pulse. For general x-ray imaging techniques, the minimization of the effects of radiation damage is of major concern to ensure reliable reconstruction of molecular structure. Here in this paper, we show that radiation damage free diffraction can be achieved with atomic spatial resolution by using x-ray parametric down-conversion and ghostmore » diffraction with entangled photons of x-ray and optical frequencies. We show that the formation of the diffraction patterns satisfies a condition analogous to the Bragg equation, with a resolution that can be as fine as the crystal lattice length scale of several Ångstrom. Since the samples are illuminated by low energy optical photons, they can be free of radiation damage.« less
Synchrotron Radiation X-ray Diffraction Techniques Applied to Insect Flight Muscle.
Iwamoto, Hiroyuki
2018-06-13
X-ray fiber diffraction is a powerful tool used for investigating the molecular structure of muscle and its dynamics during contraction. This technique has been successfully applied not only to skeletal and cardiac muscles of vertebrates but also to insect flight muscle. Generally, insect flight muscle has a highly ordered structure and is often capable of high-frequency oscillations. The X-ray diffraction studies on muscle have been accelerated by the advent of 3rd-generation synchrotron radiation facilities, which can generate brilliant and highly oriented X-ray beams. This review focuses on some of the novel experiments done on insect flight muscle by using synchrotron radiation X-rays. These include diffraction recordings from single myofibrils within a flight muscle fiber by using X-ray microbeams and high-speed diffraction recordings from the flight muscle during the wing-beat of live insects. These experiments have provided information about the molecular structure and dynamic function of flight muscle in unprecedented detail. Future directions of X-ray diffraction studies on muscle are also discussed.
Study of the specific features of single-crystal boron microstructure
NASA Astrophysics Data System (ADS)
Blagov, A. E.; Vasil'ev, A. L.; Dmitriev, V. P.; Ivanova, A. G.; Kulikov, A. G.; Marchenkov, N. V.; Popov, P. A.; Presnyakov, M. Yu.; Prosekov, P. A.; Pisarevskii, Yu. V.; Targonskii, A. V.; Chernaya, T. S.; Chernyshov, D. Yu.
2017-09-01
A complex study of the structure of β-boron single crystal grown by the floating-zone method, with sizes significantly exceeding the analogs known in the literature, has been performed. The study includes X-ray diffraction analysis and X-ray diffractometry (measurement of pole figures and rocking curves), performed on both laboratory and synchrotron sources; atomic-resolution scanning transmission electron microscopy with spherical aberration correction; and energy-dispersive microanalysis. X-ray diffraction analysis using synchrotron radiation has been used to refine the β-boron structure and find impurity Si atoms. The relative variations in the unit-cell parameters a and c for the crystal bulk are found to be δ a/ a ≈ 0.4 and δ c/ c ≈ 0.1%. X-ray diffractometry has revealed that the single-crystal growth axis coincides with the [2\\bar 2013] crystallographic axis and makes an angle of 21.12° with the [0001] threefold axis. Electron microscopy data have confirmed that the sample under study is a β-boron crystal, which may contain 0.3-0.4 at % Si as an impurity. Planar defects (stacking faults and dislocations) are found. The results of additional measurements of the temperature dependence of the thermal conductivity of the crystal in the range of 50-300 K are indicative of its high structural quality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nuryanti,; Juwono, Ariadne L., E-mail: ariadne@sci.ui.ac.id; Krisnandi, Yuni K.
2016-04-19
Heterogeneous catalysts hold various advantages, namely, easy to separate from their products, reusable and regarded as environmental friendly materials. The synthesis of immobilized Ni monometallic, Co monometallic and Ni-Co bimetallic by Tapanuli clay were carried out using intercalation method. Firstly, the synthesis of Na-Bentonite was conducted to provide sufficient area to immobilize bimetal in the clay interlayer. Secondly, Ni, Co and Ni-Co were immobilized in the Tapanuli clay interlayer. Several techniques, such as X-Ray Diffraction, Fourier Transform Infra Red and Energy Dispersive X-Ray Analysis were applied to characterize and compare the properties of the synthesized materials. The results showed thatmore » the insertion of Ni, Co and Ni-Co in the clay interlayer occurred through a cation exchange reaction. The Energy Dispersive X-Ray analysis for Ni-Co bimetallic showed that the immobilized Ni and Co in the clay is in the ratio of 1:1. Catalytic test with Gas Chromatography showed that Ni-Co bimetallic generates a higher yield percentage compared to Ni and Co monometallic.« less
NASA Astrophysics Data System (ADS)
Abdolmaleki, Amir; Mallakpour, Shadpour; Karshenas, Azam
2017-09-01
In the synthesis of polymer-graphene nanocomposites, for improving properties of nanocomposites, two factors dispersion and strong interfacial interactions between graphene and the polymer, are essential. In the present work, poly(vinyl alcohol) PVA/GO-Cu-alanine nanocomposite films were manufactured using concentrations 0, 1, 3 and 5 wt% of GO-Cu-alanine in water solution. For this purpose, L-alanine amino acid was located on the surface and edges of GO through copper(II) ion as a coordinating function. Then, flexible PVA/GO-Cu-alanine nanocomposite films were fabricated using GO-Cu-alanine as filler and PVA as matrix. Due to the existence of affective interaction between GO-Cu-alanine and PVA matrix, the acquired PVA/GO-Cu-alanine nanocomposites demonstrated great thermal and mechanical properties. Properties of manufactured materials were characterized by Fourier transform infrared, X-ray photoelectron spectroscopies (XPS), X-ray diffraction (XRD), Thermal gravimetric analysis, elemental analysis, field emission scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy (EDX).
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2016-07-06
Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit; ...
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials and in situ and operando diffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, overmore » a continuous range of diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. In addition, the design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
NASA Astrophysics Data System (ADS)
Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-03-01
The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.
Methods of chemical and phase composition analysis of gallstones
NASA Astrophysics Data System (ADS)
Suvorova, E. I.; Pantushev, V. V.; Voloshin, A. E.
2017-11-01
This review presents the instrumental methods used for chemical and phase composition investigation of gallstones. A great body of data has been collected in the literature on the presence of elements and their concentrations, obtained by fluorescence microscopy, X-ray fluorescence spectroscopy, neutron activation analysis, proton (particle) induced X-ray emission, atomic absorption spectroscopy, high-resolution gamma-ray spectrometry, electron paramagnetic resonance. Structural methods—powder X-ray diffraction, infrared spectroscopy, Raman spectroscopy—provide information about organic and inorganic phases in gallstones. Stone morphology was studied at the macrolevel with optical microscopy. Results obtained by analytical scanning and transmission electron microscopy with X-ray energy dispersive spectrometry are discussed. The chemical composition and structure of gallstones determine the strategy of removing stone from the body and treatment of patients: surgery or dissolution in the body. Therefore one chapter of the review describes the potential of dissolution methods. Early diagnosis and appropriate treatment of the disease depend on the development of clinical methods for in vivo investigation, which gave grounds to present the main characteristics and potential of ultrasonography (ultrasound scanning), magnetic resonance imaging, and X-ray computed tomography.
Zhang, Wenli; Shen, Yingli; Liu, Miao; Gao, Peng; Pu, Huangsheng; Fan, Li; Jiang, Ruibin; Liu, Zonghuai; Shi, Feng; Lu, Hongbing
2017-11-22
As a novel molecular and functional imaging modality, X-ray luminescence computed tomography (XLCT) has shown its potentials in biomedical and preclinic applications. However, there are still some limitations of X-ray-excited luminescent materials, such as low luminescence efficiency, poor biocompatibility, and cytotoxicity, making in vivo XLCT imaging quite challenging. In this study, for the very first time, we present on using sub-10 nm β-NaGdF 4 :X% Eu 3+ nanoparticles with poly(acrylic acid) (PAA) surface modification, which demonstrate outstanding luminescence efficiency, uniform size distribution, water dispersity, and biosafety, as the luminescent probes for in vivo XLCT application. The pure hexagonal phase (β-) NaGdF 4 has been successfully synthesized and characterized by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM), and then the results of X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectrometry (EDX), and elemental mapping further confirm Eu 3+ ions doped into NaGdF 4 host. Under X-ray excitation, the β-NaGdF 4 nanoparticles with a doping level of 15% Eu 3+ exhibited the most efficient luminescence intensity. Notably, the doping level of Eu 3+ has no effect on the crystal phase and morphology of the NaGdF 4 -based host. Afterward, β-NaGdF 4 :15% Eu 3+ nanoparticles were modified with PAA to enhance the water dispersity and biocompatibility. The compatibility of in vivo XLCT imaging using such nanoparticles was systematically studied via in vitro cytotoxicity, physical phantom, and in vivo imaging experiments. The ultralow cytotoxicity of PAA-modified nanoparticles, which is confirmed by over 80% cell viability of SH-SY5Y cells when treated by high nanoparticle concentration of 200 μg/mL, overcome the major obstacle for in vivo application. In addition, the high luminescence intensity of PAA-modified nanoparticles enables the location error of in vivo XLCT imaging less than 2 mm, which is comparable to that using commercially available bulk material Y 2 O 3 :15% Eu 3+ . The proposed nanoparticles promote XLCT research into an in vivo stage. Further modification of these nanoparticles with biofunctional molecules could enable the potential of targeting XLCT imaging.
Dynamical scattering in coherent hard x-ray nanobeam Bragg diffraction
NASA Astrophysics Data System (ADS)
Pateras, A.; Park, J.; Ahn, Y.; Tilka, J. A.; Holt, M. V.; Kim, H.; Mawst, L. J.; Evans, P. G.
2018-06-01
Unique intensity features arising from dynamical diffraction arise in coherent x-ray nanobeam diffraction patterns of crystals having thicknesses larger than the x-ray extinction depth or exhibiting combinations of nanoscale and mesoscale features. We demonstrate that dynamical scattering effects can be accurately predicted using an optical model combined with the Darwin theory of dynamical x-ray diffraction. The model includes the highly divergent coherent x-ray nanobeams produced by Fresnel zone plate focusing optics and accounts for primary extinction, multiple scattering, and absorption. The simulation accurately reproduces the dynamical scattering features of experimental diffraction patterns acquired from a GaAs/AlGaAs epitaxial heterostructure on a GaAs (001) substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, Corinna; Feyand, Mark; Rothkirch, Andre
2012-04-15
The system Ca{sup 2+}/2-aminoethylphosphonic acid/H{sub 2}O/NaOH was systematically investigated using high-throughput methods. The experiments led to one new compound Ca(O{sub 3}PC{sub 2} H{sub 4}NH{sub 2}) (1) and the crystal structure was determined using in house X-ray powder diffraction data (monoclinic, P2{sub 1}/c, a=9.7753(3), b=6.4931(2), c=8.4473(2) A, {beta}=106.46(2) Degree-Sign , V=514.20(2) A{sup 3}, Z=4). The formation of 1 was investigated by in situ energy dispersive X-ray diffraction measurements (EDXRD) at beamline F3 at HASYLAB (light source DORIS III), DESY, Hamburg. An intermediate, Ca(OH)(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3}){center_dot}2H{sub 2}O (2), was observed and could be isolated from the reaction mixture at ambientmore » temperatures by quenching the reaction. The crystal structure of 2 was determined from XRPD data using synchrotron radiation (monoclinic, P2{sub 1}/m, a=11.2193(7), b=7.1488(3), c=5.0635(2) A, {beta}=100.13(4) Degree-Sign , V=399.78(3) A{sup 3}, Z=2). - Graphical abstarct: The detailed in situ energy dispersive X-ray diffraction (EDXRD) investigation on the formation of the new inorganic-organic hybrid compound Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) leads to the discovery of a new crystalline intermediate phase. Both crystal structures were elucidated using X-ray powder diffraction data. Highlights: Black-Right-Pointing-Pointer High-throughput investigation led to new metal aminoethylphosphonate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}). Black-Right-Pointing-Pointer The formation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 2}) was followed by in situ EDXRD measurements. Black-Right-Pointing-Pointer The crystalline intermediate Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was discovered. Black-Right-Pointing-Pointer Isolation of Ca(O{sub 3}PC{sub 2}H{sub 4}NH{sub 3})(OH){center_dot}2H{sub 2}O was accomplished by quenching experiments. Black-Right-Pointing-Pointer The structures were determined using X-ray powder diffraction data.« less
Coherent x-ray diffraction imaging with nanofocused illumination.
Schroer, C G; Boye, P; Feldkamp, J M; Patommel, J; Schropp, A; Schwab, A; Stephan, S; Burghammer, M; Schöder, S; Riekel, C
2008-08-29
Coherent x-ray diffraction imaging is an x-ray microscopy technique with the potential of reaching spatial resolutions well beyond the diffraction limits of x-ray microscopes based on optics. However, the available coherent dose at modern x-ray sources is limited, setting practical bounds on the spatial resolution of the technique. By focusing the available coherent flux onto the sample, the spatial resolution can be improved for radiation-hard specimens. A small gold particle (size <100 nm) was illuminated with a hard x-ray nanobeam (E=15.25 keV, beam dimensions approximately 100 x 100 nm2) and is reconstructed from its coherent diffraction pattern. A resolution of about 5 nm is achieved in 600 s exposure time.
Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel
Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less
Pressure induced structural transitions in CuSbS 2 and CuSbSe 2 thermoelectric compounds
Baker, Jason; Kumar, Ravhi S.; Sneed, Daniel; ...
2015-04-27
Here, we investigate the structural behavior of CuSbS 2 and CuSbSe 2 thermoelectric materials under high pressure conditions up to 80 GPa using angle dispersive X-ray diffraction in a diamond anvil cell (DAC). We also perform high pressure Raman spectroscopy measurements up to 16 GPa. We observed a pressure-induced structural transformation from the ambient orthorhombic structure with space group Pnma to a triclinic type structure with space group P1 beginning around 8 GPa in both samples and completing at 13 GPa and 10 GPa in CuSbS 2 and CuSbSe 2, respectively. High pressure Raman experiments complement the transitions observed bymore » high pressure X-ray diffraction (HPXRD). Finally, the transitions were found to be reversible on releasing the pressure to ambient in the DAC. The bulk modulus and compressibility of these materials are further discussed.« less
Boron monosulfide: Equation of state and pressure-induced phase transition
NASA Astrophysics Data System (ADS)
Cherednichenko, K. A.; Kruglov, I. A.; Oganov, A. R.; Le Godec, Y.; Mezouar, M.; Solozhenko, V. L.
2018-04-01
Quasi-hydrostatic compression of rhombohedral boron monosulfide (r-BS) has been studied up to 50 GPa at room temperature using diamond-anvil cells and angle-dispersive synchrotron X-ray diffraction. A fit of the experimental P-V data to the Vinet equation of state yields the bulk modulus B0 of 42.2(1.4) GPa and its first pressure derivative B0' of 7.6(2) that are in excellent agreement with our ab initio calculations. Formation of a new high-pressure phase of boron monosulfide (hp-BS) has been observed above 35 GPa. According to ab initio evolutionary crystal structure predictions combined with Rietveld refinement of high-pressure X-ray diffraction data, the structure of hp-BS has trigonal symmetry and belongs to the space group P-3m1. As it follows from the electron density of state calculations, the phase transformation is accompanied by an insulator-metal transition.
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1992-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, auger electron spectroscopy, and x ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
Parts per Million Powder X-ray Diffraction
Newman, Justin A.; Schmitt, Paul D.; Toth, Scott J.; ...
2015-10-14
Here in this paper we demonstrate the use of second harmonic generation (SHG) microscopy-guided synchrotron powder X-ray diffraction (PXRD) for the detection of trace crystalline active pharmaceutical ingredients in a common polymer blend. The combined instrument is capable of detecting 100 ppm crystalline ritonavir in an amorphous hydroxypropyl methylcellulose matrix with a high signal-to-noise ratio (>5000). The high spatial resolution afforded by SHG microscopy allows for the use of a minibeam collimator to reduce the total volume of material probed by synchrotron PXRD. The reduction in probed volume results in reduced background from amorphous material. The ability to detect lowmore » crystalline loading has the potential to improve measurements in the formulation pipeline for pharmaceutical solid dispersions, for which even trace quantities of crystalline active ingredients can negatively impact the stability and bioavailability of the final drug product.« less
Reaction layer formation at the graphite/copper-chromium alloy interface
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.; Michal, Gary M.
1993-01-01
Sessile drop tests were used to obtain information about copper chromium alloys that suitably wet graphite. Characterization of graphite/copper-chromium alloy interfaces subjected to elevated temperatures were conducted using scanning electron micrography, energy dispersive spectroscopy, Auger electron spectroscopy, and X-ray diffraction analyses. These analyses indicate that during sessile drop tests conducted at 1130 C for one hour, copper alloys containing greater than 0.98 percent chromium form continuous reaction layers of approximately 10 micron thickness. The reaction layers adhere to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 degrees or less. X-ray diffraction results indicate that the reaction layer is chromium carbide. The kinetics of reaction layer formation were modelled in terms of bulk diffusion mechanisms. Reaction layer thickness is controlled initially by the diffusion of Cr out of Cu alloy and later by the diffusion of C through chromium carbide.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Feng; Ortiz-Longo, C.R.; White, K.W.
The microstructure of barium aluminum silicate (BAS)/silicon nitride in situ whisker reinforced ceramic matrix composite was examined by X-ray diffraction, transmission electron microscopy, electron diffraction and energy-dispersive X-ray microanalysis. Although the authors can not conclusively exclude the presence of orthorhombic BAS, hexagonal BAS and both {alpha}-Si{sub 3}N{sub 4} and {beta}-Si{sub 3}N{sub 4} were identified in this material. The {beta}-Si{sub 3}N{sub 4} whiskers nucleate and grow in random directions in the nearly continuous matrix of metastable hexacelsian. The crystallization process of the glass phase can be taken almost to completion but a small proportion of residual glass phase is present atmore » the interface and grains-junction. Both whisker-like and equiaxed {beta}-Si{sub 3}N{sub 4} exist in this material.« less
Pressure-induced structural transformations of the Zintl phase sodium silicide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabrera, Raul Quesada; Salamat, Ashkan; Barkalov, Oleg I.
The high-pressure behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction to observe the onset of structural phase transformations and potential oligomerisation into anionic Si nanoclusters with extended dimensionality. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation above 15 GPa, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. - Abstract: The high-pressuremore » behaviour of NaSi has been studied using Raman spectroscopy and angle-dispersive synchrotron X-ray diffraction. Our studies reveal a first structural transformation occurring at 8-10 GPa, followed by irreversible amorphisation, suggesting the formation of Si-Si bonds with oxidation of the Si{sup -} species and reduction of Na{sup +} to metallic sodium. We have combined our experimental studies with DFT calculations to assist in the analysis of the structural behaviour of NaSi at high pressure. Display Omitted« less
Gao, Jie; Xue, Jun-Fa; Xu, Meng; Gui, Bao-Song; Wang, Feng-Xin; Ouyang, Jian-Ming
2014-01-01
Purpose This study aimed to accurately analyze the relationship between calcium oxalate (CaOx) stone formation and the components of urinary nanocrystallites. Method High-resolution transmission electron microscopy (HRTEM), selected area electron diffraction, fast Fourier transformation of HRTEM, and energy dispersive X-ray spectroscopy were performed to analyze the components of these nanocrystallites. Results The main components of CaOx stones are calcium oxalate monohydrate and a small amount of dehydrate, while those of urinary nanocrystallites are calcium oxalate monohydrate, uric acid, and calcium phosphate. The mechanism of formation of CaOx stones was discussed based on the components of urinary nanocrystallites. Conclusion The formation of CaOx stones is closely related both to the properties of urinary nanocrystallites and to the urinary components. The combination of HRTEM, fast Fourier transformation, selected area electron diffraction, and energy dispersive X-ray spectroscopy could be accurately performed to analyze the components of single urinary nanocrystallites. This result provides evidence for nanouric acid and/or nanocalcium phosphate crystallites as the central nidus to induce CaOx stone formation. PMID:25258530
NASA Astrophysics Data System (ADS)
Willenweber, A.; Thomas, S.; Burnley, P. C.
2012-12-01
The Berkeley Texture Package BEARTEX is a Windows-based computer software that combines various algorithms to analyze lattice-preferred orientation in polycrystalline materials. BEARTEX was initially designed to interpret diffraction intensity data from pole figure goniometers. Recently it has been successfully used to process synthetic forsterite powder diffraction data from in-situ synchrotron X-ray diffraction taken during deformation (Bollinger et al. 2012). Our study aims to test the practicability of using BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz (novaculite) during deformation. In-situ X-ray diffraction data was collected during the deformation of novaculite at 2.5 GPa and up to 1000 °C in a D-DIA apparatus using the ten-element energy-dispersive detector at the NSLS beamline X17B2. Diffraction intensities are a function of crystal orientation, expressed in azimuth angle η and pole distance ψ. The latter is the angle between the normal of a given diffraction plane and the vertical direction of the D-DIA apparatus - our principal stress direction during compression. Orientation-dependent diffraction intensities were corrected for different responses of the single detectors and x-ray absorption effects of the anvils. Orientation distributions (ODs) and inverse pole figures were calculated using BEARTEX. In addition, electron backscatter diffraction (EBSD) analyses were carried out on the deformed novaculite samples. Generated pole figures were compared with those derived from BEARTEX. Textural properties of our novaculite starting material complicated the BEARTEX analyses. The relatively strong variation of grain sizes in our natural specimens caused non-random diffraction intensity distributions. Those lead to non-random distributions of crystal orientations when analyzed with BEARTEX, although pole figures from EBSD data clearly show random crystal orientations. In an attempt to solve this problem, we employed a scanning routine when recording in-situ synchrotron X-ray diffraction and so collected diffraction from multiple sample volumes rather than from one single spot. Here, we will present a comparison of pole figures derived from independent BEARTEX and EBSD analyses for a series of novaculite experiments and discuss the practicability of BEARTEX to analyze the evolution of lattice-preferred orientation in natural polycrystalline quartz. REFERENCES C. BOLLINGER, S. MERKEL AND P. RATERRON (2012): In situ quantitative analysis of stress and texture development in forsterite aggregates deformed at 6 GPa and 1373 K. J. Appl. Cryst., 45, 263-271.
Thin single-crystalline Bi2(Te1-xSex)3 ternary nanosheets synthesized by a solvothermal technique
NASA Astrophysics Data System (ADS)
Guo, Jing; Jian, Jikang; Zhang, Zhihua; Wu, Rong; Li, Jin; Sun, Yanfei
2016-01-01
Bi2(Te1-xSex)3 ternary nanosheets have been successfully synthesized through a facile solvothermal technique using diethylenetriamine as solvent, where x can vary from 0 to 1. X-ray diffraction (XRD) and Scanning electron microscopy (SEM) indicate that the as-synthesized Bi2(Te1-xSex)3 samples are nanosheets with rhombohedral structure, and the thickness of the nanosheets can be as thin as several nanometers. High resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) reveal that the nanosheets are single crystalline with a rhombohedral structure. Energy disperse spectroscopy (EDS) and XRD analysis by Vegard's law confirm that the ternary Bi2(Te1-xSex)3 nanosheets have been obtained here. The growth of the nanosheets is discussed based on an amine-based molecular template mechanism that has been employed to synthesize some other metal chalcogenides.
Resolution enhancement in coherent x-ray diffraction imaging by overcoming instrumental noise.
Kim, Chan; Kim, Yoonhee; Song, Changyong; Kim, Sang Soo; Kim, Sunam; Kang, Hyon Chol; Hwu, Yeukuang; Tsuei, Ku-Ding; Liang, Keng San; Noh, Do Young
2014-11-17
We report that reference objects, strong scatterers neighboring weak phase objects, enhance the phase retrieval and spatial resolution in coherent x-ray diffraction imaging (CDI). A CDI experiment with Au nano-particles exhibited that the reference objects amplified the signal-to-noise ratio in the diffraction intensity at large diffraction angles, which significantly enhanced the image resolution. The interference between the diffracted x-ray from reference objects and a specimen also improved the retrieval of the phase of the diffraction signal. The enhancement was applied to image NiO nano-particles and a mitochondrion and confirmed in a simulation with a bacteria phantom. We expect that the proposed method will be of great help in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.
NASA Astrophysics Data System (ADS)
Wang, Zicheng; Wei, Renbo; Liu, Xiaobo
2017-01-01
Reduced graphene oxide/copper phthalocyanine nanocomposites are successfully prepared through a simple and effective two-step method, involving preferential reduction of graphene oxide and followed by self-assembly with copper phthalocyanine. The results of photographs, ultraviolet visible, x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy show that the in situ blending method can effectively facilitate graphene sheets to disperse homogenously in the copper phthalocyanine matrix through π- π interactions. As a result, the reduction of graphene oxide and restoration of the sp 2 carbon sites in graphene can enhance the dielectric properties and alternating current conductivity of copper phthalocyanine effectively.
Investigation on structural, optical and electrical properties of polythiophene-Al2O3 composites
NASA Astrophysics Data System (ADS)
Vijeth, H.; Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Devendrappa, H.
2018-05-01
The polythiophene (PTH) and polythiophene-Al2O3 composites prepared by in situ chemical polymerisation in the presence of anionic surfactant camphor sulfonic acid (CSA). The formation of composite is confirmed by X-ray Diffraction (XRD) and Energy Dispersive X-ray spectroscopy (EDX) analysis. The surface morphology was studied using Field Emission Electron Microscopy (FESEM). Optical properties was studied using UV-visible spectroscopy, it observed decrease in the band gap reveals material has potential application in optical devices. The dielectric constant and AC conductivity of composite have been studied for different temperature in the frequency range 1 kHz -1 MHz.
NASA Astrophysics Data System (ADS)
Tavakoli Banizi, Zoha; Seifi, Majid
2017-10-01
TGA-capped CdS nanoparticles were obtained in the presence of thioglycolic acid (TGA) as capping agent via a facile hydrothermal method at relatively low temperature and over a short duration. As-synthesized TGA-capped CdS nanoparticles were characterized by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, photoluminescence spectroscopy, Ultraviolet-visible spectroscopy and energy-dispersive x-ray spectroscopy. The products had spherical shapes, although their crystalline size and phase was dependent on temperature and time of the reaction. Photoluminescence spectra showed that the fluorescence intensity decreased when increasing the reaction time and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang Wanzhen; Xu Zhude; Liu Run
Hierarchical flower-like MoS{sub 2} spheres with high purity were synthesized by hydrothermal method using WO{sub 3} nanorods or H{sub 2}WO{sub 4} as an additive. The flower-like spheres were about 1 {mu}m in diameter and built up with MoS{sub 2} thin flakes with thickness of several nanometers. Energy disperse X-ray spectrum showed that the spheres were only composed of Mo and S with atomic ratio of 2:1. Powder X-ray diffraction result further indicated that the products were MoS{sub 2}. The reaction mechanism is discussed and suggested that tungstenic acid played an important role on the formation of flower-like MoS{sub 2} spheres.
Hydrothermal synthesis of uniform WO{sub 3} submicrospheres using thiourea as an assistant agent
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, X.T.; Xiao, F.; Lin, J.L.
2010-08-15
Nearly monodisperse tungsten trioxide submicrospheres have been synthesized with tungsten acid and HCl as the starting materials and thiourea as a structure-directing agent through a facile hydrothermal method. The obtained products were characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy and energy dispersive X-ray, respectively. The results show that the WO{sub 3} submicrospheres are monodisperse with a diameter of about 800-1000 nm. The morphology of the products gradually evolutes from rods to spheres with increase of the reaction time. The formation mechanism of the WO{sub 3} submicrospheres is primarily discussed.
Solvent free tin oxide nanoparticle for gas sensing application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ranjan, Pranay, E-mail: pranjan@iitp.ac.in; Thakur, Ajay D.; Centre for Energy and Environment, Indian Institute of Technology Patna, Patliputra, Patna 800013 India
2016-05-06
A new modified technique of synthesizing tin oxide nanoparticles with crystallite size of 2 nm to 6 nm has been developed. Surface area of the nanoparticle has been increased as we approached towards the Debye length. Such a techniques for approaching the Debye length is expected to bring remarkable changes in the properties of resistive based gas sensors. The technique used here is less toxic, economical and has high yield. Phase purity, size, shape and composition has been investigated using x-ray diffraction, micro Raman, scanning electron microscopy and energy dispersive x ray spectroscopy. While surface area has been calculated through Brunaur-Emmett-Teller (BET).
Influence of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) on zinc electrodeposition
NASA Astrophysics Data System (ADS)
Lehr, I. L.; Saidman, S. B.
2012-03-01
This work is a study of the electrodeposition of zinc onto SAE 4140 steel electrodes using solutions containing zinc sulfate and bis(2-ethylhexyl) sodium sulfosuccinate (AOT). The influence of different parameters such as electrolyte concentration, electrodeposition time and temperature on the morphology of the electrodeposits was analyzed. The deposits were characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX) and X-ray diffraction. The variation of open circuit potential over time in chloride solutions was also evaluated. The nucleation-growth process and consequently the morphology of the electrodeposits are modified in the presence of AOT. The surfactant induces the formation of a porous deposit.
Tailoring growth conditions for efficient tuning of band edge of CdS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Susha, N.; Nair, Swapna S., E-mail: swapna.s.nair@gmail.com; Aravind, P. B.
2015-06-24
CdS nanoparticles are successively synthesized by chemical precipitation method. The samples prepared at different reaction time and temperature are characterized by X-ray diffraction, Diffuse reflectance spectroscopy, Photoluminescence spectroscopy ans Energy dispersive x-ray analysis. Visible color variation is noted from light yellow to orange, indicates the quantum confinement effect and the results are again got confirmed from the optical studies. A shift in absorption peak is observed towards the lower region of the visible spectra - the “blue shift”- upon decrease in reaction time and temperature. Blue emission observed in the photoluminescence spectrum confirms the grain size induced confinement.
Melioration of Optical and Electrical Performance of Ga-N Codoped ZnO Thin Films
NASA Astrophysics Data System (ADS)
Narayanan, Nripasree; Deepak, N. K.
2018-06-01
Transparent and conducting p-type zinc oxide (ZnO) thin films doped with gallium (Ga) and nitrogen (N) simultaneously were deposited on glass substrates by spray pyrolysis technique. Phase composition analysis by X-ray diffraction confirmed the polycrystallinity of the films with pure ZnO phase. Energy dispersive X-ray analysis showed excellent incorporation of N in the ZnO matrix by means of codoping. The optical transmittance of N monodoped film was poor but got improved with Ga-N codoping and also resulted in the enhancement of optical energy gap. Hole concentration increased with codoping and consequently, lower resistivity and high stability were obtained.
NASA Astrophysics Data System (ADS)
Geethu, R.; Jacob, R.; Sreenivasan, P. V.; Shripathi, T.; S, Okram G.; Philip, R. R.
2015-02-01
A novel configuration ITO/n-OVC CuIn3Se5/p-CIS/In solar cell has been fabricated by multisource vacuum co-evaporation technique on soda lime glass substrates. The pn junction is formed with ordered vacancy compound as the n counter part for the p type CuInSe2. The structural, compositional, hall coefficient, optical and electrical properties of the p and n layers have been studied respectively by X-ray diffraction, Energy Dispersive Analysis of X rays, optical absorbance and conductivity measurements. Current density-Voltage measurements enabled the determination of efficiency of the device.
The use of radiation for the study of material of cultural heritage significance
NASA Astrophysics Data System (ADS)
Creagh, D. C.; Otieno-Alego, V.
2004-01-01
For the indigenous people of Northern Australia the expression of their experience of life, their "dreaming", is in the form of painting, usually on the bark stripped from trees growing in their tribal lands. These are often works of great beauty and the major collecting institutions in Australia and elsewhere have significant holdings of Aboriginal bark paintings. A wide range of analytical techniques (optical microscopy, FTIR microscopy, Raman microscopy, scanning electron microscopy and energy dispersive X-ray spectroscopy, and synchrotron radiation X-ray diffraction) has been used in a project to determine how best to conserve Aboriginal bark paintings.
Synthesis, characterizations and catalytic activities of CoFe2O4 nanoparticles
NASA Astrophysics Data System (ADS)
Verma, Divya; Sharma, Vikash; Parmar, Sarita; Okram, Gunadhor Singh; Jain, Shubha
2018-05-01
We report the synthesis of CoFe2O4 nanoparticles (NPs) through a novel one-step coprecipitation method. These NPs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared (FTIR), and Raman spectroscopy. These nano ferrites were successfully used for the synthesis of 3, 4-dihydropyrimidin-2(1H)-ones and thiones. They can be easily recovered by simple filtration and their catalytic activity remains nearly unaltered even after 4 consecutive cycles, making them ecofriendly and widely applicable due to their efficiency, ease of handling, and cost effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinsheimer, John; Bouet, Nathalie; Ghose, Sanjit
2016-10-06
A new system of slits called `spiderweb slits' have been developed for depth-resolved powder or polycrystalline X-ray diffraction measurements. The slits act on diffracted X-rays to select a particular gauge volume of sample, while absorbing diffracted X-rays from outside of this volume. Although the slit geometry is to some extent similar to that of previously developed conical slits or spiral slits, this new design has advantages over the previous ones in use for complex heterogeneous materials andin situandoperandodiffraction measurements. For example, the slits can measure a majority of any diffraction cone for any polycrystalline material, over a continuous range ofmore » diffraction angles, and work for X-ray energies of tens to hundreds of kiloelectronvolts. The design is generated and optimized using ray-tracing simulations, and fabricated through laser micromachining. The first prototype was successfully tested at the X17A beamline at the National Synchrotron Light Source, and shows similar performance to simulations, demonstrating gauge volume selection for standard powders, for all diffraction peaks over angles of 2–10°. A similar, but improved, design will be implemented at the X-ray Powder Diffraction beamline at the National Synchrotron Light Source II.« less
Local terahertz field enhancement for time-resolved x-ray diffraction
Kozina, M.; Pancaldi, M.; Bernhard, C.; ...
2017-02-20
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Local terahertz field enhancement for time-resolved x-ray diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozina, M.; Pancaldi, M.; Bernhard, C.
We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.
Cao, Jing; Fu, Wuyou; Yang, Haibin; Yu, Qingjiang; Zhang, Yanyan; Liu, Shikai; Sun, Peng; Zhou, Xiaoming; Leng, Yan; Wang, Shuangming; Liu, Bingbing; Zou, Guangtian
2009-04-09
Actinomorphic tubular ZnO/CoFe(2)O(4) nanocomposites were fabricated in large scale via a simple solution method at low temperature. The phase structures, morphologies, particle size, shell thickness, chemical compositions of the composites have been characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The as-synthesized nanocomposites were uniformly dispersed into the phenolic resin then the mixture was pasted on metal plate with the area of 200 mm x 200 mm as the microwave absorption test plate. The test of microwave absorption was carried out by the radar-absorbing materials (RAM) reflectivity far field radar cross-section (RCS) method. The range of microwave absorption is from 2 to 18 Hz and the best microwave absorption reach to 28.2 dB at 8.5 Hz. The results indicate that the composites are of excellence with respect to microwave absorption.
Microstructure and properties of laser-clad high-temperature wear-resistant alloys
NASA Astrophysics Data System (ADS)
Yang, Yongqiang
1999-02-01
A 2-kW CO 2 laser with a powder feeder was used to produce alloy coatings with high temperature-wear resistance on the surface of steel substrates. To analyze the microstructure and microchemical composition of the laser-clad layers, a scanning electron microscope (SEM) equipped with an energy dispersive X-ray microanalysis system was employed. X-ray diffraction techniques were applied to characterize the phases formed during the cladding process. The results show that the microstructure of the cladding alloy consists mainly of many dispersed particles (W 2C, (W,Ti)C 1- x, WC), a lamellar eutectic carbide M 12C, and an (f.c.c) matrix. Hardness tested at room and high temperature showed that the laser-clad zone has a moderate room temperature hardness and relatively higher elevated temperature hardness. The application of the laser-clad layer to a hot tool was very successful, and its operational life span was prolonged 1 to 4 times.
Thermal x-ray diffraction and near-field phase contrast imaging
NASA Astrophysics Data System (ADS)
Li, Zheng; Classen, Anton; Peng, Tao; Medvedev, Nikita; Wang, Fenglin; Chapman, Henry N.; Shih, Yanhua
2017-10-01
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
Thermal x-ray diffraction and near-field phase contrast imaging
Li, Zheng; Classen, Anton; Peng, Tao; ...
2017-12-27
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. Here in this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.
NASA Astrophysics Data System (ADS)
Mokoena, P. P.; Nagpure, I. M.; Kumar, Vinay; Kroon, R. E.; Olivier, E. J.; Neethling, J. H.; Swart, H. C.; Ntwaeaborwa, O. M.
2014-08-01
Hydroxyapatite (Ca5(PO4)3OH) is a well-known bioceramic material used in medical applications because of its ability to form direct chemical bonds with living tissues. This mineral is currently used as a host for rare-earth ions (e.g. Gd3+, Pr3+, Tb3+, etc.) to prepare phosphors that can be used in light emitting devices of different types. In this study Ca5(PO4)3OH:Gd3+,Pr3+ phosphors were prepared by the co-precipitation method and were characterised by x-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy, high resolution transmission electron microscopy, energy dispersive x-ray spectroscopy and photoluminescence spectroscopy. The x-ray diffraction pattern was consistent with the hexagonal phase of Ca5(PO4)3OH referenced in JCPDS card number 73-0293. The x-ray photoelectron spectroscopy data indicated that Ca2+ occupied two different lattice sites, referred to as Ca1 and Ca2. The photoluminescence data exhibited a narrowband emission located at 313 nm, which is associated with the 6P7/2→8S7/2 transition of the Gd3+ ion. This emission is classified as ultraviolet B and it is suitable for use in phototherapy lamps to treat various skin diseases. The photoluminescence intensity of the 313 nm emission was enhanced considerably by Pr3+ co-doping.
Characterization of Metal Powders Used for Additive Manufacturing.
Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A
2014-01-01
Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.
Structural and optical properties of furfurylidenemalononitrile thin films
NASA Astrophysics Data System (ADS)
Ali, H. A. M.
2013-03-01
Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.
Zhang, Sheng; Shao, Yuyan; Liao, Honggang; Engelhard, Mark H; Yin, Geping; Lin, Yuehe
2011-03-22
Here we report that poly(diallyldimethylammonium chloride) (PDDA) acts as both a reducing agent and a stabilizer to prepare soluble graphene nanosheets from graphite oxide. The results of transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, atomic force microscopy, and Fourier transform infrared indicated that graphite oxide was successfully reduced to graphene nanosheets which exhibited single-layer structure and high dispersion in various solvents. The reaction mechanism for PDDA-induced reduction of exfoliated graphite oxide was proposed. Furthermore, PDDA facilitated the in situ growth of highly dispersed Pt nanoparticles on the surface of graphene nanosheets to form Pt/graphene nanocomposites, which exhibited excellent catalytic activity toward formic acid oxidation. This work presents a facile and environmentally friendly approach to the synthesis of graphene nanosheets and opens up a new possibility for preparing graphene and graphene-based nanomaterials for large-scale applications.
Fujii, Syuji; Okada, Masahiro; Nishimura, Taiki; Maeda, Hayata; Sugimoto, Tatsuya; Hamasaki, Hiroyuki; Furuzono, Tsutomu; Nakamura, Yoshinobu
2012-05-15
Hydroxyapatite (HAp) nanoparticle-armored poly(ε-caprolactone) (PCL) microspheres were fabricated via a "Pickering-type" emulsion solvent evaporation method in the absence of any molecular surfactants. It was clarified that the interaction between carbonyl/carboxylic acid groups of PCL and the HAp nanoparticles at an oil-water interface played a crucial role in the preparation of the stable Pickering-type emulsions and the HAp nanoparticle-armored microspheres. The HAp nanoparticle-armored PCL microspheres were characterized in terms of size, size distribution, morphology, and chemical compositions using scanning electron microscopy, laser diffraction, energy dispersive X-ray microanalysis, and thermogravimetric analysis. The presence of HAp nanoparticles at the surface of the microspheres was confirmed by scanning electron microscopy and energy dispersive X-ray microanalysis. Pyrolysis of the PCL cores led to the formation of the corresponding HAp hollow microcapsules. Copyright © 2012 Elsevier Inc. All rights reserved.
Composite Ni-Co-fly ash coatings on 5083 aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.; Tsopani, A.; Piperi, L.
2011-03-01
Ni-Co-fly ash coatings were deposited on zincate treated 5083 wrought aluminium alloy substrates with the aid of the electrodeposition technique. Structural and chemical characterization of the produced composite coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-Co-fly ash coatings were found to consist of a crystalline Ni-Co solid solution with dispersed fly ash particles. In addition, chemical analysis of the Ni-Co matrix showed that it consisted of 80 wt.% Ni and 20 wt.% Co. The co-deposition of fly ash particles leads to a significant increase of the microhardness of the coating. The corrosion behaviour of the Ni-Co-fly ash/zincate coated aluminium alloy, in a 0.3 M NaCl solution (pH = 3.5), was studied by means of potentiodynamic corrosion experiments.
NASA Astrophysics Data System (ADS)
Wang, Pengcheng; Zhou, Yingke; Hu, Min; Chen, Jian
2017-01-01
Nitrogen-doped carbon nanotube supporting NiO nanoparticles were synthesized by a chemical precipitation process coupled with subsequent calcination. The morphology and structure of the composites were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), and the electrochemical performance was evaluated using cyclic voltammetry and chronoamperometric technique. The effects of nitrogen doping, calcination temperature and content of NiO nanoparticles on the electrocatalytic activity toward methanol oxidation were systematically studied. The results show that the uniformly dispersed ultrafine NiO nanoparticles supported on nitrogen-doped carbon nanotube are obtained after calcination at 400 °C. The optimized composite catalysts present high electrocatalytic activity, fast charge-transfer process, excellent accessibility and stability for methanol oxidation reaction, which are promising for application in the alkaline direct methanol fuel cells.
Dubin, Sergey; Gilje, Scott; Wang, Kan; Tung, Vincent C.; Cha, Kitty; Hall, Anthony S.; Farrar, Jabari; Varshneya, Rupal; Yang, Yang; Kaner, Richard B.
2014-01-01
Refluxing graphene oxide (GO) in N-methyl-2-pyrrolidinone (NMP) results in deoxygenation and reduction to yield a stable colloidal dispersion. The solvothermal reduction is accompanied by a color change from light brown to black. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) images of the product confirm the presence of single sheets of the solvothermally reduced graphene oxide (SRGO). X-ray photoelectron spectroscopy (XPS) of SRGO indicates a significant increase in intensity of the C=C bond character, while the oxygen content decreases markedly after the reduction is complete. X-ray diffraction analysis of SRGO shows a single broad peak at 26.24° 2θ (3.4 Å), confirming the presence of graphitic stacking of reduced sheets. SRGO sheets are redispersible in a variety of organic solvents, which may hold promise as an acceptor material for bulk heterojunction photovoltaic cells, or electromagnetic interference shielding applications. PMID:20586422
NASA Astrophysics Data System (ADS)
Vijaya Bhaskar, S.; Rajmohan, T.; Palanikumar, K.; Bharath Ganesh Kumar, B.
2016-04-01
Metal matrix composites (MMCs) reinforced with ceramic nano particles (less than 100 nm), termed as metal matrix nano composites (MMNCs), can overcome those disadvantages associated with the conventional MMCs. MMCs containing carbon nanotubes are being developed and projected for diverse applications in various fields of engineering like automotive, avionic, electronic and bio-medical sectors. The present investigation deals with the synthesis and characterization of hybrid magnesium matrix reinforced with various different wt% (0-0.45) of multi wall carbon nano tubes (MWCNT) and micro SiC particles prepared through powder metallurgy route. Microstructure and mechanical properties such as micro hardness and density of the composites were examined. Microstructure of MMNCs have been investigated by scanning electron microscope, X-ray diffraction and energy dispersive X-ray spectroscopy (EDS) for better observation of dispersion of reinforcement. The results indicated that the increase in wt% of MWCNT improves the mechanical properties of the composite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dinger, T.R.; Krishnam, K.M.; Moya, J.S.
1984-10-01
A mullite/15 vol.%ZrO/sub 2/ composite was analyzed using the techniques of microdiffraction and energy dispersive X-ray spectroscopy (EDXS). The EDXS results indicate that there is a significantly high solid solubility of mullite in zirconia and zirconia in mullite; microdiffraction results suggest that ordering occurs in the ZrO/sub 2/(ss) phase based on the presence of forbidden reflections for the P 2/sub 1//c space group of monoclinic zirconia. The presence of a secondary phase at the grain boundaries, either amorphous or crystalline, has not been generally detected throughout the bulk. The results provide experimental evidence for the hypothesis of Moya and Osendimore » that the increased toughness and flexural strength of these composites are related to solid solution effects rather than to transformation or microcrack toughening mechanisms.« less
Oxidation and emittance of superalloys in heat shield applications
NASA Technical Reports Server (NTRS)
Wiedemann, K. E.; Clark, R. K.; Unnam, J.
1986-01-01
Recently developed superalloys that form alumina coatings have a high potential for heat shield applications for advanced aerospace vehicles at temperatures above 1095C. Both INCOLOY alloy MA 956 (of the Inco Alloys International, Inc.), an iron-base oxide-dispersion-strengthened alloy, and CABOT alloy No. 214 (of the Cabot Corporation), an alumina-forming nickel-chromium alloy, have good oxidation resistance and good elevated temperature strength. The oxidation resistance of both alloys has been attributed to the formation of a thin alumina layer (alpha-Al2O3) at the surface. Emittance and oxidation data were obtained for simulated Space Shuttle reentry conditions using a hypersonic arc-heated wind tunnel. The surface oxides and substrate alloys were characterized using X-ray diffraction and scanning and transmission electron microscopy with an energy-dispersive X-ray analysis unit. The mass loss and emittance characteristics of the two alloys are discussed.
An image focusing means by using an opaque object to diffract x-rays
Sommargren, Gary E.; Weaver, H. Joseph
1991-01-01
The invention provides a method and apparatus for focusing and imaging x-rays. An opaque sphere is used as a diffractive imaging element to diffract x-rays from an object so that the divergent x-ray wavefronts are transformed into convergent wavefronts and are brought to focus to form an image of the object with a large depth of field.
Mild Hydroprocessing with Dispersed Catalyst of Highly Asphaltenic Pitch
NASA Astrophysics Data System (ADS)
Isquierdo, Fernanda
Asphaltene are known to have diverse negative impacts on heavy oil extraction and hydroprocessing. This research then, explores the optimal conditions to convert asphaltenes into lighter material using mild conditions of pressure and temperature, and investigates changes in asphaltene structure during hydroprocessing. Feedstock and products were characterized by Simulated Distillation, Microdeasphalting, Sulfur content, X-ray diffraction, X-ray photoelectron spectroscopy, and Nuclear magnetic resonance spectroscopy. Solid catalysts were analyzed by Themogravimetric analysis, X-ray diffraction, and Dynamic light scattering. Based on the results obtained from X-ray diffraction and Nuclear magnetic resonance spectroscopy analysis a mechanism for the asphaltene hydroprocessing at mild conditions is proposed in which the alky peripheric portion from the original asphaltenes is partially removed during the reaction. The consequence of that process being an increase in the stacking of the aromatics sheets in the remaining asphaltenes. Also, this study investigates different for ultradispersed catalyst compositions, where CoWS, CoMoS, NiWS, FeWS, NiMo/NaHFeSi 2O6 and NaHFeSi2O6 showed a high asphaltene conversion as determined by asphaltene microdeasphalting, FeMoS and NaHFeSi 2O6 presented a high Vacuum Residue as determined by distillation (SIMDIST) analysis conversion, and in terms of sulfur removal CoMoS gave the higher conversion. In addition, all the catalyst tested showed a coke production lower than 1%. Finally, a kinetic study for the pitch hydroprocessing using CoMoS as catalysts gave a global activation energy of 97.3 kJ/mol.
Soft X-Ray Diffraction Microscopy of a Frozen Hydrated Yeast Cell
Huang, Xiaojing; Nelson, Johanna; Kirz, Janos; ...
2009-11-01
We report the first image of an intact, frozen hydrated eukaryotic cell using x-ray diffraction microscopy, or coherent x-ray diffraction imaging. By plunge freezing the specimen in liquid ethane and maintaining it below -170 °C, artifacts due to dehydration, ice crystallization, and radiation damage are greatly reduced. In this example, coherent diffraction data using 520 eV x rays were recorded and reconstructed to reveal a budding yeast cell at a resolution better than 25 nm. This demonstration represents an important step towards high resolution imaging of cells in their natural, hydrated state, without limitations imposed by x-ray optics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooke, Gary A.; Pestovich, John A.; Huber, Heinz J.
This report presents the results for solid phase characterization (SPC) of solid samples removed from tank 241-C-108 (C-108) on August 12-13,2012, using the off-riser sampler. Samples were received at the 222-S Laboratory on August 13 and were described and photographed. The SPC analyses that were performed include scanning electron microscopy (SEM) using the ASPEX(R)l scanning electron microscope, X-ray diffraction (XRD) using the Rigaku(R) 2 MiniFlex X-ray diffractometer, and polarized light microscopy (PLM) using the Nikon(R) 3 Eclipse Pol optical microscope. The SEM is equipped with an energy dispersive X-ray spectrometer (EDS) to provide chemical information. Gary A. Cooke conducted themore » SEM analysis, John A. Pestovich performed the XRD analysis, and Dr. Heinz J. Huber performed the PLM examination. The results of these analyses are presented here.« less
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
NASA Astrophysics Data System (ADS)
Yulovskaya, V. D.; Kuz'micheva, G. M.; Klechkovskaya, V. V.; Orekhov, A. S.; Zubavichus, Ya. V.; Domoroshchina, E. N.; Shegay, A. V.
2016-03-01
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO2/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO2 characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO2 aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibit the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.
Sonochemical fabrication of fluorinated mesoporous titanium dioxide microspheres
NASA Astrophysics Data System (ADS)
Yu, Changlin; Yu, Jimmy C.; Chan, Mui
2009-05-01
A sonochemical-hydrothermal method for preparing fluorinated mesoporous TiO 2 microspheres was developed. Formation of mesoporous TiO 2 and doping of fluorine was achieved by sonication and then hydrothermal treatment of a solution containing titanium isopropoxide, template, and sodium fluoride. The as-synthesized TiO 2 microspheres were characterized by X-ray diffraction (XRD), Fourier translation infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, photoluminescence spectroscopy (PL), and BET surface areas. The P123 template was removed completely during the hydrothermal and washing steps, which was different from the conventional calcination treatment. The as- synthesized TiO 2 microspheres had good crystallinity and high stability. Results from the photocatalytic degradation of methylene blue (MB) showed that fluorination could remarkably improve the photocatalytic activity of titanium dioxide.
Highly Active PdNi/RGO/Polyoxometalate Nanocomposite Electrocatalyst for Alcohol Oxidation.
Hu, Jing; Wu, Xiaofeng; Zhang, Qingfan; Gao, Mingyan; Qiu, Haifang; Huang, Keke; Feng, Shouhua; Wang, Tingting; Yang, Ying; Liu, Zhelin; Zhao, Bo
2018-02-27
A PdNi/RGO/polyoxometalate nanocomposite has been successfully synthesized by a simple wet-chemical method. Characterizations such as transmission electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction analysis, and X-ray photoelectron spectroscopy are employed to verify the morphology, structure, and elemental composition of the as-prepared nanocomposite. Inspired by the fast-developing fuel cells, the electrochemical catalytic performance of the nanocomposite toward methanol and ethanol oxidation in alkaline media is further tested. Notably, the nanocomposite exhibits excellent catalytic activity and long-term stability toward alcohol electrooxidation compared with the PdNi/RGO and commercial Pd/C catalyst. Furthermore, the electrochemical results reveal that the prepared nanocomposite is attractive as a promising electrocatalyst for direct alcohol fuel cells, in which the phosphotungstic acid plays a crucial role in enhancing the electrocatalytic activities of the catalyst.
Low-temperature MOCVD deposition of Bi2Te3 thin films using Et2BiTeEt as single source precursor
NASA Astrophysics Data System (ADS)
Bendt, Georg; Gassa, Sanae; Rieger, Felix; Jooss, Christian; Schulz, Stephan
2018-05-01
Et2BiTeEt was used as single source precursor for the deposition of Bi2Te3 thin films on Si(1 0 0) substrates by metal organic chemical vapor deposition (MOCVD) at very low substrate temperatures. Stoichiometric and crystalline Bi2Te3 films were grown at 230 °C, which is approximately 100 °C lower compared to conventional MOCVD processes using one metal organic precursors for each element. The Bi2Te3 films were characterized using scanning electron microscopy, high-resolution transmission electron microscopy and X-ray diffraction. The elemental composition of the films, which was determined by energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy, was found to be strongly dependent of the substrate temperature.
Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of p-Type GaAs.
Bioud, Youcef A; Boucherif, Abderraouf; Belarouci, Ali; Paradis, Etienne; Drouin, Dominique; Arès, Richard
2016-12-01
We have performed a detailed characterization study of electrochemically etched p-type GaAs in a hydrofluoric acid-based electrolyte. The samples were investigated and characterized through cathodoluminescence (CL), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). It was found that after electrochemical etching, the porous layer showed a major decrease in the CL intensity and a change in chemical composition and in the crystalline phase. Contrary to previous reports on p-GaAs porosification, which stated that the formed layer is composed of porous GaAs, we report evidence that the porous layer is in fact mainly constituted of porous As 2 O 3 . Finally, a qualitative model is proposed to explain the porous As 2 O 3 layer formation on p-GaAs substrate.
Highly dispersible diamond nanoparticles for pretreatment of diamond films on Si substrate
NASA Astrophysics Data System (ADS)
Zhao, Shenjie; Huang, Jian; Zhou, Xinyu; Ren, Bing; Tang, Ke; Xi, Yifan; Wang, Lin; Wang, Linjun; Lu, Yicheng
2018-03-01
High quality diamond film on Si substrate was synthesized by coating diamond nanoparticles prepared by polyglycerol grafting (ND-PG) dispersion as pre-treatment method. Transmission electron microscope indicates that ND-PG is much more dispersible than untreated nanoparticles in organic solvents. The surface morphology was characterized by scanning electron microscope while atomic force microscope was conducted to measure the surface roughness. Microstructure properties were carried out by Raman spectroscopy and X-ray diffraction. The results revealed an increase in nucleation density, an acceleration of growth rate and an improvement of film crystalline quality by using spin-coating ND-PG pretreatment.
NASA Astrophysics Data System (ADS)
Tanaka, M.; Katsuya, Y.; Matsushita, Y.
2013-03-01
The focused-beam flat-sample method (FFM), which is a method for high-resolution and rapid synchrotron X-ray powder diffraction measurements by combination of beam focusing optics, a flat shape sample and an area detector, was applied for diffraction experiments with anomalous scattering effect. The advantages of FFM for anomalous diffraction were absorption correction without approximation, rapid data collection by an area detector and good signal-to-noise ratio data by focusing optics. In the X-ray diffraction experiments of CoFe2O4 and Fe3O4 (By FFM) using X-rays near the Fe K absorption edge, the anomalous scattering effect between Fe/Co or Fe2+/Fe3+ can be clearly detected, due to the change of diffraction intensity. The change of observed diffraction intensity as the incident X-ray energy was consistent with the calculation. The FFM is expected to be a method for anomalous powder diffraction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanaka, Masahiko, E-mail: masahiko@spring8.or.jp; Katsuya, Yoshio, E-mail: katsuya@spring8.or.jp; Sakata, Osami, E-mail: SAKATA.Osami@nims.go.jp
2016-07-27
Focused-beam flat-sample method (FFM) is a new trial for synchrotron powder diffraction method, which is a combination of beam focusing optics, flat shape powder sample and area detectors. The method has advantages for X-ray diffraction experiments applying anomalous scattering effect (anomalous diffraction), because of 1. Absorption correction without approximation, 2. High intensity X-rays of focused incident beams and high signal noise ratio of diffracted X-rays 3. Rapid data collection with area detectors. We applied the FFM to anomalous diffraction experiments and collected synchrotron X-ray powder diffraction data of CoFe{sub 2}O{sub 4} (inverse spinel structure) using X-rays near Fe K absorptionmore » edge, which can distinguish Co and Fe by anomalous scattering effect. We conducted Rietveld analyses with the obtained powder diffraction data and successfully determined the distribution of Co and Fe ions in CoFe{sub 2}O{sub 4} crystal structure.« less
Singh, Abhishek; Bharati, Avanish; Frederiks, Pauline; Verkinderen, Olivier; Goderis, Bart; Cardinaels, Ruth; Moldenaers, Paula; Van Humbeeck, Jan; Van den Mooter, Guy
2016-06-06
Predensification and compression are unit operations imperative to the manufacture of tablets and capsules. Such stress-inducing steps can cause destabilization of solid dispersions which can alter their molecular arrangement and ultimately affect dissolution rate and bioavailability. In this study, itraconazole-Soluplus solid dispersions with 50% (w/w) drug loading prepared by hot-melt extrusion (HME) were investigated. Compression was performed at both pharmaceutically relevant and extreme compression pressures and dwell times. The starting materials, powder, and compressed solid dispersions were analyzed using modulated differential scanning calorimetry (MDSC), X-ray diffraction (XRD), small- and wide-angle X-ray scattering (SWAXS), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and broadband dielectric spectroscopy (BDS). MDSC analysis revealed that compression promotes phase separation of solid dispersions as indicated by an increase in glass transition width, occurrence of a peak in the nonreversing heat flow signal, and an increase in the net heat of fusion indicating crystallinity in the systems. SWAXS analysis ruled out the presence of mesophases. BDS measurements elucidated an increase in the Soluplus-rich regions of the solid dispersion upon compression. FTIR indicated changes in the spatiotemporal architecture of the solid dispersions mediated via disruption in hydrogen bonding and ultimately altered dynamics. These changes can have significant consequences on the final stability and performance of the solid dispersions.
NASA Astrophysics Data System (ADS)
Chang, Fei; Jiao, Mingzhi; Xu, Quan; Deng, Baoqing; Hu, Xuefeng
2018-03-01
A series of mesoporous iron-titanium-containing silica Fe-TiO2-SBA15 (FTS) were constructed via a facile one-pot hydrothermal route and subsequently characterized by X-ray diffraction patterns, UV-vis diffuse reflection spectroscopy, transmission electron microscopy, scanning electron microscopy, nitrogen adsorption-desorption, X-ray photoelectron spectroscopy, and X-ray energy dispersion spectroscopy. By analyses, these samples possessed ordered two-dimensional hexagonal mesoporous structures, mainly involving mixed dual-phases of anatase and rutile TiO2, like commercial titania P25. The UV-vis diffuse reflection spectra demonstrated the presence of Fe species that was further confirmed by the X-ray photoelectron spectra and X-ray energy dispersion spectrum. The existence of Fe species in form of Fe3+ cations played an important role on the phase composition and electronic structure of these samples. With structural and morphological merits, these samples exhibited relatively high photocatalytic efficiency toward the degradation of dye methylene blue (MB) and reduction of Cr(VI) under visible-light irradiation, comparing with P25. In addition, among all candidates, the sample with a Fe/Si molar ratio of 0.03 showed the highest catalytic performance under optimal conditions, especially in the coexistence of both MB and Cr(VI), revealing an obviously synergistic effect when the consumption of both contaminants occurred. Finally, a primary catalytic mechanism was speculated on basis of active species capture experiments.
Determination of surface morphology of TiO2 nanostructure using synchrotron radiation
NASA Astrophysics Data System (ADS)
Das, Gangadhar; Kumar, Manoj; Biswas, A. K.; Khooha, Ajay; Mondal, Puspen; Tiwari, M. K.
2017-05-01
Nanostructures of Titanium oxide (TiO2) are being studied for many promising applications, e.g., solar photovoltaics, solar water splitting for H2 fuel generation etc., due to their excellent photo-catalytic properties. We have synthesized low-dimensional TiO2 nanoparticles by gas phase CW CO2 laser pyrolysis. The laser synthesis process has been optimized for the deposition of highly pure, nearly mono-dispersed TiO2 nanoparticles on silicon substrates. Hard x-ray standing wave-field (XSW) measurements in total reflection geometry were carried out on the BL-16 beamline of Indus-2 synchrotron radiation facility in combination with x-ray reflectivity and grazing incidence x-ray fluorescence measurements for the determination of surface morphology of the deposited TiO2 nanostructures. The average particle size of TiO2 nanostructure estimated using transmission electron microscopy (TEM) was found to closely agree with the XSW and grazing incidence x-ray diffraction (GIXRD) results.
NASA Astrophysics Data System (ADS)
Vasuki, G.; Balu, T.
2018-06-01
Mixed spinel copper manganese ferrite (CuXMn1‑XFe2O4, X = 0, 0.25, 0.5, 0.75, 1) nanoparticles were synthesized by chemical co-precipitation technique. From the powder x-ray diffraction analysis the lattice constant, volume of unit cell, x-ray density, hopping lengths, crystallite size, surface area, dislocation density and microstrain were calculated. The substitution of Cu2+ ions shows a considerable reduction in the crystallite size of manganese ferrite from 34 nm to 22 nm. Further a linear fit of Williamson-Hall plot has been drawn to determine the microstrain and crystallite size. The crystallite size and morphology were further observed through high resolution transmission electron microscope and scanning electron microscope. The diffraction rings observed from selected area electron diffraction pattern exhibits the crystalline nature of all the samples. The energy dispersive x-ray analysis shows the composition of all the elements incorporated in the synthesized nanomaterials. FTIR studies reveal the absorption peaks that correspond to the metal-oxygen vibrations in the tetrahedral and octahedral sites. From the UV–vis absorption spectra the band gap energy, refractive index and optical dielectric constant were determined. Magnetic studies carried out using vibrating sample magnetometer shows interesting behaviour in the variation of magnetisation and coercivity. Peculiar magnetic behaviour is observed when Cu2+ ions are substituted in manganese ferrites. All the synthesized materials have very low value of squareness ratio which attributes to the superparamagnetic behaviour.
Synthesis and structural characterization of CZTS nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lydia, R.; Reddy, P. Sreedhara
2013-06-03
The CZTS nanoparticles were successfully synthesized by Chemical co-precipitation method with different pH values in the range of 6 to 8. The synthesized nanoparticles were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. XRD studies revealed that the CZTS nanoparticles exhibited Kesterite Structure with preferential orientation along the (112) direction. Sample at pH value of 7 reached the nearly stoichiometric ratio.
Accounting for the dispersion in the x ray properties of early-type galaxies
NASA Technical Reports Server (NTRS)
White, Raymond E., III; Sarazin, Craig L.
1990-01-01
The x ray luminosities of early-type galaxies are correlated with their optical (e.g., blue) luminosities (L sub X approx. L sub B exp 1.6), but the x ray luminosities exhibit considerable scatter for a given optical luminosity L sub B. This dispersion in x ray luminosity is much greater than the dispersion of other properties of early-type galaxies (for a given L sub B), such as luminosity scale-length, velocity dispersion, color, and metallicity. Here, researchers consider several possible sources for the dispersion in x ray luminosity. Some of the scatter in x ray luminosity may result from stellar population variations between galaxies with similar L sub B. Since the x ray emitting gas is from accumulated stellar mass loss, the L sub X dispersion may be due to variations in integrated stellar mass loss rates. Another possible cause of the L sub X dispersion may be variations in the amount of cool material in the galaxies; cool gas may act as an energy sink for the hot gas. Infrared emission may be used to trace such cool material, so researchers look for a correlation between the infrared emission and the x ray emission of early-type galaxies at fixed L sub B. Velocity dispersion variations between galaxies of similar L sub B may also contribute to the L sub X dispersion. The most likely a priori source of the dispersion in L sub X is probably the varying amount of ram-pressure stripping in a range of galaxy environments. The hot gaseous halos of early-type galaxies can be stripped in encounters with other galaxies or with ambient cluster gas if the intracluster gas is sufficiently dense. Researchers find that the most likely cause of dispersion in the x ray properties of early type galaxies is probably the ram-pressure stripping of gaseous halos from galaxies. For a sample of 81 early-type galaxies with x ray luminosities or upper limits derived from Einstein Observatory observations (CFT) researchers calculated the cumulative distribution of angular distances between the x ray sample members and bright galaxies from the Revised Shapley - Ames catalog. Collectively, galaxies with low x ray luminosities (for a given L sub B) tend to be in denser environments than galaxies with higher x ray luminosities.
Dynamical effects in Bragg coherent x-ray diffraction imaging of finite crystals
NASA Astrophysics Data System (ADS)
Shabalin, A. G.; Yefanov, O. M.; Nosik, V. L.; Bushuev, V. A.; Vartanyants, I. A.
2017-08-01
We present simulations of Bragg coherent x-ray diffractive imaging (CXDI) data from finite crystals in the frame of the dynamical theory of x-ray diffraction. The developed approach is based on a numerical solution of modified Takagi-Taupin equations and can be applied for modeling of a broad range of x-ray diffraction experiments with finite three-dimensional crystals of arbitrary shape also in the presence of strain. We performed simulations for nanocrystals of a cubic and hemispherical shape of different sizes and provided a detailed analysis of artifacts in the Bragg CXDI reconstructions introduced by the dynamical diffraction. Based on our theoretical analysis we developed an analytical procedure to treat effects of refraction and absorption in the reconstruction. Our results elucidate limitations for the kinematical approach in the Bragg CXDI and suggest a natural criterion to distinguish between kinematical and dynamical cases in coherent x-ray diffraction on a finite crystal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.
2014-09-07
Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less
NASA Astrophysics Data System (ADS)
Singhal, Rahul; Das, Suprem R.; Oviedo, Osbert; Tomar, Maharaj S.; Katiyar, Ram S.
Phase pure LiMn 1.5Ni 0.5O 4 powders were synthesized by a chemical synthesis route and were subsequently characterized as cathode materials in a Li-ion coin cell comprising a Li anode and lithium hexafluorophosphate (LiPF 6), dissolved in dimethyl carbonate (DMC) + ethylene carbonate (EC) [1:1, v/v ratio] as electrolyte. The spinel structure and phase purity of the powders were characterized using X-ray diffraction and micro-Raman spectroscopy. The presence of both oxidation and reduction peaks in the cyclic voltammogram revealed Li + extraction and insertion from the spinel structure. The charge-discharge characteristics of the coin cell were performed in the 3.0-4.8 V range. An initial discharge capacity of ∼140 mAh g -1 was obtained with 94% initial discharge capacity retention after 50 repeated cycles. The microstructures and compositions of the cathode before and after electrochemistry were investigated using scanning electron microscopy and energy-dispersive analysis by X-ray analysis, respectively. Using X-ray diffraction, Raman spectroscopy and electrochemical analysis, we correlated the structural stability and the electrochemical performance of this cathode.
NASA Astrophysics Data System (ADS)
Ehsan, Muhammad Ali; Khaledi, Hamid; Pandikumar, Alagarsamy; Huang, Nay Ming; Arifin, Zainudin; Mazhar, Muhammad
2015-10-01
A heterobimetallic complex [Cd2Ti4(μ-O)6(TFA)8(THF)6]·1.5THF (1) (TFA=trifluoroacetato, THF=tetrahydrofuran) comprising of Cd:Ti (1:2) ratio was synthesized by a chemical reaction of cadmium (II) acetate with titanium (IV) isopropoxide and triflouroacetic acid in THF. The stoichiometry of (1) was recognized by single crystal X-ray diffraction, spectroscopic and elemental analyses. Thermal studies revealed that (1) neatly decomposes at 450 °C to furnish 1:1 ratio of cadmium titanate:titania composite oxides material. The thin films of CdTiO3-TiO2 composite oxides were deposited at 550 °C on fluorine doped tin oxide coated conducting glass substrate in air ambient. The micro-structure, crystallinity, phase identification and chemical composition of microspherical architectured CdTiO3-TiO2 composite thin film have been determined by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and energy dispersive X-ray analysis. The scope of composite thin film having band gap of 3.1 eV was explored as photoanode for dye-sensitized solar cell application.
NASA Astrophysics Data System (ADS)
Quille, Rubén; Bustamante, Ángel; Palomino, Ybar
2011-11-01
The ceramic industry is an important area of economic activity in the Ayacucho Region, in particular in the District of Quinua. As a consequence, there is a huge demand for clay to produce ceramic pastes in that region. This paper reports on results concerning the mineralogical characterization of four clayey samples, which were collected MAA and SPQA from the area Pampa de La Quinua with geographic coordinates 13° 02' 49″ S 74° 08' 03″ W, CE1M and CE2M from the Quinua locality 13° 03' 07″ S 74° 08' 31″ W, both in the District of Quinua, Province of Huamanga, Ayacucho, Peru. The chemical and mineralogical characterization of these samples was carried out with powder X-ray diffraction detecting quartz, albite, montmorillonite, kaolinite and glauconite mineral phases, Mössbauer spectroscopy detected iron in kaolinite, glauconite and montmorillonite minerals. Chemical analysis was performed through scanning electron microscopy and energy dispersive X-ray spectroscopy. Data obtained from the combination of these techniques provided relevant information about the morphology, chemical composition, and the mineralogy of samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio
Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less
Ham, Kathryn J.; Vohra, Yogesh K.; Kono, Yoshio; ...
2017-02-06
Multi-angle energy-dispersive X-ray diffraction studies and white-beam X-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron-content borosilicate glass sample (17.6% B 2O 3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å –1 is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed anmore » overall uniaxial compression of 22.5% at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si–O, O–O and Si–Si bond distances were measured as a function of pressure. Lastly, Raman spectroscopy of the pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and four-coordinated boron.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic–inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm –1 for Pb(II) and ca. 1580 cm –1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. These complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
MacDonald, Margaret G.; Palmer, Michael R.; Suchomel, Matthew R.; ...
2016-09-07
To investigate soap formation in drying oils in historic paints, the reaction between metal acetates (K +, Zn 2+, Pb 2+) and ethyl linoleate (EL) was studied using optical microscopy, X-ray powder diffraction, and electron microscopy. Pb(II) and Zn(II) react rapidly with EL to form highly structured, spherulitic, luminescent crystallites that aggregate. Evidence from Fourier transform infrared (FTIR) and scanning electron microscopy/energy dispersive X-ray analysis and high-resolution synchrotron powder X-ray diffraction indicates that these are organic-inorganic hybrid complexes or coordination polymers. FTIR absorbance peaks at ca. 1540 cm -1 for Pb(II) and ca. 1580 cm -1 for Zn(II) are consistentmore » with the formation of carboxylate complexes. The complexes formed offer insight into the degradation processes observed in oil paint films, suggesting that soap formation is rapid when metal ions are solubilized and can occur with unsaturated fatty acids that are present in fresh oils. Finally, these complexes may account for the atypical luminescence observed in lead-containing cured oil paint films.« less
NASA Astrophysics Data System (ADS)
Astik, Nidhi; Jha, Prafulla K.; Pratap, Arun
2018-03-01
The ball milling route has been used to produce the La0.67Sr0.33Mn0.85Fe0.15O3 (LSMFO) nanocrystalline sample from oxide precursors. The sample was characterized using x-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDAX), differential scanning calorimetry (DSC) and thermogravimetric (TGA) measurements. The x-ray diffraction confirms the phase purity of sample and shows that the sample crystallizes in the rhombohedral perovskite structure with a R-3c space group. The scanning electron micrograph shows the presence of well-faceted crystallites of LSMFO. The EDAX spectrum demonstrates the molar ratio of different elements of nanocrystalline LSMFO. Furthermore, the crystallite size using the Debye-Scherrer formula and William-Hall analysis has been found as 24 nm and 29 nm, respectively. Our results support the idea that a good quality nanocrystalline LSMFO sample can be obtained using the ball milling route. We also discuss the DSC and TGA curves and analyse the results in terms of phase transition, calcination temperature and activation barrier energies.
Green biosynthesis of silver nanoparticles using Curcuma longa tuber powder
Shameli, Kamyar; Ahmad, Mansor Bin; Zamanian, Ali; Sangpour, Parvanh; Shabanzadeh, Parvaneh; Abdollahi, Yadollah; Zargar, Mohsen
2012-01-01
Green synthesis of noble metal nanoparticles is a vastly developing area of research. Metallic nanoparticles have received great attention from chemists, physicists, biologists, and engineers who wish to use them for the development of a new-generation of nanodevices. In this study, silver nanoparticles were biosynthesized from aqueous silver nitrate through a simple and eco-friendly route using Curcuma longa tuber-powder extracts, which acted as a reductant and stabilizer simultaneously. Characterizations of nanoparticles were done using different methods, which included ultraviolet-visible spectroscopy, powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, energy-dispersive X-ray fluorescence spectrometry, and Fourier-transform infrared spectroscopy. The ultraviolet-visible spectrum of the aqueous medium containing silver nanoparticles showed an absorption peak at around 415 nm. Transmission electron microscopy showed that mean diameter and standard deviation for the formation of silver nanoparticles was 6.30 ± 2.64 nm. Powder X-ray diffraction showed that the particles are crystalline in nature, with a face-centered cubic structure. The most needed outcome of this work will be the development of value-added products from C. longa for biomedical and nanotechnology-based industries. PMID:23341739
Optical and magnetic properties of Co-doped CuO flower/plates/particles-like nanostructures.
Basith, N Mohamed; Vijaya, J Judith; Kennedy, L John; Bououdina, M; Hussain, Shamima
2014-03-01
In this study, pure and Co-doped CuO nanostructures (0.5, 1.0, 1.5, and 2.0 at wt% of Co) were synthesized by microwave combustion method. The prepared samples were characterized by X-ray diffraction (XRD), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray analysis (EDX), diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometry (VSM). Powder X-ray diffraction patterns refined by the Rietveld method indicated the formation of single-phase monoclinic structure. The surface morphology and elemental analysis of Co-doped CuO nanostructures were studied by using HR-SEM and EDX. Interestingly, the morphology was found to change considerably from nanoflowers to nanoplates then to nanoparticles with the variation of Co concentration. The optical band gap calculated using DRS was found to be 2.1 eV for pure CuO and increases up to 3.4 eV with increasing cobalt content. Photoluminescence measurements also confirm these results. The magnetic measurements indicated that the obtained nanostructures were ferromagnetic at room temperature with an optimum value of saturation magnetization at 1.0 wt.% of Co-doped CuO, i.e., 970 micro emu/g.
Patel, Anup Kumar; Balani, Kantesh
2015-01-01
Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ~88°±2° to ~118°±4°) and surface energy (from ~23.20 to ~17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT-Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT-Al2O3 reinforced UHMWPE biopolymer composites. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Croft, M.; National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York 11973; Shukla, V.
Elastic and plastic strain evolution under four-point bending has been studied by synchrotron energy dispersive x-ray diffraction. Measured strain profiles across the specimen thickness showed an increasing linear elastic strain gradient under increasing four-point bending load up to approx2 kN. The bulk elastic modulus of Ti-6Al-4V was determined as 118 GPa. The onset of plastic deformation was found to set in at a total in-plane strain of approx0.008, both under tension and compression. Plastic deformation under bending is initiated in the vicinity of the surface and at a stress of 1100 MPa, and propagates inward, while a finite core regionmore » remains elastically deformed up to 3.67 kN loading. The onset of the plastic regime and the plastic regime itself has been verified by monitoring the line broadening of the (100) peak of alpha-Ti. The effective compression/tension stress-strain curve has been obtained from the scaling collapse of strain profile data taken at seven external load levels. A similar multiple load scaling collapse of the plastic strain variation has also been obtained. The level of precision in strain measurement reported herein was evaluated and found to be 1.5x10{sup -5} or better.« less
NASA Technical Reports Server (NTRS)
Gendreau, Keith (Inventor); Martins, Jose Vanderlei (Inventor); Arzoumanian, Zaven (Inventor)
2010-01-01
An X-ray diffraction and X-ray fluorescence instrument for analyzing samples having no sample preparation includes a X-ray source configured to output a collimated X-ray beam comprising a continuum spectrum of X-rays to a predetermined coordinate and a photon-counting X-ray imaging spectrometer disposed to receive X-rays output from an unprepared sample disposed at the predetermined coordinate upon exposure of the unprepared sample to the collimated X-ray beam. The X-ray source and the photon-counting X-ray imaging spectrometer are arranged in a reflection geometry relative to the predetermined coordinate.
Physical Identification of Binary System of Gliclazide-Hydrophilic Polymers Using X-Ray Diffraction
NASA Astrophysics Data System (ADS)
Rachmawati, H.; Yatinasari, Faizatun, Syarie, S. A.
2008-03-01
The formation of binary system in pharmaceutical solid state is aimed to improve the physicochemical characteristics of active compound, such as its solubility. To identify the physical change of the binary system including crystallinity or particle morphology, there are many methods can be applied. In present report, we study the physical interaction of the binary system of gliclazide and hydrophilic polymers. In this binary system, gliclazide was either dispersed or mixed with polyvinyl pirrolidone (PVP K30) or polyethylene glycol (PEG 6000). The dispersion system of gliclazide in the polymeric carriers was prepared by solvation-evaporation method, using dichloromethane/methylene chloride as an organic solvent. The physical characterization of both dispersed and mixed of gliclazide was studied using X-ray diffraction at interval 6-50 °/2θ. As a comparison, the same procedure was performed for pure gliclazide. To confirm the diffractogram of this binary system, Fourier Transform Infrared (FT-IR) spectroscopy was carried out as well. Both diffarctogram and FT-IR spectra revealed that there was no new compound formed in the solid dispersion system of gliclazide:PEG 6000 and gliclazide:PVP K30. In contrast, the solubility as well as the dissolution rate of gliclazide in the presence of both hydrophilic polymers was increased as compared to pure gliclazide. We conclude therefore that solvatation followed by evaporation of gliclazide in the presence of either PEG 6000 or PVP K30 did not alter its crystalline characteristic. The improved of gliclazide solubility in the binary system might due to other mechanism such as increased in the wettability and the hydrophylicity effect of the polymers.
atomic layer deposition for applications. He also manages the majority of X-ray characterization equipment at NREL, specifically X-ray diffraction and X-ray fluorescence instrumentation. Additionally, he for EERE's Hydrogen Storage program. He is also an expert in X-ray diffraction and X-ray fluorescence
NASA Astrophysics Data System (ADS)
Pankin, I. A.; Polozhentsev, O. E.; Soldatov, M. A.; Bugaev, A. L.; Tsaturyan, A.; Lomachenko, K. A.; Guda, A. A.; Budnyk, A. P.; Lamberti, C.; Soldatov, A. V.
2018-06-01
This article is devoted to the spectroscopic characterization of ZnS-ZnO nanoscale heterostructures synthesized by the microwave-assisted solvothermal method. The synthesized samples were investigated by means of X-ray powder diffraction (XRPD), high energy resolution fluorescence detected X-ray absorption near-edge-structure (HERFD-XANES) spectroscopy, valence-to-core X-ray emission spectroscopy (VtC-XES) and high resolution transmission electron microscopy (HR-TEM) as well as energy dispersive X-ray spectroscopy (EDX). The average crystallite size estimated by the broadening of XRPD peaks increases from 2.7 nm to 3.7 nm in the temperature range from 100 °C to 150 °C. HR-TEM images show that nanoparticles are arranged in aggregates with the 60-200 nm size. Theoretical estimation shows that the systems synthesized at higher temperatures more prone to the agglomeration. The full profile Reitveld analysis of XRPD data reveals the formation of hexagonal zinc sulfide structure, whereas electron diffraction data reveal also the formation of cubic zinc sulfide and claim the polymorphous character of the system. High energy resolution Zn K-edge XANES data unambiguously demonstrate the presence of a certain amount of the zinc oxide which is likely to have an amorphous structure and could not be detected by XRPD. Qualitative analysis of XANES data allows deriving ZnS/ZnO ratio as a function of synthesis temperature. EDX analysis depicts homogeneous distribution of ZnS and amorphous ZnO phases across the conglomerates. A complementary element-selective valence to core X-ray emission spectroscopy evidences formation of two-component system and confirms estimations of ZnS/ZnO fractions obtained by linear combination fit of XANES data.
Tang, M X; Zhang, Y Y; E, J C; Luo, S N
2018-05-01
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic-plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of the diffraction patterns is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, M. X.; Zhang, Y. Y.; E, J. C.
Polychromatic synchrotron undulator X-ray sources are useful for ultrafast single-crystal diffraction under shock compression. Here, simulations of X-ray diffraction of shock-compressed single-crystal tantalum with realistic undulator sources are reported, based on large-scale molecular dynamics simulations. Purely elastic deformation, elastic–plastic two-wave structure, and severe plastic deformation under different impact velocities are explored, as well as an edge release case. Transmission-mode diffraction simulations consider crystallographic orientation, loading direction, incident beam direction, X-ray spectrum bandwidth and realistic detector size. Diffraction patterns and reciprocal space nodes are obtained from atomic configurations for different loading (elastic and plastic) and detection conditions, and interpretation of themore » diffraction patterns is discussed.« less
Coherent X-ray diffraction imaging of nanoengineered polymeric capsules
NASA Astrophysics Data System (ADS)
Erokhina, S.; Pastorino, L.; Di Lisa, D.; Kiiamov, A. G.; Faizullina, A. R.; Tayurskii, D. A.; Iannotta, S.; Erokhin, V.
2017-10-01
For the first time, nanoengineered polymeric capsules and their architecture have been studied with coherent X-ray diffraction imaging technique. The use of coherent X-ray diffraction imaging technique allowed us to analyze the samples immersed in a liquid. We report about the significant difference between polymeric capsule architectures under dry and liquid conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Johns Hopkins University School of Medicine, Baltimore, MD 21205; Lyubimov, Artem Y.
A highly X-ray-transparent, silicon nitride-based device has been designed and fabricated to harvest protein microcrystals for high-resolution X-ray diffraction data collection using microfocus beamlines and XFELs. Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming themore » challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
The simulated spectrum of the OGRE X-ray EM-CCD camera system
NASA Astrophysics Data System (ADS)
Lewis, M.; Soman, M.; Holland, A.; Lumb, D.; Tutt, J.; McEntaffer, R.; Schultz, T.; Holland, K.
2017-12-01
The X-ray astronomical telescopes in use today, such as Chandra and XMM-Newton, use X-ray grating spectrometers to probe the high energy physics of the Universe. These instruments typically use reflective optics for focussing onto gratings that disperse incident X-rays across a detector, often a Charge-Coupled Device (CCD). The X-ray energy is determined from the position that it was detected on the CCD. Improved technology for the next generation of X-ray grating spectrometers has been developed and will be tested on a sounding rocket experiment known as the Off-plane Grating Rocket Experiment (OGRE). OGRE aims to capture the highest resolution soft X-ray spectrum of Capella, a well-known astronomical X-ray source, during an observation period lasting between 3 and 6 minutes whilst proving the performance and suitability of three key components. These three components consist of a telescope made from silicon mirrors, gold coated silicon X-ray diffraction gratings and a camera that comprises of four Electron-Multiplying (EM)-CCDs that will be arranged to observe the soft X-rays dispersed by the gratings. EM-CCDs have an architecture similar to standard CCDs, with the addition of an EM gain register where the electron signal is amplified so that the effective signal-to-noise ratio of the imager is improved. The devices also have incredibly favourable Quantum Efficiency values for detecting soft X-ray photons. On OGRE, this improved detector performance allows for easier identification of low energy X-rays and fast readouts due to the amplified signal charge making readout noise almost negligible. A simulation that applies the OGRE instrument performance to the Capella soft X-ray spectrum has been developed that allows the distribution of X-rays onto the EM-CCDs to be predicted. A proposed optical model is also discussed which would enable the missions minimum success criteria's photon count requirement to have a high chance of being met with the shortest possible observation time. These results are compared to a Chandra observation to show the overall effectiveness of the new technologies. The current optical module is shown to narrowly meet the minimum success conditions whilst the proposed model comfortably demonstrates the effectiveness of the technologies if a larger effective area is provided.
Nazeer, Muhammad Anwaar; Yilgör, Emel; Yilgör, Iskender
2017-11-01
Preparation and characterization of chitosan/hydroxyapatite (CS/HA) nanocomposites displaying an intercalated structure is reported. Hydroxyapatite was synthesized through sol-gel process. Formic acid was introduced as a new solvent to obtain stable dispersions of nano-sized HA particles in polymer solution. CS/HA dispersions with HA contents of 5, 10 and 20% by weight were prepared. Self-assembling of HA nanoparticles during the drying of the solvent cast films led to the formation of homogeneous CS/HA nanocomposites. Composite films were analyzed by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive X-rays (EDX) analysis, Fourier transform infrared (FTIR) spectroscopy, X-rays diffraction (XRD) analysis and thermogravimetric analysis (TGA). SEM and AFM confirmed the presence of uniformly distributed HA nanoparticles on the chitosan matrix surface. XRD patterns and cross-sectional SEM images showed the formation of layered nanocomposites. Complete degradation of chitosan matrix in TGA experiments, led to the formation of nanoporous 3D scaffolds containing hydroxyapatite, β-tricalcium phosphate and calcium pyrophosphate. CS/HA composites can be considered as promising materials for bone tissue engineering applications. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ex Situ Investigation of Anisotropic Interconnection in Silicon-Titanium-Nickel Alloy Anode Material
Cho, Jong -Soo; Alaboina, Pankaj Kumar; Kang, Chan -Soon; ...
2017-03-10
Herein we investigate the nanostructural evolution of Silicon-Titanium-Nickel (Si-Ti-Ni) ternary alloy material synthesized by melt spinning process for advanced lithium-ion battery anode. The synthesized material was found to have nano-Silicon particles dispersed in the Ti 4Ni 4Si 7 (STN) alloy buffering matrix and was characterized by X-ray diffraction (XRD), High resolution- transmission electron microscope (HR-TEM), Scanning transmission electron microscopes - energy dispersive X-ray spectrometer (STEM-EDS), and electrochemical performance test. The role of STN matrix is to accommodate the volume expansion stresses of the dispersed Si nanoparticles. However, an interesting behavior was observed during cycling. The Si nanoparticles were observed tomore » form interconnection channels growing through the weak STN matrix cracks and evolving to a network isolating the STN matrix into small puddles. In conclusion, this unique nanostructural evolution of Si particles and isolation of the STN matrix failing to offer significant buffering effect to the grown Si network eventually accelerates more volume expansions during cycling due to less mechanical confinement and leads to performance degradation and poor cycle stability.« less
NASA Astrophysics Data System (ADS)
Chen, Dong; Wang, Ruiqiang; Huang, Zhiquan; Wu, Yekang; Zhang, Yi; Wu, Guorui; Li, Dalong; Guo, Changhong; Jiang, Guirong; Yu, Shengxue; Shen, Dejiu; Nash, Philip
2018-03-01
Evolution processes of the corrosion behavior and structural characteristics of the plasma electrolytic oxidation (PEO) coated AZ31 magnesium alloy were investigated by using scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), potentio-dynamic polarization curves and electrochemical impedance spectroscopy (EIS) measurements. Detached coating samples were fabricated by an electrochemical method and more details of the internal micro-structure of coatings were clearly observed on the fractured cross-section morphologies of the samples compared to general polished cross-section morphologies. Evolution mechanisms of the coating corrosion behavior in relation to the evolution of micro-structural characteristics were discussed in detail.
SnS thin films deposited by chemical bath deposition, dip coating and SILAR techniques
NASA Astrophysics Data System (ADS)
Chaki, Sunil H.; Chaudhary, Mahesh D.; Deshpande, M. P.
2016-05-01
The SnS thin films were synthesized by chemical bath deposition (CBD), dip coating and successive ionic layer adsorption and reaction (SILAR) techniques. In them, the CBD thin films were deposited at two temperatures: ambient and 70 °C. The energy dispersive analysis of X-rays (EDAX), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM) and optical spectroscopy techniques were used to characterize the thin films. The electrical transport properties studies on the as-deposited thin films were done by measuring the I-V characteristics, DC electrical resistivity variation with temperature and the room temperature Hall effect. The obtained results are deliberated in this paper.
NASA Astrophysics Data System (ADS)
Cinkaya, Hatun; Eryurek, Gonul; Bilir, Gokhan; Collins, John; Di Bartolo, Baldassare
2017-01-01
We have studied nanophosphors of yttrium silicate (YSO) undoped and doped with different concentration of ytterbium (Yb3+) synthesized by using the sol-gel method. Structural and luminescence properties of the nanophosphors were studied experimentally by using different analytical techniques. For the structural analysis, we performed X-ray diffraction (XRD), Transmission Electron Microscopy (TEM) and Energy Dispersive X-ray Spectrometry (EDS) measurements. Upconversion (UC) and the white light (WL) emission properties were investigated by using the near infrared cw laser excitation of 975 nm. The spectral properties have been found to depend on several physical parameters.
Zeta-potential and particle size studies of silver sulphide nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Vikash, E-mail: vikash@csr.res.in; Tarachand,; Ganesan, V.
Silver sulfide (Ag{sub 2}S) nanoparticles (NPs) were prepared successfully for the first time using diethylene glycol (DEG) as a surfactant. X-ray diffraction (XRD) data revealed single phase nature of the compound and energy-dispersive X-ray (EDX) confirmed its nominal composition. Their sizes were 43 nm from XRD, 50 nm from atomic force microscopy (AFM) and 19 nm & 213 nm from dynamic light scattering (DLS); their differences have been discussed. Autotitration study of zeta potential of these NPs in deionized water by DLS at different pH values confirmed an isoelectric point at pH = 5.14 and their very unstable nature in deionized water.
Magnesium-Aluminum-Zirconium Oxide Amorphous Ternary Composite: A Dense and Stable Optical Coating
NASA Technical Reports Server (NTRS)
Sahoo, N. K.; Shapiro, A. P.
1998-01-01
In the present work, the process parameter dependent optical and structural properties of MgO-Al(2)O(3)-ZrO(2) ternary mixed-composite material have been investigated. Optical properties were derived from spectrophotometric measurements. The surface morphology, grain size distributions, crystallographic phases and process dependent material composition of films have been investigated through the use of Atomic Force Microscopy (AFM), X-ray diffraction analysis and Energy Dispersive X- ray (EDX) analysis. EDX analysis made evident the correlation between the optical constants and the process dependent compositions in the films. It is possible to achieve environmentally stable amorphous films with high packing density under certain optimized process conditions.
Crystallized alkali-silica gel in concrete from the late 1890s
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peterson, Karl; Gress, David; Van Dam, Tom
The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levelsmore » in the cements used.« less
Structural phase analysis and photoluminescence properties of Mg-doped TiO2 nanoparticles
NASA Astrophysics Data System (ADS)
Ali, T.; Ashraf, M. Anas; Ali, S. Asad; Ahmed, Ateeq; Tripathi, P.
2018-05-01
In this paper, we report the synthesis, characterization and photoluminescence properties of Mg-doped TiO2 nanoparticles (NPs). The samples were synthesized by sol-gel method and characterized using the standard analytical techniques such as X-ray diffraction (XRD), Transmission electron microscope (TEM), Energy dispersive X-ray spectroscopy (EDX), UV-visible and photoluminescence spectroscopy. The powder XRD spectra revealed that the synthesized samples are pure and crystalline in nature and showing tetragonal anatase phase of TiO2 NPs. UV-visible spectrum illustrates that an absorption edge shifts toward the visible region. This study may provide a new insight for making the nanomaterials which can be used in photocatalytic applications.
NASA Astrophysics Data System (ADS)
Mendoza-Barrera, C.; Meléndez-Lira, M.; Altuzar, V.; Tomás, S. A.
2003-01-01
We report the effect of the addition of an epidermal growth factor to a Ricinus communis-based biopolymer in the healing of a rat tibia model. Bone repair and osteointegration after a period of three weeks were evaluated employing photoacoustic spectroscopy and x-ray diffraction. A parallel study was performed at 1, 2, 3, 4, 5, 6, 7, and 8 weeks with energy dispersive x-ray spectroscopy. We conclude that the use of an epidermal growth factor (group EGF) in vivo accelerates the process of bony repair in comparison with other groups, and that the employment of the Ricinus communis-based biopolymer as a bone substitute decreases bone production.
NASA Astrophysics Data System (ADS)
Wu, Shufen; Yan, Songjing; Qi, Wei; Huang, Renliang; Cui, Jing; Su, Rongxin; He, Zhimin
2015-05-01
We demonstrated a facile and environmental-friendly approach to form gold nanoparticles through the reduction of HAuCl4 by aspartame. The single-crystalline structure was illustrated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The energy-dispersive X-ray spectroscopy (EDS) and Fourier transform infrared (FTIR) results indicated that aspartame played a pivotal role in the reduction and stabilization of the gold crystals. The crystals were stabilized through the successive hydrogen-bonding network constructed between the water and aspartame molecules. Additionally, gold nanoparticles synthesized through aspartame were shown to have good catalytic activity for the reduction of p-nitrophenol to p-aminophenol in the presence of NaBH4.
Synthesis and characterization of rare-earth-doped calcium tungstate nanocrystals
NASA Astrophysics Data System (ADS)
Suneeta, P.; Rajesh, Ch.; Ramana, M. V.
2018-02-01
In this paper, we report synthesis and characterization of rare-earth-ion-doped calcium tungstate (CaWO4) nanocrystals (NCs). Rare-earth ions, such as gadolinium (Gd), neodymium (Nd), praseodymium (Pr), samarium (Sm) and holmium (Ho), were successfully doped in the CaWO4 NCs by changing the synthesis conditions. The adopted synthesis route was found to be fast and eco-friendly. Structural characterizations, such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and compositional analysis, were performed using energy dispersive analysis of X-rays (EDAX) on as-synthesized NCs. The results indicate the size of the NCs ranging between 47 to 68nm and incorporation of rare-earth ions in CaWO4 NCs.
Growth of GaN@InGaN Core-Shell and Au-GaN Hybrid Nanostructures for Energy Applications
Kuykendall, Tevye; Aloni, Shaul; Jen-La Plante, Ilan; ...
2009-01-01
We demonstrated a method to control the bandgap energy of GaN nanowires by forming GaN@InGaN core-shell hybrid structures using metal organic chemical vapor deposition (MOCVD). Furthermore, we show the growth of Au nanoparticles on the surface of GaN nanowires in solution at room temperature. The work shown here is a first step toward engineering properties that are crucial for the rational design and synthesis of a new class of photocatalytic materials. The hybrid structures were characterized by various techniques, including photoluminescence (PL), energy dispersive x-ray spectroscopy (EDS), transmission and scanning electron microscopy (TEM and SEM), and x-ray diffraction (XRD).
NASA Astrophysics Data System (ADS)
Eslami, N.; Mahmoodian, R.; Hamdi, M.; Khatir, Nadia Mahmoudi; Herliansyah, M. K.; Rafieerad, Ali Reza
2017-04-01
The bone-bonding potential of biomaterials is evaluated in vitro through examining the surface apatite formation in Hank's media to enhance biocompatibility, which is also applicable to facilitate in vivo osseointegration of implantable devices. Hence, bovine hydroxyapatite (BHA) bioceramic structures have been used in various biomedical applications such as orthopedic implants. In this article, the microstructure, in vitro bioactivity, and nanomechanical properties of the synthesized dense and porous BHA are investigated via scanning electron microscopy, x-ray diffraction, energy-dispersive x-ray spectroscopy, Fourier transform infrared spectroscopy, and nanoindentation analysis. From the obtained results, porous BHA mostly possesses adequate requirements for substitution as implants in the human body.
ZnO:Gd nanocrystals for fluorescent applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Divya, N. K., E-mail: divyank90@gmail.com; Pradyumnan, P. P.
2016-05-23
Gadolinium doped ZnO crystals within the solubility limit of gadolinium in ZnO matrix were prepared by solid state reaction technique. The method is relatively less expense and enables the production in large scale. The samples were characterised by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDS), scanning electron microscopy (SEM), UV/Vis diffuse reflectance spectroscopy and photoluminescence techniques. Fluorescent property studies of gadolinium doped ZnO at room temperature show enhanced visible light emission due to the defects and oxygen vacancies produced via doping. This work reports the impact of gadolinium doping in the structural, optical and luminescent properties of ZnO inmore » detail.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, Brian J.; Kroll, Jared O.; Peterson, Jacob A.
This paper provides an overview of research evaluating the use of tellurite glass as a waste form for salt wastes from electrochemical processing. The capacities to immobilize different salts were evaluated including: a LiCl-Li2O oxide reduction salt (for oxide fuel) containing fission products, a LiCl-KCl eutectic salt (for metallic fuel) containing fission products, and SrCl2. Physical and chemical properties of the glasses were characterized by using X-ray diffraction, bulk density measurements, chemical durability tests, scanning electron microscopy, and energy dispersive X-ray emission spectroscopy. These glasses were found to accommodate high concentrations of halide salts and have high densities. However, improvementsmore » are needed to meet chemical durability requirements.« less
Pseudomonas aeruginosa KUCD1, a possible candidate for cadmium bioremediation
Sinha, Sangram; Mukherjee, Samir Kumar
2009-01-01
A cadmium (8 mM) resistant Pseudomonas aeruginosa strain KUCd1 exhibiting high Cd accumulation under in vitro aerobic condition has been reported. The isolate showed a significant ability to remove more than 75% and 89% of the soluble cadmium during the active growth phase from the growth medium and from Cd-amended industrial wastewater under growth supportive condition. Transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDXS) suggest the presence of Cd in the cells from mid stationary phase. The cell fractionation study revealed membrane and periplasm to be the major accumulating site in this strain. The chemical nature of the accumulated Cd was studied by X-ray powder diffraction analysis. PMID:24031411
Synthesis of galium nitride thin films using sol-gel dip coating method
NASA Astrophysics Data System (ADS)
Hamid, Maizatul Akmam Ab; Ng, Sha Shiong
2017-12-01
In this research, gallium nitride (GaN) thin film were grown on silicon (Si) substrate by a low-cost sol-gel dip coating deposition method. The GaN precursor solution was prepared using gallium (III) nitrate hydrate powder, ethanol and diethanolamine as a starting material, solvent and surfactant respectively. The structural, morphological and optical characteristics of the deposited GaN thin film were investigated. Field-emission scanning electron microscopy observations showed that crack free and dense grains GaN thin films were formed. Energy dispersive X-ray analysis confirmed that the oxygen content in the deposited films was low. X-ray diffraction results revealed that deposited GaN thin films have hexagonal wurtzite structure.
Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices
NASA Astrophysics Data System (ADS)
Thakur, Shashi; Gathania, Arvind K.
2015-10-01
YVO4:Eu nanophosphor has been synthesized by the sol-gel method. Samples were characterized by x-ray diffraction (XRD), energy-dispersive x-ray spectroscopy, Fourier-transform infrared spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence, and Raman spectroscopy. The XRD profile confirms the tetragonal phase of the Eu3+-doped YVO4 nanophosphor. The efficiency of the prepared phosphor was analyzed by means of its emission spectral profile. We also observed rich red emission from the prepared phosphor on excitation by an ultraviolet source. The calculated Commission International de l'Éclairage coordinates reveal excellent color purity efficiency. Such luminescent powder is useful as red phosphor in display device applications.
Abendroth, Jan; McCormick, Michael S.; Edwards, Thomas E.; Staker, Bart; Loewen, Roderick; Gifford, Martin; Rifkin, Jeff; Mayer, Chad; Guo, Wenjin; Zhang, Yang; Myler, Peter; Kelley, Angela; Analau, Erwin; Hewitt, Stephen Nakazawa; Napuli, Alberto J.; Kuhn, Peter; Ruth, Ronald D.; Stewart, Lance J.
2010-01-01
Structural genomics discovery projects require ready access to both X-ray and NMR instrumentation which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive frequent use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large government-run synchrotron facilities for data collection. In an effort to eliminate the need to ship crystals for data collection, we have developed the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam. PMID:20364333
Hydroxyapatite-silver nanoparticles coatings on porous polyurethane scaffold.
Ciobanu, Gabriela; Ilisei, Simona; Luca, Constantin
2014-02-01
The present paper is focused on a study regarding the possibility of obtaining hydroxyapatite-silver nanoparticle coatings on porous polyurethane scaffold. The method applied is based on a combined strategy involving hydroxyapatite biomimetic deposition on polyurethane surface using a Supersaturated Calcification Solution (SCS), combined with silver ions reduction and in-situ crystallization processes on hydroxyapatite-polyurethane surface by sample immersing in AgNO3 solution. The morphology, composition and phase structure of the prepared samples were characterized by scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX), X-ray diffraction (XRD), UV-Vis spectroscopy and X-ray photoelectron spectroscopy (XPS) measurements. The data obtained show that a layer of hydroxyapatite was deposited on porous polyurethane support and the silver nanoparticles (average size 34.71 nm) were dispersed among and even on the hydroxyapatite crystals. Hydroxyapatite/polyurethane surface acts as a reducer and a stabilizing agent for silver ions. The surface plasmon resonance peak in UV-Vis absorption spectra showed an absorption maximum at 415 nm, indicating formation of silver nanoparticles. The hydroxyapatite-silver polyurethane scaffolds were tested against Staphylococcus aureus and Escherichia coli and the obtained data were indicative of good antibacterial properties of the materials. © 2013.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farooq, Muhammad; Ramli, Anita; Subbarao, Duvvuri
2012-09-26
The physical and chemical properties of a catalyst play a vital role in various industrial applications. Molybdenum catalysts supported on {gamma}-Al{sub 2}O{sub 3} and {gamma}-Al{sub 2}O{sub 3}-CeO{sub 2} mixed oxides with varying loading of CeO{sub 2} (5, 10, 15, 20 wt% with respect to {gamma}-Al{sub 2}O{sub 3}) were prepared by wet impregnation method. The physiochemical properties of these synthesized Mo catalysts were studied with various characterization techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), field emission scanning electron microscopy-energy dispersive analysis (FESEM-EDX) and X-ray fluorescence spectrometer (XRF). The results showed that the addition of CeO{submore » 2} into the support affected the binding energies of the elements and reducibility of the metal oxides formed after calcination of catalyst samples due to the change in metal-support interaction. Further, the characterization techniques showed that the active metal was well dispersed on the surface of support material.« less
Rathi, Monika; Ahrenkiel, S P; Carapella, J J; Wanlass, M W
2013-02-01
Given an unknown multicomponent alloy, and a set of standard compounds or alloys of known composition, can one improve upon popular standards-based methods for energy dispersive X-ray (EDX) spectrometry to quantify the elemental composition of the unknown specimen? A method is presented here for determining elemental composition of alloys using transmission electron microscopy-based EDX with appropriate standards. The method begins with a discrete set of related reference standards of known composition, applies multivariate statistical analysis to those spectra, and evaluates the compositions with a linear matrix algebra method to relate the spectra to elemental composition. By using associated standards, only limited assumptions about the physical origins of the EDX spectra are needed. Spectral absorption corrections can be performed by providing an estimate of the foil thickness of one or more reference standards. The technique was applied to III-V multicomponent alloy thin films: composition and foil thickness were determined for various III-V alloys. The results were then validated by comparing with X-ray diffraction and photoluminescence analysis, demonstrating accuracy of approximately 1% in atomic fraction.
PEDOT:PSS/GO nanocomposites: Determination of the aspect ratio by indirect measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuri, Antonella; Colella, Silvia; Listorti, Andrea
2016-05-18
Polymer nanocomposites properties significantly depend on the average size of the fillers dispersed into the matrix and on the grade of the dispersion, the latter influenced by the process techniques. In this work, we determined the aspect ratio of graphene oxide (GO) dispersed into Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), starting from the indirect measurement of the rheological behavior of polymer/filler mixtures, as a function of the shear rate and the volumetric composition. PEDOT:PSS+GO nanocomposite films were also realized by spin coating on different substrates and characterized by Scanning electron microscopy (SEM) and X-ray diffraction (XRD), in order to analyze the quality of themore » dispersion, even by direct measurements.« less
Maeda, Kazuhiko; Ishimaki, Koki; Okazaki, Megumi; Kanazawa, Tomoki; Lu, Daling; Nozawa, Shunsuke; Kato, Hideki; Kakihana, Masato
2017-02-22
The structure of cobalt oxide (CoO x ) nanoparticles dispersed on rutile TiO 2 (R-TiO 2 ) was characterized by X-ray diffraction, UV-vis-NIR diffuse reflectance spectroscopy, high-resolution transmission electron microscopy, X-ray absorption fine-structure spectroscopy, and X-ray photoelectron spectroscopy. The CoO x nanoparticles were loaded onto R-TiO 2 by an impregnation method from an aqueous solution containing Co(NO 3 ) 2 ·6H 2 O followed by heating in air. Modification of the R-TiO 2 with 2.0 wt % Co followed by heating at 423 K for 1 h resulted in the highest photocatalytic activity with good reproducibility. Structural analyses revealed that the activity of this photocatalyst depended strongly on the generation of Co 3 O 4 nanoclusters with an optimal distribution. These nanoclusters are thought to interact with the R-TiO 2 surface, resulting in visible light absorption and active sites for water oxidation.
Anti-contamination device for cryogenic soft X-ray diffraction microscopy
Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; ...
2011-05-01
Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.
NASA Astrophysics Data System (ADS)
Wuhrer, R.; Moran, K.
2018-01-01
The wavelength-dispersive X-ray spectrometer (WDS) has been around for a long time and the design has not changed much since its original development. The electron microprobe operator using WDS has to be meticulous in monitoring items such as gas flow, gas purity, gas pressure, noise levels of baseline and window, gas flow proportional counter (GFPC) voltage levels, count rate suppression, anode wire contamination and other detector parameters. Recent development and improvements of silicon drift detectors (SDD’s) has allowed the incorporation of a SDD as the X-ray detector in place of the proportional counter (PC) and/or gas flow proportional counter (GFPC). This allows minimal mechanical alteration and no loss of movement range. The superiority of a WDS with a SDD, referred to as SD-WDS, is easily seen once in operation. The SD-WDS removes many artefacts including the worse of all high order diffraction, thus allowing more accurate analysis. The incorporation of the SDD has been found to improve the light and mid element range and consequently improving the detection limit for these elements. It is also possible to obtain much more reliable results at high count rates with almost no change in resolution, gain and zero-peak characteristics of the energy spectrum.
Observation of electromigration in a Cu thin line by in situ coherent x-ray diffraction microscopy
NASA Astrophysics Data System (ADS)
Takahashi, Yukio; Nishino, Yoshinori; Furukawa, Hayato; Kubo, Hideto; Yamauchi, Kazuto; Ishikawa, Tetsuya; Matsubara, Eiichiro
2009-06-01
Electromigration (EM) in a 1-μm-thick Cu thin line was investigated by in situ coherent x-ray diffraction microscopy (CXDM). Characteristic x-ray speckle patterns due to both EM-induced voids and thermal deformation in the thin line were observed in the coherent x-ray diffraction patterns. Both parts of the voids and the deformation were successfully visualized in the images reconstructed from the diffraction patterns. This result not only represents the first demonstration of the visualization of structural changes in metallic materials by in situ CXDM but is also an important step toward studying the structural dynamics of nanomaterials using x-ray free-electron lasers in the near future.
On the Corrosion Performance of Monel 400 in Molten LiCl-Li2O-Li at 923 K
NASA Astrophysics Data System (ADS)
Phillips, William; Merwin, Augustus; Chidambaram, Dev
2018-06-01
The corrosion resistance of a Ni-Cu alloy, Monel 400, in molten LiCl-Li2O-Li at 923 K (650 °C) was investigated. Exposure testing of Monel 400 samples submerged in molten LiCl-2 wt pct Li2O solutions with Li concentrations between zero and 1 wt pct was performed at 923 K (650°C) for 20 hours. Post exposure surface analysis was performed using X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, optical microscopy, micro-Vickers hardness testing, and X-ray photoelectron spectroscopy, while inductively coupled plasma optical emission spectroscopy was used to quantify the rate of material leaching. The extent of material degradation was observed to be strongly correlated to the concentration of metallic Li in the molten LiCl-Li2O system.
Fabrication of luminescent SrWO{sub 4} thin films by a novel electrochemical method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Lianping; Gao Yuanhong
2007-10-02
Highly crystallized SrWO{sub 4} thin films with single scheelite structure were prepared within 60 min by a cell electrochemical method. X-ray diffraction analysis shows that SrWO{sub 4} thin films have a tetragonal structure. Scanning electron microscopy examinations reveal that SrWO{sub 4} grains grow well in tetragonal tapers and grains like flowers or bunches, which can usually form by using the electrolysis electrochemical method, have disappeared under cell electrochemical conditions. X-ray photoelectron spectra and energy dispersive X-ray microanalysis examinations demonstrate that the composition of the film is consistent with its stoichiometry. These SrWO{sub 4} films show a single blue emission peakmore » (located at 460 nm) using an excitation wave of 230 nm. The speed of cell electrochemical method can be controlled by changing temperature. The optimum treatment temperature is about 50-60 deg. C.« less
A Potential Waste to be Selected as Media for Metal and Nutrient Removal
NASA Astrophysics Data System (ADS)
Zayadi, N.; Othman, N.; Hamdan, R.
2016-07-01
This study describes the potential of application of cassava peel, banana peel, coconut shell, and coconut coir to be selected as metal removal while limestone and steel slag for nutrient removal. The media were characterized by X-Ray Fluorescence (XRF), Fourier Transform Infrared (FTIR), Field Emission Scanning Electron Microscopy-Energy Dispersive X-Ray (FESEM-EDX), and X-Ray Powder Diffraction (XRD). The results of XRF analysis medias show the present of calcium oxide, CaO which confirm the high efficiency in adsorbing metal ions and nutrient which is in agreement with the result of XRD. The characteristics of medias by FTIR analysis also confirmed the involvement of alcohol, carboxylic, alkanes, amines and ethers which play important role to reduce ions while FESEM-EDX indicates the porous structures of study medias. The characterization analysis highlight that cassava peel and steel slag were selected as a potential media in this study.
Nanocomposites based on thermoplastic elastomers with functional basis of nano titanium dioxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yulovskaya, V. D.; Kuz’micheva, G. M., E-mail: galina-kuzmicheva@list.ru; Klechkovskaya, V. V.
2016-03-15
Nanocomposites based on a thermoplastic elastomer (TPE) (low-density polyethylene (LDPE) and 1,2-polybutadiene in a ratio of 60/40) with functional titanium dioxide nanoparticles of different nature, TiO{sub 2}/TPE, have been prepared and investigated by a complex of methods (X-ray diffraction analysis using X-ray and synchrotron radiation beams, scanning electron microscopy, transmission electron microscopy, and X-ray energy-dispersive spectroscopy). The morphology of the composites is found to be somewhat different, depending on the TiO{sub 2} characteristics. It is revealed that nanocomposites with cellular or porous structures containing nano-TiO{sub 2} aggregates with a large specific surface and large sizes of crystallites and nanoparticles exhibitmore » the best deformation‒strength and fatigue properties and stability to the effect of active media under conditions of ozone and vapor‒air aging.« less
Thermal effects of laser marking on microstructure and corrosion properties of stainless steel.
Švantner, M; Kučera, M; Smazalová, E; Houdková, Š; Čerstvý, R
2016-12-01
Laser marking is an advanced technique used for modification of surface optical properties. This paper presents research on the influence of laser marking on the corrosion properties of stainless steel. Processes during the laser beam-surface interaction cause structure and color changes and can also be responsible for reduction of corrosion resistance of the surface. Corrosion tests, roughness, microscopic, energy dispersive x-ray, grazing incidence x-ray diffraction, and ferrite content analyses were carried out. It was found that increasing heat input is the most crucial parameter regarding the degradation of corrosion resistance of stainless steel. Other relevant parameters include the pulse length and pulse frequency. The authors found a correlation between laser processing parameters, grazing incidence x-ray measurement, ferrite content, and corrosion resistance of the affected surface. Possibilities and limitations of laser marking of stainless steel in the context of the reduction of its corrosion resistance are discussed.
Synthesis, magnetic and ethanol gas sensing properties of semiconducting magnetite nanoparticles
NASA Astrophysics Data System (ADS)
Al-Ghamdi, Ahmed A.; Al-Hazmi, Faten; Al-Tuwirqi, R. M.; Alnowaiser, F.; Al-Hartomy, Omar A.; El-Tantawy, Farid; Yakuphanoglu, F.
2013-05-01
The superparamagnetic magnetite (Fe3O4) nanoparticles with an average size of 7 nm were synthesized using a rapid and facile microwave hydrothermal technique. The structure of the magnetite nanoparticles was characterized by X-ray diffraction (X-ray), field effect scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS), and transmission electron microscopy (TEM). The prepared Fe3O4 was shown to have a cubic phase of pure magnetite. Magnetization hysteresis loop shows that the synthesized magnetite exhibits no hysteretic features with a superparamagnetic behavior. The ethanol gas sensing properties of the synthesized magnetite were investigated, and it was found that the responsibility time is less than 10 s with good reproducibility for ethanol sensor. Accordingly, it is evaluated that the magnetite nanoparticles can be effectively used as a solid state ethanol sensor in industrial commercial product applications.
NASA Technical Reports Server (NTRS)
Kuntz, Todd A.; Wadley, Haydn N. G.; Black, David R.
1993-01-01
An X-ray technique for the measurement of internal residual strain gradients near the continuous reinforcements of metal matrix composites has been investigated. The technique utilizes high intensity white X-ray radiation from a synchrotron radiation source to obtain energy spectra from small (0.001 cu mm) volumes deep within composite samples. The viability of the technique was tested using a model system with 800 micron Al203 fibers and a commercial purity titanium matrix. Good agreement was observed between the measured residual radial and hoop strain gradients and those estimated from a simple elastic concentric cylinders model. The technique was then used to assess the strains near (SCS-6) silicon carbide fibers in a Ti-14Al-21Nb matrix after consolidation processing. Reasonable agreement between measured and calculated strains was seen provided the probe volume was located 50 microns or more from the fiber/matrix interface.
NASA Astrophysics Data System (ADS)
Carja, Gabriela; Nakajima, Akira; Dranca, Cristian; Okada, Kiyoshi
2010-10-01
A room temperature nanocarving strategy is developed for the fabrication of nanoparticles of nickel oxide on zinc-substituted anionic clay matrix (Ni/ZnLDH). It is based on the growth and organization of nanoparticles of nickel oxide which occur during the structural reconstruction of the layered structure of the anionic clay in NiSO4 aqueous solution. No organic compounds are used during the fabrication. The described material was characterized by X-ray diffraction (XRD), IR spectroscopy (FTIR), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDX) spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that the nickel-clay nanoarchitecture consists of small nanoparticles of nickel oxide (average size 7 nm) deposited on the larger nanoparticles (average size 90 nm) of zinc-substituted clay. The optical properties of the new nickel-zinc formulation are studied by UV-Vis.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Corrosion product layers on magnesium alloys AZ31 and AZ61: Surface chemistry and protective ability
NASA Astrophysics Data System (ADS)
Feliu, S.; Llorente, I.
2015-08-01
This paper studies the chemical composition of the corrosion product layers formed on magnesium alloys AZ31 and AZ61 following immersion in 0.6 M NaCl, with a view to better understanding their protective action. Relative differences in the chemical nature of the layers were quantified by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDX) and low-angle X-ray diffraction (XRD). Corrosion behavior was investigated by Electrochemical Impedance Spectroscopy (EIS) and hydrogen evolution measurement. An inhibitive effect from the corrosion product layers was observed from EIS, principally in the case of AZ31, as confirmed by hydrogen evolution tests. A link was found between carbonate enrichment observed by XPS in the surface of the corrosion product layer, concomitant with the increase in the protective properties observed by EIS.
NASA Astrophysics Data System (ADS)
Chen, Jiajia; Shi, Xiaowen; Zhan, Yingfei; Qiu, Xiaodan; Du, Yumin; Deng, Hongbing
2017-03-01
Chitosan (CS)/rectorite (REC)/carbon nanotubes (CNTs) composite foams with good mechanical properties were successfully fabricated by unidirectional freeze-casting technique. The morphology of the foam showed the well-ordered porous three-dimensional layers and horizontal stratum landform-like structure. The holes on the layers looked like the wings of butterfly. Additionally, the X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy results indicated the successful addition of CNTs and REC. The intercalated REC with CS chains was confirmed by small-angle X-ray diffraction. The surface structure of the foams was also analyzed by Raman spectroscopy. The adsorption experiments showed that when the mass ratio of CS to REC was 10:1 and CNTs content was 20%, the composite foam performed best in adsorbing low concentration methyl orange, and the largest adsorption capacity was 41.65 mg/g.
Sun, Cheng-Jun; Zhang, Bangmin; Brewe, Dale L; Chen, Jing-Sheng; Chow, G M; Venkatesan, T; Heald, Steve M
2014-04-01
X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are two main x-ray techniques in synchrotron radiation facilities. In this Note, we present an experimental setup capable of performing simultaneous XRD and XAS measurements by the application of a pixel-array area detector. For XRD, the momentum transfer in specular diffraction was measured by scanning the X-ray energy with fixed incoming and outgoing x-ray angles. By selecting a small fixed region of the detector to collect the XRD signal, the rest of the area was available for collecting the x-ray fluorescence for XAS measurements. The simultaneous measurement of XRD and X-ray absorption near edge structure for Pr0.67Sr0.33MnO3 film was demonstrated as a proof of principle for future time-resolved pump-probe measurements. A static sample makes it easy to maintain an accurate overlap of the X-ray spot and laser pump beam.
X-Ray Diffraction Wafer Mapping Method for Rhombohedral Super-Hetero-Epitaxy
NASA Technical Reports Server (NTRS)
Park, Yoonjoon; Choi, Sang Hyouk; King, Glen C.; Elliott, James R.; Dimarcantonio, Albert L.
2010-01-01
A new X-ray diffraction (XRD) method is provided to acquire XY mapping of the distribution of single crystals, poly-crystals, and twin defects across an entire wafer of rhombohedral super-hetero-epitaxial semiconductor material. In one embodiment, the method is performed with a point or line X-ray source with an X-ray incidence angle approximating a normal angle close to 90 deg, and in which the beam mask is preferably replaced with a crossed slit. While the wafer moves in the X and Y direction, a narrowly defined X-ray source illuminates the sample and the diffracted X-ray beam is monitored by the detector at a predefined angle. Preferably, the untilted, asymmetric scans are of {440} peaks, for twin defect characterization.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source
NASA Astrophysics Data System (ADS)
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
Diffraction based method to reconstruct the spectrum of the Thomson scattering x-ray source.
Chi, Zhijun; Yan, Lixin; Zhang, Zhen; Zhou, Zheng; Zheng, Lianmin; Wang, Dong; Tian, Qili; Wang, Wei; Nie, Zan; Zhang, Jie; Du, Yingchao; Hua, Jianfei; Shi, Jiaru; Pai, Chihao; Lu, Wei; Huang, Wenhui; Chen, Huaibi; Tang, Chuanxiang
2017-04-01
As Thomson scattering x-ray sources based on the collision of intense laser and relativistic electrons have drawn much attention in various scientific fields, there is an increasing demand for the effective methods to reconstruct the spectrum information of the ultra-short and high-intensity x-ray pulses. In this paper, a precise spectrum measurement method for the Thomson scattering x-ray sources was proposed with the diffraction of a Highly Oriented Pyrolytic Graphite (HOPG) crystal and was demonstrated at the Tsinghua Thomson scattering X-ray source. The x-ray pulse is diffracted by a 15 mm (L) ×15 mm (H)× 1 mm (D) HOPG crystal with 1° mosaic spread. By analyzing the diffraction pattern, both x-ray peak energies and energy spectral bandwidths at different polar angles can be reconstructed, which agree well with the theoretical value and simulation. The higher integral reflectivity of the HOPG crystal makes this method possible for single-shot measurement.
NASA Astrophysics Data System (ADS)
Padmapriya, G.; Manikandan, A.; Krishnasamy, V.; Jaganathan, Saravana Kumar; Antony, S. Arul
2016-09-01
Spinel NixZn1-xFe2O4 (x = 0.0 to 1.0) nanoparticles were successfully synthesized by a simple microwave combustion method (MCM) using metal nitrates as raw materials and glycine as the fuel. The structural, morphological and opto-magnetic properties of the spinel NixZn1-xFe2O4 ferrites were determined by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscopy (HR-SEM), energy dispersive X-ray (EDX) spectroscopy, high resolution transmission electron microscopy (HR-TEM), selected area electron diffraction (SAED) pattern, UV-Visible diffuse reflectance spectroscopy (DRS), photoluminescence (PL) spectroscopy and vibrating sample magnetometer (VSM). Powder XRD, and EDX analysis was confirmed the formation of pure phase of spinel ferrites. HR-SEM and HR-TEM analysis was confirmed the formation of sphere like-particle morphology of the samples with smaller agglomeration. VSM analysis clearly showed the superparamagnetic and ferromagnetic nature of the samples. The Ms value is 3.851 emu/g for undoped ZnFe2O4 sample and it increased with increase in Ni content. Photo-catalytic degradation (PCD) of methylene blue (MB) dye using the samples were carried out and observed good PCD results.
NASA Astrophysics Data System (ADS)
Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær
2017-03-01
In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO4·KOH·H2O or more accurately as KCd2(CrO4)2(H3O2) illustrating the μ-H3O2- species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V).
Christiansen, Marie Bitsch; Sørensen, Mikkel Agerbæk; Sanyova, Jana; Bendix, Jesper; Simonsen, Kim Pilkjær
2017-03-15
In an investigation of the artists' materials used by P. S. Krøyer the contents of the tube colours found in Krøyer's painting cabinet were examined. In most cases, the results of the pigment analyses were as expected based on our knowledge of artists' colours used in the late 1800s and early 1900s. However, in one of the tube colours labelled "Jaune de Cadmium Citron" (cadmium lemon yellow) an extremely rare cadmium chromate pigment was found. The pigment was analysed and characterised by Raman microscopy (MRS), scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), powder X-ray diffraction (PXRD), single-crystal X-ray crystallography, and electron paramagnetic resonance (EPR) spectroscopy. Cadmium chromate was synthesised by precipitation from an aqueous solution of cadmium nitrate and potassium chromate, and the resulting yellow crystals proved identical to the pigment found in the tube colour "Jaune de Cadmium Citron". The structure determined by single-crystal X-ray diffraction identified the pigment as 2CdCrO 4 ·KOH·H 2 O or more accurately as KCd 2 (CrO 4 ) 2 (H 3 O 2 ) illustrating the μ-H 3 O 2 - species. The yellow colour of the paint sample taken from the tube had a greenish hue, which became even more prominent upon storage and drying. EPR analysis of the sample showed the presence of paramagnetic degradation products containing Cr(III) and Cr(V). Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of Metal Powders Used for Additive Manufacturing
Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA
2014-01-01
Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040
NASA Astrophysics Data System (ADS)
Luo, S. N.; Jensen, B. J.; Hooks, D. E.; Fezzaa, K.; Ramos, K. J.; Yeager, J. D.; Kwiatkowski, K.; Shimada, T.
2012-07-01
The highly transient nature of shock loading and pronounced microstructure effects on dynamic materials response call for in situ, temporally and spatially resolved, x-ray-based diagnostics. Third-generation synchrotron x-ray sources are advantageous for x-ray phase contrast imaging (PCI) and diffraction under dynamic loading, due to their high photon fluxes, high coherency, and high pulse repetition rates. The feasibility of bulk-scale gas gun shock experiments with dynamic x-ray PCI and diffraction measurements was investigated at the beamline 32ID-B of the Advanced Photon Source. The x-ray beam characteristics, experimental setup, x-ray diagnostics, and static and dynamic test results are described. We demonstrate ultrafast, multiframe, single-pulse PCI measurements with unprecedented temporal (<100 ps) and spatial (˜2 μm) resolutions for bulk-scale shock experiments, as well as single-pulse dynamic Laue diffraction. The results not only substantiate the potential of synchrotron-based experiments for addressing a variety of shock physics problems, but also allow us to identify the technical challenges related to image detection, x-ray source, and dynamic loading.
Multiferroic properties in NdFeO3-PbTiO3 solid solutions
NASA Astrophysics Data System (ADS)
Kumar, Sunil; Pal, Jaswinder; Kaur, Shubhpreet; Agrawal, P.; Singh, Mandeep; Singh, Anupinder
2018-05-01
The x(NdFeO3) - 1-x(PbTiO3) where x = 0.2 solid solution was prepared using solid state reaction route. The X-ray diffraction (XRD) data reveals the single phase formation. The microstructure shows grain growth with lesser porosity. The energy dispersive analysis confirms the presence of elements in stochiometric proportion. The polarization vs. Electric field loop estabilished a ferroelectric type behavior but lossy in nature. This lossy nature may be due to the presence of large leakage current in solid solution. The Magnetization vs. Magnetic field plot exhibits a unsaturated hysteriss loop indicates that the sample is not purely ferromagnetic.
Inhibition effects of protein-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth
NASA Astrophysics Data System (ADS)
Cao, Ying; Wang, Hua-Jie; Cao, Cui; Sun, Yuan-Yuan; Yang, Lin; Wang, Bao-Qing; Zhou, Jian-Guo
2011-07-01
In this article, a facile and environmentally friendly method was applied to fabricate BSA-conjugated amorphous zinc sulfide (ZnS) nanoparticles using bovine serum albumin (BSA) as the matrix. Transmission electron microscopy analysis indicated that the stable and well-dispersed nanoparticles with the diameter of 15.9 ± 2.1 nm were successfully prepared. The energy dispersive X-ray, X-ray powder diffraction, Fourier transform infrared spectrograph, high resolution transmission electron microscope, and selected area electron diffraction measurements showed that the obtained nanoparticles had the amorphous structure and the coordination occurred between zinc sulfide surfaces and BSA in the nanoparticles. In addition, the inhibition effects of BSA-conjugated amorphous zinc sulfide nanoparticles on tumor cells growth were described in detail by cell viability analysis, optical and electron microscopy methods. The results showed that BSA-conjugated amorphous zinc sulfide nanoparticles could inhibit the metabolism and proliferation of human hepatocellular carcinoma cells, and the inhibition was dose dependent. The half maximal inhibitory concentration (IC50) was 0.36 mg/mL. Overall, this study suggested that BSA-conjugated amorphous zinc sulfide nanoparticles had the application potential as cytostatic agents and BSA in the nanoparticles could provide the modifiable site for the nanoparticles to improve their bioactivity or to endow them with the target function.
NASA Astrophysics Data System (ADS)
Nakhjavani, Maryam; Nikkhah, V.; Sarafraz, M. M.; Shoja, Saeed; Sarafraz, Marzieh
2017-10-01
In this paper, silver nanoparticles are produced via green synthesis method using green tea leaves. The introduced method is cost-effective and available, which provides condition to manipulate and control the average nanoparticle size. The produced particles were characterized using x-ray diffraction, scanning electron microscopic images, UV visualization, digital light scattering, zeta potential measurement and thermal conductivity measurement. Results demonstrated that the produced samples of silver nanoparticles are pure in structure (based on the x-ray diffraction test), almost identical in terms of morphology (spherical and to some extent cubic) and show longer stability when dispersed in deionized water. The UV-visualization showed a peak in 450 nm, which is in accordance with the previous studies reported in the literature. Results also showed that small particles have higher thermal and antimicrobial performance. As green tea leaves are used for extracting the silver nanoparticles, the method is eco-friendly. The thermal behaviour of silver nanoparticle was also analysed by dispersing the nanoparticles inside the deionized water. Results showed that thermal conductivity of the silver nano-fluid is higher than that of obtained for the deionized water. Activity of Ag nanoparticles against some bacteria was also examined to find the suitable antibacterial application for the produced particles.
Villalobos-Hernández, J R; Müller-Goymann, C C
2005-05-01
The purpose of this study was to characterize carrier systems for inorganic sunscreens based on a matrix composed of carnauba wax and decyl oleate. Ultraviolet radiation attenuators like barium sulfate, strontium carbonate and titanium dioxide were tested. The lipid matrices were used either as capsules or as accompanying vehicles for the pigments in aqueous dispersions. Manufacturing was performed using high pressure homogenization at 300bar and a temperature of 75 degrees C. To evaluate the effect of the pigments on the crystalline structure of the wax-oil mixture, X-ray diffraction and differential scanning calorimetry were used. Further parameters determined were particle size, polydispersity index, z-potential, viscosity and sun protection factor (SPF). Transmission electron microscopy was also applied for visualization of nanoparticles. The X-ray diffraction patterns and the melting points of the lipid mixtures remained unchanged after the pigments were added. The particle sizes of the encapsulated species ranged from 239 to 749.9nm showing polydispersity values between 0.100 and 0.425. Surface charge measurements comprising values up to -40.8mV denoted the presence of stable dispersions. The formulations could be described as ideal viscous presenting viscosities in a range of 1.40-20.5mPas. Significant increases in SPF up to about 50 were reported after the encapsulation of titanium dioxide. Freeze fracture micrographs confirmed the presence of encapsulated inorganic crystals.
X-ray and neutron diffraction studies of crystallinity in hydroxyapatite coatings.
Girardin, E; Millet, P; Lodini, A
2000-02-01
To standardize industrial implant production and make comparisons between different experimental results, we have to be able to quantify the crystallinity of hydroxyapatite. Methods of measuring crystallinity ratio were developed for various HA samples before and after plasma spraying. The first series of methods uses X-ray diffraction. The advantage of these methods is that X-ray diffraction equipment is used widely in science and industry. In the second series, a neutron diffraction method is developed and the results recorded are similar to those obtained by the modified X-ray diffraction methods. The advantage of neutron diffraction is the ability to obtain measurements deep inside a component. It is a nondestructive method, owing to the very low absorption of neutrons in most materials. Copyright 2000 John Wiley & Sons, Inc.
X-ray Diffraction Gratings for Astrophysics
NASA Astrophysics Data System (ADS)
Paerels, Frits
2010-12-01
Over the past year, we have celebrated the tenth anniversary of the Chandra and XMM-Newton X-ray observatories. Both carry powerful, novel diffraction grating spectrometers, which have opened true X-ray spectroscopy for astrophysics. I will describe the design and operation of these instruments, as the background to some of the beautiful results they have produced. But these designs do not exhaust the versatility and essential simplicity of diffraction grating spectrometers, and I will discuss applications for the International X-ray Observatory IXO.
Low temperature nucleation of Griffiths Phase in Co doped LaMnO3 nanostructures
NASA Astrophysics Data System (ADS)
Adeela, N.; Khan, U.; Naz, S.; Iqbal, M.; Irfan, M.; Cheng, Y.
2017-11-01
We have reported magnetic properties of La1-xCoxMnO3 nanostructures synthesized by hydrothermal route. The crystal structure has been characterized by X-ray diffraction (XRD) technique, which shows rhombohedral perovskite structure at room temperature. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) have been used to analyse morphology and chemical composition of prepared nanoparticles. Magnetic hysteresis loops of all the samples exhibit ferromagnetic behaviour at 10 K. Inverse susceptibility graphs as a function of temperature represent deviation from Curie Weiss law. The indication for short range ferromagnetic clusters well above Curie temperature is observed due to the Griffiths Phase (GP). It is proposed that the presence of GP arises from induced size effects of La and Co ions.
Amorphous boron gasket in diamond anvil cell research
NASA Astrophysics Data System (ADS)
Lin, Jung-Fu; Shu, Jinfu; Mao, Ho-kwang; Hemley, Russell J.; Shen, Guoyin
2003-11-01
Recent advances in high-pressure diamond anvil cell experiments include high-energy synchrotron x-ray techniques as well as new cell designs and gasketing procedures. The success of high-pressure experiments usually depends on a well-prepared sample, in which the gasket plays an important role. Various gasket materials such as diamond, beryllium, rhenium, and stainless steel have been used. Here we introduce amorphous boron as another gasket material in high-pressure diamond anvil cell experiments. We have applied the boron gasket for laser-heating x-ray diffraction, radial x-ray diffraction, nuclear resonant inelastic x-ray scattering, and inelastic x-ray scattering. The high shear strength of the amorphous boron maximizes the thickness of the sample chamber and increases the pressure homogeneity, improving the quality of high-pressure data. Use of amorphous boron avoids unwanted x-ray diffraction peaks and reduces the absorption of incident and x rays exiting the gasket material. The high quality of the diffraction patterns makes it possible to refine the cell parameters with powder x-ray diffraction data under high pressure and high temperature. The reactivity of boron prevents its use at high temperatures, however. When heated, boron may also react with the specimen to produce unwanted phases. The relatively porous boron starting material at ambient conditions also poses some challenges for sample preparation.
Solid-solution CrCoCuFeNi high-entropy alloy thin films synthesized by sputter deposition
An, Zhinan; Jia, Haoling; Wu, Yueying; ...
2015-05-04
The concept of high configurational entropy requires that the high-entropy alloys (HEAs) yield single-phase solid solutions. However, phase separations are quite common in bulk HEAs. A five-element alloy, CrCoCuFeNi, was deposited via radio frequency magnetron sputtering and confirmed to be a single-phase solid solution through the high-energy synchrotron X-ray diffraction, energy-dispersive spectroscopy, wavelength-dispersive spectroscopy, and transmission electron microscopy. The formation of the solid-solution phase is presumed to be due to the high cooling rate of the sputter-deposition process.
X-Ray Sum Frequency Diffraction for Direct Imaging of Ultrafast Electron Dynamics
NASA Astrophysics Data System (ADS)
Rouxel, Jérémy R.; Kowalewski, Markus; Bennett, Kochise; Mukamel, Shaul
2018-06-01
X-ray diffraction from molecules in the ground state produces an image of their charge density, and time-resolved x-ray diffraction can thus monitor the motion of the nuclei. However, the density change of excited valence electrons upon optical excitation can barely be monitored with regular diffraction techniques due to the overwhelming background contribution of the core electrons. We present a nonlinear x-ray technique made possible by novel free electron laser sources, which provides a spatial electron density image of valence electron excitations. The technique, sum frequency generation carried out with a visible pump and a broadband x-ray diffraction pulse, yields snapshots of the transition charge densities, which represent the electron density variations upon optical excitation. The technique is illustrated by ab initio simulations of transition charge density imaging for the optically induced electronic dynamics in a donor or acceptor substituted stilbene.
Structural analysis of nanocrystalline ZnTe alloys synthesized by melt quenching technique
NASA Astrophysics Data System (ADS)
Singh, Harinder; Singh, Tejbir; Thakur, Anup; Sharma, Jeewan
2018-05-01
Nanocrystalline ZnxTe100-x (x=0, 5, 20, 30, 40, 50) alloys have been synthesized using melt quenching technique. Energy-dispersive X-Ray spectroscopy (EDS) has been used to verify the elemental composition of samples. Various absorption modes are recorded from Fourier transform infrared spectroscopy (FTIR) confirming the formation of ZnTe. The structural study has been performed using X-Ray Diffraction (XRD) method. All synthesized samples have been found to be nanocrystalline in nature with average crystallite size in the range from 49.3 nm to 77.1 nm. Results have shown that Zn0Te100 exhibits hexagonal phase that transforms into a cubic ZnTe phase as the amount of zinc is increased. Pure ZnTe phase has been obtained for x = 50. The texture coefficient (Tc) has been calculated to find the prominent orientations of different planes.
High T(sub c) superconductor/ferroelectric heterostructures
NASA Astrophysics Data System (ADS)
Ryder, Daniel F., Jr.
1994-12-01
Thin films of the ferroelectric perovskite, Ba(x) Sr(1-x) TiO3 (BST), were deposited on superconducting (100)YBa2Cu3O(x)(YBCO)/ (100)Yttria-stabilized zirconia(YSZ) substrates and (100)Si by ion-beam sputtering. Microstructural and compositional features of the ceramic bilayer were assessed by a combination of x-ray diffraction (XRD) and scanning electron microscopy. The films were smooth and featureless, and energy dispersive x-ray spectroscopy (EDX) data indicated that film composition closely matched target composition. XRD analysis showed that films deposited on YBCO substrates were highly c-axis textured, while the films deposited on (100)Si did not exhibit any preferred growth morphology. The superconducting properties of the YBCO substrate layer were maintained throughout the processing stages and, as such, it was demonstrated that ion beam sputtering is a viable method for the deposition of Ferroelectric/YBCO heterostructures.
NASA Astrophysics Data System (ADS)
Li, Yahui; Zhang, Huayu; Wu, Bowen; Guo, Zhuo
2017-12-01
A kind of coating nanostructure, Ag nanoparticles coated with multilayered reduced graphene oxide (RGO), is fabricated by employing a three-step reduction method in an orderly manner, which is significantly different from the conventional structures that are simply depositing or doping with Ag nanoparticles on RGO via chemical reduction. The as-prepared nanostructure is investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected-area electronic diffraction (SEAD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR). The results show that the obtained Ag/RGO nanostructure is observed to be a perfect coating structure with well dispersed Ag particles, which is responsible for the remarkable oxidation resistance. The results of XPS spectra indicate the content of metallic Ag is far greater than that of Ag oxides despite of prolonged exposure to the air, which fully demonstrate the excellent stability of thus coating nanostructure.
de la Parra-Arciniega, Salomé M; Garcia-Gomez, Nora A; Garza-Tovar, Lorena L; García-Gutiérrez, Domingo I; Sánchez, Eduardo M
2017-05-01
In this work, an easy, fast and environmentally friendly method to obtain Bi 2 S 3 nanostructures with sphere-like morphology is introduced. The promising material was successfully synthesized by a sonochemical route in 20% 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM][EtSO 4 ] ionic liquid solution (IL). Morphological studies by electron microscopy (SEM and TEM) show that the use of IL in the synthesis of Bi 2 S 3 favors the formation of nanocrystals non-agglomerated. Micro Raman and energy dispersive X-ray spectroscopy (EDXS) were used to determine the composition and purity of the synthesized material. X-ray powder diffraction (XRD) and selective area electron diffraction (SAED) revealed that ultrasonic radiation accelerated the crystallization of Bi 2 S 3 into orthorhombic bismuthinite structure. The band gap calculated from the diffuse reflectance spectra (DRS) was found to be 1.5eV. Copyright © 2016 Elsevier B.V. All rights reserved.
Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry
NASA Astrophysics Data System (ADS)
Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.
2015-06-01
Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.
A simple and low temperature process for super-hydrophilic rutile TiO 2 thin films growth
NASA Astrophysics Data System (ADS)
Mane, R. S.; Joo, Oh-Shim; Min, Sun-Ki; Lokhande, C. D.; Han, Sung-Hwan
2006-11-01
We investigate an environmentally friendly aqueous solution system for rutile TiO2 violet color nanocrystalline thin films growth on ITO substrate at room temperature. Film shows considerable absorption in visible region with excitonic maxima at 434 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), UV-vis, water surface contact angle and energy dispersive X-ray analysis (EDX) techniques in addition to actual photo-image that shows purely rutile phase of TiO2 with violet color, super-hydrophilic and densely packed nanometer-sized spherical grains of approximate diameter 3.15 ± 0.4 nm, characterize the films. Band gap energy of 4.61 eV for direct transition was obtained for the rutile TiO2 films. Film surface shows super-hydrophilic behavior, as exhibited water contact angle was 7°. Strong visible absorption (not due to chlorine) leaves future challenge to use these films in extremely thin absorber (ETA) solar cells.
Catalytic Graphitization of Coal-Based Carbon Materials with Light Rare Earth Elements.
Wang, Rongyan; Lu, Guimin; Qiao, Wenming; Yu, Jianguo
2016-08-30
The catalytic graphitization mechanism of coal-based carbon materials with light rare earth elements was investigated using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, selected-area electron diffraction, and high-resolution transmission electron microscopy. The interface between light rare earth elements and carbon materials was carefully observed, and two routes of rare earth elements catalyzing the carbon materials were found: dissolution-precipitation and carbide formation-decomposition. These two simultaneous processes certainly accelerate the catalytic graphitization of carbon materials, and light rare earth elements exert significant influence on the microstructure and thermal conductivity of graphite. Moreover, by virtue of praseodymium (Pr), it was found that a highly crystallographic orientation of graphite was induced and formed, which was reasonably attributed to the similar arrangements of the planes perpendicular to (001) in both graphite and Pr crystals. The interface between Pr and carbon was found to be an important factor for the orientation of graphite structure.
Development of graphite/copper composites utilizing engineered interfaces. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Devincent, Sandra M.
1991-01-01
In situ measurements of graphite/copper alloy contact angles were made using the sessile drop method. The interfacial energy values obtained from these measurements were then applied to a model for the fiber matrix interfacial debonding phenomenon found in graphite/copper composites. The formation obtained from the sessile drop tests led to the development of a copper alloy that suitably wets graphite. Characterization of graphite/copper alloy interfaces subjected to elevated temperatures was conducted using Scanning Electron Microscopy, Energy Dispersive Spectroscopy, Auger Electron Spectroscopy, and X Ray Diffraction analyses. These analyses indicated that during sessile drop tests conducted at 1130 C for 1 hour, copper alloys containing greater than 0.98 at pct chromium form continuous reaction layers of approx. 10 microns in thickness. The reaction layers are adherent to the graphite surface. The copper wets the reaction layer to form a contact angle of 60 deg or less. X ray diffraction results indicate that the reaction layer is Cr3C2.
Latex-mediated synthesis of ZnS nanoparticles: green synthesis approach
NASA Astrophysics Data System (ADS)
Hudlikar, Manish; Joglekar, Shreeram; Dhaygude, Mayur; Kodam, Kisan
2012-05-01
A low-cost, green synthesis of ZnS nanoparticles is reported using 0.3 % latex solution prepared from Jatropha curcas L. ZnS nanoparticles were characterized by X-ray diffraction, selected area electron diffraction, transmission electron microscopy, energy dispersive analysis of X-rays, UV-vis optical absorption and photoluminescence techniques. Fourier Transform Infrared Spectroscopy was performed to find the role of cyclic peptides namely curcacycline A (an octapeptide), curcacycline B (a nonapeptide) and curcain (an enzyme) as a possible reducing and stabilizing agents present in the latex of J. curcas L. The average size of ZnS nanoparticles was found to be 10 nm. Latex of J. curcas L. itself acts as a source of sulphide (S-2) ions that are donated to Zn ions under present experimental conditions. Source of sulphide (S-2) ions is still unclear, but we speculate that cysteine or thiol residues present in enzyme curcain may be donating these sulphide (S-2) ions.
Formation of Porous Germanium Layers by Silver-Ion Implantation
NASA Astrophysics Data System (ADS)
Stepanov, A. L.; Vorob'ev, V. V.; Nuzhdin, V. I.; Valeev, V. F.; Osin, Yu. N.
2018-04-01
We propose a method for the formation of porous germanium ( P-Ge) layers containing silver nanoparticles by means of high-dose implantation of low-energy Ag+ ions into single-crystalline germanium ( c-Ge). This is demonstrated by implantation of 30-keV Ag+ ions into a polished c-Ge plate to a dose of 1.5 × 1017 ion/cm2 at an ion beam-current density of 5 μA/cm2. Examination by high-resolution scanning electron microscopy (SEM), atomic-force microscopy (AFM), X-ray diffraction (XRD), energy-dispersive X-ray (EDX) microanalysis, and reflection high-energy electron diffraction (RHEED) showed that the implantation of silver ions into c-Ge surface led to the formation of a P-Ge layer with spongy structure comprising a network of interwoven nanofibers with an average diameter of ˜10-20 nm Ag nanoparticles on the ends of fibers. It is also established that the formation of pores during Ag+ ion implantation is accompanied by effective sputtering of the Ge surface.
Nomoev, Andrey V.; Bardakhanov, Sergey P.; Schreiber, Makoto; Bazarova, Dashima Zh.; Baldanov, Boris B.; Romanov, Nikolai A.
2014-01-01
Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi2/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi2/Si nanoparticles is discussed. PMID:28346996
Nomoev, Andrey V; Bardakhanov, Sergey P; Schreiber, Makoto; Bazarova, Dashima Zh; Baldanov, Boris B; Romanov, Nikolai A
2014-12-25
Metal-semiconductor Janus-like nanoparticles with the composition tantalum silicide-silicon (TaSi₂/Si) were synthesized for the first time by means of an evaporation method utilizing a high-power electron beam. The composition of the synthesized particles were characterized using high-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), selective area electron diffraction (SAED), and energy dispersive X-ray fluorescence (EDX) analysis. The system is compared to previously synthesized core-shell type particles in order to show possible differences responsible for the Janus-like structure forming instead of a core-shell architecture. It is proposed that the production of Janus-like as opposed to core-shell or monophase particles occurs due to the ability of Ta and Si to form compounds and the relative content of Ta and Si atoms in the produced vapour. Based on the results, a potential mechanism of formation for the TaSi₂/Si nanoparticles is discussed.
NASA Astrophysics Data System (ADS)
Yang, Guangrui; Qin, Dezhi; Zhang, Li
2014-06-01
A simple, convenient, and controllable strategy was reported in this contribution for protein-assisted synthesis BHb-conjugated PbS nanocubes. Powder X-ray diffraction, energy disperse X-ray spectroscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and selected-area electron diffraction characterizations were used to determine the structure and morphology of BHb-conjugated PbS nanocubes. The prepared PbS nanocrystals with cubic rock salt structure were uniform and monodispersed with homogeneous size around 12 nm. The results of Fourier transform infrared and circular dichroism assay proved that Pb2+/PbS had coordination interaction with functional groups of BHb besides physical-binding effect, and the secondary structure of protein significantly changed with this interaction. Thermogravimetric analysis results confirmed the existence of BHb in PbS nanocrystals and indicated that the conjugate bonds existed between PbS and BHb. A clear perspective was shown here that special nanostructure could be created by using proteins as a mediating template at the inorganic-organic interface.
NASA Astrophysics Data System (ADS)
Gonçalves, Gustavo R.; Schettino, Miguel A.; Morigaki, Milton K.; Nunes, Evaristo; Cunha, Alfredo G.; Emmerich, Francisco G.; Passamani, Edson C.; Baggio-Saitovitch, Elisa; Freitas, Jair C. C.
2015-07-01
Carbon-based magnetic nanocomposites are of large interest for applications in catalysis, magnetic separation, water cleaning, and magnetic resonance imaging, among others. This work describes the synthesis of nanocomposites consisting of iron oxides dispersed into a char (obtained from the carbonization at 700 °C of a lignocellulosic precursor) and the study of the thermal transformations occurring in these materials as a consequence of heat treatments. The materials were prepared by impregnation of the char with iron nitrate in the presence of ammonium hydroxide in aqueous suspension. X-ray diffraction experiments performed using synchrotron radiation and Mössbauer spectroscopy showed that the as-prepared material was composed of amorphous Fe3+ oxides. Scanning electron microscopy images combined with energy-dispersive X-ray spectrometry indicated a homogeneous dispersion of iron oxides and of silica particles (naturally present in the lignocellulosic precursor) throughout the char. X-ray diffractograms recorded in situ during the heat treatment of the as-prepared material showed the presence of small hematite crystallites (average size 22 nm) starting from ca. 300 °C. Further heating caused a progressive growth of the hematite crystallites up to ca. 500 °C, when the conversion to magnetite (Fe3O4) started to take place. At higher temperatures, wüstite (Fe1-xO) was detected as an intermediate phase and austenitic iron (γ-Fe) became the dominant phase at temperatures from 900 °C. A steep weight loss was observed in the TG curve accompanying this last reduction stage; upon cooling, γ-Fe was converted into α-Fe (ferrite), which was the dominant phase at room temperature in this heat-treated sample.
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10(-2) Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
NASA Astrophysics Data System (ADS)
Nam, Daewoong; Park, Jaehyun; Gallagher-Jones, Marcus; Shimada, Hiroki; Kim, Sangsoo; Kim, Sunam; Kohmura, Yoshiki; Ishikawa, Tetsuya; Song, Changyong
2013-11-01
This paper describes the development of a versatile coherent x-ray diffraction microscope capable of imaging biological specimens in solution. The microscope is a flexible platform accommodating various conditions, from low vacuum (10-2 Pa) to helium gas filled ambient pressure. This flexibility greatly expands the application area, from in situ materials science to biology systems in their native state, by significantly relaxing restrictions to the sample environment. The coherent diffraction microscope has been used successfully to image a yeast cell immersed in buffer solution. We believe that the design of this coherent diffraction microscope can be directly adapted to various platforms such as table top soft x-ray laser, synchrotron x-ray sources, and x-ray free electron laser with minor relevant adjustments.
1985-05-30
Order (FECO) ......... 23 3. X -Ray Diffraction ............................... 26 4. Transmission Electron Microscopy (TEM) ............... 26 5...remained amorphous after bombardment, as evidenced by X - ray diffraction, and showed no other changes. 0 (2) For Sb203, the crystallite size was reduced...main effect on MgF2 was the reduction in crystallite size. The films were too thir. for meaningful x - ray diffraction analysis. Durability and
X-Ray Diffraction and the Discovery of the Structure of DNA
ERIC Educational Resources Information Center
Crouse, David T.
2007-01-01
A method is described for teaching the analysis of X-ray diffraction of DNA through a series of steps utilizing the original methods used by James Watson, Francis Crick, Maurice Wilkins and Rosalind Franklin. The X-ray diffraction pattern led to the conclusion of the basic helical structure of DNA and its dimensions while basic chemical principles…
High Resolution X-Ray Diffraction of Macromolecules with Synchrotron Radiation
NASA Technical Reports Server (NTRS)
Stojanoff, Vivian; Boggon, Titus; Helliwell, John R.; Judge, Russell; Olczak, Alex; Snell, Edward H.; Siddons, D. Peter; Rose, M. Franklin (Technical Monitor)
2000-01-01
We recently combined synchrotron-based monochromatic X-ray diffraction topography methods with triple axis diffractometry and rocking curve measurements: high resolution X-ray diffraction imaging techniques, to better understand the quality of protein crystals. We discuss these methods in the light of results obtained on crystals grown under different conditions. These non destructive techniques are powerful tools in the characterization of the protein crystals and ultimately will allow to improve, develop, and understand protein crystal growth. High resolution X-ray diffraction imaging methods will be discussed in detail in light of recent results obtained on Hen Egg White Lysozyme crystals and other proteins.
Logan, Jonathan; Harder, Ross; Li, Luxi; ...
2016-01-01
Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. Here, the performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd 5Si 2Ge 2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. Thesemore » tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd 5Si 2Ge 2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.« less
Interfacial Reaction During High Energy Ball Milling Dispersion of Carbon Nanotubes into Ti6Al4V
NASA Astrophysics Data System (ADS)
Adegbenjo, A. O.; Olubambi, P. A.; Potgieter, J. H.; Nsiah-Baafi, E.; Shongwe, M. B.
2017-12-01
The unique thermal and mechanical properties of carbon nanotubes (CNTs) have made them choice reinforcements for metal matrix composites (MMCs). However, there still remains a critical challenge in achieving homogeneous dispersion of CNTs in metallic matrices. Although high energy ball milling (HEBM) has been reported as an effective method of dispersing CNTs into metal matrices, a careful selection of the milling parameters is important not to compromise the structural integrity of CNTs which may cause interfacial reactions with the matrix. In this study, multi-walled carbon nanotubes (MWCNTs) were purified by annealing in argon and vacuum atmospheres at 1000 and 1800 °C, respectively, for 5 h to remove possible metallic catalyst impurities. Subsequently, 1, 2 and 3 wt.% MWCNTs were dispersed by adapted HEBM into Ti6Al4V alloy metal matrix. Raman spectroscopy (RS), x-ray diffraction, scanning electron microscopy, energy-dispersive x-ray spectrometry and transmission electron microscopy techniques were used to characterize the as-received and annealed MWCNTs, as well as the admixed MWCNT/Ti6Al4V nanocomposite powders. The experimental results showed that vacuum annealing successfully eliminated retained nickel (Ni) catalysts from MWCNTs, while the adapted HEBM method achieved a relative homogeneous dispersion of MWCNTs into the Ti6Al4V matrix and helped to control interfacial reactions between defective MWCNTs and the metal matrix.
Attenuation of encrustation by self-assembled inorganic fullerene-like nanoparticles
NASA Astrophysics Data System (ADS)
Ron, Racheli; Zbaida, David; Kafka, Ilan Z.; Rosentsveig, Rita; Leibovitch, Ilan; Tenne, Reshef
2014-04-01
Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed.Ureteral stents and urethral catheters are commonly used medical devices for maintaining urinary flow. However, long-term placement (>30 days) of these devices in the urinary tracts is limited by the development of encrustation, a phenomenon that holds a prevalence of 50% within this patient population, resulting in a great deal of morbidity to the patients. Here we report the influence of surface coating of an all-silicone catheter with rhenium-doped fullerene-like molybdenum disulfide (Re:IF-MoS2) nanoparticles on the growth and attachment of in vitro encrustation stones. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and X-ray powder diffraction (XRD) analyses indicated a remarkable attenuation in encrustation occupation on the Re:IF-MoS2-coated catheter surfaces compared to neat catheters. The doped nanoparticles displayed a unique tendency to self-assemble into mosaic-like arrangements, modifying the surface to be encrustation-repellent. The mechanism of encrustation retardation on the surface coated catheters is discussed in some detail. The ramification of these results for the clogging of other body indwelling devices is briefly discussed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr06231g
Baek, Hyung Hee; Kim, Dae-Hwan; Kwon, So Young; Rho, Shin-Joung; Kim, Dong-Wuk; Choi, Han-Gon; Kim, Yong-Ro; Yong, Chul Soon
2012-03-01
To develop a novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose, it was prepared using spray-drying techniques with cycloamylose at a weight ratio of 1:1. The effect of cycloamylose on aqueous solubility of ibuprofen was investigated. The physicochemical properties of solid dispersions were investigated using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and X-ray diffraction. The dissolution and bioavailability in rats were evaluated compared with ibuprofen powder. This ibuprofen-loaded solid dispersion improved about 14-fold drug solubility. Ibuprofen was present in an unchanged crystalline state, and cycloamylose played the simple role of a solubilizing agent in this solid dispersion. Moreover, the dispersion gave 2-fold higher AUC (area under the drug concentration-time curve) value compared with a ibuprofen powder, indicating that it improved the oral bioavailability of ibuprofen in rats. Thus, the solid dispersion may be useful to deliver ibuprofen with enhanced bioavailability without crystalline change.
Paria Sena, Robert; Babaryk, Artem A; Khainakov, Sergiy; Garcia-Granda, Santiago; Slobodyanik, Nikolay S; Van Tendeloo, Gustaaf; Abakumov, Artem M; Hadermann, Joke
2016-01-21
The crystal structure of the K6.4Nb28.2Ta8.1O94 pseudo-tetragonal tungsten bronze-type oxide was determined using a combination of X-ray powder diffraction, neutron diffraction and transmission electron microscopy techniques, including electron diffraction, high angle annular dark field scanning transmission electron microscopy (HAADF-STEM), annular bright field STEM (ABF-STEM) and energy-dispersive X-ray compositional mapping (STEM-EDX). The compound crystallizes in the space group Pbam with unit cell parameters a = 37.468(9) Å, b = 12.493(3) Å, c = 3.95333(15) Å. The structure consists of corner sharing (Nb,Ta)O6 octahedra forming trigonal, tetragonal and pentagonal tunnels. All tetragonal tunnels are occupied by K(+) ions, while 1/3 of the pentagonal tunnels are preferentially occupied by Nb(5+)/Ta(5+) and 2/3 are occupied by K(+) in a regular pattern. A fractional substitution of K(+) in the pentagonal tunnels by Nb(5+)/Ta(5+) is suggested by the analysis of the HAADF-STEM images. In contrast to similar structures, such as K2Nb8O21, also parts of the trigonal tunnels are fractionally occupied by K(+) cations.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
Cha, W.; Ulvestad, A.; Allain, M.; ...
2016-11-23
Here, we present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We also demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Furthermore, variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Synchrotron X-Ray Diffraction Analysis of Meteorites in Thin Section: Preliminary Results
NASA Technical Reports Server (NTRS)
Treiman, A. H.; Lanzirotti, A.; Xirouchakis, D.
2004-01-01
X-ray diffraction is the pre-eminent technique for mineral identification and structure determination, but is difficult to apply to grains in thin section, the standard meteorite preparation. Bright focused X-ray beams from synchrotrons have been used extensively in mineralogy and have been applied to extraterrestrial particles. The intensity and small spot size achievable in synchrotron X-ray beams makes them useful for study of materials in thin sections. Here, we describe Synchrotron X-ray Diffraction (SXRD) in thin section as done at the National Synchrotron Light Source, and cite examples of its value for studies of meteorites in thin section.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging
NASA Astrophysics Data System (ADS)
Cha, W.; Ulvestad, A.; Allain, M.; Chamard, V.; Harder, R.; Leake, S. J.; Maser, J.; Fuoss, P. H.; Hruszkewycz, S. O.
2016-11-01
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
Three Dimensional Variable-Wavelength X-Ray Bragg Coherent Diffraction Imaging.
Cha, W; Ulvestad, A; Allain, M; Chamard, V; Harder, R; Leake, S J; Maser, J; Fuoss, P H; Hruszkewycz, S O
2016-11-25
We present and demonstrate a formalism by which three-dimensional (3D) Bragg x-ray coherent diffraction imaging (BCDI) can be implemented without moving the sample by scanning the energy of the incident x-ray beam. This capability is made possible by introducing a 3D Fourier transform that accounts for x-ray wavelength variability. We demonstrate the approach by inverting coherent Bragg diffraction patterns from a gold nanocrystal measured with an x-ray energy scan. Variable-wavelength BCDI will expand the breadth of feasible in situ 3D strain imaging experiments towards more diverse materials environments, especially where sample manipulation is difficult.
In-situ X-ray diffraction system using sources and detectors at fixed angular positions
Gibson, David M [Voorheesville, NY; Gibson, Walter M [Voorheesville, NY; Huang, Huapeng [Latham, NY
2007-06-26
An x-ray diffraction technique for measuring a known characteristic of a sample of a material in an in-situ state. The technique includes using an x-ray source for emitting substantially divergent x-ray radiation--with a collimating optic disposed with respect to the fixed source for producing a substantially parallel beam of x-ray radiation by receiving and redirecting the divergent paths of the divergent x-ray radiation. A first x-ray detector collects radiation diffracted from the sample; wherein the source and detector are fixed, during operation thereof, in position relative to each other and in at least one dimension relative to the sample according to a-priori knowledge about the known characteristic of the sample. A second x-ray detector may be fixed relative to the first x-ray detector according to the a-priori knowledge about the known characteristic of the sample, especially in a phase monitoring embodiment of the present invention.
Ni(3)Si(Al)/a-SiO(x) core-shell nanoparticles: characterization, shell formation, and stability.
Pigozzi, G; Mukherji, D; Gilles, R; Barbier, B; Kostorz, G
2006-08-28
We have used an electrochemical selective phase dissolution method to extract nanoprecipitates of the Ni(3)Si-type intermetallic phase from two-phase Ni-Si and Ni-Si-Al alloys by dissolving the matrix phase. The extracted nanoparticles are characterized by transmission electron microscopy, energy-dispersive x-ray spectrometry, x-ray powder diffraction, and electron powder diffraction. It is found that the Ni(3)Si-type nanoparticles have a core-shell structure. The core maintains the size, the shape, and the crystal structure of the precipitates that existed in the bulk alloys, while the shell is an amorphous phase, containing only Si and O (SiO(x)). The shell forms around the precipitates during the extraction process. After annealing the nanoparticles in nitrogen at 700 °C, the tridymite phase recrystallizes within the shell, which remains partially amorphous. In contrast, on annealing in air at 1000 °C, no changes in the composition or the structure of the nanoparticles occur. It is suggested that the shell forms after dealloying of the matrix phase, where Si atoms, the main constituents of the shell, migrate to the surface of the precipitates.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions
NASA Astrophysics Data System (ADS)
Hruszkewycz, S. O.; Harder, R.; Xiao, X.; Fuoss, P. H.
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
The effect of exit beam phase aberrations on parallel beam coherent x-ray reconstructions.
Hruszkewycz, S O; Harder, R; Xiao, X; Fuoss, P H
2010-12-01
Diffraction artifacts from imperfect x-ray windows near the sample are an important consideration in the design of coherent x-ray diffraction measurements. In this study, we used simulated and experimental diffraction patterns in two and three dimensions to explore the effect of phase imperfections in a beryllium window (such as a void or inclusion) on the convergence behavior of phasing algorithms and on the ultimate reconstruction. A predictive relationship between beam wavelength, sample size, and window position was derived to explain the dependence of reconstruction quality on beryllium defect size. Defects corresponding to this prediction cause the most damage to the sample exit wave and induce signature error oscillations during phasing that can be used as a fingerprint of experimental x-ray window artifacts. The relationship between x-ray window imperfection size and coherent x-ray diffractive imaging reconstruction quality explored in this work can play an important role in designing high-resolution in situ coherent imaging instrumentation and will help interpret the phasing behavior of coherent diffraction measured in these in situ environments.
Femtosecond X-ray Diffraction From Two-Dimensional Protein Crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frank, Matthias; Carlson, David B.; Hunter, Mark
2014-02-28
Here we present femtosecond x-ray diffraction patterns from two-dimensional (2-D) protein crystals using an x-ray free electron laser (XFEL). To date it has not been possible to acquire x-ray diffraction from individual 2-D protein crystals due to radiation damage. However, the intense and ultrafast pulses generated by an XFEL permits a new method of collecting diffraction data before the sample is destroyed. Utilizing a diffract-before-destroy methodology at the Linac Coherent Light Source, we observed Bragg diffraction to better than 8.5 Å resolution for two different 2-D protein crystal samples that were maintained at room temperature. These proof-of-principle results show promisemore » for structural analysis of both soluble and membrane proteins arranged as 2-D crystals without requiring cryogenic conditions or the formation of three-dimensional crystals.« less
High Power Optical Coatings by Atomic Layer Deposition and Signatures of Laser-Induced Damage
2012-08-28
diffraction angle 0 into crystal lattice spacing d by the Bragg condition, mX = 2d sin 0. Here X is the x - ray wavelength... angle x - ray diffraction (GAXRD) measurements, which were made at a fixed shallow incidence angle of 0.5°. Detector scans were done to measure the...was finished with 200 hafnia cycles m the fmal half period rather than 400. Crystallinity was measured by x - ray diffraction (XRD) with
Materials identification using a small-scale pixellated x-ray diffraction system
NASA Astrophysics Data System (ADS)
O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.
2016-05-01
A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.
Dynamic X-ray diffraction sampling for protein crystal positioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; ...
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction,more » significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Furthermore, by usingin situtwo-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.« less
Dynamic X-ray diffraction sampling for protein crystal positioning
Scarborough, Nicole M.; Godaliyadda, G. M. Dilshan P.; Ye, Dong Hye; Kissick, David J.; Zhang, Shijie; Newman, Justin A.; Sheedlo, Michael J.; Chowdhury, Azhad U.; Fischetti, Robert F.; Das, Chittaranjan; Buzzard, Gregery T.; Bouman, Charles A.; Simpson, Garth J.
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations. PMID:28009558
Dynamic X-ray diffraction sampling for protein crystal positioning.
Scarborough, Nicole M; Godaliyadda, G M Dilshan P; Ye, Dong Hye; Kissick, David J; Zhang, Shijie; Newman, Justin A; Sheedlo, Michael J; Chowdhury, Azhad U; Fischetti, Robert F; Das, Chittaranjan; Buzzard, Gregery T; Bouman, Charles A; Simpson, Garth J
2017-01-01
A sparse supervised learning approach for dynamic sampling (SLADS) is described for dose reduction in diffraction-based protein crystal positioning. Crystal centering is typically a prerequisite for macromolecular diffraction at synchrotron facilities, with X-ray diffraction mapping growing in popularity as a mechanism for localization. In X-ray raster scanning, diffraction is used to identify the crystal positions based on the detection of Bragg-like peaks in the scattering patterns; however, this additional X-ray exposure may result in detectable damage to the crystal prior to data collection. Dynamic sampling, in which preceding measurements inform the next most information-rich location to probe for image reconstruction, significantly reduced the X-ray dose experienced by protein crystals during positioning by diffraction raster scanning. The SLADS algorithm implemented herein is designed for single-pixel measurements and can select a new location to measure. In each step of SLADS, the algorithm selects the pixel, which, when measured, maximizes the expected reduction in distortion given previous measurements. Ground-truth diffraction data were obtained for a 5 µm-diameter beam and SLADS reconstructed the image sampling 31% of the total volume and only 9% of the interior of the crystal greatly reducing the X-ray dosage on the crystal. Using in situ two-photon-excited fluorescence microscopy measurements as a surrogate for diffraction imaging with a 1 µm-diameter beam, the SLADS algorithm enabled image reconstruction from a 7% sampling of the total volume and 12% sampling of the interior of the crystal. When implemented into the beamline at Argonne National Laboratory, without ground-truth images, an acceptable reconstruction was obtained with 3% of the image sampled and approximately 5% of the crystal. The incorporation of SLADS into X-ray diffraction acquisitions has the potential to significantly minimize the impact of X-ray exposure on the crystal by limiting the dose and area exposed for image reconstruction and crystal positioning using data collection hardware present in most macromolecular crystallography end-stations.
Fixture for supporting and aligning a sample to be analyzed in an x-ray diffraction apparatus
Green, L.A.; Heck, J.L. Jr.
1985-04-23
A fixture is provided for supporting and aligning small samples of material on a goniometer for x-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the x-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an x-ray diffraction apparatus previously limited to the analysis of much larger samples.
Fixture for supporting and aligning a sample to be analyzed in an X-ray diffraction apparatus
Green, Lanny A.; Heck, Jr., Joaquim L.
1987-01-01
A fixture is provided for supporting and aligning small samples of material on a goniometer for X-ray diffraction analysis. A sample-containing capillary is accurately positioned for rotation in the X-ray beam by selectively adjusting the fixture to position the capillary relative to the x and y axes thereof to prevent wobble and position the sample along the z axis or the axis of rotation. By employing the subject fixture relatively small samples of materials can be analyzed in an X-ray diffraction apparatus previously limited to the analysis of much larger samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Guozhen; Conn, Charlotte E.; Drummond, Calum J.
2010-01-12
Eight lanthanide(III) oleates have been prepared and characterized. The chelation and self-assembly structures of these rare-earth oleates have been studied by elemental analysis, Fourier transfer infrared spectroscopy (FTIR), and X-ray powder diffraction (XRD) analysis. Elemental analysis and FTIR results indicate that three oleate anions are complexed with one lanthanide cation and, with the exception of anhydrous cerium(III) oleate, form either a mono- or a hemihydrate. The X-ray analysis showed that the neat lanthanide soaps have a lamellar bilayer structure at room temperature. The thermal behavior has been investigated by cross-polarized optical microscopy (POM), differential scanning calorimetry (DSC), and thermogravimetric analysismore » (TGA). POM scans showed that all the lanthanide oleates form a lamellar phase in the presence of excess water. Small-angle X-ray scattering (SAXS) and XRD were used to investigate the internal structure of the bulk lanthanide oleates in excess water, and these X-ray results confirmed that the lanthanide oleates do not swell in water. Select lanthanide oleates were dispersed in water to form nonswelling lamellar submicrometer particles, confirmed by dynamic light scattering (DLS) and synchrotron SAXS measurements. NMR results indicated that colloidal dispersions of lanthanide oleates containing paramagnetic ions, such as gadolinium(III), terbium(III), and dysprosium(III), have a significant effect on the longitudinal (T{sub 1}) and transverse (T{sub 2}) relaxation times of protons in water. Time-resolved fluorescence measurements have demonstrated that colloidal dispersions of europium(III) oleate exhibit strong luminescence. The rare earth metal soaps exemplify the potential of self-assembled chelating amphiphiles as contrast agents in medical imaging modalities such as magnetic resonance imaging (MRI) and fluorescence imaging.« less
Nuhiji, Betime; Attard, Darren; Thorogood, Gordon; Hanley, Tracey; Magniez, Kevin; Bungur, Jenny; Fox, Bronwyn
2013-01-01
The role of processing conditions and intercalant chemistry in montmorillonite clays on the dispersion, morphology and mechanical properties of two epoxy/clay nanocomposite systems was investigated in this paper. This work highlights the importance of employing complementary techniques (X-ray diffraction, small angle X-ray scattering, optical microscopy and transmission electron microscopy) to correlate nanomorphology to macroscale properties. Materials were prepared using an out of autoclave manufacturing process equipped to generate rapid heating rates and mechanical vibration. The results suggested that the quaternary ammonium surfactant on C30B clay reacted with the epoxy during cure, while the primary ammonium surfactant (I.30E) catalysed the polymerisation reaction. These effects led to important differences in nanocomposite clay morphologies. The use of mechanical vibration at 4 Hz prior to matrix gelation was found to facilitate clay dispersion and to reduce the area fraction of I.30E clay agglomerates in addition to increasing flexural strength by over 40%. PMID:28811457
Size-dependent effects in supported highly dispersed Fe2O3 catalysts, doped with Pt and Pd
NASA Astrophysics Data System (ADS)
Cherkezova-Zheleva, Zara; Shopska, Maya; Mitov, Ivan; Kadinov, Georgi
2010-06-01
Series of Fe and Fe-Me (Me = Pt or Pd) catalyst supported on γ-Al2O3, TiO2 (anatase) or diatomite were prepared by the incipient wetness impregnation method. The metal loading was 8 wt.% Fe and 0.7 wt.% noble metal. The preparation and pretreatment conditions of all studied samples were kept to be the same. X-ray diffraction, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction are used for characterization of the supports and the samples at different steps during their treatment and catalytic tests. The catalytic activity of the samples was tested in the reaction of total benzene oxidation. The physicochemical and catalytic properties of the obtained materials are compared with respect of the different chemical composition, dispersion of used carriers and of the supported phases. Samples with the same composition prepared by mechanical mixing are studied as catalysts for comparison and for clearing up the presence of size-dependent effect, also.
Surface mechanical behaviour of composite Ni-P-fly ash/zincate coated aluminium alloy
NASA Astrophysics Data System (ADS)
Panagopoulos, C. N.; Georgiou, E. P.
2009-04-01
Ni-P-fly ash coatings were produced on zincate coated 5083 wrought aluminium alloy substrates with the aid of an electroless deposition technique. Structural and chemical characterization of the produced coatings was performed with the aid of X-ray diffraction (XRD), scanning electron microscopy (SEM) and electron dispersive X-ray analysis (EDS) techniques. The Ni-P-fly ash coating was found to consist of an amorphous Ni-P matrix with dispersed fly ash particles. The wear resistance of the Ni-P-fly ash coating on zincate treated aluminium alloy was observed to be higher than that of the bare aluminium alloy, when sliding against a stainless steel counterface. In addition, the adhesion between the Ni-P-fly ash/zincate coating and the aluminium alloy substrate was also studied with a scratch testing apparatus. The adhesion strength of Ni-P-fly ash/zincate coating on the aluminium alloy substrate was observed to be higher in comparison to the Ni-P/zincate coating on the same aluminium alloy.
NASA Technical Reports Server (NTRS)
Nittler, Larry R.
2003-01-01
This grant furnished funds to purchase a state-of-the-art scanning electron microscope (SEM) to support our analytical facilities for extraterrestrial samples. After evaluating several instruments, we purchased a JEOL 6500F thermal field emission SEM with the following analytical accessories: EDAX energy-dispersive x-ray analysis system with fully automated control of instrument and sample stage; EDAX LEXS wavelength-dispersive x-ray spectrometer for high sensitivity light-element analysis; EDAX/TSL electron backscatter diffraction (EBSD) system with software for phase identification and crystal orientation mapping; Robinson backscatter electron detector; and an in situ micro-manipulator (Kleindiek). The total price was $550,000 (with $150,000 of the purchase supported by Carnegie institution matching funds). The microscope was delivered in October 2002, and most of the analytical accessories were installed by January 2003. With the exception of the wavelength spectrometer (which has been undergoing design changes) everything is working well and the SEM is in routine use in our laboratory.
NASA Astrophysics Data System (ADS)
Zhang, Jian; Gan, Wei; Fu, Xucheng; Hao, Hequn
2017-10-01
We herein report a simple, rapid, and eco-friendly chemical route to the one-pot synthesis of bimetallic PtPd alloy cubic nanocomposites under microwave irradiation. During this process, water was employed as an environmentally benign solvent, while dimethylformamide served as a mild reducing agent, and polyvinylpyrrolidone was used as both a dispersant and a stabilizer. The structure, morphology, and composition of the resulting alloy nanocomposites were examined by x-ray diffraction, transmission electron microscopy, and energy dispersive x-ray spectroscopy. A detailed study was then carried out into the catalytic activity of the PtPd nanocomposites with a Pt:Pd molar ratio of 50:50 in the reduction of 4-nitrophenol (4-NP) by sodium borohydride as a model reaction. Compared with pristine Pt and Pd monometallic nanoparticles (PtNPs and PdNPs), the bimetallic PtPd alloy nanocomposites exhibited enhanced catalytic activities and were readily recyclable in the reduction of 4-NP due to synergistic effects.
Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roostaei, M., E-mail: miladroustaei68@ut.ac.ir
2016-08-15
Grain growth behavior of Mg–3Gd–1Zn (GZ31) magnesium alloy was studied in a wide range of annealing time and temperature to clarify the kinetics of grain growth, microstructural evolution and related metallurgical phenomena. This material exhibited typical normal grain growth mode under annealing conditions with annealing temperature of lower than 300 °C and soaking time of lower than 240 min. However, the abnormality in grain growth was also evident at annealing temperature of 400 °C and 500 °C. The dependence of abnormal grain growth (AGG) at mentioned annealing temperatures upon microstructural features such as dispersed precipitates, which were rich in Znmore » and Gd, was investigated by optical micrographs, X-ray diffraction patterns, scanning electron microscopy images, and energy dispersive X-ray analysis spectra. The bimodality in grain-size distribution histograms also signified the occurrence of AGG. Based on the experimental data on grain growth obtained by annealing treatments, the grain growth exponent and the activation energy were also figured out.« less
Exfoliation of non-oxidized graphene flakes for scalable conductive film.
Park, Kwang Hyun; Kim, Bo Hyun; Song, Sung Ho; Kwon, Jiyoung; Kong, Byung Seon; Kang, Kisuk; Jeon, Seokwoo
2012-06-13
The increasing demand for graphene has required a new route for its mass production without causing extreme damages. Here we demonstrate a simple and cost-effective intercalation based exfoliation method for preparing high quality graphene flakes, which form a stable dispersion in organic solvents without any functionalization and surfactant. Successful intercalation of alkali metal between graphite interlayers through liquid-state diffusion from ternary KCl-NaCl-ZnCl(2) eutectic system is confirmed by X-ray diffraction and X-ray photoelectric spectroscopy. Chemical composition and morphology analyses prove that the graphene flakes preserve their intrinsic properties without any degradation. The graphene flakes remain dispersed in a mixture of pyridine and salts for more than 6 months. We apply these results to produce transparent conducting (∼930 Ω/□ at ∼75% transmission) graphene films using the modified Langmuir-Blodgett method. The overall results suggest that our method can be a scalable (>1 g/batch) and economical route for the synthesis of nonoxidized graphene flakes.
JMFA2—a graphically interactive Java program that fits microfibril angle X-ray diffraction data
Steve P. Verrill; David E. Kretschmann; Victoria L. Herian
2006-01-01
X-ray diffraction techniques have the potential to decrease the time required to determine microfibril angles dramatically. In this paper, we discuss the latest version of a curve-fitting toll that permits us to reduce the time required to evaluate MFA X-ray diffraction patterns. Further, because this tool reflects the underlying physics more accurately than existing...
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; ...
2015-08-11
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessarymore » to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. In addition, the features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called `fixed-target' sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary tomore » fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15µm) loaded into the chips yielded a complete, high-resolution (<1.6Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs.« less
Murray, Thomas D.; Lyubimov, Artem Y.; Ogata, Craig M.; Vo, Huy; Uervirojnangkoorn, Monarin; Brunger, Axel T.; Berger, James M.
2015-01-01
Microcrystals present a significant impediment to the determination of macromolecular structures by X-ray diffraction methods. Although microfocus synchrotron beamlines and X-ray free-electron lasers (XFELs) can enable the collection of interpretable diffraction data from microcrystals, there is a need for efficient methods of harvesting small volumes (<2 µl) of microcrystals grown under common laboratory formats and delivering them to an X-ray beam source under native growth conditions. One approach that shows promise in overcoming the challenges intrinsic to microcrystal analysis is to pair so-called ‘fixed-target’ sample-delivery devices with microbeam-based X-ray diffraction methods. However, to record weak diffraction patterns it is necessary to fabricate devices from X-ray-transparent materials that minimize background scattering. Presented here is the design of a new micro-diffraction device consisting of three layers fabricated from silicon nitride, photoresist and polyimide film. The chip features low X-ray scattering and X-ray absorption properties, and uses a customizable blend of hydrophobic and hydrophilic surface patterns to help localize microcrystals to defined regions. Microcrystals in their native growth conditions can be loaded into the chips with a standard pipette, allowing data collection at room temperature. Diffraction data collected from hen egg-white lysozyme microcrystals (10–15 µm) loaded into the chips yielded a complete, high-resolution (<1.6 Å) data set sufficient to determine a high-quality structure by molecular replacement. The features of the chip allow the rapid and user-friendly analysis of microcrystals grown under virtually any laboratory format at microfocus synchrotron beamlines and XFELs. PMID:26457423
Kumar, Pankaj; Mohan, Chander; KanamSrinivasan Uma Shankar, Mara; Gulati, Monica
2011-01-01
In the present study solid dispersions of the antifungal drug Ketoconazole were prepared with Pluronic F-127 and PVP K-30 with an intention to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, Differential scanning calorimetery (DSC), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Ketoconazole was considerably improved when formulated in solid dispersions with PVP K-30 and Pluronic F-127 as compared with pure drug and physical mixtures. The results from DSC and XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction. PMID:24250403
Thin films of Degussa P-25 TiO2 encapsulated in an SBA-15 mesoporous silica matrix were prepared. The TiO2/SBA-15 thin film structure was verified using transmission electron microscopy (TEM) and small angle X-ray diffraction (XRD). During irradiation with 350 nm light, the TiO...
HANFORD WASTE MINERALOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-29
This report lists the observed mineral phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports that used experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases observed in Hanford waste.
HANFORD WASTE MINEROLOGY REFERENCE REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
DISSELKAMP RS
2010-06-18
This report lists the observed mineral phase phases present in the Hanford tanks. This task was accomplished by performing a review of numerous reports using experimental techniques including, but not limited to: x-ray diffraction, polarized light microscopy, scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, electron energy loss spectroscopy, and particle size distribution analyses. This report contains tables that can be used as a quick reference to identify the crystal phases present observed in Hanford waste.
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Marchesini, Stefano; Neiman, Aaron M.; Turner, Joshua J.; Jacobsen, Chris
2010-01-01
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11–13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane and freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy. PMID:20368463
High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; ...
2010-04-20
X-ray diffraction microscopy complements other x-ray microscopy methods by being free of lens-imposed radiation dose and resolution limits, and it allows for high-resolution imaging of biological specimens too thick to be viewed by electron microscopy. We report here the highest resolution (11-13 nm) x-ray diffraction micrograph of biological specimens, and a demonstration of molecular-specific gold labeling at different depths within cells via through-focus propagation of the reconstructed wavefield. The lectin concanavalin A conjugated to colloidal gold particles was used to label the α-mannan sugar in the cell wall of the yeast Saccharomyces cerevisiae. Cells were plunge-frozen in liquid ethane andmore » freeze-dried, after which they were imaged whole using x-ray diffraction microscopy at 750 eV photon energy.« less
Effect of cobalt doping on the phase transformation of TiO2 nanoparticles.
Barakat, M A; Hayes, G; Shah, S Ismat
2005-05-01
Co-doped TiO2 nanoparticles containing 0.0085, 0.017, 0.0255, 0.034, and 0.085 mol % Co(III) ion dopant were synthesized via sol-gel and dip-coating techniques. The effects of metal ion doping on the transformation of anatase to the rutile phase have been investigated. Several analytical tools, such as X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray analysis (EDAX) were used to investigate the nanoparticle structure, size distribution, and composition. Results obtained revealed that the rutile to anatase concentration ratio increases with increase of the cobalt dopant concentration and annealing temperature. The typical composition of Co-doped TiO2 was Ti(1-x)Co(x)O2, where x values ranged from 0.0085 to 0.085. The activation energy for the phase transformation from anatase to rutile was measured to be 229, 222, 211, and 195 kJ/mole for 0.0085, 0.017, 0.0255, and 0.034 mol % Co in TiO2, respectively.
NASA Astrophysics Data System (ADS)
Younesi, M.; Javadpour, S.; Bahrololoom, M. E.
2011-11-01
This article presents the effect of heat treating temperature on chemical composition of hydroxyapatite (HA) that was produced by burning bovine bone, and then heat treating the obtained bone ash at different temperatures in range of 600-1100 °C in air. Bone ash and the resulting white powder from heat treating were characterized by Fourier transformed infrared spectroscopy (FT-IR) and x-ray diffractometry (XRD). The FT-IR spectra confirmed that heat treating of bone ash at temperature of 800 °C removed the total of organic substances. x-ray diffraction analysis showed that the white powder was HA and HA was the only crystalline phase indicated in heat treating product. x-ray fluorescence analyses revealed that calcium and phosphorous were the main elements and magnesium and sodium were minor impurities of produced powder at 800 °C. The results of the energy dispersive x-ray analysis showed that Ca/P ratio in produced HA varies in range of 1.46-2.01. The resulting material was found to be thermally stable up to 1100 °C.
NASA Astrophysics Data System (ADS)
Liu, Kejia; Luo, Junhang; Johnson, Chris; Liu, Xingbo; Yang, J.; Mao, Scott X.
The oxidation properties of potential SOFCs materials Crofer 22 APU, Ebrite and Haynes 230 exposed in coal syngas at 800 °C for 100 h were studied. The phases and surface morphology of the oxide scales were characterized by X-ray diffraction, scanning electron microscopy and energy-dispersive X-ray analysis (EDX). The mechanical endurance and electrical resistance of the conducting oxides were characterized by indentation and electrical impedance, respectively. It was found that the syngas exposure caused the alloys to form porous oxide scales, which increased the electrical resistant and decreased the mechanical stability. As for short-term exposure in syngas, neither carbide nor metal dusting was found in the scales of all samples.
Mirrorlike pulsed laser deposited tungsten thin film.
Mostako, A T T; Rao, C V S; Khare, Alika
2011-01-01
Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm.
Effect of annealing temperature on titania nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manikandan, K., E-mail: sanjaymani367@gmail.com; Arumugam, S., E-mail: sanjaymani367@gmail.com; Chandrasekaran, G.
2014-04-24
Titania polycrystalline samples are prepared by using sol-gel route hydrolyzing a alkoxide titanium precursor under acidic conditions. The as prepared samples are treated with different calcination temperatures. The anatase phase of titania forms when treated below 600°C, above that temperature the anatase phase tends to transform into the rutile phase of titania. The experimental determination of average grain size, phase formation, lattice parameters and the crystal structures of titania samples at different calcinations is done using X-ray diffraction (XRD). Fourier Transform Infra-red Spectroscopy (FTIR), UV-vis-NIR spectroscopy and Scanning Electron Microscopy (SEM) and Energy Dispersive Analysis X-ray are used to characterizemore » the samples to bring impact on the respective properties.« less
NASA Astrophysics Data System (ADS)
Thu Trang Pham, Thi; Phuong Nguyen, Thu; Pham, Thi Nam; Phuong Vu, Thi; Tran, Dai Lam; Thai, Hoang; Thanh Dinh, Thi Mai
2013-09-01
In this paper, the synthesis of hydroxyapatite (HAp) nanopowder was studied by chemical precipitation method at different values of reaction temperature, settling time, Ca/P ratio, calcination temperature, (NH4)2HPO4 addition rate, initial concentration of Ca(NO3)2 and (NH4)2HPO4. Analysis results of properties, morphology, structure of HAp powder from infrared (IR) spectra, x-ray diffraction (XRD), energy dispersive x-ray (EDX) spectra and scanning electron microscopy (SEM) indicated that the synthesized HAp powder had cylinder crystal shape with size less than 100 nm, single-phase structure. The variation of the synthesis conditions did not affect the morphology but affected the size of HAp crystals.
Niu, Ben; Xu, Wei; Guo, Zhengduo; Zhou, Nengzhi; Liu, Yang; Shi, Zujin; Lian, Yongfu
2012-09-01
Uniform and well dispersed platinum nanoparticles were successfully deposited on single-walled carbon nanohorns with the assistance of 4,4-dipydine and ion liquids, respectively. In particular, the size of platinum nanoparticles could be controlled in a very narrow range (2.2 to 2.5 nm) when ion liquids were applied. The crystalline nature of these platinum nanoparticles was confirmed by high resolution transmission electron microscopy observation and X-ray power diffraction analysis, and two species of platinum Pt(0) and Pt(II) were detected by X-ray photoelectron spectroscopy. Electrochemical studies revealed that thus obtained nanocomposites had much better electrocatalytic activity for the methanol oxidation than those prepared with carbon nanotubes as supporter.
NASA Astrophysics Data System (ADS)
Guan, Qing-Qing; Zhou, Hua-Jing; Ning, Ping; Lian, Pei-Chao; Wang, Bo; He, Liang; Chai, Xin-Sheng
2018-05-01
We have developed an easy and efficient method for exfoliating few-layer sheets of black phosphorus (BP) in N-methyl-2-pyrrolidone, using ultra-high pressure homogenization (UPH). The BP was first exfoliated into sheets that were a few atomic layers thick, using a homogenizer for only 30 min. Next, a double centrifugation procedure was used to separate the material into few-layer nanosheets that were examined by X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM), and energy-dispersive X-ray (EDX) spectroscopy. The results show that the products are specimens of phosphorene that are only a few-layer thick.
Optical properties of ZnO powder prepared by using a proteic sol-gel process
NASA Astrophysics Data System (ADS)
Kwon, Bong-Joon; Woo, Hyun-Joo; Park, Ji-Yeon; Jang, Kiwan; Lim, Seung-Hyuk; Cho, Yong-Hoon
2013-03-01
We have studied the optical properties of ZnO powder synthesized by using a proteic sol-gel process with coconut water as the precursor. The energy dispersive X-ray spectrometer and X-ray diffraction results show high purity of the synthesized ZnO powder. From the low-temperature (12 K) and power-dependent PL spectra, the donor-bound exciton, the acceptor-bound exciton, the donor-to-acceptor pair (DAP), and the phonon-replica of the DAP transition have been observed at 3.38, 3.34, 3.26, and 3.19 eV, respectively. The free exciton emission (˜3.3 eV) is also observed at 300 K in the temperature-dependent PL spectra.
NASA Astrophysics Data System (ADS)
Yalcin, Talat; Li, Liang
2009-12-01
Small molecule analysis is one of the most challenging issues in matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. We have developed a cobalt coated substrate as a target for matrix-free analysis of small molecules in laser desorption/ionization mass spectrometry. Cobalt coating of 60-70 nm thickness has been characterized by scanning electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and laser induced breakdown spectroscopy. This target facilitates hundreds of samples to be spotted and analyzed without mixing any matrices, in a very short time. This can save a lot of time and money and can be a very practical approach for the analysis of small molecules by laser desorption/ionization mass spectrometry.
Kolmas, Joanna; Oledzka, Ewa; Sobczak, Marcin; Nałęcz-Jawecki, Grzegorz
2014-06-01
Selenium-substituted hydroxyapatites containing selenate SeO4(2-) or selenite SeO3(2-) ions were synthesized using a wet precipitation method. The selenium content was determined by atomic absorbance spectrometry. The raw, unsintered powders were also characterized using powder X-ray diffraction, middle-range FT-IR spectroscopy and transmission electron microscopy with energy-dispersive X-ray spectroscopic microanalysis. The synthesized apatites were found to be pure and nanocrystalline with a crystal size similar to that in bone mineral. The incorporation of selenium oxyanions into the crystal lattice was confirmed. The toxicity of hydroxyapatites containing selenite or selenate ions was evaluated with a protozoan assay and bacterial luminescence test. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jelínek, Miroslav; Drahokoupil, Jan; Jurek, Karel; Kocourek, Tomáš; Vaněk, Přemysl
2017-09-01
The thin-films of BaTiO3 (BTO)/Pt were prepared to test their potential as coatings for titanium-alloy implants. The nanocrystalline BTO/Pt bi-layers were successfully synthesized using fused silica as substrates. The bi-layers were prepared using KrF excimer laser ablation at substrate temperatures (Ts) ranging from 650 °C to 750 °C. The microstructure and composition of the deposits were investigated by scanning electron microscope, x-ray diffraction and wavelength dispersive x-ray spectroscopy methods. The electrical characterization of the Pt/BTO/Pt capacitors indicated ferroelectric-type response in BTO films containing (40-140) nm-sized grains. The technology, microstructure, and functional response of the layers are presented in detail.
NASA Astrophysics Data System (ADS)
El Radaf, I. M.; Nasr, Mahmoud; Mansour, A. M.
2018-01-01
Au/p-CoS/n-Si/Al heterojunction device was fabricated by spray pyrolysis technique. The structural and morphological features were examined by x-ray diffraction, scanning electron microscope and energy dispersive x-ray analysis. The capacitance-voltage characteristics of the prepared heterojunction were analyzed at room temperature in the dark. The current-voltage characteristics were examined under dark and different incident light intensities 20-100 mW cm-2. The rectification ratio, series resistance, shunt resistance, diode ideality factor and the effective barrier height were determined at dark and illumination conditions. The photovoltaic parameters such as short circuit current density, open circuit voltage, fill factor and power conversion efficiency were calculated at different incident light intensities.
NASA Astrophysics Data System (ADS)
Stemshorn, Andrew K.; Vohra, Yogesh K.; Smith, Spencer J.
2018-06-01
Changes in bulk crystallization behavior following devitrification at high pressure are investigated for a Fe78B13Si9 composition metallic glass using in-situ energy dispersive x-ray powder diffraction. Crystallization with time was evaluated for a series of measurements to a maximum pressure of 5.63 ± 0.15 GPa for the Fe78B13Si9 glass. Pressure was found to strongly affect onset bulk crystallization temperature Tx. Crystallization at each pressure was found to progress in two stages. In the first stage, α-Fe precipitates and in the second Fe2B forms while α-Fe continues to crystallize. Complementary high pressure room temperature studies were conducted.
Barathi, M; Kumar, A Santhana Krishna; Rajesh, N
2014-05-01
In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartz, W., E-mail: wojciech.bartz@ing.uni.wroc.pl; Filar, T.
Optical microscopic observations, scanning electron microscopy and microprobe with energy dispersive X-ray analysis, X-ray diffraction and differential thermal/thermogravimetric analysis allowed detailed characterization of rendering mortars from decorative details (figures of Saints) of a baroque building in Kozuchow (Lubuskie Voivodship, Western Poland). Two separate coats of rendering mortars have been distinguished, differing in composition of their filler. The under coat mortar has filler composed of coarse-grained siliceous sand, whereas the finishing one has much finer grained filler, dominated by a mixture of charcoal and Fe-smelting slag, with minor amounts of quartz grains. Both mortars have air-hardening binder composed of gypsum andmore » micritic calcite, exhibiting microcrystalline structure.« less
Coherent x-ray zoom condenser lens for diffractive and scanning microscopy.
Kimura, Takashi; Matsuyama, Satoshi; Yamauchi, Kazuto; Nishino, Yoshinori
2013-04-22
We propose a coherent x-ray zoom condenser lens composed of two-stage deformable Kirkpatrick-Baez mirrors. The lens delivers coherent x-rays with a controllable beam size, from one micrometer to a few tens of nanometers, at a fixed focal position. The lens is suitable for diffractive and scanning microscopy. We also propose non-scanning coherent diffraction microscopy for extended objects by using an apodized focused beam produced by the lens with a spatial filter. The proposed apodized-illumination method will be useful in highly efficient imaging with ultimate storage ring sources, and will also open the way to single-shot coherent diffraction microscopy of extended objects with x-ray free-electron lasers.
Scanning force microscope for in situ nanofocused X-ray diffraction studies
Ren, Zhe; Mastropietro, Francesca; Davydok, Anton; Langlais, Simon; Richard, Marie-Ingrid; Furter, Jean-Jacques; Thomas, Olivier; Dupraz, Maxime; Verdier, Marc; Beutier, Guillaume; Boesecke, Peter; Cornelius, Thomas W.
2014-01-01
A compact scanning force microscope has been developed for in situ combination with nanofocused X-ray diffraction techniques at third-generation synchrotron beamlines. Its capabilities are demonstrated on Au nano-islands grown on a sapphire substrate. The new in situ device allows for in situ imaging the sample topography and the crystallinity by recording simultaneously an atomic force microscope (AFM) image and a scanning X-ray diffraction map of the same area. Moreover, a selected Au island can be mechanically deformed using the AFM tip while monitoring the deformation of the atomic lattice by nanofocused X-ray diffraction. This in situ approach gives access to the mechanical behavior of nanomaterials. PMID:25178002
NASA Astrophysics Data System (ADS)
Senthilkumar, N.; Aravindhan, V.; Ruckmani, K.; Vetha Potheher, I.
2018-05-01
Silver (Ag) nanoparticles (NPs) were prepared by percolated green synthesis method using Coriandrum sativum leaf, root, seed and stem extracts and reported its antibacterial activity. The synthesized Ag NPs were confirmed by UV–visible Spectroscopy, Powder x-ray Diffraction (PXRD), Fourier Transform Infra Red (FT-IR) Spectroscopy analyzes. The Maximum absorbance observed around 400–450 nm reveal the characteristic absorbance of Ag NPs. The Dynamic Light Scattering (DLS) analysis shows the stability of synthesized NPs with average size varying from 35 to 53 nm and also zeta potential stability varying from ‑20 to ‑30 mV. The cubic structure, crystalline nature and purity of the material was confirmed by powder x-ray diffraction studies. FT-IR spectrum shows the presence of various functional groups in the resultant material. The Field Emission Scanning Electron Microscopy (FESEM) image shows the surface morphology of the synthesized NPs and the Energy Dispersive x-ray Analysis (EDAX) confirms the presence of silver metal ions. The Coriandrum sativum aqueous extract exhibited excellent antimicrobial activity against Klebsiella pneumoniae (Gram -ve) bacteria. Numerous studies have been made previously in our field of study but optimization has not been carried out by both extract (different parts like leaf, root, seed and stem) and without addition of any external source such as chemicals, heat etc.
The nucleation and growth mechanism of Ni-Sn eutectic in a single crystal superalloy
NASA Astrophysics Data System (ADS)
Jiang, Weiguo; Wang, Li; Li, Xiangwei; Lou, Langhong
2017-12-01
The microstructure of single crystal superalloy with and without tin layer on the surface of as-cast and heat-treatment state was investigated by optical microscope (OM) and scanning electron microscopy (SEM). The composition of different regions on the surface was tested by energy dispersive X-ray (EDS). The reaction intermetallic compound (IMC) formed in the heat treatment process was confirmed by X-ray diffraction (XRD). The orientations of different microstructure in samples as heat treatment state were determined by electron back-scattering diffraction (EBSD) method. The porosity location in the interdendritic region was observed by X-ray computed tomography (XCT). The experiment results showed that the remained Sn on the surface of the superalloy reacted with Ni, and then formed Ni3Sn4 in the as-cast state. Sn enriched by diffusion along the porosity located in the interdendritic region and γ + γ‧ (contain a little of Sn) eutectic and Ni3Sn2 formed in single crystal superalloy during heat treatment, and the recalescence behaviors were found. Ni3Sn2 nucleated independently in the cooled liquid at the front of (γ + γ‧) (Sn) eutectic. The nucleation and growth mechanism of the eutectic and Ni3Sn2 IMC during heat treatment was discussed in the present paper.
Screen printed silver top electrode for efficient inverted organic solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Junwoo; Duraisamy, Navaneethan; Lee, Taik-Min
2015-10-15
Highlights: • Screen printing of silver pattern. • X-ray diffraction pattern confirmed the face centered cubic structure of silver. • Uniform surface morphology of silver pattern with sheet resistance of 0.06 Ω/sq. • The power conversion efficiency of fabricated solar cell is found to be 2.58%. - Abstract: The present work is mainly focused on replacement of the vacuum process for top electrode fabrication in organic solar cells. Silver top electrode deposited through solution based screen printing on pre-deposited polymeric thin film. The solution based printing technology provides uniform top electrode without damaging the underlying organic layers. The surface crystallinitymore » and surface morphology of silver top electrode are examined through X-ray diffraction, field-emission scanning electron microscope and atomic force microscope. The purity of silver is examined through X-ray energy dispersive spectroscopy. The top electrode exhibits face centered cubic structure with homogeneous morphology. The sheet resistance of top electrode is found to be 0.06 Ω/sq and an average pattern thickness of ∼15 μm. The power conversion efficiency is 2.58%. Our work demonstrates that the solution based screen printing is a significant role in the replacement of vacuum process for the fabrication of top electrode in organic solar cells.« less
Uvarov, Vladimir; Popov, Inna; Shapur, Nandakishore; Abdin, Tamer; Gofrit, Ofer N; Pode, Dov; Duvdevani, Mordechai
2011-12-01
Urinary calculi have been recognized as one of the most painful medical disorders. Tenable knowledge of the phase composition of the stones is very important to elucidate an underlying etiology of the stone disease. We report here the results of quantitative X-ray diffraction phase analysis performed on 278 kidney stones from the 275 patients treated at the Department of Urology of Hadassah Hebrew University Hospital (Jerusalem, Israel). Quantification of biominerals in multicomponent samples was performed using the normalized reference intensity ratio method. According to the observed phase compositions, all the tested stones were classified into five chemical groups: oxalates (43.2%), phosphates (7.7%), urates (10.3%), cystines (2.9%), and stones composed of a mixture of different minerals (35.9%). A detailed analysis of each allocated chemical group is presented along with the crystallite size calculations for all the observed crystalline phases. The obtained results have been compared with the published data originated from different geographical regions. Morphology and spatial distribution of the phases identified in the kidney stones were studied with scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS). This type of detailed study of phase composition and structural characteristics of the kidney stones was performed in Israel for the first time.
NASA Astrophysics Data System (ADS)
Ham, Kathryn; Vohra, Yogesh; Kono, Yoshio; Wereszczak, Andrew; Patel, Parimal
Multi-angle energy-dispersive x-ray diffraction studies and white-beam x-ray radiography were conducted with a cylindrically shaped (1 mm diameter and 0.7 mm high) high-boron content borosilicate glass sample (17.6% B2O3) to a pressure of 13.7 GPa using a Paris-Edinburgh (PE) press at Beamline 16-BM-B, HPCAT of the Advanced Photon Source. The measured structure factor S(q) to large q = 19 Å-1, is used to determine information about the internuclear bond distances between various species of atoms within the glass sample. Sample pressure was determined with gold as a pressure standard. The sample height as measured by radiography showed an overall uniaxial compression of 22.5 % at 13.7 GPa with 10.6% permanent compaction after decompression to ambient conditions. The reduced pair distribution function G(r) was extracted and Si-O, O-O, and Si-Si bond distances were measured as a function of pressure. Raman spectroscopy of pressure recovered sample as compared to starting material showed blue-shift and changes in intensity and widths of Raman bands associated with silicate and B3O6 boroxol rings. US Army Research Office under Grant No. W911NF-15-1-0614.
Rational design of Ag/TiO2 nanosystems by a combined RF-sputtering/sol-gel approach.
Armelao, Lidia; Barreca, Davide; Bottaro, Gregorio; Gasparotto, Alberto; Maccato, Chiara; Tondello, Eugenio; Lebedev, Oleg I; Turner, Stuart; Van Tendeloo, Gustaaf; Sada, Cinzia; Stangar, Urska Lavrencic
2009-12-21
The present work is devoted to the preparation of Ag/TiO(2) nanosystems by an original synthetic strategy, based on the radio-frequency (RF) sputtering of silver particles on titania-based xerogels prepared by the sol-gel (SG) route. This approach takes advantage of the synergy between the microporous xerogel structure and the infiltration power characterizing RF-sputtering, whose combination enables the obtainment of a tailored dispersion of Ag-containing particles into the titania matrix. In addition, the system's chemico-physical features can be tuned further through proper ex situ thermal treatments in air at 400 and 600 degrees C. The synthesized composites are extensively characterized by the joint use of complementary techniques, that is, X-ray photoelectron and X-ray excited Auger electron spectroscopies (XPS, XE-AES), secondary ion mass spectrometry (SIMS), glancing incidence X-ray diffraction (GIXRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), electron diffraction (ED), high-angle annular dark field scanning TEM (HAADF-STEM), energy-filtered TEM (EF-TEM) and optical absorption spectroscopy. Finally, the photocatalytic performances of selected samples in the decomposition of the azo-dye Plasmocorinth B are preliminarily investigated. The obtained results highlight the possibility of tailoring the system characteristics over a broad range, directly influencing their eventual functional properties.
NASA Astrophysics Data System (ADS)
Momeni, Mohamad Mohsen
2015-12-01
Copper decorated WO3-TiO2 nanotubes (Cu/WTNs) with a high photocatalytic activity were prepared by anodizing and photochemical deposition. Highly ordered WO3-TiO2 nanotubes (WTNs) on pure titanium foils were successfully fabricated by electrochemical anodizing and copper deposited on these nanotubes (Cu/WTNs) by photoreduction method. The resulting samples were characterized by various methods. Only the anatase phase was detected by X-ray diffraction analysis. The presence of copper in the structure of thin films was confirmed by energy dispersive X-ray spectrometry and X-ray diffraction. The extension of optical absorption into the visible region of as-prepared films was indicated by UV/Vis spectroscopy. The degradation of methylene blue was used as a model reaction to evaluate the photocatalytic activity of the obtained samples. Results showed that the photocatalytic activity of Cu/WTNs samples is higher than bare WTNs sample. Kinetic research showed that the reaction rate constant of Cu/WTNs is approximately 2.5 times higher than the apparent reaction rate constant of bare WTNs. These results not only offer an economical method for constructing Cu/WTNs photocatalysts, but also shed new insight on the rational design of a low cost and high-efficiency photocatalyst for environmental remediation.
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-01-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50–250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity. PMID:26288570
Banala, Rajkiran Reddy; Nagati, Veera Babu; Karnati, Pratap Reddy
2015-09-01
The evolution of nanotechnology and the production of nanomedicine from various sources had proven to be of intense value in the field of biomedicine. The smaller size of nanoparticles is gaining importance in research for the treatment of various diseases. Moreover the production of nanoparticles is eco-friendly and cost effective. In the present study silver nanoparticles were synthesized from Carica papaya leaf extract (CPL) and characterized for their size and shape using scanning electron microscopy and transmission electron microscopy, respectively. Fourier transform infrared spectroscopy (FTIR), Energy dispersive X-ray spectroscopy (EDS/EDX) and X-ray diffraction spectroscopy (XRD) were conducted to determine the concentration of metal ions, the shape of molecules. The bactericidal activity was evaluated using Luria Bertani broth cultures and the minimum inhibition concentration (MIC) and minimum bactericidal concentration (MBC) were estimated using turbidimetry. The data analysis showed size of 50-250 nm spherical shaped nanoparticles. The turbidimetry analysis showed MIC and MBC was >25 μg/mL against both Gram positive and Gram negative bacteria in Luria Bertani broth cultures. In summary the synthesized silver nanoparticles from CPL showed acceptable size and shape of nanoparticles and effective bactericidal activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Chandrima; Ghosh, Arup; Haldar, Manas Kamal, E-mail: manashaldar@cgcri.res.in
The present work intends to study the development of magnesium aluminate spinel aggregates from Indian magnesite in a single firing stage. The raw magnesite has been evaluated in terms of chemical analysis, differential thermal analysis, thermogravimetric analysis, infrared spectroscopy, and X-ray diffraction. The experimental batch containing Indian magnesite and calcined alumina has been sintered in the temperature range of 1550 °C–1700 °C. The sintered material has been characterized in terms of physico-chemical properties like bulk density, apparent porosity, true density, relative density and thermo-mechanical/mechanical properties like hot modulus of rupture, thermal shock resistance, cold modulus of rupture and structural propertiesmore » by X-ray diffraction in terms of phase identification and evaluation of crystal structure parameters of corresponding phases by Rietveld analysis. The microstructures developed at different temperatures have been analyzed by field emission scanning electron microscope study and compositional analysis of the developed phase has been carried out by energy dispersive X-ray study. - Highlights: • The studies have been done to characterize the developed magnesium aluminate spinel. • The studies reveal correlation between refractory behavior of spinel and developed microstructures. • The studies show the values of lattice parameters of developed phases.« less
Investigation of high-energy ion-irradiated MA957 using synchrotron radiation under in-situ tension
Mo, Kun; Yun, Di; Miao, Yinbin; ...
2016-01-02
In this paper, an MA957 oxide dispersion-strengthened (ODS) alloy was irradiated with high-energy ions in the Argonne Tandem Linac Accelerator System. Fe ions at an energy of 84 MeV bombarded MA957 tensile specimens, creating a damage region similar to 7.5 μm in depth; the peak damage (similar to 40 dpa) was estimated to be at similar to 7 μm from the surface. Following the irradiation, in-situ high-energy X-ray diffraction measurements were performed at the Advanced Photon Source in order to study the dynamic deformation behavior of the specimens after ion irradiation damage. In-situ X-ray measurements taken during tensile testing ofmore » the ion-irradiated MA957 revealed a difference in loading behavior between the irradiated and un-irradiated regions of the specimen. At equivalent applied stresses, lower lattice strains were found in the radiation-damaged region than those in the un-irradiated region. This might be associated with a higher level of Type II stresses as a result of radiation hardening. The study has demonstrated the feasibility of combining high-energy ion radiation and high-energy synchrotron X-ray diffraction to study materials' radiation damage in a dynamic manner.« less
X-ray topography using the forward transmitted beam under multiple-beam diffraction conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsusaka, Y., E-mail: tsusaka@sci.u-hyogo.ac.jp; Takano, H.; Takeda, S.
2016-02-15
X-ray topographs are taken for a sapphire wafer with the [0001] surface normal, as an example, by forward transmitted synchrotron x-ray beams combined with two-dimensional electronic arrays in the x-ray detector having a spatial resolution of 1 μm. They exhibit no shape deformation and no position shift of the dislocation lines on the topographs. Since the topography is performed under multiple-beam diffraction conditions, the topographic images of a single diffraction (two-wave approximation condition) or plural diffractions (six-wave approximation condition) can be recorded without large specimen position changes. As usual Lang topographs, it is possible to determine the Burgers vector ofmore » each dislocation line. Because of high parallelism of the incoming x-rays and linear sensitivity of the electronic arrays to the incident x-rays, the present technique can be used to visualize individual dislocations in single crystals of the dislocation density as high as 1 × 10{sup 5} cm{sup −2}.« less
Atomic and electronic structure of Mo6S9-xIx nanowires
NASA Astrophysics Data System (ADS)
Meden, A.; Kodre, A.; Padeznik Gomilsek, J.; Arcon, I.; Vilfan, I.; Vrbanic, D.; Mrzel, A.; Mihailovic, D.
2005-09-01
Moybdenum-based subnanometre diameter nanowires are easy to synthesize and disperse, and they exhibit a variety of functional properties in which they are superior to other one-dimensional materials. However, further progress in the understanding of physical properties and the development of new and specific applications have so far been impeded by the fact that their structure was not accurately known. Here we report on a combination of systematic x-ray diffraction and extended x-ray absorption fine structure experiments, and first-principles theoretical structure calculations, which are used to determine the atomic skeletal structure of individual Mo6S9-xIx (MoSIx) nanowires, their packing arrangement within bundles and their electronic band structure. From this work we conclude that the variations in functional properties appear to arise from different stoichiometry, not skeletal structure. A supplementary data file is available from http://stacks.iop.org/0957-4484/16/1578
Hirose, Makoto; Shimomura, Kei; Suzuki, Akihiro; Burdet, Nicolas; Takahashi, Yukio
2016-05-30
The sample size must be less than the diffraction-limited focal spot size of the incident beam in single-shot coherent X-ray diffraction imaging (CXDI) based on a diffract-before-destruction scheme using X-ray free electron lasers (XFELs). This is currently a major limitation preventing its wider applications. We here propose multiple defocused CXDI, in which isolated objects are sequentially illuminated with a divergent beam larger than the objects and the coherent diffraction pattern of each object is recorded. This method can simultaneously reconstruct both objects and a probe from the coherent X-ray diffraction patterns without any a priori knowledge. We performed a computer simulation of the prposed method and then successfully demonstrated it in a proof-of-principle experiment at SPring-8. The prposed method allows us to not only observe broad samples but also characterize focused XFEL beams.
Angular rheology study of colloidal nanocrystals using Coherent X-ray Diffraction
NASA Astrophysics Data System (ADS)
Liang, Mengning; Harder, Ross; Robinson, Ian
2007-03-01
A new method using coherent x-ray diffraction provides a way to investigate the rotational motion of a colloidal suspension of crystals in real time. Coherent x-ray diffraction uses the long coherence lengths of synchrotron sources to illuminate a nanoscale particle coherently over its spatial dimensions. The penetration of high energy x-rays into various media allows for in-situ measurements making it ideal for suspensions. This technique has been used to image the structure of nanocrystals for some time but also has the capability of providing information about the orientation and dynamics of crystals. The particles are imaged in a specific diffraction condition allowing us to determine their orientation and observe how they rotate in real time with exceptional resolution. Such sensitivity allows for the study of rotational Brownian motion of nanocrystals in various suspensions and conditions. We present a study of the angular rheology of alumina and TiO2 colloidal nanocrystals in media using coherent x-ray diffraction.
NASA Astrophysics Data System (ADS)
Ludwig, W.; King, A.; Herbig, M.; Reischig, P.; Marrow, J.; Babout, L.; Lauridsen, E. M.; Proudhon, H.; Buffière, J. Y.
2010-12-01
The combination of synchrotron radiation x-ray imaging and diffraction techniques offers new possibilities for in-situ observation of deformation and damage mechanisms in the bulk of polycrystalline materials. Minute changes in electron density (i.e., cracks, porosities) can be detected using propagation based phase contrast imaging, a 3-D imaging mode exploiting the coherence properties of third generation synchrotron beams. Furthermore, for some classes of polycrystalline materials, one may use a 3-D variant of x-ray diffraction imaging, termed x-ray diffraction contrast tomography. X-ray diffraction contrast tomography provides access to the 3-D shape, orientation, and elastic strain state of the individual grains from polycrystalline sample volumes containing up to thousand grains. Combining both imaging modalities, one obtains a comprehensive description of the materials microstructure at the micrometer length scale. Repeated observation during (interrupted) mechanical tests provide unprecedented insight into crystallographic and grain microstructure related aspects of polycrystalline deformation and degradation mechanisms.
Quantitative analysis of thoria phase in Th-U alloys using diffraction studies
NASA Astrophysics Data System (ADS)
Thakur, Shital; Krishna, P. S. R.; Shinde, A. B.; Kumar, Raj; Roy, S. B.
2017-05-01
In the present study the quantitative phase analysis of Th-U alloys in bulk form namely Th-52 wt% U and Th-3wt%U has been performed over the data obtained from both X ray diffraction and neutron diffraction technique using Rietveld method of FULLPROF software. Quantifying thoria (ThO2) phase present in bulk of the sample is limited due to surface oxidation and low penetration of x rays in high Z material. Neutron diffraction study probing bulk of the samples has been presented in comparison with x-ray diffraction study.
Selenium single-wavelength anomalous diffraction de novo phasing using an X-ray-free electron laser
Hunter, Mark S.; Yoon, Chun Hong; DeMirci, Hasan; ...
2016-11-04
Structural information about biological macromolecules near the atomic scale provides important insight into the functions of these molecules. To date, X-ray crystallography has been the predominant method used for macromolecular structure determination. However, challenges exist when solving structures with X-rays, including the phase problem and radiation damage. X-ray-free electron lasers (X-ray FELs) have enabled collection of diffraction information before the onset of radiation damage, yet the majority of structures solved at X-ray FELs have been phased using external information via molecular replacement. De novo phasing at X-ray FELs has proven challenging due in part to per-pulse variations in intensity andmore » wavelength. Here we report the solution of a selenobiotinyl-streptavidin structure using phases obtained by the anomalous diffraction of selenium measured at a single wavelength (Se-SAD) at the Linac Coherent Light Source. Finally, our results demonstrate Se-SAD, routinely employed at synchrotrons for novel structure determination, is now possible at X-ray FELs.« less
Gallagher-Jones, Marcus; Bessho, Yoshitaka; Kim, Sunam; Park, Jaehyun; Kim, Sangsoo; Nam, Daewoong; Kim, Chan; Kim, Yoonhee; Noh, Do Young; Miyashita, Osamu; Tama, Florence; Joti, Yasumasa; Kameshima, Takashi; Hatsui, Takaki; Tono, Kensuke; Kohmura, Yoshiki; Yabashi, Makina; Hasnain, S Samar; Ishikawa, Tetsuya; Song, Changyong
2014-05-02
Nanostructures formed from biological macromolecular complexes utilizing the self-assembly properties of smaller building blocks such as DNA and RNA hold promise for many applications, including sensing and drug delivery. New tools are required for their structural characterization. Intense, femtosecond X-ray pulses from X-ray free-electron lasers enable single-shot imaging allowing for instantaneous views of nanostructures at ambient temperatures. When combined judiciously with synchrotron X-rays of a complimentary nature, suitable for observing steady-state features, it is possible to perform ab initio structural investigation. Here we demonstrate a successful combination of femtosecond X-ray single-shot diffraction with an X-ray free-electron laser and coherent diffraction imaging with synchrotron X-rays to provide an insight into the nanostructure formation of a biological macromolecular complex: RNA interference microsponges. This newly introduced multimodal analysis with coherent X-rays can be applied to unveil nano-scale structural motifs from functional nanomaterials or biological nanocomplexes, without requiring a priori knowledge.
Exploration of New Principles in Spintronics Based on Topological Insulators (Option 1)
2012-05-14
on the surface and found that our crystals are exceedingly homogeneous (Supplementary Information). The persistently narrow X - ray diffraction peaks...modified Bridgman method (see Supplementary Information for details). X - ray diffraction measurements indicated the monotonic shrinkage of a and c axis...and annealing at that temperature for 4 days. X - ray diffraction analyses confirmed that all the samples have the same crystal structure (R 3m
Efficient modeling of Bragg coherent x-ray nanobeam diffraction
Hruszkewycz, S. O.; Holt, M. V.; Allain, M.; ...
2015-07-02
X-ray Bragg diffraction experiments that utilize tightly focused coherent beams produce complicated Bragg diffraction patterns that depend on scattering geometry, characteristics of the sample, and properties of the x-ray focusing optic. In this paper, we use a Fourier-transform-based method of modeling the 2D intensity distribution of a Bragg peak and apply it to the case of thin films illuminated with a Fresnel zone plate in three different Bragg scattering geometries. Finally, the calculations agree well with experimental coherent diffraction patterns, demonstrating that nanodiffraction patterns can be modeled at nonsymmetric Bragg conditions with this approach—a capability critical for advancing nanofocused x-raymore » diffraction microscopy.« less
Thermal decomposition of ammonium hexachloroosmate.
Asanova, T I; Kantor, I; Asanov, I P; Korenev, S V; Yusenko, K V
2016-12-07
Structural changes of (NH 4 ) 2 [OsCl 6 ] occurring during thermal decomposition in a reduction atmosphere have been studied in situ using combined energy-dispersive X-ray absorption spectroscopy (ED-XAFS) and powder X-ray diffraction (PXRD). According to PXRD, (NH 4 ) 2 [OsCl 6 ] transforms directly to metallic Os without the formation of any crystalline intermediates but through a plateau where no reactions occur. XANES and EXAFS data by means of Multivariate Curve Resolution (MCR) analysis show that thermal decomposition occurs with the formation of an amorphous intermediate {OsCl 4 } x with a possible polymeric structure. Being revealed for the first time the intermediate was subjected to determine the local atomic structure around osmium. The thermal decomposition of hexachloroosmate is much more complex and occurs within a minimum two-step process, which has never been observed before.
Synthesis and Characterization of Gd and Nd Nanoparticles
NASA Astrophysics Data System (ADS)
Romero, Dulce G.; Ho, Pei-Chun; Attar, Saeed
2009-03-01
Due to the reduced dimensionality, nano-sized materials have physical properties significantly different from the bulk material, such as, superparamagnetic behavior, enhanced magnetization, and self-organization [1-3]. Nano-sized materials have great potential for technical applications, for example, magnetic information storage, imaging, medical devices, and magnetic refrigeration. In this report, we will present the growth and filtration of rare-earth Gd and Nd nanoparticles by the inverse micelle technique [4]. The results of the characterization of these clusters by X- ray diffraction, scanning electron microscope, and energy-dispersive x-ray spectroscopy will be presented. [1] D.C. Douglass, et al. Phys. Rev. B. 47, 19 (1993). [2] J.P. Chen, et al. Phys. Rev. B. 51, 11527 (1995). [3] C. Petit, et al. Advanced Materials. 10, 259 (1998). [4] X.M. Lin, et al. Langmuir. 14, 7140 (1998).
Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.
2012-06-01
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.
NASA Technical Reports Server (NTRS)
Achilles, C. N.; Ming, Douglas W.; Morris, R. V.; Blake, D. F.
2012-01-01
The CheMin instrument on the Mars Science Laboratory (MSL) rover Curiosity is an X-ray diffraction (XRD) and X-ray fluorescence (XRF) instrument capable of providing the mineralogical and chemical compositions of rocks and soils on the surface of Mars. CheMin uses a microfocus X-ray tube with a Co target, transmission geometry, and an energy-discriminating X-ray sensitive CCD to produce simultaneous 2-D XRD patterns and energy-dispersive X-ray histograms from powdered samples. CheMin has two different window materials used for sample cells -- Mylar and Kapton. Instrument details are provided elsewhere. Fe/Mg-smectite (e.g., nontronite) has been identified in Gale Crater, the MSL future landing site, by CRISM spectra. While large quantities of phyllosilicate minerals will be easily detected by CheMin, it is important to establish detection limits of such phases to understand capabilities and limitations of the instrument. A previous study indicated that the (001) peak of smectite at 15 Ang was detectable in a mixture of 1 wt.% smectite with olivine when Mylar is the window material for the sample cell. Complications arise when Kapton is the window material because Kapton itself also has a diffraction peak near 15 Ang (6.8 deg 2 Theta). This study presents results of mineral mixtures of smectite and olivine to determine smectite detection limits for Kapton sample cells. Because the intensity and position of the smectite (001) peak depends on the hydration state, we also analyzed mixtures with "hydrated" and "dehydrated"h smectite to examine the effects of hydration state on detection limits.
NASA Astrophysics Data System (ADS)
Chandra, Usha; Sharma, Pooja; Parthasarathy, G.
2016-12-01
Like bulk, Co1-xFexS2 nanoparticles also display an anomaly at x = 0.5. The borderline contiguous Co1-xFexS2 (x = 0.4 and 0.5) nanoparticles were synthesized with colloidal method and characterized for pyrite structure using various techniques, viz., X-ray diffraction, energy dispersive X-ray analysis (EDAX), S K-edge X-ray absorption near edge spectra, transmission electron microscopy (TEM) and Fourier transformed infra-red spectroscopy. The report presents the effect of high pressure on the borderline compositions using the Mössbauer spectroscopic and electrical resistivity techniques. Magnetic measurements on the system showed drastic lowering of Tc due to nanosize of the particles. With increased pressure, quadrupole splitting showed an expected trend of increase to attain a peak representing a second-order phase transition between 4 and 5 GPa for both the compositions. The pressure coefficient of electrical resistivity varied from -0.02 GPa to -0.06 GPa across transition pressure indicating a sluggish nature of transition. This is the first report of pressure effect on nanosized borderline compositions.
Sun, Tao; Fezzaa, Kamel
2016-06-17
Here, a high-speed X-ray diffraction technique was recently developed at the 32-ID-B beamline of the Advanced Photon Source for studying highly dynamic, yet non-repeatable and irreversible, materials processes. In experiments, the microstructure evolution in a single material event is probed by recording a series of diffraction patterns with extremely short exposure time and high frame rate. Owing to the limited flux in a short pulse and the polychromatic nature of the incident X-rays, analysis of the diffraction data is challenging. Here, HiSPoD, a stand-alone Matlab-based software for analyzing the polychromatic X-ray diffraction data from polycrystalline samples, is described. With HiSPoD,more » researchers are able to perform diffraction peak indexing, extraction of one-dimensional intensity profiles by integrating a two-dimensional diffraction pattern, and, more importantly, quantitative numerical simulations to obtain precise sample structure information.« less
X-ray diffraction and X-ray standing-wave study of the lead stearate film structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blagov, A. E.; Dyakova, Yu. A.; Kovalchuk, M. V.
2016-05-15
A new approach to the study of the structural quality of crystals is proposed. It is based on the use of X-ray standing-wave method without measuring secondary processes and considers the multiwave interaction of diffraction reflections corresponding to different harmonics of the same crystallographic reflection. A theory of multiwave X-ray diffraction is developed to calculate the rocking curves in the X-ray diffraction scheme under consideration for a long-period quasi-one-dimensional crystal. This phase-sensitive method is used to study the structure of a multilayer lead stearate film on a silicon substrate. Some specific structural features are revealed for the surface layer ofmore » the thin film, which are most likely due to the tilt of the upper layer molecules with respect to the external normal to the film surface.« less
High-resolution ab initio three-dimensional x-ray diffraction microscopy
Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; ...
2006-01-01
Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore » resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less
Enhancing resolution in coherent x-ray diffraction imaging.
Noh, Do Young; Kim, Chan; Kim, Yoonhee; Song, Changyong
2016-12-14
Achieving a resolution near 1 nm is a critical issue in coherent x-ray diffraction imaging (CDI) for applications in materials and biology. Albeit with various advantages of CDI based on synchrotrons and newly developed x-ray free electron lasers, its applications would be limited without improving resolution well below 10 nm. Here, we review the issues and efforts in improving CDI resolution including various methods for resolution determination. Enhancing diffraction signal at large diffraction angles, with the aid of interference between neighboring strong scatterers or templates, is reviewed and discussed in terms of increasing signal-to-noise ratio. In addition, we discuss errors in image reconstruction algorithms-caused by the discreteness of the Fourier transformations involved-which degrade the spatial resolution, and suggest ways to correct them. We expect this review to be useful for applications of CDI in imaging weakly scattering soft matters using coherent x-ray sources including x-ray free electron lasers.