NASA Astrophysics Data System (ADS)
Su, Yunquan; Yao, Xuefeng; Wang, Shen; Ma, Yinji
2017-03-01
An effective correction model is proposed to eliminate the refraction error effect caused by an optical window of a furnace in digital image correlation (DIC) deformation measurement under high-temperature environment. First, a theoretical correction model with the corresponding error correction factor is established to eliminate the refraction error induced by double-deck optical glass in DIC deformation measurement. Second, a high-temperature DIC experiment using a chromium-nickel austenite stainless steel specimen is performed to verify the effectiveness of the correction model by the correlation calculation results under two different conditions (with and without the optical glass). Finally, both the full-field and the divisional displacement results with refraction influence are corrected by the theoretical model and then compared to the displacement results extracted from the images without refraction influence. The experimental results demonstrate that the proposed theoretical correction model can effectively improve the measurement accuracy of DIC method by decreasing the refraction errors from measured full-field displacements under high-temperature environment.
Normal-faulting slip maxima and stress-drop variability: a geological perspective
Hecker, S.; Dawson, T.E.; Schwartz, D.P.
2010-01-01
We present an empirical estimate of maximum slip in continental normal-faulting earthquakes and present evidence that stress drop in intraplate extensional environments is dependent on fault maturity. A survey of reported slip in historical earthquakes globally and in latest Quaternary paleoearthquakes in the Western Cordillera of the United States indicates maximum vertical displacements as large as 6–6.5 m. A difference in the ratio of maximum-to-mean displacements between data sets of prehistoric and historical earthquakes, together with constraints on bias in estimates of mean paleodisplacement, suggest that applying a correction factor of 1.4±0.3 to the largest observed displacement along a paleorupture may provide a reasonable estimate of the maximum displacement. Adjusting the largest paleodisplacements in our regional data set (~6 m) by a factor of 1.4 yields a possible upper-bound vertical displacement for the Western Cordillera of about 8.4 m, although a smaller correction factor may be more appropriate for the longest ruptures. Because maximum slip is highly localized along strike, if such large displacements occur, they are extremely rare. Static stress drop in surface-rupturing earthquakes in the Western Cordillera, as represented by maximum reported displacement as a fraction of modeled rupture length, appears to be larger on normal faults with low cumulative geologic displacement (<2 km) and larger in regions such as the Rocky Mountains, where immature, low-throw faults are concentrated. This conclusion is consistent with a growing recognition that structural development influences stress drop and indicates that this influence is significant enough to be evident among faults within a single intraplate environment.
Drag Corrections in High-Speed Wind Tunnels
NASA Technical Reports Server (NTRS)
Ludwieg, H.
1947-01-01
In the vicinity of a body in a wind tunnel the displacement effect of the wake, due to the finite dimensions of the stream, produces a pressure gradient which evokes a change of drag. In incompressible flow this change of drag is so small, in general, that one does not have to take it into account in wind-tunnel measurements; however, in compressible flow it beoomes considerably larger, so that a correction factor is necessary for measured values. Correction factors for a closed tunnel and an open jet with circular cross sections are calculated and compared with the drag - corrections already bown for high-speed tunnnels.
NASA Technical Reports Server (NTRS)
Jenkins, R. V.; Adcock, J. B.
1986-01-01
Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.
On a third-order shear deformation theory for laminated composite shells
NASA Technical Reports Server (NTRS)
Liu, C. F.; Reddy, J. N.
1986-01-01
A higher-order theory based on an assumed displacement field in which the surface displacements are expanded in powers of the thickness coordinate up to the third order is presented. The theory allows parabolic description of the transverse shear stresses, and therefore the shear correction factors of the usual shear deformation theory are not required in the present theory. The theory also accounts for small strains but moderately large displacements (i.e., von Karman strains). A finite-element model based on independent approximations of the displacements and bending moments (i.e., mixed formulation) is developed. The element is used to analyze cross-ply and angle-ply laminated shells for bending.
Veligdan, James T.
1993-01-01
Atmospheric effects on sighting measurements are compensated for by adjusting any sighting measurements using a correction factor that does not depend on atmospheric state conditions such as temperature, pressure, density or turbulence. The correction factor is accurately determined using a precisely measured physical separation between two color components of a light beam (or beams) that has been generated using either a two-color laser or two lasers that project different colored beams. The physical separation is precisely measured by fixing the position of a short beam pulse and measuring the physical separation between the two fixed-in-position components of the beam. This precisely measured physical separation is then used in a relationship that includes the indexes of refraction for each of the two colors of the laser beam in the atmosphere through which the beam is projected, thereby to determine the absolute displacement of one wavelength component of the laser beam from a straight line of sight for that projected component of the beam. This absolute displacement is useful to correct optical measurements, such as those developed in surveying measurements that are made in a test area that includes the same dispersion effects of the atmosphere on the optical measurements. The means and method of the invention are suitable for use with either single-ended systems or a double-ended systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitsmans, Monique H.P.; Bois, Josien de; Sonke, Jan-Jakob
Purpose: The objectives of this study were to quantify residual interfraction displacement of seminal vesicles (SV) and investigate the efficacy of rotation correction on SV displacement in marker-based prostate image-guided radiotherapy (IGRT). We also determined the effect of marker registration on the measured SV displacement and its impact on margin design. Methods and Materials: SV displacement was determined relative to marker registration by using 296 cone beam computed tomography scans of 13 prostate cancer patients with implanted markers. SV were individually registered in the transverse plane, based on gray-value information. The target registration error (TRE) for the SV due tomore » marker registration inaccuracies was estimated. Correlations between prostate gland rotations and SV displacement and between individual SV displacements were determined. Results: The SV registration success rate was 99%. Displacement amounts of both SVs were comparable. Systematic and random residual SV displacements were 1.6 mm and 2.0 mm in the left-right direction, respectively, and 2.8 mm and 3.1 mm in the anteroposterior (AP) direction, respectively. Rotation correction did not reduce residual SV displacement. Prostate gland rotation around the left-right axis correlated with SV AP displacement (R{sup 2} = 42%); a correlation existed between both SVs for AP displacement (R{sup 2} = 62%); considerable correlation existed between random errors of SV displacement and TRE (R{sup 2} = 34%). Conclusions: Considerable residual SV displacement exists in marker-based IGRT. Rotation correction barely reduced SV displacement, rather, a larger SV displacement was shown relative to the prostate gland that was not captured by the marker position. Marker registration error partly explains SV displacement when correcting for rotations. Correcting for rotations, therefore, is not advisable when SV are part of the target volume. Margin design for SVs should take these uncertainties into account.« less
Morasiewicz, Piotr; Filipiak, Jarosław; Krysztoforski, Krzysztof; Dragan, Szymon
2014-03-01
The correction of torsional deformities with the Ilizarov apparatus is accompanied by rotational and translational displacement, which affects the biomechanics of the bone fragments. Understanding the biomechanical factors will assist in designing the optimal treatment strategy and mechanical properties of the fixator, thus shortening the duration of treatment and improving the outcomes. In order to determine the impact of different types of derotators on the kinematics of bone fragments in Ilizarov apparatus, physical models were studied. Translational and derotational displacement was measured using non-contact method (Optotrak Certus Motion Capture System). The results of the studies conducted on physical models have shown that regardless of the type of the derotator, the divergence between the applied angle of derotation and the obtained angle of rotation relative to fragments needs to be taken into account. Transverse displacement of fragments occur by 3.5 mm to approximately 9 mm, depending on the angle of derotation. For correction of rotational deformities up to 30°, it is advisable to use the type Z derotators because of its higher accuracy of derotation. Different types of derotators can affect the biomechanical conditions in the regenerating bone tissue through different kinematics characteristics.
1990-02-01
ELECTRONICS IN ARMOURED VEHICLES byo0 T. Cousins and TJ. Jamieson co N OTIC L , k .. •, ’" DEFENCE RESEARCH ESTABLISHMENT OTTAWA REPORT NO.1032 February...DISPLACEMENT DAMAGE TO ELECTRONICS IN ARMOURED VEHICLES by T. Cousins Nuclear Effects Section EAectronics Divsion and TJ. Jamkson Science Applications...The degree of protection from neutron irradiation afforded to electronics by armoured vehicles is most correctly defined by the outside-to-inside ratio
Sa, Young Jo; Lee, Jongho; Jeong, Jin Yong; Choi, Moonhee; Park, Soo Seog; Sim, Sung Bo; Jo, Keon Hyon
2016-01-19
Bar displacement is one of the most common and serious complications after the Nuss procedure. However, measurements of and factors affecting bar displacement have not been reported. The objectives of this study were to develop a decision model to guide surgeons considering repeat treatment and to estimate optimal cut-off values to determine whether reoperation to correct bar displacement is warranted. From July 2011 to August 2013, ninety bars were inserted in 61 patients who underwent Nuss procedures for pectus excavatum. Group A did not need surgical intervention and Group B required reoperation for bar displacement. Bar position was measured as the distance from the posterior superior end of the sternal body to the upper border of the metal bar on lateral chest radiographs. The bar displacement index (BDI) was calculated using D0 - Dx / D0 x 100 (D0: bar position the day after surgery; Dx: minimal or maximal distance of bar position on the following postoperative days). The optimal cut-off values of BDI warranting reoperation were assessed on the basis of ROC curve analysis. Of the 61 patients, 32 had single bars inserted whereas 29 had parallel bars inserted. There was a significant difference in age (14.0 ± 7.5 vs. 23.3 ± 12.0, p = 0.0062), preoperative Haller index (HI) (4.0 ± 1.1 vs. 5.0 ± 1.0, p = 0.033), and postoperative HI (2.7 ± 0.4 vs. 3.2 ± 0.5 p = 0.006) between the two groups. The optimal cut-off value of BDI was 8.7. We developed a BDI model for surgeons considering performing reoperation after Nuss procedure. The optimal cut-off value of BDI was 8.7. This model may help surgeons to decide objectively whether corrective surgery should be performed. The main factors affecting the relationship between bar displacement and reoperation were age and preoperative HI.
NASA Astrophysics Data System (ADS)
Kang, Kwang-Song; Hu, Nai-Lian; Sin, Chung-Sik; Rim, Song-Ho; Han, Eun-Cheol; Kim, Chol-Nam
2017-08-01
It is very important to obtain the mechanical paramerters of rock mass for excavation design, support design, slope design and stability analysis of the underground structure. In order to estimate the mechanical parameters of rock mass exactly, a new method of combining a geological strength index (GSI) system with intelligent displacment back analysis is proposed in this paper. Firstly, average spacing of joints (d) and rock mass block rating (RBR, a new quantitative factor), surface condition rating (SCR) and joint condition factor (J c) are obtained on in situ rock masses using the scanline method, and the GSI values of rock masses are obtained from a new quantitative GSI chart. A correction method of GSI value is newly introduced by considering the influence of joint orientation and groundwater on rock mass mechanical properties, and then value ranges of rock mass mechanical parameters are chosen by the Hoek-Brown failure criterion. Secondly, on the basis of the measurement result of vault settlements and horizontal convergence displacements of an in situ tunnel, optimal parameters are estimated by combination of genetic algorithm (GA) and numerical simulation analysis using FLAC3D. This method has been applied in a lead-zinc mine. By utilizing the improved GSI quantization, correction method and displacement back analysis, the mechanical parameters of the ore body, hanging wall and footwall rock mass were determined, so that reliable foundations were provided for mining design and stability analysis.
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1986-01-01
An improved plate theory that accounts for the transverse shear deformation is presented, and mixed and displacement finite element models of the theory are developed. The theory is based on an assumed displacement field in which the inplane displacements are expanded in terms of the thickness coordinate up to the cubic term and the transverse deflection is assumed to be independent of the thickness coordinate. The governing equations of motion for the theory are derived from the Hamilton's principle. The theory eliminates the need for shear correction factors because the transverse shear stresses are represented parabolically. A mixed finite element model that uses independent approximations of the displacements and moments, and a displacement model that uses only displacements as degrees of freedom are developed. A comparison of the numerical results for bending with the exact solutions of the new theory and the three-dimensional elasticity theory shows that the present theory (and hence the finite element models) is more accurate than other plate-theories of the same order.
Boore, D.M.; Stephens, C.D.; Joyner, W.B.
2002-01-01
Residual displacements for large earthquakes can sometimes be determined from recordings on modern digital instruments, but baseline offsets of unknown origin make it difficult in many cases to do so. To recover the residual displacement, we suggest tailoring a correction scheme by studying the character of the velocity obtained by integration of zeroth-order-corrected acceleration and then seeing if the residual displacements are stable when the various parameters in the particular correction scheme are varied. For many seismological and engineering purposes, however, the residual displacement are of lesser importance than ground motions at periods less than about 20 sec. These ground motions are often recoverable with simple baseline correction and low-cut filtering. In this largely empirical study, we illustrate the consequences of various correction schemes, drawing primarily from digital recordings of the 1999 Hector Mine, California, earthquake. We show that with simple processing the displacement waveforms for this event are very similar for stations separated by as much as 20 km. We also show that a strong pulse on the transverse component was radiated from the Hector Mine earthquake and propagated with little distortion to distances exceeding 170 km; this pulse leads to large response spectral amplitudes around 10 sec.
2008-01-01
strategies, increasing the prevalence of both hypoglycemia and anemia in the ICU.14–20 The change in allogeneic blood transfusion practices occurred in...measurements in samples with low HCT levels.4,5,7,8,12 The error occurs because de- creased red blood cell causes less displacement of plasma, resulting...Nonlinear component regression was performed be- cause HCT has a nonlinear effect on accuracy of POC glucometers. A dual parameter correction factor was
Calculation of structural dynamic forces and stresses using mode acceleration
NASA Technical Reports Server (NTRS)
Blelloch, Paul
1989-01-01
While the standard mode acceleration formulation in structural dynamics has often been interpreted to suggest that the reason for improved convergence obtainable is that the dynamic correction factor is divided by the modal frequencies-squared, an alternative formulation is presented which clearly indicates that the only difference between mode acceleration and mode displacement data recovery is the addition of a static correction term. Attention is given to the advantages in numerical implementation associated with this alternative, as well as to an illustrative example.
Assessment of Cracks in Stress Concentration Regions with Localized Plastic Zones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, E.
1998-11-25
Marty brittle fracture evaluation procedures include plasticity corrections to elastically computed stress intensity factors. These corrections, which are based on the existence of a plastic zone in the vicinity of the crack tip, can overestimate the plasticity effect for a crack embedded in a stress concentration region in which the elastically computed stress exceeds the yield strength of the material in a localized zone. The interactions between the crack, which acts to relieve the high stresses driving the crack, plasticity effects in the stress concentration region, and the nature and source of the loading are examined by formulating explicit flawmore » finite element models for a crack emanating from the root of a notch located in a panel subject to an applied tensile stress. The results of these calculations provide conditions under which a crack-tip plasticity correction based on the Irwin plastic zone size overestimates the plasticity effect. A failure assessment diagram (FAD) curve is used to characterize the effect of plasticity on the crack driving force and to define a less restrictive plasticity correction for cracks at notch roots when load-controlled boundary conditions are imposed. The explicit flaw finite element results also demonstrate that stress intensity factors associated with load-controlled boundary conditions, such as those inherent in the ASME Boiler and Pressure Vessel Code as well as in most handbooks of stress intensity factors, can be much higher than those associated with displacement-controlled conditions, such as those that produce residual or thermal stresses. Under certain conditions, the inclusion of plasticity effects for cracks loaded by displacement-controlled boundary conditions reduces the crack driving force thus justifying the elimination of a plasticity correction for such loadings. The results of this study form the basis for removing unnecessary conservatism from flaw evaluation procedures that utilize plasticity corrections.« less
Using in situ vertical displacements to characterize changes in moisture load
NASA Astrophysics Data System (ADS)
Murdoch, Lawrence C.; Freeman, Clay E.; Germanovich, Leonid N.; Thrash, Colby; DeWolf, Scott
2015-08-01
Changes in soil moisture content alter the load on underlying material, and we have developed a technique for characterizing this effect by using an extensometer to measure the displacement caused by the load change. The extensometer is pushed into soil at depths of 5 m or more, and displacement between two anchors separated by ˜1.5 m is measured with a resolution of better than 0.01 μm (10-8 m). The instrument is sensitive to load changes at the ground surface within a radial distance that is roughly twice its depth, potentially providing a method for averaging changes in water content over hundreds of m2 or more. During a field trial at a site in South Carolina, compressive displacements in unsaturated saprolite were strongly correlated to rainfall with a calibration factor of 0.16 μm displacement per mm of rainfall ±0.002 μm/mm (R2 = 0.95). Estimates of the net change in water volume per unit area made using the calibration factor from rainfall were similar to independent estimates of evapotranspiration. The technique was affected by barometric pressure variations, but the sensitivity was less than expected and does not hinder meaningful application. A companion instrument demonstrated the displacement signal was repeatable. This article was corrected on 11 SEP 2015. See the end of the full text for details.
Stress-Displacement Relations and Terrain-Vehicle Mechanics: A Critical Discussion
1968-12-01
a definitl.! coherent r nttcrn of rupture surfaces if the geometrica l and load conditions are n t a !ta cG !1y .he flow process itself. The...4 (as shown for one example at <he bo tom of the fiaurc). After application of the appropriate correction factor to account for the diftcrent tan...Sela’s theory is correct . Jtouahly 50 per r.ent of the experimental M I RW curves arc beyond these limits, wlllcla IIIIDituiBcieat to reject SoJa’s
NASA Technical Reports Server (NTRS)
Wyman, D.; Steinman, R. M.
1973-01-01
Recently Timberlake, Wyman, Skavenski, and Steinman (1972) concluded in a study of the oculomotor error signal in the fovea that 'the oculomotor dead zone is surely smaller than 10 min and may even be less than 5 min (smaller than the 0.25 to 0.5 deg dead zone reported by Rashbass (1961) with similar stimulus conditions).' The Timberlake et al. speculation is confirmed by demonstrating that the fixating eye consistently and accurately corrects target displacements as small as 3.4 min. The contact lens optical lever technique was used to study the manner in which the oculomotor system responds to small step displacements of the fixation target. Subjects did, without prior practice, use saccades to correct step displacements of the fixation target just as they correct small position errors during maintained fixation.
Hsi, Wen C; Law, Aaron; Schreuder, Andreas N; Zeidan, Omar A
2014-08-01
An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso was assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ± 30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, Wen C., E-mail: Wen.Hsi@Mclaren.org, E-mail: Wenchien.hsi@sphic.org.cn; Zeidan, Omar A., E-mail: omar.zeidan@orlandohealth.com; Law, Aaron
Purpose: An optical tracking and positioning system (OTPS) was developed to validate the software-driven isocentric (SDI) approach to control the six-degrees-of-freedom movement of a robotic couch. Methods: The SDI approach to movements rotating around a predefined isocenter, referred to as a GeoIso, instead of a mechanical pivot point was developed by the robot automation industry. With robotic couch-sag corrections for weight load in a traditional SDI approach, movements could be accurately executed for a GeoIso located within a 500 mm cubic volume on the couch for treatments. The accuracy of SDI movement was investigated using the OTPS. The GeoIso wasmore » assumed to align with the proton beam isocenter (RadIso) for gantry at the reference angle. However, the misalignment between GeoIso and RadIso was quantitatively investigated by measuring the displacements at various couch angles for a target placed at the RadIso at an initial couch angle. When circular target displacements occur on a plane, a relative isocenter shift (RIS) correction could be applied in the SDI movement to minimize target displacements. Target displacements at a fixed gantry angle without and with RIS correction were measured for 12 robotic couches. Target displacements for various gantry angles were performed on three couches in gantry rooms to study the gantry-induced RadIso shift. The RIS correction can also be applied for the RadIso shift. A new SDI approach incorporating the RIS correction with the couch sag is described in this study. In parallel, the accuracy of SDI translation movements for various weight loads of patients on the couch was investigated during positioning of patients for proton prostate treatments. Results: For a fixed gantry angle, measured target displacements without RIS correction for couch rotations in the horizontal plane varied from 4 to 20 mm. However, measured displacements perpendicular to couch rotation plane were about 2 mm for all couches. Extracted misalignments of GeoIso and RadIso in the horizontal plane were about 10 mm for one couch and within 3 mm for the rest of couches. After applying the RIS correction, the residual target displacements for couch rotations were within 0.5 mm to RadIso for all couches. For various gantry angles, measured target location for each angle was within 0.5 mm to its excepted location by the preset RadIso shift. Measured target displacements for ±30° of couch rotations were within 0.5 mm for gantry angles at 0° and 180°. Overall, nearly 85% of couch movements were within 0.5 mm in the horizontal plane and 0.7 mm vector distance from required displacements. Conclusions: The authors present an optical tracking methodology to quantify for software-driven isocentric movements of robotic couches. By applying proper RIS correction for misaligned GeoIso and RadIso for each couch, and the RadIso shifts for a moving gantry, residual target displacements for isocentric couch movements around the actual RadIso can be reduced to submillimeter tolerance.« less
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-01-01
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%. PMID:28273845
Liu, Chenglong; Liu, Jinghong; Song, Yueming; Liang, Huaidan
2017-03-04
This paper provides a system and method for correction of relative angular displacements between an Unmanned Aerial Vehicle (UAV) and its onboard strap-down photoelectric platform to improve localization accuracy. Because the angular displacements have an influence on the final accuracy, by attaching a measuring system to the platform, the texture image of platform base bulkhead can be collected in a real-time manner. Through the image registration, the displacement vector of the platform relative to its bulkhead can be calculated to further determine angular displacements. After being decomposed and superposed on the three attitude angles of the UAV, the angular displacements can reduce the coordinate transformation errors and thus improve the localization accuracy. Even a simple kind of method can improve the localization accuracy by 14.3%.
Improving atomic displacement and replacement calculations with physically realistic damage models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.
A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Cook, Geoffrey M.
1997-01-01
A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.
The perturbation correction factors for cylindrical ionization chambers in high-energy photon beams.
Yoshiyama, Fumiaki; Araki, Fujio; Ono, Takeshi
2010-07-01
In this study, we calculated perturbation correction factors for cylindrical ionization chambers in high-energy photon beams by using Monte Carlo simulations. We modeled four Farmer-type cylindrical chambers with the EGSnrc/Cavity code and calculated the cavity or electron fluence correction factor, P (cav), the displacement correction factor, P (dis), the wall correction factor, P (wall), the stem correction factor, P (stem), the central electrode correction factor, P (cel), and the overall perturbation correction factor, P (Q). The calculated P (dis) values for PTW30010/30013 chambers were 0.9967 +/- 0.0017, 0.9983 +/- 0.0019, and 0.9980 +/- 0.0019, respectively, for (60)Co, 4 MV, and 10 MV photon beams. The value for a (60)Co beam was about 1.0% higher than the 0.988 value recommended by the IAEA TRS-398 protocol. The P (dis) values had a substantial discrepancy compared to those of IAEA TRS-398 and AAPM TG-51 at all photon energies. The P (wall) values were from 0.9994 +/- 0.0020 to 1.0031 +/- 0.0020 for PTW30010 and from 0.9961 +/- 0.0018 to 0.9991 +/- 0.0017 for PTW30011/30012, in the range of (60)Co-10 MV. The P (wall) values for PTW30011/30012 were around 0.3% lower than those of the IAEA TRS-398. Also, the chamber response with and without a 1 mm PMMA water-proofing sleeve agreed within their combined uncertainty. The calculated P (stem) values ranged from 0.9945 +/- 0.0014 to 0.9965 +/- 0.0014, but they are not considered in current dosimetry protocols. The values were no significant difference on beam qualities. P (cel) for a 1 mm aluminum electrode agreed within 0.3% with that of IAEA TRS-398. The overall perturbation factors agreed within 0.4% with those for IAEA TRS-398.
NASA Astrophysics Data System (ADS)
MacMillan, D. S.; van Dam, T. M.
2009-04-01
Variations in the horizontal distribution of atmospheric mass induce displacements of the Earth's surface. Theoretical estimates of the amplitude of the surface displacement indicate that the predicted surface displacement is often large enough to be detected by current geodetic techniques. In fact, the effects of atmospheric pressure loading have been detected in Global Positioning System (GPS) coordinate time series [van Dam et al., 1994; Dong et al., 2002; Scherneck et al., 2003; Zerbini et al., 2004] and very long baseline interferometery (VLBI) coordinates [Rabble and Schuh, 1986; Manabe et al., 1991; van Dam and Herring, 1994; Schuh et al., 2003; MacMillan and Gipson, 1994; and Petrov and Boy, 2004]. Some of these studies applied the atmospheric displacement at the observation level and in other studies, the predicted atmospheric and observed geodetic surface displacements have been averaged over 24 hours. A direct comparison of observation level and 24 hour corrections has not been carried out for VLBI to determine if one or the other approach is superior. In this presentation, we address the following questions: 1) Is it better to correct geodetic data at the observation level rather than applying corrections averaged over 24 hours to estimated geodetic coordinates a posteriori? 2) At the sub-daily periods, the atmospheric mass signal is composed of two components: a tidal component and a non-tidal component. If observation level corrections reduce the scatter of VLBI data more than a posteriori correction, is it sufficient to only model the atmospheric tides or must the entire atmospheric load signal be incorporated into the corrections? 3) When solutions from different geodetic techniques (or analysis centers within a technique) are combined (e.g., for ITRF2008), not all solutions may have applied atmospheric loading corrections. Are any systematic effects on the estimated TRF introduced when atmospheric loading is applied?
Evaluation of cast creep occurring during simulated clubfoot correction
Cohen, Tamara L; Altiok, Haluk; Wang, Mei; McGrady, Linda M; Krzak, Joseph; Graf, Adam; Tarima, Sergey; Smith, Peter A; Harris, Gerald, F
2016-01-01
The Ponseti method is a widely accepted and highly successful conservative treatment of pediatric clubfoot involving weekly manipulations and cast applications. Qualitative assessments have indicated the potential success of the technique with cast materials other than standard plaster of Paris. However, guidelines for clubfoot correction based on the mechanical response of these materials have yet to be investigated. The current study sought to characterize and compare the ability of three standard cast materials to maintain the Ponseti corrected foot position by evaluating cast creep response. A dynamic cast testing device, built to model clubfoot correction, was wrapped in plaster-of-Paris, semi-rigid fiberglass, and rigid fiberglass. Three-dimensional motion responses to two joint stiffnesses were recorded. Rotational creep displacement and linearity of the limb-cast composite were analyzed. Minimal change in position over time was found for all materials. Among cast materials, the rotational creep displacement was significantly different (p < 0.0001). The most creep displacement occurred in the plaster-of-Paris (2.0 degrees), then the semi-rigid fiberglass (1.0 degrees), and then the rigid fiberglass (0.4 degrees). Torque magnitude did not affect creep displacement response. Analysis of normalized rotation showed quasi—linear viscoelastic behavior. This study provided a mechanical evaluation of cast material performance as used for clubfoot correction. Creep displacement dependence on cast material and insensitivity to torque were discovered. This information may provide a quantitative and mechanical basis for future innovations for clubfoot care. PMID:23636764
NASA Technical Reports Server (NTRS)
Schwartzberg, F. R.; Toth, C., Jr.; King, R. G.; Todd, P. H., Jr.
1979-01-01
Certain behavioral aspects associated with fracture and crack extension that cannot be studied using other techniques were evaluated with the ultrasonic method. Characterization of collimated beam techniques showed that significant beam width reduction could be accomplished. Techniques for collimation are given. The crack-opening displacement-gage correction-factor study showed that displacement resulting from crack opening and that from plasticity could be readily differentiated. Crack closure studies using both ultrasonic and crack-opening displacement measurements showed an opening and closing behavior associated with load-unload curves. The results of this work were in general agreement with the closure concepts of Elber. Ultrasonic measurements used to study the nature of flaw extension characteristics associated with failure of the ligament between the flaw front and back surface showed that penetration could occur by an abrupt fracturing after subcritical growth or by continuous growth.
Improved operation of magnetic bearings for flywheel energy storage system
NASA Technical Reports Server (NTRS)
Zmood, R. B.; Pang, D.; Anand, D. K.; Kirk, J. A.
1990-01-01
Analysis and operation of prototype 500-Wh flywheel at low speeds have shown that many factors affect the correct functioning of the magnetic bearings. An examination is made of a number of these, including magnetic bearing control system nonlinearities and displacement transducer positioning, and their effects upon the successful operation of the suspension system. It is observed that the bearing control system is extremely sensitive to actuator parameters such as coil inductance. As a consequence of the analysis of bearing relaxation oscillations, the bearing actuator design methodology which has previously been used, where coil parameter selection is based upon static considerations, has been revised. Displacement transducer sensors which overcome the collocation problem are discussed.
Merritt, Kate E; Seergobin, Ken N; Mendonça, Daniel A; Jenkins, Mary E; Goodale, Melvyn A; MacDonald, Penny A
2017-01-01
In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson's disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients ( n = 14) and healthy controls ( n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls'. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses.
Seergobin, Ken N.; Mendonça, Daniel A.
2017-01-01
Abstract In the double-step paradigm, healthy human participants automatically correct reaching movements when targets are displaced. Motor deficits are prominent in Parkinson’s disease (PD) patients. In the lone investigation of online motor correction in PD using the double-step task, a recent study found that PD patients performed unconscious adjustments appropriately but seemed impaired for consciously-perceived modifications. Conscious perception of target movement was achieved by linking displacement to movement onset. PD-related bradykinesia disproportionately prolonged preparatory phases for movements to original target locations for patients, potentially accounting for deficits. Eliminating this confound in a double-step task, we evaluated the effect of conscious awareness of trajectory change on online motor corrections in PD. On and off dopaminergic therapy, PD patients (n = 14) and healthy controls (n = 14) reached to peripheral visual targets that remained stationary or unexpectedly moved during an initial saccade. Saccade latencies in PD are comparable to controls’. Hence, target displacements occurred at equal times across groups. Target jump size affected conscious awareness, confirmed in an independent target displacement judgment task. Small jumps were subliminal, but large target displacements were consciously perceived. Contrary to the previous result, PD patients performed online motor corrections normally and automatically, irrespective of conscious perception. Patients evidenced equivalent movement durations for jump and stay trials, and trajectories for patients and controls were identical, irrespective of conscious perception. Dopaminergic therapy had no effect on performance. In summary, online motor control is intact in PD, unaffected by conscious perceptual awareness. The basal ganglia are not implicated in online corrective responses. PMID:29085900
Boore, D.M.
2001-01-01
Displacements derived from many of the accelerogram recordings of the 1999 Chi-Chi, Taiwan, earthquake show drifts when only a simple baseline derived from the pre-event portion of the record is removed from the records. The appearance of the velocity and displacement records suggests that changes in the zero level of the acceleration are responsible for these drifts. The source of the shifts in zero level are unknown, but in at least one case it is almost certainly due to tilting of the ground. This article illustrates the effect on the ground velocity, ground displacement, and response spectra of several schemes for accounting for these baseline shifts. A wide range of final displacements can be obtained for various choices of baseline correction, and comparison with nearby GPS stations (none of which are colocated with the accelerograph stations) do not help in choosing the appropriate baseline correction. The results suggest that final displacements estimated from the records should be used with caution. The most important conclusion for earthquake engineering purposes, however, is that the response spectra for periods less than about 20 sec are usually unaffected by the baseline correction. Although limited to the analysis of only a small number of recordings, the results may have more general significance both for the many other recordings of this earthquake and for data that will be obtained in the future from similar high-quality accelerograph networks now being installed or soon to be installed in many parts of the world.
Kalmár, Éva; Lasher, Jason Richard; Tarry, Thomas Dean; Myers, Andrea; Szakonyi, Gerda; Dombi, György; Baki, Gabriella; Alexander, Kenneth S.
2013-01-01
The availability of suppositories in Hungary, especially in clinical pharmacy practice, is usually provided by extemporaneous preparations. Due to the known advantages of rectal drug administration, its benefits are frequently utilized in pediatrics. However, errors during the extemporaneous manufacturing process can lead to non-homogenous drug distribution within the dosage units. To determine the root cause of these errors and provide corrective actions, we studied suppository samples prepared with exactly known errors using both cerimetric titration and HPLC technique. Our results show that the most frequent technological error occurs when the pharmacist fails to use the correct displacement factor in the calculations which could lead to a 4.6% increase/decrease in the assay in individual dosage units. The second most important source of error can occur when the molding excess is calculated solely for the suppository base. This can further dilute the final suppository drug concentration causing the assay to be as low as 80%. As a conclusion we emphasize that the application of predetermined displacement factors in calculations for the formulation of suppositories is highly important, which enables the pharmacist to produce a final product containing exactly the determined dose of an active substance despite the different densities of the components. PMID:25161378
Kalmár, Eva; Lasher, Jason Richard; Tarry, Thomas Dean; Myers, Andrea; Szakonyi, Gerda; Dombi, György; Baki, Gabriella; Alexander, Kenneth S
2014-09-01
The availability of suppositories in Hungary, especially in clinical pharmacy practice, is usually provided by extemporaneous preparations. Due to the known advantages of rectal drug administration, its benefits are frequently utilized in pediatrics. However, errors during the extemporaneous manufacturing process can lead to non-homogenous drug distribution within the dosage units. To determine the root cause of these errors and provide corrective actions, we studied suppository samples prepared with exactly known errors using both cerimetric titration and HPLC technique. Our results show that the most frequent technological error occurs when the pharmacist fails to use the correct displacement factor in the calculations which could lead to a 4.6% increase/decrease in the assay in individual dosage units. The second most important source of error can occur when the molding excess is calculated solely for the suppository base. This can further dilute the final suppository drug concentration causing the assay to be as low as 80%. As a conclusion we emphasize that the application of predetermined displacement factors in calculations for the formulation of suppositories is highly important, which enables the pharmacist to produce a final product containing exactly the determined dose of an active substance despite the different densities of the components.
NASA Astrophysics Data System (ADS)
Herman, M. W.; Furlong, K. P.; Hayes, G. P.; Benz, H.
2014-12-01
Strong motion accelerometers can record large amplitude shaking on-scale in the near-field of large earthquake ruptures; however, numerical integration of such records to determine displacement is typically unstable due to baseline changes (i.e., distortions in the zero value) that occur during strong shaking. We use datasets from the 2011 Mw 9.0 Tohoku earthquake to assess whether a relatively simple empirical correction scheme (Boore et al., 2002) can return accurate displacement waveforms useful for constraining details of the fault slip. The coseismic deformation resulting from the Tohoku earthquake was recorded by the Kiban Kyoshin network (KiK-net) of strong motion instruments as well as by a dense network of high-rate (1 Hz) GPS instruments. After baseline correcting the KiK-net records and integrating to displacement, over 85% of the KiK-net borehole instrument waveforms and over 75% of the KiK-net surface instrument waveforms match collocated 1 Hz GPS displacement time series. Most of the records that do not match the GPS-derived displacements following the baseline correction have large, systematic drifts that can be automatically identified by examining the slopes in the first 5-10 seconds of the velocity time series. We apply the same scheme to strong motion records from the 2014 Mw 8.2 Iquique earthquake. Close correspondence in both direction and amplitude between coseismic static offsets derived from the integrated strong motion time series and those predicted from a teleseismically-derived finite fault model, as well as displacement amplitudes consistent with InSAR-derived results, suggest that the correction scheme works successfully for the Iquique event. In the absence of GPS displacements, these strong motion-derived offsets provide constraints on the overall distribution of slip on the fault. In addition, the coseismic strong motion-derived displacement time series (50-100 s long) contain a near-field record of the temporal evolution of the rupture, supplementing teleseismic data and improving resolution of the location and timing of moment in finite fault models.
NASA Technical Reports Server (NTRS)
Wornom, S. F.
1971-01-01
This technique has been applied to study such effects on incompressible flow around cylinders at moderate to low Reynolds numbers and for compression ramps at hypersonic Mach numbers by employing a finite difference method to obtain numerical solutions. The results indicate that the technique can be applied successfully in both regimes and does predict the correct trend in regions of large curvature and displacement body effects. It was concluded that curvature corrections should only be attempted in cases where all displacement effects can be fully accounted for.
Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming
2017-10-01
To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Neural mechanisms of single corrective steps evoked in the standing rabbit
Hsu, L.-J.; Zelenin, P. V.; Lyalka, V. F.; Vemula, M. G.; Orlovsky, G. N.; Deliagina, T. G.
2017-01-01
Single steps in different directions are often used for postural corrections. However, our knowledge about the neural mechanisms underlying their generation is scarce. This study was aimed to characterize the corrective steps generated in response to disturbances of the basic body configuration caused by forward, backward or outward displacement of the hindlimb, as well as to reveal location in the CNS of the corrective step generating mechanisms. Video recording of the motor response to translation of the supporting surface under the hindlimb along with contact forces and activity of back and limb muscles was performed in freely standing intact and in fixed postmammillary rabbits. In intact rabbits, displacement of the hindlimb in any direction caused a lateral trunk movement towards the contralateral hindlimb, and then a corrective step in the direction opposite to the initial displacement. The time difference between onsets of these two events varied considerably. The EMG pattern in the supporting hindlimb was similar for all directions of corrective steps. It caused the increase in the limb stiffness. EMG pattern in the stepping limb differed in steps with different directions. In postmammillary rabbits the corrective stepping movements, as well as EMG patterns in both stepping and standing hindlimbs were similar to those observed in intact rabbits. This study demonstrates that the corrective trunk and limb movements are generated by separate mechanisms activated by sensory signals from the deviated limb. The neuronal networks generating postural corrective steps reside in the brainstem, cerebellum, and spinal cord. PMID:28215990
Mulpruek, Pornchai; Angsanuntsukh, Chanika; Woratanarat, Patarawan; Sa-Ngasoongsong, Paphon; Tawonsawatruk, Tulyapruek; Chanplakorn, Pongsthorn
2015-09-01
To assess the outcome after using the Shaft-Condylar angle (SCA) as intraoperative reference for sagittal plane correction in displaced lateral humeral condyle fractures in children presented 3-weeks after injury. Ten children, with delayed presentation of a displaced lateral humeral condyle fracture and undergoing surgery during 1999-2011, were reviewed. The goal was to obtain a smooth articular surface with an intraoperative SCA of nearly 40° and nearest-anatomical carrying angle. They were allocated into two groups according to the postoperative SCA [Good-reduction group (SCA=30-50°), and Bad-reduction group (SCA<30°, >50°)] and the final outcomes were then compared. All fractures united without avascular necrosis. The Good-reduction group (n=7) showed a significant improvement in final range of motion and functional outcome compared to the Bad-reduction group (n=3) (p=0.02). However, there was no significant difference in pain, carrying angle and overall outcome between both groups. SCA is a possible intraoperative reference for sagittal alignment correction in late presented displaced lateral humeral condyle fractures.
Correction of Line Interleaving Displacement in Frame Captured Aerial Video Imagery
B. Cooke; A. Saucier
1995-01-01
Scientists with the USDA Forest Service are currently assessing the usefulness of aerial video imagery for various purposes including midcycle inventory updates. The potential of video image data for these purposes may be compromised by scan line interleaving displacement problems. Interleaving displacement problems cause features in video raster datasets to have...
Detection of MRI artifacts produced by intrinsic heart motion using a saliency model
NASA Astrophysics Data System (ADS)
Salguero, Jennifer; Velasco, Nelson; Romero, Eduardo
2017-11-01
Cardiac Magnetic Resonance (CMR) requires synchronization with the ECG to correct many types of noise. However, the complex heart motion frequently produces displaced slices that have to be either ignored or manually corrected since the ECG correction is useless in this case. This work presents a novel methodology that detects the motion artifacts in CMR using a saliency method that highlights the region where the heart chambers are located. Once the Region of Interest (RoI) is set, its center of gravity is determined for the set of slices composing the volume. The deviation of the gravity center is an estimation of the coherence between the slices and is used to find out slices with certain displacement. Validation was performed with distorted real images where a slice is artificially misaligned with respect to set of slices. The displaced slice is found with a Recall of 84% and F Score of 68%.
de Souza, Vanessa K; Wales, David J
2006-02-10
On short time scales an underlying Arrhenius temperature dependence of the diffusion constant can be extracted from the fragile, super-Arrhenius diffusion of a binary Lennard-Jones mixture. This Arrhenius diffusion is related to the true super-Arrhenius behavior by a factor that depends on the average angle between steps in successive time windows. The correction factor accounts for the fact that on average, successive displacements are negatively correlated, and this effect can therefore be linked directly with the higher apparent activation energy for diffusion at low temperature.
Displacement data assimilation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenthal, W. Steven; Venkataramani, Shankar; Mariano, Arthur J.
We show that modifying a Bayesian data assimilation scheme by incorporating kinematically-consistent displacement corrections produces a scheme that is demonstrably better at estimating partially observed state vectors in a setting where feature information is important. While the displacement transformation is generic, here we implement it within an ensemble Kalman Filter framework and demonstrate its effectiveness in tracking stochastically perturbed vortices.
A refined shear deformation theory for the analysis of laminated plates
NASA Technical Reports Server (NTRS)
Reddy, J. N.
1986-01-01
A refined, third-order plate theory that accounts for the transverse shear strains is presented, the Navier solutions are derived for certain simply supported cross-ply and antisymmetric angle-ply laminates, and finite-element models are developed for general laminates. The new theory does not require the shear correction factors of the first-order theory (i.e., the Reissner-Mindlin plate theory) because the transverse shear stresses are represented parabolically in the present theory. A mixed finite-element model that uses independent approximations of the generalized displacements and generalized moments, and a displacement model that uses only the generalized displacements as degrees of freedom are developed. The displacement model requires C sup 1-continuity of the transverse deflection across the inter-element boundaries, whereas the mixed model requires a C sup 0-element. Also, the mixed model does not require continuous approximations (between elements) of the bending moments. Numerical results are presented to show the accuracy of the present theory in predicting the transverse stresses. Numerical results are also presented for the nonlinear bending of plates, and the results compare well with the experimental results available in the literature.
Enhancement of long period components of recorded and synthetic ground motions using InSAR
Abell, J.A.; Carlos de la Llera, J.; Wicks, C.W.
2011-01-01
Tall buildings and flexible structures require a better characterization of long period ground motion spectra than the one provided by current seismic building codes. Motivated by that, a methodology is proposed and tested to improve recorded and synthetic ground motions which are consistent with the observed co-seismic displacement field obtained from interferometric synthetic aperture radar (InSAR) analysis of image data for the Tocopilla 2007 earthquake (Mw=7.7) in Northern Chile. A methodology is proposed to correct the observed motions such that, after double integration, they are coherent with the local value of the residual displacement. Synthetic records are generated by using a stochastic finite-fault model coupled with a long period pulse to capture the long period fling effect. It is observed that the proposed co-seismic correction yields records with more accurate long-period spectral components as compared with regular correction schemes such as acausal filtering. These signals provide an estimate for the velocity and displacement spectra, which are essential for tall-building design. Furthermore, hints are provided as to the shape of long-period spectra for seismic zones prone to large co-seismic displacements such as the Nazca-South American zone. ?? 2011 Elsevier Ltd.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS RECRUITMENT, SELECTION, AND PLACEMENT (GENERAL) Federal Employment Priority Consideration Program for Displaced Employees of the District of Columbia Department of Corrections § 330.1101 Purpose. A displaced employee of the District of...
[Psychological issues in manned spaceflight].
Zhang, Q J; Bai, Y Q
1999-04-01
As the duration of manned spaceflight becomes longer and as crews become more heterogeneous, psychological and interpersonal factors will be more important in affecting the safety of crew and flight mission. In space environment there are four types of stressors: physical, physiological, psychological and interpersonal. Psychological issues include "Asthenia", alteration in time sense, transcendent experiences, sleep problem, career motivation, psychosomatic symptoms and psychiatric issues. Interpersonal issues include interpersonal tension, interpersonal relationships decreased cohesiveness and deprivation, displacement [correction of dispiacement] of anger to outside personnel over time.
Bloem, B R; Beckley, D J; van Dijk, J G; Zwinderman, A H; Remler, M P; Roos, R A
1996-09-01
It is still unclear why balance impairment in Parkinson's disease (PD) often responds insufficiently to dopaminergic medication. We have studied this issue in 23 patients with idiopathic PD and 24 healthy controls. Our specific purposes were (a) to investigate the contribution of abnormal automatic postural responses to balance impairment in PD and (b) to assess the influence of dopaminergic medication on abnormal automatic postural responses and balance impairment. Standing subjects received 4 degrees "toe-up" rotational perturbations of a supporting forceplate. We bilaterally recorded posturally destabilizing medium latency (ML) responses from the stretched gastrocnemius muscles and functionally corrective long latency (LL) responses from the shortened tibialis anterior (TA) muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). All patients were tested in the "off" and "on" phases. All controls were tested and retested after 1 h. During the off phase, we found enlarged ML amplitudes and diminished LL amplitudes in patients, together with a markedly increased posterior displacement of the COG. The abnormal ML and LL responses were partially responsible for the increased body sway in patients because the initial forward (destabilizing) displacement of the CFP was increased, while the subsequent backward displacement of the CFP (a measure of the corrective braking action of LL responses) was delayed. Abnormal late automatic or possibly more voluntary postural corrections also contributed substantially to the increased body sway. During the on phase, ML amplitudes were reduced in patients but remained increased compared with controls. LL amplitudes no longer differed between both groups due to a modest, possibly dopamine-related increase in patients and a simultaneous decrease in controls. The abnormal CFP displacement was only partially improved by dopaminergic medication. The later postural corrections were not improved at all. Consequently, the increased posterior COG displacement was not ameliorated during the on phase. We conclude that (a) a combination of abnormal automatic and perhaps more voluntary postural corrections contributes to increased body sway in PD and (b) dopaminergic medication fails to improve balance impairment in PD because early automatic postural responses are only partially corrected, while later occurring postural corrections are not improved at all. These electrophysiological results support clinical observations and suggest that nondopaminergic lesions play a significant role in the pathophysiology of postural abnormalities in PD.
Kulcsár, Caroline; Raynaud, Henri-François; Garcia-Rissmann, Aurea
2016-01-01
This paper studies the effect of pupil displacements on the best achievable performance of retinal imaging adaptive optics (AO) systems, using 52 trajectories of horizontal and vertical displacements sampled at 80 Hz by a pupil tracker (PT) device on 13 different subjects. This effect is quantified in the form of minimal root mean square (rms) of the residual phase affecting image formation, as a function of the delay between PT measurement and wavefront correction. It is shown that simple dynamic models identified from data can be used to predict horizontal and vertical pupil displacements with greater accuracy (in terms of average rms) over short-term time horizons. The potential impact of these improvements on residual wavefront rms is investigated. These results allow to quantify the part of disturbances corrected by retinal imaging systems that are caused by relative displacements of an otherwise fixed or slowy-varying subject-dependent aberration. They also suggest that prediction has a limited impact on wavefront rms and that taking into account PT measurements in real time improves the performance of AO retinal imaging systems. PMID:27231607
Design and analysis of DNA strand displacement devices using probabilistic model checking
Lakin, Matthew R.; Parker, David; Cardelli, Luca; Kwiatkowska, Marta; Phillips, Andrew
2012-01-01
Designing correct, robust DNA devices is difficult because of the many possibilities for unwanted interference between molecules in the system. DNA strand displacement has been proposed as a design paradigm for DNA devices, and the DNA strand displacement (DSD) programming language has been developed as a means of formally programming and analysing these devices to check for unwanted interference. We demonstrate, for the first time, the use of probabilistic verification techniques to analyse the correctness, reliability and performance of DNA devices during the design phase. We use the probabilistic model checker prism, in combination with the DSD language, to design and debug DNA strand displacement components and to investigate their kinetics. We show how our techniques can be used to identify design flaws and to evaluate the merits of contrasting design decisions, even on devices comprising relatively few inputs. We then demonstrate the use of these components to construct a DNA strand displacement device for approximate majority voting. Finally, we discuss some of the challenges and possible directions for applying these methods to more complex designs. PMID:22219398
Is Bone Grafting Necessary in the Treatment of Malunited Distal Radius Fractures?
Disseldorp, Dominique J. G.; Poeze, Martijn; Hannemann, Pascal F. W.; Brink, Peter R. G.
2015-01-01
Background Open wedge osteotomy with bone grafting and plate fixation is the standard procedure for the correction of malunited distal radius fractures. Bone grafts are used to increase structural stability and to enhance new bone formation. However, bone grafts are also associated with donor site morbidity, delayed union at bone–graft interfaces, size mismatch between graft and osteotomy defect, and additional operation time. Purpose The goal of this study was to assess bone healing and secondary fracture displacement in the treatment of malunited distal radius fractures without the use of bone grafting. Methods Between January 1993 and December 2013, 132 corrective osteotomies and plate fixations without bone grafting were performed for malunited distal radius fractures. The minimum follow-up time was 12 months. Primary study outcomes were time to complete bone healing and secondary fracture displacement. Preoperative and postoperative radiographs during follow-up were compared with each other, as well as with radiographs of the uninjured side. Results All 132 osteotomies healed. In two cases (1.5%), healing took more than 4 months, but reinterventions were not necessary. No cases of secondary fracture displacement or hardware failure were observed. Significant improvements in all radiographic parameters were shown after corrective osteotomy and plate fixation. Conclusion This study shows that bone grafts are not required for bone healing and prevention of secondary fracture displacement after corrective osteotomy and plate fixation of malunited distal radius fractures. Level of evidence Therapeutic, level IV, case series with no comparison group PMID:26261748
van de Streek, Jacco; Neumann, Marcus A
2010-10-01
This paper describes the validation of a dispersion-corrected density functional theory (d-DFT) method for the purpose of assessing the correctness of experimental organic crystal structures and enhancing the information content of purely experimental data. 241 experimental organic crystal structures from the August 2008 issue of Acta Cryst. Section E were energy-minimized in full, including unit-cell parameters. The differences between the experimental and the minimized crystal structures were subjected to statistical analysis. The r.m.s. Cartesian displacement excluding H atoms upon energy minimization with flexible unit-cell parameters is selected as a pertinent indicator of the correctness of a crystal structure. All 241 experimental crystal structures are reproduced very well: the average r.m.s. Cartesian displacement for the 241 crystal structures, including 16 disordered structures, is only 0.095 Å (0.084 Å for the 225 ordered structures). R.m.s. Cartesian displacements above 0.25 A either indicate incorrect experimental crystal structures or reveal interesting structural features such as exceptionally large temperature effects, incorrectly modelled disorder or symmetry breaking H atoms. After validation, the method is applied to nine examples that are known to be ambiguous or subtly incorrect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary
Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared headmore » position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.« less
The nutritional status of children of displaced families in Beirut.
Shaar, K H; Shaar, M A
1993-04-01
The nutritional status of children of displaced families in Greater Beirut was investigated in 1986 (a sample of 146 households) and in 1991 (137 households). Data on demographic variables, nutrient intake (calories, protein, and iron), and anthropometric measurements were collected. Iron intake was only 50-57% of the RDA for the 1-3 age group, and 35.6% and 32.0% of all children consumed < 60% of the RDA for iron in 1986 and 1991, respectively. Main sources of protein were dairy products, milk and eggs. The lower nutrient intake in 1991 compared to 1986 was negatively related to social class. Anthropometric measurements showed an increased past and recent undernutrition of the children in 1991 as compared to both the 1986 child sample and the NCHS standard child population. Severe inflation and marked increase in food prices were reflected in dietary intake and growth of the children. Food aid programmes, government subsidy of bread, and partial wage correction were possible stabilizing factors for the most destitute groups but not for the total population of displaced children.
Factors related to stability following the surgical correction of skeletal open bite.
Ito, Goshi; Koh, Myongsun; Fujita, Tadashi; Shirakura, Maya; Ueda, Hiroshi; Tanne, Kazuo
2014-05-01
If a skeletal anterior open bite malocclusion is treated by orthognathic surgery directed only at the mandible, the lower jaw is repositioned upward in a counter-clockwise rotation. However, this procedure has a high risk of relapse. In the present study, the key factors associated with post-surgical stability of corrected skeletal anterior open bite malocclusions were investigated. Eighteen orthognathic patients were subjected to cephalometric analysis to assess the dental and skeletal changes following mandibular surgery for the correction of an anterior open bite. The patients were divided into two groups, determined by an increase or decrease in nasion-menton (N-Me) distance as a consequence of surgery. Changes in overbite, the displacements of molars and positional changes in Menton were evaluated immediately before and after surgery and after a minimum of one year post-operatively. The group with a decreased N-Me distance exhibited a significantly greater backward positioning of the mandible. The group with an increased N-Me distance experienced significantly greater dentoalveolar extrusion of the lower molars. A sufficient mandibular backward repositioning is an effective technique in the prevention of open bite relapse. In addition, it is important not to induce molar extrusion during post-surgical orthodontic treatment to preserve stability of the surgical open bite correction.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2014-01-01
To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.
Di Pasquale, Andrea; Nico, Giovanni; Pitullo, Alfredo; Prezioso, Giuseppina
2018-01-16
The aim of this paper is to describe how ground-based radar interferometry can provide displacement measurements of earth dam surfaces and of vibration frequencies of its main concrete infrastructures. In many cases, dams were built many decades ago and, at that time, were not equipped with in situ sensors embedded in the structure when they were built. Earth dams have scattering properties similar to landslides for which the Ground-Based Synthetic Aperture Radar (GBSAR) technique has been so far extensively applied to study ground displacements. In this work, SAR and Real Aperture Radar (RAR) configurations are used for the measurement of earth dam surface displacements and vibration frequencies of concrete structures, respectively. A methodology for the acquisition of SAR data and the rendering of results is described. The geometrical correction factor, needed to transform the Line-of-Sight (LoS) displacement measurements of GBSAR into an estimate of the horizontal displacement vector of the dam surface, is derived. Furthermore, a methodology for the acquisition of RAR data and the representation of displacement temporal profiles and vibration frequency spectra of dam concrete structures is presented. For this study a Ku-band ground-based radar, equipped with horn antennas having different radiation patterns, has been used. Four case studies, using different radar acquisition strategies specifically developed for the monitoring of earth dams, are examined. The results of this work show the information that a Ku-band ground-based radar can provide to structural engineers for a non-destructive seismic assessment of earth dams.
Adaptive radial basis function mesh deformation using data reduction
NASA Astrophysics Data System (ADS)
Gillebaart, T.; Blom, D. S.; van Zuijlen, A. H.; Bijl, H.
2016-09-01
Radial Basis Function (RBF) mesh deformation is one of the most robust mesh deformation methods available. Using the greedy (data reduction) method in combination with an explicit boundary correction, results in an efficient method as shown in literature. However, to ensure the method remains robust, two issues are addressed: 1) how to ensure that the set of control points remains an accurate representation of the geometry in time and 2) how to use/automate the explicit boundary correction, while ensuring a high mesh quality. In this paper, we propose an adaptive RBF mesh deformation method, which ensures the set of control points always represents the geometry/displacement up to a certain (user-specified) criteria, by keeping track of the boundary error throughout the simulation and re-selecting when needed. Opposed to the unit displacement and prescribed displacement selection methods, the adaptive method is more robust, user-independent and efficient, for the cases considered. Secondly, the analysis of a single high aspect ratio cell is used to formulate an equation for the correction radius needed, depending on the characteristics of the correction function used, maximum aspect ratio, minimum first cell height and boundary error. Based on the analysis two new radial basis correction functions are derived and proposed. This proposed automated procedure is verified while varying the correction function, Reynolds number (and thus first cell height and aspect ratio) and boundary error. Finally, the parallel efficiency is studied for the two adaptive methods, unit displacement and prescribed displacement for both the CPU as well as the memory formulation with a 2D oscillating and translating airfoil with oscillating flap, a 3D flexible locally deforming tube and deforming wind turbine blade. Generally, the memory formulation requires less work (due to the large amount of work required for evaluating RBF's), but the parallel efficiency reduces due to the limited bandwidth available between CPU and memory. In terms of parallel efficiency/scaling the different studied methods perform similarly, with the greedy algorithm being the bottleneck. In terms of absolute computational work the adaptive methods are better for the cases studied due to their more efficient selection of the control points. By automating most of the RBF mesh deformation, a robust, efficient and almost user-independent mesh deformation method is presented.
Akkar, Sinan; Boore, David M.
2009-01-01
Most digital accelerograph recordings are plagued by long-period drifts, best seen in the velocity and displacement time series obtained from integration of the acceleration time series. These drifts often result in velocity values that are nonzero near the end of the record. This is clearly unphysical and can lead to inaccurate estimates of peak ground displacement and long-period spectral response. The source of the long-period noise seems to be variations in the acceleration baseline in many cases. These variations could be due to true ground motion (tilting and rotation, as well as local permanent ground deformation), instrumental effects, or analog-to-digital conversion. Very often the trends in velocity are well approximated by a linear trend after the strong shaking subsides. The linearity of the trend in velocity implies that no variations in the baseline could have occurred after the onset of linearity in the velocity time series. This observation, combined with the lack of any trends in the pre-event motion, allows us to compute the time interval in which any baseline variations could occur. We then use several models of the variations in a Monte Carlo procedure to derive a suite of baseline-corrected accelerations for each noise model using records from the 1999 Chi-Chi earthquake and several earthquakes in Turkey. Comparisons of the mean values of the peak ground displacements, spectral displacements, and residual displacements computed from these corrected accelerations for the different noise models can be used as a guide to the accuracy of the baseline corrections. For many of the records considered here the mean values are similar for each noise model, giving confidence in the estimation of the mean values. The dispersion of the ground-motion measures increases with period and is noise-model dependent. The dispersion of inelastic spectra is greater than the elastic spectra at short periods but approaches that of the elastic spectra at longer periods. The elastic spectra from the most basic processing, in which only the pre-event mean is removed from the acceleration time series, do not diverge from the baseline-corrected spectra until periods of 10-20 sec or more for the records studied here, implying that for many engineering purposes elastic spectra can be used from records with no baseline correction or filtering.
NASA Technical Reports Server (NTRS)
Santiago, Walter; Birchenough, Arthur G.
2006-01-01
Stirling engine converters are being considered as potential candidates for high power energy conversion systems required by future NASA explorations missions. These types of engines typically contain two major moving parts, the displacer and the piston, in which a linear alternator is attached to the piston to produce a single phase sinusoidal waveform at a specific electric frequency. Since all Stirling engines perform at low electrical frequencies (less or equal to 100 Hz), space explorations missions that will employ these engines will be required to use DC power management and distribution (PMAD) system instead of an AC PMAD system to save on space and weight. Therefore, to supply such DC power an AC to DC converter is connected to the Stirling engine. There are two types of AC to DC converters that can be employed, a passive full bridge diode rectifier and an active switching full bridge rectifier. Due to the inherent line inductance of the Stirling Engine-Linear Alternator (SE-LA), their sinusoidal voltage and current will be phase shifted producing a power factor below 1. In order to keep power the factor close to unity, both AC to DC converters topologies will implement power factor correction. This paper discusses these power factor correction methods as well as their impact on overall mass for exploration applications. Simulation results on both AC to DC converters topologies with power factor correction as a function of output power and SE-LA line inductance impedance are presented and compared.
NASA Astrophysics Data System (ADS)
Hubert, Maxime; Pacureanu, Alexandra; Guilloud, Cyril; Yang, Yang; da Silva, Julio C.; Laurencin, Jerome; Lefebvre-Joud, Florence; Cloetens, Peter
2018-05-01
In X-ray tomography, ring-shaped artifacts present in the reconstructed slices are an inherent problem degrading the global image quality and hindering the extraction of quantitative information. To overcome this issue, we propose a strategy for suppression of ring artifacts originating from the coherent mixing of the incident wave and the object. We discuss the limits of validity of the empty beam correction in the framework of a simple formalism. We then deduce a correction method based on two-dimensional random sample displacement, with minimal cost in terms of spatial resolution, acquisition, and processing time. The method is demonstrated on bone tissue and on a hydrogen electrode of a ceramic-metallic solid oxide cell. Compared to the standard empty beam correction, we obtain high quality nanotomography images revealing detailed object features. The resulting absence of artifacts allows straightforward segmentation and posterior quantification of the data.
A head motion estimation algorithm for motion artifact correction in dental CT imaging
NASA Astrophysics Data System (ADS)
Hernandez, Daniel; Elsayed Eldib, Mohamed; Hegazy, Mohamed A. A.; Hye Cho, Myung; Cho, Min Hyoung; Lee, Soo Yeol
2018-03-01
A small head motion of the patient can compromise the image quality in a dental CT, in which a slow cone-beam scan is adopted. We introduce a retrospective head motion estimation method by which we can estimate the motion waveform from the projection images without employing any external motion monitoring devices. We compute the cross-correlation between every two successive projection images, which results in a sinusoid-like displacement curve over the projection view when there is no patient motion. However, the displacement curve deviates from the sinusoid-like form when patient motion occurs. We develop a method to estimate the motion waveform with a single parameter derived from the displacement curve with aid of image entropy minimization. To verify the motion estimation method, we use a lab-built micro-CT that can emulate major head motions during dental CT scans, such as tilting and nodding, in a controlled way. We find that the estimated motion waveform conforms well to the actual motion waveform. To further verify the motion estimation method, we correct the motion artifacts with the estimated motion waveform. After motion artifact correction, the corrected images look almost identical to the reference images, with structural similarity index values greater than 0.81 in the phantom and rat imaging studies.
Calibration of piezoelectric RL shunts with explicit residual mode correction
NASA Astrophysics Data System (ADS)
Høgsberg, Jan; Krenk, Steen
2017-01-01
Piezoelectric RL (resistive-inductive) shunts are passive resonant devices used for damping of dominant vibration modes of a flexible structure and their efficiency relies on the precise calibration of the shunt components. In the present paper improved calibration accuracy is attained by an extension of the local piezoelectric transducer displacement by two additional terms, representing the flexibility and inertia contributions from the residual vibration modes not directly addressed by the shunt damping. This results in an augmented dynamic model for the targeted resonant vibration mode, in which the residual contributions, represented by two correction factors, modify both the apparent transducer capacitance and the shunt circuit impedance. Explicit expressions for the correction of the shunt circuit inductance and resistance are presented in a form that is generally applicable to calibration formulae derived on the basis of an assumed single-mode structure, where modal interaction has been neglected. A design procedure is devised and subsequently verified by a numerical example, which demonstrates that effective mitigation can be obtained for an arbitrary vibration mode when the residual mode correction is included in the calibration of the RL shunt.
NASA Technical Reports Server (NTRS)
Sayenko D.; Miller, T.; Sayenko. I.; Kozlovskaya, I.; Reschke, M.
2004-01-01
Posture disorders are an inevitable consequence of exposure to microgravity . However, the role of different sensorimotor and sensory factors on postural function at different stages of the exposure to microgravity still remains unknown. The results obtained in a 6 hr dry immersion (DI) study where chest pushes served as a pre- and post-immersion perturbation, and DI was used as an analog of microgravity suggest that in addition to vestibular contributions, postural control may be related to a reduction of support loading and consequent decline of the tone of anti-gravitational muscles. Analysis of postural video data in response to chest pushes obtained before and after DI indicate that the structure of corrective responses was modified so that postural perturbations from threshold to moderate pushes showed a significant rise in the amplitude of ankle and knee angular displacement. With push intensity near the submaximal level, equilibrium was maintained by the elimination of excessive degrees of freedom; as manifested by the restriction of the hip joints mobility when coupled with a reduction of the knee and ankle displacement. These results suggest that DI increases the sensitivity of the posture control system by making posture control more rigid reflecting a change of the weight bearing receptors.
Factors Affecting Participation of Displaced Workers in Retraining: A Literature Review.
ERIC Educational Resources Information Center
Dean, Gary J.
This document offers a selected review of literature relevant to retraining displaced workers. A description of the economic conditions leading to the displacement of workers, the nature and scope of the displaced worker problem, and factors potentially affecting displaced workers' participation in adult education and training programs is…
Holly, Rick; Morton, Gerard C; Sankreacha, Raxa; Law, Niki; Cisecki, Thomas; Loblaw, D Andrew; Chung, Hans T
2011-01-01
To determine the magnitude of catheter displacement between time of planning and time of treatment delivery for patients undergoing high dose-rate (HDR) brachytherapy, the dosimetric impact of catheter displacement, and the ability to improve dosimetry by catheter readjustment. Twenty consecutive patients receiving single fraction HDR brachytherapy underwent kilovoltage cone-beam CT in the treatment room before treatment. If catheter displacement was apparent, catheters were adjusted and imaging repeated. Both sets of kilovoltage cone-beam CT image sets were coregistered off-line with the CT data set used for planning with rigid fusion of anatomy based on implanted fiducials. Catheter displacement was measured on both sets of images and dosimetry calculated. Mean internal displacement of catheters was 11mm. This would have resulted in a decrease in mean volume receiving 100% of prescription dose (V(100)) from the planned 97.6% to 77.3% (p<0.001), a decrease of the mean dose to 90% of the prostate (D(90)) from 110.5% to 72.9% (p<0.001), and increase in dose to 10% of urethra (urethra D(10)) from 118% to 125% (p=0.0094). Each 1cm of catheter displacement resulted in a 20% decrease in V(100) and 36% decrease in D(90). Catheter readjustment resulted in a final treated mean V(100) of 90.2% and D(90) of 97.4%, both less than planned. Mean urethra D(10) remained higher at126% (p=0.0324). Significantly, internal displacement of HDR catheters commonly occurs between time of CT planning and treatment delivery, even when only a single fraction is used. The adverse effects on dosimetry can be partly corrected by readjustment of catheter position. Copyright © 2011 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Traumatic corneal flap displacement after laser in situ keratomileusis (LASIK).
Tsai, Tsung-Han; Peng, Kai-Ling; Lin, Chien-Jen
2017-01-01
Laser in situ keratomileusis (LASIK) is the most common and popular procedure performed for the correction of refractive errors in the last two decades. We report a case of traumatic flap displacement with flap folding which occurred 3 years after LASIK was performed. Previous literature suggests that vision prognosis would be closely related to proper and prompt management of traumatic flap displacement with flap folding 3 years after LASIK. A 23-year-old female presented to our hospital who had undergone uneventful LASIK in both eyes 3 years prior. Unfortunately, she had suffered a blunt trauma in her right eye in a car accident. A late onset of corneal flap displacement was found with upper and lower portion of the flap being folded inside the corneal bed. Surgical intervention for debridement with subsequent reposition of corneal flap was performed as soon as possible in the operating room. A bandage contact lens was placed, and topical antibiotic and corticosteroids were given postoperatively. Two days after the operation, the displaced corneal flap was found to be well attached smoothly on the corneal bed without folds. The best-corrected visual acuity was 6/6 with refraction of -0.75 D to 1.0 D ×175° in her right eye 1 month later. We reviewed a total of 19 published cases of late-onset traumatic flap dislocations or displacements after LASIK with complete data from 2000 to 2014. Traumatic displacement of corneal flaps after LASIK may occur after blunt injury with specific direction of force to the flap margin, especially tangential one. According to the previous literature, late-onset traumatic flap displacement may happen at any time after LASIK and be caused by various types of injuries. Fortunately, good visual function could mostly be restored with immediate and proper management.
Compression-ignition Engine Performance at Altitudes and at Various Air Pressures and Temperatures
NASA Technical Reports Server (NTRS)
Moore, Charles S; Collins, John H
1937-01-01
Engine test results are presented for simulated altitude conditions. A displaced-piston combustion chamber on a 5- by 7-inch single cylinder compression-ignition engine operating at 2,000 r.p.m. was used. Inlet air temperature equivalent to standard altitudes up to 14,000 feet were obtained. Comparison between performance at altitude of the unsupercharged compression-ignition engine compared favorably with the carburetor engine. Analysis of the results for which the inlet air temperature, inlet air pressure, and inlet and exhaust pressure were varied indicates that engine performance cannot be reliably corrected on the basis of inlet air density or weight of air charge. Engine power increases with inlet air pressure and decreases with inlet air temperatures very nearly as straight line relations over a wide range of air-fuel ratios. Correction factors are given.
Guide to luminescence dating techniques and their application for paleoseismic research
Gray, Harrison J.; Mahan, Shannon; Rittenour, Tammy M.; Nelson, Michelle Summa; Lund, William R.
2015-01-01
Over the past 25 years, luminescence dating has become a key tool for dating sediments of interest in paleoseismic research. The data obtained from luminescence dating has been used to determine timing of fault displacement, calculate slip rates, and estimate earthquake recurrence intervals. The flexibility of luminescence is a key complement to other chronometers such as radiocarbon or cosmogenic nuclides. Careful sampling and correct selection of sample sites exert two of the strongest controls on obtaining an accurate luminescence age. Factors such as partial bleaching and post-depositional mixing should be avoided during sampling and special measures may be needed to help correct for associated problems. Like all geochronologic techniques, context is necessary for interpreting and calculating luminescence results and this can be achieved by supplying participating labs with associated trench logs, photos, and stratigraphic locations of sample sites.
Publisher Correction: Tunnelling spectroscopy of gate-induced superconductivity in MoS2
NASA Astrophysics Data System (ADS)
Costanzo, Davide; Zhang, Haijing; Reddy, Bojja Aditya; Berger, Helmuth; Morpurgo, Alberto F.
2018-06-01
In the version of this Article originally published, an error during typesetting led to the curve in Fig. 2a being shifted to the right, and the curves in the inset of Fig. 2a being displaced. The figure has now been corrected in all versions of the Article; the original and corrected Fig. 2a are shown below.
Zijlstra, Agnes; Zijlstra, Wiebren
2013-09-01
Inverted pendulum (IP) models of human walking allow for wearable motion-sensor based estimations of spatio-temporal gait parameters during unconstrained walking in daily-life conditions. At present it is unclear to what extent different IP based estimations yield different results, and reliability and validity have not been investigated in older persons without a specific medical condition. The aim of this study was to compare reliability and validity of four different IP based estimations of mean step length in independent-living older persons. Participants were assessed twice and walked at different speeds while wearing a tri-axial accelerometer at the lower back. For all step-length estimators, test-retest intra-class correlations approached or were above 0.90. Intra-class correlations with reference step length were above 0.92 with a mean error of 0.0 cm when (1) multiplying the estimated center-of-mass displacement during a step by an individual correction factor in a simple IP model, or (2) adding an individual constant for bipedal stance displacement to the estimated displacement during single stance in a 2-phase IP model. When applying generic corrections or constants in all subjects (i.e. multiplication by 1.25, or adding 75% of foot length), correlations were above 0.75 with a mean error of respectively 2.0 and 1.2 cm. Although the results indicate that an individual adjustment of the IP models provides better estimations of mean step length, the ease of a generic adjustment can be favored when merely evaluating intra-individual differences. Further studies should determine the validity of these IP based estimations for assessing gait in daily life. Copyright © 2013 Elsevier B.V. All rights reserved.
DESIGN OF TWO-DIMENSIONAL SUPERSONIC TURBINE ROTOR BLADES WITH BOUNDARY-LAYER CORRECTION
NASA Technical Reports Server (NTRS)
Goldman, L. J.
1994-01-01
A computer program has been developed for the design of supersonic rotor blades where losses are accounted for by correcting the ideal blade geometry for boundary layer displacement thickness. The ideal blade passage is designed by the method of characteristics and is based on establishing vortex flow within the passage. Boundary-layer parameters (displacement and momentum thicknesses) are calculated for the ideal passage, and the final blade geometry is obtained by adding the displacement thicknesses to the ideal nozzle coordinates. The boundary-layer parameters are also used to calculate the aftermixing conditions downstream of the rotor blades assuming the flow mixes to a uniform state. The computer program input consists essentially of the rotor inlet and outlet Mach numbers, upper- and lower-surface Mach numbers, inlet flow angle, specific heat ratio, and total flow conditions. The program gas properties are set up for air. Additional gases require changes to be made to the program. The computer output consists of the corrected rotor blade coordinates, the principal boundary-layer parameters, and the aftermixing conditions. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 7094. This program was developed in 1971.
NASA Astrophysics Data System (ADS)
Tu, Rui; Wang, Rongjiang; Zhang, Yong; Walter, Thomas R.
2014-06-01
The description of static displacements associated with earthquakes is traditionally achieved using GPS, EDM or InSAR data. In addition, displacement histories can be derived from strong-motion records, allowing an improvement of geodetic networks at a high sampling rate and a better physical understanding of earthquake processes. Strong-motion records require a correction procedure appropriate for baseline shifts that may be caused by rotational motion, tilting and other instrumental effects. Common methods use an empirical bilinear correction on the velocity seismograms integrated from the strong-motion records. In this study, we overcome the weaknesses of an empirically based bilinear baseline correction scheme by using a net-based criterion to select the timing parameters. This idea is based on the physical principle that low-frequency seismic waveforms at neighbouring stations are coherent if the interstation distance is much smaller than the distance to the seismic source. For a dense strong-motion network, it is plausible to select the timing parameters so that the correlation coefficient between the velocity seismograms of two neighbouring stations is maximized after the baseline correction. We applied this new concept to the KiK-Net and K-Net strong-motion data available for the 2011 Mw 9.0 Tohoku earthquake. We compared the derived coseismic static displacement with high-quality GPS data, and with the results obtained using empirical methods. The results show that the proposed net-based approach is feasible and more robust than the individual empirical approaches. The outliers caused by unknown problems in the measurement system can be easily detected and quantified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falco, Maria Daniela, E-mail: mdanielafalco@hotmail.co; Fontanarosa, Davide; Miceli, Roberto
2011-04-01
Cone-beam X-ray volumetric imaging in the treatment room, allows online correction of set-up errors and offline assessment of residual set-up errors and organ motion. In this study the registration algorithm of the X-ray volume imaging software (XVI, Elekta, Crawley, United Kingdom), which manages a commercial cone-beam computed tomography (CBCT)-based positioning system, has been tested using a homemade and an anthropomorphic phantom to: (1) assess its performance in detecting known translational and rotational set-up errors and (2) transfer the transformation matrix of its registrations into a commercial treatment planning system (TPS) for offline organ motion analysis. Furthermore, CBCT dose index hasmore » been measured for a particular site (prostate: 120 kV, 1028.8 mAs, approximately 640 frames) using a standard Perspex cylindrical body phantom (diameter 32 cm, length 15 cm) and a 10-cm-long pencil ionization chamber. We have found that known displacements were correctly calculated by the registration software to within 1.3 mm and 0.4{sup o}. For the anthropomorphic phantom, only translational displacements have been considered. Both studies have shown errors within the intrinsic uncertainty of our system for translational displacements (estimated as 0.87 mm) and rotational displacements (estimated as 0.22{sup o}). The resulting table translations proposed by the system to correct the displacements were also checked with portal images and found to place the isocenter of the plan on the linac isocenter within an error of 1 mm, which is the dimension of the spherical lead marker inserted at the center of the homemade phantom. The registration matrix translated into the TPS image fusion module correctly reproduced the alignment between planning CT scans and CBCT scans. Finally, measurements on the CBCT dose index indicate that CBCT acquisition delivers less dose than conventional CT scans and electronic portal imaging device portals. The registration software was found to be accurate, and its registration matrix can be easily translated into the TPS and a low dose is delivered to the patient during image acquisition. These results can help in designing imaging protocols for offline evaluations.« less
Displacement and adolescent suicide: introduction to a special section.
van Dulmen, Manfred H M; Bossarte, Robert M; Swahn, Monica H
2011-01-01
Empirical findings from previous studies indicate that the risk factors for adolescent suicide are multifaceted and likely the result of the interaction between individual and contextual risk factors. In this special section, we focus on one subdomain of risk factors for adolescent suicide, namely, displacement. During adolescence, experiences of displacement due to changes in family or peer relationships may be particularly important because these relationships play a key role in meeting developmental tasks. This special section brings together new findings from four empirical studies investigating how displacement affects risk for suicide across individuals in different contexts and across various domains of displacement. The findings suggest that (a) these risk factors are multifaceted and (b) they often represent an interaction between individual and contextual risk factors. At the same time, the articles in this special section indicate that the role of displacement is complex, and it may sometimes serve a protective role when combined with other factors (e.g., mental health treatment).
NASA Astrophysics Data System (ADS)
Williams, Robert W.; Schlücker, Sebastian; Hudson, Bruce S.
2008-01-01
A scaled quantum mechanical harmonic force field (SQMFF) corrected for anharmonicity is obtained for the 23 K L-alanine crystal structure using van der Waals corrected periodic boundary condition density functional theory (DFT) calculations with the PBE functional. Scale factors are obtained with comparisons to inelastic neutron scattering (INS), Raman, and FT-IR spectra of polycrystalline L-alanine at 15-23 K. Calculated frequencies for all 153 normal modes differ from observed frequencies with a standard deviation of 6 wavenumbers. Non-bonded external k = 0 lattice modes are included, but assignments to these modes are presently ambiguous. The extension of SQMFF methodology to lattice modes is new, as are the procedures used here for providing corrections for anharmonicity and van der Waals interactions in DFT calculations on crystals. First principles Born-Oppenheimer molecular dynamics (BOMD) calculations are performed on the L-alanine crystal structure at a series of classical temperatures ranging from 23 K to 600 K. Corrections for zero-point energy (ZPE) are estimated by finding the classical temperature that reproduces the mean square displacements (MSDs) measured from the diffraction data at 23 K. External k = 0 lattice motions are weakly coupled to bonded internal modes.
Tooth loss caused by displaced elastic during simple preprosthetic orthodontic treatment
Dianiskova, Simona; Calzolari, Chiara; Migliorati, Marco; Silvestrini-Biavati, Armando; Isola, Gaetano; Savoldi, Fabio; Dalessandri, Domenico; Paganelli, Corrado
2016-01-01
The use of elastics to close a diastema or correct tooth malpositions can create unintended consequences if not properly controlled. The American Association of Orthodontists recently issued a consumer alert, warning of “a substantial risk for irreparable damage” from a new trend called “do-it-yourself” orthodontics, consisting of patients autonomously using elastics to correct tooth position. The elastics can work their way below the gums and around the roots of the teeth, causing damage to the periodontium and even resulting in tooth loss. The cost of implants to replace these teeth would well exceed the cost of proper orthodontic care. This damage could also occur in a dental office, when a general dentist tries to perform a simplified orthodontic correction of a minor tooth malposition. The present case report describes a case of tooth loss caused by a displaced intraoral elastic, which occurred during a simple preprosthetic orthodontic treatment. PMID:27672645
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Gherlone, Marco; Versino, Daniele; DiSciuva, Marco
2012-01-01
This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C(sup 0)-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite element approximations thus provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.
NASA Technical Reports Server (NTRS)
Tessler, Alexander; Gherlone, Marco; Versino, Daniele; Di Sciuva, Marco
2012-01-01
This paper reviews the theoretical foundation and computational mechanics aspects of the recently developed shear-deformation theory, called the Refined Zigzag Theory (RZT). The theory is based on a multi-scale formalism in which an equivalent single-layer plate theory is refined with a robust set of zigzag local layer displacements that are free of the usual deficiencies found in common plate theories with zigzag kinematics. In the RZT, first-order shear-deformation plate theory is used as the equivalent single-layer plate theory, which represents the overall response characteristics. Local piecewise-linear zigzag displacements are used to provide corrections to these overall response characteristics that are associated with the plate heterogeneity and the relative stiffnesses of the layers. The theory does not rely on shear correction factors and is equally accurate for homogeneous, laminated composite, and sandwich beams and plates. Regardless of the number of material layers, the theory maintains only seven kinematic unknowns that describe the membrane, bending, and transverse shear plate-deformation modes. Derived from the virtual work principle, RZT is well-suited for developing computationally efficient, C0-continuous finite elements; formulations of several RZT-based elements are highlighted. The theory and its finite elements provide a unified and reliable computational platform for the analysis and design of high-performance load-bearing aerospace structures.
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1979-01-01
A two dimensional, boundary collocation stress analysis was used to analyze various round compact specimens. The influence of the round external boundary and of pin-loaded holes on stress intensity factors and crack opening displacements was determined as a function of crack-length-to-specimen-width ratios. A wide-range equation for the stress intensity factors was developed. Equations for crack-surface displacements and load-point displacements were also developed. In addition, stress intensity factors were calculated from compliance methods to demonstrate that load-displacement records must be made at the loading points and not along the crack line for crack-length-to-specimen-width ratios less than about 0.4.
NASA Astrophysics Data System (ADS)
Bi, J. T.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.
2017-05-01
As the maturity of wind power technology and the ageing and retirement of conventional synchronous generators, the displacement of synchronous generators by wind power generators would be a trend in the next few decades. The power system small-signal angular stability caused by the displacement is an urgent problem to be studied. The displacement of the SG by the DFIG includes withdrawing the dynamic interactions of the displaced SG and adding the dynamic interactions of the displacing DFIG. Based on this fact, a new index is proposed to predict the impact of the SG to be displaced by the DFIG on power system oscillation modes. The sensitivity index of the oscillation modes to the constant inertia of the displaced SGs, proposed in early literatures to estimate the dynamic impact of the SG being displaced by the DFIG, is also compared with the proposed index. The modified New England power system is adopted to show various results and conclusions. The proposed index can correctly identify the most dangerous and beneficial displacement to power system small-signal angular stability, and is very useful in practical applications.
ERIC Educational Resources Information Center
Reijntjes, Albert; Kamphuis, Jan H.; Thomaes, Sander; Bushman, Brad J.; Telch, Michael J.
2013-01-01
People often displace their aggression against innocent targets. Notwithstanding the merits of previous research on displaced aggression, critical gaps remain. First, it is unclear whether and how situational and dispositional factors interact to influence displaced aggression. Moreover, it is unclear whether engaging in direct aggression…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gangsaas, Anne, E-mail: a.gangsaas@erasmusmc.nl; Astreinidou, Eleftheria; Quint, Sandra
2013-10-01
Purpose: To investigate interfraction setup variations of the primary tumor, elective nodes, and vertebrae in laryngeal cancer patients and to validate protocols for cone beam computed tomography (CBCT)-guided correction. Methods and Materials: For 30 patients, CBCT-measured displacements in fractionated treatments were used to investigate population setup errors and to simulate residual setup errors for the no action level (NAL) offline protocol, the extended NAL (eNAL) protocol, and daily CBCT acquisition with online analysis and repositioning. Results: Without corrections, 12 of 26 patients treated with radical radiation therapy would have experienced a gradual change (time trend) in primary tumor setup ≥4more » mm in the craniocaudal (CC) direction during the fractionated treatment (11/12 in caudal direction, maximum 11 mm). Due to these trends, correction of primary tumor displacements with NAL resulted in large residual CC errors (required margin 6.7 mm). With the weekly correction vector adjustments in eNAL, the trends could be largely compensated (CC margin 3.5 mm). Correlation between movements of the primary and nodal clinical target volumes (CTVs) in the CC direction was poor (r{sup 2}=0.15). Therefore, even with online setup corrections of the primary CTV, the required CC margin for the nodal CTV was as large as 6.8 mm. Also for the vertebrae, large time trends were observed for some patients. Because of poor CC correlation (r{sup 2}=0.19) between displacements of the primary CTV and the vertebrae, even with daily online repositioning of the vertebrae, the required CC margin around the primary CTV was 6.9 mm. Conclusions: Laryngeal cancer patients showed substantial interfraction setup variations, including large time trends, and poor CC correlation between primary tumor displacements and motion of the nodes and vertebrae (internal tumor motion). These trends and nonrigid anatomy variations have to be considered in the choice of setup verification protocol and planning target volume margins. eNAL could largely compensate time trends with minor prolongation of fraction time.« less
Stiffness of frictional contact of dissimilar elastic solids
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; ...
2017-12-22
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This study gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the frictionmore » coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations – adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. Finally, the correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.« less
Stiffness of frictional contact of dissimilar elastic solids
NASA Astrophysics Data System (ADS)
Lee, Jin Haeng; Gao, Yanfei; Bower, Allan F.; Xu, Haitao; Pharr, George M.
2018-03-01
The classic Sneddon relationship between the normal contact stiffness and the contact size is valid for axisymmetric, frictionless contact, in which the two contacting solids are approximated by elastic half-spaces. Deviation from this result critically affects the accuracy of the load and displacement sensing nanoindentation techniques. This paper gives a thorough numerical and analytical investigation of corrections needed to the Sneddon solution when finite Coulomb friction exists between an elastic half-space and a flat-ended rigid punch with circular or noncircular shape. Because of linearity of the Coulomb friction, the correction factor is found to be a function of the friction coefficient, Poisson's ratio, and the contact shape, but independent of the contact size. Two issues are of primary concern in the finite element simulations - adequacy of the mesh near the contact edge and the friction implementation methodology. Although the stick or slip zone sizes are quite different from the penalty or Lagrangian methods, the calculated contact stiffnesses are almost the same and may be considerably larger than those in Sneddon's solution. For circular punch contact, the numerical solutions agree remarkably well with a previous analytical solution. For non-circular punch contact, the results can be represented using the equivalence between the contact problem and bi-material fracture mechanics. The correction factor is found to be a product of that for the circular contact and a multiplicative factor that depends only on the shape of the punch but not on the friction coefficient or Poisson's ratio.
NASA Astrophysics Data System (ADS)
Jose, L.; Bennett, R. A.; Harig, C.
2017-12-01
Currently, cGPS data is well suited to track vertical changes in the Earth's surface. However, there are annual, semi-annual, and interannual signals within cGPS time series that are not well constrained. We hypothesize that these signals are primarily due to water loading. If this is the case, the conventional method of modeling cGPS data as an annual or semiannual sinusoid falls short, as such models cannot accurately capture all variations in surface displacement, especially those due to extreme hydrologic events. We believe that we can better correct the cGPS time series with another method we are developing wherein we use a time series of surface displacement derived from the GRACE geopotential field instead of a sinusoidal model to correct the data. Currently, our analysis is constrained to the Amazon Basin, where the signal due to water loading is large enough to appear in both the GRACE and cGPS measurements. The vertical signal from cGPS stations across the Amazon Basin show an apparent spatial correlation, which further supports our idea that these signals are due to a regional water loading signal. In our preliminary research, we used tsview for Matlab to find that the WRMS of the corrected cGPS time series can be reduced as much as 30% from the model corrected data to the GRACE corrected data. The Amazon, like many places around the world, has experienced extreme drought, in 2005, 2010, and recently in 2015. In addition to making the cGPS vertical signal more robust, the method we are developing has the potential to help us understand the effects of these weather events and track trends in water loading.
Chang, Hing-Chiu; Chuang, Tzu-Chao; Lin, Yi-Ru; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen
2013-04-01
This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts.
Herbert, Eric; Pernot, Mathieu; Montaldo, Gabriel; Fink, Mathias; Tanter, Mickael
2009-01-01
An aberration correction method based on the maximization of the wave intensity at the focus of an emitting array is presented. The potential of this new adaptive focusing technique is investigated for ultrasonic focusing in biological tissues. The acoustic intensity is maximized non invasively through the direct measurement or indirect estimation of the beam energy at the focus for a series of spatially coded emissions. For ultrasonic waves, the acoustic energy at the desired focus can be indirectly estimated from the local displacements induced in tissues by the ultrasonic radiation force of the beam. Based on the measurement of these displacements, this method allows the precise estimation of the phase and amplitude aberrations and consequently the correction of aberrations along the beam travel path. The proof of concept is first performed experimentally using a large therapeutic array with strong electronic phase aberrations (up to 2π). Displacements induced by the ultrasonic radiation force at the desired focus are indirectly estimated using the time shift of backscattered echoes recorded on the array. The phase estimation is deduced accurately using a direct inversion algorithm which reduces the standard deviation of the phase distribution from σ = 1.89 before correction to σ = 0.53 following correction. The corrected beam focusing quality is verified using a needle hydrophone. The peak intensity obtained through the aberrator is found to be −7.69 dB below the reference intensity obtained without any aberration. Using the phase correction, a sharp focus is restored through the aberrator with a relative peak intensity of −0.89 dB. The technique is tested experimentally using a linear transmit/receive array through a real aberrating layer. The array is used to automatically correct its beam quality, as it both generates the radiation force with coded excitations and indirectly estimates the acoustic intensity at the focus with speckle tracking. This technique could have important implications in the field of High Intensity Focused Ultrasound even in complex configurations such as transcranial, transcostal or deep seated organs. PMID:19942526
Traumatic corneal flap displacement after laser in situ keratomileusis (LASIK)
Tsai, Tsung-Han; Peng, Kai-Ling; Lin, Chien-Jen
2017-01-01
Background Laser in situ keratomileusis (LASIK) is the most common and popular procedure performed for the correction of refractive errors in the last two decades. We report a case of traumatic flap displacement with flap folding which occurred 3 years after LASIK was performed. Previous literature suggests that vision prognosis would be closely related to proper and prompt management of traumatic flap displacement with flap folding 3 years after LASIK. Case presentation A 23-year-old female presented to our hospital who had undergone uneventful LASIK in both eyes 3 years prior. Unfortunately, she had suffered a blunt trauma in her right eye in a car accident. A late onset of corneal flap displacement was found with upper and lower portion of the flap being folded inside the corneal bed. Surgical intervention for debridement with subsequent reposition of corneal flap was performed as soon as possible in the operating room. A bandage contact lens was placed, and topical antibiotic and corticosteroids were given postoperatively. Two days after the operation, the displaced corneal flap was found to be well attached smoothly on the corneal bed without folds. The best-corrected visual acuity was 6/6 with refraction of −0.75 D to 1.0 D ×175° in her right eye 1 month later. Literature review We reviewed a total of 19 published cases of late-onset traumatic flap dislocations or displacements after LASIK with complete data from 2000 to 2014. Conclusion Traumatic displacement of corneal flaps after LASIK may occur after blunt injury with specific direction of force to the flap margin, especially tangential one. According to the previous literature, late-onset traumatic flap displacement may happen at any time after LASIK and be caused by various types of injuries. Fortunately, good visual function could mostly be restored with immediate and proper management. PMID:28458585
High-precision coseismic displacement estimation with a single-frequency GPS receiver
NASA Astrophysics Data System (ADS)
Guo, Bofeng; Zhang, Xiaohong; Ren, Xiaodong; Li, Xingxing
2015-07-01
To improve the performance of Global Positioning System (GPS) in the earthquake/tsunami early warning and rapid response applications, minimizing the blind zone and increasing the stability and accuracy of both the rapid source and rupture inversion, the density of existing GPS networks must be increased in the areas at risk. For economic reasons, low-cost single-frequency receivers would be preferable to make the sparse dual-frequency GPS networks denser. When using single-frequency GPS receivers, the main problem that must be solved is the ionospheric delay, which is a critical factor when determining accurate coseismic displacements. In this study, we introduce a modified Satellite-specific Epoch-differenced Ionospheric Delay (MSEID) model to compensate for the effect of ionospheric error on single-frequency GPS receivers. In the MSEID model, the time-differenced ionospheric delays observed from a regional dual-frequency GPS network to a common satellite are fitted to a plane rather than part of a sphere, and the parameters of this plane are determined by using the coordinates of the stations. When the parameters are known, time-differenced ionospheric delays for a single-frequency GPS receiver could be derived from the observations of those dual-frequency receivers. Using these ionospheric delay corrections, coseismic displacements of a single-frequency GPS receiver can be accurately calculated based on time-differenced carrier-phase measurements in real time. The performance of the proposed approach is validated using 5 Hz GPS data collected during the 2012 Nicoya Peninsula Earthquake (Mw 7.6, 2012 September 5) in Costa Rica. This shows that the proposed approach improves the accuracy of the displacement of a single-frequency GPS station, and coseismic displacements with an accuracy of a few centimetres are achieved over a 10-min interval.
Air slab-correction for Γ-ray attenuation measurements
NASA Astrophysics Data System (ADS)
Mann, Kulwinder Singh
2017-12-01
Gamma (γ)-ray shielding behaviour (GSB) of a material can be ascertained from its linear attenuation coefficient (μ, cm-1). Narrow-beam transmission geometry is required for μ-measurement. In such measurements, a thin slab of the material has to insert between point-isotropic γ-ray source and detector assembly. The accuracy in measurements requires that sample's optical thickness (OT) remain below 0.5 mean free path (mfp). Sometimes it is very difficult to produce thin slab of sample (absorber), on the other hand for thick absorber, i.e. OT >0.5 mfp, the influence of the air displaced by it cannot be ignored during μ-measurements. Thus, for a thick sample, correction factor has been suggested which compensates the air present in the transmission geometry. The correction factor has been named as an air slab-correction (ASC). Six samples of low-Z engineering materials (cement-black, clay, red-mud, lime-stone, cement-white and plaster-of-paris) have been selected for investigating the effect of ASC on μ-measurements at three γ-ray energies (661.66, 1173.24, 1332.50 keV). The measurements have been made using point-isotropic γ-ray sources (Cs-137 and Co-60), NaI(Tl) detector and multi-channel-analyser coupled with a personal computer. Theoretical values of μ have been computed using a GRIC2-toolkit (standardized computer programme). Elemental compositions of the samples were measured with Wavelength Dispersive X-ray Fluorescence (WDXRF) analyser. Inter-comparison of measured and computed μ-values, suggested that the application of ASC helps in precise μ-measurement for thick samples of low-Z materials. Thus, this hitherto widely ignored ASC factor is recommended to use in similar γ-ray measurements.
Proximal metatarsal osteotomies: a comparative geometric analysis conducted on sawbone models.
Nyska, Meir; Trnka, Hans-Jörg; Parks, Brent G; Myerson, Mark S
2002-10-01
We evaluated the change in position of the first metatarsal head using a three-dimensional digitizer on sawbone models. Crescentic, closing wedge, oblique shaft (Ludloff 8 degrees and 16 degrees), reverse oblique shaft (Mau 8 degrees and 16 degrees), rotational "Z" (Scarf), and proximal chevron osteotomies were performed and secured using 3-mm screws. The 16 degrees Ludloff provided the most lateral shift (9.5 mm) and angular correction (14.5 degrees) but also produced the most elevation (1.4 mm) and shortening (2.9 mm). The 8 degrees Ludloff provided lateral and angular corrections similar to those of the crescentic and closing wedge osteotomies with less elevation and shortening. Because the displacement osteotomies (Scarf, proximal chevron) provided less angular correction, the same lateral displacement, and less shortening than the basilar angular osteotomies, based upon this model they can be more reliably used for a patient with a mild to moderate deformity, a short first metatarsal, or an intermediate deformity with a large distal metatarsal articular angle. These results can serve as recommendations for selecting the optimal osteotomy with which to correct a deformation.
Schmidt, M A; Wells, E J; Davison, K; Riddell, A M; Welsh, L; Saran, F
2017-02-01
MRI is a mandatory requirement to accurately plan Stereotactic Radiosurgery (SRS) for Vestibular Schwannomas. However, MRI may be distorted due not only to inhomogeneity of the static magnetic field and gradients but also due to susceptibility-induced effects, which are more prominent at higher magnetic fields. We assess geometrical distortions around air spaces and consider MRI protocol requirements for SRS planning at 3 T. Hardware-related distortion and the effect of incorrect shimming were investigated with structured test objects. The magnetic field was mapped over the head on five volunteers to assess susceptibility-related distortion in the naso-oro-pharyngeal cavities (NOPC) and around the internal ear canal (IAC). Hardware-related geometric displacements were found to be less than 0.45 mm within the head volume, after distortion correction. Shimming errors can lead to displacements of up to 4 mm, but errors of this magnitude are unlikely to arise in practice. Susceptibility-related field inhomogeneity was under 3.4 ppm, 2.8 ppm, and 2.7 ppm for the head, NOPC region and IAC region, respectively. For the SRS planning protocol (890 Hz/pixel, approximately 1 mm 3 isotropic), susceptibility-related displacements were less than 0.5 mm (head), and 0.4 mm (IAC and NOPC). Large displacements are possible in MRI examinations undertaken with lower receiver bandwidth values, commonly used in clinical MRI. Higher receiver bandwidth makes the protocol less vulnerable to sub-optimal shimming. The shimming volume and the CT-MR co-registration must be considered jointly. Geometric displacements can be kept under 1 mm in the vicinity of air spaces within the head at 3 T with appropriate setting of the receiver bandwidth, correct shimming and employing distortion correction. © 2017 The Authors. Medical Physics published by Wiley Periodicals, Inc. on behalf of American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Murthy, A. V.
1987-01-01
Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.
Spinner, Erin M; Lerakis, Stamatios; Higginson, Jason; Pernetz, Maria; Howell, Sharon; Veledar, Emir; Yoganathan, Ajit P
2012-01-01
While it is understood that annular dilatation contributes to tricuspid regurgitation (TR), other factors are less clear. The geometry of the right ventricle (RV) and left ventricle (LV) may alter tricuspid annulus size and papillary muscle (PM) positions leading to TR. Three-dimensional echocardiographic images were obtained at Emory University Hospital using a GE Vivid 7 ultrasound system. End-diastolic area was used to classify ventricle geometry: control (n=21), isolated RV dilatation (n=17), isolated LV dilatation (n=13), and both RV and LV dilatation (n=13). GE EchoPAC was used to measure annulus area and position of the PM tips. Patients with RV dilatation had significant (P≤ 0.05) displacement of all PMs apically and the septal PM and posterior PM away from the center of the RV toward the LV. Patients with LV dilatation had significant (P≤0.05) apical displacement of the anterior PM. Pulmonary arterial pressure (r=0.66), annulus area (r=0.51), apical displacement of the anterior PM (r=0.26), posterior PM (r=0.49), and septal PM (r=0.40), lateral displacement of the septal PM (r=0.37) and posterior PM (r=0.40), and tenting area and height (r=0.54, 0.49), were significantly (P≤0.05) correlated to the grade of TR. Ventricle classification (r=0.46) and RV end-diastolic area (r=0.48) also were correlated with the grade of TR. A regression analysis found ventricle classification (P=0.001), pulmonary arterial pressure (P≤0.001) annulus area (P=0.027), and apical displacement of the anterior PM (P=0.061) to be associated with the grade of TR. Alterations in ventricular geometry can lead to TR by altering both tricuspid annulus size and PM position. Understanding these geometric interactions with the aim of correcting pathological alterations of the tricuspid valve apparatus may lead to more robust repairs.
Women's sexual and reproductive health in post-socialist Georgia: does internal displacement matter?
Doliashvili, Khatuna; Buckley, Cynthia J
2008-03-01
Persons displaced by armed conflicts, natural disasters or other events are at increased risk for health problems. The Republic of Georgia has a substantial population of internally displaced women who may face elevated risks of STIs and pelvic inflammatory disease (PID). The 1999 Georgia Reproductive Health Survey was used to examine the prevalence of self-reported STI and PID diagnoses among displaced and nondisplaced sexually experienced women. Multivariate analyses were conducted to determine whether displacement is associated with STI and PID risk, and whether the behavioral and socioeconomic factors associated with these diagnoses differ between internally displaced women and the general population. In models that controlled for behavioral factors only, displacement was associated with elevated odds of PID diagnosis (odds ratio, 1.3), but the relationship was only marginally significant when socioeconomic factors were added (1.3). Displacement was not associated with STI diagnosis. The factors associated with STI and PID diagnoses among displaced women generally differed from those in the general population, but access to medical care and previous STI diagnosis were associated with PID diagnosis in both groups. Among nondisplaced women, residing in the capital city was associated with increased odds of STI diagnosis (2.2) but reduced odds of PID diagnosis (0.8). These findings highlight the importance of displacement status in determining a woman's reproductive health risks, and underscore the complex relationships between behavioral and socioeconomic variables and the elevation of STI and PID risk.
Effects of Tensile Loading on Upper Shelf Fracture Toughness
1994-06-01
applicability of this technique in the lower shelf ductile-brittle transition regime of ferritic steels has been demonstrated by Sorem, Dodds and Rolfe ...correct the load for the effect of rotation (Loss 1977; Merkle , 198x). The objective of the first correction is to correct the measured displacement...Testing and Materials, Philadelphia, pp. 114-132. Sorem, W.A., Dodds, R H., and Rolfe , S.T. (1991) "Effects of Crack Depth on Elastic Plastic Fracture
Chang, Hing-Chiu; Chuang, Tzu-Chao; Wang, Fu-Nien; Huang, Teng-Yi; Chung, Hsiao-Wen
2013-01-01
Objective This study investigates the application of a modified reversed gradient algorithm to the Propeller-EPI imaging method (periodically rotated overlapping parallel lines with enhanced reconstruction based on echo-planar imaging readout) for corrections of geometric distortions due to the EPI readout. Materials and methods Propeller-EPI acquisition was executed with 360-degree rotational coverage of the k-space, from which the image pairs with opposite phase-encoding gradient polarities were extracted for reversed gradient geometric and intensity corrections. The spatial displacements obtained on a pixel-by-pixel basis were fitted using a two-dimensional polynomial followed by low-pass filtering to assure correction reliability in low-signal regions. Single-shot EPI images were obtained on a phantom, whereas high spatial resolution T2-weighted and diffusion tensor Propeller-EPI data were acquired in vivo from healthy subjects at 3.0 Tesla, to demonstrate the effectiveness of the proposed algorithm. Results Phantom images show success of the smoothed displacement map concept in providing improvements of the geometric corrections at low-signal regions. Human brain images demonstrate prominently superior reconstruction quality of Propeller-EPI images with modified reversed gradient corrections as compared with those obtained without corrections, as evidenced from verification against the distortion-free fast spin-echo images at the same level. Conclusions The modified reversed gradient method is an effective approach to obtain high-resolution Propeller-EPI images with substantially reduced artifacts. PMID:23630654
Zea, Maria Cecilia; Reisen, Carol A; Bianchi, Fernanda T; Gonzales, Felisa A; Betancourt, Fabián; Aguilar, Marcela; Poppen, Paul J
2013-01-01
Colombia has endured six decades of civil unrest, population displacement and violence. We examined the relationships between contextual conditions, displacement and HIV among gay, bisexual and transgender individuals in Bogotá, Colombia. A total of 19 key informants provided information about internal displacement of sexual minorities. Life-history interviews were conducted with 42 participants aged 18 to 48 years and included questions about displacement experiences, sexual behaviour, life prior to displacement and participants' economic and social situation in Bogotá. The interplay of a variety of factors - including internal conflict and violence, homonegativity and 'social cleansing', gender and sexual identity and poverty - strongly shaped the varied experiences of displacement. Migration, sexual violence, exchange sex and low rates of HIV testing were risk factors that increased vulnerability for HIV in this displaced sample. Although displacement and HIV in Colombia are major problems, both are understudied.
Siriwardhana, Chesmal; Stewart, Robert
2013-03-01
Forced internal displacement has been rising steadily, mainly due to conflict. Many internally displaced people (IDP) experience prolonged displacement. Global research evidence suggests that many of these IDP are at high risk for developing mental disorders, adding weight to the global burden of disease. However, individual and community resilience may act as protective factors. Return migration may be an option for some IDP populations, especially when conflicts end, although return migration may itself be associated with worse mental health. Limited evidence is available on effects of resettlement or return migration following prolonged forced internal displacement on mental health. Also, the role of resilience factors remains to be clarified following situations of prolonged displacement. The public health impact of internal displacement is not clearly understood. Epidemiological and interventional research in IDP mental health needs to look beyond medicalised models and encompass broader social and cultural aspects. The resilience factor should be integrated and explored more in mental health research among IDP and a clearly focused multidisciplinary approach is advocated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dadfarnia, Mohsen; Nibur, Kevin A.; San Marchi, Christopher W.
2010-07-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nibur, Kevin A.
2010-11-01
Threshold stress intensity factors were measured in high-pressure hydrogen gas for a variety of low alloy ferritic steels using both constant crack opening displacement and rising crack opening displacement procedures. The sustained load cracking procedures are generally consistent with those in ASME Article KD-10 of Section VIII Division 3 of the Boiler and Pressure Vessel Code, which was recently published to guide design of high-pressure hydrogen vessels. Three definitions of threshold were established for the two test methods: K{sub THi}* is the maximum applied stress intensity factor for which no crack extension was observed under constant displacement; K{sub THa} ismore » the stress intensity factor at the arrest position for a crack that extended under constant displacement; and K{sub JH} is the stress intensity factor at the onset of crack extension under rising displacement. The apparent crack initiation threshold under constant displacement, K{sub THi}*, and the crack arrest threshold, K{sub THa}, were both found to be non-conservative due to the hydrogen exposure and crack-tip deformation histories associated with typical procedures for sustained-load cracking tests under constant displacement. In contrast, K{sub JH}, which is measured under concurrent rising displacement and hydrogen gas exposure, provides a more conservative hydrogen-assisted fracture threshold that is relevant to structural components in which sub-critical crack extension is driven by internal hydrogen gas pressure.« less
Analysis of the Postoperative Displacement of Trochanteric Fractures on Lateral View Radiographs.
Furui, Atsuo; Terada, Nobuki
2017-08-01
Achieving sufficient support of the anterior cortex of the femoral neck is a fundamental goal of the reduction of trochanteric fractures. However, anterior-cortex support is often lost after the fracture reduction. Our aim was to analyze factors contributing to the postoperative displacement of an acceptably reduced trochanteric fracture. The cases of 40 patients with a post-reduction Ikuta subtype N fracture alignment were reviewed. All fractures were fixed with 135° free-sliding plates. On postoperative day 14, patients were classified into two groups: those with retention of the Ikuta subtype N alignment, and those with progression to Ikuta subtype P alignment. The clinical and radiological factors were evaluated between the groups. In addition, to define one of the factors, i.e., the postoperative rotational displacement between the proximal and distal fragments, the relationship between radiographic findings and computed tomography image measurements was assessed in 15 of the 40 patients. Angulation at the fracture site on lateral view radiographs was defined as postoperative rotational displacement, and unstable trochanteric fractures and postoperative rotational displacement were identified as significant risk factors for the postoperative displacement. Therefore, cautious and careful follow-up is warranted for patients with unstable trochanteric fractures or fractures having rotational displacement.
[Locked volar plating for complex distal radius fractures: maintaining radial length].
Jeudy, J; Pernin, J; Cronier, P; Talha, A; Massin, P
2007-09-01
Maintaining radial length, likely to be the main challenge in the treatment of complex distal radius fractures, is necessary for complete grip-strength and pro-supination range recovery. In spite of frequent secondary displacements, bridging external-fixation has remained the reference method, either isolated or in association with additional percutaneous pins or volar plating. Also, there seems to be a relation between algodystrophy and the duration of traction applied on the radio-carpal joint. Fixed-angle volar plating offers the advantage of maintaining the reduction until fracture healing, without bridging the joint. In a prospective study, forty-three consecutive fractures of the distal radius with a positivated ulnar variance were treated with open reduction and fixed-angle volar plating. Results were assessed with special attention to the radial length and angulation obtained and maintained throughout treatment, based on repeated measurements of the ulnar variance and radial angulation in the first six months postoperatively. The correction of the ulnar variance was maintained until complete recovery, independently of initial metaphyseal comminution, and of the amount of radial length gained at reduction. Only 3 patients lost more than 1 mm of radial length after reduction. The posterior tilt of the distal radial epiphysis was incompletely reduced in 13 cases, whereas reduction was partially lost in 6 elderly osteoporotic female patients. There was 8 articular malunions, all of them less than 2 mm. Secondary displacements were found to be related to a deficient locking technique. Eight patients developed an algodystropy. The risk factors for algodystrophy were articular malunion, associated posterior pining, and associated lesions of the ipsilateral upper limb. Provided that the locking technique was correct, this type of fixation appeared efficient in maintaining the radial length in complex fractures of the distal radius. The main challenge remains the reduction of displaced articular fractures. Based on these results, it is not possible to conclude that this method is superior to external fixation.
Jeong, Hyunjo; Barnard, Daniel; Cho, Sungjong; Zhang, Shuzeng; Li, Xiongbing
2017-11-01
This paper presents analytical and experimental techniques for accurate determination of the nonlinearity parameter (β) in thick solid samples. When piezoelectric transducers are used for β measurements, the receiver calibration is required to determine the transfer function from which the absolute displacement can be calculated. The measured fundamental and second harmonic displacement amplitudes should be modified to account for beam diffraction and material absorption. All these issues are addressed in this study and the proposed technique is validated through the β measurements of thick solid samples. A simplified self-reciprocity calibration procedure for a broadband receiver is described. The diffraction and attenuation corrections for the fundamental and second harmonics are explicitly derived. Aluminum alloy samples in five different thicknesses (4, 6, 8, 10, 12cm) are prepared and β measurements are made using the finite amplitude, through-transmission method. The effects of diffraction and attenuation corrections on β measurements are systematically investigated. When diffraction and attenuation corrections are all properly made, the variation of β between different thickness samples is found to be less than 3.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
InSAR Tropospheric Correction Methods: A Statistical Comparison over Different Regions
NASA Astrophysics Data System (ADS)
Bekaert, D. P.; Walters, R. J.; Wright, T. J.; Hooper, A. J.; Parker, D. J.
2015-12-01
Observing small magnitude surface displacements through InSAR is highly challenging, and requires advanced correction techniques to reduce noise. In fact, one of the largest obstacles facing the InSAR community is related to tropospheric noise correction. Spatial and temporal variations in temperature, pressure, and relative humidity result in a spatially-variable InSAR tropospheric signal, which masks smaller surface displacements due to tectonic or volcanic deformation. Correction methods applied today include those relying on weather model data, GNSS and/or spectrometer data. Unfortunately, these methods are often limited by the spatial and temporal resolution of the auxiliary data. Alternatively a correction can be estimated from the high-resolution interferometric phase by assuming a linear or a power-law relationship between the phase and topography. For these methods, the challenge lies in separating deformation from tropospheric signals. We will present results of a statistical comparison of the state-of-the-art tropospheric corrections estimated from spectrometer products (MERIS and MODIS), a low and high spatial-resolution weather model (ERA-I and WRF), and both the conventional linear and power-law empirical methods. We evaluate the correction capability over Southern Mexico, Italy, and El Hierro, and investigate the impact of increasing cloud cover on the accuracy of the tropospheric delay estimation. We find that each method has its strengths and weaknesses, and suggest that further developments should aim to combine different correction methods. All the presented methods are included into our new open source software package called TRAIN - Toolbox for Reducing Atmospheric InSAR Noise (Bekaert et al., in review), which is available to the community Bekaert, D., R. Walters, T. Wright, A. Hooper, and D. Parker (in review), Statistical comparison of InSAR tropospheric correction techniques, Remote Sensing of Environment
Augustsson, Cecilia; Persson, Egon
2014-11-13
Successful competition of activated factor VII (FVIIa) with zymogen factor VII (FVII) for tissue factor (TF) and loading of the platelet surface with FVIIa are plausible driving forces behind the pharmacological effect of recombinant FVIIa (rFVIIa) in hemophilia patients. Thrombin generation measurements in platelet-rich hemophilia A plasma revealed competition for TF, which potentially could reduce the effective (r)FVIIa:TF complex concentration and thereby attenuate factor Xa production. However, (auto)activation of FVII apparently counteracted the negative effect of zymogen binding; a small impact was observed at endogenous concentrations of FVII and FVIIa but was virtually absent at pharmacological amounts of rFVIIa. Moreover, corrections of the propagation phase in hemophilia A required rFVIIa concentrations above the range where a physiological level of FVII was capable to downregulate thrombin generation. These data strongly suggest that rFVIIa acts independently of TF in hemophilia therapy and that FVII displacement by rFVIIa is a negligible mechanistic component. © 2014 by The American Society of Hematology.
A finite element method to correct deformable image registration errors in low-contrast regions
NASA Astrophysics Data System (ADS)
Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.
2012-06-01
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the ‘demons’ registration. For each voxel in the registration's target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the ‘demons’ algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the ‘demons’ algorithm on the computed tomography (CT) images of lung and prostate patients. The performance of the FEM correction relating to the ‘demons’ registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the ‘demons’ registration has the maximum error of 1.2 cm, which can be corrected by the FEM to 0.4 cm, and the average error of the ‘demons’ registration is reduced from 0.17 to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the ‘demons’ algorithm were found unrealistic at several places. In these places, the displacement differences between the ‘demons’ registrations and their FEM corrections were found in the range of 0.4 and 1.1 cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 min of computation time on a 2.6 GHz computer. This study has demonstrated that the FEM can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions.
NASA Astrophysics Data System (ADS)
Kumar, V. R. Sanal; Sankar, Vigneshwaran; Chandrasekaran, Nichith; Saravanan, Vignesh; Natarajan, Vishnu; Padmanabhan, Sathyan; Sukumaran, Ajith; Mani, Sivabalan; Rameshkumar, Tharikaa; Nagaraju Doddi, Hema Sai; Vysaprasad, Krithika; Sharan, Sharad; Murugesh, Pavithra; Shankar, S. Ganesh; Nejaamtheen, Mohammed Niyasdeen; Baskaran, Roshan Vignesh; Rahman Mohamed Rafic, Sulthan Ariff; Harisrinivasan, Ukeshkumar; Srinivasan, Vivek
2018-02-01
A closed-form analytical model is developed for estimating the 3D boundary-layer-displacement thickness of an internal flow system at the Sanal flow choking condition for adiabatic flows obeying the physics of compressible viscous fluids. At this unique condition the boundary-layer blockage induced fluid-throat choking and the adiabatic wall-friction persuaded flow choking occur at a single sonic-fluid-throat location. The beauty and novelty of this model is that without missing the flow physics we could predict the exact boundary-layer blockage of both 2D and 3D cases at the sonic-fluid-throat from the known values of the inlet Mach number, the adiabatic index of the gas and the inlet port diameter of the internal flow system. We found that the 3D blockage factor is 47.33 % lower than the 2D blockage factor with air as the working fluid. We concluded that the exact prediction of the boundary-layer-displacement thickness at the sonic-fluid-throat provides a means to correctly pinpoint the causes of errors of the viscous flow solvers. The methodology presented herein with state-of-the-art will play pivotal roles in future physical and biological sciences for a credible verification, calibration and validation of various viscous flow solvers for high-fidelity 2D/3D numerical simulations of real-world flows. Furthermore, our closed-form analytical model will be useful for the solid and hybrid rocket designers for the grain-port-geometry optimization of new generation single-stage-to-orbit dual-thrust-motors with the highest promising propellant loading density within the given envelope without manifestation of the Sanal flow choking leading to possible shock waves causing catastrophic failures.
NASA Astrophysics Data System (ADS)
Bostrom, R. C.
The Earth rotates relative to the solunar gravity field. In consequence the M2, S2 tides are represented by permanent bulges, travelling westward around the Earth as distortion waves. The associated tidal stress ellipsoid progresses perpetually by rotation, without reversal. It is shown that under imperfect elasticity, in lieu of the body forces induced by Love's geostationary time-variant potential a rotating potential induces internal body couples, equally pervasive. Displacement is cumulative, and in the vortical mode formulated by Helmholtz (1858). Whereas in the geostationary formulation of Love cumulative distortion is nil, in actuality this motion is primary, and dimensionally capable of coupling with extant mantle convection. Unlike the marine tides, the bodily wave-tides proceed unhindered around the Earth unhindered by continental margins. Corrected for oceanic effects the complex Love numbers measure dissipation, as commonly supposed. However dissipation is the result of unmapped cumulative vortical displacement (a circulation component), rather than oscillatory forces having the form of a geographically stationary spheroidal eigenvibration. The characteristic period of the loss factor 1/Q is infinity rather than the period pertinent to seismicity or wobble, to which it is dimensionally unrelated. Although primary vorticity-induction is required by the existence of the rotating tidal potential, its tectonic consequences are a matter of speculation, treated elsewhere [1]. --- [1] Bostrom, R.C., 1998. Tectonic Consequences of the Earth's Rotation. Oxfo rd University Press.
Design and numerical simulation of novel giant magnetostrictive ultrasonic transducer
NASA Astrophysics Data System (ADS)
Li, Pengyang; Liu, Qiang; Li, Shujuan; Wang, Quandai; Zhang, Dongya; Li, Yan
This paper provides a design method of a novel giant magnetostrictive ultrasonic transducer utilized in incremental sheet metal forming. The frequency equations of the ultrasonic vibrator were deduced and the corresponding correctness verified by the modal and harmonic response characteristic through the finite element method (FEM) and ANSYS software. In addition, the magnetic field of the vibrator system was designed and verified by the ANSYS. Finally, the frequency tests based on the impedance response analysis and the amplitude measurements based on the laser displacement sensor were performed on the prototype. The results confirmed the appropriate design of this transducer, setting the foundation for a low mechanical quality factor and satisfying amplitude.
Correlated displacement-T2 MRI by means of a Pulsed Field Gradient-Multi Spin Echo Method.
Windt, Carel W; Vergeldt, Frank J; Van As, Henk
2007-04-01
A method for correlated displacement-T2 imaging is presented. A Pulsed Field Gradient-Multi Spin Echo (PFG-MSE) sequence is used to record T2 resolved propagators on a voxel-by-voxel basis, making it possible to perform single voxel correlated displacement-T2 analyses. In spatially heterogeneous media the method thus gives access to sub-voxel information about displacement and T2 relaxation. The sequence is demonstrated using a number of flow conducting model systems: a tube with flowing water of variable intrinsic T2's, mixing fluids of different T2's in an "X"-shaped connector, and an intact living plant. PFG-MSE can be applied to yield information about the relation between flow, pore size and exchange behavior, and can aid volume flow quantification by making it possible to correct for T2 relaxation during the displacement labeling period Delta in PFG displacement imaging methods. Correlated displacement-T2 imaging can be of special interest for a number of research subjects, such as the flow of liquids and mixtures of liquids or liquids and solids moving through microscopic conduits of different sizes (e.g., plants, porous media, bioreactors, biomats).
Detection of ferromagnetic target based on mobile magnetic gradient tensor system
NASA Astrophysics Data System (ADS)
Gang, Y. I. N.; Yingtang, Zhang; Zhining, Li; Hongbo, Fan; Guoquan, Ren
2016-03-01
Attitude change of mobile magnetic gradient tensor system critically affects the precision of gradient measurements, thereby increasing ambiguity in target detection. This paper presents a rotational invariant-based method for locating and identifying ferromagnetic targets. Firstly, unit magnetic moment vector was derived based on the geometrical invariant, such that the intermediate eigenvector of the magnetic gradient tensor is perpendicular to the magnetic moment vector and the source-sensor displacement vector. Secondly, unit source-sensor displacement vector was derived based on the characteristic that the angle between magnetic moment vector and source-sensor displacement is a rotational invariant. By introducing a displacement vector between two measurement points, the magnetic moment vector and the source-sensor displacement vector were theoretically derived. To resolve the problem of measurement noises existing in the realistic detection applications, linear equations were formulated using invariants corresponding to several distinct measurement points and least square solution of magnetic moment vector and source-sensor displacement vector were obtained. Results of simulation and principal verification experiment showed the correctness of the analytical method, along with the practicability of the least square method.
ERIC Educational Resources Information Center
Mels, Cindy; Derluyn, Ilse; Broekaert, Eric; Rosseel, Yves
2010-01-01
Background: While the current knowledge base on the mental health effects of displacement is mainly limited to refugees residing in industrialised countries, this paper examines the impact of war-induced displacement and related risk factors on the mental health of Eastern Congolese adolescents, and compares currently internally displaced…
The displaced aggression questionnaire.
Denson, Thomas F; Pedersen, William C; Miller, Norman
2006-06-01
Previous measures of aggressive personality have focused on direct aggression (i.e., retaliation toward the provoking agent). An original self-report measure of trait displaced aggression is presented. Exploratory and confirmatory factor analyses provided support for a 3-factor conceptualization of the construct. These analyses identified an affective dimension (angry rumination), a cognitive dimension (revenge planning), and a behavioral dimension (general tendency to engage in displaced aggression). The trait measure demonstrated good internal consistency and test-retest reliability as well as convergent and discriminant construct validity. Unlike other related personality measures, trait displaced aggression significantly predicted indirect indicators of real-world displaced aggression (i.e., self-reported domestic abuse and road rage) as well as laboratory displaced aggression in 2 experiments. Copyright 2006 APA, all rights reserved.
A test of object permanence in a new-world monkey species, cotton top tamarins (Saguinus oedipus).
Neiworth, Julie J; Steinmark, Eric; Basile, Benjamin M; Wonders, Ryann; Steely, Frances; DeHart, Catherine
2003-03-01
Cotton top tamarins were tested in visible and invisible displacement tasks in a method similar to that used elsewhere to test squirrel monkeys and orangutans. All subjects performed at levels significantly above chance on visible ( n=8) and invisible ( n=7) displacements, wherein the tasks included tests of the perseverance error, tests of memory in double and triple displacements, and "catch" trials that tested for the use of the experimenter's hand as a cue for the correct cup. Performance on all nine tasks was significantly higher than chance level selection of cups, and tasks using visible displacements generated more accurate performance than tasks using invisible displacements. Performance was not accounted for by a practice effect based on exposure to successive tasks. Results suggest that tamarins possess stage 6 object permanence capabilities, and that in a situation involving brief exposure to tasks and foraging opportunities, tracking objects' movements and responding more flexibly are abilities expressed readily by the tamarins.
On Drift Effects in Velocity and Displacement of Greek Uncorrected Digital Strong Motion Data
NASA Astrophysics Data System (ADS)
Skarlatoudis, A.; Margaris, B.
2005-12-01
Fifty years after the first installation of analog accelerographs, digital instruments recording the strong-motion came in operation. Their advantages comparing to the analog ones are obvious and they have been described in detail in several works. Nevertheless it has been pointed out that velocity and displacement values derived from several accelerograms, recorded in various strong earthquakes worldwide (e.g. 1999 Chi-Chi, Taiwan, Hector Mine, 2002 Denali) by digital instruments, are plagued by drifts when only a simple baseline correction derived from the pre-event portion of the record is removed. In Greece a significant number of accelerographic networks and arrays have been deployed covering the whole area. Digital accelerographs now constitute a significant part of the National Strong Motion network of the country. Detailed analyses of the data processing of accelerograms recorded by digital instruments exhibited that the same drifts exist in the Greek strong motion database. In this work, a methodology proposed and described in various articles (Boore, 2001; 2003; 2005) for removing the aforementioned drifts of the accelerograms is applied. It is also attempted a careful look of the nature of the drifts for understanding the noise characteristics relative to the signal. The intrinsic behaviour of signal to noise ratio is crucial for the adequacy of baseline corrections applied on digital uncorrected accelerograms. Velocities and displacements of the uncorrected and corrected accelerograms are compared and the drift effects in the Fourier and response spectra are presented.
Yilmaz, Burak; Hashemzadeh, Shervin; Seidt, Jeremy D; Clelland, Nancy L
2018-04-01
To compare the displacements of CAD-CAM zirconia and titanium abutments into different internal connection systems after torquing. OsseoSpeed EV and OsseoSpeed TX implants (n=10) were placed in resin blocks. Zirconia and titanium abutments (n=5) were first hand tightened and then tightened to the recommended torque (20Ncm for TX and 25Ncm for EV). Displacements of abutments between screw tightening by hand and torque driver was measured using three-dimensional digital image correlation (3D DIC) technique. Displacements were measured in U (front/back), V (into/outward), W (right/left) directions and 3-dimensionally (3D). ANOVA with restricted maximum likelihood estimation method was used to analyze the data. Bonferroni-corrected t tests was used to determine the statistical differences (α=0.05). 3D displacement of zirconia and titanium abutments was significantly greater in OsseoSpeed EV implant (P<0.001). Displacement of zirconia and titanium abutments was not significantly different within implant systems, 3D (P≥0.386) and in each direction (P≥0.382). In U and V directions, zirconia and titanium abutments displaced significantly more towards negative in OsseoSpeed EV implant (P<0.019). Within the OsseoSpeed TX system, abutments displaced significantly more in V direction compared to the U and W (P≤0.005), and within the Osseospeed EV system, abutment displacements were significantly different amongst directions and displacements in V were the greatest (P<0.001). Abutments displaced more in the implant that required higher torque values to tighten the abutment. The amount of displacement in both systems was clinically small. Abutment material did not affect the magnitude of displacement. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Rawson, R. F.; Hamilton, R. E.; Liskow, C. L.; Dias, A. R.; Jackson, P. L.
1981-01-01
An analysis of synthetic aperture radar data of SP Mountain was undertaken to demonstrate the use of digital image processing techniques to aid in geologic interpretation of SAR data. These data were collected with the ERIM X- and L-band airborne SAR using like- and cross-polarizations. The resulting signal films were used to produce computer compatible tapes, from which four-channel imagery was generated. Slant range-to-ground range and range-azimuth-scale corrections were made in order to facilitate image registration; intensity corrections were also made. Manual interpretation of the imagery showed that L-band represented the geology of the area better than X-band. Several differences between the various images were also noted. Further digital analysis of the corrected data was done for enhancement purposes. This analysis included application of an MSS differencing routine and development of a routine for removal of relief displacement. It was found that accurate registration of the SAR channels is critical to the effectiveness of the differencing routine. Use of the relief displacement algorithm on the SP Mountain data demonstrated the feasibility of the technique.
Calculation of Stress Intensity Factors for Interfacial Cracks in Fiber Metal Laminates
NASA Technical Reports Server (NTRS)
Wang, John T.
2009-01-01
Stress intensity factors for interfacial cracks in Fiber Metal Laminates (FML) are computed by using the displacement ratio method recently developed by Sun and Qian (1997, Int. J. Solids. Struct. 34, 2595-2609). Various FML configurations with single and multiple delaminations subjected to different loading conditions are investigated. The displacement ratio method requires the total energy release rate, bimaterial parameters, and relative crack surface displacements as input. Details of generating the energy release rates, defining bimaterial parameters with anisotropic elasticity, and selecting proper crack surface locations for obtaining relative crack surface displacements are discussed in the paper. Even though the individual energy release rates are nonconvergent, mesh-size-independent stress intensity factors can be obtained. This study also finds that the selection of reference length can affect the magnitudes and the mode mixity angles of the stress intensity factors; thus, it is important to report the reference length used with the calculated stress intensity factors.
Boaro, Letícia Cristina Cidreira; Brandt, William Cunha; Meira, Josete Barbosa Cruz; Rodrigues, Flávia Pires; Palin, William M; Braga, Roberto Ruggiero
2014-02-01
To determine the free surface displacement of resin-composite restorations as a function of the C-Factor, volume and substrate stiffness, and to compare the results with interfacial stress values evaluated by finite element analysis (FEA). Surface displacement was determined by an extensometer using restorations with 4 or 6mm diameter and 1 or 2mm depth, prepared in either bovine teeth or glass. The maximum displacement of the free surface was monitored for 5 min from the start of photoactivation, at an acquisition rate of 1s(-1). Axisymmetric cavity models were performed by FEA. Structural stiffness and maximum stresses were investigated. For glass, displacement showed a stronger correlation with volume (r=0.771) than with C-Factor (r=0.395, p<0.001 for both). For teeth, a stronger correlation was found with C-Factor (r=0.709; p<0.001) than with volume (r=0.546, p<0.001). For similar dimensions, stress and displacement were defined by stiffness. Simultaneous increases in volume and C-Factor led to increases in stress and surface displacement. Maximum stresses were located at the cavosurface angle, internal angle (glass) and at the dentine-enamel junction (teeth). The displacement of the restoration's free surface was related to interfacial stress development. Structural stiffness seems to affect the shrinkage stress at the tooth/resin-composite interface in bonded restorations. Deep restorations are always problematic because they showed high shear stress, regardless of their width. FEA is the only tool capable of detecting shear stress due to polymerization as there is still no reliable experimental alternative. Copyright © 2013 Elsevier Ltd. All rights reserved.
Comninou contact zones for a crack parallel to an interface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, P.F.; Gadi, K.S.; Erdogen, F.
One of the interesting features in studying the state of stress in elastic solids near singular points, is the so called complex singularity that gives rise to an apparent local oscillatory behavior in the stress and displacement fields. The region in which this occurs is very small, much smaller than any plastic zone would be, and therefore the oscillations can be ignored in practical applications. Nevertheless, it is a matter of interesting theoretical investigation. The Comninou model of a small contact zone near the crack tip appears to correct for this anomaly within the framework of the linear theory. Thismore » model seems to make sense out of a {open_quotes}solution{close_quotes} that violates the boundary conditions. Erdogan and Joseph, showed (to themselves anyway) that the Comninou model actually has a physical basis. They considered a crack parallel to an interface where the order of the singularity is always real. With great care in solving the singular integral equations, it was shown that as the crack approaches the interface, a pinching effect is observed at the crack tip. This pinching effect proves that in the limit as the crack approaches the interface, the correct way to handle the problem is to consider crack surface contact. In this way, the issue of {open_quotes}oscillations{close_quotes} is never encountered for the interface crack problem. In the present study, the value of h/a that corresponds to crack closure (zero value of the stress intensity factor) will be determined for a given material pair for tensile loading. An asymptotic numerical method for the solution of singular integral equations making use of is used to obtain this result. Results for the crack opening displacement near the tip of the crack and the behavior of the stress intensity factor for cracks very close to the interface are presented. Among other interesting issues to be discussed, this solution shows that the semi-infinite crack parallel to an interface is closed.« less
Parental Displacement and Adolescent Suicidality: Exploring the Role of Failed Belonging
Timmons, Katherine A.; Selby, Edward A.; Lewinsohn, Peter M.; Joiner, Thomas E.
2011-01-01
Prior studies have demonstrated that events causing displacement from parents—such as parental death, abandonment of the adolescent, or divorce—represent a risk factor for adolescent suicide, but research to date has not established a theoretical model explaining the association between parental displacement and adolescent suicidal behavior. The current studies examined the construct of failed belonging proposed by the interpersonal theory of suicide as one factor that may link parental displacement with adolescent suicide. Study 1 found that low levels of belonging mediated the association between parental displacement and adolescent suicide attempts in a large urban community sample of older adolescents between the ages of 18 and 23. In Study 2, parental displacement interacted with low belonging to predict suicide attempts, such that adolescents (average age 16.6 years; (SD = 1.2) who experienced both displacement and low levels of belonging had the highest risk for suicide. PMID:22023272
Parental displacement and adolescent suicidality: exploring the role of failed belonging.
Timmons, Katherine A; Selby, Edward A; Lewinsohn, Peter M; Joiner, Thomas E
2011-01-01
Prior studies have demonstrated that events causing displacement from parents--such as parental death, abandonment of the adolescent, or divorce--represent a risk factor for adolescent suicide, but research to date has not established a theoretical model explaining the association between parental displacement and adolescent suicidal behavior. The current studies examined the construct of failed belonging proposed by the interpersonal theory of suicide as one factor that may link parental displacement with adolescent suicide. Study 1 found that low levels of belonging mediated the association between parental displacement and adolescent suicide attempts in a large, urban community sample of older adolescents between the ages of 18 and 23. In Study 2, parental displacement interacted with low belonging to predict suicide attempts, such that adolescents (average age = 16.6 years; SD = 1.2) who experienced both displacement and low levels of belonging had the highest risk for suicide.
NASA Astrophysics Data System (ADS)
Abbondanza, Claudio; Altamimi, Zuheir; Chin, Toshio; Collilieux, Xavier; Dach, Rolf; Gross, Richard; Heflin, Michael; König, Rolf; Lemoine, Frank; Macmillan, Dan; Parker, Jay; van Dam, Tonie; Wu, Xiaoping
2014-05-01
The International Terrestrial Reference Frame (ITRF) adopts a piece-wise linear model to parameterize regularized station positions and velocities. The space-geodetic (SG) solutions from VLBI, SLR, GPS and DORIS used as input in the ITRF combination process account for tidal loading deformations, but ignore the non-tidal part. As a result, the non-linear signal observed in the time series of SG-derived station positions in part reflects non-tidal loading displacements not introduced in the SG data reduction. In this analysis, we assess the impact of non-tidal atmospheric loading (NTAL) corrections on the TRF computation. Focusing on the a-posteriori approach, (i) the NTAL model derived from the National Centre for Environmental Prediction (NCEP) surface pressure is removed from the SINEX files of the SG solutions used as inputs to the TRF determinations; (ii) adopting a Kalman-filter based approach, two distinct linear TRFs are estimated combining the 4 SG solutions with (corrected TRF solution) and without the NTAL displacements (standard TRF solution). Linear fits (offset and atmospheric velocity) of the NTAL displacements removed during step (i) are estimated accounting for the station position discontinuities introduced in the SG solutions and adopting different weighting strategies. The NTAL-derived (atmospheric) velocity fields are compared to those obtained from the TRF reductions during step (ii). The consistency between the atmospheric and the TRF-derived velocity fields is examined. We show how the presence of station position discontinuities in SG solutions degrades the agreement between the velocity fields and compare the effect of different weighting structure adopted while estimating the linear fits to the NTAL displacements. Finally, we evaluate the effect of restoring the atmospheric velocities determined through the linear fits of the NTAL displacements to the single-technique linear reference frames obtained by stacking the standard SG SINEX files. Differences between the velocity fields obtained restoring the NTAL displacements and the standard stacked linear reference frames are discussed.
Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009
NASA Astrophysics Data System (ADS)
Thompson, G.; West, M. E.
2009-12-01
We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were detected much earlier by the swarm algorithm than they were by the tremor algorithm.
Compact adaptive optic-optical coherence tomography system
Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA
2012-02-28
Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.
Compact adaptive optic-optical coherence tomography system
Olivier, Scot S [Livermore, CA; Chen, Diana C [Fremont, CA; Jones, Steven M [Danville, CA; McNary, Sean M [Stockton, CA
2011-05-17
Badal Optometer and rotating cylinders are inserted in the AO-OCT to correct large spectacle aberrations such as myopia, hyperopic and astigmatism for ease of clinical use and reduction. Spherical mirrors in the sets of the telescope are rotated orthogonally to reduce aberrations and beam displacement caused by the scanners. This produces greatly reduced AO registration errors and improved AO performance to enable high order aberration correction in a patient eyes.
Ho, Kai-Yu; Epstein, Ryan; Garcia, Ron; Riley, Nicole; Lee, Szu-Ping
2017-02-01
Study Design Controlled laboratory study. Background Although it has been theorized that patellofemoral joint (PFJ) taping can correct patellar malalignment, the effects of PFJ taping techniques on patellar alignment and contact area have not yet been studied during weight bearing. Objective To examine the effects of 2 taping approaches (Kinesio and McConnell) on PFJ alignment and contact area. Methods Fourteen female subjects with patellofemoral pain and PFJ malalignment participated. Each subject underwent a pretaping magnetic resonance imaging (MRI) scan session and 2 MRI scan sessions after the application of the 2 taping techniques, which aimed to correct lateral patellar displacement. Subjects were asked to report their pain level prior to each scan session. During MRI assessment, subjects were loaded with 25% of body weight on their involved/more symptomatic leg at 0°, 20°, and 40° of knee flexion. The outcome measures included patellar lateral displacement (bisect-offset [BSO] index), mediolateral patellar tilt angle, patellar height (Insall-Salvati ratio), contact area, and pain. Patellofemoral joint alignment and contact area were compared among the 3 conditions (no tape, Kinesio, and McConnell) at 3 knee angles using a 2-factor, repeated-measures analysis of variance. Pain was compared among the 3 conditions using the Friedman test and post hoc Wilcoxon signed-rank tests. Results Our data did not reveal any significant effects of either McConnell or Kinesio taping on the BSO index, patellar tilt angle, Insall-Salvati ratio, or contact area across the 3 knee angles, whereas knee angle had a significant effect on the BSO index and contact area. A reduction in pain was observed after the application of the Kinesio taping technique. Conclusion In a weight-bearing condition, this preliminary study did not support the use of PFJ taping as a medial correction technique to alter the PFJ contact area or alignment of the patella. J Orthop Sports Phys Ther 2017;47(2):115-123. doi:10.2519/jospt.2017.6936.
Effects of Gel Thickness on Microscopic Indentation Measurements of Gel Modulus
Long, Rong; Hall, Matthew S.; Wu, Mingming; Hui, Chung-Yuen
2011-01-01
In vitro, animal cells are mostly cultured on a gel substrate. It was recently shown that substrate stiffness affects cellular behaviors in a significant way, including adhesion, differentiation, and migration. Therefore, an accurate method is needed to characterize the modulus of the substrate. In situ microscopic measurements of the gel substrate modulus are based on Hertz contact mechanics, where Young's modulus is derived from the indentation force and displacement measurements. In Hertz theory, the substrate is modeled as a linear elastic half-space with an infinite depth, whereas in practice, the thickness of the substrate, h, can be comparable to the contact radius and other relevant dimensions such as the radius of the indenter or steel ball, R. As a result, measurements based on Hertz theory overestimate the Young's modulus. In this work, we discuss the limitations of Hertz theory and then modify it, taking into consideration the nonlinearity of the material and large deformation using a finite-element method. We present our results in a simple correction factor, ψ, the ratio of the corrected Young's modulus and the Hertz modulus in the parameter regime of δ/h ≤ min (0.6, R/h) and 0.3 ≤ R/h ≤ 12.7. The ψ factor depends on two dimensionless parameters, R/h and δ/h (where δ is the indentation depth), both of which are easily accessible to experiments. This correction factor agrees with experimental observations obtained with the use of polyacrylamide gel and a microsphere indentation method in the parameter range of 0.1 ≤ δ/h ≤ 0.4 and 0.3 ≤ R/h ≤ 6.2. The effect of adhesion on the use of Hertz theory for small indentation depth is also discussed. PMID:21806932
Coarse-grained modeling of polyethylene melts: Effect on dynamics
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya; ...
2017-05-23
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Coarse-grained modeling of polyethylene melts: Effect on dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya
The distinctive viscoelastic behavior of polymers results from a coupled interplay of motion on multiple length and time scales. Capturing the broad time and length scales of polymer motion remains a challenge. Using polyethylene (PE) as a model macromolecule, we construct coarse-grained (CG) models of PE with three to six methyl groups per CG bead and probe two critical aspects of the technique: pressure corrections required after iterative Boltzmann inversion (IBI) to generate CG potentials that match the pressure of reference fully atomistic melt simulations and the transferability of CG potentials across temperatures. While IBI produces nonbonded pair potentials thatmore » give excellent agreement between the atomistic and CG pair correlation functions, the resulting pressure for the CG models is large compared with the pressure of the atomistic system. We find that correcting the potential to match the reference pressure leads to nonbonded interactions with much deeper minima and slightly smaller effective bead diameter. However, simulations with potentials generated by IBI and pressure-corrected IBI result in similar mean-square displacements (MSDs) and stress autocorrelation functions G( t) for PE melts. While the time rescaling factor required to match CG and atomistic models is the same for pressure- and non-pressure-corrected CG models, it strongly depends on temperature. Furthermore, transferability was investigated by comparing the MSDs and stress autocorrelation functions for potentials developed at different temperatures.« less
Weaver, Heather; Roberts, Bayard
2010-11-01
This paper systematically reviews evidence about factors associated with harmful alcohol use amongst forcibly displaced persons, including refugees and internally displaced persons. Bibliographic and humanitarian-related databases were searched. The number of quantitative and qualitative studies that were screened and reviewed was 1108. Only 10 studies met inclusion criteria. Risk factors identified included gender, age, exposure to traumatic events and resulting posttraumatic stress disorder, prior alcohol consumption-related problems, year of immigration, location of residence, social relations, and postmigration trauma and stress. The evidence base was extremely weak, and there is a need to improve the quantity and quality of research about harmful alcohol use by forcibly displaced persons.
Yoo, Gyeol; Rha, Eun Young; Jeong, Jin Yong; Lee, Jongho; Sim, Sung Bo; Jo, Keon Hyon
2016-01-01
Bar flipping displacement is one of the most common complications after the Nuss procedure for pectus excavatum. We evaluated the results of a modified Nuss procedure with needlescope-assisted bar fixation. The records of 41 patients with pectus excavatum who underwent single pectus bar insertion with the Nuss procedure between July 2011 and August 2014 were retrospectively reviewed. The patients were divided into two groups: those who did not undergo 3-point fixation (group A) and those who did undergo 3-point fixation (group B). There were 36 male patients and 5 female patients with a mean age of 10.7 ± 8.3 years (range: 3-36 years). The postoperative Haller index (HI) (2.61 ± 0.42) was significantly lower than the preoperative HI (3.91 ± 1.07; p < 0.01). The angle of the initial bar position was 5.59 ± 7.37 degrees in group A and 8.52 ± 9.61 degrees in group B, with no significant difference between the groups (p > 0.05). The rate of reoperation to correct bar displacement was lower in group B (3.3%) than in group A (9.1%). Needlescope-assisted 3-point fixation of the bar was performed without an additional skin incision and showed a low rate of reoperation to correct displacement of the pectus bar. Georg Thieme Verlag KG Stuttgart · New York.
Mels, Cindy; Derluyn, Ilse; Broekaert, Eric; Rosseel, Yves
2010-10-01
While the current knowledge base on the mental health effects of displacement is mainly limited to refugees residing in industrialised countries, this paper examines the impact of war-induced displacement and related risk factors on the mental health of Eastern Congolese adolescents, and compares currently internally displaced adolescents to returnees and non-displaced peers. Data were collected from a community sample of 819 adolescents aged 13 to 21 years, attending one of 10 selected schools across the Ituri district in the Democratic Republic of Congo. Respondents completed culturally adapted self-report measures of posttraumatic stress symptoms (using the Impact of Event Scale - Revised) and internalising and externalising behaviour problems (by means of the Hopkins Symptoms Checklist - 37 for Adolescents). Associated factors studied were age, sex, parental death, exposure to war-related violence and daily stressors. Internally displaced persons (IDPs) reported highest mean scores for the IES-R and the HSCL-37A internalising scale, followed by returnees, while non-displaced adolescents scored significantly lower. However, ANCOVA tests showed that posttraumatic stress and internalising symptoms were mainly associated with traumatic exposure and daily stressors and not with displacement status. Externalising problem scores were associated with traumatic exposure, daily stressors and displacement. Remarkably, death of father was associated with fewer externalising problems. Sex was differently associated with internalising and externalising problems through traumatic and daily stressors. As IDPs are highly exposed to violence and daily stressors, they report most psychological distress, when compared to returnees and non-displaced peers. The distinct mental health outcomes for returned youngsters illustrate how enhancing current socio-economic living conditions of war-affected adolescents could stimulate resilient outcomes, despite former trauma or displacement.
A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions
Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.
2012-01-01
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Arnold, Steven M.
2000-01-01
The generalized method of cells micromechanics model is utilized to analyze the tensile stress-strain response of a representative titanium matrix composite with weak interfacial bonding. The fiber/matrix interface is modeled through application of a displacement discontinuity between the fiber and matrix once a critical debonding stress has been exceeded. Unidirectional composites with loading parallel and perpendicular to the fibers are examined, as well as a cross-ply laminate. For each of the laminates studied, analytically obtained results are compared to experimental data. The application of residual stresses through a cool-down process was found to have a significant effect on the tensile response. For the unidirectional laminate with loading applied perpendicular to the fibers, fiber packing and fiber shape were shown to have a significant effect on the predicted tensile response. Furthermore, the interface was characterized through the use of semi-emperical parameters including an interfacial compliance and a "debond stress;" defined as the stress level across the interface which activates fiber/matrix debonding. The results in this paper demonstrate that if architectural factors are correctly accounted for and the interface is appropriately characterized, the macro-level composite behavior can be correctly predicted without modifying any of the fiber or matrix constituent properties.
Tibial stress fracture after computer-navigated total knee arthroplasty.
Massai, F; Conteduca, F; Vadalà, A; Iorio, R; Basiglini, L; Ferretti, A
2010-06-01
A correct alignment of the tibial and femoral component is one of the most important factors determining favourable long-term results of a total knee arthroplasty (TKA). The accuracy provided by the use of the computer navigation systems has been widely described in the literature so that their use has become increasingly popular in recent years; however, unpredictable complications, such as displaced or stress femoral or tibial fractures, have been reported to occur a few weeks after the operation. We present a case of a stress tibial fracture that occurred after a TKA performed with the use of a computer navigation system. The stress fracture, which eventually healed without further complications, occurred at one of the pinhole sites used for the placement of the tibial trackers.
NASA Astrophysics Data System (ADS)
Swanpalmer, John; Johansson, Karl-Axel
2011-11-01
In the late 1970s, Johansson et al (1978 Int. Symp. National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) reported experimentally determined displacement correction factors (pdis) for cylindrical ionization chamber dosimetry in 60Co and high-energy photon beams. These pdis factors have been implemented and are currently in use in a number of dosimetry protocols. However, the accuracy of these factors has recently been questioned by Wang and Rogers (2009a Phys. Med. Biol. 54 1609-20), who performed Monte Carlo simulations of the experiments performed by Johansson et al. They reported that the inaccuracy of the pdis factors originated from the normalization procedure used by Johansson et al. In their experiments, Johansson et al normalized the measured depth-ionization curves at the depth of maximum ionization for each of the different ionization chambers. In this study, we experimentally investigated the effect of air cavity size of cylindrical ionization chambers in a PMMA phantom and 60Co γ-beam. Two different pairs of air-filled cylindrical ionization chambers were used. The chambers in each pair had identical construction and materials but different air cavity volume (diameter). A 20 MeV electron beam was utilized to determine the ratio of the mass of air in the cavity of the two chambers in each pair. This ratio of the mass of air in each pair was then used to compare the ratios of the ionizations obtained at different depths in the PMMA phantom and 60Co γ-beam using the two pairs of chambers. The diameter of the air cavity of cylindrical ionization chambers influences both the depth at which the maximum ionization is observed and the ionization per unit mass of air at this depth. The correction determined at depths of 50 mm and 100 mm is smaller than the correction currently used in many dosimetry protocols. The results presented here agree with the findings of Wang and Rogers' Monte Carlo simulations and show that the normalization procedure employed by Johansson et al is not correct.
Off-Angle Iris Correction Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santos-Villalobos, Hector J; Thompson, Joseph T; Karakaya, Mahmut
In many real world iris recognition systems obtaining consistent frontal images is problematic do to inexperienced or uncooperative users, untrained operators, or distracting environments. As a result many collected images are unusable by modern iris matchers. In this chapter we present four methods for correcting off-angle iris images to appear frontal which makes them compatible with existing iris matchers. The methods include an affine correction, a retraced model of the human eye, measured displacements, and a genetic algorithm optimized correction. The affine correction represents a simple way to create an iris image that appears frontal but it does not accountmore » for refractive distortions of the cornea. The other method account for refraction. The retraced model simulates the optical properties of the cornea. The other two methods are data driven. The first uses optical flow to measure the displacements of the iris texture when compared to frontal images of the same subject. The second uses a genetic algorithm to learn a mapping that optimizes the Hamming Distance scores between off-angle and frontal images. In this paper we hypothesize that the biological model presented in our earlier work does not adequately account for all variations in eye anatomy and therefore the two data-driven approaches should yield better performance. Results are presented using the commercial VeriEye matcher that show that the genetic algorithm method clearly improves over prior work and makes iris recognition possible up to 50 degrees off-angle.« less
Set-up uncertainties: online correction with X-ray volume imaging.
Kataria, Tejinder; Abhishek, Ashu; Chadha, Pranav; Nandigam, Janardhan
2011-01-01
To determine interfractional three-dimensional set-up errors using X-ray volumetric imaging (XVI). Between December 2007 and August 2009, 125 patients were taken up for image-guided radiotherapy using online XVI. After matching of reference and acquired volume view images, set-up errors in three translation directions were recorded and corrected online before treatment each day. Mean displacements, population systematic (Σ), and random (σ) errors were calculated and analyzed using SPSS (v16) software. Optimum clinical target volume (CTV) to planning target volume (PTV) margin was calculated using Van Herk's (2.5Σ + 0.7 σ) and Stroom's (2Σ + 0.7 σ) formula. Patients were grouped in 4 cohorts, namely brain, head and neck, thorax, and abdomen-pelvis. The mean vector displacement recorded were 0.18 cm, 0.15 cm, 0.36 cm, and 0.35 cm for brain, head and neck, thorax, and abdomen-pelvis, respectively. Analysis of individual mean set-up errors revealed good agreement with the proposed 0.3 cm isotropic margins for brain and 0.5 cm isotropic margins for head-neck. Similarly, 0.5 cm circumferential and 1 cm craniocaudal proposed margins were in agreement with thorax and abdomen-pelvic cases. The calculated mean displacements were well within CTV-PTV margin estimates of Van Herk (90% population coverage to minimum 95% prescribed dose) and Stroom (99% target volume coverage by 95% prescribed dose). Employing these individualized margins in a particular cohort ensure comparable target coverage as described in literature, which is further improved if XVI-aided set-up error detection and correction is used before treatment.
Castle, Robert O.; Gilmore, Thomas D.; Walker, James P.; Castle, Susan A.
2005-01-01
Comparisons among repeated levelings along selected lines through the Death Valley region of California and adjacent parts of Nevada have disclosed surprisingly large vertical displacements. The vertical control data in this lightly populated area is sparse; moreover, as much as a third of the recovered data is so thoroughly contaminated by systematic error and survey blunders that no attempt was made to correct these data and they were simply discarded. In spite of these limitations, generally episodic, commonly large vertical displacements are disclosed along a number of lines. Displacements in excess of 0.4 m, with respect to our selected control point at Beatty, Nevada, and differential displacements of about 0.7 m apparently occurred during the earlier years of the 20th century and continued episodically through at least 1943. While this area contains abundant evidence of continuing tectonic activity through latest Quaternary time, it is virtually devoid of historic seismicity. We have detected no clear connection between the described vertical displacements and fault zones reportedly active during Holocene time, although we sense some association with several more broadly defined tectonic features.
Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming
NASA Astrophysics Data System (ADS)
Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.
NASA Technical Reports Server (NTRS)
Goldman, L. J.; Scullin, V. J.
1971-01-01
A FORTRAN 4 computer program for the design of two-dimensional supersonic rotor blade sections corrected for boundary-layer displacement thickness is presented. The ideal rotor is designed by the method of characteristics to produce vortex flow within the blade passage. The boundary-layer parameters are calculated by Cohen and Reshotoko's method for laminar flow and Sasman and Cresci's method for turbulent flow. The program input consists essentially of the blade surface Mach number distribution and total flow conditions. The primary output is the corrected blade profile and the boundary-layer parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antolak, A; Bayouth, J; Bosca, R
Purpose: Evaluate a large-field MRI phantom for assessment of geometric distortion in whole-body MRI for real-time MR guided radiation therapy. Methods: A prototype CIRS large-field MRI distortion phantom consisting of a PMMA cylinder (33 cm diameter, 30 cm length) containing a 3D-printed orthogonal grid (3 mm diameter rods, 20 mm apart), was filled with 6 mM NiCl{sub 2} and 30 mM NaCl solution. The phantom was scanned at 1.5T and 3.0T on a GE HDxt and Discovery MR750, respectively, and at 0.35T on a ViewRay system. Scans were obtained with and without 3D distortion correction to demonstrate the impact ofmore » such corrections. CT images were used as a reference standard for analysis of geometric distortion, as determined by a fully automated gradient-search method developed in Matlab. Results: 1,116 grid points distributed throughout a cylindrical volume 28 cm in diameter and 16 cm in length were identified and analyzed. With 3D distortion correction, average/maximum displacements for the 1.5, 3.0, and 0.35T systems were 0.84/2.91, 1.00/2.97, and 0.95/2.37 mm, respectively. The percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (73%, 92%, 97%), (54%, 85%, 97%), and (55%, 90%, 99%), respectively. A reduced scan volume of 20 × 20 × 10 cm{sup 3} (representative of a head and neck scan volume) consisting of 420 points was also analyzed. In this volume, the percentage of points with less than (1.0, 1.5, 2.0 mm) total displacement were (90%, 99%, 100%), (63%, 95%, 100%), and (75%, 96%, 100%), respectively. Without 3D distortion correction, average/maximum displacements were 1.35/3.67, 1.67/4.46, and 1.51/3.89 mm, respectively. Conclusion: The prototype large-field MRI distortion phantom and developed software provide a thorough assessment of 3D spatial distortions in MRI. The distortions measured were acceptable for RT applications, both for the high field strengths and the system configuration developed by ViewRay.« less
The new version of EPA’s positive matrix factorization (EPA PMF) software, 5.0, includes three error estimation (EE) methods for analyzing factor analytic solutions: classical bootstrap (BS), displacement of factor elements (DISP), and bootstrap enhanced by displacement (BS-DISP)...
Scheurer, J M; Gray, H L; Demerath, E W; Rao, R; Ramel, S E
2016-02-01
Characterize the relationship between neonatal hyperglycemia and growth and body composition at 4 months corrected age (CA) in very low birth weight (VLBW) preterm infants. A prospective study of VLBW appropriate-for-gestation infants (N=53). All blood glucose measurements in the first 14 days and nutritional intake and illness markers until discharge were recorded. Standard anthropometrics and body composition via air displacement plethysmography were measured near term CA and 4 months CA. Relationships between hyperglycemia and anthropometrics and body composition were examined using multivariate linear regression. Infants with >5 days of hyperglycemia were lighter (5345 vs 6455 g, P⩽0.001), shorter (57.9 vs 60.9 cm, P⩽0.01), had smaller occipital-frontal head circumference (39.4 vs 42.0 cm, P⩽0.05) and were leaner (percent body fat 15.0 vs 23.8, P⩽0.01) at 4 months CA than those who did not have hyperglycemia, including after correcting for nutritional and illness factors. Neonatal hyperglycemia in VLBW infants is associated with decreased body size and lower adiposity at 4 months CA independent of nutritional deficit, insulin use and illness. Downregulation of the growth hormone axis may be responsible. These changes may influence long-term growth and cognitive development.
Revisiting Tectonic Corrections Applied to Pleistocene Sea-Level Highstands
NASA Astrophysics Data System (ADS)
Creveling, J. R.; Mitrovica, J. X.; Hay, C.; Austermann, J.; Kopp, R. E.
2015-12-01
The robustness of stratigraphic- and geomorphic-based inferences of Quaternary peak interglacial sea levels — and equivalent minimum continental ice volumes — depends on the accuracy with which highstand markers can be corrected for vertical tectonic displacement. For sites that preserve a Marine Isotope Stage (MIS) 5e sea-level highstand marker, the customary method for estimating tectonic uplift/subsidence rate computes the difference between the local elevation of the highstand marker and a reference eustatic (i.e., global mean) MIS 5e sea-level height, typically assumed to be +6 m, and then divides this height difference by the age of the highstand marker. This rate is then applied to correct the elevation of other observed sea-level markers at that site for tectonic displacement. Subtracting a reference eustatic value from a local MIS 5e highstand marker elevation introduces two potentially significant errors. First, the commonly adopted peak eustatic MIS 5e sea-level value (i.e., +6 m) is likely too low; recent studies concluded that MIS 5e peak eustatic sea level was ~6-9 m. Second, local peak MIS 5e sea level was not globally uniform, but instead characterized by significant departures from eustasy due to glacial isostatic adjustment (GIA) in response to successive glacial-interglacial cycles and excess polar ice-sheet melt relative to present day. We present numerical models of GIA that incorporate both of these effects in order to quantify the plausible range in error of previous tectonic corrections. We demonstrate that, even far from melting ice sheets, local peak MIS 5e sea level may have departed from eustasy by 2-4 m, or more. Thus, adopting an assumed reference eustatic value to estimate tectonic displacement, rather than a site-specific GIA signal, can introduce significant error in estimates of peak eustatic sea level (and minimum ice volumes) during Quaternary highstands (e.g., MIS 11, MIS 5c and MIS 5a).
Displacement behaviour regulates the experience of stress in men.
Mohiyeddini, Changiz; Semple, Stuart
2013-03-01
Behavioural coping strategies represent a key means by which people regulate their stress levels. Attention has recently focused on the potential role in coping of 'displacement behaviour' - activities such as scratching, lip biting and face touching. Increased levels of displacement behaviour are associated with feelings of anxiety and stress; however, the extent to which displacement behaviour, as a short-term behavioural response to emotionally challenging stimuli, influences the subsequent experience of stress remains poorly understood. The aim of this study was to investigate the potential role of displacement behaviour in coping with stress. In a study population of 42 healthy adult men (mean age = 28.09 years, SD = 7.98), we quantified displacement behaviour during a Trier Social Stress Test (TSST), and used self-report questionnaires to assess trait and state anxiety before the TSST, and the experience of stress afterwards. We predicted displacement behaviour would diminish the negative impact of the stressful situation, and hence be associated with lower post-TSST stress levels. Furthermore, we predicted displacement behaviour would mediate the link between state and trait anxiety on the one hand and the experience of stress on the other. Results showed the rate of displacement behaviour was positively correlated with state anxiety but unrelated to trait anxiety, and negatively correlated with the self-reported experience of stress, in agreement with the idea that displacement behaviour has a crucial impact on regulation of stress. Moreover, serial mediation analyses using a bias-corrected bootstrapping approach indicated displacement behaviour mediated the relationship between state anxiety and the experience of stress, and that state anxiety and displacement behaviour - in combination, respectively - mediated the link between trait anxiety and experience of stress. These results shed important new light on the function of displacement behaviour, and highlight promising new avenues for research into emotional expression and stress regulation.
Correlation of Postoperative Position of the Sesamoids After Chevron Osteotomy With Outcome.
Shi, Glenn G; Henning, Peter; Marks, Richard M
2016-03-01
Postoperative incomplete reduction of the sesamoids has been identified as a potential risk factor for hallux valgus recurrence after proximal osteotomy. However, it is not known whether the postoperative sesamoid position is a risk factor in hallux valgus correction via distal chevron osteotomy with or without dorsal webspace release (DWSR). In this retrospective study, 169 patients who underwent distal chevron osteotomy with or without DWSR were reviewed. Preoperative and postoperative (6 weeks, 6 months, 12 months) weightbearing radiographs were evaluated. Functional hallux valgus angle (HVA), intermetatarsal angle (IMA), and the position of the tibial sesamoid were graded using the center of head method. Seventy-six radiographs were available for review at the 12-month follow-up. Of these, 41 patients underwent DWSR procedure and 35 did not. In both groups, correction of all 3 parameters (HVA, IMA, tibial sesamoid position) were significant at the 12-month follow-up. Comparison of the postoperative results of the 2 groups showed no statistically significant differences. Four feet demonstrated displaced sesamoid position at the 12-month follow-up, with radiographic evidence of recurrence in just one. No significant relationship was found between postoperative sesamoid position and hallux valgus recurrence that occurred in 4 feet. Combining DWSR with a distal chevron osteotomy did not delay healing or increase risk of avascular necrosis, but it did not significantly improve angular measurements or sesamoid position. The concept that postoperative sesamoid position can be used to predict hallux valgus recurrence was not supported by our results when looking at distal chevron correction. Level III, retrospective comparative study. © The Author(s) 2015.
Boore, David M.
1999-01-01
Displacements derived from the accelerogram recordings of the 1999 Chi-Chi, Taiwan earthquake at stations TCU078 and TCU129 show drifts when only a simple baseline derived from the pre-event portion of the record is removed from the records. The appearance of the velocity and displacement records suggests that changes in the zero-level of the acceleration are responsible for these drifts. The source of the shifts in zero-level are unknown, but might include tilts in the instruments or the response of the instruments to strong shaking. This note illustrates the effect on the velocity, displacement, and response spectra of several schemes for accounting for these baseline shifts. The most important conclusion for earthquake engineering purposes is that the response spectra for periods less than about 20 sec are unaffected by the baseline correction. The results suggest, however, that staticdisplac ements estimated from the instruments should be used with caution. Although limited to the analysis of only two recordings, the results may have more general significance both for the many other recordings of this earthquake and for data that will be obtained in the future from similar high-quality accelerograph networks now being installed or soon to be installed in many parts of the world.
Nunes, Rita G; Hajnal, Joseph V
2018-06-01
Point spread function (PSF) mapping enables estimating the displacement fields required for distortion correction of echo planar images. Recently, a highly accelerated approach was introduced for estimating displacements from the phase slope of under-sampled PSF mapping data. Sampling schemes with varying spacing were proposed requiring stepwise phase unwrapping. To avoid unwrapping errors, an alternative approach applying the concept of finite rate of innovation to PSF mapping (FRIP) is introduced, using a pattern search strategy to locate the PSF peak, and the two methods are compared. Fully sampled PSF data was acquired in six subjects at 3.0 T, and distortion maps were estimated after retrospective under-sampling. The two methods were compared for both previously published and newly optimized sampling patterns. Prospectively under-sampled data were also acquired. Shift maps were estimated and deviations relative to the fully sampled reference map were calculated. The best performance was achieved when using FRIP with a previously proposed sampling scheme. The two methods were comparable for the remaining schemes. The displacement field errors tended to be lower as the number of samples or their spacing increased. A robust method for estimating the position of the PSF peak has been introduced.
On-line Tools for Assessing Petroleum Releases
The Internet tools described in this report provide methods and models for evaluation of contaminated sites. Two problems are addressed by models. The first is the placement of wells for correct delineation of contaminant plumes. Because aquifer recharge can displace plumes dow...
Litko, M; Berger, M; Szkutnik, J; Różyło-Kalinowska, I
2017-12-01
The most common temporomandibular joint (TMJ) internal derangement is an abnormal relationship of the disc with respect to the mandibular condyle, articular eminence and glenoid fossa-disc displacement. The aim of our study was to analyse the correlation between partial/complete disc displacement in the intercuspal position (IP) and its reduction in the open-mouth position (OMP) in both oblique sagittal and coronal planes on magnetic resonance imaging (MRI) in patients with temporomandibular disorders. Multisection MRI analysis of 382 TMJs was conducted in 191 patients with disc displacement according to the RDC/TMD criteria (148 women, 43 men; aged 14-60 years). The disc position was evaluated on all oblique sagittal and coronal images in the IP and the OMP. Univariate logistic regression analysis showed that the severity of disc displacement in the sagittal plane is a statistically significant predictor of reduction ability during mouth opening (B = 3.118; P < .001). Moreover, the severity of disc displacement in both planes is also a significant predictor of disc reduction in OMP (B = 2.200; P < .05). In conclusion, reduction ability during mouth opening is associated with the severity of disc displacement in IP, in both sagittal and coronal planes. Multisection analysis of all MR images allows distinguishing the correct disc position from disc displacement and can improve the ability to distinguish between various stages of TMJ internal derangement. © 2017 John Wiley & Sons Ltd.
Tekeli-Yesil, Sidika; Isik, Esra; Unal, Yesim; Aljomaa Almossa, Fuad; Konsuk Unlu, Hande; Aker, Ahmet Tamer
2018-07-01
To compare frequencies of some mental health disorders between Syrian refugees living in Turkey and internally displaced persons in Syria, and to identify factors associated with posttraumatic stress disorder and major depressive disorder. We carried out a field survey in May 2017 among 540 internally displaced persons in Syria and refugees in Turkey. The study revealed that mental disorders were highly prevalent in both populations. Major depressive disorder was more frequent among refugees in Turkey than among internally displaced persons in Syria; other mental disorders, including posttraumatic stress disorder, were more prevalent in the latter than in the former. Posttraumatic stress disorder was also associated with postmigration factors. Major depressive disorder was more likely among refugees in Turkey. In addition, the likelihood of major depressive disorder was predicted by stopping somewhere else before resettlement in the current location. The resettlement locus and the context and type of displacement seem to be important determinants of mental health disorders, with postmigration factors being stronger predictors of conflict-related mental health. Internally displaced persons may benefit more from trauma-focused approaches, whereas refugees may derive greater benefit from psychosocial approaches.
Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin
2018-01-14
The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model.
Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin
2018-01-01
The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model. PMID:29342902
NASA Astrophysics Data System (ADS)
Sandstrom, R. M.; O'Leary, M.; Barham, M.; Cai, Y.; Jacome, A. P.; Raymo, M. E.
2015-12-01
Correcting fossil shorelines for vertical displacement subsequent to deposition is a vital consideration in estimating sea level and ice volume during past warm periods. Field observations of paleo-sea level indicators must be adjusted for local tectonic deformation, subsequent sediment loading, dynamic topography (DT), and glacial isostatic adjustment (GIA). Dynamic topography is often the most difficult of these corrections to determine, especially on million year timescales, but is essential when providing constraints on sea level and ice volume changes. GIA effects from high latitude ice sheets minimally impact northwestern Australia, making this region well suited for observing surface displacement due to mantle and tectonic processes. This study presents centimeter accuracy paleo-shoreline data from four distinct marine terraces in the Cape Range National Park, Australia, which document vertical displacement history along 100 kilometers of coastline. The mapped region has an anticlinal structure in the center that has been slowly uplifting the three older reef complexes over the Neogene, constraining the timing of deformation. These neotectonics are probably caused by reactivation of ancient fault zones normal to the principal horizontal compressive stress, resulting in the warping of overlaying units. The elevation data also suggests minimal vertical displacement since the last interglacial highstand. Well-preserved fossil coral were collected from each terrace and will be geochemically dated using Sr isotope and U-series dating methods. This dataset provides a better understanding of DT and neotectonic deformation in this region (useful for improving mantle viscosity models), and offers a means for improving past sea level reconstructions in northwestern Australia.
Dramatic orientation shift of white-crowned sparrows displaced across longitudes in the high Arctic.
Akesson, Susanne; Morin, Jens; Muheim, Rachel; Ottosson, Ulf
2005-09-06
Advanced spatial-learning adaptations have been shown for migratory songbirds, but it is not well known how the simple genetic program encoding migratory distance and direction in young birds translates to a navigation mechanism used by adults. A number of convenient cues are available to define latitude on the basis of geomagnetic and celestial information, but very few are useful to defining longitude. To investigate the effects of displacements across longitudes on orientation, we recorded orientation of adult and juvenile migratory white-crowned sparrows, Zonotrichia leucophrys gambelii, after passive longitudinal displacements, by ship, of 266-2862 km across high-arctic North America. After eastward displacement to the magnetic North Pole and then across the 0 degrees declination line, adults and juveniles abruptly shifted their orientation from the migratory direction to a direction that would lead back to the breeding area or to the normal migratory route, suggesting that the birds began compensating for the displacement by using geomagnetic cues alone or together with solar cues. In contrast to predictions by a simple genetic migration program, our experiments suggest that both adults and juveniles possess a navigation system based on a combination of celestial and geomagnetic information, possibly declination, to correct for eastward longitudinal displacements.
NASA Astrophysics Data System (ADS)
Xu, Chunmei; Huang, Fu-yu; Yin, Jian-ling; Chen, Yu-dan; Mao, Shao-juan
2016-10-01
The influence of aberration on misalignment of optical system is considered fully, the deficiencies of Gauss optical correction method is pointed, and a correction method for transmission-type misalignment optical system is proposed based on aberration theory. The variation regularity of single lens aberration caused by axial displacement is analyzed, and the aberration effect is defined. On this basis, through calculating the size of lens adjustment induced by the image position error and the magnifying rate error, the misalignment correction formula based on the constraints of the aberration is deduced mathematically. Taking the three lens collimation system for an example, the test is carried out to validate this method, and its superiority is proved.
Bosy-Westphal, Anja; Danielzik, Sandra; Becker, Christine; Geisler, Corinna; Onur, Simone; Korth, Oliver; Bührens, Frederike; Müller, Manfred J
2005-09-01
Air-displacement plethysmography (ADP) is now widely used for body composition measurement in pediatric populations. However, the manufacturer's software developed for adults leaves a potential bias for application in children and adolescents, and recent publications do not consistently use child-specific corrections. Therefore we analyzed child-specific ADP corrections with respect to quantity and etiology of bias compared with adult formulas. An optimal correction protocol is provided giving step-by-step instructions for calculations. In this study, 258 children and adolescents (143 girls and 115 boys ranging from 5 to 18 y) with a high prevalence of overweight or obesity (28.0% in girls and 22.6% in boys) were examined by ADP applying the manufacturer's software as well as published equations for child-specific corrections for surface area artifact (SAA), thoracic gas volume (TGV), and density of fat-free mass (FFM). Compared with child-specific equations for SAA, TGV, and density of FFM, the mean overestimation of the percentage of fat mass using the manufacturer's software was 10% in children and adolescents. Half of the bias derived from the use of Siri's equation not corrected for age-dependent differences in FFM density. An additional 3 and 2% of bias resulted from the application of adult equations for prediction of SAA and TGV, respectively. Different child-specific equations used to predict TGV did not differ in the percentage of fat mass. We conclude that there is a need for child-specific equations in ADP raw data analysis considering SAA, TGV, and density of FFM.
A quantitative evaluation of the three dimensional reconstruction of patients' coronary arteries.
Klein, J L; Hoff, J G; Peifer, J W; Folks, R; Cooke, C D; King, S B; Garcia, E V
1998-04-01
Through extensive training and experience angiographers learn to mentally reconstruct the three dimensional (3D) relationships of the coronary arterial branches. Graphic computer technology can assist angiographers to more quickly visualize the coronary 3D structure from limited initial views and then help to determine additional helpful views by predicting subsequent angiograms before they are obtained. A new computer method for facilitating 3D reconstruction and visualization of human coronary arteries was evaluated by reconstructing biplane left coronary angiograms from 30 patients. The accuracy of the reconstruction was assessed in two ways: 1) by comparing the vessel's centerlines of the actual angiograms with the centerlines of a 2D projection of the 3D model projected into the exact angle of the actual angiogram; and 2) by comparing two 3D models generated by different simultaneous pairs on angiograms. The inter- and intraobserver variability of reconstruction were evaluated by mathematically comparing the 3D model centerlines of repeated reconstructions. The average absolute corrected displacement of 14,662 vessel centerline points in 2D from 30 patients was 1.64 +/- 2.26 mm. The average corrected absolute displacement of 3D models generated from different biplane pairs was 7.08 +/- 3.21 mm. The intraobserver variability of absolute 3D corrected displacement was 5.22 +/- 3.39 mm. The interobserver variability was 6.6 +/- 3.1 mm. The centerline analyses show that the reconstruction algorithm is mathematically accurate and reproducible. The figures presented in this report put these measurement errors into clinical perspective showing that they yield an accurate representation of the clinically relevant information seen on the actual angiograms. These data show that this technique can be clinically useful by accurately displaying in three dimensions the complex relationships of the branches of the coronary arterial tree.
Target coverage in image-guided stereotactic body radiotherapy of liver tumors.
Wunderink, Wouter; Méndez Romero, Alejandra; Vásquez Osorio, Eliana M; de Boer, Hans C J; Brandwijk, René P; Levendag, Peter C; Heijmen, Ben J M
2007-05-01
To determine the effect of image-guided procedures (with computed tomography [CT] and electronic portal images before each treatment fraction) on target coverage in stereotactic body radiotherapy for liver patients using a stereotactic body frame (SBF) and abdominal compression. CT guidance was used to correct for day-to-day variations in the tumor's mean position in the SBF. By retrospectively evaluating 57 treatment sessions, tumor coverage, as obtained with the clinically applied CT-guided protocol, was compared with that of alternative procedures. The internal target volume-plus (ITV(+)) was introduced to explicitly include uncertainties in tumor delineations resulting from CT-imaging artifacts caused by residual respiratory motion. Tumor coverage was defined as the volume overlap of the ITV(+), derived from a tumor delineated in a treatment CT scan, and the planning target volume. Patient stability in the SBF, after acquisition of the treatment CT scan, was evaluated by measuring the displacement of the bony anatomy in the electronic portal images relative to CT. Application of our clinical protocol (with setup corrections following from manual measurements of the distances between the contours of the planning target volume and the daily clinical target volume in three orthogonal planes, multiple two-dimensional) increased the frequency of nearly full (> or = 99%) ITV(+) coverage to 77% compared with 63% without setup correction. An automated three-dimensional method further improved the frequency to 96%. Patient displacements in the SBF were generally small (< or = 2 mm, 1 standard deviation), but large craniocaudal displacements (maximal 7.2 mm) were occasionally observed. Daily, CT-assisted patient setup may substantially improve tumor coverage, especially with the automated three-dimensional procedure. In the present treatment design, patient stability in the SBF should be verified with portal imaging.
Screw Versus Plate Fixation for Chevron Osteotomy: A Retrospective Study.
Andrews, Boyd J; Fallat, Lawrence M; Kish, John P
2016-01-01
The chevron osteotomy is a popular procedure used for the correction of moderate hallux abducto valgus deformity. Fixation is typically accomplished with Kirschner wires or bone screws; however, in cystic or osteoporotic bone, these could be inadequate, resulting in displacement of the capital fragment. We propose using a locking plate and interfragmental screw for fixation of the chevron osteotomy that could reduce the healing time and decrease the incidence of displacement. We performed a retrospective cohort study for chevron osteotomies on 75 feet (73 patients). The control groups underwent fixation with 1 screw in 30 feet (40%) and 2 screws in 30 feet (40%). A total of 15 feet (20%) were included in the locking plate and interfragmental screw group. The patients were followed up until bone healing was achieved at a median of 7 (range 6 to 14) weeks. Our hypothesis was that those treated with the locking plate and interfragmental screw would have a faster healing time and fewer incidents of capital fragment displacement compared with the 1- or 2-screw groups. The corresponding mean intervals to healing for the 1-screw group was 7.71 ± 1.28 (range 6 to 10) weeks, for the 2-screw group was 7.27 ± 1.57 (range 6 to 14) weeks, and for the locking plate and interfragmental screw group was 7.01 ± 1.00 (range 6 to 9) weeks. One case of capital fragment displacement occurred in the single screw group and one in the 2-screw group. No displacement occurred in the locking plate and interfragmental screw group. Neither finding was statistically significant. However, we believe the locking plate and interfragmental screw could be a viable option in patients with osteoporotic and cystic bone changes for correction of hallux abducto valgus. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Reachability bounds for chemical reaction networks and strand displacement systems.
Condon, Anne; Kirkpatrick, Bonnie; Maňuch, Ján
2014-01-01
Chemical reaction networks (CRNs) and DNA strand displacement systems (DSDs) are widely-studied and useful models of molecular programming. However, in order for some DSDs in the literature to behave in an expected manner, the initial number of copies of some reagents is required to be fixed. In this paper we show that, when multiple copies of all initial molecules are present, general types of CRNs and DSDs fail to work correctly if the length of the shortest sequence of reactions needed to produce any given molecule exceeds a threshold that grows polynomially with attributes of the system.
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
Summary of Full-Scale Blade Displacement Measurements of the UH- 60A Airloads Rotor
NASA Technical Reports Server (NTRS)
Abrego, Anita I.; Meyn, Larry; Burner, Alpheus W.; Barrows, Danny A.
2016-01-01
Blade displacement measurements using multi-camera photogrammetry techniques were acquired for a full-scale UH-60A rotor, tested in the National Full-Scale Aerodynamic Complex 40-Foot by 80-Foot Wind Tunnel. The measurements, acquired over the full rotor azimuth, encompass a range of test conditions that include advance ratios from 0.15 to 1.0, thrust coefficient to rotor solidity ratios from 0.01 to 0.13, and rotor shaft angles from -10.0 to 8.0 degrees. The objective was to measure the blade displacements and deformations of the four rotor blades and provide a benchmark blade displacement database to be utilized in the development and validation of rotorcraft prediction techniques. An overview of the blade displacement measurement methodology, system development, and data analysis techniques are presented. Sample results based on the final set of camera calibrations, data reduction procedures and estimated corrections that account for registration errors due to blade elasticity are shown. Differences in blade root pitch, flap and lag between the previously reported results and the current results are small. However, even small changes in estimated root flap and pitch can lead to significant differences in the blade elasticity values.
Energy dependence of proton displacement damage factors for bipolar transistors
NASA Astrophysics Data System (ADS)
Summers, Geoffrey P.; Xapsos, Michael A.; Dale, Cheryl J.; Wolicki, Eligius A.; Marshall, Paul
1986-12-01
Displacement damage factors, K(p), have been measured as a function of collector current for proton irradiations of 2N2222A (npn) and 2N2907A (pnp) switching transistors and 2N3055 (npn) power transistors over the energy range 5.0 to 60.3 MeV. The measurements of K(p) were made on specially selected lots of devices and were compared to values of the neutron damage factors, K(n), for 1-MeV displacement damage equivalent neutrons made on the same devices. The results show that, so far as device operation is concerned, the nature of the displacement damage produced by high energy protons and by fission neutrons is essentially the same. Over the energy range studied, protons were found to be more damaging than neutrons. For 5.0 MeV protons Kp/Kn was about 8.5 compared to about 1.8 for 60.3 MeV protons.
78 FR 1872 - Extension and Redesignation of Sudan for Temporary Protected Status
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-09
... and has led to continued internal displacement and refugee flight into neighboring countries. Violence and ensuing population displacement, along with environmental and economic factors, have created one... civilian deaths and displacement. Peace agreements for Darfur were signed in 2006, 2007, 2010, and 2011...
Adaptive optics self-calibration using differential OTF (dOTF)
NASA Astrophysics Data System (ADS)
Rodack, Alexander T.; Knight, Justin M.; Codona, Johanan L.; Miller, Kelsey L.; Guyon, Olivier
2015-09-01
We demonstrate self-calibration of an adaptive optical system using differential OTF [Codona, JL; Opt. Eng. 0001; 52(9):097105-097105. doi:10.1117/1.OE.52.9.097105]. We use a deformable mirror (DM) along with science camera focal plane images to implement a closed-loop servo that both flattens the DM and corrects for non-common-path aberrations within the telescope. The pupil field modification required for dOTF measurement is introduced by displacing actuators near the edge of the illuminated pupil. Simulations were used to develop methods to retrieve the phase from the complex amplitude dOTF measurements for both segmented and continuous sheet MEMS DMs and tests were performed using a Boston Micromachines continuous sheet DM for verification. We compute the actuator correction updates directly from the phase of the dOTF measurements, reading out displacements and/or slopes at segment and actuator positions. Through simulation, we also explore the effectiveness of these techniques for a variety of photons collected in each dOTF exposure pair.
NASA Technical Reports Server (NTRS)
Ferguson, D. R.
1972-01-01
The streamtube curvature program (STC) has been developed to predict the inviscid flow field and the pressure distribution about nacelles at transonic speeds. The effects of boundary layer are to displace the inviscid flow and effectively change the body shape. Thus, the body shape must be corrected by the displacement thickness in order to calculate the correct pressure distribution. This report describes the coupling of the Stratford and Beavers boundary layer solution with the inviscid STC analysis so that all nacelle pressure forces, friction drag, and incipient separation may be predicted. The usage of the coupled STC-SAB computer program is outlined and the program input and output are defined. Included in this manual are descriptions of the principal boundary layer tables and other revisions to the STC program. The use of the viscous option is controlled by the engineer during program input definition.
Nanoscale probing of image-dipole interactions in a metallic nanostructure
Ropp, Chad; Cummins, Zachary; Nah, Sanghee; Fourkas, John T.; Shapiro, Benjamin; Waks, Edo
2015-01-01
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. PMID:25790228
Ma, Chi; Varghese, Tomy
2012-04-01
Accurate cardiac deformation analysis for cardiac displacement and strain imaging over time requires Lagrangian description of deformation of myocardial tissue structures. Failure to couple the estimated displacement and strain information with the correct myocardial tissue structures will lead to erroneous result in the displacement and strain distribution over time. Lagrangian based tracking in this paper divides the tissue structure into a fixed number of pixels whose deformation is tracked over the cardiac cycle. An algorithm that utilizes a polar-grid generated between the estimated endocardial and epicardial contours for cardiac short axis images is proposed to ensure Lagrangian description of the pixels. Displacement estimates from consecutive radiofrequency frames were then mapped onto the polar grid to obtain a distribution of the actual displacement that is mapped to the polar grid over time. A finite element based canine heart model coupled with an ultrasound simulation program was used to verify this approach. Segmental analysis of the accumulated displacement and strain over a cardiac cycle demonstrate excellent agreement between the ideal result obtained directly from the finite element model and our Lagrangian approach to strain estimation. Traditional Eulerian based estimation results, on the other hand, show significant deviation from the ideal result. An in vivo comparison of the displacement and strain estimated using parasternal short axis views is also presented. Lagrangian displacement tracking using a polar grid provides accurate tracking of myocardial deformation demonstrated using both finite element and in vivo radiofrequency data acquired on a volunteer. In addition to the cardiac application, this approach can also be utilized for transverse scans of arteries, where a polar grid can be generated between the contours delineating the outer and inner wall of the vessels from the blood flowing though the vessel.
van Rooijen, Dominique C; van de Kamer, Jeroen B; Pool, René; Hulshof, Maarten CCM; Koning, Caro CE; Bel, Arjan
2009-01-01
Background The purpose of this study was to determine the dosimetric effect of on-line position correction for bladder tumor irradiation and to find methods to predict and handle this effect. Methods For 25 patients with unifocal bladder cancer intensity modulated radiotherapy (IMRT) with 5 beams was planned. The requirement for each plan was that 99% of the target volume received 95% of the prescribed dose. Tumor displacements from -2.0 cm to 2.0 cm in each dimension were simulated, using 0.5 cm increments, resulting in 729 simulations per patient. We assumed that on-line correction for the tumor was applied perfectly. We determined the correlation between the change in D99% and the change in path length, which is defined here as the distance from the skin to the isocenter for each beam. In addition the margin needed to avoid underdosage was determined and the probability that an underdosage occurs in a real treatment was calculated. Results Adjustments for tumor displacement with perfect on-line position correction resulted in an altered dose distribution. The altered fraction dose to the target varied from 91.9% to 100.4% of the prescribed dose. The mean D99% (± SD) was 95.8% ± 1.0%. There was a modest linear correlation between the difference in D99% and the change in path length of the beams after correction (R2 = 0.590). The median probability that a systematic underdosage occurs in a real treatment was 0.23% (range: 0 - 24.5%). A margin of 2 mm reduced that probability to < 0.001% in all patients. Conclusion On-line position correction does result in an altered target coverage, due to changes in average path length after position correction. An extra margin can be added to prevent underdosage. PMID:19775479
Wolf, Christian; Klein, Daniel; Richter, Klaus; Weber-Blaschke, Gabriele
2016-11-01
Wood biomass, especially when applied for heating, plays an important role for mitigating environmental impacts such as climate change and the transition towards higher shares of renewable energy in today's energy mix. However, the magnitude of mitigation benefits and burdens associated with wood use can vary greatly depending on regional parameters such as the displaced fossil reference or heating mix. Therefore, regionalized displacement factors, considering region-specific production conditions and substituted products are required when assessing the precise contribution of wood biomass towards the mitigation of environmental impacts. We carried out Life Cycle Assessments of wood heating systems for typical Bavarian conditions and substitute energy carriers with a focus on climate change and particulate matter emissions. In order to showcase regional effects, we created weighted displacement factors for the region of Bavaria, based on installed capacities of individual wood heating systems and the harvested tree species distribution. The study reveals that GHG displacements between -57gCO2-eq.∗MJ(-1) of useful energy through the substitution of natural gas with a 15kW spruce pellets heating system and -165gCO2-eq.∗MJ(-1) through the substitution of power utilized for heating with a modern 6kW beech split log heating system can be achieved. It was shown that the GHG mitigation potentials of wood utilization are overestimated through the common use of light fuel oil as the only reference system. We further propose a methodology for the calculation of displacement factors which is adaptable to other regions worldwide. Based on our approach it is possible to generate displacement factors for wood heating systems which enable accurate decision-making for project planning in households, heating plants, communities and also for entire regions. Copyright © 2016 Elsevier B.V. All rights reserved.
Correlation of Particle-Induced Displacement Damage in Silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Burke, E. A.; Dale, C. J.; Wolicki, E. A.; Marshall, P. W.; Gehlhausen, M. A.
1987-12-01
Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.
Parental Displacement and Adolescent Suicidality: Exploring the Role of Failed Belonging
ERIC Educational Resources Information Center
Timmons, Katherine A.; Selby, Edward A.; Lewinsohn, Peter M.; Joiner, Thomas E.
2011-01-01
Prior studies have demonstrated that events causing displacement from parents--such as parental death, abandonment of the adolescent, or divorce--represent a risk factor for adolescent suicide, but research to date has not established a theoretical model explaining the association between parental displacement and adolescent suicidal behavior. The…
Inexpensive Device for Demonstrating Rock Slope Failure and Other Collapse Phenomena.
ERIC Educational Resources Information Center
Stimpson, B.
1980-01-01
Describes an inexpensive modeling technique for demonstrating large-scale displacement phenomena in rock masses, such as slope collapse and failure of underground openings. Excavation of the model material occurs through openings made in the polyurethane foam in the correct excavation sequence. (Author/SA)
On a 3-D singularity element for computation of combined mode stress intensities
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Kathiresan, K.
1976-01-01
A special three-dimensional singularity element is developed for the computation of combined modes 1, 2, and 3 stress intensity factors, which vary along an arbitrarily curved crack front in three dimensional linear elastic fracture problems. The finite element method is based on a displacement-hybrid finite element model, based on a modified variational principle of potential energy, with arbitrary element interior displacements, interelement boundary displacements, and element boundary tractions as variables. The special crack-front element used in this analysis contains the square root singularity in strains and stresses, where the stress-intensity factors K(1), K(2), and K(3) are quadratically variable along the crack front and are solved directly along with the unknown nodal displacements.
Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry
NASA Astrophysics Data System (ADS)
Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis
2015-08-01
In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.
Adaptation to Laterally Displacing Prisms in Anisometropic Amblyopia.
Sklar, Jaime C; Goltz, Herbert C; Gane, Luke; Wong, Agnes M F
2015-06-01
Using visual feedback to modify sensorimotor output in response to changes in the external environment is essential for daily function. Prism adaptation is a well-established experimental paradigm to quantify sensorimotor adaptation; that is, how the sensorimotor system adapts to an optically-altered visuospatial environment. Amblyopia is a neurodevelopmental disorder characterized by spatiotemporal deficits in vision that impacts manual and oculomotor function. This study explored the effects of anisometropic amblyopia on prism adaptation. Eight participants with anisometropic amblyopia and 11 visually-normal adults, all right-handed, were tested. Participants pointed to visual targets and were presented with feedback of hand position near the terminus of limb movement in three blocks: baseline, adaptation, and deadaptation. Adaptation was induced by viewing with binocular 11.4° (20 prism diopter [PD]) left-shifting prisms. All tasks were performed during binocular viewing. Participants with anisometropic amblyopia required significantly more trials (i.e., increased time constant) to adapt to prismatic optical displacement than visually-normal controls. During the rapid error correction phase of adaptation, people with anisometropic amblyopia also exhibited greater variance in motor output than visually-normal controls. Amblyopia impacts on the ability to adapt the sensorimotor system to an optically-displaced visual environment. The increased time constant and greater variance in motor output during the rapid error correction phase of adaptation may indicate deficits in processing of visual information as a result of degraded spatiotemporal vision in amblyopia.
Impact of seasonal and postglacial surface displacement on global reference frames
NASA Astrophysics Data System (ADS)
Krásná, Hana; Böhm, Johannes; King, Matt; Memin, Anthony; Shabala, Stanislav; Watson, Christopher
2014-05-01
The calculation of actual station positions requires several corrections which are partly recommended by the International Earth Rotation and Reference Systems Service (IERS) Conventions (e.g., solid Earth tides and ocean tidal loading) as well as other corrections, e.g. accounting for hydrology and atmospheric loading. To investigate the pattern of omitted non-linear seasonal motion we estimated empirical harmonic models for selected stations within a global solution of suitable Very Long Baseline Interferometry (VLBI) sessions as well as mean annual models by stacking yearly time series of station positions. To validate these models we compare them to displacement series obtained from the Gravity Recovery and Climate Experiment (GRACE) data and to hydrology corrections determined from global models. Furthermore, we assess the impact of the seasonal station motions on the celestial reference frame as well as on Earth orientation parameters derived from real and also artificial VLBI observations. In the second part of the presentation we apply vertical rates of the ICE-5G_VM2_2012 vertical land movement grid on vertical station velocities. We assess the impact of postglacial uplift on the variability in the scale given different sampling of the postglacial signal in time and hence on the uncertainty in the scale rate of the estimated terrestrial reference frame.
Matsumoto, Takumi; Gross, Christopher E; Parekh, Selene G
2018-03-01
Distal Chevron osteotomy is a well-established surgical procedure for mild to moderate hallux valgus deformity. Many methods have been described for fixation of osteotomy site; secure fixation, enabling large displacement of the metatarsal head, is one of the essentials of this procedure. The purpose of the present study was to evaluate the short-term radiographic outcome of a distal Chevron osteotomy using an intramedullary plate for the correction of hallux valgus deformity. The present study evaluated 37 patients (40 feet) who underwent distal Chevron osteotomy using an intramedullary plate by periodic radiographs obtained preoperatively and at 4 weeks, 8 weeks, 3 months, and 6 months postoperatively. Correction of the hallux valgus angle averaged 17.8°, intermetatarsal angle 7.4°, distal metatarsal articular angle 2.7°, and sesamoid position 1.4 stages at 3 months postoperatively. The average lateral shift of the capital fragment was 6.5 mm. All patients achieved bone union, and there were no cases of dislocation, displacement, or avascular necrosis of the metatarsal head fragment. In conclusion, a distal Chevron osteotomy using an intramedullary plate was a favorable method for the correction of mild to moderate hallux valgus deformity. Level IV: Case series.
Photochemical Acceleration of DNA Strand Displacement by Using Ultrafast DNA Photo-crosslinking.
Nakamura, Shigetaka; Hashimoto, Hirokazu; Kobayashi, Satoshi; Fujimoto, Kenzo
2017-10-18
DNA strand displacement is an essential reaction in genetic recombination, biological processes, and DNA nanotechnology. In particular, various DNA nanodevices enable complicated calculations. However, it takes time before the output is obtained, so acceleration of DNA strand displacement is required for a rapid-response DNA nanodevice. Herein, DNA strand displacement by using DNA photo-crosslinking to accelerate this displacement is evaluated. The DNA photo-crosslinking of 3-cyanovinylcarbazole ( CNV K) was accelerated at least 20 times, showing a faster DNA strand displacement. The rate of photo-crosslinking is a key factor and the rate of DNA strand displacement is accelerated through ultrafast photo-crosslinking. The rate of DNA strand displacement was regulated by photoirradiation energy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; E Carson, Richard
2017-06-01
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Ren, Silin; Jin, Xiao; Chan, Chung; Jian, Yiqiang; Mulnix, Tim; Liu, Chi; Carson, Richard E
2017-06-21
Data-driven respiratory gating techniques were developed to correct for respiratory motion in PET studies, without the help of external motion tracking systems. Due to the greatly increased image noise in gated reconstructions, it is desirable to develop a data-driven event-by-event respiratory motion correction method. In this study, using the Centroid-of-distribution (COD) algorithm, we established a data-driven event-by-event respiratory motion correction technique using TOF PET list-mode data, and investigated its performance by comparing with an external system-based correction method. Ten human scans with the pancreatic β-cell tracer 18 F-FP-(+)-DTBZ were employed. Data-driven respiratory motions in superior-inferior (SI) and anterior-posterior (AP) directions were first determined by computing the centroid of all radioactive events during each short time frame with further processing. The Anzai belt system was employed to record respiratory motion in all studies. COD traces in both SI and AP directions were first compared with Anzai traces by computing the Pearson correlation coefficients. Then, respiratory gated reconstructions based on either COD or Anzai traces were performed to evaluate their relative performance in capturing respiratory motion. Finally, based on correlations of displacements of organ locations in all directions and COD information, continuous 3D internal organ motion in SI and AP directions was calculated based on COD traces to guide event-by-event respiratory motion correction in the MOLAR reconstruction framework. Continuous respiratory correction results based on COD were compared with that based on Anzai, and without motion correction. Data-driven COD traces showed a good correlation with Anzai in both SI and AP directions for the majority of studies, with correlation coefficients ranging from 63% to 89%. Based on the determined respiratory displacements of pancreas between end-expiration and end-inspiration from gated reconstructions, there was no significant difference between COD-based and Anzai-based methods. Finally, data-driven COD-based event-by-event respiratory motion correction yielded comparable results to that based on Anzai respiratory traces, in terms of contrast recovery and reduced motion-induced blur. Data-driven event-by-event respiratory motion correction using COD showed significant image quality improvement compared with reconstructions with no motion correction, and gave comparable results to the Anzai-based method.
Error Correction for the JLEIC Ion Collider Ring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, Guohui; Morozov, Vasiliy; Lin, Fanglei
2016-05-01
The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, andmore » chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.« less
Wang, Chen; Xu, Gui-Jun; Han, Zhe; Jiang, Xuan; Zhang, Cheng-Bao; Dong, Qiang; Ma, Jian-Xiong; Ma, Xin-Long
2015-11-01
The aim of the study was to introduce a new method for measuring the residual displacement of the femoral head after internal fixation and explore the relationship between residual displacement and osteonecrosis with femoral head, and to evaluate the risk factors associated with osteonecrosis of the femoral head in patients with femoral neck fractures treated by closed reduction and percutaneous cannulated screw fixation.One hundred and fifty patients who sustained intracapsular femoral neck fractures between January 2011 and April 2013 were enrolled in the study. All were treated with closed reduction and percutaneous cannulated screw internal fixation. The residual displacement of the femoral head after surgery was measured by 3-dimensional reconstruction that evaluated the quality of the reduction. Other data that might affect prognosis were also obtained from outpatient follow-up, telephone calls, or case reviews. Multivariate logistic regression analysis was applied to assess the intrinsic relationship between the risk factors and the osteonecrosis of the femoral head.Osteonecrosis of the femoral head occurred in 27 patients (18%). Significant differences were observed regarding the residual displacement of the femoral head and the preoperative Garden classification. Moreover, we found more or less residual displacement of femoral head in all patients with high quality of reduction based on x-ray by the new technique. There was a close relationship between residual displacement and ONFH.There exists limitation to evaluate the quality of reduction by x-ray. Three-dimensional reconstruction and digital measurement, as a new method, is a more accurate method to assess the quality of reduction. Residual displacement of the femoral head and the preoperative Garden classification were risk factors for osteonecrosis of the femoral head. High-quality reduction was necessary to avoid complications.
Three-dimensional finite-element analysis of chevron-notched fracture specimens
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.
Ocean bottom pressure observations near the source of the 2011 Tohoku earthquake
NASA Astrophysics Data System (ADS)
Inazu, D.; Hino, R.; Suzuki, S.; Osada, Y.; Ohta, Y.; Iinuma, T.; Tsushima, H.; Ito, Y.; Kido, M.; Fujimoto, H.
2011-12-01
A Mw9.0 earthquake occurred off Miyagi, northeast Japan, on 11 March 2011 (hereafter mainshock). An earthquake of M7.3, considered to be the largest foreshock of the mainshock, occurred on 9 March 2011 near the mainshock hypocenter. A suite of seismic and geodetic variations related to these earthquakes was observed by autonomous, ocean bottom pressure (OBP) gauges at multiple sites (4 sites at present) near the sources within a distance of about 100 km. This paper presents the OBP records with a focus on the earthquakes. Thanks to correcting tides, instrumental drifts, and non-tidal oceanic variations, we can detect OBP signals of tsunamis and vertical seafloor deformation of the order of centimeters with timescales of less than months. In the following we review the detected signals and how to correct the OBP data. The coseismic seafloor displacement and the tsunami accompanied by the mainshock were of the order of meters and large enough to be distinctly identified (Ito et al., 2011, GRL). Co- and post-seismic seafloor displacement and tsunami accompanied by the foreshock were of the order of centimeters which is difficult to be identified from the raw OBP records. The first evident pulses of these tsunamis in the deep sea have durations (periods) of ~20 minutes and ~10 minutes, for the mainshock and the foreshock, respectively. Amounts of seafloor vertical displacement due to post-mainshock deformation reached a few tens of centimeters in two months. It is worth noting that elevation and depression of seafloor were detected at rates of a couple of centimeters in a day after the largest foreshock. The seafloor displacement of centimeters between the largest foreshock and the mainshock can be reasonably identified after correcting non-tidal oceanic variations. The oceanic variations are simulated by a barotropic ocean model driven by atmospheric disturbances (Inazu et al., 2011, Ann. Rep. Earth Simulator Center 2011). The model enables residual OBP time series of non-tidal oceanic variations off Miyagi to be reduced by less than 2 cm. In order to accurately detect signals of centimeters, detiding had better be carefully done analyzing in-situ data rather than using existing ocean tide models such as NAO.99Jb and FES2004. A BAYTAP-G program was used in the present study. Instrumental drifts are modeled by a popularly used, linear and exponential form (Watts and Kontoyiannis, 1990, J. Atmos. Oceanic Tech.). Seismological interpretations of the detected OBP signals of the seafloor displacement and the tsunamis will be demonstrated in the separate papers presented in this meeting.
NASA Astrophysics Data System (ADS)
Zimakov, L. G.; Raczka, J.; Barrientos, S. E.
2016-12-01
We will discuss and show the results obtained from an integrated SeismoGeodetic System, model SG160-09, installed in the Chile (Chilean National Network), Italy (University of Naples Network), and California. The SG160-09 provides the user high rate GNSS and accelerometer data, full epoch-by-epoch measurement integrity and the ability to create combined GNSS and accelerometer high-rate (200Hz) displacement time series in real-time. The SG160-09 combines seismic recording with GNSS geodetic measurement in a single compact, ruggedized case. The system includes a low-power, 220-channel GNSS receiver powered by the latest Trimble-precise Maxwell™6 technology and supports tracking GPS, GLONASS and Galileo signals. The receiver incorporates on-board GNSS point positioning using Real-Time Precise Point Positioning (PPP) technology with satellite clock and orbit corrections delivered over IP networks. The seismic recording includes an ANSS Class A, force balance accelerometer with the latest, low power, 24-bit A/D converter, producing high-resolution seismic data. The SG160-09 processor acquires and packetizes both seismic and geodetic data and transmits it to the central station using an advanced, error-correction protocol providing data integrity between the field and the processing center. The SG160-09 has been installed in three seismic stations in different geographic locations with different Trimble global reference stations coverage The hardware includes the SG160-09 system, external Zephyr Geodetic-2 GNSS antenna, both radio and high-speed Internet communication media. Both acceleration and displacement data was transmitted in real-time to the centralized Data Acquisition Centers for real-time data processing. Command/Control of the field station and real-time GNSS position correction are provided via the Pivot platform. Data from the SG160-09 system was used for seismic event characterization along with data from traditional seismic and geodetic stations installed in the network. Our presentation will focus on the key improvements of the network installation with the SG160-09 system, RTX correction accuracy obtained from Trimble Global RTX tracking network, rapid data transmission, and real-time data processing for strong seismic events and aftershock characterization.
Local collective motion analysis for multi-probe dynamic imaging and microrheology
NASA Astrophysics Data System (ADS)
Khan, Manas; Mason, Thomas G.
2016-08-01
Dynamical artifacts, such as mechanical drift, advection, and hydrodynamic flow, can adversely affect multi-probe dynamic imaging and passive particle-tracking microrheology experiments. Alternatively, active driving by molecular motors can cause interesting non-Brownian motion of probes in local regions. Existing drift-correction techniques, which require large ensembles of probes or fast temporal sampling, are inadequate for handling complex spatio-temporal drifts and non-Brownian motion of localized domains containing relatively few probes. Here, we report an analytical method based on local collective motion (LCM) analysis of as few as two probes for detecting the presence of non-Brownian motion and for accurately eliminating it to reveal the underlying Brownian motion. By calculating an ensemble-average, time-dependent, LCM mean square displacement (MSD) of two or more localized probes and comparing this MSD to constituent single-probe MSDs, we can identify temporal regimes during which either thermal or athermal motion dominates. Single-probe motion, when referenced relative to the moving frame attached to the multi-probe LCM trajectory, provides a true Brownian MSD after scaling by an appropriate correction factor that depends on the number of probes used in LCM analysis. We show that LCM analysis can be used to correct many different dynamical artifacts, including spatially varying drifts, gradient flows, cell motion, time-dependent drift, and temporally varying oscillatory advection, thereby offering a significant improvement over existing approaches.
Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.
Scrimgeour, Jan; Curtis, Jennifer E
2012-06-18
We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.
Displaced Older Adults' Reactions to and Coping with the Aftermath of Hurricane Katrina
ERIC Educational Resources Information Center
Kamo, Yoshinori; Henderson, Tammy L.; Roberto, Karen A.
2011-01-01
Guided by an ecological perspective, the authors examined event, individual, structural/cultural, and family/community factors that shaped the psychological well-being of older adults displaced from New Orleans by Hurricane Katrina. The authors first established the negative effects of displacement on psychological well-being by comparing…
Learned Helplessness: A Factor in Counseling for Displaced Homemakers.
ERIC Educational Resources Information Center
Wood, Carolyn J.
1989-01-01
Describes learned helplessness and its effect on ability of displaced homemakers to enter or reenter the work force successfully. Suggests that success in making transition from homemaker to worker may depend on attributions women provide for their failed or ended marriages. Discusses ways in which counselors may assist displaced homemakers in…
NASA Technical Reports Server (NTRS)
Baird, R. A.
1994-01-01
1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The sensitivity and response dynamics of selected hair cells to natural stimulation were examined by recording their voltage responses to step and sinusoidal hair bundle displacements applied to their longest stereocilia. 2. The voltage responses of 31 hair cells to sinusoidal hair bundle displacements were characterized by their gains and phases, taken with respect to peak hair bundle displacement. The gains of Type B and Type C cells at both 0.5 and 5.0 Hz were markedly lower than those of Type F and Type E cells. Phases, with the exception of Type C cells, lagged hair bundle displacement at 0.5 Hz. Type C cells had phase leads of 25-40 degrees. At 5.0 Hz, response phases in all cells were phase lagged with respect to those at 0.5 Hz. Type C cells had larger gains and smaller phase leads at 5.0 Hz than at 0.5 Hz, suggesting the presence of low-frequency adaptation. 3. Displacement-response curves, derived from the voltage responses to 5.0-Hz sinusoids, were sigmoidal in shape and asymmetrical, with the depolarizing response having a greater magnitude and saturating less abruptly than the hyperpolarizing response. When normalized to their largest displacement the linear ranges of these curves varied from < 0.5 to 1.25 microns and were largest in Type B and smallest in Type F and Type E cells. Sensitivity, defined as the slope of the normalized displacement-response curve, was inversely correlated with linear range. 4. The contribution of geometric factors associated with the hair bundle to linear range and sensitivity were predicted from realistic models of utricular hair bundles created using morphological data obtained from light and electron microscopy. Three factors, including 1) the inverse ratio of the lengths of the kinocilium and longest stereocilia, representing the lever arm between kinociliary and stereociliary displacement; 2) tip link extension/linear displacement, largely a function of stereociliary height and separation; and 3) stereociliary number, an estimate of the number of transduction channels, were considered in this analysis. The first of these factors was quantitatively more important than the latter two factors and their total contribution was largest in Type B and Type C cells. Theoretical models were also used to calculate the relation between rotary and linear displacement.(ABSTRACT TRUNCATED AT 400 WORDS).
Reisen, Carol A.; Bianchi, Fernanda T.; Gonzales, Felisa A.; Betancourt, Fabián; Aguilar, Marcela; Poppen, Paul J.
2013-01-01
Colombia has endured six decades of civil unrest, population displacement, and violence. We examined the relationships of contextual conditions, displacement, and HIV among gay, bisexual, and transgender individuals in Bogotá, Colombia. Nineteen key informants provided information about internal displacement of sexual minorities. Life history interviews were conducted with 42 participants aged 18 to 48 years, and included questions about displacement experiences, sexual behaviour, life prior to displacement, and participants’ economic and social situation in Bogotá. The interplay of a variety of factors—including internal conflict and violence, homonegativity and “social cleansing,” gender and sexual identity, and poverty—strongly shaped the varied experiences of displacement. Migration, sexual violence, exchange sex, and low rates of HIV testing were risk factors that increased vulnerability for HIV in this displaced sample. Although displacement and HIV in Colombia are major problems, both are understudied. PMID:23586420
49 CFR 24.4 - Assurances, monitoring and corrective action.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Section 24.4 Transportation Office of the Secretary of Transportation UNIFORM RELOCATION ASSISTANCE AND... Uniform Act, the State Agency must provide appropriate assurances that it will comply with the Uniform Act and this part. A displacing Agency's assurances shall be in accordance with section 210 of the Uniform...
Finite Element Analysis of Free-Edge Delamination in Laminated Composite Specimens
1991-06-18
for the degree of Doctor of Philosophy at the Ohio State University. Revision by H. R. Chu corrected some errors and added further studies on...Galerkin’s approach, in which interlaminar stresses and displacements of each layer satisfying geometrica ’ boundary conditions were represented as -series
46 CFR 38.10-1 - Valves, fittings, and accessories-TB/ALL.
Code of Federal Regulations, 2012 CFR
2012-10-01
... outlet connection or the quick-closing valve, even in the event of abnormal displacement of the piping.... Tables shall be readily available for direct determination of volume of liquid in the tanks, with necessary corrections for trim, temperature, and density. (2) An independent high level alarm shall be...
46 CFR 38.10-1 - Valves, fittings, and accessories-TB/ALL.
Code of Federal Regulations, 2014 CFR
2014-10-01
... outlet connection or the quick-closing valve, even in the event of abnormal displacement of the piping.... Tables shall be readily available for direct determination of volume of liquid in the tanks, with necessary corrections for trim, temperature, and density. (2) An independent high level alarm shall be...
46 CFR 38.10-1 - Valves, fittings, and accessories-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... outlet connection or the quick-closing valve, even in the event of abnormal displacement of the piping.... Tables shall be readily available for direct determination of volume of liquid in the tanks, with necessary corrections for trim, temperature, and density. (2) An independent high level alarm shall be...
46 CFR 38.10-1 - Valves, fittings, and accessories-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... outlet connection or the quick-closing valve, even in the event of abnormal displacement of the piping.... Tables shall be readily available for direct determination of volume of liquid in the tanks, with necessary corrections for trim, temperature, and density. (2) An independent high level alarm shall be...
46 CFR 38.10-1 - Valves, fittings, and accessories-TB/ALL.
Code of Federal Regulations, 2013 CFR
2013-10-01
... outlet connection or the quick-closing valve, even in the event of abnormal displacement of the piping.... Tables shall be readily available for direct determination of volume of liquid in the tanks, with necessary corrections for trim, temperature, and density. (2) An independent high level alarm shall be...
Elfving, Lars; Helkimo, Martti; Magnusson, Tomas
2002-01-01
Temporomandibular joint (TMJ) sounds are very common among patients with temporomandibular disorders (TMD), but also in non-patient populations. A variety of different causes to TMJ-sounds have been suggested e.g. arthrotic changes in the TMJs, anatomical variations, muscular incoordination and disc displacement. In the present investigation, the prevalence and type of different joint sounds were registered in 125 consecutive patients with suspected TMD and in 125 matched controls. Some kind of joint sound was recorded in 56% of the TMD patients and in 36% of the controls. The awareness of joint sounds was higher among TMD patients as compared to controls (88% and 60% respectively). The most common sound recorded in both groups was reciprocal clickings indicative of a disc displacement, while not one single case fulfilling the criteria for clicking due to a muscular incoordination was found. In the TMD group women with disc displacement reported sleeping on the stomach significantly more often than women without disc displacement did. An increased general joint laxity was found in 39% of the TMD patients with disc displacement, while this was found in only 9% of the patients with disc displacement in the control group. To conclude, disc displacement is probably the most common cause to TMJ sounds, while the existence of TMJ sounds due to a muscular incoordination can be questioned. Furthermore, sleeping on the stomach might be associated with disc displacement, while general joint laxity is probably not a causative factor, but a seeking care factor in patients with disc displacement.
Uncertainty characterization of particle location from refocused plenoptic images.
Hall, Elise M; Guildenbecher, Daniel R; Thurow, Brian S
2017-09-04
Plenoptic imaging is a 3D imaging technique that has been applied for quantification of 3D particle locations and sizes. This work experimentally evaluates the accuracy and precision of such measurements by investigating a static particle field translated to known displacements. Measured 3D displacement values are determined from sharpness metrics applied to volumetric representations of the particle field created using refocused plenoptic images, corrected using a recently developed calibration technique. Comparison of measured and known displacements for many thousands of particles allows for evaluation of measurement uncertainty. Mean displacement error, as a measure of accuracy, is shown to agree with predicted spatial resolution over the entire measurement domain, indicating robustness of the calibration methods. On the other hand, variation in the error, as a measure of precision, fluctuates as a function of particle depth in the optical direction. Error shows the smallest variation within the predicted depth of field of the plenoptic camera, with a gradual increase outside this range. The quantitative uncertainty values provided here can guide future measurement optimization and will serve as useful metrics for design of improved processing algorithms.
NASA Technical Reports Server (NTRS)
Schredder, J. M.
1988-01-01
A comparative analysis was performed, using both the Geometrical Theory of Diffraction (GTD) and traditional pathlength error analysis techniques, for predicting RF antenna gain performance and pointing corrections. The NASA/JPL 70 meter antenna with its shaped surface was analyzed for gravity loading over the range of elevation angles. Also analyzed were the effects of lateral and axial displacements of the subreflector. Significant differences were noted between the predictions of the two methods, in the effect of subreflector displacements, and in the optimal subreflector positions to focus a gravity-deformed main reflector. The results are of relevance to future design procedure.
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
Sammartino, G; Riccitiello, F; Trosino, O; Marenzi, G; Cioffi, A; Mortellaro, C
2012-05-01
The root displacement into the maxillary sinus could be a complication of oral surgery in the upper jaw. In these cases, the root removal is needed in order to avoid the occurrence of sinus pathologies. Piezosurgery techniques could assure a safer management of such complications, because of the clear surgical visibility and the selective ability of cut. The aim of this article is to present a case of oral surgery complication (root displacement in the right maxillary sinus), in which piezosurgery technique helped for a correct and safe clinical management, allowing to reduce the soft tissue damage.
Konrade, Kricket A; Clode, Alison B; Michau, Tammy M; Roe, Simon C; Trumpatori, Brian J; Krug, William V; Gilger, Brian C
2009-01-01
A grossly displaced segmental zygomatic arch fracture with marked ventro-lateral deviation of the left globe was diagnosed in a 3-month-old male German Shepherd dog following a bite injury. The fracture was approached via a modified lateral orbitotomy and a fragment of the lacrimal bone removed. The rostral portion of the fracture was stabilized with a 5-hole 2.0 dynamic compression plate bone plate. The surgical correction achieved sufficient skeletal fixation for proper anatomical reduction of the globe and excellent cosmetic and functional outcomes.
Gilbert, Andy B; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L; Chien, Hua-Hong
2015-01-01
Clinicians need to know whether there are any differences among the many abutment options available for restoring a particular implant. This study aims to compare nine abutments for one implant system for positional changes between hand tightening and torqueing. Nine Tapered Screw-Vent (TSV) implants were placed into a resin block. Five specimens of nine different abutments (n = 45) were tried in one of the nine implants. Initially, the abutments were torqued to 20 Ncm to represent hand tightening. Abutments were tightened to 30 Ncm using a torque driver as recommended by the manufacturer for final seating. Images were recorded in 12-second intervals for approximately 10 minutes after the torque was applied. The spatial relationship of the abutments to the resin block was determined using three-dimensional digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the nine different abutments were calculated in all three dimensions and for overall displacement in space. A t test with a step-down Bonferroni correction was used for a pairwise comparison of each abutment's mean displacements to the other abutments to determine statistical differences (α = .05). The Atlantis titanium, Inclusive titanium, and Legacy zirconia abutments showed mean displacements that were statistically significantly higher than other abutments in the horizontal direction. The overall three-dimensional displacement of the Atlantis titanium abutment after an applied 30-Ncm torque was significantly higher than that of six of the other eight abutments (P < .0144). Within the limitations of this in vitro study, the Zimmer PSA demonstrated less displacement between hand tightening and torqueing than the Atlantis titanium or Inclusive titanium abutments when used to restore a TSV implant.
Sentinel-1 TOPS interferometry for along-track displacement measurement
NASA Astrophysics Data System (ADS)
Jiang, H. J.; Pei, Y. Y.; Li, J.
2017-02-01
The European Space Agency’s Sentinel-1 mission, a constellation of two C-band synthetic aperture radar (SAR) satellites, utilizes terrain observation by progressive scan (TOPS) antenna beam steering as its default operation mode to achieve wide-swath coverage and short revisit time. The beam steering during the TOPS acquisition provides a means to measure azimuth motion by using the phase difference between forward and backward looking interferograms within regions of burst overlap. Hence, there are two spectral diversity techniques for along-track displacement measurement, including multi-aperture interferometry (MAI) and “burst overlap interferometry”. This paper analyses the measurement accuracies of MAI and burst overlap interferometry. Due to large spectral separation in the overlap region, burst overlap interferometry is a more sensitive measurement. We present a TOPS interferometry approach for along-track displacement measurement. The phase bias caused by azimuth miscoregistration is first estimated by burst overlap interferometry over stationary regions. After correcting the coregistration error, the MAI phase and the interferometric phase difference between burst overlaps are recalculated to obtain along-track displacements. We test the approach with Sentinel-1 TOPS interferometric data over the 2015 Mw 7.8 Nepal earthquake fault. The results prove the feasibility of our approach and show the potential of joint estimation of along-track displacement with burst overlap interferometry and MAI.
NASA Technical Reports Server (NTRS)
Bautista, Abigail B.
1994-01-01
Twenty-four observers looked through a pair of 20 diopter wedge prisms and pointed to an image of a target which was displaced vertically from eye level by 6 cm at a distance of 30 cm. Observers pointed 40 times, using only their right hand, and received error-corrective feedback upon termination of each pointing response (terminal visual feedback). At three testing distances, 20, 30, and 40 cm, ten pre-exposure and ten post-exposure pointing responses were recorded for each hand as observers reached to a mirror-viewed target located at eye level. The difference between pre- and post-exposure pointing response (adaptive shift) was compared for both Exposed and Unexposed hands across all three testing distances. The data were assessed according to the results predicted by two alternative models for processing spatial-information: one using angular displacement information and another using linear displacement information. The angular model of spatial mapping best predicted the observer's pointing response for the Exposed hand. Although the angular adaptive shift did not change significantly as a function of distance (F(2,44) = 1.12, n.s.), the linear adaptive shift increased significantly over the three testing distances 02 44) = 4.90 p less than 0.01).
Displacement as a predictor of functional impairment in tsunami-exposed children.
Lee, Christopher; Du, Ye Beverly; Christina, Desy; Palfrey, Judith; O'Rourke, Edward; Belfer, Myron
2015-01-01
Thirty months after the Indian Ocean tsunami of 26 December 2004, thousands of families in Aceh Province, Indonesia, remained in temporary barracks while sanitation conditions and non-governmental organisation support deteriorated. This study sought to determine the factors associated with functional impairment in a sample of 138 displaced and non-displaced Acehnese children. Using multivariate linear regression models, it was found that displacement distance was a consistent predictor of impairment using the Brief Impairment Scale. Exposure to tsunami-related trauma markers was not significantly linked with impairment in the model. Paternal employment was a consistent protective factor for child functioning. These findings suggest that post-disaster displacement and the subsequent familial economic disruption are significant predictors of impaired functioning in children's daily activities. Post-disaster interventions should consider the disruption of familiar environments for families and children when relocating vulnerable populations to avoid deleterious impacts on children's functioning. © 2014 The Author(s). Disasters © Overseas Development Institute, 2014.
MR-guided adaptive focusing of therapeutic ultrasound beams in the human head
Marsac, Laurent; Chauvet, Dorian; Larrat, Benoît; Pernot, Mathieu; Robert, B.; Fink, Mathias; Boch, Anne-Laure; Aubry, Jean-François; Tanter, Mickaël
2012-01-01
Purpose This study aims to demonstrate, using human cadavers the feasibility of energy-based adaptive focusing of ultrasonic waves using Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) in the framework of non-invasive transcranial High Intensity Focused Ultrasound (HIFU) therapy. Methods Energy-based adaptive focusing techniques were recently proposed in order to achieve aberration correction. We evaluate this method on a clinical brain HIFU system composed of 512 ultrasonic elements positioned inside a full body 1.5 T clinical Magnetic Resonance (MR) imaging system. Cadaver heads were mounted onto a clinical Leksell stereotactic frame. The ultrasonic wave intensity at the chosen location was indirectly estimated by the MR system measuring the local tissue displacement induced by the acoustic radiation force of the ultrasound (US) beams. For aberration correction, a set of spatially encoded ultrasonic waves was transmitted from the ultrasonic array and the resulting local displacements were estimated with the MR-ARFI sequence for each emitted beam. A non-iterative inversion process was then performed in order to estimate the spatial phase aberrations induced by the cadaver skull. The procedure was first evaluated and optimized in a calf brain using a numerical aberrator mimicking human skull aberrations. The full method was then demonstrated using a fresh human cadaver head. Results The corrected beam resulting from the direct inversion process was found to focus at the targeted location with an acoustic intensity 2.2 times higher than the conventional non corrected beam. In addition, this corrected beam was found to give an acoustic intensity 1.5 times higher than the focusing pattern obtained with an aberration correction using transcranial acoustic simulation based on X-ray computed tomography (CT) scans. Conclusion The proposed technique achieved near optimal focusing in an intact human head for the first time. These findings confirm the strong potential of energy-based adaptive focusing of transcranial ultrasonic beams for clinical applications. PMID:22320825
Thomas, Diala; Bachy, Manon; Courvoisier, Aurélien; Dubory, Arnaud; Bouloussa, Houssam; Vialle, Raphaël
2015-03-01
Spinopelvic alignment is crucial in assessing an energy-efficient posture in both normal and disease states, such as high-displacement developmental spondylolisthesis (HDDS). The overall effect in patients with HDDS who have undergone local surgical correction of lumbosacral imbalance for the global correction of spinal balance remains unclear. This paper reports the progressive spontaneous improvement of global sagittal balance following surgical correction of lumbosacral imbalance in patients with HDDS. The records of 15 patients with HDDS who underwent surgery between 2005 and 2010 were reviewed. The treatment consisted of L4-sacrum reduction and fusion via a posterior approach, resulting in complete correction of lumbosacral kyphosis. Preoperative, 6-month postoperative, and final follow-up postoperative angular measurements were taken from full-spine lateral radiographs obtained with the patient in a standard standing position. Radiographic measurements included pelvic incidence, sacral slope, lumbar lordosis, and thoracic kyphosis. The degree of lumbosacral kyphosis was evaluated by the lumbosacral angle. Because of the small number of patients, nonparametric tests were considered for data analysis. Preoperative lumbosacral kyphosis and L-5 anterior slip were corrected by instrumentation. Transient neurological complications were noted in 5 patients. Statistical analysis showed a significant increase of thoracic kyphosis on 6-month postoperative and final follow-up radiographs (p < 0.001). A statistically significant decrease of lumbar lordosis was noted between preoperative and 6-month control radiographs (p < 0.001) and between preoperative and final follow-up radiographs (p < 0.001). Based on the authors' observations, this technique resulted in an effective reduction of L-5 anterior slip and significant reduction of lumbosacral kyphosis (from 69.8° to 105.13°). Due to complete reduction of lumbosacral kyphosis and anterior trunk displacement associated with L-5 anterior slipping, lumbar lordosis progressively decreased and thoracic kyphosis progressively increased postoperatively. Adjusting the sagittal trunk balance produced not only pelvic anteversion, but also reciprocal adjustment of lumbar lordosis and thoracic kyphosis, creating a satisfactory level of compensated global sagittal balance.
Efstratiadis, Stella; Baumrind, Sheldon; Shofer, Frances; Jacobsson-Hunt, Ulla; Laster, Larry; Ghafari, Joseph
2005-11-01
The aims of this study were (1) to evaluate cephalometric changes in subjects with Class II Division 1 malocclusion who were treated with headgear (HG) or Fränkel function regulator (FR) and (2) to compare findings from regional superpositions of cephalometric structures with those from conventional cephalometric measurements. Cephalographs were taken at baseline, after 1 year, and after 2 years of 65 children enrolled in a prospective randomized clinical trial. The spatial location of the landmarks derived from regional superpositions was evaluated in a coordinate system oriented on natural head position. The superpositions included the best anatomic fit of the anterior cranial base, maxillary base, and mandibular structures. Both the HG and the FR were effective in correcting the distoclusion, and they generated enhanced differential growth between the jaws. Differences between cranial and maxillary superpositions regarding mandibular displacement (Point B, pogonion, gnathion, menton) were noted: the HG had a more horizontal vector on maxillary superposition that was also greater (.0001 < P < .05) than the horizontal displacement observed with the FR. This discrepancy appeared to be related to (1) the clockwise (backward) rotation of the palatal and mandibular planes observed with the HG; the palatal plane's rotation, which was transferred through the occlusion to the mandibular plane, was factored out on maxillary superposition; and (2) the interaction between the inclination of the maxillary incisors and the forward movement of the mandible during growth. Findings from superpositions agreed with conventional angular and linear measurements regarding the basic conclusions for the primary effects of HG and FR. However, the results suggest that inferences of mandibular displacement are more reliable from maxillary than cranial superposition when evaluating occlusal changes during treatment.
Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith
2016-04-01
Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.
Choi, Insub; Kim, JunHee; Kim, Donghyun
2016-12-08
Existing vision-based displacement sensors (VDSs) extract displacement data through changes in the movement of a target that is identified within the image using natural or artificial structure markers. A target-less vision-based displacement sensor (hereafter called "TVDS") is proposed. It can extract displacement data without targets, which then serve as feature points in the image of the structure. The TVDS can extract and track the feature points without the target in the image through image convex hull optimization, which is done to adjust the threshold values and to optimize them so that they can have the same convex hull in every image frame and so that the center of the convex hull is the feature point. In addition, the pixel coordinates of the feature point can be converted to physical coordinates through a scaling factor map calculated based on the distance, angle, and focal length between the camera and target. The accuracy of the proposed scaling factor map was verified through an experiment in which the diameter of a circular marker was estimated. A white-noise excitation test was conducted, and the reliability of the displacement data obtained from the TVDS was analyzed by comparing the displacement data of the structure measured with a laser displacement sensor (LDS). The dynamic characteristics of the structure, such as the mode shape and natural frequency, were extracted using the obtained displacement data, and were compared with the numerical analysis results. TVDS yielded highly reliable displacement data and highly accurate dynamic characteristics, such as the natural frequency and mode shape of the structure. As the proposed TVDS can easily extract the displacement data even without artificial or natural markers, it has the advantage of extracting displacement data from any portion of the structure in the image.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Benyong, E-mail: chenby@zstu.edu.cn; Zhang, Enzheng; Yan, Liping
2014-10-15
Correct return of the measuring beam is essential for laser interferometers to carry out measurement. In the actual situation, because the measured object inevitably rotates or laterally moves, not only the measurement accuracy will decrease, or even the measurement will be impossibly performed. To solve this problem, a novel orthogonal return method for linearly polarized beam based on the Faraday effect is presented. The orthogonal return of incident linearly polarized beam is realized by using a Faraday rotator with the rotational angle of 45°. The optical configuration of the method is designed and analyzed in detail. To verify its practicabilitymore » in polarization interferometry, a laser heterodyne interferometer based on this method was constructed and precision displacement measurement experiments were performed. These results show that the advantage of the method is that the correct return of the incident measuring beam is ensured when large lateral displacement or angular rotation of the measured object occurs and then the implementation of interferometric measurement can be ensured.« less
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
A beam position monitor for the diagnostic line in MEBT2 of J-PARC linac
NASA Astrophysics Data System (ADS)
Miura, A.; Tamura, J.; Kawane, Y.
2017-07-01
In the linac of the Japan Proton Accelerator Research Complex (J-PARC), the neutral hydrogen (H0) beam from the negative hydrogen ion (H-) beam is one of key issues in mitigating beam losses. To diagnose H0 particles, we installed a set of beam-bump magnets to generate a chicane orbit of the H- beam. The beam position monitors (BPMs) in the beam line are used for orbit correction to maintain the beam displacement within 2.0 mm from the duct center. To measure the beam displacement under different drive currents of the beam-bump magnets, a new wide-range BPM was designed and manufactured to evaluate the horizontal beam position by using a correction function to compensate for non-linearity. We also employed the beam profile monitor (WSM: wire scanner monitor) to measure the H- beam profile, which helped us to compare the beam position measurements. In this paper, the design and the performance of the wide-range BPM are described. In addition, we present a comparison of the beam position measured by the BPM and the WSM.
Accuracy evaluation of optical distortion calibration by digital image correlation
NASA Astrophysics Data System (ADS)
Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan
2017-11-01
Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.
Perceptual distortion of intrapersonal and near-personal space sensed by proprioception.
Naito, Eiichi
2002-04-01
It is known that the illusory displacement of a vibrated limb can be transferred to a nonvibrated contacted limb. The purpose of this study was to quantify and compare the transferred illusory displacements occurring in the intrapersonal and near-personal space. In two tasks, 8 male and 8 female blindfolded subjects estimated (1) the height of the left elbow and (2) the height of an external object located at the same height as the left elbow, by the proprioception of the right arm which was Subject to illusory displacement. If the internal representation of the left elbow in one's body schema could provide precise information of its static position independently of the proprioception of the right arm, the perceived displacement of the right arm might be smaller when influenced by proprioceptive information from the static left arm, than when in contrast instead with an object which is not a body part. There was no difference in the estimation of illusory displacement between male and female subjects and between right and left arms. No significant difference was observed between transferred displacements of the left elbow and the object. This means that the perception of limb position sensed by the proprioception of another limb can be distorted as easily as the perception of location of an external object. This suggests that the internal representation of static limb position is not enough to provide the correct information of current limb position in the absence of vision.
[Displaced people's healthcare use in Bucaramanga, Colombia].
Ruiz-Rodríguez, Myriam; López-Moreno, Sergio; Avila-Burgos, Leticia; Acosta-Ramírez, Naydú
2006-01-01
Analysing the factors and barriers associated with the population displaced by armed conflict using medical services in Bucaramanga, Colombia. Data from the "Diagnosing the health of both displaced and non-displaced populations in Bucaramanga and its metropolitan area" study, designed and executed by the Industrial University of Santander and financed by the Pan-American Health Organisation, analysed medical service use in individuals aged over 15 years. This agreed with Andersen and Newman's model and evaluated the effect of associated factors by means of multiple logistical regression. One out of each five people who became ill during the fifteen days prior to the survey had used the medical services. This percentage was smaller than that found in the Colombian population as a whole. The type of social security regime (contributory health insurance), previous service use and being from the region were associated with greater service use. Displaced people having subsidised health insurance did not present differences in service use compared to those who had no access to such insurance. The distance from dwelling to institution was another barrier against using health services (RM = 0.64; IC 0.42-0.97). There was differential medical service use amongst the displaced population, determined by their health insurance coverage and economic position.
NASA Astrophysics Data System (ADS)
Bell, S. W.; Forsyth, D. W.
2013-12-01
Typically there are very high noise levels at long periods on the horizontal components of ocean bottom seismographs due to the turbulent interaction of bottom currents with the seismometer package on the seafloor. When there is a slight tilt of the instrument, some of the horizontal displacement caused by bottom currents leaks onto the vertical component record, which can severely increase the apparent vertical noise. Another major type of noise, compliance noise, is created when pressure variations associated with water (gravity) waves deform the seabed. Compliance noise increases with decreasing water depth, and at water depths of less than a few hundred meters, compliance noise typically obscures most earthquake signals. Following Crawford and Webb (2000), we have developed a methodology for reducing these noise sources by 1-2 orders of magnitude, revealing many events that could not be distinguished before noise reduction. Our methodology relies on transfer functions between different channels. We calculate the compliance noise in the vertical displacement record by applying a transfer function to the differential pressure gauge record. Similarly, we calculate the tilt-induced bottom current noise in the vertical displacement record by applying a transfer function to the horizontal displacement records. Using data from the Cascadia experiment and other experiments, we calculate these transfer functions at a range of stations with varying tilts and water depths. The compliance noise transfer function depends strongly on water depth, and we provide a theoretical and empirical description of this dependence. Tilt noise appears to be very highly correlated with instrument design, with negligible tilt noise observed for the 'abalone' instruments from the Scripps Institute of Oceanography and significant tilt observed for the Woods Hole Oceanographic Institution instruments in the first year deployment of the Cascadia experiment. Tilt orientation appears relatively constant, but we observe significant day-to-day variation in tilt angle, requiring the calculation of a tilt transfer function for each individual day for optimum removal of bottom current noise. In removing the compliance noise, there is some distortion of the signal. We show how to correct for this distortion using theoretical and empirical transfer functions between pressure and displacement records for seismic signals.
Measurement of liquid film in microchannels using a laser focus displacement meter
NASA Astrophysics Data System (ADS)
Hazuku, Tatsuya; Fukamachi, Norihiro; Takamasa, Tomoji; Hibiki, Takashi; Ishii, Mamoru
2005-06-01
This paper presents a new method for measuring the interfacial displacement of a liquid film in microchannels using a laser focus displacement meter (LFD). The purpose of the study is to clarify the effectiveness of the new method for obtaining detailed information concerning interfacial displacement, especially in the case of a thin liquid film, in microchannels and minichannels. To prevent the tube wall signal from disturbing that of the gas liquid interface, a fluorocarbon tube with a water box was used; the refraction index of this device is the same as that for water. With this method, accurate instantaneous measurements of the interfacial displacement of the liquid film were achieved. The error caused by refraction of the laser beam passing through the acrylic water box and fluorocarbon tube was estimated analytically and experimentally. The formulated analytical equation can estimate the real interface displacement by using the measured displacement in a fluorocarbon tube of 25 μm to 2.0 mm I.D. A preliminary test using fluorocarbon tubes of 1 mm and 2 mm I.D. showed that the corrected interface displacement calculated by the equation agreed with the real displacement to within a 1% margin of error. It was also confirmed that the LFD in the system could measure a liquid film of 0.25 μm at the thinnest. We made simultaneous measurements of the interface in fluorocarbon tubes of 0.5 mm and 1 mm I.D. using the LFD and a high-speed video camera with a microscope. These showed that the LFD could measure the interface of a liquid film with high spatial and temporal resolution during annular, slug, and piston flow regimes. The data also clarified the existence of a thin liquid film of less than 1 μm in thickness in the slug and annular flow regimes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dongwoo; Lee, Eonseok; Choi, Young-Man
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accuratemore » as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.« less
NASA Astrophysics Data System (ADS)
Kang, Dongwoo; duk Kim, Young; Lee, Eonseok; Choi, Young-Man; Lee, Taik-Min; Kim, Dongmin
2013-12-01
Interest in the production of printed electronics using a roll-to-roll system has gradually increased due to its low mass-production costs and compatibility with flexible substrate. To improve the accuracy of roll-to-roll manufacturing systems, the movement of the web needs to be measured precisely in advance. In this paper, a novel measurement method is developed to measure the displacement and velocity of the web precisely and directly. The proposed algorithm is based on the traditional single field encoder principle, and the scale grating has been replaced with a printed grating on the web. Because a printed grating cannot be as accurate as a scale grating in a traditional encoder, there will inevitably be variations in pitch and line-width, and the motion of the web should be measured even though there are variations in pitch and line-width in the printed grating patterns. For this reason, the developed algorithm includes a precise method of estimating the variations in pitch. In addtion, a method of correcting the Lissajous curve is presented for precision phase interpolation to improve measurement accuracy by correcting Lissajous circle to unit circle. The performance of the developed method is evaluated by simulation and experiment. In the experiment, the displacement error was less than 2.5 μm and the velocity error of 1σ was about 0.25%, while the grating scale moved 30 mm.
Pillai, Anand; Basappa, Prabhudeva; Ehrendorfer, Stefan
2007-02-01
We describe a modification of the classical Essex-Lopresti manoeuvre for the indirect reduction and stabilisation of displaced intra-articular fractures of the calcaneus. The radiological and functional results achieved using this technique in 15 patients is presented. Ten tongue-shaped and 8 joint depression type fractures were treated by the new method, incorporating the use of an additional traction pin. The pre and postoperative Böhler angles as well as the correction achieved were documented. Functional assessment was carried out using the Maryland Foot Score. The mean pre-operative Böhler angle in the joint depression group was 5.5 degrees, and in the tongue shaped fracture group 5 degrees. The mean postoperative Böhler angle in the joint depression group was 15.8 degrees, and in the tongue shape group was 23.25 degrees. At a mean follow-up of 28 months the joint depression group scored 51/100 on the foot score, and the tongue shaped fracture group 77/100. The mean correction achieved as well as the mean overall functional scores were significantly better in the tongue shaped group. The technique described has much promise in the management of selected displaced intra-articular fractures of the calcaneus (true tongue shaped / Sanders II), and may also have a limited role in other fracture types in patients with significant co-morbidities, soft tissue compromise and poor healing potential.
Correcting bulk in-plane motion artifacts in MRI using the point spread function.
Lin, Wei; Wehrli, Felix W; Song, Hee Kwon
2005-09-01
A technique is proposed for correcting both translational and rotational motion artifacts in magnetic resonance imaging without the need to collect additional navigator data or to perform intensive postprocessing. The method is based on measuring the point spread function (PSF) by attaching one or two point-sized markers to the main imaging object. Following the isolation of a PSF marker from the acquired image, translational motion could be corrected directly from the modulation transfer function, without the need to determine the object's positions during the scan, although the shifts could be extracted if desired. Rotation is detected by analyzing the relative displacements of two such markers. The technique was evaluated with simulations, phantom and in vivo experiments.
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Sano, Yuko; Zhang, Yuhua; Tsuji, Toshio
2015-12-01
This paper describes a new method for calculating chest compression depth and a simple chest-compression gauge for validating the accuracy of the method. The chest-compression gauge has two plates incorporating two magnetic coils, a spring, and an accelerometer. The coils are located at both ends of the spring, and the accelerometer is set on the bottom plate. Waveforms obtained using the magnetic coils (hereafter, "magnetic waveforms"), which are proportional to compression-force waveforms and the acceleration waveforms were measured at the same time. The weight factor expressing the relationship between the second derivatives of the magnetic waveforms and the measured acceleration waveforms was calculated. An estimated-compression-displacement (depth) waveform was obtained by multiplying the weight factor and the magnetic waveforms. Displacements of two large springs (with similar spring constants) within a thorax and displacements of a cardiopulmonary resuscitation training manikin were measured using the gauge to validate the accuracy of the calculated waveform. A laser-displacement detection system was used to compare the real displacement waveform and the estimated waveform. Intraclass correlation coefficients (ICCs) between the real displacement using the laser system and the estimated displacement waveforms were calculated. The estimated displacement error of the compression depth was within 2 mm (<1 standard deviation). All ICCs (two springs and a manikin) were above 0.85 (0.99 in the case of one of the springs). The developed simple chest-compression gauge, based on a new calculation method, provides an accurate compression depth (estimation error < 2 mm).
Kouadio, Isidore K; Kamigaki, Taro; Oshitani, Hitoshi
2010-03-19
Measles is a highly contagious infectious disease with a significant public health impact especially among displaced populations due to their characteristic mass population displacement, high population density in camps and low measles vaccination coverage among children. While the fatality rate in stable populations is generally around 2%, evidence shows that it is usually high among populations displaced by disasters. In recent years, refugees and internally displaced persons have been increasing. Our study aims to define the epidemiological characteristics and risk factors associated with measles outbreaks in displaced populations. We reviewed literature in the PubMed database, and selected articles for our analysis that quantitatively described measles outbreaks. A total of nine articles describing 11 measles outbreak studies were selected. The outbreaks occurred between 1979 and 2005 in Asia and Africa, mostly during post-conflict situations. Seven of eight outbreaks were associated with poor vaccination status (vaccination coverage; 17-57%), while one was predominantly due to one-dose vaccine coverage. The age of cases ranged from 1 month to 39 years. Children aged 6 months to 5 years were the most common target group for vaccination; however, 1622 cases (51.0% of the total cases) were older than 5 years of age. Higher case-fatality rates (>5%) were reported for five outbreaks. Consistent factors associated with measles transmission, morbidity and mortality were vaccination status, living conditions, movements of refugees, nutritional status and effectiveness of control measures including vaccination campaigns, surveillance and security situations in affected zones. No fatalities were reported in two outbreaks during which a combination of active and passive surveillance was employed. Measles patterns have varied over time among populations displaced by natural and man-made disasters. Appropriate risk assessment and surveillance strategies are essential approaches for reducing morbidity and mortality due to measles. Learning from past experiences of measles outbreaks in displaced populations is important for designing future strategies for measles control in such situations.
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 5 2010-10-01 2010-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
49 CFR 325.75 - Ground surface correction factors. 1
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 5 2011-10-01 2011-10-01 false Ground surface correction factors. 1 325.75... MOTOR CARRIER NOISE EMISSION STANDARDS Correction Factors § 325.75 Ground surface correction factors. 1... account both the distance correction factors contained in § 325.73 and the ground surface correction...
Heisenberg principle applied to the analysis of speckle interferometry fringes
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Sciammarella, F. M.
2003-11-01
Optical techniques that are used to measure displacements utilize a carrier. When a load is applied the displacement field modulates the carrier. The accuracy of the information that can be recovered from the modulated carrier is limited by a number of factors. In this paper, these factors are analyzed and conclusions concerning the limitations in information recovery are illustrated with examples taken from experimental data.
Stability Criteria Analysis for Landing Craft Utility
2017-12-01
Square meter m/s Meters per Second m/s2 Meters per Second Squared n Vertical Displacement of Sea Water Free Surface n3 Ship’s Heave... Displacement n5 Ship’s Pitch Angle p(ξ) Rayleigh Distribution Probability Function POSSE Program of Ship Salvage Engineering pk...Spectrum Constant γ JONSWAP Wave Spectrum Peak Factor Γ(λ) Gamma Probability Function Δ Ship’s Displacement Δω Small Frequency
Meloni, Luigi; Abbruzzese, Piero A.; Pirisi, Raimondo; Cherchi, Angelo
1997-01-01
We describe a case of a 50-year-old woman with congenitally corrected transposition of the great vessels, in whom severe left-sided tricuspid (systemic atrioventricular) valve insufficiency was the only associated anomaly. The tricuspid valve was dysplastic and abnormally oriented toward the interventricular septum, without the downward displacement of Ebstein's anomaly. The mechanism of atrioventricular regurgitation was unusual in that it consisted of the rupture of chordae tendineae of both the anterior and septal leaflets. The left-sided tricuspid valve was replaced with a St. Jude prosthesis and the postoperative course was uneventful.
Schryvers, D; Salje, E K H; Nishida, M; De Backer, A; Idrissi, H; Van Aert, S
2017-05-01
The present contribution gives a review of recent quantification work of atom displacements, atom site occupations and level of crystallinity in various systems and based on aberration corrected HR(S)TEM images. Depending on the case studied, picometer range precisions for individual distances can be obtained, boundary widths at the unit cell level determined or statistical evolutions of fractions of the ordered areas calculated. In all of these cases, these quantitative measures imply new routes for the applications of the respective materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Hopkins, David James [Livermore, CA
2008-05-13
A control system and method for actively reducing vibration in a spindle housing caused by unbalance forces on a rotating spindle, by measuring the force-induced spindle-housing motion, determining control signals based on synchronous demodulation, and provide compensation for the measured displacement to cancel or otherwise reduce or attenuate the vibration. In particular, the synchronous demodulation technique is performed to recover a measured spindle housing displacement signal related only to the rotation of a machine tool spindle, and consequently rejects measured displacement not related to spindle motion or synchronous to a cycle of revolution. Furthermore, the controller actuates at least one voice-coil (VC) motor, to cancel the original force-induced motion, and adapts the magnitude of voice coil signal until this measured displacement signal is brought to a null. In order to adjust the signal to a null, it must have the correct phase relative to the spindle angle. The feedback phase signal is used to adjust a common (to both outputs) commutation offset register (offset relative to spindle encoder angle) to force the feedback phase signal output to a null. Once both of these feedback signals are null, the system is compensating properly for the spindle-induced motion.
Correlation of particle-induced displacement damage in silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Dale, C. J.; Burke, E. A.; Wolicki, E. A.; Marshall, P. W.
1987-12-01
The effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1-MeV-equivalent neutrons are considered. Measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7-175-MeV protons, 4.3-37-MeV deuterons, and 16.8-65-MeV helium ions. Long-term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered.
Pettorossi, V E; Petrosini, L
1984-12-17
In intact guinea pigs a passive horizontal rotation of the body about the fixed head induces compensatory ocular movements (cervico-ocular reflex). When the static neck deviation is maintained, a significant ocular displacement is observed. In acutely hemilabyrinthectomized animals, static body deviation towards the lesion side tonically alters eye nystagmus. It affects slow phase eye velocity and quick phase amplitude and frequency causing the eye to reach a less eccentric orbital position. Apart from such immediate influences, a plastic effect on eye nystagmus abatement is induced. In the animals restrained with no body-on-head deviation, abatement of nystagmus is delayed with respect to the animals restrained with 35 degrees body deviation towards the lesion side. Thus the head position signal is not only a contributing factor for the correction of postural deficits but also influences the time course of the ocular balancing process following unilateral vestibular damage.
Temperature dependent structural and dynamical properties of liquid Cu80Si20 binary alloy
NASA Astrophysics Data System (ADS)
Suthar, P. H.; Shah, A. K.; Gajjar, P. N.
2018-05-01
Ashcroft and Langreth binary structure factor have been used to study for pair correlation function and the study of dynamical variable: velocity auto correlation functions, power spectrum and mean square displacement calculated based on the static harmonic well approximation in liquid Cu80Si20 binary alloy at wide temperature range (1140K, 1175K, 1210K, 1250K, 1373K, 1473K.). The effective interaction for the binary alloy is computed by our well established local pseudopotential along with the exchange and correction functions Sarkar et al(S). The negative dip in velocity auto correlation decreases as the various temperature is increases. For power spectrum as temperature increases, the peak of power spectrum shifts toward lower ω. Good agreement with the experiment is observed for the pair correlation functions. Velocity auto correlation showing the transferability of the local pseudopotential used for metallic liquid environment in the case of copper based binary alloys.
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility and absorption, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (a) continuous band f of less than 0.1 to 0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; and (b) a Hz band of greater than 0.2 Hz with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
NASA Astrophysics Data System (ADS)
Prikner, K.
Using reference models of the daytime and night ionosphere of geomagnetic mid-latitudes in a quiescent period in summer, autumn and winter, the seasonal variation of ULF frequency characteristics of amplitude and energy correction factors of the ionosphere - vertical reflexibility, transmissibility, are studied. The existence of two frequency bands within the ULF range with different properties of ionospheric wave filtration is pointed out: (1) continuous band f 0.1-0.2 Hz with the mirror effect of the ionosphere with respect to the incident wave, but with small ionospheric absorption of wave energy; (2) the f 0.2 Hz band with resonance frequency windows and wave emissions with a sharply defined frequency structure. The seasonal variation from summer to winter indicates a decrease in wave energy absorption in the ionosphere and a slight displacement of the resonances towards higher frequencies.
An optimized OPC and MDP flow for reducing mask write time and mask cost
NASA Astrophysics Data System (ADS)
Yang, Ellyn; Li, Cheng He; Park, Se Jin; Zhu, Yu; Guo, Eric
2010-09-01
In the process of optical proximity correction, layout edge or fragment is migrating to proper position in order to minimize edge placement error (EPE). During this fragment migration, several factors other than EPE can be also taken into account as a part of cost function for optimal fragment displacement. Several factors are devised in favor of OPC stability, which can accommodate room for high mask error enhancement factor (MEEF), lack of process window, catastrophic pattern failure such as pinch/bridge and improper fragmentation. As technology node becomes finer, there happens conflict between OPC accuracy and stability. Especially for metal layers, OPC has focused on the stability by loss of accurate OPC results. On this purpose, several techniques have been introduced, which are target smoothing, process window aware OPC, model-based retargeting and adaptive OPC. By utilizing those techniques, OPC enables more stabilized patterning, instead of realizing design target exactly on wafer. Inevitably, post-OPC layouts become more complicated because those techniques invoke additional edge, or fragments prior to correction or during OPC iteration. As a result, jogs of post OPC layer can be dramatically increased, which results in huge number of shot count after data fracturing. In other words, there is trade-off relationship between data complexity and various methods for OPC stability. In this paper, those relationships have been investigated with respect to several technology nodes. The mask shot count reduction is achieved by reducing the number of jogs with which EPE difference are within pre-specified value. The effect of jog smoothing on OPC output - in view of OPC performance and mask data preparation - was studied quantitatively for respective technology nodes.
Tsunami Source Estimate for the 1960 Chilean Earthquake from Near- and Far-Field Observations
NASA Astrophysics Data System (ADS)
Ho, T.; Satake, K.; Watada, S.; Fujii, Y.
2017-12-01
The tsunami source of the 1960 Chilean earthquake was estimated from the near- and far-field tsunami data. The 1960 Chilean earthquake is known as the greatest earthquake instrumentally ever recorded. This earthquake caused a large tsunami which was recorded by 13 near-field tidal gauges in South America, and 84 far-field stations around the Pacific Ocean at the coasts of North America, Asia, and Oceania. The near-field stations had been used for estimating the tsunami source [Fujii and Satake, Pageoph, 2013]. However, far-field tsunami waveforms have not been utilized because of the discrepancy between observed and simulated waveforms. The observed waveforms at the far-field stations are found systematically arrived later than the simulated waveforms. This phenomenon has been also observed in the tsunami of the 2004 Sumatra earthquake, the 2010 Chilean earthquake, and the 2011 Tohoku earthquake. Recently, the factors for the travel time delay have been explained [Watada et al., JGR, 2014; Allgeyer and Cummins, GRL, 2014], so the far-field data are usable for tsunami source estimation. The phase correction method [Watada et al., JGR, 2014] converts the tsunami waveforms computed by the linear long wave into the dispersive waveform which accounts for the effects of elasticity of the Earth and ocean, ocean density stratification, and gravitational potential change associated with tsunami propagation. We apply the method to correct the computed waveforms. For the preliminary initial sea surface height inversion, we use 12 near-field stations and 63 far-field stations, located in the South and North America, islands in the Pacific Ocean, and the Oceania. The estimated tsunami source from near-field stations is compared with the result from both near- and far-field stations. Two estimated sources show a similar pattern: a large sea surface displacement concentrated at the south of the epicenter close to the coast and extended to south. However, the source estimated from near-field stations shows larger displacement than one from both dataset.
Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.
Collado, M C; Meriluoto, J; Salminen, S
2007-10-01
The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.
The role of latitude in mobilism debates
Irving, Edward
2005-01-01
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Köppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves. PMID:15684058
Project-induced displacement, secondary stressors, and health.
Cao, Yue; Hwang, Sean-Shong; Xi, Juan
2012-04-01
It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China's Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea's impoverishment risks and reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees' depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. Published by Elsevier Ltd.
PROJECT-INDUCED DISPLACEMENT, SECONDARY STRESSORS, AND HEALTH
Cao, Yue; Hwang, Sean-Shong; Xi, Juan
2012-01-01
It has been estimated that about 15 million people are displaced by development projects around the world each year. Despite the magnitude of people affected, research on the health and other impacts of project-induced displacement is rare. This study extends existing knowledge by exploring the short-term health impact of a large scale population displacement resulting from China’s Three Gorges Dam Project. The study is theoretically guided by the stress process model, but we supplement it with Cernea’s Impoverishment Risks and Reconstruction (IRR) model widely used in displacement literature. Our panel analysis indicates that the displacement is associated positively with relocatees’ depression level, and negatively with their self-rated health measured against a control group. In addition, a path analysis suggests that displacement also affects depression and self-rated health indirectly by changing social integration, socioeconomic status, and community resources. The importance of social integration as a protective mechanism, a factor that has been overlooked in past studies of population displacement, is highlighted in this study. PMID:22341203
Milch, Karen; Gorokhovich, Yuri; Doocy, Shannon
2010-10-01
Earthquakes are a major cause of displacement, particularly in developing countries. Models of injury and displacement can be applied to assist governments and aid organisations in effectively targeting preparedness and relief efforts. A stratified cluster survey was conducted in January 2008 to evaluate risk factors for injury and displacement following the 15 August 2007 earthquake in southern Peru. In statistical modelling, seismic intensity, distance to rupture, living conditions, and educational attainment collectively explained 54.9 per cent of the variability in displacement rates across clusters. Living conditions was a particularly significant predictor of injury and displacement, indicating a strong relationship between risk and socioeconomic status. Contrary to expectations, urban, periurban, and rural clusters did not exhibit significantly different injury and displacement rates. Proxies of socioeconomic status, particularly the living conditions index score, proved relevant in explaining displacement, likely due to unmeasured aspects of housing construction practices and building materials. © 2010 The Author(s). Journal compilation © Overseas Development Institute, 2010.
The role of latitude in mobilism debates.
Irving, Edward
2005-02-08
In the early 1920s, the continental displacement theory of Wegener, latitude studies of Koppen and Wegener, and Argand's ideas on mountain building led to the first mobilistic paleogeography. In the 1930s and 1940s, many factors caused its general abandonment. Mobilism was revived in the 1950s and 1960s by measurements of long-term displacement of crustal blocks relative to each other (tectonic displacement) and to Earth's geographic pole (latitudinal displacement). Also, short-term or current displacements can now be measured. I briefly outline the categories of tectonic and current displacement and focus on latitudinal displacement. Integration of tectonic and latitudinal displacement in the early 1970s completed the new mobilistic paleogeography, in which the transformation of rock magnetization directions into paleopoles and latitudes and the finite rotation of spherical plates about pivot points play complementary roles; this new synthesis now provides a quantitative basis for studying long-term evolution of Earth's surface features and climate, the changing environments in which life evolves.
Rebeeah, Hanadi A; Yilmaz, Burak; Seidt, Jeremy D; McGlumphy, Edwin; Clelland, Nancy; Brantley, William
2018-01-01
Internal conical implant-abutment connections without horizontal platforms may lead to crown displacement during screw tightening and torque application. This displacement may affect the proximal contacts and occlusion of the definitive prosthesis. The purpose of this in vitro study was to evaluate the displacement of custom screw-retained zirconia single crowns into a recently introduced internal conical seal implant-abutment connection in 3D during hand and torque driver screw tightening. Stereolithic acrylic resin models were printed using computed tomography data from a patient missing the maxillary right central incisor. Two different internal connection implant systems (both ∼11.5 mm) were placed in the edentulous site in each model using a surgical guide. Five screw-retained single zirconia computer-aided design and computer-aided manufacturing (CAD-CAM) crowns were fabricated for each system. A pair of high-resolution digital cameras was used to record the relationship of the crown to the model. The crowns were tightened according to the manufacturers' specifications using a torque driver, and the cameras recorded their relative position again. Three-dimensional image correlation was used to measure and compare crown positions, first hand tightened and then torque driven. The displacement test was repeated 3 times for each crown. Commercial image correlation software was used to extract the data and compare the amount of displacement vertically, mesiodistally, and buccolingually. Repeated-measures ANOVA calculated the relative displacements for all 5 specimens for each implant for both crown screw hand tightening and after applied torque. A Student t test with Bonferroni correction was used for pairwise comparison of interest to determine statistical differences between the 2 implants (α=.05). The mean vertical displacements were statistically higher than the mean displacements in the mesiodistal and buccolingual directions for both implants (P<.001). Mean displacements in all directions were statistically significant between iterations for both implants (P<.001). No statistically significant differences were found for displacements between implants at different directions and at different iterations (P>.05). Within the limitations of this in vitro study, screw-retained zirconia crowns tended to displace in all 3 directions, with the highest mean displacement in the vertical direction at iteration 1. However, the amount of displacement of crowns between the 2 different implants was statistically insignificant for all directions and iterations. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
BODY COMPOSITION OF A MILITARY POPULATION FT. CARSON 1963. I. BODY DENSITY, FAT, AND POTASSIUM 40.
Body volumes were measured on 97 soldiers between the ages of 17 - 52 years by water displacement volumetry and corrected for respiratory gas by a...Effective ranking of body fat burden of populations was demonstrated by body volumetry and age differences were noted from potassium 40 counting. A
Guthoff, Rainer; Guthoff, Tanja; Meigen, Thomas; Goebel, Winfried
2011-01-01
To investigate the benefit of adding bevacizumab to intravitreal recombinant tissue plasminogen activator (rTPA) and gas as initial therapy in subretinal hemorrhage and choroidal neovascularization because of age-related macular degeneration. Thirty-eight consecutive patients with recent (1-31 days) subretinal hemorrhage who were treated with intravitreal rTPA and gas (26 patients) or with intravitreal bevacizumab, rTPA, and gas (12 patients) were included in this retrospective analysis. In all patients, a standardized antivascular endothelial growth factor therapy was followed. Testing of best-corrected visual acuity, biomicroscopy, and fundus examination were performed at 4 weeks and 7 months. The mean pretreatment best-corrected visual acuity in the rTPA/gas group was 0.08 ± 0.09 and 0.12 ± 0.13 in the bevacizumab/rTPA/gas group. After 4 weeks, it was significantly higher in the bevacizumab/rTPA/gas group (0.25 ± 0.26) than in the rTPA/gas (0.08 ± 0.1) group (P < 0.05). Also, after 7 months, best-corrected visual acuity was significantly higher in the bevacizumab/rTPA/gas group (0.07 ± 0.07 vs. 0.24 ± 0.35; P < 0.05). Reading vision could be restored in 0% (rTPA/gas) versus 50% (bevacizumab/rTPA/gas). Stabilization (0 ± 2 lines) or improvement of best-corrected visual acuity was obtained in 62% (rTPA/gas) versus 84% (bevacizumab/rTPA/gas). From our retrospective pilot study, there is a strong indication that the addition of intravitreal bevacizumab is safe and superior to the displacement of submacular hemorrhages alone with rTPA and gas.
Multivariate analysis of factors predicting prostate dose in intensity-modulated radiotherapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomita, Tsuneyuki; Nakamura, Mitsuhiro, E-mail: m_nkmr@kuhp.kyoto-u.ac.jp; Hirose, Yoshinori
We conducted a multivariate analysis to determine relationships between prostate radiation dose and the state of surrounding organs, including organ volumes and the internal angle of the levator ani muscle (LAM), based on cone-beam computed tomography (CBCT) images after bone matching. We analyzed 270 CBCT data sets from 30 consecutive patients receiving intensity-modulated radiation therapy for prostate cancer. With patients in the supine position on a couch with the HipFix system, data for center of mass (COM) displacement of the prostate and the state of individual organs were acquired and compared between planning CT and CBCT scans. Dose distributions weremore » then recalculated based on CBCT images. The relative effects of factors on the variance in COM, dose covering 95% of the prostate volume (D{sub 95%}), and percentage of prostate volume covered by the 100% isodose line (V{sub 100%}) were evaluated by a backward stepwise multiple regression analysis. COM displacement in the anterior-posterior direction (COM{sub AP}) correlated significantly with the rectum volume (δVr) and the internal LAM angle (δθ; R = 0.63). Weak correlations were seen for COM in the left-right (R = 0.18) and superior-inferior directions (R = 0.31). Strong correlations between COM{sub AP} and prostate D{sub 95%} and V{sub 100%} were observed (R ≥ 0.69). Additionally, the change ratios in δVr and δθ remained as predictors of prostate D{sub 95%} and V{sub 100%}. This study shows statistically that maintaining the same rectum volume and LAM state for both the planning CT simulation and treatment is important to ensure the correct prostate dose in the supine position with bone matching.« less
STS-133/ET-137 Tanking Test Photogrammetry Assessment
NASA Technical Reports Server (NTRS)
Oliver, Stanley T.
2012-01-01
Following the launch scrub of Space Shuttle mission STS-133 on November 5, 2010, an anomalous condition of cracked and raised thermal protection system (TPS) foam was observed on the External Tank (ET). Subsequent dissection of the affected TPS region revealed cracks in the feet of two Intertank (IT) metallic stringers. An extensive investigation into the cause(s) and corrective action(s) for the cracked stringers was initiated, involving a wide array of material and structural tests and nondestructive evaluations, with the intent to culminate into the development of flight rational. One such structural test was the instrumented tanking test performed on December 17, 2010. The tanking test incorporated two three-dimensional optical displacement measurement systems to measure full-field outer surface displacements of the TPS surrounding the affected region that contained the stringer cracks. The results showed that the radial displacement and rotation of the liquid oxygen (LO2) tank flange changed significantly as the fluid level of the LO2 approached and passed the LO2 tank flange.
Tissue specific resonance frequencies of water and metabolites within the human brain
NASA Astrophysics Data System (ADS)
Chadzynski, Grzegorz L.; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe
2011-09-01
Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3 T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14 ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible.
Tissue specific resonance frequencies of water and metabolites within the human brain.
Chadzynski, Grzegorz L; Bender, Benjamin; Groeger, Adriane; Erb, Michael; Klose, Uwe
2011-09-01
Chemical shift imaging (CSI) without water suppression was used to examine tissue-specific resonance frequencies of water and metabolites within the human brain. The aim was to verify if there are any regional differences in those frequencies and to determine the influence of chemical shift displacement in slice-selection direction. Unsuppressed spectra were acquired at 3T from nine subjects. Resonance frequencies of water and after water signal removal of total choline, total creatine and NAA were estimated. Furthermore, frequency distances between the water and those resonances were calculated. Results were corrected for chemical shift displacement. Frequency distances between water and metabolites were consistent and greater for GM than for WM. The highest value of WM to GM difference (14ppb) was observed for water to NAA frequency distance. This study demonstrates that there are tissue-specific differences between frequency distances of water and metabolites. Moreover, the influence of chemical shift displacement in slice-selection direction is showed to be negligible. Copyright © 2011 Elsevier Inc. All rights reserved.
True navigation in migrating gulls requires intact olfactory nerves
Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A.; Huttunen, Markku J.; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf
2015-01-01
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances. PMID:26597351
True navigation in migrating gulls requires intact olfactory nerves.
Wikelski, Martin; Arriero, Elena; Gagliardo, Anna; Holland, Richard A; Huttunen, Markku J; Juvaste, Risto; Mueller, Inge; Tertitski, Grigori; Thorup, Kasper; Wild, Martin; Alanko, Markku; Bairlein, Franz; Cherenkov, Alexander; Cameron, Alison; Flatz, Reinhard; Hannila, Juhani; Hüppop, Ommo; Kangasniemi, Markku; Kranstauber, Bart; Penttinen, Maija-Liisa; Safi, Kamran; Semashko, Vladimir; Schmid, Heidi; Wistbacka, Ralf
2015-11-24
During migratory journeys, birds may become displaced from their normal migratory route. Experimental evidence has shown that adult birds can correct for such displacements and return to their goal. However, the nature of the cues used by migratory birds to perform long distance navigation is still debated. In this experiment we subjected adult lesser black-backed gulls migrating from their Finnish/Russian breeding grounds (from >60°N) to Africa (to < 5°N) to sensory manipulation, to determine the sensory systems required for navigation. We translocated birds westward (1080 km) or eastward (885 km) to simulate natural navigational challenges. When translocated westwards and outside their migratory corridor birds with olfactory nerve section kept a clear directional preference (southerly) but were unable to compensate for the displacement, while intact birds and gulls with the ophthalmic branch of the trigeminal nerve sectioned oriented towards their population-specific migratory corridor. Thus, air-borne olfactory information seems to be important for migrating gulls to navigate successfully in some circumstances.
Bloem, B R; Beckley, D J; van Dijk, J G
1999-02-01
Abnormal automatic postural responses are thought to contribute to balance impairment in Parkinson's disease. However, because postural responses are modifiable by stance, we have speculated that some postural abnormalities in patients with Parkinson's disease are secondary to their stooped stance. We have studied this assumption by assessing automatic postural responses in 30 healthy subjects who were instructed either to stand upright or to assume a typical parkinsonian posture. During both conditions, subjects received 20 serial 4 degrees 'toe-up' rotational perturbations from a supporting forceplate. We recorded short-latency (SL) and medium-latency (ML) responses from stretched gastrocnemius muscles and long-latency (LL) responses from shortened tibialis anterior muscles. We also assessed changes in the center of foot pressure (CFP) and the center of gravity (COG). The results were qualitatively compared to a previously described group of patients with Parkinson's disease who, under these circumstances, typically have large ML responses, small LL responses and insufficient voluntary postural corrections, accompanied by a slow rate of backward CFP displacement and an increased posterior COG displacement. The stooped posture resulted in unloading of medial gastrocnemius muscles and loading of tibialis anterior muscles. Onset latencies of stretch responses in gastrocnemius muscles were delayed in stooped subjects, but the onset of LL responses was markedly reduced. Amplitudes of both ML and LL responses were reduced in stooped subjects. Prestimulus COG and, to a lesser extent, CFP were shifted forwards in stooped subjects. Posterior COG displacement and the rate of backward CFP displacement were diminished in stooped subjects. Voluntary postural corrections were unchanged while standing stooped. These results indicate that some postural abnormalities of patients with Parkinson's disease (most notably the reduced LL responses) can be reproduced in healthy subjects mimicking a stooped parkinsonian posture. Other postural abnormalities (most notably the increased ML responses and insufficient voluntary responses) did not appear in stooped controls and may contribute to balance impairment in Parkinson's disease.
Limitations and challenges of EIT-based monitoring of stroke volume and pulmonary artery pressure.
Braun, Fabian; Proença, Martin; Lemay, Mathieu; Bertschi, Mattia; Adler, Andy; Thiran, Jean-Philippe; Solà, Josep
2018-01-30
Electrical impedance tomography (EIT) shows potential for radiation-free and noninvasive hemodynamic monitoring. However, many factors degrade the accuracy and repeatability of these measurements. Our goal is to estimate the impact of this variability on the EIT-based monitoring of two important central hemodynamic parameters: stroke volume (SV) and pulmonary artery pressure (PAP). We performed simulations on a 4D ([Formula: see text]) bioimpedance model of a human volunteer to study the influence of four potential confounding factors (electrode belt displacement, electrode detachment, changes in hematocrit and lung air volume) on the performance of EIT-based SV and PAP estimation. Results were used to estimate how these factors affect the EIT measures of either absolute values or relative changes (i.e. trending). Our findings reveal that the absolute measurement of SV via EIT is very sensitive to electrode belt displacements and lung conductivity changes. Nonetheless, the trending ability of SV EIT might be a promising alternative. The timing-based measurement of PAP is more robust to lung conductivity changes but sensitive to longitudinal belt displacements at severe hypertensive levels and to rotational displacements (independent of the PAP level). We identify and quantify the challenges of EIT-based SV and PAP monitoring. Absolute SV via EIT is challenging, but trending is feasible, while both the absolute and trending of PAP via EIT are mostly impaired by belt displacements.
NASA Technical Reports Server (NTRS)
Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.
1996-01-01
The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.
Johnson, Christine M; Sullivan, Jess; Buck, Cara L; Trexel, Julie; Scarpuzzi, Mike
2015-01-01
Anticipating the location of a temporarily obscured target-what Piaget (the construction of reality in the child. Basic Books, New York, 1954) called "object permanence"-is a critical skill, especially in hunters of mobile prey. Previous research with bottlenose dolphins found they could predict the location of a target that had been visibly displaced into an opaque container, but not one that was first placed in an opaque container and then invisibly displaced to another container. We tested whether, by altering the task to involve occlusion rather than containment, these animals could show more advanced object permanence skills. We projected dynamic visual displays at an underwater-viewing window and videotaped the animals' head moves while observing these displays. In Experiment 1, the animals observed a small black disk moving behind occluders that shifted in size, ultimately forming one large occluder. Nine out of ten subjects "tracked" the presumed movement of the disk behind this occluder on their first trial-and in a statistically significant number of subsequent trials-confirming their visible displacement abilities. In Experiment 2, we tested their invisible displacement abilities. The disk first disappeared behind a pair of moving occluders, which then moved behind a stationary occluder. The moving occluders then reappeared and separated, revealing that the disk was no longer behind them. The subjects subsequently looked to the correct stationary occluder on eight of their ten first trials, and in a statistically significant number of subsequent trials. Thus, by altering the stimuli to be more ecologically valid, we were able to show that the dolphins could indeed succeed at an invisible displacement task.
Whitaker, May
2016-01-01
Purpose Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. Material and methods This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. Results The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. Conclusions The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected. PMID:27504129
Poder, Joel; Whitaker, May
2016-06-01
Inverse planning simulated annealing (IPSA) optimized brachytherapy treatment plans are characterized with large isolated dwell times at the first or last dwell position of each catheter. The potential of catheter shifts relative to the target and organs at risk in these plans may lead to a more significant change in delivered dose to the volumes of interest relative to plans with more uniform dwell times. This study aims to determine if the Nucletron Oncentra dwell time deviation constraint (DTDC) parameter can be optimized to improve the robustness of high-dose-rate (HDR) prostate brachytherapy plans to catheter displacements. A set of 10 clinically acceptable prostate plans were re-optimized with a DTDC parameter of 0 and 0.4. For each plan, catheter displacements of 3, 7, and 14 mm were retrospectively applied and the change in dose volume histogram (DVH) indices and conformity indices analyzed. The robustness of clinically acceptable prostate plans to catheter displacements in the caudal direction was found to be dependent on the DTDC parameter. A DTDC value of 0 improves the robustness of planning target volume (PTV) coverage to catheter displacements, whereas a DTDC value of 0.4 improves the robustness of the plans to changes in hotspots. The results indicate that if used in conjunction with a pre-treatment catheter displacement correction protocol and a tolerance of 3 mm, a DTDC value of 0.4 may produce clinically superior plans. However, the effect of the DTDC parameter in plan robustness was not observed to be as strong as initially suspected.
Underwater and Dive Station Work-Site Noise Surveys
2008-03-14
A) octave band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet...band noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A...noise measurements, dB (A) correction factors, dB ( A ) levels , MK-21 diving helmet attenuation correction factors, overall in-helmet dB (A) level, and
Unilateral cleft nasal deformity correction using conchal cartilage lily flower graft.
Hwang, Kun; Kim, Han Joon; Paik, Moo Hyun
2012-11-01
We present a conchal cartilage lily flower graft for correcting depressed and laterally displaced alar cartilage for correction of unilateral cleft nasal deformity.After making a V incision at the base of the columellar and then marginal incisions, the alar cartilages were exposed. A fusiform-shaped cartilage larger than 2.5 cm in length and 1 cm in width was obtained. The midline long axis was scored with a No. 15 knife, and the lateral one third was split. Two-thirds length portions were folded in half, and they became straightened in the shape of a stalk of a lily flower. Two symmetrical one-third length portions were fanned out bilaterally in the shape of the leaf of a lily flower. The stalk portion was positioned in a pocket between the medial crura, and the 2 leaf portions were placed on the dome of the alar cartilages. The marked points of the cleft side and contralateral side were secured with sutures. The V incision at the base of the columellar and the marginal incisions were closed with a V-Y shape. In this technique, the 2 leaf portions were placed on the dome of the alar cartilages and sutured; therefore, the suture holds the dome of the cleft side to the contralateral side without peaking.Thirteen patients (6 male and 7 female subjects; age range, 13-30 years) were operated. Among them, 6 patients were very satisfied, and 5 patients were satisfied with the results. Two patients felt they were improved.We think the conchal cartilage lily flower graft might be a good method for correction of depressed and laterally displaced alar cartilage in unilateral cleft nasal deformity.
Geometrical correction of the e-beam proximity effect for raster scan systems
NASA Astrophysics Data System (ADS)
Belic, Nikola; Eisenmann, Hans; Hartmann, Hans; Waas, Thomas
1999-06-01
Increasing demands on pattern fidelity and CD accuracy in e- beam lithography require a correction of the e-beam proximity effect. The new needs are mainly coming from OPC at mask level and x-ray lithography. The e-beam proximity limits the achievable resolution and affects neighboring structures causing under- or over-exposion depending on the local pattern densities and process settings. Methods to compensate for this unequilibrated does distribution usually use a dose modulation or multiple passes. In general raster scan systems are not able to apply variable doses in order to compensate for the proximity effect. For system of this kind a geometrical modulation of the original pattern offers a solution for compensation of line edge deviations due to the proximity effect. In this paper a new method for the fast correction of the e-beam proximity effect via geometrical pattern optimization is described. The method consists of two steps. In a first step the pattern dependent dose distribution caused by back scattering is calculated by convolution of the pattern with the long range part of the proximity function. The restriction to the long range part result in a quadratic sped gain in computing time for the transformation. The influence of the short range part coming from forward scattering is not pattern dependent and can therefore be determined separately in a second step. The second calculation yields the dose curve at the border of a written structure. The finite gradient of this curve leads to an edge displacement depending on the amount of underground dosage at the observed position which was previously determined in the pattern dependent step. This unintended edge displacement is corrected by splitting the line into segments and shifting them by multiples of the writers address grid to the opposite direction.
Zhao, Yan-feng; Lu, Ping; Zhou, Xiao-nan; Qu, Chang-feng
2010-03-01
To study the surgical management of enophthalmos after severe malar maxillary complex fracture. The X-ray and CT examination were performed before operation to diagnose the orbital fracture and intraorbital tissue displacement. The fractured orbital rim was repositioned intraoperatively, followed by implantation of shaped titanium mesh to rebuild the orbital floor. The Medpor was inserted above the titanium mesh to correct the enophthalmos. From Sept. 2007 to Jan. 2009, 6 cases of enophthalmos after severe malar-maxillary complex fracture were treated. The enophthalmos was corrected or improved obviously in all the patients. The enophthalmos after severe malar-maxillary complex fracture can be corrected or obviously improved. Shaped titanium mesh can be used to rebuild the orbital floor with the Medpor to reconstruct the intraorbital tissue volume.
Murad-Regadas, Sthela M; Pinheiro Regadas, Francisco Sergio; Rodrigues, Lusmar V; da Silva Vilarinho, Adjra; Buchen, Guilherme; Borges, Livia Olinda; Veras, Lara B; da Cruz, Mariana Murad
2016-12-01
Defecography is an established method of evaluating dynamic anorectal dysfunction, but conventional defecography does not allow for visualization of anatomic structures. The purpose of this study was to describe the use of dynamic 3-dimensional endovaginal ultrasonography for evaluating perineal descent in comparison with echodefecography (3-dimensional anorectal ultrasonography) and to study the relationship between perineal descent and symptoms and anatomic/functional abnormalities of the pelvic floor. This was a prospective study. The study was conducted at a large university tertiary care hospital. Consecutive female patients were eligible if they had pelvic floor dysfunction, obstructed defecation symptoms, and a score >6 on the Cleveland Clinic Florida Constipation Scale. Each patient underwent both echodefecography and dynamic 3-dimensional endovaginal ultrasonography to evaluate posterior pelvic floor dysfunction. Normal perineal descent was defined on echodefecography as puborectalis muscle displacement ≤2.5 cm; excessive perineal descent was defined as displacement >2.5 cm. Of 61 women, 29 (48%) had normal perineal descent; 32 (52%) had excessive perineal descent. Endovaginal ultrasonography identified 27 of the 29 patients in the normal group as having anorectal junction displacement ≤1 cm (mean = 0.6 cm; range, 0.1-1.0 cm) and a mean anorectal junction position of 0.6 cm (range, 0-2.3 cm) above the symphysis pubis during the Valsalva maneuver and correctly identified 30 of the 32 patients in the excessive perineal descent group. The κ statistic showed almost perfect agreement (κ = 0.86) between the 2 methods for categorization into the normal and excessive perineal descent groups. Perineal descent was not related to fecal or urinary incontinence or anatomic and functional factors (sphincter defects, pubovisceral muscle defects, levator hiatus area, grade II or III rectocele, intussusception, or anismus). The study did not include a control group without symptoms. Three-dimensional endovaginal ultrasonography is a reliable technique for assessment of perineal descent. Using this technique, excessive perineal descent can be defined as displacement of the anorectal junction >1 cm and/or its position below the symphysis pubis on Valsalva maneuver.
Charchuk, Rhianna; Paul, Makelele Katsuva Jean; Claude, Kasereka Masumbuko; Houston, Stan; Hawkes, Michael T
2016-08-25
In the Democratic Republic of the Congo (DRC), violent conflict has caused the displacement of millions of people into camps where they are exposed to poor living conditions and high rates of infectious diseases. Malaria, in particular, is a major cause of mortality in children under five; however, the burden of disease in displacement camps has not previously been described. Two cross-sectional surveys were performed. First, prevalence of Plasmodium falciparum antigenemia was measured in a random sample of 200 children living in a displacement camp and 200 children from a nearby village (control group). Second, the proportion of febrile illness attributable to malaria was measured in a study of 100 children from the displacement camp and 100 children from the control village presenting to the same health clinic with fever. All participants were tested for P. falciparum with a rapid diagnostic test and additional demographic data, clinical characteristics, and malaria risk factors were determined using a parental questionnaire. In the community survey, children living in the displacement camp had a higher prevalence of P. falciparum infection (17 %) than controls (7.5 %) (OR 2.6; 95 % CI 1.3-4.1; P = 0.0095). In the clinic-based survey, the proportion of febrile illness attributable to malaria was higher among children from the displacement camp (78 %) than controls (39 %) (OR 5.5; 95 % CI 3.0-10.3; P < 0.001). Household bed net ownership and use was significantly lower in the displacement camp than control village in both surveys. Statistically significant differences in household wealth, maternal education, and exposure to community violence were also found. Population displacement due to violent conflict appears to be a risk factor for malaria, a major cause of child mortality. Children living in displacement camps are a relatively understudied population, but have a high burden of malaria, despite control programmes focused on bed net distribution.
Quantifying Rigid and Nonrigid Motion of Liver Tumors During Stereotactic Body Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Qianyi, E-mail: xuqianyi@gmail.com; Hanna, George; Grimm, Jimm
2014-09-01
Purpose: To quantify rigid and nonrigid motion of liver tumors using reconstructed 3-dimensional (3D) fiducials from stereo imaging during CyberKnife-based stereotactic body radiation therapy (SBRT). Methods and Materials: Twenty-three liver patients treated with 3 fractions of SBRT were used in this study. After 2 orthogonal kilovoltage images were taken during treatment, the 3D locations of the fiducials were generated by the CyberKnife system and validated using geometric derivations. A total of 4824 pairs of kilovoltage images from start to end of treatment were analyzed. For rigid motion, the rotational angles and translational shifts were reported by aligning 3D fiducial groupsmore » from different image pairs, using least-squares fitting. For nonrigid motion, we quantified interfractional tumor volume variations by using the proportional volume derived from the fiducials, which correlates to the sum of interfiducial distances. The individual fiducial displacements were also reported (1) after rigid corrections and (2) without angle corrections. Results: The proportional volume derived by the fiducials demonstrated a volume-increasing trend in the second (101.9% ± 3.6%) and third (101.0 ± 5.9%) fractions among most patients, possibly due to radiation-induced edema. For all patients, the translational shifts in left-right, anteroposterior, and superoinferior directions were 2.1 ± 2.3 mm, 2.9 ± 2.8 mm, and 6.4 ± 5.5 mm, respectively. The greatest translational shifts occurred in the superoinferior direction, likely due to respiratory motion from the diaphragm. The rotational angles in roll, pitch, and yaw were 1.2° ± 1.8°, 1.8° ± 2.4°, and 1.7° ± 2.1°, respectively. The 3D individual fiducial displacements with rigid corrections were 0.2 ± 0.2 mm and increased to 0.5 ± 0.4 mm without rotational corrections. Conclusions: Accurate 3D locations of internal fiducials can be reconstructed from stereo imaging during treatment. As an effective surrogate to tumor motion, fiducials provide a close estimation of both rigid and nonrigid motion of liver tumors. The reported displacements could be further utilized for tumor margin definition and motion management in conventional linear accelerator–based liver SBRT.« less
Nonrigid Autofocus Motion Correction for Coronary MR Angiography with a 3D Cones Trajectory
Ingle, R. Reeve; Wu, Holden H.; Addy, Nii Okai; Cheng, Joseph Y.; Yang, Phillip C.; Hu, Bob S.; Nishimura, Dwight G.
2014-01-01
Purpose: To implement a nonrigid autofocus motion correction technique to improve respiratory motion correction of free-breathing whole-heart coronary magnetic resonance angiography (CMRA) acquisitions using an image-navigated 3D cones sequence. Methods: 2D image navigators acquired every heartbeat are used to measure superior-inferior, anterior-posterior, and right-left translation of the heart during a free-breathing CMRA scan using a 3D cones readout trajectory. Various tidal respiratory motion patterns are modeled by independently scaling the three measured displacement trajectories. These scaled motion trajectories are used for 3D translational compensation of the acquired data, and a bank of motion-compensated images is reconstructed. From this bank, a gradient entropy focusing metric is used to generate a nonrigid motion-corrected image on a pixel-by-pixel basis. The performance of the autofocus motion correction technique is compared with rigid-body translational correction and no correction in phantom, volunteer, and patient studies. Results: Nonrigid autofocus motion correction yields improved image quality compared to rigid-body-corrected images and uncorrected images. Quantitative vessel sharpness measurements indicate superiority of the proposed technique in 14 out of 15 coronary segments from three patient and two volunteer studies. Conclusion: The proposed technique corrects nonrigid motion artifacts in free-breathing 3D cones acquisitions, improving image quality compared to rigid-body motion correction. PMID:24006292
NASA Astrophysics Data System (ADS)
Sakkas, Georgios; Sakellariou, Nikolaos
2018-05-01
Strong motion recordings are the key in many earthquake engineering applications and are also fundamental for seismic design. The present study focuses on the automated correction of accelerograms, analog and digital. The main feature of the proposed algorithm is the automatic selection for the cut-off frequencies based on a minimum spectral value in a predefined frequency bandwidth, instead of the typical signal-to-noise approach. The algorithm follows the basic steps of the correction procedure (instrument correction, baseline correction and appropriate filtering). Besides the corrected time histories, Peak Ground Acceleration, Peak Ground Velocity, Peak Ground Displacement values and the corrected Fourier Spectra are also calculated as well as the response spectra. The algorithm is written in Matlab environment, is fast enough and can be used for batch processing or in real-time applications. In addition, the possibility to also perform a signal-to-noise ratio is added as well as to perform causal or acausal filtering. The algorithm has been tested in six significant earthquakes (Kozani-Grevena 1995, Aigio 1995, Athens 1999, Lefkada 2003 and Kefalonia 2014) of the Greek territory with analog and digital accelerograms.
[Skeletal anchorage in the past, today and tomorrow].
Melsen, Birte; Dalstra, Michel
2017-03-01
Skeletal anchorage was not introduced as an alternative to conventional anchorage modalities. The first skeletal anchorage was a ligature through a hole in the infrazygomatic crest. This was replaced by surgical screws and finally the TADs, which were optimized with respect to the material and morphology, were developed. A bracket-like head allows for the use of the mini-implant as indirect anchorage, but should not be a tool for lost control resulting from badly planned biomechanics or failing compliance. Skeletal anchorage should serve as an adjunct to correct biomechanics, to enable treatments that could not be performed prior to the introduction of skeletal anchorage. The aim of this study was to test the hypothesis that temporary anchorage mini-screws help maintain bone density, height and width of alveolar processes in the extraction sites, and thus prevent the thinning of the alveolar ridge usually observed. In adult patients with degenerated dentitions the application of skeletal anchorage can allow for the displacement of teeth where no anchorage units are present, but also for the redevelopment and maintenance of atrophic alveolar bone. The basis for the optimal use of skeletal anchorage is that the correct line of action for the desired tooth displacement is defined and the necessary force system constructed either with the skeletal anchorage as direct or as indirect anchorage. After a period, during which osseointegrated implants were used as anchorage for tooth movement and bone maintenance, it was accepted that the mini-implants could serve also as anchorage for skeletal displacements avoiding loading of teeth. © EDP Sciences, SFODF, 2017.
Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan
2016-01-01
In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2–0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions. PMID:27999384
Perfusion CT to assess angiogenesis in colon cancer: technical limitations and practical challenges.
Dighe, S; Castellano, E; Blake, H; Jeyadevan, N; Koh, M U; Orten, M; Swift, I; Brown, G
2012-10-01
Perfusion CT may have the potential to quantify the degree of angiogenesis of solid tumours in vivo. This study aims to identify the practical and technical challenges inherent to the technique, and evaluate its feasibility in colorectal tumours. 51 patients from 2 institutions prospectively underwent a single perfusion CT on 2 different multidetector scanners. The patients were advised to breath-hold as long as possible, followed by shallow breathing, and were given intravenous buscopan to reduce movement. Numerous steps were explored to identify the challenges. 43 patients successfully completed the perfusion CT as per protocol. Inability to detect the tumour (n=3), misplacement of dynamic sequence co-ordinates (n=2), failure of contrast injection (n=2) and displacement of tumour (n=1) were the reasons for failure. In 14 cases excessive respiratory motion displaced the tumour out of the scanning field along the temporal sequence, leading to erroneous data capture. In nine patients, minor displacements of the tumour were corrected by repositioning the region of interest (ROI) to its original position after reviewing each dynamic sequence slice. In 20 patients the tumour was stable, and data captured from the ROI were representative, and could have been analysed by commercially available Body Tumor Perfusion 3.0® software (GE Healthcare, Waukesha, WI). Hence all data were manually analysed by MATLAB® processing software (MathWorks, Cambridge, UK). Perfusion CT in tumours susceptible to motion during acquisition makes accurate data capture challenging and requires meticulous attention to detail. Motion correction software is essential if perfusion CT is to be used routinely in colorectal cancer.
Geng, Tao; Su, Xing; Fang, Rongxin; Xie, Xin; Zhao, Qile; Liu, Jingnan
2016-12-20
In order to satisfy the requirement of high-rate high-precision applications, 1 Hz BeiDou Navigation Satellite System (BDS) satellite clock corrections are generated based on precise orbit products, and the quality of the generated clock products is assessed by comparing with those from the other analysis centers. The comparisons show that the root mean square (RMS) of clock errors of geostationary Earth orbits (GEO) is about 0.63 ns, whereas those of inclined geosynchronous orbits (IGSO) and medium Earth orbits (MEO) are about 0.2-0.3 ns and 0.1 ns, respectively. Then, the 1 Hz clock products are used for BDS precise point positioning (PPP) to retrieve seismic displacements of the 2015 Mw 7.8 Gorkha, Nepal, earthquake. The derived seismic displacements from BDS PPP are consistent with those from the Global Positioning System (GPS) PPP, with RMS of 0.29, 0.38, and 1.08 cm in east, north, and vertical components, respectively. In addition, the BDS PPP solutions with different clock intervals of 1 s, 5 s, 30 s, and 300 s are processed and compared with each other. The results demonstrate that PPP with 300 s clock intervals is the worst and that with 1 s clock interval is the best. For the scenario of 5 s clock intervals, the precision of PPP solutions is almost the same to 1 s results. Considering the time consumption of clock estimates, we suggest that 5 s clock interval is competent for high-rate BDS solutions.
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.
[Osteosynthesis of distal radius fractures by doral plate: advantages and disadvantages].
Obert, L; Vichard, P; Garbuio, P; Tropet, Y
2001-12-01
Distal radius fractures remain a challenge. No one osteosynthesis procedure can solve all the problems. A method of analysis is necessary in order to choose the best tools. Open treatment of the fracture is logical but rarely performed. A review of the literature and the experience of the authors are reported in order to analyse the correct place of dorsal plating in distal radius fracture with dorsal displacement. The learning curve of the operative procedure and the design of the implants can explain the occurrence of several complications. The dorsal plate is effective against secondary dorsal displacement. This demanding procedure must be compared with other reported procedures (pining and external fixator) to define the advantages and disadvantages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, T.A.; Baker, D.F.; Edwards, C.L.
1993-10-01
Surface ground motion was recorded for many of the Integrated Verification Experiments using standard 10-, 25- and 100-g accelerometers, force-balanced accelerometers and, for some events, using golf balls and 0.39-cm steel balls as surface inertial gauges (SIGs). This report contains the semi-processed acceleration, velocity, and displacement data for the accelerometers fielded and the individual observations for the SIG experiments. Most acceleration, velocity, and displacement records have had calibrations applied and have been deramped, offset corrected, and deglitched but are otherwise unfiltered or processed from their original records. Digital data for all of these records are stored at Los Alamos Nationalmore » Laboratory.« less
Correcting C IV-based virial black hole masses
NASA Astrophysics Data System (ADS)
Coatman, Liam; Hewett, Paul C.; Banerji, Manda; Richards, Gordon T.; Hennawi, Joseph F.; Prochaska, J. Xavier
2017-02-01
The C IVλλ1498,1501 broad emission line is visible in optical spectra to redshifts exceeding z ˜ 5. C IV has long been known to exhibit significant displacements to the blue and these `blueshifts' almost certainly signal the presence of strong outflows. As a consequence, single-epoch virial black hole (BH) mass estimates derived from C IV velocity widths are known to be systematically biased compared to masses from the hydrogen Balmer lines. Using a large sample of 230 high-luminosity (LBol = 1045.5-1048 erg s-1), redshift 1.5 < z < 4.0 quasars with both C IV and Balmer line spectra, we have quantified the bias in C IV BH masses as a function of the C IV blueshift. C IV BH masses are shown to be a factor of 5 larger than the corresponding Balmer-line masses at C IV blueshifts of 3000 km s-1and are overestimated by almost an order of magnitude at the most extreme blueshifts, ≳5000 km s-1. Using the monotonically increasing relationship between the C IV blueshift and the mass ratio BH(C IV)/BH(Hα), we derive an empirical correction to all C IV BH masses. The scatter between the corrected C IV masses and the Balmer masses is 0.24 dex at low C IV blueshifts (˜0 km s-1) and just 0.10 dex at high blueshifts (˜3000 km s-1), compared to 0.40 dex before the correction. The correction depends only on the C IV line properties - i.e. full width at half-maximum and blueshift - and can therefore be applied to all quasars where C IV emission line properties have been measured, enabling the derivation of unbiased virial BH-mass estimates for the majority of high-luminosity, high-redshift, spectroscopically confirmed quasars in the literature.
Dynamics in entangled polyethylene melts using coarse-grained models
NASA Astrophysics Data System (ADS)
Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora
Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.
Calibration of the local magnitude scale ( M L ) for Peru
NASA Astrophysics Data System (ADS)
Condori, Cristobal; Tavera, Hernando; Marotta, Giuliano Sant'Anna; Rocha, Marcelo Peres; França, George Sand
2017-07-01
We propose a local magnitude scale ( M L ) for Peru, based on the original Richter definition, using 210 seismic events between 2011 and 2014, recorded by 35 broadband stations of the National Seismic Network operated by the Geophysical Institute of Peru. In the solution model, we considered 1057 traces of maximum amplitude records on the vertical channel from simulated Wood-Anderson seismograms of shallow events (depths between 0 and 60 km) and hypocentral distances less than 600 km. The attenuation factor has been evaluated in terms of geometrical spreading and anelastic attenuation coefficients. The magnitude M L was defined as M L = L o g 10 A W A +1.5855 L o g 10( R/100)+0.0008( R-100)+3± S, where, A W A is the displacement amplitude in millimeters (Wood-Anderson), R is the hypocentral distance (km), and S is the station correction. The results obtained for M L have good correlation with the m b , M s and M w values reported the ISC and NEIC. The anelastic attenuation curve obtained has a similar behavior to that other highly seismic regions. Station corrections were determined for all stations during the regression analysis resulting in values ranging between -0.97 and +0.73, suggesting a strong influence of local site effects on amplitude.
A simple method for determining stress intensity factors for a crack in bi-material interface
NASA Astrophysics Data System (ADS)
Morioka, Yuta
Because of violently oscillating nature of stress and displacement fields near the crack tip, it is difficult to obtain stress intensity factors for a crack between two dis-similar media. For a crack in a homogeneous medium, it is a common practice to find stress intensity factors through strain energy release rates. However, individual strain energy release rates do not exist for bi-material interface crack. Hence it is necessary to find alternative methods to evaluate stress intensity factors. Several methods have been proposed in the past. However they involve mathematical complexity and sometimes require additional finite element analysis. The purpose of this research is to develop a simple method to find stress intensity factors in bi-material interface cracks. A finite element based projection method is proposed in the research. It is shown that the projection method yields very accurate stress intensity factors for a crack in isotropic and anisotropic bi-material interfaces. The projection method is also compared to displacement ratio method and energy method proposed by other authors. Through comparison it is found that projection method is much simpler to apply with its accuracy comparable to that of displacement ratio method.
Achieving fixation in glenoids with superior wear using reverse shoulder arthroplasty.
Roche, Christopher P; Stroud, Nicholas J; Martin, Brian L; Steiler, Cindy A; Flurin, Pierre-Henri; Wright, Thomas W; Zuckerman, Joseph D; Dipaola, Matthew J
2013-12-01
Superior glenoid wear is a common challenge with reverse shoulder arthroplasty and, if left uncorrected, can result in superior glenoid tilt, which increases the risk of aseptic glenoid loosening. This study evaluates the impact of an E2 superior defect on reverse shoulder glenoid fixation in composite scapulae after correction of glenoid tilt by use of 2 different glenoid reaming techniques: eccentric reaming and off-axis reaming. A superior glenoid defect was created in 14 composite scapulae. The superior defect was corrected by 2 different glenoid reaming techniques: (1) eccentric reaming with implantation of a standard glenoid baseplate and (2) off-axis reaming with implantation of a superior-augment glenoid baseplate. Each corrected superior-defect scapula was then cyclically loaded (along with a control group consisting of 7 non-worn scapulae) for 10,000 cycles at 750 N; glenoid baseplate displacement was measured for each group to quantify fixation before and after cyclic loading. Regardless of the glenoid reaming technique or the glenoid baseplate type, each standard and superior-augment glenoid baseplate remained well fixed in this superior-defect model scenario after cyclic loading. No differences in baseplate displacement were observed either before or after cyclic loading between groups. Our results suggest that either glenoid reaming technique may be used to achieve fixation in the clinically challenging situation of superior wear with reverse shoulder arthroplasty. Basic science, biomechanical study. Copyright © 2013 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Hongtao; Li, Kun; Cheng, Yingchun; Wang, Qingxiao; Yao, Yingbang; Schwingenschlögl, Udo; Zhang, Xixiang; Yang, Wei
2012-04-01
Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms.Interaction between single noble metal atoms and graphene edges has been investigated via aberration-corrected and monochromated transmission electron microscopy. A collective motion of the Au atom and the nearby carbon atoms is observed in transition between energy-favorable configurations. Most trapping and detrapping processes are assisted by the dangling carbon atoms, which are more susceptible to knock-on displacements by electron irradiation. Thermal energy is lower than the activation barriers in transition among different energy-favorable configurations, which suggests electron-beam irradiation can be an efficient way of engineering the graphene edge with metal atoms. Electronic supplementary information (ESI) available: Additional Figures for characterization of mono-layer CVD graphene samples with free edges and Pt atoms decorations and analysis of the effect of electron irradiation; supporting movie on edge evolution. See DOI: 10.1039/c2nr00059h
Ohtakara, Kazuhiro; Hayashi, Shinya; Tanaka, Hidekazu; Hoshi, Hiroaki; Kitahara, Masashi; Matsuyama, Katsuya; Okada, Hitoshi
2012-02-01
To compare the positioning accuracy and stability of two distinct noninvasive immobilization devices, a dedicated (D-) and conventional (C-) mask, and to evaluate the applicability of a 6-degrees-of-freedom (6D) correction, especially to the C-mask, based on our initial experience with cranial stereotactic radiotherapy (SRT) using ExacTrac (ET)/Robotics integrated into the Novalis Tx platform. The D- and C-masks were the BrainLAB frameless mask system and a general thermoplastic mask used for conventional radiotherapy such as whole brain irradiation, respectively. A total of 148 fractions in 71 patients and 125 fractions in 20 patients were analyzed for the D- and C-masks, respectively. For the C-mask, 3D correction was applied to the initial 10 patients, and thereafter, 6D correction was adopted. The 6D residual errors (REs) in the initial setup, after correction (pre-treatment), and during post-treatment were measured and compared. The D-mask provided no significant benefit for initial setup. The post-treatment median 3D vector displacements (interquatile range) were 0.38 mm (0.22, 0.60) and 0.74 mm (0.49, 1.04) for the D- and C-masks, respectively (p<0.001). The post-treatment maximal translational REs were within 1 mm and 2 mm for the D- and C-masks, respectively, and notably within 1.5 mm for the C-mask with 6D correction. The pre-treatment 3D vector displacements were significantly correlated with those for post-treatment in both masks. The D-mask confers positional stability acceptable for SRT. For the C-mask, 6D correction is also recommended, and an additional setup margin of 0.5 mm to that for the D-mask would be sufficient. The tolerance levels for the pre-treatment REs should similarly be set as small as possible for both systems. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Distortion Representation of Forecast Errors for Model Skill Assessment and Objective Analysis
NASA Technical Reports Server (NTRS)
Hoffman, Ross N.; Nehrkorn, Thomas; Grassotti, Christopher
1996-01-01
We study a novel characterization of errors for numerical weather predictions. In its simplest form we decompose the error into a part attributable to phase errors and a remainder. The phase error is represented in the same fashion as a velocity field and will be required to vary slowly and smoothly with position. A general distortion representation allows for the displacement and a bias correction of forecast anomalies. In brief, the distortion is determined by minimizing the objective function by varying the displacement and bias correction fields. In the present project we use a global or hemispheric domain, and spherical harmonics to represent these fields. In this project we are initially focusing on the assessment application, restricted to a realistic but univariate 2-dimensional situation. Specifically we study the forecast errors of the 500 hPa geopotential height field for forecasts of the short and medium range. The forecasts are those of the Goddard Earth Observing System data assimilation system. Results presented show that the methodology works, that a large part of the total error may be explained by a distortion limited to triangular truncation at wavenumber 10, and that the remaining residual error contains mostly small spatial scales.
Shibahara, Motoi; Ohnishi, Yasuo; Honda, Eisaburo; Matsuda, Dean K; Uchida, Soshi
2017-07-01
This report describes a case of nonunion of an anterior inferior iliac spine (AIIS) apophyseal avulsion fracture with resultant subspine impingement combined with symptomatic femoroacetabular impingement (FAI). A 16-year-old male soccer player presented with a 6-month history of right groin pain exacerbated by kicking and running. The patient was diagnosed with a displaced nonunion of the AIIS apophysis avulsion fracture causing secondary extra-articular impingement beyond cam-type FAI by physical examination and radiological findings. The authors performed arthroscopic AIIS decompression, with concurrent FAI correction and labral repair and capsular closure. At 4 months after surgery, a radiograph and a computed tomography scan showed complete bony union of the AIIS apophyseal nonunion. Modified Harris Hip Sore and Nonarthritic Hip Score improved from 74.8 and 61, respectively, to 100 for both at final follow-up. The effectiveness of arthroscopic decompression of the AIIS as part of a comprehensive minimally invasive surgery including FAI correction and labral repair resulted in complete union of the AIIS and pain-free return to sport and bony union. [Orthopedics. 2017; 40(4):e725-e728.]. Copyright 2017, SLACK Incorporated.
Orbital angular momentum (OAM) spectrum correction in free space optical communication.
Liu, Yi-Dong; Gao, Chunqing; Qi, Xiaoqing; Weber, Horst
2008-05-12
Orbital angular momentum (OAM) of laser beams has potential application in free space optical communication, but it is sensitive against pointing instabilities of the beam, i.e. shift (lateral displacement) and tilt (deflection of the beam). This work proposes a method to correct the distorted OAM spectrum by using the mean square value of the orbital angular momentum as an indicator. Qualitative analysis is given, and the numerical simulation is carried out for demonstration. The results show that the mean square value can be used to determine the beam axis of the superimposed helical beams. The initial OAM spectrum can be recovered.
Shultz, James M; Garfin, Dana Rose; Espinel, Zelde; Araya, Ricardo; Oquendo, Maria A; Wainberg, Milton L; Chaskel, Roberto; Gaviria, Silvia L; Ordóñez, Anna E; Espinola, Maria; Wilson, Fiona E; Muñoz García, Natalia; Gómez Ceballos, Angela Milena; Garcia-Barcena, Yanira; Verdeli, Helen; Neria, Yuval
2014-10-01
While conflict-induced forced migration is a global phenomenon, the situation in Colombia, South America, is distinctive. Colombia has ranked either first or second in the number of internally displaced persons for 10 years, a consequence of decades of armed conflict compounded by high prevalence of drug trafficking. The displacement trajectory for displaced persons in Colombia proceeds through a sequence of stages: (1) pre-expulsion threats and vulnerability, (2) expulsion, (3) migration, (4) initial adaptation to relocation, (5) protracted resettlement (the end point for most forced migrants), and, rarely, (6) return to the community of origin. Trauma signature analysis, an evidence-based method that elucidates the physical and psychological consequences associated with exposures to harm and loss during disasters and complex emergencies, was used to identify the psychological risk factors and potentially traumatic events experienced by conflict-displaced persons in Colombia, stratified across the phases of displacement. Trauma and loss are experienced differentially throughout the pathway of displacement.
Shultz, James M.; Garfin, Dana Rose; Espinel, Zelde; Araya, Ricardo; Oquendo, Maria A.; Wainberg, Milton L.; Chaskel, Roberto; Gaviria, Silvia L.; Ordóñez, Anna E.; Espinola, Maria; Wilson, Fiona E.; García, Natalia Muñoz; Ceballos, Ángela Milena Gómez; Garcia-Barcena, Yanira; Verdeli, Helen; Neria, Yuval
2016-01-01
While conflict-induced forced migration is a global phenomenon, the situation in Colombia, South America, is distinctive. Colombia has ranked either first or second in the number of internally displaced persons for 10 years, a consequence of decades of armed conflict compounded by high prevalence of drug trafficking. The displacement trajectory for displaced persons in Colombia proceeds through a sequence of stages: (1) pre-expulsion threats and vulnerability, (2) expulsion, (3) migration, (4) initial adaptation to relocation, (5) protracted resettlement (the end point for most forced migrants), and, rarely, (6) return to the community of origin. Trauma signature analysis, an evidence-based method that elucidates the physical and psychological consequences associated with exposures to harm and loss during disasters and complex emergencies, was used to identify the psychological risk factors and potentially traumatic events experienced by conflict-displaced persons in Colombia, stratified across the phases of displacement. Trauma and loss are experienced differentially throughout the pathway of displacement. PMID:25135775
Internal displacement in Burma.
Lanjouw, S; Mortimer, G; Bamforth, V
2000-09-01
The internal displacement of populations in Burma is not a new phenomenon. Displacement is caused by numerous factors. Not all of it is due to outright violence, but much is a consequence of misguided social and economic development initiatives. Efforts to consolidate the state by assimilating populations in government-controlled areas by military authorities on the one hand, while brokering cease-fires with non-state actors on the other, has uprooted civilian populations throughout the country. Very few areas in which internally displaced persons (IDPs) are found are not facing social turmoil within a climate of impunity. Humanitarian access to IDP populations remains extremely problematic. While relatively little information has been collected, assistance has been focused on targeting accessible groups. International concern within Burma has couched the problems of displacement within general development modalities, while international attention along its borders has sought to contain displacement. With the exception of several recent initiatives, few approaches have gone beyond assistance and engaged in the prevention or protection of the displaced.
A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement.
Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong
2015-01-01
DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.
Kuwert, Philipp; Braehler, Elmar; Freyberger, Harald J; Glaesmer, Heide
2012-10-01
Up to now, it has remained unclear whether displacement itself is the pathogenetic factor for the impairment of mental health in uprooted individuals or whether the effect is mediated by the amount of traumatic events experienced during forced displacement and/or by the development of posttraumatic stress disorder (PTSD). A total of 1657 participants were included in this population-based study, who were then administered with the Patient Health Questionnaire, a modified trauma list of the PTSD module of the Munich Composite International Diagnostic Interview, and the Posttraumatic Diagnostic Scale. Displacement was associated with increased rates of traumatic events. The displaced participants were significantly more affected by somatoform symptoms and PTSD than the nondisplaced population. It was not displacement itself but the amount of trauma experienced during displacement that predicts current somatization in the population-based sample. The results highlight the necessity for prevention and treatment of posttraumatic conditions in displaced individuals and underpin the importance to understand somatization as one condition of the posttraumatic symptoms spectrum in the elderly.
Niehues, Stefan M; Unger, J K; Malinowski, M; Neymeyer, J; Hamm, B; Stockmann, M
2010-08-20
Volumetric assessment of the liver regularly yields discrepant results between pre- and intraoperatively determined volumes. Nevertheless, the main factor responsible for this discrepancy remains still unclear. The aim of this study was to systematically determine the difference between in vivo CT-volumetry and ex vivo volumetry in a pig animal model. Eleven pigs were studied. Liver density assessment, CT-volumetry and water displacement volumetry was performed after surgical removal of the complete liver. Known possible errors of volume determination like resection or segmentation borders were eliminated in this model. Regression analysis was performed and differences between CT-volumetry and water displacement determined. Median liver density was 1.07g/ml. Regression analysis showed a high correlation of r(2) = 0.985 between CT-volumetry and water displacement. CT-volumetry was found to be 13% higher than water displacement volumetry (p<0.0001). In this study the only relevant factor leading to the difference between in vivo CT-volumetry and ex vivo water displacement volumetry seems to be blood perfusion of the liver. The systematic difference of 13 percent has to be taken in account when dealing with those measures.
NASA Astrophysics Data System (ADS)
Nehar, K. C.; Hachi, B. E.; Cazes, F.; Haboussi, M.
2017-12-01
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors (SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method, whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials, but has to our knowledge not been used up to now for a bi-material. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency (less time consuming and less spurious boundary effect).
Avilés Lucas, P; Dance, D R; Castellano, I A; Vañó, E
2005-01-01
The purpose of this work was to develop a method for estimating the patient peak entrance surface air kerma from measurements using a pencil ionisation chamber on dosimetry phantoms exposed in a computed tomography (CT) scanner. The method described is especially relevant for CT fluoroscopy and CT perfusion procedures where the peak entrance surface air kerma is the risk-related quantity of primary concern. Pencil ionisation chamber measurements include scattered radiation, which is outside the primary radiation field, and that must be subtracted in order to derive the peak entrance surface air kerma. A Monte Carlo computer model has therefore been used to calculate correction factors, which may be applied to measurements of the CT dose index obtained using a pencil ionisation chamber in order to estimate the peak entrance surface air kerma. The calculations were made for beam widths of 5, 7, 10 and 20 mm, for seven positions of the phantom, and for the geometry of a GE HiSpeed CT/i scanner. The program was validated by comparing measurements and calculations of CTDI for various vertical positions of the phantom and by directly estimating the peak ESAK using the program. Both validations showed agreement within statistical uncertainties (standard deviation of 2.3% or less). For the GE machine, the correction factors vary by approximately 10% with slice width for a fixed phantom position, being largest for the 20 mm beam width, and at that beam width range from 0.87 when the phantom surface is at the isocentre to 1.23 when it is displaced vertically by 24 cm.
Mathematical formulation of biomechanical parameters used in orthodontic treatment
NASA Astrophysics Data System (ADS)
Balakrishna, A.; Vamsi, Ch. Raghu; Rao, V. D. Prasad; Swamy, Ch. Kishore; Kuladeep, B.
2015-05-01
Orthodontic Treatment is being widely practiced around the world for teeth straightening and extraction to improve alignment of remaining teeth. Here, forces are applied to correct the position of teeth. The force applied on the teeth isn't calibrated and applied arbitrarily based on the recommendations from scientific research and experience of the orthodontist. The number of settings and the total time required for the completion of treatment also remains arbitrary. So, there is a need for determining the force which is actually acting on the teeth and determining the optimal force required for the treatment of each and every individual case. In this paper a mathematical relation is derived between the force applied on the tooth and tooth displacement by considering a 2nd order non-homogeneous linear differential equation. As the tooth displacement is not a direct function of force applied, Biomechanical parameters like mass of tooth, stiffness and damping coefficient of periodontal ligament & alveolar bone are involved in the differential equation. By solving the equation, tooth displacement thereby, tooth velocity can be obtained for a particular force. On the other hand, based on the dimensions of the model, orthodontist could determine the total tooth displacement required for each setting of the treatment, so that, the total displacement is covered. The orthodontist uses the data and applies the required force on to the teeth, based on which the orthodontist can plan his treatment procedure and reduce the number of settings, total treatment time and also increases the success rate of the treatment.
Rapid and accurate prediction and scoring of water molecules in protein binding sites.
Ross, Gregory A; Morris, Garrett M; Biggin, Philip C
2012-01-01
Water plays a critical role in ligand-protein interactions. However, it is still challenging to predict accurately not only where water molecules prefer to bind, but also which of those water molecules might be displaceable. The latter is often seen as a route to optimizing affinity of potential drug candidates. Using a protocol we call WaterDock, we show that the freely available AutoDock Vina tool can be used to predict accurately the binding sites of water molecules. WaterDock was validated using data from X-ray crystallography, neutron diffraction and molecular dynamics simulations and correctly predicted 97% of the water molecules in the test set. In addition, we combined data-mining, heuristic and machine learning techniques to develop probabilistic water molecule classifiers. When applied to WaterDock predictions in the Astex Diverse Set of protein ligand complexes, we could identify whether a water molecule was conserved or displaced to an accuracy of 75%. A second model predicted whether water molecules were displaced by polar groups or by non-polar groups to an accuracy of 80%. These results should prove useful for anyone wishing to undertake rational design of new compounds where the displacement of water molecules is being considered as a route to improved affinity.
Yang, Xiaochen; Clements, Logan W; Luo, Ma; Narasimhan, Saramati; Thompson, Reid C; Dawant, Benoit M; Miga, Michael I
2017-07-01
Intraoperative soft tissue deformation, referred to as brain shift, compromises the application of current image-guided surgery navigation systems in neurosurgery. A computational model driven by sparse data has been proposed as a cost-effective method to compensate for cortical surface and volumetric displacements. We present a mock environment developed to acquire stereoimages from a tracked operating microscope and to reconstruct three-dimensional point clouds from these images. A reconstruction error of 1 mm is estimated by using a phantom with a known geometry and independently measured deformation extent. The microscope is tracked via an attached tracking rigid body that facilitates the recording of the position of the microscope via a commercial optical tracking system as it moves during the procedure. Point clouds, reconstructed under different microscope positions, are registered into the same space to compute the feature displacements. Using our mock craniotomy device, realistic cortical deformations are generated. When comparing our tracked microscope stereo-pair measure of mock vessel displacements to that of the measurement determined by the independent optically tracked stylus marking, the displacement error was [Formula: see text] on average. These results demonstrate the practicality of using tracked stereoscopic microscope as an alternative to laser range scanners to collect sufficient intraoperative information for brain shift correction.
Effective medium model for a granular monolayer on an elastic substrate
NASA Astrophysics Data System (ADS)
Maznev, Alexei
Effective medium models have been shown to work well in describing experimental observations of the interaction of surface Rayleigh waves with contact vibrations of a monolayer of microspheres . However, these models contain intrinsic conceptual problems: for example, the local displacement of the substrate at the contact point is equated to the effective medium average value of the surface displacement. I will present a rigorous derivation of the effective medium model for a random arrangement of mass-spring oscillators on an elastic half-space using elastodynamic surface Green's function formalism. We will see that the model equating the local surface displacement to the effective medium displacement is indeed valid if the spring constant of the oscillators is modified to include the stiffness of the contact calculated in the quasistatic approximation. In the case of contact vibrations of microspheres, this means using the spring constant calculated using the Hertzian contact model. Thus the results obtained in the prior work were correct despite the apparent inconsistencies in the model. The presented analysis will provide a solid foundation for effective medium models used to describe dynamics of microparticle arrays adhered to a solid substrate. This work was supported by the U. S. Army Research Office through the Institute for Soldier Nanotechnologies under Grant W911NF-13-D-0001.
Gautam, Pawan; Valiathan, Ashima; Adhikari, Raviraj
2007-07-01
The purpose of this finite element study was to evaluate stress distribution along craniofacial sutures and displacement of various craniofacial structures with rapid maxillary expansion (RME) therapy. The analytic model for this study was developed from sequential computed tomography scan images taken at 2.5-mm intervals of a dry young human skull. Subsequently, a finite element method model was developed from computed tomography images by using AutoCAD software (2004 version, Autodesk, Inc, San Rafael, Calif) and ANSYS software (version 10, Belcan Engineering Group, Downers Grove, Ill). The maxilla moved anteriorly and downward and rotated clockwise in response to RME. The pterygoid plates were displaced laterally. The distant structures of the craniofacial skeleton--zygomatic bone, temporal bone, and frontal bone--were also affected by transverse orthopedic forces. The center of rotation of the maxilla in the X direction was somewhere between the lateral and the medial pterygoid plates. In the frontal plane, the center of rotation of the maxilla was approximately at the superior orbital fissure. The maximum von Mises stresses were found along the frontomaxillary, nasomaxillary, and frontonasal sutures. Both tensile and compressive stresses could be demonstrated along the same suture. RME facilitates expansion of the maxilla in both the molar and the canine regions. It also causes downward and forward displacement of the maxilla and thus can contribute to the correction of mild Class III malocclusion. The downward displacement and backward rotation of the maxilla could be a concern in patients with excessive lower anterior facial height. High stresses along the deep structures and the various sutures of the craniofacial skeleton signify the role of the circummaxillary sutural system in downward and forward displacement of the maxilla after RME.
NASA Astrophysics Data System (ADS)
Chanard, Kristel; Fleitout, Luce; Calais, Eric; Rebischung, Paul; Avouac, Jean-Philippe
2018-04-01
We model surface displacements induced by variations in continental water, atmospheric pressure, and nontidal oceanic loading, derived from the Gravity Recovery and Climate Experiment (GRACE) for spherical harmonic degrees two and higher. As they are not observable by GRACE, we use at first the degree-1 spherical harmonic coefficients from Swenson et al. (2008, https://doi.org/10.1029/2007JB005338). We compare the predicted displacements with the position time series of 689 globally distributed continuous Global Navigation Satellite System (GNSS) stations. While GNSS vertical displacements are well explained by the model at a global scale, horizontal displacements are systematically underpredicted and out of phase with GNSS station position time series. We then reestimate the degree 1 deformation field from a comparison between our GRACE-derived model, with no a priori degree 1 loads, and the GNSS observations. We show that this approach reconciles GRACE-derived loading displacements and GNSS station position time series at a global scale, particularly in the horizontal components. Assuming that they reflect surface loading deformation only, our degree-1 estimates can be translated into geocenter motion time series. We also address and assess the impact of systematic errors in GNSS station position time series at the Global Positioning System (GPS) draconitic period and its harmonics on the comparison between GNSS and GRACE-derived annual displacements. Our results confirm that surface mass redistributions observed by GRACE, combined with an elastic spherical and layered Earth model, can be used to provide first-order corrections for loading deformation observed in both horizontal and vertical components of GNSS station position time series.
Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements
Biagi, Ludovico; Grec, Florin Cătălin; Negretti, Marco
2016-01-01
The geodetic monitoring of local displacements and deformations is often needed for civil engineering structures and natural phenomena like, for example, landslides. A local permanent GNSS (Global Navigation Satellite Systems) network can be installed: receiver positions in the interest area are estimated and monitored with respect to reference stations. Usually, GNSS geodetic receivers are adopted and provide results with accuracies at the millimeter level: however, they are very expensive and the initial cost and the risk of damage and loss can discourage this approach. In this paper the accuracy and the reliability of low-cost u-blox GNSS receivers are experimentally investigated for local monitoring. Two experiments are analyzed. In the first, a baseline (65 m long) between one geodetic reference receiver and one u-blox is continuously observed for one week: the data are processed by hourly sessions and the results provide comparisons between two processing packages and a preliminary accuracy assessment. Then, a network composed of one geodetic and two u-blox receivers is set up. One u-blox is installed on a device (slide) that allows to apply controlled displacements. The geodetic and the other u-blox (at about 130 m) act as references. The experiment lasts about two weeks. The data are again processed by hourly sessions. The estimated displacements of the u-blox on the slide are analyzed and compared with the imposed displacements. All of the results are encouraging: in the first experiment the standard deviations of the residuals are smaller than 5 mm both in the horizontal and vertical; in the second, they are slightly worse but still satisfactory (5 mm in the horizontal and 13 mm in vertical) and the imposed displacements are almost correctly identified. PMID:27983707
Wald, D.J.; Graves, R.W.
2001-01-01
Using numerical tests for a prescribed heterogeneous earthquake slip distribution, we examine the importance of accurate Green's functions (GF) for finite fault source inversions which rely on coseismic GPS displacements and leveling line uplift alone and in combination with near-source strong ground motions. The static displacements, while sensitive to the three-dimensional (3-D) structure, are less so than seismic waveforms and thus are an important contribution, particularly when used in conjunction with waveform inversions. For numerical tests of an earthquake source and data distribution modeled after the 1994 Northridge earthquake, a joint geodetic and seismic inversion allows for reasonable recovery of the heterogeneous slip distribution on the fault. In contrast, inaccurate 3-D GFs or multiple 1-D GFs allow only partial recovery of the slip distribution given strong motion data alone. Likewise, using just the GPS and leveling line data requires significant smoothing for inversion stability, and hence, only a blurred vision of the prescribed slip is recovered. Although the half-space approximation for computing the surface static deformation field is no longer justifiable based on the high level of accuracy for current GPS data acquisition and the computed differences between 3-D and half-space surface displacements, a layered 1-D approximation to 3-D Earth structure provides adequate representation of the surface displacement field. However, even with the half-space approximation, geodetic data can provide additional slip resolution in the joint seismic and geodetic inversion provided a priori fault location and geometry are correct. Nevertheless, the sensitivity of the static displacements to the Earth structure begs caution for interpretation of surface displacements, particularly those recorded at monuments located in or near basin environments. Copyright 2001 by the American Geophysical Union.
Biagi, Ludovico; Grec, Florin Cătălin; Negretti, Marco
2016-12-15
The geodetic monitoring of local displacements and deformations is often needed for civil engineering structures and natural phenomena like, for example, landslides. A local permanent GNSS (Global Navigation Satellite Systems) network can be installed: receiver positions in the interest area are estimated and monitored with respect to reference stations. Usually, GNSS geodetic receivers are adopted and provide results with accuracies at the millimeter level: however, they are very expensive and the initial cost and the risk of damage and loss can discourage this approach. In this paper the accuracy and the reliability of low-cost u-blox GNSS receivers are experimentally investigated for local monitoring. Two experiments are analyzed. In the first, a baseline (65 m long) between one geodetic reference receiver and one u-blox is continuously observed for one week: the data are processed by hourly sessions and the results provide comparisons between two processing packages and a preliminary accuracy assessment. Then, a network composed of one geodetic and two u-blox receivers is set up. One u-blox is installed on a device (slide) that allows to apply controlled displacements. The geodetic and the other u-blox (at about 130 m) act as references. The experiment lasts about two weeks. The data are again processed by hourly sessions. The estimated displacements of the u-blox on the slide are analyzed and compared with the imposed displacements. All of the results are encouraging: in the first experiment the standard deviations of the residuals are smaller than 5 mm both in the horizontal and vertical; in the second, they are slightly worse but still satisfactory (5 mm in the horizontal and 13 mm in vertical) and the imposed displacements are almost correctly identified.
NASA Astrophysics Data System (ADS)
Zhang, L.; Ding, X.; Lu, Z.; Wen, Y.; Hu, J.
2016-12-01
High-resolution measurements of interseismic displacement are critical for understanding the earthquake cycle and for assessing earthquake hazard. Compared with sparsely located GNSS sites, it is well-known that by jointly analyzing a set of data over the same area acquired on different dates, multi-temporal InSAR (MTInSAR) is capable of remotely imaging interseismic deformation at an unprecedented level of spatial resolution. However conventional MTInSAR cannot hold a considerate promise for the precise retrieval of interseismic deformation in tectonically active zones where complicated atmospheric delay, orbital errors, and localized seasonal ground fluctuations commonly exist. Of interest in this study is to develop reliable solutions to correct or suppress these unwanted signals thereby to improve the accuracy of mapped interseismic displacement. Our technical innovations lie in the following aspects. According to different spatial-temporal characteristics, a joint model that takes both orbit errors and interseismic displacement as parameters is designed to isolate long wavelength motion from orbit error even in the case these two types of signals exhibit similar spatial patterns. To suppress the localized impacts (e.g., a portion of atmospheric artifacts and small-scale anthropogenic deformation), spatial correlation is employed as a constraint during the parameter estimation. The proposed solutions are evaluated by synthetic tests and applied to map the interseismic displacement over Eastern Turkey that spans the Arabia-Eurasia plate boundary zone from a large set of radar images acquired by Envisat/ASAR and Sentinel-1. The derived interseismic displacement validated by GPS data is further used to invert the slip rate and locking depth for the North and East Anatolian Faults. A cross-comparison with published results is also conducted.
Displacement of Implant Abutments Following Initial and Repeated Torqueing.
Yilmaz, Burak; Gilbert, Andy B; Seidt, Jeremy D; McGlumphy, Edwin A; Clelland, Nancy L
2015-01-01
To measure and compare the three-dimensional (3D) position of nine different abutments manufactured by different manufacturers after repeated torqueing on an internal-hexagon implant. Nine tapered implants were placed into an acrylic resin block. Five specimens each of nine different abutments (n = 45) were placed into one of nine implants. The abutments were handtightened and then torqued to the manufacturer-recommended torque of 30 Ncm. After 10 minutes, 30 Ncm of torque was reapplied. Another 10 minutes elapsed before testing was completed. Images were recorded in 12-second intervals. The spatial relationship of the abutments to the resin block was determined using 3D digital image correlation. Commercial image correlation software was used to analyze the displacements. Mean displacements for the abutments were calculated in three dimensions and overall for both torque applications. Statistical comparisons were done with a t test and a step-down Bonferroni correction. The overall 3D displacement of the Atlantis Titanium abutment after the second applied torque was significantly greater than that of two of the eight other abutments. Displacement in all three dimensions for the Atlantis Titanium abutment changed direction between the first and second torque applications. All abutments moved further in the same direction except for the Atlantis Titanium abutment, which moved back toward its original hand-tightened position horizontally after the second torque application. Re-torqueing of abutments after a 10-minute interval leads to minor displacement of varying degrees between the abutment and a tapered implant. A potential effect of embedment relaxation and/or manufacturing errors should be taken into consideration when selecting an abutment for a cement-retained crown on a tapered implant. Accordingly, clinicians may benefit from adjusting cement-retained implant crowns after re-torqueing the abutments to prevent potential occlusal and interproximal contact problems.
On the p(dis) correction factor for cylindrical chambers.
Andreo, Pedro
2010-03-07
The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor p(dis) for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in p(dis) (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.
LETTER TO THE EDITOR: On the pdis correction factor for cylindrical chambers
NASA Astrophysics Data System (ADS)
Andreo, Pedro
2010-03-01
The authors of a recent paper (Wang and Rogers 2009 Phys. Med. Biol. 54 1609) have used the Monte Carlo method to simulate the 'classical' experiment made more than 30 years ago by Johansson et al (1978 National and International Standardization of Radiation Dosimetry (Atlanta 1977) vol 2 (Vienna: IAEA) pp 243-70) on the displacement (or replacement) perturbation correction factor pdis for cylindrical chambers in 60Co and high-energy photon beams. They conclude that an 'unreasonable normalization at dmax' of the ionization chambers response led to incorrect results, and for the IAEA TRS-398 Code of Practice, which uses ratios of those results, 'the difference in the correction factors can lead to a beam calibration deviation of more than 0.5% for Farmer-like chambers'. The present work critically examines and questions some of the claims and generalized conclusions of the paper. It is demonstrated that for real, commercial Farmer-like chambers, the possible deviations in absorbed dose would be much smaller (typically 0.13%) than those stated by Wang and Rogers, making the impact of their proposed values negligible on practical high-energy photon dosimetry. Differences of the order of 0.4% would only appear at the upper extreme of the energies potentially available for clinical use (around 25 MV) and, because lower energies are more frequently used, the number of radiotherapy photon beams for which the deviations would be larger than say 0.2% is extremely small. This work also raises concerns on the proposed value of pdis for Farmer chambers at the reference quality of 60Co in relation to their impact on electron beam dosimetry, both for direct dose determination using these chambers and for the cross-calibration of plane-parallel chambers. The proposed increase of about 1% in pdis (compared with TRS-398) would lower the kQ factors and therefore Dw in electron beams by the same amount. This would yield a severe discrepancy with the current good agreement between electron dosimetry based on an electron cross-calibrated plane-parallel chamber (against a Farmer) or on a directly 60Co calibrated plane-parallel chamber, which is not likely to be in error by 1%. It is suggested that the influence of the 60Co source spectrum used in the simulations may not be negligible for calculations aimed at an uncertainty level of 0.1%.
NASA Astrophysics Data System (ADS)
DuRoss, C. B.; Bunds, M. P.; Reitman, N. G.; Gold, R. D.; Personius, S. F.; Briggs, R. W.; Toke, N. A.; Johnson, K. L.; Lajoie, L. J.
2017-12-01
In 1983, about 36 km of the 130-km-long multisegment Lost River fault zone (LRFZ) (Idaho, USA) ruptured in the M 6.9 Borah Peak earthquake. Normal-faulting surface rupture propagated along the entire 24-km-long Thousand Springs section, then branched to the northwest along a 4-km-long fault (western section) that continues into the Willow Creek Hills, a prominent bedrock ridge that forms a structural boundary between the Thousand Springs section and Warms Springs section to the north. North of the Willow Creek Hills, the 1983 rupture continued onto the southern 8 km of the 16-km-long Warm Springs section. To improve our understanding of the Borah Peak earthquake and the role of structural boundaries in normal-fault rupture propagation, we acquired low-altitude aerial imagery of the southern 8 km of the Warm Springs section and northern 6 km of the Thousand Springs section, including the western section branch fault. Using 5-10-cm-pixel digital surface models generated from this dataset, we measured vertical surface offsets across both 1983 and prehistoric scarps. On the Warm Springs section, 1983 displacement is minor (mean of 0.3 m) compared to at least two prehistoric events having mean displacements of 1.1 m and 1.7 m inferred from displacement difference curves. Prehistoric scarps on the western section indicate rupture of this branch fault prior to 1983. Correcting for 1983 displacement, mean prehistoric displacement on the western section is 0.9 m compared to a mean of 0.7 m in 1983. Using these data and previous paleoseismic displacements, we evaluate the spatial distribution of cumulative and per-earthquake displacement. Our results suggest that at least one prehistoric rupture of the Thousand Springs section occurred with a similar length and displacement to that in 1983. Further, the 1983 spillover rupture from the Thousand Springs section to the southernmost Warm Springs section appears unique from larger displacement, prehistoric ruptures that may have spanned the majority of the Warm Springs section and possibly continued south into the Willow Creek Hills based on paleoseismic and surface-offset data. We conclude that the Willow Creek Hills structural boundary has likely moderated, but not completely impeded both prehistoric and 1983 ruptures of the northern LRFZ.
Chan, Rachel W; von Deuster, Constantin; Giese, Daniel; Stoeck, Christian T; Harmer, Jack; Aitken, Andrew P; Atkinson, David; Kozerke, Sebastian
2014-07-01
Diffusion tensor imaging (DTI) of moving organs is gaining increasing attention but robust performance requires sequence modifications and dedicated correction methods to account for system imperfections. In this study, eddy currents in the "unipolar" Stejskal-Tanner and the velocity-compensated "bipolar" spin-echo diffusion sequences were investigated and corrected for using a magnetic field monitoring approach in combination with higher-order image reconstruction. From the field-camera measurements, increased levels of second-order eddy currents were quantified in the unipolar sequence relative to the bipolar diffusion sequence while zeroth and linear orders were found to be similar between both sequences. Second-order image reconstruction based on field-monitoring data resulted in reduced spatial misalignment artifacts and residual displacements of less than 0.43 mm and 0.29 mm (in the unipolar and bipolar sequences, respectively) after second-order eddy-current correction. Results demonstrate the need for second-order correction in unipolar encoding schemes but also show that bipolar sequences benefit from second-order reconstruction to correct for incomplete intrinsic cancellation of eddy-currents. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Imaging of congenital chest wall deformities
Bhaludin, Basrull N; Naaseri, Sahar; Di Chiara, Francesco; Jordan, Simon; Padley, Simon
2016-01-01
To identify the anatomy and pathology of chest wall malformations presenting for consideration for corrective surgery or as a possible chest wall “mass”, and to review the common corrective surgical procedures. Congenital chest wall deformities are caused by anomalies of chest wall growth, leading to sternal depression or protrusion, or are related to failure of normal spine or rib development. Cross-sectional imaging allows appreciation not only of the involved structures but also assessment of the degree of displacement or deformity of adjacent but otherwise normal structures and differentiation between anatomical deformity and neoplasia. In some cases, CT is also useful for surgical planning. The use of three-dimensional reconstructions, utilizing a low-dose technique, provides important information for the surgeon to discuss the nature of anatomical abnormalities and planned corrections with the patient and often with their parents. In this pictorial essay, we discuss the radiological features of the commonest congenital chest wall deformities and illustrate pre- and post-surgical appearances for those undergoing surgical correction. PMID:26916279
Compliance measurements of chevron notched four point bend specimen
NASA Technical Reports Server (NTRS)
Calomino, Anthony; Bubsey, Raymond; Ghosn, Louis J.
1994-01-01
The experimental stress intensity factors for various chevron notched four point bend specimens are presented. The experimental compliance is verified using the analytical solution for a straight through crack four point bend specimen and the boundary integral equation method for one chevron geometry. Excellent agreement is obtained between the experimental and analytical results. In this report, stress intensity factors, loading displacements and crack mouth opening displacements are reported for different crack lengths and different chevron geometries, under four point bend loading condition.
NASA Astrophysics Data System (ADS)
Murray, K. D.; Lohman, R.
2017-12-01
Areas of large-scale subsidence are observed over much of the San Joaquin Valley of California due to the extraction of groundwater and hydrocarbons from the subsurface.These signals span regions with spatial extents of up to 100 km and have rates of up to 45 cm/yr or more. InSAR and GPS are complementary methods commonly used to measure such ground displacements and can provide important constraints on crustal deformation models, support groundwater studies, and inform water resource management efforts. However, current standard methods for processing these data sets and creating displacement time series are suboptimal for the deformation observed in areas like the San Joaquin Valley because (1) the ground surface properties are constantly changing due largely to agricultural activity, resulting in low coherence in half or more of a SAR frame, and (2) the deformation signals are distributed throughout the SAR frames, and are comparable to the size of the frames themselves. Therefore, referencing areas of deformation to non-deforming areas and correcting for long wavelength signals (e.g. atmospheric delays, orbital errors) is particularly difficult. We address these challenges by exploiting pixels that are stable in space and time, and use them for weighted spatial averaging and selective filtering before unwrapping. We then compare a range of methods for both long wavelength corrections and referencing via automatic partitioning of non-deforming areas, then benchmark results against continuous GPS measurements. Our final time series consist of nearly 15 years of displacement measurements from continuous GPS data, and Envisat, ALOS-1, Sentinel SAR data, and show significant temporal and spatial variations. We find that the choice of reference and long wavelength corrections can significantly bias long-term rate and seasonal amplitude estimates, causing variations of as much as 100% of the mean estimate. As we enter an era with free and open data access and regular observations plans from missions such as NISAR and the Sentinel constellation, our approach will help users evaluate the significance of observed deformation at a range of spatial scales and in areas with challenging surface properties.
Kurra, Swamy; Metkar, Umesh; Yirenkyi, Henaku; Tallarico, Richard A; Lavelle, William F
Retrospectively reviewed surgeries between 2011 and 2015 of patients who underwent posterior spinal deformity instrumentation with constructs involving fusions to pelvis and encompassing at least five levels. Measure the radiographic outcomes of coronal malalignment (CM) after use of an intraoperative T square shaped instrument in posterior spinal deformity surgeries with at least five levels of fusion and extension to pelvis. Neuromuscular children found to benefit from intraoperative T square technique to help achieve proper coronal spinal balance with extensive fusions. This intraoperative technique used in our posterior spine deformity instrumentation surgeries with the aforementioned parameters. There were 50 patients: n = 16 with intraoperative T square and n = 34 no-T square shaped device. Subgroups divided based on greater than 20 mm displacement and greater than 40 mm displacement of the C7 plumb line to the central sacral vertical line on either side in preoperative radiographs. We analyzed the demographics and the pre- and postoperative radiographic parameters of standing films: standing CM (displacement of C7 plumb line to central sacral vertical line), and major coronal Cobb angles in total sample and subgroups and compared T square shaped device with no-T square shaped device use by analysis of variance. A p value ≤.05 is statistically significant. In the total sample, though postoperative CM mean was not statistically different, we observed greater CM corrections in patients where a T square shaped device was used (70%) versus no-T square shaped device used (18%). In >20 mm and >40 mm subgroups, the postoperative mean CM values were statistically lower for the patients where a T square shaped device was used, p = .016 and p = .003, respectively. Cobb corrections were statistically higher for T square shaped device use in both >20 mm and >40 mm subgroups, 68%, respectively. The intraoperative T square shaped device technique had a positive effect on the amount of spine coronal malalignment correction after its use and for lumbar and thoracic coronal Cobb angles. Level III. Copyright © 2017 Scoliosis Research Society. Published by Elsevier Inc. All rights reserved.
Job Tenure and Joblessness of Displaced Workers.
ERIC Educational Resources Information Center
Valletta, Robert G.
1991-01-01
Data from the Displaced Worker Survey found that, for men, the duration of joblessness increases with the length of job tenure (15 years or more), consistent with the hypothesis that male workers base reservation wages on factors such as accumulated human capital that raise current wages more than potential wage offers. (SK)
Acar, Özlem; Erkut, Selim; Özçelik, Tuncer Burak; Ozdemır, Erdem; Akçil, Mehtap
2014-05-01
It is not clear whether newly introduced cordless displacement systems are better able to manage gingiva than conventional systems. The purpose of this in vivo study was to evaluate the gingival management ability of 4 different displacement methods with a standardized subgingival preparation finish line. The effects of 4 displacement techniques on gingival management and impression quality were evaluated by means of 6 evaluation criteria. A subgingival preparation finish line of between 1 and 2 mm was ensured, and the buccal aspects of 252 (n=63) teeth were clinically assessed for ease of application, time spent, bleeding, remnants, and dilatation. The complete reproduction of the preparation finish line and the bubble and void formations on polyether impressions were also evaluated. The data were statistically analyzed with the χ(2) test (α=.05). The Bonferroni correction was used to control Type I error for the pairwise comparison groups (α=.008). Statistically significant differences were found for all criteria among the groups (P<.05). The nonimpregnated displacement cord group was the least effective group in terms of bleeding and impression quality (P<.008). The aluminum chloride impregnated cord group and the displacement paste with cap group were found to be comparable in terms of remnants, dilatation, and impression quality (P>.008). The retraction cap with paste group showed better results for ease of application, time spent, and bleeding than the aluminum chloride impregnated cord group (P<.008). Although the group with aluminum chloride impregnated cord, displacement paste, and cap showed better results for dilatation, it was time consuming and difficult (P<.008). Except for the nonimpregnated cord group, all of the groups were comparable and clinically useful, with perfect or acceptable impression qualities. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.
Processing parameters associated with scale-up of balloon film production
NASA Technical Reports Server (NTRS)
Simpson, D. M.; Harrison, I. R.
1993-01-01
A method is set forth for assessing strain-rate profiles that can be used to develop a scale-up theory for blown-film extrusion. Strain rates are evaluated by placing four ink dots on the stalk of an extruded bubble to follow the displacements of the dots as a function of time. The instantaneous Hencky strain is obtained with the displacement data and plotted for analysis. Specific attention is given to potential sources of error in the distance measurements and corrections for these complex bubble geometries. The method is shown to be effective for deriving strain-rate data related to different processing parameters for the production of balloon film. The strain rates can be compared to frostline height, blow-up ratio, and take-up ratio to optimize these processing variables.
Sasalawad, Shilpa S; Jogani, Vivek; Pai, Suryakanth M; Chour, Rashmi C; Balehosur, Deepti V
2016-11-01
Management of traumatic injuries to teeth is a challenge to dental practice, as it occurs when dentists are least prepared for it. The direction and the force of the object or the fall significantly affects the diagnosis, treatment plan and therefore the outcome of the treatment. These traumatic injuries may present with different clinical situations which demand immediate attention and assessment by the clinician. The maxillary central incisor crown fractures are the most common variant of trauma, because of the anterior and protrusive positioning. This case report describes the novel method to produce expansion of the dental arches to correct the post-traumatic displacement of the central incisor along with aesthetic and functional rehabilitation of Ellis Class IV fracture of permanent maxillary central incisor.
Ma, Kunlong; Fang, Yue; Luan, Fujun; Tu, Chongqi; Yang, Tianfu
2012-03-01
To investigate the relationships between residual displacement of weight-bearing and non weight-bearing zones (gap displacement and step displacement) and hip function by analyzing the CT images after reconstruction of acetabular fractures. The CT measures and clinical outcome were retrospectively analyzed from 48 patients with displaced acetabular fracture between June 2004 and June 2009. All patients were treated by open reduction and internal fixation, and were followed up 24 to 72 months (mean, 36 months); all fractures healed after operation. The residual displacement involved the weight-bearing zone in 30 cases (weight-bearing group), and involved the non weight-bearing zone in 18 cases (non weight-bearing group). The clinical outcomes were evaluated by Merle d'Aubigné-Postel criteria, and the reduction of articular surface by CT images, including the maximums of two indexes (gap displacement and step displacement). All the data were analyzed in accordance with the Spearman rank correlation coefficient analysis. There was strong negative correlation between the hip function and the residual displacement values in weight-bearing group (r(s) = -0.722, P = 0.001). But there was no correlation between the hip function and the residual displacement values in non weight-bearing group (r(s) = 0.481, P = 0.059). The results of clinical follow-up were similar to the correlation analysis results. In weight-bearing group, the hip function had strong negative correlation with step displacement (r(s) = 0.825, P = 0.002), but it had no correlation with gap displacement (r(s) = 0.577, P = 0.134). In patients with acetabular fracture, the hip function has correlation not only with the extent of the residual displacement but also with the location of the residual displacement, so the residual displacement of weight-bearing zone is a key factor to affect the hip function. In patients with residual displacement in weight-bearing zone, the bigger the step displacement is, the worse the hip function is.
LCC demons with divergence term for liver MRI motion correction
NASA Astrophysics Data System (ADS)
Oh, Jihun; Martin, Diego; Skrinjar, Oskar
2010-03-01
Contrast-enhanced liver MR image sequences acquired at multiple times before and after contrast administration have been shown to be critically important for the diagnosis and monitoring of liver tumors and may be used for the quantification of liver inflammation and fibrosis. However, over multiple acquisitions, the liver moves and deforms due to patient and respiratory motion. In order to analyze contrast agent uptake one first needs to correct for liver motion. In this paper we present a method for the motion correction of dynamic contrastenhanced liver MR images. For this purpose we use a modified version of the Local Correlation Coefficient (LCC) Demons non-rigid registration method. Since the liver is nearly incompressible its displacement field has small divergence. For this reason we add a divergence term to the energy that is minimized in the LCC Demons method. We applied the method to four sequences of contrast-enhanced liver MR images. Each sequence had a pre-contrast scan and seven post-contrast scans. For each post-contrast scan we corrected for the liver motion relative to the pre-contrast scan. Quantitative evaluation showed that the proposed method improved the liver alignment relative to the non-corrected and translation-corrected scans and visual inspection showed no visible misalignment of the motion corrected contrast-enhanced scans and pre-contrast scan.
Propagation of crises in the virtual water trade network
NASA Astrophysics Data System (ADS)
Tamea, Stefania; Laio, Francesco; Ridolfi, Luca
2015-04-01
The international trade of agricultural goods is associated to the displacement of the water used to produce such goods and embedded in trade as a factor of production. Water virtually exchanged from producing to consuming countries, named virtual water, defines flows across an international network of 'virtual water trade' which enable the assessment of environmental forcings and implications of trade, such as global water savings or country dependencies on foreign water resources. Given the recent expansion of commodity (and virtual water) trade, in both displaced volumes and network structure, concerns have been raised about the exposure to crises of individuals and societies. In fact, if one country had to markedly decrease its export following a socio-economical or environmental crisis, such as a war or a drought, many -if not all- countries would be affected due to a cascade effect within the trade network. The present contribution proposes a mechanistic model describing the propagation of a local crisis into the virtual water trade network, accounting for the network structure and the virtual water balance of all countries. The model, built on data-based assumptions, is tested on the real case study of the Argentinean crisis in 2008-09, when the internal agricultural production (measured as virtual water volume) decreased by 26% and the virtual water export of Argentina dropped accordingly. Crisis propagation and effects on the virtual water trade are correctly captured, showing the way forward to investigations of crises impact and country vulnerability based on the results of the model proposed.
Bending and breaking of stripes in a charge ordered manganite.
Savitzky, Benjamin H; El Baggari, Ismail; Admasu, Alemayehu S; Kim, Jaewook; Cheong, Sang-Wook; Hovden, Robert; Kourkoutis, Lena F
2017-12-01
In charge-ordered phases, broken translational symmetry emerges from couplings between charge, spin, lattice, or orbital degrees of freedom, giving rise to remarkable phenomena such as colossal magnetoresistance and metal-insulator transitions. The role of the lattice in charge-ordered states remains particularly enigmatic, soliciting characterization of the microscopic lattice behavior. Here we directly map picometer scale periodic lattice displacements at individual atomic columns in the room temperature charge-ordered manganite Bi 0.35 Sr 0.18 Ca 0.47 MnO 3 using aberration-corrected scanning transmission electron microscopy. We measure transverse, displacive lattice modulations of the cations, distinct from existing manganite charge-order models. We reveal locally unidirectional striped domains as small as ~5 nm, despite apparent bidirectionality over larger length scales. Further, we observe a direct link between disorder in one lattice modulation, in the form of dislocations and shear deformations, and nascent order in the perpendicular modulation. By examining the defects and symmetries of periodic lattice displacements near the charge ordering phase transition, we directly visualize the local competition underpinning spatial heterogeneity in a complex oxide.
NASA Technical Reports Server (NTRS)
Ko, William L.; Fleischer, Van Tran
2011-01-01
The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail
Optimal control, optimization and asymptotic analysis of Purcell's microswimmer model
NASA Astrophysics Data System (ADS)
Wiezel, Oren; Or, Yizhar
2016-11-01
Purcell's swimmer (1977) is a classic model of a three-link microswimmer that moves by performing periodic shape changes. Becker et al. (2003) showed that the swimmer's direction of net motion is reversed upon increasing the stroke amplitude of joint angles. Tam and Hosoi (2007) used numerical optimization in order to find optimal gaits for maximizing either net displacement or Lighthill's energetic efficiency. In our work, we analytically derive leading-order expressions as well as next-order corrections for both net displacement and energetic efficiency of Purcell's microswimmer. Using these expressions enables us to explicitly show the reversal in direction of motion, as well as obtaining an estimate for the optimal stroke amplitude. We also find the optimal swimmer's geometry for maximizing either displacement or energetic efficiency. Additionally, the gait optimization problem is revisited and analytically formulated as an optimal control system with only two state variables, which can be solved using Pontryagin's maximum principle. It can be shown that the optimal solution must follow a "singular arc". Numerical solution of the boundary value problem is obtained, which exactly reproduces Tam and Hosoi's optimal gait.
A Novel Computational Method to Reduce Leaky Reaction in DNA Strand Displacement
Li, Xin; Wang, Xun; Song, Tao; Lu, Wei; Chen, Zhihua; Shi, Xiaolong
2015-01-01
DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement. PMID:26491602
NASA Astrophysics Data System (ADS)
Wang, Zhen; Xiao, Longsheng; Wang, Wei; Wu, Chao; Tang, Xiahui
2018-01-01
Owing to their good diffusion cooling and low sensitivity to misalignment, slab-shape negative-branch unstable-waveguide resonators are widely used for high-power lasers in industry. As the output beam of the resonator is astigmatic, an external beam shaping system is required. However, the transverse dimension of the cavity mirrors in the resonator is large. For a long-time operation, the heating of cavity mirrors can be non-uniform. This results in micro-deformation and a change in the radius of curvature of the cavity mirrors, and leads to an output beam of an offset optical axis of the resonator. It was found that a change in the radius of curvature of 0.1% (1 mm) caused by thermal deformation generates a transverse displacement of 1.65 mm at the spatial filter of the external beam shaping system, and an output power loss of more than 80%. This can potentially burn out the spatial filter. In order to analyze the effect of the offset optical axis of the beam on the external optical path, we analyzed the transverse displacement and rotational misalignments of the spatial filter. For instance, if the transverse displacement was 0.3 mm, the loss in the output power was 9.6% and a sidelobe appeared in the unstable direction. If the angle of rotation was 5°, the loss in the output power was 2%, and the poles were in the direction of the waveguide. Based on these results, by adjusting the bending mirror, the deviation angle of the output beam of the resonator cavity was corrected, in order to obtain maximum output power and optimal beam quality. Finally, the propagation characteristics of the corrected output beam were analyzed.
Dohi, Satoshi; Ichizuka, Kiyotake; Matsuoka, Ryu; Seo, Kohei; Nagatsuka, Masaaki; Sekizawa, Akihiko
2017-09-01
The risk of maternal and fetal mortality is high if cardiopulmonary arrest occurs during pregnancy. To assess the best position for maternal cardiopulmonary resuscitation (CPR), a prospective randomized crossover study was undertaken, involving basic life support mannequin-based simulation (BLS-MS) and a swine model of pulseless electrical activity (an unstable cardiac state) incorporating a fetal mannequin (PEA-FM). The BLS-MS (performed by certified rescuers) served to evaluate the quality of chest compressions in 30° left lateral tilt (LLT) and supine positions. Based on a 5-point scale, each rescuer subjectively graded their experience. The PEA-FM model was used to compare coronary perfusion pressure readings during CPR in supine, supine with left uterine displacement, 30° LLT, and 30° right lateral tilt positions. Compression rate and correctness of hand position, compression depth, and recoil were measures of compression quality (BLS-MS). Compared with LLT position, supine position enabled correct hand position (rate: 0.99 vs 0.88; p<0.05) and compression depth (rate: 0.76 vs 0.36; p<0.001) significantly more often. Moreover, BLS-MS rescuers found chest compressions significantly easier to perform with the mannequin in supine (vs LLT) position (difficulty score: 1.75 vs 3.95; p<0.001). In the PEA-FM study arm, supine position with left uterine displacement and right lateral tilt positions had the highest and lowest recorded coronary perfusion pressure readings, respectively. Supine position with left uterine displacement is optimal for maternal CPR. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Murray-Moraleda, J. R.; Simpson, R.W.
2009-01-01
On 31 October 2007 the M 5.4 Alum Rock earthquake occurred near the junction between the Hayward and Calaveras faults in the San Francisco Bay Area, producing coseismic and postseismic displacements recorded by 10 continuously operating Global Positioning System (GPS) instruments. The cumulative postseismic displacements over the four months following the earthquake are linearly related to the cumulative number of aftershocks and are comparable in magnitude to the coseis mic displacements. The postseismic signal suggests that, in addition to afterslip at seismogenic depths, localized right-lateral/reverse slip occurred on dipping shallow fault surfaces southwest of the Calaveras. The spatial distribution of slip inferred by inverting the GPS data is compatible with a model in which moderate Calaveras fault earthquakes rupture locked patches surrounded by areas of creep, afterslip, and microseismicity (Oppenheimer et al., 1990). If this model and existing Calaveras fault slip rate estimates are correct, a slip deficit remains on the 2007 Alum Rock rupture patch that may be made up by aseismic slip or slip in larger earthquakes. Recent studies (e.g., Manaker et al., 2005) suggest that at depth the Hayward and central Calaveras faults connect via a simple continuous surface illuminated by the Mission Seismic Trend (MST), implying that a damaging earthquake rupture could involve both faults (Graymer et al., 2008). If this geometry is correct, the combined coseismic and postseismic slip we infer for the 2007 Alum Rock event predicts static Coulomb stress increases of ???0:6 bar on the MST surface and on the northern Calaveras fault ???5 km northwest of the Alum Rock hypocenter.
NASA Astrophysics Data System (ADS)
Pratama, Juan; Mahardika, Muslim
2018-03-01
Microplate is a connecting plate that can be used for jaw bone fixation. In the last two decades, microplate has been used so many times to help reconstruction of fractured jaw bone which is called mandibular bone or mandible bone. The plate is used to provide stable fixation of the fractured bone tissue during healing and reconstruction process. In this study Finite Element Analysis was used to predict the stress concentration and distribution on a microplate, displacement on the microplate and also to determine the safety factor of the microplate based on maximum allowable stress value, and finally to ascertain whether microplate is safe to use or not. The microplate was produced from punching process using titanium grade 1 (pure titanium) as material with a thickness of 500 µm. The results of the research indicated that the microplate was safe to use according to the maximum stress around the hole, displacement around the hole and also the safety factor of the microplate.
Oshima, Hisaaki; Iwase, Takeshi; Ishikawa, Kohei; Yamamoto, Kentaro; Terasaki, Hiroko
2017-01-01
To evaluate the long-term results of limited macular translocation (LMT) surgery with radial chorioscleral outfolding in patients with wet age-related macular degeneration (AMD) and subfoveal choroidal neovascularization (CNV). In addition, to identify the factors associated with the final best-corrected visual acuity (BCVA). The medical records of 20 eyes of 20 consecutive patients (65.2±9.8 years) who had undergone LMT for the treatment of wet AMD and were followed for at least 5 years, were reviewed. The surgical outcomes including the BCVA, degree of foveal displacement, and complications were recorded. The mean foveal displacement was 1332 ± 393 μm after the LMT. The CNV was removed in 16 eyes and photocoagulated in 4 eyes. The mean preoperative VA was 0.83 ± 0.33 logMAR units which significantly improved to 0.59 ± 0.37 logMAR units at 1 year after the surgery (P = 0.015). This BCVA was maintained at 0.59 ± 0.41 logMAR units on the final examination. The final BCVA was significantly correlated with that at 1 year after the surgery (r = 0.83, P<0.001). Multiple linear regression analysis showed that the final BCVA was significantly correlated with the BCVA at 1 year after the surgery (P<0.001), a recurrence of a CNV (P = 0.001), and the age (P = 0.022). LMT improves the BCVA significantly at 1 year, and the improved BCVA lasted for at least 5 years. These results indicate that the impaired function of the sensory retina at the fovea can recover on the new RPE after the displacement for at least 5 years. The ability to maintain good retinal function on the new RPE for a long period is important for future treatments of CNVs such as the transplantation of RPE cells and stem cells.
Li, Yuanyao; Huang, Jinsong; Jiang, Shui-Hua; Huang, Faming; Chang, Zhilu
2017-12-07
It is important to monitor the displacement time series and to explore the failure mechanism of reservoir landslide for early warning. Traditionally, it is a challenge to monitor the landslide displacements real-timely and automatically. Globe Position System (GPS) is considered as the best real-time monitoring technology, however, the accuracies of the landslide displacements monitored by GPS are not assessed effectively. A web-based GPS system is developed to monitor the landslide displacements real-timely and automatically in this study. And the discrete wavelet transform (DWT) is proposed to assess the accuracy of the GPS monitoring displacements. Wangmiao landslide in Three Gorges Reservoir area in China is used as case study. The results show that the web-based GPS system has advantages of high precision, real-time, remote control and automation for landslide monitoring; the Root Mean Square Errors of the monitoring landslide displacements are less than 5 mm. Meanwhile, the results also show that a rapidly falling reservoir water level can trigger the reactivation of Wangmiao landslide. Heavy rainfall is also an important factor, but not a crucial component.
NASA Astrophysics Data System (ADS)
Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.
2017-02-01
The parallel-plate free-air ionization chamber termed FAC-IR-300 was designed at the Atomic Energy Organization of Iran, AEOI. This chamber is used for low and medium X-ray dosimetry on the primary standard level. In order to evaluate the air-kerma, some correction factors such as electron-loss correction factor (ke) and photon scattering correction factor (ksc) are needed. ke factor corrects the charge loss from the collecting volume and ksc factor corrects the scattering of photons into collecting volume. In this work ke and ksc were estimated by Monte Carlo simulation. These correction factors are calculated for mono-energy photon. As a result of the simulation data, the ke and ksc values for FAC-IR-300 ionization chamber are 1.0704 and 0.9982, respectively.
Paolantonio, E.G.; Antonini, G.; Saulle, R.; La Torre, G.; Deli, R.
2016-01-01
SUMMARY The ratio of bad habits, mouth breathing and malocclusion is an important issue in view of prevention and early treatment of disorders of the craniofacial growth. While bad habits can interfere with the position of the teeth and normal pattern of skeletal growth, on the other hand obstruction of the upper airway, resulting in mouth breathing, changes the pattern of craniofacial growth causing malocclusion. Our crosssectional study, carried out on 3017 children using the ROMA index, was developed to verify if there was a significant correlation between bad habits/mouth breathing and malocclusion. The results showed that an increase in the degree of the index increases the prevalence of bad habits and mouth breathing, meaning that these factors are associated with more severe malocclusions. Moreover, we found a significant association of bad habits with increased overjet and openbite, while no association was found with crossbite. Additionally, we found that mouth breathing is closely related to increased overjet, reduced overjet, anterior or posterior crossbite, openbite and displacement of contact points. Therefore, it is necessary to intervene early on these aetiological factors of malocclusion to prevent its development or worsening and, if already developed, correct it by early orthodontic treatment to promote eugnatic skeletal growth. PMID:27958599
Displaced clavicle fractures in adolescents: facts, controversies, and current trends.
Pandya, Nirav K; Namdari, Surena; Hosalkar, Harish S
2012-08-01
There is an increasing trend toward stabilization and fixation of markedly displaced midshaft clavicle fractures in adolescents. Recent studies in the adult literature have shown a greater prevalence of symptomatic malunion, nonunion, and poor functional outcomes after nonsurgical management of displaced fractures. Fixation of displaced midshaft clavicle fractures can restore length and alignment, resulting in shorter time to union. Symptomatic malunion after significantly displaced fractures in adolescents may be more common than previously thought. Adolescents often have high functional demands, and their remodeling potential is limited. Knowledge of bone biology and the effects of shortening, angulation, and rotation on shoulder girdle mechanics is critical in decision making in order to increase the likelihood of optimal results at skeletal maturity. Selection of fixation is dependent on many factors, including fracture type, patient age, skeletal maturity, and surgeon comfort.
[Displaced women's opinion of the impact of forced displacement on their health].
Mogollón Pérez, Amparo Susana; Vázquez Navarrete, María Luisa
2006-01-01
To analyze the adaptation process of women internally displaced to the city and the relationship between displacement and their self-perceived main health problems. A qualitative, exploratory, descriptive study was carried out by means of semi-structured individual interviews with a maximum variation sample of 25 internally displaced women. A narrative content analysis was conducted with mixed generation of categories and data segmentation by age and themes. The area under study consisted of five localities in the city of Bogotá (Colombia). According to the interviewed women's discourses, their adaptation to city life depended on the new socioeconomic and environmental conditions and the psychosocial impact of displacement on the family. Precarious economic conditions forced them to live in an unhealthy environment and, occasionally, to adopt the role of head of household. In this role, many of these women, particularly young women, faced great difficulties in ensuring that the family's needs were met. Young women and teenagers reported behavioral changes due to displacement, including reproduction of violence in the home. The main self-perceived health problems among displaced women were mental health, access to food, infections and gynecological alterations. Displaced women identified the main factors hindering their access to health services as their economic situation and home responsibilities. Displaced women face new environmental and family challenges that negatively affect their health and access to healthcare. Specific interventions aimed at displaced women are required to foster better health through access to work and long -term socioeconomic stability.
Tripathy, Srimant P.; Shafiullah, Syed N.; Cox, Michael J.
2012-01-01
Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms [1]. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected. PMID:23056172
Tripathy, Srimant P; Shafiullah, Syed N; Cox, Michael J
2012-01-01
Correspondence noise is a major factor limiting direction discrimination performance in random-dot kinematograms. In the current study we investigated the influence of correspondence noise on Dmax, which is the upper limit for the spatial displacement of the dots for which coherent motion is still perceived. Human direction discrimination performance was measured, using 2-frame kinematograms having leftward/rightward motion, over a 200-fold range of dot-densities and a four-fold range of dot displacements. From this data Dmax was estimated for the different dot densities tested. A model was proposed to evaluate the correspondence noise in the stimulus. This model summed the outputs of a set of elementary Reichardt-type local detectors that had receptive fields tiling the stimulus and were tuned to the two directions of motion in the stimulus. A key assumption of the model was that the local detectors would have the radius of their catchment areas scaled with the displacement that they were tuned to detect; the scaling factor k linking the radius to the displacement was the only free parameter in the model and a single value of k was used to fit all of the psychophysical data collected. This minimal, correspondence-noise based model was able to account for 91% of the variability in the human performance across all of the conditions tested. The results highlight the importance of correspondence noise in constraining the largest displacement that can be detected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Methods for Estimating Uncertainty in Factor Analytic Solutions
The EPA PMF (Environmental Protection Agency positive matrix factorization) version 5.0 and the underlying multilinear engine-executable ME-2 contain three methods for estimating uncertainty in factor analytic models: classical bootstrap (BS), displacement of factor elements (DI...
A preliminary investigation of shape memory alloys in the surgical correction of scoliosis.
Sanders, J O; Sanders, A E; More, R; Ashman, R B
1993-09-15
Nitinol, a shape memory alloy, is flexible at low temperatures but retains its original shape when heated. This offers interesting possibilities for scoliosis correction. Of the shape memory alloys, nitinol is the most promising medically because of biocompatibility and the ability to control transition temperature. In vivo: Six goats with experimental scoliosis were instrumented with 6-mm nitinol rods. The rods were transformed, and the scoliosis corrected, in the awakened goats by 450-kHz radio frequency induction heating. The curves averaged 41 degrees before instrumentation, 33 degrees after instrumentation, and 11 degrees after rod transformation. The animals tolerated the heating without discomfort, neurologic injury, or evidence of thermal injury to the tissues or the spinal cord. In vitro: Nitinol rods were tested under both constant deflection and constant loading conditions and plotted temperature versus either force or displacement. The 6-mm rod generated forces of 200 N. The 9-mm rod generated up to 500 N. We safely coupled shape memory alloy transformation to the spine and corrected an experimental spinal deformity in awake animals. The forces generated can be estimated by the rod's curvature and temperature. The use of shape memory alloys allows continuous neurologic monitoring during awake correction, true rotational correction by rod torsion, and the potential option of periodic correction to take advantage of spinal viscoelasticity and the potential of true rotational correction by rod torsion.
Photo-polymerization shrinkage-stress kinetics in resin-composites: methods development.
Watts, D C; Marouf, A S; Al-Hindi, A M
2003-01-01
Studies of free shrinkage-strain kinetics on restoratives have begun to multiply. However, there have been fewer investigations of the more difficult problem of concurrent stress-kinetic measurements. The aim was to outline design parameters for a new methodology for this problem, amenable especially to light-cured materials, and to present illustrative results for a range of restorative composites. Absolute values of stress measurable for a given material and geometry are dependent upon the stiffness of the measurement system. In an infinitely stiff system, the measured stress would also tend towards infinity. Real teeth and their cavities are not infinitely stiff; they have elastic and visco-elastic compliance. Consequently, it is important that some minimal, but essentially constant compliance be allowed, whatever the final or time-dependent modulus of the material may be. This goal has been realised by measurement of the time-development, for a disk-geometry specimen (phi=10, h approximately 1.0 mm) of stress (S(r)), with a calibrated cantilever beam-geometry load cell. A novel specimen-holder design was used for this purpose, held in a rigid base assembly. Specimen thicknesses (or gap-widths) of 0.8 and 1.2 mm were specifically investigated on four representative resin-composites. Concurrent measurements were made of the end-displacement of the cantilever load cell, relative to a lower glass plate retaining the specimen. Load-calibration of the cantilever load cell gave an end-displacement per unit stress of circa 6 microm/MPa. This compares with literature values for cuspal compliance or displacement of circa 20 microm. Re-normalisation of the stress-data was implemented. This was accomplished assuming Hooke's law behavior at each instant and equivalent to a stiffer system, with a correction (multiplier) factor of 4 on the raw-stress values. For the materials examined, resultant maximum-stress levels determined were circa 5-8 MPa Stress-levels obtained at 1.2mm thickness were slightly higher (11-15%) than the level of stress obtained at 0.8 mm thickness. This is attributable to the greater mass of material undergoing shrinkage at 1.2 mm, offset slightly by the different C-factors. The new device is a practical and self-contained system for rapid and accurate measurement of stress-kinetics in photo-polymerising and also self-cure materials.
Investigating MAI's Precision: Single Interferogram and Time Series Filtering
NASA Astrophysics Data System (ADS)
Bechor Ben Dov, N.; Herring, T.
2010-12-01
Multiple aperture InSAR (MAI) is a technique to obtain along-track displacements from InSAR phase data. Because InSAR measurements are insensitive to along-track displacements, it is only possible to retrieve them using none-interferometric approaches, either pixel-offset tracking or using data from different orbital configurations and assuming continuity/ displacement model. These approaches are limited by precision and data acquisition conflicts, respectively. MAI is promising in this respect as its precision is better than the former and its data is available whether additional acquisitions are there or not. Here we study the MAI noise and develop a filter to reduce it. We test the filtering with empirical noise and simulated signal data. Below we describe the filtered results single interferogram precision, and a Kalman filter approach for MAI time series. We use 14 interferograms taken over the larger Los Angeles/San Gabrial Mountains area in CA. The interferograms include a variety of decorrelation sources, both terrain-related (topographic variations, vegetation and agriculture), and imaging-related (spatial and temporal baselines of 200-500m and 1-12 months, respectively). Most of the pixels are in the low to average coherence range (below 0.7). The data were collected by ESA and made available by the WInSAR consortium. We assume the data contain “zero” along-track signal (less then the theoretical 4 cm for our coherence range), and use the images as 14 dependent realizations of the MAI noise. We find a wide distribution of phase values σ = 2-3 radians (wrapped). We superimpose a signal on our MAI noise interferograms using along-track displacement (-88 - 143 cm) calculated for the 1812 Wrightwood earthquake. To analyze single MAI interferograms, we design an iterative quantile-based filter and test it on the noise+signal MAI interferograms. The residuals reveal the following MAI noise characteristics: (1) a constant noise term, up to 90 cm (2) a displacement gradient term, up to 0.75cm/km (3) a coherence dependent root residuals sum of squares (RRSS), down to 5 cm at 0.8 coherence In the figure we present two measures of the MAI rmse. Prior to phase gradient correction the RRSS follows the circled line. With the correction, the RRSS follows the solid line. We next evaluate MAI's precision given a time series. We use a Kalman Filter to estimate the spatially and temporally correlated components of the MAI data. We reference the displacements to a given area in the interferograms, weight the data with coherence, and model the reminder terms of the spatially correlated noise as a quadratic phase gradient across the image. The results (not displayed) again vary with coherence. MAI single interferogram precision
NASA Technical Reports Server (NTRS)
2005-01-01
A new all-electronic Particle Image Velocimetry technique that can efficiently map high speed gas flows has been developed in-house at the NASA Lewis Research Center. Particle Image Velocimetry is an optical technique for measuring the instantaneous two component velocity field across a planar region of a seeded flow field. A pulsed laser light sheet is used to illuminate the seed particles entrained in the flow field at two instances in time. One or more charged coupled device (CCD) cameras can be used to record the instantaneous positions of particles. Using the time between light sheet pulses and determining either the individual particle displacements or the average displacement of particles over a small subregion of the recorded image enables the calculation of the fluid velocity. Fuzzy logic minimizes the required operator intervention in identifying particles and computing velocity. Using two cameras that have the same view of the illumination plane yields two single exposure image frames. Two competing techniques that yield unambiguous velocity vector direction information have been widely used for reducing the single-exposure, multiple image frame data: (1) cross-correlation and (2) particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. For the correlation technique, the correlation peak corresponding to the average displacement of particles across the subregion must be identified. Noise on the images and particle dropout result in misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work, fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements, and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle-tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus the velocity. Combining these two techniques makes use of the higher spatial resolution available from the particle tracking. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two-staged velocimetric technique can measure particle velocities with high spatial resolution over a broad range of seeding densities.
NASA Technical Reports Server (NTRS)
Schmidt, R. F.
1984-01-01
An analytical/numerical approach to identifying and correcting the aberrations introduced by a general displacement of the feed from the focal point of a single offset paraboloid antenna used in deployable radiometer systems is developed. A 15 meter reflector with 18 meter focal length is assumed for the analysis, which considers far field radiation pattern quality, focal region fields, and aberrations appearing in the aperture plane. The latter are obtained by ray tracing in the transmit mode and are expressed in terms of optical notation. Attention is given to the physical restraints imposed on corrective elements by real microwave systems and to the intermediate near field aspects of the problem in three dimensions. The subject of wave fronts and caustics in the receive mode is introduced for comparative purposes. Several specific examples are given for aberration reduction at eight beamwidths of scan at a frequency of 1.414 GHz.
Kim, Miso; Park, Kwan-Dong
2017-01-01
We have developed a suite of real-time precise point positioning programs to process GPS pseudorange observables, and validated their performance through static and kinematic positioning tests. To correct inaccurate broadcast orbits and clocks, and account for signal delays occurring from the ionosphere and troposphere, we applied State Space Representation (SSR) error corrections provided by the Seoul Broadcasting System (SBS) in South Korea. Site displacements due to solid earth tide loading are also considered for the purpose of improving the positioning accuracy, particularly in the height direction. When the developed algorithm was tested under static positioning, Kalman-filtered solutions produced a root-mean-square error (RMSE) of 0.32 and 0.40 m in the horizontal and vertical directions, respectively. For the moving platform, the RMSE was found to be 0.53 and 0.69 m in the horizontal and vertical directions. PMID:28598403
NASA Astrophysics Data System (ADS)
Milliner, C. W. D.; Dolan, J. F.; Hollingsworth, J.; Leprince, S.; Ayoub, F.
2014-12-01
Coseismic surface deformation is typically measured in the field by geologists and with a range of geophysical methods such as InSAR, LiDAR and GPS. Current methods, however, either fail to capture the near-field coseismic surface deformation pattern where vital information is needed, or lack pre-event data. We develop a standardized and reproducible methodology to fully constrain the surface, near-field, coseismic deformation pattern in high resolution using aerial photography. We apply our methodology using the program COSI-corr to successfully cross-correlate pairs of aerial, optical imagery before and after the 1992, Mw 7.3 Landers and 1999, Mw 7.1 Hector Mine earthquakes. This technique allows measurement of the coseismic slip distribution and magnitude and width of off-fault deformation with sub-pixel precision. This technique can be applied in a cost effective manner for recent and historic earthquakes using archive aerial imagery. We also use synthetic tests to constrain and correct for the bias imposed on the result due to use of a sliding window during correlation. Correcting for artificial smearing of the tectonic signal allows us to robustly measure the fault zone width along a surface rupture. Furthermore, the synthetic tests have constrained for the first time the measurement precision and accuracy of estimated fault displacements and fault-zone width. Our methodology provides the unique ability to robustly understand the kinematics of surface faulting while at the same time accounting for both off-fault deformation and measurement biases that typically complicates such data. For both earthquakes we find that our displacement measurements derived from cross-correlation are systematically larger than the field displacement measurements, indicating the presence of off-fault deformation. We show that the Landers and Hector Mine earthquake accommodated 46% and 38% of displacement away from the main primary rupture as off-fault deformation, over a mean deformation width of 183 m and 133 m, respectively. We envisage that correlation results derived from our methodology will provide vital data for near-field deformation patterns and will be of significant use for constraining inversion solutions for fault slip at depth.
NASA Technical Reports Server (NTRS)
Wernet, Mark P.
1995-01-01
Particle Image Velocimetry provides a means of measuring the instantaneous 2-component velocity field across a planar region of a seeded flowfield. In this work only two camera, single exposure images are considered where both cameras have the same view of the illumination plane. Two competing techniques which yield unambiguous velocity vector direction information have been widely used for reducing the single exposure, multiple image data: cross-correlation and particle tracking. Correlation techniques yield averaged velocity estimates over subregions of the flow, whereas particle tracking techniques give individual particle velocity estimates. The correlation technique requires identification of the correlation peak on the correlation plane corresponding to the average displacement of particles across the subregion. Noise on the images and particle dropout contribute to spurious peaks on the correlation plane, leading to misidentification of the true correlation peak. The subsequent velocity vector maps contain spurious vectors where the displacement peaks have been improperly identified. Typically these spurious vectors are replaced by a weighted average of the neighboring vectors, thereby decreasing the independence of the measurements. In this work fuzzy logic techniques are used to determine the true correlation displacement peak even when it is not the maximum peak on the correlation plane, hence maximizing the information recovery from the correlation operation, maintaining the number of independent measurements and minimizing the number of spurious velocity vectors. Correlation peaks are correctly identified in both high and low seed density cases. The correlation velocity vector map can then be used as a guide for the particle tracking operation. Again fuzzy logic techniques are used, this time to identify the correct particle image pairings between exposures to determine particle displacements, and thus velocity. The advantage of this technique is the improved spatial resolution which is available from the particle tracking operation. Particle tracking alone may not be possible in the high seed density images typically required for achieving good results from the correlation technique. This two staged approach offers a velocimetric technique capable of measuring particle velocities with high spatial resolution over a broad range of seeding densities.
Automatic Alignment of Displacement-Measuring Interferometer
NASA Technical Reports Server (NTRS)
Halverson, Peter; Regehr, Martin; Spero, Robert; Alvarez-Salazar, Oscar; Loya, Frank; Logan, Jennifer
2006-01-01
A control system strives to maintain the correct alignment of a laser beam in an interferometer dedicated to measuring the displacement or distance between two fiducial corner-cube reflectors. The correct alignment of the laser beam is parallel to the line between the corner points of the corner-cube reflectors: Any deviation from parallelism changes the length of the optical path between the reflectors, thereby introducing a displacement or distance measurement error. On the basis of the geometrical optics of corner-cube reflectors, the length of the optical path can be shown to be L = L(sub 0)cos theta, where L(sub 0) is the distance between the corner points and theta is the misalignment angle. Therefore, the measurement error is given by DeltaL = L(sub 0)(cos theta - 1). In the usual case in which the misalignment is small, this error can be approximated as DeltaL approximately equal to -L(sub 0)theta sup 2/2. The control system (see figure) is implemented partly in hardware and partly in software. The control system includes three piezoelectric actuators for rapid, fine adjustment of the direction of the laser beam. The voltages applied to the piezoelectric actuators include components designed to scan the beam in a circular pattern so that the beam traces out a narrow cone (60 microradians wide in the initial application) about the direction in which it is nominally aimed. This scan is performed at a frequency (2.5 Hz in the initial application) well below the resonance frequency of any vibration of the interferometer. The laser beam makes a round trip to both corner-cube reflectors and then interferes with the launched beam. The interference is detected on a photodiode. The length of the optical path is measured by a heterodyne technique: A 100- kHz frequency shift between the launched beam and a reference beam imposes, on the detected signal, an interferometric phase shift proportional to the length of the optical path. A phase meter comprising analog filters and specialized digital circuitry converts the phase shift to an indication of displacement, generating a digital signal proportional to the path length.
2013-01-01
Background Inadequacy in mental health care in low and middle income countries has been an important contributor to the rising global burden of disease. The treatment gap is salient in resource-poor settings, especially when providing care for conflict-affected forced migrant populations. Primary care is often the only available service option for the majority of forced migrants, and integration of mental health into primary care is a difficult task. The proposed pilot study aims to explore the feasibility of integrating mental health care into primary care by providing training to primary care practitioners serving displaced populations, in order to improve identification, treatment, and referral of patients with common mental disorders via the World Health Organization Mental Health Gap Action Programme (mhGAP). Methods/Design This pilot randomized controlled trial will recruit 86 primary care practitioners (PCP) serving in the Puttalam and Mannar districts of Sri Lanka (with displaced and returning conflict-affected populations). The intervention arm will receive a structured training program based on the mhGAP intervention guide. Primary outcomes will be rates of correct identification, adequate management based on set criteria, and correct referrals of common mental disorders. A qualitative study exploring the attitudes, views, and perspectives of PCP on integrating mental health and primary care will be nested within the pilot study. An economic evaluation will be carried out by gathering service utilization information. Discussion In post-conflict Sri Lanka, an important need exists to provide adequate mental health care to conflict-affected internally displaced persons who are returning to their areas of origin after prolonged displacement. The proposed study will act as a local demonstration project, exploring the feasibility of formulating a larger-scale intervention study in the future, and is envisaged to provide information on engaging PCP, and data on training and evaluation including economic costs, patient recruitment, and acceptance and follow-up rates. The study should provide important information on the WHO mhGAP intervention guide to add to the growing evidence base of its implementation. Trial registration SLCTR/2013/025. PMID:24321171
Siriwardhana, Chesmal; Adikari, Anushka; Van Bortel, Tine; McCrone, Paul; Sumathipala, Athula
2013-12-09
Inadequacy in mental health care in low and middle income countries has been an important contributor to the rising global burden of disease. The treatment gap is salient in resource-poor settings, especially when providing care for conflict-affected forced migrant populations. Primary care is often the only available service option for the majority of forced migrants, and integration of mental health into primary care is a difficult task. The proposed pilot study aims to explore the feasibility of integrating mental health care into primary care by providing training to primary care practitioners serving displaced populations, in order to improve identification, treatment, and referral of patients with common mental disorders via the World Health Organization Mental Health Gap Action Programme (mhGAP). This pilot randomized controlled trial will recruit 86 primary care practitioners (PCP) serving in the Puttalam and Mannar districts of Sri Lanka (with displaced and returning conflict-affected populations). The intervention arm will receive a structured training program based on the mhGAP intervention guide. Primary outcomes will be rates of correct identification, adequate management based on set criteria, and correct referrals of common mental disorders. A qualitative study exploring the attitudes, views, and perspectives of PCP on integrating mental health and primary care will be nested within the pilot study. An economic evaluation will be carried out by gathering service utilization information. In post-conflict Sri Lanka, an important need exists to provide adequate mental health care to conflict-affected internally displaced persons who are returning to their areas of origin after prolonged displacement. The proposed study will act as a local demonstration project, exploring the feasibility of formulating a larger-scale intervention study in the future, and is envisaged to provide information on engaging PCP, and data on training and evaluation including economic costs, patient recruitment, and acceptance and follow-up rates. The study should provide important information on the WHO mhGAP intervention guide to add to the growing evidence base of its implementation. SLCTR/2013/025.
Greenland GPS network: Measurements and Models of 3D Elastic deformation
NASA Astrophysics Data System (ADS)
Khan, S. A.; van Dam, T. M.; Bevis, M. G.; Sasgen, I.; Bamber, J. L.; Helm, V.; Bjork, A. A.; Liu, L.; Kjaer, K. H.; Knudsen, P.; Kjeldsen, K. K.
2017-12-01
The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Here, we focus on present-day changes and compare measurements with models. To retrieve 3D elastic displacements from GPS time series, we correct our observations for glacial-isostatic adjustment and tectonic plate motion, and study the effect of the underlying mantle viscosity, ice load history and Euler parameters. To model 3D elastic displacements, we first estimate mass loss using 1995-2014 NASA's Airborne Topographic Mapper (ATM) flights derived altimetry, supplemented with laser altimetry observations from the Ice, Cloud, and Land Elevation Satellite (ICESat) during 2003-2009; the airborne Land, Vegetation, and Ice Sensor (LVIS) instrument during 2007-2013; radar altimetry from the CryoSat-2 satellite during 2010-2017; and European Remote-Sensing Satellite-1 (ERS-1) and ERS-2 data during 1995-2003. We converted the volume loss rate into a mass loss rate accounting for firn compaction as described by Kuipers Munneke et al. (2015). We predict the elastic displacements by convolving mass loss estimates with Green's functions for vertical and horizontal displacements. We use a variety of elastic Green's functions and mass change grid resolutions, respectively, to study the sensitivity of 3D elastic deformation on Earth model parameters different from the Preliminary Reference Earth Reference Model (PREM; Dziewonski & Anderson 1981) and the forcing ice load.
Automated generation of influence functions for planar crack problems
NASA Technical Reports Server (NTRS)
Sire, Robert A.; Harris, David O.; Eason, Ernest D.
1989-01-01
A numerical procedure for the generation of influence functions for Mode I planar problems is described. The resulting influence functions are in a form for convenient evaluation of stress-intensity factors for complex stress distributions. Crack surface displacements are obtained by a least-squares solution of the Williams eigenfunction expansion for displacements in a cracked body. Discrete values of the influence function, evaluated using the crack surface displacements, are curve fit using an assumed functional form. The assumed functional form includes appropriate limit-behavior terms for very deep and very shallow cracks. Continuous representation of the influence function provides a convenient means for evaluating stress-intensity factors for arbitrary stress distributions by numerical integration. The procedure is demonstrated for an edge-cracked strip and a radially cracked disk. Comparisons with available published results demonstrate the accuracy of the procedure.
Numerical calibration of the stable poisson loaded specimen
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Calomino, Anthony M.; Brewer, Dave N.
1992-01-01
An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-Curve determination. The crack mouth opening displacements (CMOD's) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMOD's, and crack displacement profiles are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length, thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.
Analytical stress intensity solution for the Stable Poisson Loaded specimen
NASA Technical Reports Server (NTRS)
Ghosn, Louis J.; Calomino, Anthony M.; Brewer, David N.
1993-01-01
An analytical calibration of the Stable Poisson Loaded (SPL) specimen is presented. The specimen configuration is similar to the ASTM E-561 compact-tension specimen with displacement controlled wedge loading used for R-curve determination. The crack mouth opening displacements (CMODs) are produced by the diametral expansion of an axially compressed cylindrical pin located in the wake of a machined notch. Due to the unusual loading configuration, a three-dimensional finite element analysis was performed with gap elements simulating the contact between the pin and specimen. In this report, stress intensity factors, CMODs, and crack displacement profiles, are reported for different crack lengths and different contacting conditions. It was concluded that the computed stress intensity factor decreases sharply with increasing crack length thus making the SPL specimen configuration attractive for fracture testing of brittle, high modulus materials.
FY2010 Supplemental for Wars, Disaster Assistance, Haiti Relief, and Other Programs
2010-06-30
development; • Private sector development: $60.4 million; and • Economic opportunity : $8.6 million to expand credit union services, including Islamic... opportunities outside of Port-au- Prince. The Haitian government and donors agree that the current crisis provides an opportunity to correct what had become...report directs U.S. agencies to reestablish and strengthen basic and secondary educational opportunities , and to ensure that displaced children in
Resistivity Correction Factor for the Four-Probe Method: Experiment II
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Yamaguchi, Shoji; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo
1989-05-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F can be applied to a system consisting of a disk sample and a four-probe array. Measurements are made on isotropic graphite disks and crystalline ITO films. Factor F can correct the apparent variations of the data and lead to reasonable resistivities and sheet resistances. Here factor F is compared to other correction factors; i.e. FASTM and FJIS.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2017-06-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
Earth Tide Analysis Specifics in Case of Unstable Aquifer Regime
NASA Astrophysics Data System (ADS)
Vinogradov, Evgeny; Gorbunova, Ella; Besedina, Alina; Kabychenko, Nikolay
2018-05-01
We consider the main factors that affect underground water flow including aquifer supply, collector state, and distant earthquakes seismic waves' passage. In geodynamically stable conditions underground inflow change can significantly distort hydrogeological response to Earth tides, which leads to the incorrect estimation of phase shift between tidal harmonics of ground displacement and water level variations in a wellbore. Besides an original approach to phase shift estimation that allows us to get one value per day for the semidiurnal M2 wave, we offer the empirical method of excluding periods of time that are strongly affected by high inflow. In spite of rather strong ground motion during earthquake waves' passage, we did not observe corresponding phase shift change against the background on significant recurrent variations due to fluctuating inflow influence. Though inflow variations do not look like the only important parameter that must be taken into consideration while performing phase shift analysis, permeability estimation is not adequate without correction based on background alternations of aquifer parameters due to natural and anthropogenic reasons.
Brief Communication: A low-cost Arduino®-based wire extensometer for earth flow monitoring
NASA Astrophysics Data System (ADS)
Guerriero, Luigi; Guerriero, Giovanni; Grelle, Gerardo; Guadagno, Francesco M.; Revellino, Paola
2017-06-01
Continuous monitoring of earth flow displacement is essential for the understanding of the dynamic of the process, its ongoing evolution and designing mitigation measures. Despite its importance, it is not always applied due to its expense and the need for integration with additional sensors to monitor factors controlling movement. To overcome these problems, we developed and tested a low-cost Arduino-based wire-rail extensometer integrating a data logger, a power system and multiple digital and analog inputs. The system is equipped with a high-precision position transducer that in the test configuration offers a measuring range of 1023 mm and an associated accuracy of ±1 mm, and integrates an operating temperature sensor that should allow potential thermal drift that typically affects this kind of systems to be identified and corrected. A field test, conducted at the Pietrafitta earth flow where additional monitoring systems had been installed, indicates a high reliability of the measurement and a high monitoring stability without visible thermal drift.
de Senneville, Baudouin Denis; Mougenot, Charles; Moonen, Chrit T W
2007-02-01
Focused ultrasound (US) is a unique and noninvasive technique for local deposition of thermal energy deep inside the body. MRI guidance offers the additional benefits of excellent target visualization and continuous temperature mapping. However, treating a moving target poses severe problems because 1) motion-related thermometry artifacts must be corrected, 2) the US focal point must be relocated according to the target displacement. In this paper a complete MRI-compatible, high-intensity focused US (HIFU) system is described together with adaptive methods that allow continuous MR thermometry and therapeutic US with real-time tracking of a moving target, online motion correction of the thermometry maps, and regional temperature control based on the proportional, integral, and derivative method. The hardware is based on a 256-element phased-array transducer with rapid electronic displacement of the focal point. The exact location of the target during US firing is anticipated using automatic analysis of periodic motions. The methods were tested with moving phantoms undergoing either rigid body or elastic periodical motions. The results show accurate tracking of the focal point. Focal and regional temperature control is demonstrated with a performance similar to that obtained with stationary phantoms. Copyright (c) 2007 Wiley-Liss, Inc.
Field Balancing of Magnetically Levitated Rotors without Trial Weights
Fang, Jiancheng; Wang, Yingguang; Han, Bangcheng; Zheng, Shiqiang
2013-01-01
Unbalance in magnetically levitated rotor (MLR) can cause undesirable synchronous vibrations and lead to the saturation of the magnetic actuator. Dynamic balancing is an important way to solve these problems. However, the traditional balancing methods, using rotor displacement to estimate a rotor's unbalance, requiring several trial-runs, are neither precise nor efficient. This paper presents a new balancing method for an MLR without trial weights. In this method, the rotor is forced to rotate around its geometric axis. The coil currents of magnetic bearing, rather than rotor displacement, are employed to calculate the correction masses. This method provides two benefits when the MLR's rotation axis coincides with the geometric axis: one is that unbalanced centrifugal force/torque equals the synchronous magnetic force/torque, and the other is that the magnetic force is proportional to the control current. These make calculation of the correction masses by measuring coil current with only a single start-up precise. An unbalance compensation control (UCC) method, using a general band-pass filter (GPF) to make the MLR spin around its geometric axis is also discussed. Experimental results show that the novel balancing method can remove more than 92.7% of the rotor unbalance and a balancing accuracy of 0.024 g mm kg−1 is achieved.
An active co-phasing imaging testbed with segmented mirrors
NASA Astrophysics Data System (ADS)
Zhao, Weirui; Cao, Genrui
2011-06-01
An active co-phasing imaging testbed with high accurate optical adjustment and control in nanometer scale was set up to validate the algorithms of piston and tip-tilt error sensing and real-time adjusting. Modularization design was adopted. The primary mirror was spherical and divided into three sub-mirrors. One of them was fixed and worked as reference segment, the others were adjustable respectively related to the fixed segment in three freedoms (piston, tip and tilt) by using sensitive micro-displacement actuators in the range of 15mm with a resolution of 3nm. The method of twodimension dispersed fringe analysis was used to sense the piston error between the adjacent segments in the range of 200μm with a repeatability of 2nm. And the tip-tilt error was gained with the method of centroid sensing. Co-phasing image could be realized by correcting the errors measured above with the sensitive micro-displacement actuators driven by a computer. The process of co-phasing error sensing and correcting could be monitored in real time by a scrutiny module set in this testbed. A FISBA interferometer was introduced to evaluate the co-phasing performance, and finally a total residual surface error of about 50nm rms was achieved.
Assessment of sensorimotor control in adults with surgical correction for idiopathic scoliosis.
Pialasse, Jean-Philippe; Mercier, Pierre; Descarreaux, Martin; Simoneau, Martin
2016-10-01
This study aims at verifying if impaired sensorimotor control observed in adolescents and young adults with scoliosis is also present in adult patients who underwent surgery to reduce their spine deformation. The study included ten healthy adults and ten adults with idiopathic scoliosis who underwent surgery to reduce their spine deformation. Galvanic vestibular stimulation was delivered to assess sensorimotor control. Vertical forces under each foot and horizontal displacement of the upper body were measured before, during and after stimulation. Balance control was assessed by calculating the root mean square values of kinematic and kinetic variables. The amplitude of the vestibular-evoked postural response was 3.4 % (0.8-6.0 %) and 4.5 % (-0.4 to 9.5 %) of the maximal range of motion. Therefore, spine surgery did not limit the postural response. Patients with idiopathic scoliosis exhibited larger body sway than the healthy controls during and immediately after vestibular stimulation. The maximal normalized lateral displacement of the body was 0.85 and 0.40 cm/m and maximal normalized vertical force was 0.78 vs. 0.39 N/kg, for idiopathic scoliosis and healthy groups, respectively. This result suggests that dysfunctional sensorimotor integration is still present even in adult idiopathic scoliosis that underwent spine deformation correction.
Yao, Yongpeng; Li, Shanshan; Cao, Jiaqian; Liu, Weiwei; Fan, Keqiang; Xiang, Wensheng; Yang, Keqian; Kong, Deming; Wang, Weishan
2018-05-08
Here, we demonstrate an easy-to-implement and general biosensing strategy by coupling the small-molecule recognition of the bacterial allosteric transcription factor (aTF) with isothermal strand displacement amplification (SDA) in vitro. Based on this strategy, we developed two biosensors for the detection of an antiseptic, p-hydroxybenzoic acid, and a disease marker, uric acid, using bacterial aTF HosA and HucR, respectively, highlighting the great potential of this strategy for the development of small-molecule biosensors.
NASA Astrophysics Data System (ADS)
Dixon, T. H.; A Karegar, M.; Uebbing, B.; Kusche, J.; Fenoglio-Marc, L.
2017-12-01
Coastal Louisiana is experiencing the highest rate of relative sea-level rise in North America due to the combination of sea-level rise and subsidence of the deltaic plain. The land subsidence in this region is studied using various techniques, with continuous GPS site providing high temporal resolution. Here, we use high resolution tide-gauge data and advanced processing of satellite altimetry to derive vertical displacements time series at NOAA tide-gauge stations along the coast (Figure 1). We apply state-of-the-art retracking techniques to process raw altimetry data, allowing high accuracy on range measurements close to the coast. Data from Jason-1, -2 and -3, Envisat, Saral and Cryosat-2 are used, corrected for solid Earth tide, pole tide and tidal ocean loading, using background models consistent with the GPS processing technique. We reprocess the available GPS data using precise point positioning and estimate the rate uncertainty accounting for correlated noise. The displacement time series are derived by directly subtracting tide-gauge data from the altimetry sea-level anomaly data. The quality of the derived displacement rates is evaluated in Grand Isle, Amerada Pass and Shell Beach where GPS data are available adjacent to the tide gauges. We use this technique to infer vertical displacement at tide gauges in New Orleans (New Canal Station) and Port Fourchon and Southwest Pass along the coastline.
Phase correction and error estimation in InSAR time series analysis
NASA Astrophysics Data System (ADS)
Zhang, Y.; Fattahi, H.; Amelung, F.
2017-12-01
During the last decade several InSAR time series approaches have been developed in response to the non-idea acquisition strategy of SAR satellites, such as large spatial and temporal baseline with non-regular acquisitions. The small baseline tubes and regular acquisitions of new SAR satellites such as Sentinel-1 allows us to form fully connected networks of interferograms and simplifies the time series analysis into a weighted least square inversion of an over-determined system. Such robust inversion allows us to focus more on the understanding of different components in InSAR time-series and its uncertainties. We present an open-source python-based package for InSAR time series analysis, called PySAR (https://yunjunz.github.io/PySAR/), with unique functionalities for obtaining unbiased ground displacement time-series, geometrical and atmospheric correction of InSAR data and quantifying the InSAR uncertainty. Our implemented strategy contains several features including: 1) improved spatial coverage using coherence-based network of interferograms, 2) unwrapping error correction using phase closure or bridging, 3) tropospheric delay correction using weather models and empirical approaches, 4) DEM error correction, 5) optimal selection of reference date and automatic outlier detection, 6) InSAR uncertainty due to the residual tropospheric delay, decorrelation and residual DEM error, and 7) variance-covariance matrix of final products for geodetic inversion. We demonstrate the performance using SAR datasets acquired by Cosmo-Skymed and TerraSAR-X, Sentinel-1 and ALOS/ALOS-2, with application on the highly non-linear volcanic deformation in Japan and Ecuador (figure 1). Our result shows precursory deformation before the 2015 eruptions of Cotopaxi volcano, with a maximum uplift of 3.4 cm on the western flank (fig. 1b), with a standard deviation of 0.9 cm (fig. 1a), supporting the finding by Morales-Rivera et al. (2017, GRL); and a post-eruptive subsidence on the same area, with a maximum of -3 +/- 0.9 cm (fig. 1c). Time-series displacement map (fig. 2) shows a highly non-linear deformation behavior, indicating the complicated magma propagation process during this eruption cycle.
Anomalous tidal loading signals in South-West England and Brittany
NASA Astrophysics Data System (ADS)
Keshin, M.; Penna, N. T.; Clarke, P. J.; Bos, M. S.; Baker, T. F.
2010-05-01
The tidal deformation of the Earth, including ocean tide loading (OTL), sheds light on the Earth's internal structure. Uncertainties in the knowledge of this deformation may be a source of both direct and propagated periodic errors in GPS geodesy. The increasing number of global GPS stations with long histories of observations, as well as recent developments in precise GPS geodesy such as the availability of reprocessed satellite orbits, enables further study of these geophysical and geodetic phenomena. There are more than 10 worldwide regions where OTL displacement amplitudes exceed 25mm. In our work we considered one such region covering South-West England and stretching southward along the coasts of France, Spain and Portugal. Estimates of three-dimensional harmonic site motion at each of the principal diurnal (K1, O1, P1, Q1) and semi-diurnal (K2, M2, N2, S2) frequencies were obtained for 40 European stations with at least 2 year observation span, using the GIPSY-OASIS II software package with reprocessed precise satellite orbits from JPL. All GPS data available from 2002.0 to 2010.0 were considered. 34 stations were situated close to the Atlantic coast; a further 6 inland stations at similar latitudes were processed as a check on solid Earth tide models. Inter-model OTL displacement differences are small, especially for the inland sites; the problematic Bristol Channel area of South-West England was excluded. We validated the quality of our GPS estimates by using and comparing three different analysis strategies: (1) Harmonic estimation of total tidal displacement in 24-hour Precise Point Positioning (PPP) batch solutions: harmonic displacements are estimated per coordinate component for each of the eight principal tidal constituents. OTL is not modelled a priori, and nodal corrections are applied in post-processing after combination of the daily results; (2) Harmonic estimation of residual tidal displacement in 24-hour PPP batch solutions: OTL is modelled a priori using the FES2004 model in the reference frame of the whole Earth system (CM); the residual harmonic displacements are estimated per component per principal tidal constituent. Minor tidal harmonics are removed a priori using the routine "hardisp" by D. Agnew. Because of this, post-processing nodal corrections are not applied; (3) Amplitude and phase from kinematic PPP processing: kinematic GPS processing with a priori OTL modelling using FES2004 and hardisp as in (2); amplitude spectra are later estimated from the entire coordinate time series using the Lomb-Scargle periodogram method. We typically obtain excellent (0.3-0.7mm except for the K1 and K2 constituents) phasor agreement between all three strategies, comparable to the inter-model agreement between computed OTL displacements and suggesting that the GPS analysis strategy robustly detects actual tidal displacements. For sites in inland Europe where computed OTL displacements are less than 10mm with inter-model differences of less than 0.2mm, residual harmonic amplitudes are also at the 0.3-0.7mm level, confirming that solid Earth tides are modelled to at least this accuracy. For GPS stations located in South-West England and Brittany, onshore of the continental shelf, anomalous residual tidal signals were detected of about 2-3mm magnitude for the vertical M2 OTL constituent (10% of the expected signal). In contrast, sites in the Iberian Peninsula, with similar expected OTL magnitudes, have residuals at the expected 0.3-0.7mm level. Sites near to the Bay of Biscay show transitional behaviour between these regimes. Therefore at these locations, the different modern ocean tide models that agree very well must all either be systematically in error, or the difference in behaviour may be caused by errors in the displacement Green's functions applicable to loads on the nearby continental shelf.
NASA Astrophysics Data System (ADS)
Jiang, Fulin; Tang, Jie; Fu, Dinfa; Huang, Jianping; Zhang, Hui
2018-04-01
Multistage stress-strain curve correction based on an instantaneous friction factor was studied for axisymmetric uniaxial hot compression of 7150 aluminum alloy. Experimental friction factors were calculated based on continuous isothermal axisymmetric uniaxial compression tests at various deformation parameters. Then, an instantaneous friction factor equation was fitted by mathematic analysis. After verification by comparing single-pass flow stress correction with traditional average friction factor correction, the instantaneous friction factor equation was applied to correct multistage stress-strain curves. The corrected results were reasonable and validated by multistage relative softening calculations. This research provides a broad potential for implementing axisymmetric uniaxial compression in multistage physical simulations and friction optimization in finite element analysis.
NASA Astrophysics Data System (ADS)
Rokhforouz, M. R.; Akhlaghi Amiri, H. A.
2018-03-01
In this work, coupled Cahn-Hilliard phase field and Navier-Stokes equations were solved using finite element method to address the effects of micro-fracture and its characterizations on water-oil displacements in a heterogeneous porous medium. Sensitivity studies at a wide range of viscosity ratios (M) and capillary numbers (Ca), and the resultant log Ca-log M stability phase diagram, revealed that in both media, with/without fracture, the three regimes of viscous fingering, capillary fingering and stable displacement similarly occur. However, presence of the fracture caused water channeling phenomenon which resulted in reduction of the number of active fingers and hence the final oil recovery factor. At high Ca (especially in the stable regime, with log Ca ≥ -2.5 and log M ≥ 0), recovery factor for the fractured medium was relatively identical with the non-fractured one. At log M ≥ 0, the fracture was fully swept, but flow instabilities were observed inside the fracture at lower M values, especially for log Ca > -4.6. In the case of the fractured medium at log Ca = -4.6 and log M = 0 (capillary dominant flow), it is observed that the primary breakthrough took place by a finger progressed through the matrix, not those channeled through the fracture. Geometrical properties of the fracture, including length, aperture and orientation, highly affected both displacement profile and efficiency. The fracture length inversely influenced the oil recovery factor. It was observed that there is a critical fracture width (almost half of the medium average pore diameter) at which the recovery factor of the medium during displacement is minimum, compared to the media having thinner and thicker fractures. Minor channeling effect in the media with thinner fracture and larger fracture swept volume as well as high fracture/matrix cross flow in the media with thicker fracture were detected as the main cause of this non-monotonic behavior. In the models with thick fractures (with the thickness higher than the average pore diameter), considerable trapped oil volumes were observed inside the fracture at low M values. The fracture orientation had the most impressive effect on oil recovery compared to the other studied parameters; where the oil recovery factor incremented more than 20% as the fracture rotated 90° from flow direction. Due to the dominant effect of the channeling phenomenon, the change in the medium wettability from slightly oil-wet to slightly water-wet, did not considerably affect the displacement profile in the fractured medium. However, oil recovery factor increased as the medium became more water-wet. The fracture area was fully swept by the injected water in the oil-wet and neutral-wet media. However, flow instabilities were observed inside the fracture of the water-wet medium due to counter-current imbibition between fracture/matrix. Micro-scale mechanisms of pore doublet effect, interface coalesce, snap-off and reverse movements were captured during the studied unstable displacements.
Universal Logarithmic Law of the Wall in Turbulent Channel and Pipe Flows
NASA Astrophysics Data System (ADS)
Zanoun, E.-S.; Durst, F.; Nagib, Hassan
2003-11-01
The accuracy of obtaining parameters of velocity distribution in the inertial sub-layer of wall-bounded flows depends on evaluating the wall friction and spatial resolution of measurements. By focusing on these aspects of experiments and extending the range of available channel data by a factor of two, our work confirms the log-law over a power-law representation for Re_τ≥ 2×10^3. Measurements in a fully-developed pipe reveal that velocity instruments such as hot-wires are superior to pressure probes for several reasons including spatial resolution. No general technique for correcting Pitot probe data exists, and the MacMillan's displacement correction drastically changes the slope of the logarithmic law. Oil-film interferometry coupled with hot-wire measurements were used to demonstrate effects of channel aspect ratio on results and to reveal that initial tripping has insignificant effects on the Kármán constant in the fully developed region. Data reveal evidence on differences in the outer flow between channels and pipes. In channels, we find that the inertial sub-range may be represented by the simple approximate formula ;U^+≈e ln y^++10/e and the fully developed channel resistance by c_f=0.0624 Re_m-0.25 or √2/c_f; ≈ ; e; ln Re √c_f+10/e+e;(ln1/√2-1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torun, H.; Torello, D.; Degertekin, F. L.
2011-08-15
The authors describe a method of actuation for atomic force microscope (AFM) probes to improve imaging speed and displacement range simultaneously. Unlike conventional piezoelectric tube actuation, the proposed method involves a lever and fulcrum ''seesaw'' like actuation mechanism that uses a small, fast piezoelectric transducer. The lever arm of the seesaw mechanism increases the apparent displacement range by an adjustable gain factor, overcoming the standard tradeoff between imaging speed and displacement range. Experimental characterization of a cantilever holder implementing the method is provided together with comparative line scans obtained with contact mode imaging. An imaging bandwidth of 30 kHz inmore » air with the current setup was demonstrated.« less
Nonclassicality of Photon-Added Displaced Thermal State via Quantum Phase-Space Distributions
NASA Astrophysics Data System (ADS)
Zhang, Ran; Meng, Xiang-Guo; Du, Chuan-Xun; Wang, Ji-Suo
2018-02-01
We introduce a new kind of nonclassical mixed state generated by adding arbitrary photons to a displaced thermal state, i.e., the photon-added displaced thermal state (PADTS), and obtain the normalization factor, which is simply related to two-variable Hermite polynomials. We also discuss the nonclassicality of the PADTS by considering quantum phase-space distributions. The results indicate that the value of the photon count statistics is maximum when the number of detected photons is equal to the number of added photons, and that the photon-added operation has a similar modulation effect with increasing displacement. Moreover, the negative volume of the Wigner function for the PADTS takes a maximal value for a specific photon-added number.
Metal-cluster ionization energy: A profile-insensitive exact expression for the size effect
NASA Astrophysics Data System (ADS)
Seidl, Michael; Perdew, John P.; Brajczewska, Marta; Fiolhais, Carlos
1997-05-01
The ionization energy of a large spherical metal cluster of radius R is I(R)=W+(+c)/R, where W is the bulk work function and c~-0.1 is a material-dependent quantum correction to the electrostatic size effect. We present 'Koopmans' and 'displaced-profile change-in-self-consistent-field' expressions for W and c within the ordinary and stabilized-jellium models. These expressions are shown to be exact and equivalent when the exact density profile of a large neutral cluster is employed; these equivalences generalize the Budd-Vannimenus theorem. With an approximate profile obtained from a restricted variational calculation, the 'displaced-profile' expressions are the more accurate ones. This profile insensitivity is important, because it is not practical to extract c from solutions of the Kohn-Sham equations for small metal clusters.
ERIC Educational Resources Information Center
Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard
2014-01-01
In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception…
Is ExacTrac x-ray system an alternative to CBCT for positioning patients with head and neck cancers?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clemente, Stefania; Chiumento, Costanza; Fiorentino, Alba
Purpose: To evaluate the usefulness of a six-degrees-of freedom (6D) correction using ExacTrac robotics system in patients with head-and-neck (HN) cancer receiving radiation therapy.Methods: Local setup accuracy was analyzed for 12 patients undergoing intensity-modulated radiation therapy (IMRT). Patient position was imaged daily upon two different protocols, cone-beam computed tomography (CBCT), and ExacTrac (ET) images correction. Setup data from either approach were compared in terms of both residual errors after correction and punctual displacement of selected regions of interest (Mandible, C2, and C6 vertebral bodies).Results: On average, both protocols achieved reasonably low residual errors after initial correction. The observed differences inmore » shift vectors between the two protocols showed that CBCT tends to weight more C2 and C6 at the expense of the mandible, while ET tends to average more differences among the different ROIs.Conclusions: CBCT, even without 6D correction capabilities, seems preferable to ET for better consistent alignment and the capability to see soft tissues. Therefore, in our experience, CBCT represents a benchmark for positioning head and neck cancer patients.« less
Finite element analysis of pectus carinatum surgical correction via a minimally invasive approach.
Neves, Sara C; Pinho, A C M; Fonseca, Jaime C; Rodrigues, Nuno F; Henriques-Coelho, Tiago; Correia-Pinto, Jorge; Vilaça, João L
2015-01-01
Pectus carinatum (PC) is a chest deformity caused by a disproportionate growth of the costal cartilages compared to the bony thoracic skeleton, pulling the sternum towards, which leads to its protrusion. There has been a growing interest on using the 'reversed Nuss' technique as a minimally invasive procedure for PC surgical correction. A corrective bar is introduced between the skin and the thoracic cage and positioned on top of the sternum highest protrusion area for continuous pressure. Then, it is fixed to the ribs and kept implanted for about 2-3 years. The purpose of this work was to (a) assess the stresses distribution on the thoracic cage that arise from the procedure, and (b) investigate the impact of different positioning of the corrective bar along the sternum. The higher stresses were generated on the 4th, 5th and 6th ribs backend, supporting the hypothesis of pectus deformities correction-induced scoliosis. The different bar positioning originated different stresses on the ribs' backend. The bar position that led to lower stresses generated on the ribs backend was the one that also led to the smallest sternum displacement. However, this may be preferred, as the risk of induced scoliosis is lowered.
A "hydrokinematic" method of measuring the glide efficiency of a human swimmer.
Naemi, Roozbeh; Sanders, Ross H
2008-12-01
The aim of this study was to develop and test a method of quantifying the glide efficiency, defined as the ability of the body to maintain its velocity over time and to minimize deceleration through a rectilinear glide. The glide efficiency should be determined in a way that accounts for both the inertial and resistive characteristics of the gliding body as well as the instantaneous velocity. A displacement function (parametric curve) was obtained from the equation of motion of the body during a horizontal rectilinear glide. The values of the parameters in the displacement curve that provide the best fit to the displacement-time data of a body during a rectilinear horizontal glide represent the glide factor and the initial velocity of the particular glide interval. The glide factor is a measure of glide efficiency and indicates the ability of the body to minimize deceleration at each corresponding velocity. The glide efficiency depends on the hydrodynamic characteristic of the body, which is influenced by the body's shape as well as by the body's size. To distinguish the effects of size and shape on the glide efficiency, a size-related glide constant and a shape-related glide coefficient were determined as separate entities. The glide factor is the product of these two parameters. The goodness of fit statistics indicated that the representative displacement function found for each glide interval closely represents the real displacement data of a body in a rectilinear horizontal glide. The accuracy of the method was indicated by a relative standard error of calculation of less than 2.5%. Also the method was able to distinguish between subjects in their glide efficiency. It was found that the glide factor increased with decreasing velocity. The glide coefficient also increased with decreasing Reynolds number. The method is sufficiently accurate to distinguish between individual swimmers in terms of their glide efficiency. The separation of glide factor to a size-related glide constant and a shape-related glide coefficient enabled the effect of size and shape to be quantified.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Calderon, E; Siergiej, D
2014-06-01
Purpose: Output factor determination for small fields (less than 20 mm) presents significant challenges due to ion chamber volume averaging and diode over-response. Measured output factor values between detectors are known to have large deviations as field sizes are decreased. No set standard to resolve this difference in measurement exists. We observed differences between measured output factors of up to 14% using two different detectors. Published Monte Carlo derived correction factors were used to address this challenge and decrease the output factor deviation between detectors. Methods: Output factors for Elekta's linac-based stereotactic cone system were measured using the EDGE detectormore » (Sun Nuclear) and the A16 ion chamber (Standard Imaging). Measurements conditions were 100 cm SSD (source to surface distance) and 1.5 cm depth. Output factors were first normalized to a 10.4 cm × 10.4 cm field size using a daisy-chaining technique to minimize the dependence of field size on detector response. An equation expressing the relation between published Monte Carlo correction factors as a function of field size for each detector was derived. The measured output factors were then multiplied by the calculated correction factors. EBT3 gafchromic film dosimetry was used to independently validate the corrected output factors. Results: Without correction, the deviation in output factors between the EDGE and A16 detectors ranged from 1.3 to 14.8%, depending on cone size. After applying the calculated correction factors, this deviation fell to 0 to 3.4%. Output factors determined with film agree within 3.5% of the corrected output factors. Conclusion: We present a practical approach to applying published Monte Carlo derived correction factors to measured small field output factors for the EDGE and A16 detectors. Using this method, we were able to decrease the percent deviation between both detectors from 14.8% to 3.4% agreement.« less
Longitudinal and Circumferential Strain of the Proximal Aorta
Bell, Vanessa; Mitchell, William A.; Sigurðsson, Sigurður; Westenberg, Jos J. M.; Gotal, John D.; Torjesen, Alyssa A.; Aspelund, Thor; Launer, Lenore J.; de Roos, Albert; Gudnason, Vilmundur; Harris, Tamara B.; Mitchell, Gary F.
2014-01-01
Background Accurate assessment of mechanical properties of the proximal aorta is a requisite first step for elucidating the pathophysiology of isolated systolic hypertension. During systole, substantial proximal aortic axial displacement produces longitudinal strain, which we hypothesize causes variable underestimation of ascending aortic circumferential strain compared to values in the longitudinally constrained descending aorta. Methods and Results To assess effects of longitudinal strain, we performed magnetic resonance imaging in 375 participants (72 to 94 years old, 204 women) in the Age, Gene/Environment Susceptibility‐Reykjavik Study and measured aortic circumferential and longitudinal strain. Circumferential ascending aortic area strain uncorrected for longitudinal strain was comparable in women and men (mean [95% CI], 8.3 [7.8, 8.9] versus 7.9 [7.4, 8.5]%, respectively, P=0.3). However, longitudinal strain was greater in women (8.5±2.5 versus 7.0±2.5%, P<0.001), resulting in greater longitudinally corrected circumferential ascending aortic strain (14.4 [13.6, 15.2] versus 13.0 [12.4, 13.7]%, P=0.010). Observed circumferential descending aortic strain, which did not require correction (women: 14.0 [13.2, 14.8], men: 12.4 [11.6, 13.2]%, P=0.005), was larger than uncorrected (P<0.001), but comparable to longitudinally corrected (P=0.12) circumferential ascending aortic strain. Carotid‐femoral pulse wave velocity did not correlate with uncorrected ascending aortic strain (R=−0.04, P=0.5), but was inversely related to longitudinally corrected ascending and observed descending aortic strain (R=−0.15, P=0.004; R=−0.36, P<0.001, respectively). Longitudinal strain was also inversely related to carotid‐femoral pulse wave velocity and other risk factors for higher aortic stiffness including treated hypertension. Conclusions Longitudinal strain creates substantial and variable errors in circumferential ascending aortic area strain measurements, particularly in women, and should be considered to avoid misclassification of ascending aortic stiffness. PMID:25523153
Estévez, Ana; Ozerinjauregi, Nagore; Herrero-Fernández, David
2016-01-01
Child sexual abuse is one of the most serious forms of abuse due to the psychological consequences that persist even into adulthood. Expressions of anger among child sexual abuse survivors remain common even years after the event. While child sexual abuse has been extensively studied, the expression of displaced aggression has been studied less. Some factors, such as the maladaptive early schemas, might account for this deficiency. The objective of this study was to analyze the relationships between child sexual abuse, displaced aggression, and these schemas according to gender and determine if these early schemas mediate the relationship between child sexual abuse and displaced aggression. A total of 168 Spanish subjects who were victims of child sexual abuse completed measures of childhood trauma, displaced aggression, and early maladaptive schemas. The results depict the relationship between child sexual abuse, displaced aggression, and early maladaptive schemas. Women scored higher than men in child sexual abuse, emotional abuse, disconnection or rejection and impaired autonomy. Mediational analysis found a significant mediation effect of disconnection or rejection on the relationship between child sexual abuse and displaced aggression; however, impaired autonomy did not mediate significantly.
Hynes, Michelle E; Sterk, Claire E; Hennink, Monique; Patel, Shilpa; DePadilla, Lara; Yount, Kathryn M
2016-01-01
Women displaced by conflict are often exposed to many factors associated with a risk of intimate partner violence (IPV) such as high levels of community violence and the breakdown of social support systems. Previous research found that Colombian women perceived IPV to increase after displacement. This study explored how the experience of displacement altered gendered roles in ways that influenced the risk of IPV. Thirty-three qualitative interviews were conducted with displaced partnered Colombian women. Women disclosed that couples often held patriarchal gender norms; however, the roles of each partner necessitated by conditions of displacement were often in conflict with these norms. Men's underemployment and women's employment outside the home were viewed as gender transgressive within some partnerships and increased relationship conflict. Economic resources intended to empower displaced women, notably women's earnings and home ownership, had unintended negative consequences for women's agency. These consequences included a corresponding decrease in partner financial contributions and reduced mobility. Women's ability to obtain support or leave violent relationships was hindered by interpersonal, social and structural barriers. For women to have agency to leave violent relationships, power relationships at all levels from the interpersonal to societal must be recognised and addressed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
3D Deformation at the Coso Geothermal Field - Observations and Models
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Hager, B. H.; McClusky, S.; King, R. W.
2001-12-01
Over the past decade, rapid ground deformation has been measured over the Coso geothermal field in Eastern CA using InSAR and GPS. InSAR resolves changes in distance along the line-of-sight (LOS) to the satellite with high spatial coverage. In the Coso geothermal field the maximum LOS displacements are up to 35 mm/yr. The inclination of the LOS is acute (about 20 degrees), hence the majority of the deformation resolved with InSAR is vertical, however LOS displacements are also affected by horizontal displacements. The ratio of the sensitivity of LOS displacements to vertical and horizontal displacements is at most 5 to 2, for horizontal displacements inline with the LOS. GPS is able to resolve large horizontal displacements in this area, leading to the conclusion that the InSAR LOS displacement fields are non-trivially affected by horizontal displacements. Additionally, since the horizontal displacements are large, GPS is also able to resolve vertical displacements. Moreover, the GPS three component velocities are fairly consistent with the LOS displacements from InSAR. This deformation has been largely attributed to subsidence as fluid is extracted from the geothermal reservoir. The reservoir has been previously modeled as deflating elliptical volumes and as collapsing sills. The elliptical volumes are described as Mogi sources, which are mathematically given as point forces along a line. The collapsing sills are treated as Okada dislocations for finite area faults with pure tensile displacements across them. In both of these dislocation models of the reservoir, the elastic moduli of the rock remains constant with changing fluid pressure. Actual reservoirs are more likely composed of regions of rock permeated with fluid-filled cracks and pores. In such a composite material, changing the pore-fluid pressure changes the elastic moduli of the region. These moduli changes cause the region to deform under loading, thus resulting in observed surface displacements. The surface displacements resulting from models with varying moduli of the reservoir rock are markedly different from patterns of surface displacements resulting from models in which the reservoir is treated as dislocations. For a given reservoir size, the differences in displacements from the various models are clearest in the horizontal displacement field, differing by up to a factor of two. We use finite element models with simple reservoir geometries to investigate the sensitivity of both vertical and horizontal displacements to the chosen reservoir model.
Green, Michael V.; Ostrow, Harold G.; Seidel, Jurgen; Pomper, Martin G.
2013-01-01
Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This “depth-of-interaction” (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling. PMID:21084028
Green, Michael V; Ostrow, Harold G; Seidel, Jurgen; Pomper, Martin G
2010-12-01
Human and small-animal positron emission tomography (PET) scanners with cylindrical geometry and conventional detectors exhibit a progressive reduction in radial spatial resolution with increasing radial distance from the geometric axis of the scanner. This "depth-of-interaction" (DOI) effect is sufficiently deleterious that many laboratories have devised novel schemes to reduce the magnitude of this effect and thereby yield PET images of greater quantitative accuracy. Here we examine experimentally the effects of a particular DOI correction method (dual-scintillator phoswich detectors with pulse shape discrimination) implemented in a small-animal PET scanner by comparing the same phantom and same mouse images with and without DOI correction. The results suggest that even this relatively coarse, two-level estimate of radial gamma ray interaction position significantly reduces the DOI parallax error. This study also confirms two less appreciated advantages of DOI correction: a reduction in radial distortion and radial source displacement as a source is moved toward the edge of the field of view and a resolution improvement detectable in the central field of view likely owing to improved spatial sampling.
Measuring Close Binary Stars with Speckle Interferometry
2014-09-01
extra effort to be measured. One method of observing such binary star systems is to use adaptive optics to correct the atmospheric blur in real-time...simplicity, and with no loss in generalization, this analysis will be reduced to one dimension . From equation (4), it can be seen that the frequency (u...the binary pair are systematically too large , due to the displacement of the minima of the fringes by the atmospheric OTF, when left uncorrected
2006-05-16
and Internally Displaced Persons (IDPs) Judicial Personnel and Infrastructure Trafficking in Persons Property Food Security Legal System Reform...Shelter and Non- Food Relief Human Rights Humanitarian Demining Corrections Public Health War Crime Courts and Tribunals Education Truth...Risk Analysis, 22(2) (2002): 385. 26 Ibid. 27 Ibid. 28 Dombroski, 20. 29 Keith R. Hayes, “Final Report: Inductive Hazard Analysis for GMOs
Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness
2011-09-01
testing on software • Performed static and dynamic analysis on safety code Research Interests To understand how the nervous system operates, how...dynamics of these systems to reset control of the HPA-immune axis to normal. We have completed the negotiation of sub-awards to the CFIDS Association...We propose that severe physical or psychological insult to the endocrine and immune systems can displace these from a normal regulatory equilibrium
Mankinen, Edward A.; Gromme, C. Sherman; Irwin, W. Porter
2013-01-01
We obtained paleomagnetic samples from six sites within the Middle Jurassic Ironside Mountain batholith (~170 Ma), which constitutes the structurally lowest part of the Western Hayfork terrane, in the Klamath Mountains province of northern California and southern Oregon. Structural attitudes measured in the coeval Hayfork Bally Meta-andesite were used to correct paleomagnetic data from the batholith. Comparing the corrected paleomagnetic pole with a 170-Ma reference pole for North America indicates 73.5° ± 10.6° of clockwise rotation relative to the craton. Nearly one-half of this rotation may have occurred before the terrane accreted to the composite Klamath province at ~168 Ma. No latitudinal displacement of the batholith was detected.
NASA Astrophysics Data System (ADS)
Hayward, N.; Jackson, L. E.; Ryan, J. J.
2017-12-01
This study of southern Yukon (Canada) challenges the notion that the landscape in the long-lived, tectonically active, northern Canadian Cordillera is implicitly young. The impact of Cenozoic displacement along the continental- scale Tintina Fault on the development of the Yukon River and drainage basins of central Yukon is investigated through geophysical and hydrological modeling of digital terrain model data. Regional geological evidence suggests that the age of the planation of the Yukon plateaus is at least Late Cretaceous, rather than Neogene as previously concluded, and that there has been little penetrative deformation or net incision in the region since the late Mesozoic. The Tintina Fault has been interpreted as having experienced 430 km of dextral displacement, primarily during the Eocene. However, the alignment of river channels across the fault at specific displacements, coupled with recent seismic events and related fault activity, indicate that the fault may have moved in stages over a longer time span. Topographic restoration and hydrological models show that the drainage of the Yukon River northwestward into Alaska via the ancestral Kwikhpak River was only possible at restored displacements of up to 50-55 km on the Tintina Fault. We interpret the published drainage reversals convincingly attributed to the effects of Pliocene glaciation as an overprint on earlier Yukon River reversals or diversions attributed to tectonic displacements along the Tintina Fault. At restored fault displacements of between 230 and 430 km, our models illustrate that paleo Yukon River drainage conceivably may have flowed eastward into the Atlantic Ocean via an ancestral Liard River, which was a tributary of the paleo Bell River system. The revised drainage evolution if correct requires wide-reaching reconsideration of surficial geology deposits, the flow direction and channel geometries of the region's ancient rivers, and importantly, exploration strategies of placer gold deposits.
Effects of crustal layering on source parameter inversion from coseismic geodetic data
NASA Astrophysics Data System (ADS)
Amoruso, A.; Crescentini, L.; Fidani, C.
2004-10-01
We study the effect of a superficial layer overlying a half-space on the surface displacements caused by uniform slipping of a dip-slip normal rectangular fault. We compute static coseismic displacements using a 3-D analytical code for different characteristics of the layered medium, different fault geometries and different configurations of bench marks to simulate different kinds of geodetic data (GPS, Synthetic Aperture Radar, and levellings). We perform both joint and separate inversions of the three components of synthetic displacement without constraining fault parameters, apart from strike and rake, and using a non-linear global inversion technique under the assumption of homogeneous half-space. Differences between synthetic displacements computed in the presence of the superficial soft layer and in a homogeneous half-space do not show a simple regular behaviour, even if a few features can be identified. Consequently, also retrieved parameters of the homogeneous equivalent fault obtained by unconstrained inversion of surface displacements do not show a simple regular behaviour. We point out that the presence of a superficial layer may lead to misestimating several fault parameters both using joint and separate inversions of the three components of synthetic displacement and that the effects of the presence of the superficial layer can change whether all fault parameters are left free in the inversions or not. In the inversion of any kind of coseismic geodetic data, fault size and slip can be largely misestimated, but the product (fault length) × (fault width) × slip, which is proportional to the seismic moment for a given rigidity modulus, is often well determined (within a few per cent). Because inversion of coseismic geodetic data assuming a layered medium is impracticable, we suggest that only a case-to-case study involving some kind of recursive determination of fault parameters through data correction seems to give the proper approach when layering is important.
Characterisation of palatal dysfunction after laryngoplasty.
Barnett, T P; O'Leary, J M; Dixon, P M; Barakzai, S Z
2014-01-01
Dorsal displacement of the soft palate (DDSP) in the horse has been previously described as intermittent, typically occurring at fast exercise; or persistent, seen at rest. Dorsal displacement of the soft palate has recently been reported following laryngoplasty (LP) and can be associated with continued poor performance and respiratory noise. The current study aimed to characterise the DDSP diagnosed post LP. Cross-sectional study. Owners/trainers of horses undergoing LP at one institution over 6 years were contacted to determine the horse's progress and willingness for re-examination. The horses were examined at the rest, walk, trot and canter with an overground exercising endoscope. A GPS-equipped watch was carried to obtain maximal exercising speeds. Videos of horses with DDSP were reviewed to determine frequency and duration of DDSP and swallowing events at the various gaits. Exercising endoscopy was performed in 41 of the 89 horses that had undergone LP. Nineteen of the 41 horses were diagnosed with DDSP at exercise, of which 7/41 also had DDSP at rest. No difference was detected in the percentage of total time spent displaced at each gait (P = 0.67), or in the frequency of new DDSP events per minute between each gait (P = 0.10), or in the frequency of swallowing events per minute between each gait (P = 0.52). The majority of horses displaced at various times throughout each gait. Dorsal displacement of the soft palate was most commonly solely induced spontaneously and always corrected with a swallow. The maximum speed achieved was 8.3 m/s. Dorsal displacement of the soft palate was common following LP and it appears to be induced at slower gaits than DDSP that has previously been described. It also occurred at various times throughout each gait and did not always occur persistently at rest. These findings suggest horses undergoing LP may be more prone to DDSP and further investigations into the aetiology of post LP palatal dysfunction are warranted. © 2013 EVJ Ltd.
Method for auto-alignment of digital optical phase conjugation systems based on digital propagation
Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei
2014-01-01
Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5∘, and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems. PMID:24977504
Method for auto-alignment of digital optical phase conjugation systems based on digital propagation.
Jang, Mooseok; Ruan, Haowen; Zhou, Haojiang; Judkewitz, Benjamin; Yang, Changhuei
2014-06-16
Optical phase conjugation (OPC) has enabled many optical applications such as aberration correction and image transmission through fiber. In recent years, implementation of digital optical phase conjugation (DOPC) has opened up the possibility of its use in biomedical optics (e.g. deep-tissue optical focusing) due to its ability to provide greater-than-unity OPC reflectivity (the power ratio of the phase conjugated beam and input beam to the OPC system) and its flexibility to accommodate additional wavefront manipulations. However, the requirement for precise (pixel-to-pixel matching) alignment of the wavefront sensor and the spatial light modulator (SLM) limits the practical usability of DOPC systems. Here, we report a method for auto-alignment of a DOPC system by which the misalignment between the sensor and the SLM is auto-corrected through digital light propagation. With this method, we were able to accomplish OPC playback with a DOPC system with gross sensor-SLM misalignment by an axial displacement of up to~1.5 cm, rotation and tip/tilt of ~5° and in-plane displacement of ~5 mm (dependent on the physical size of the sensor and the SLM). Our auto-alignment method robustly achieved a DOPC playback peak-to-background ratio (PBR) corresponding to more than ~30 % of the theoretical maximum. As an additional advantage, the auto-alignment procedure can be easily performed at will and, as such, allows us to correct for small mechanical drifts within the DOPC systems, thus overcoming a previously major DOPC system vulnerability. We believe that this reported method for implementing robust DOPC systems will broaden the practical utility of DOPC systems.
A level set method for determining critical curvatures for drainage and imbibition.
Prodanović, Masa; Bryant, Steven L
2006-12-15
An accurate description of the mechanics of pore level displacement of immiscible fluids could significantly improve the predictions from pore network models of capillary pressure-saturation curves, interfacial areas and relative permeability in real porous media. If we assume quasi-static displacement, at constant pressure and surface tension, pore scale interfaces are modeled as constant mean curvature surfaces, which are not easy to calculate. Moreover, the extremely irregular geometry of natural porous media makes it difficult to evaluate surface curvature values and corresponding geometric configurations of two fluids. Finally, accounting for the topological changes of the interface, such as splitting or merging, is nontrivial. We apply the level set method for tracking and propagating interfaces in order to robustly handle topological changes and to obtain geometrically correct interfaces. We describe a simple but robust model for determining critical curvatures for throat drainage and pore imbibition. The model is set up for quasi-static displacements but it nevertheless captures both reversible and irreversible behavior (Haines jump, pore body imbibition). The pore scale grain boundary conditions are extracted from model porous media and from imaged geometries in real rocks. The method gives quantitative agreement with measurements and with other theories and computational approaches.
Blood parameters in Swedish dairy herds with high or low incidence of displaced abomasum or ketosis.
Stengärde, Lena; Holtenius, Kjell; Emanuelson, Ulf; Hultgren, Jan; Niskanen, Rauni; Tråvén, Madeleine
2011-10-01
Sixty dairy herds were studied to investigate the association between long-term incidence of displaced abomasum and clinical ketosis and body condition score and blood profiles, including parameters estimating energy metabolism and hepatic lipidosis in the periparturient period and early lactation. Blood samples were taken around parturition and in early lactation from cows without apparent clinical symptoms of metabolic disorders. A difference in metabolism between high and low incidence herds was shown post-partum by a lower metabolic index (the revised Quantitative Insulin Sensitivity Check Index, RQUICKI), and tendencies for higher concentrations of glucose, insulin and non-esterified fatty acids in the high incidence herds. High incidence herds had more cows and produced on average 1400kg energy-corrected milk per cow per year more than the low incidence herds. No differences were found in parameters reflecting liver cell damage. In the first 3weeks post-partum the RQUICKI was a more sensitive marker of herds with a high incidence of displaced abomasum and clinical ketosis than any of the individual parameters, but further research is needed before practical applications of the RQUICKI can be foreseen. Copyright © 2010 Elsevier Ltd. All rights reserved.
Developments in new fluid rotational seismometers: Instrument performance and future directions
Evans, John R.; Kozák, Jan T.; Jedlicka, Petr
2016-01-01
Most of our results pertain to sensors with water or silicon oil as the proof mass, though we also tested a torsion-bar design with a solid proof mass. We find that most mass–transducer combinations lead to output proportional to rotational acceleration, with varying degrees of fidelity. Most combinations we tested can be dismissed from further development for reasons of performance or inconvenience during analysis of acceleration response (compare with E electronic supplement). In this article, we describe three of the more promising combinations, one each for the three types of response functions we measured. Of these three, one mass–transducer combination in particular (a hinged sensing element and capacitive transduction) has output voltage closely proportional to rotational displacement (angle) over a wide frequency range; such displacement proportionality obviates two of the integration steps normally re- quired to solve for continuum single-point motions or correct for tilt-induced errors in horizontal translational sensors. Thus, although we illustrate two other designs of some promise, we propose a new design that follows this displacement-proportional path while increasing the device’s sensitivity to on-axis rotations, improving its manu- facturing ease and lowering its sensitivity to translational motions.
Gabaude, C M; Guillot, M; Gautier, J C; Saudemon, P; Chulia, D
1999-07-01
Compressibility properties of pharmaceutical materials are widely characterized by measuring the volume reduction of a powder column under pressure. Experimental data are commonly analyzed using the Heckel model from which powder deformation mechanisms are determined using mean yield pressure (Py). Several studies from the literature have shown the effects of operating conditions on the determination of Py and have pointed out the limitations of this model. The Heckel model requires true density and compacted mass values to determine Py from force-displacement data. It is likely that experimental errors will be introduced when measuring the true density and compacted mass. This study investigates the effects of true density and compacted mass on Py. Materials having different particle deformation mechanisms are studied. Punch displacement and applied pressure are measured for each material at two compression speeds. For each material, three different true density and compacted mass values are utilized to evaluate their effect on Py. The calculated variation of Py reaches 20%. This study demonstrates that the errors in measuring true density and compacted mass have a greater effect on Py than the errors incurred from not correcting the displacement measurements due to punch elasticity.
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, S; Kaurin, D; Sweeney, L
2014-06-01
Purpose: Our institution uses a manual laser-based system for primary localization and verification during radiation treatment of left-sided breast cancer patients using deep inspiration breath hold (DIBH). This primary system was compared with sternum-placed Calypso(R) beacons (Varian Medical Systems, CA). Only intact breast patients are considered for this analysis. Methods: During computed tomography (CT) simulation, patients have BB and Calypso(R) surface beacons positioned sternally and marked for free-breathing and DIBH CTs. During dosimetry planning, BB longitudinal displacement between free breathing and DIBH CT determines laser mark (BH mark) location. Calypso(R) beacon locations from the DIBH CT are entered at themore » Tracking Station. During Linac simulation and treatment, patients inhale until the cross-hair and/or lasers coincide with the BH Mark, which can be seen using our high quality cameras (Pelco, CA). Daily Calypso(R) displacement values (difference from the DIBH-CT-based plan) are recorded.The displacement mean and standard deviation was calculated for each patient (77 patients, 1845 sessions). An aggregate mean and standard deviation was calculated weighted by the number of patient fractions.Some patients were shifted based on MV ports. A second data set was calculated with Calypso(R) values corrected by these shifts. Results: Mean displacement values indicate agreement within 1±3mm, with improvement for shifted data (Table). Conclusion: Both unshifted and shifted data sets show the Calypso(R) system coincides with the laser system within 1±3mm, demonstrating either localization/verification system will Resultin similar clinical outcomes. Displacement value uncertainty unilaterally reduces when shifts are taken into account.« less
NASA Astrophysics Data System (ADS)
Lowry, B. W.; Schrock, G.; Werner, C. L.; Zhou, W.; Pugh, N.
2015-12-01
Displacement monitoring using Terrestrial Radar Interferometry (TRI) over an urban environment was conducted to monitor for potential movement of buildings, roadways, and urban infrastructure in Seattle, Washington for a 6 week deployment in March and April of 2015. A Gamma Portable Radar Interferometer was deployed on a the lower roof of the Smith Tower at an elevation of about 100 m, overlooking the historical district of Pioneer Square. Radar monitoring in this context provides wide area coverage, sub millimeter precision, near real time alarming, and reflectorless measurement. Image georectification was established using a previously collected airborne lidar scan which was used to map the radar image onto a 3D 1st return elevation model of downtown Seattle. Platform stability concerns were monitored using high rate GPS and a 3-axis accelerometer to monitor for building movement or platform instability. Displacements were imaged at 2 minute intervals and stacked into 2 hour averages to aid in noise characterization. Changes in coherence are characterized based on diurnal fluctuations of temperature, cultural noise, and target continuity. These informed atmospheric and image selection filters for optimizing interferogram generation and displacement measurement quality control. An urban monitoring workflow was established using point target interferometric analysis to create a monitoring set of approximately 100,000 stable monitoring points measured at 2 minute to 3 hour intervals over the 6 week deployment. Radar displacement measurements were verified using ongoing survey and GPS monitoring program and with corner reflector tests to verify look angle corrections to settlement motion. Insights from this monitoring program can be used to design TRI monitoring programs for underground tunneling, urban subsidence, and earthquake damage assessment applications.
NASA Astrophysics Data System (ADS)
Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao
In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.
Articulated dental cast analysis of asymptomatic and symptomatic populations
Cordray, Frank E
2016-01-01
Dental instrumentation has long provided insight into the mechanism of musculo-skeletal function of the gnathic system. While large population studies associate dental arch displacement (DAD), especially laterally, with symptoms, mandibular condyle displacement (CD) resulting from DAD has not been targeted as possibly etiologic in the production of common muscle contraction headache (CMCH) and temporo-mandibular dysfunction (TMD). The objective was to evaluate the three-dimensional nature of DAD and CD between the seated condylar position (SCP) and the intercuspal position (ICP) and to compare results derived from large deprogrammed asymptomatic and symptomatic populations. A total of 1 192 sets of dental casts collected from asymptomatic and symptomatic populations were articulated in the SCP. The initial occlusal contact, DAD, and condylar displacement were evaluated for frequency, direction, and magnitude of displacement between the SCP and ICP. The data revealed significant displacement between the SCP and ICP of the condyles (displaced most frequently inferior (down) and posterior (distal)) and substantially increased frequency and magnitude of displacement of the dental arches (with posterior premature occlusal contacts, increased overjet, decreased overbite, midline differences, and occlusal classification changes) in symptomatic subjects. These discrepancies were statistically significant and clinically significant. The data support the concept of increased DAD and CD with dysfunction. Transverse condylar displacement, commonly presenting with dental cross bite, may be associated with CMCH and TMD. Displacement of the mandibular condyle may be an etiologic factor in CMCH and dysfunction of the temporo-mandibular joint. PMID:27357324
Baumrind, S; Korn, E L; Isaacson, R J; West, E E; Molthen, R
1983-12-01
This article analyzes differences in the measured displacement of the condyle and of progonion when different vectors of force are delivered to the maxilla in the course of non-full-banded, Phase 1, mixed-dentition treatment for the correction of Class II malocclusion. The 238-case sample is identical to that for which changes in other parameters of facial form have been reported previously. Relative to superimposition on anterior cranial base and measured in a Frankfort-plane-determined coordinate system, we have attempted to identify and quantitate (1) the displacement of each structure which results from local remodeling and (2) the displacement of each structure which occurs as a secondary consequence of changes in other regions of the skull. We have also attempted to isolate treatment effects from those attributable to spontaneous growth and development. At the condyle, we note that in all three treatment groups and in the control group there is a small but real downward and backward displacement of the glenoid fossa. This change is not treatment induced but, rather, is associated with spontaneous growth and development. (See Fig. 5.) Some interesting differences in pattern of "growth at the condyle" were noted between samples. In the intraoral (modified activator) sample, there were small but statistically significant increases in growth rate as compared to the untreated group of Class II controls. To our surprise, similar statistically significant increases over the growth rate of the control group were noted in the cervical sample. (See Table III, variables 17 and 18.) Small but statistically significant differences between treatments were also noted in the patterns of change at pogonion. As compared to the untreated control group, the rate of total displacement in the modified activator group was significantly greater in the forward direction, while the rate of total displacement in the cervical group was significantly greater in the downward direction. There were no statistically significant differences in the rate of total displacement of pogonion between the high-pull sample and the control sample. (See Table IV, variables 21 and 22.
NASA Astrophysics Data System (ADS)
Mueller, N.; Kerstetter, S. R.; Katopody, D. T.; Oldow, J. S.
2016-12-01
The NW-striking, right-oblique Fish Lake Valley fault zone (FLVFZ) forms the northern segment of the longest active structure in the western Great Basin; the Death Valley - Furnace Creek - Fish Lake Valley fault system. Since the mid-Miocene, 50 km of right-lateral displacement is documented on the southern FLVFZ and much of that displacement was and is transferred east and north on active WNW left-lateral faults. Prior to the Pliocene, displacement was transferred east and north on a low-angle detachment. Displacement on the northern part of the FLVFZ continues and is transferred to a fanned array of splays striking (west to east) WNW, NNW, ENE and NNE. To determine the displacement budget on these structures, we conducted a gravity survey to determine subsurface basin morphology and its relation to active faults. Over 2450 stations were collected and combined with existing PACES and proprietary data for a total of 3388 stations. The data were terrain corrected and reduced to a 2.67 g/cm3 density to produce a residual complete Bouguer anomaly. The eastern part of northern Fish Lake Valley is underlain by several prominent gravity lows forming several sub-basins with maximum RCBA values ranging from -24 to -28 mGals. The RCBA was inverted for depth using Geosoft Oasis Montaj GM-SYS 3D modeling software. Density values for the inversion were constrained by lithologic and density logs from wells that penetrate the entire Cenozoic section into the Paleozoic basement. Best fitting gravity measurements taken at the wellheads yielded an effective density of 2.4 g/cm3 for the basin fill. Modeled basement depths range between 2.1 to 3 km. The sub-basins form an arc opening to the NW and are bounded by ENE and NNE faults in the south and NS to NNW in the north. At the northern end of the valley, the faults merge with ENE left-lateral strike slip faults of the Mina deflection, which carries displacement to NW dextral strike-slip faults of the central Walker Lane.
On volume-source representations based on the representation theorem
NASA Astrophysics Data System (ADS)
Ichihara, Mie; Kusakabe, Tetsuya; Kame, Nobuki; Kumagai, Hiroyuki
2016-01-01
We discuss different ways to characterize a moment tensor associated with an actual volume change of ΔV C , which has been represented in terms of either the stress glut or the corresponding stress-free volume change ΔV T . Eshelby's virtual operation provides a conceptual model relating ΔV C to ΔV T and the stress glut, where non-elastic processes such as phase transitions allow ΔV T to be introduced and subsequent elastic deformation of - ΔV T is assumed to produce the stress glut. While it is true that ΔV T correctly represents the moment tensor of an actual volume source with volume change ΔV C , an explanation as to why such an operation relating ΔV C to ΔV T exists has not previously been given. This study presents a comprehensive explanation of the relationship between ΔV C and ΔV T based on the representation theorem. The displacement field is represented using Green's function, which consists of two integrals over the source surface: one for displacement and the other for traction. Both integrals are necessary for representing volumetric sources, whereas the representation of seismic faults includes only the first term, as the second integral over the two adjacent fault surfaces, across which the traction balances, always vanishes. Therefore, in a seismological framework, the contribution from the second term should be included as an additional surface displacement. We show that the seismic moment tensor of a volume source is directly obtained from the actual state of the displacement and stress at the source without considering any virtual non-elastic operations. A purely mathematical procedure based on the representation theorem enables us to specify the additional imaginary displacement necessary for representing a volume source only by the displacement term, which links ΔV C to ΔV T . It also specifies the additional imaginary stress necessary for representing a moment tensor solely by the traction term, which gives the "stress glut." The imaginary displacement-stress approach clarifies the mathematical background to the classical theory.
Bogucki, Artur J
2014-01-01
The knee joint is a bicondylar hinge two-level joint with six degrees of freedom. The location of the functional axis of flexion-extension motion is still a subject of research and discussions. During the swing phase, the femoral condyles do not have direct contact with the tibial articular surfaces and the intra-articular space narrows with increasing weight bearing. The geometry of knee movements is determined by the shape of articular surfaces. A digital recording of the gait of a healthy volunteer was analysed. In the first experimental variant, the subject was wearing a knee orthosis controlling flexion and extension with a hinge-type single-axis joint. In the second variant, the examination involved a hinge-type double-axis orthosis. Statistical analysis involved mathematically calculated values of displacement P. Scatter graphs with a fourth-order polynomial trend line with a confidence interval of 0.95 due to noise were prepared for each experimental variant. In Variant 1, the average displacement was 15.1 mm, the number of tests was 43, standard deviation was 8.761, and the confidence interval was 2.2. The maximum value of displacement was 30.9 mm and the minimum value was 0.7 mm. In Variant 2, the average displacement was 13.4 mm, the number of tests was 44, standard deviation was 7.275, and the confidence interval was 1.8. The maximum value of displacement was 30.2 mm and the minimum value was 3.4 mm. An analysis of moving averages for both experimental variants revealed that displacement trends for both types of orthosis were compatible from the mid-stance to the mid-swing phase. 1. The method employed in the experiment allows for determining the alignment between the axis of the knee joint and that of shin and thigh orthoses. 2. Migration of the single and double-axis orthoses during the gait cycle exceeded 3 cm. 3. During weight bearing, the double-axis orthosis was positioned more correctly. 4. The study results may be helpful in designing new hinge-type knee joints.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsi, W; Zeidan, O
2014-06-01
Purpose: We present a quantitative methodology utilizing an optical tracking system for monitoring head inter-fraction movements within brain masks to assess the effectiveness of two intracranial immobilization techniques. Methods and Materials: A 3-point-tracking method was developed to measure the mask location for a treatment field at each fraction. Measured displacement of mask location to its location at first fraction is equivalent to the head movement within the mask. Head movements for each of treatment fields were measured over about 10 fractions at each patient for seven patients; five treated in supine and two treated in prone. The Q-fix Base-of-Skull headmore » frame was used in supine while the CIVCO uni-frame baseplate was used in prone. Displacements of recoded couch position of each field post imaging at each fraction were extracted for those seven patients. Standard deviation (S.D.) of head movements and couch displacements was scored for statistical analysis. Results: The accuracy of 3PtTrack method was within 1.0 mm by phantom measurements. Patterns of head movement and couch displacement were similar for patients treated in either supine or prone. In superior-inferior direction, mean value of scored standard deviations over seven patients were 1.6 mm and 3.4 mm for the head movement and the couch displacement, respectively. The result indicated that the head movement combined with a loose fixation between the mask-to-head frame results large couch displacements for each patient, and also large variation between patients. However, the head movement is the main cause for the couch displacement with similar magnitude of around 1.0 mm in anterior-posterior and lateral directions. Conclusions: Optical-tracking methodology independently quantifying head movements could improve immobilization devices by correctly acting on causes for head motions within mask. A confidence in the quality of intracranial immobilization techniques could be more efficient by eliminating the need for frequent imaging.« less
Comparing TCV experimental VDE responses with DINA code simulations
NASA Astrophysics Data System (ADS)
Favez, J.-Y.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.
2002-02-01
The DINA free-boundary equilibrium simulation code has been implemented for TCV, including the full TCV feedback and diagnostic systems. First results showed good agreement with control coil perturbations and correctly reproduced certain non-linear features in the experimental measurements. The latest DINA code simulations, presented in this paper, exploit discharges with different cross-sectional shapes and different vertical instability growth rates which were subjected to controlled vertical displacement events (VDEs), extending previous work with the DINA code on the DIII-D tokamak. The height of the TCV vessel allows observation of the non-linear evolution of the VDE growth rate as regions of different vertical field decay index are crossed. The vertical movement of the plasma is found to be well modelled. For most experiments, DINA reproduces the S-shape of the vertical displacement in TCV with excellent precision. This behaviour cannot be modelled using linear time-independent models because of the predominant exponential shape due to the unstable pole of any linear time-independent model. The other most common equilibrium parameters like the plasma current Ip, the elongation κ, the triangularity δ, the safety factor q, the ratio between the averaged plasma kinetic pressure and the pressure of the poloidal magnetic field at the edge of the plasma βp, and the internal self inductance li also show acceptable agreement. The evolution of the growth rate γ is estimated and compared with the evolution of the closed-loop growth rate calculated with the RZIP linear model, confirming the origin of the observed behaviour.
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2014 CFR
2014-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2013 CFR
2013-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
49 CFR 325.79 - Application of correction factors.
Code of Federal Regulations, 2012 CFR
2012-10-01
... microphone location point and the microphone target point is 60 feet (18.3 m) and that the measurement area... vehicle would be 87 dB(A), calculated as follows: 88 dB(A)Uncorrected average of readings −3 dB(A)Distance correction factor +2 dB(A)Ground surface correction factor _____ 87 dB(A)Corrected reading ...
O'Brien, D J; León-Vintró, L; McClean, B
2016-01-01
The use of radiotherapy fields smaller than 3 cm in diameter has resulted in the need for accurate detector correction factors for small field dosimetry. However, published factors do not always agree and errors introduced by biased reference detectors, inaccurate Monte Carlo models, or experimental errors can be difficult to distinguish. The aim of this study was to provide a robust set of detector-correction factors for a range of detectors using numerical, empirical, and semiempirical techniques under the same conditions and to examine the consistency of these factors between techniques. Empirical detector correction factors were derived based on small field output factor measurements for circular field sizes from 3.1 to 0.3 cm in diameter performed with a 6 MV beam. A PTW 60019 microDiamond detector was used as the reference dosimeter. Numerical detector correction factors for the same fields were derived based on calculations from a geant4 Monte Carlo model of the detectors and the Linac treatment head. Semiempirical detector correction factors were derived from the empirical output factors and the numerical dose-to-water calculations. The PTW 60019 microDiamond was found to over-respond at small field sizes resulting in a bias in the empirical detector correction factors. The over-response was similar in magnitude to that of the unshielded diode. Good agreement was generally found between semiempirical and numerical detector correction factors except for the PTW 60016 Diode P, where the numerical values showed a greater over-response than the semiempirical values by a factor of 3.7% for a 1.1 cm diameter field and higher for smaller fields. Detector correction factors based solely on empirical measurement or numerical calculation are subject to potential bias. A semiempirical approach, combining both empirical and numerical data, provided the most reliable results.
Measuring vulnerability to disaster displacement
NASA Astrophysics Data System (ADS)
Brink, Susan A.; Khazai, Bijan; Power, Christopher; Wenzel, Friedemann
2015-04-01
Large scale disasters can cause devastating impacts in terms of population displacement. Between 2008 and 2013, on average 27 million people were displaced annually by disasters (Yonetani 2014). After large events such as hurricane Katrina or the Port-au-Prince earthquake, images of inadequate public shelter and concerns about large scale and often inequitable migration have been broadcast around the world. Population displacement can often be one of the most devastating and visible impacts of a natural disaster. Despite the importance of population displacement in disaster events, measures to understand the socio-economic vulnerability of a community often use broad metrics to estimate the total socio-economic risk of an event rather than focusing on the specific impacts that a community faces in a disaster. Population displacement is complex and multi-causal with the physical impact of a disaster interacting with vulnerability arising from the response, environmental issues (e.g., weather), cultural concerns (e.g., expectations of adequate shelter), and many individual factors (e.g., mobility, risk perception). In addition to the complexity of the causes, population displacement is difficult to measure because of the wide variety of different terms and definitions and its multi-dimensional nature. When we speak of severe population displacement, we may refer to a large number of displaced people, an extended length of displacement or associated difficulties such as poor shelter quality, risk of violence and crime in shelter communities, discrimination in aid, a lack of access to employment or other difficulties that can be associated with large scale population displacement. We have completed a thorough review of the literature on disaster population displacement. Research has been conducted on historic events to understand the types of negative impacts associated with population displacement and also the vulnerability of different groups to these impacts. We aggregate these ideas into a framework of disaster displacement vulnerability that distinguishes between three main aspects of disaster displacement. Disaster displacement can be considered in terms of the number of displaced people and the length of that displacement. However, the literature emphasizes that the severity of disaster displacement can not be measured completely in quantitative terms. Thus, we include a measure representing people who are trapped and unable to leave their homes due to mobility, resources or for other reasons. Finally the third main aspect considers the difficulties that are associated with displacement and reflects the difference between the experiences of those who are displaced into safe and supportive environments as compared to those whose only alternate shelter is dangerous and inadequate for their needs. Finally, we apply the framework to demonstrate a methodology to estimate vulnerability to disaster displacement. Using data from the Global Earthquake Model (GEM) Social and Economic Vulnerability sub-National Database, we generate an index to measure the vulnerability of Japanese prefectures to the dimensions of displacement included in the framework. References Yonitani, M. (2014). Global Estimates 2014: People displaced by disasters. http://www.internal-displacement.org/publications/2014/global-estimates-2014-people-displaced-by-disasters/
NASA Astrophysics Data System (ADS)
Sil, Arjun; Longmailai, Thaihamdau
2017-09-01
The lateral displacement of Reinforced Concrete (RC) frame building during an earthquake has an important impact on the structural stability and integrity. However, seismic analysis and design of RC building needs more concern due to its complex behavior as the performance of the structure links to the features of the system having many influencing parameters and other inherent uncertainties. The reliability approach takes into account the factors and uncertainty in design influencing the performance or response of the structure in which the safety level or the probability of failure could be ascertained. This present study, aims to assess the reliability of seismic performance of a four storey residential RC building seismically located in Zone-V as per the code provisions given in the Indian Standards IS: 1893-2002. The reliability assessment performed by deriving an explicit expression for maximum roof-lateral displacement as a failure function by regression method. A total of 319, four storey RC buildings were analyzed by linear static method using SAP2000. However, the change in the lateral-roof displacement with the variation of the parameters (column dimension, beam dimension, grade of concrete, floor height and total weight of the structure) was observed. A generalized relation established by regression method which could be used to estimate the expected lateral displacement owing to those selected parameters. A comparison made between the displacements obtained from analysis with that of the equation so formed. However, it shows that the proposed relation could be used directly to determine the expected maximum lateral displacement. The data obtained from the statistical computations was then used to obtain the probability of failure and the reliability.
Araya, Mesfin; Chotai, Jayanti; Komproe, Ivan H; de Jong, Joop T V M
2011-07-01
The resilience of post-war displaced persons is not only influenced partly by the nature of premigration trauma, but also by postmigration psychosocial circumstances and living conditions. A lengthy civil war leading to Eritrea separating from Ethiopia and becoming an independent state in 1991 resulted in many displaced persons. A random sample of 749 displaced women living in the shelters in the Ethiopian capital Addis Ababa was compared with a random sample of 110 displaced women living in the community setting of Debre Zeit, 50 km away from Addis Ababa, regarding their quality of life, mental distress, sociodemographics, living conditions, perceived social support, and coping strategies, 6 years after displacement. Subjects from Debre Zeit reported significantly higher quality of life and better living conditions. However, mental distress did not differ significantly between the groups. Also, Debre Zeit subjects contained a higher proportion born in Ethiopia, a higher proportion married, reported higher traumatic life events, employed more task-oriented coping, and perceived higher social support. Factors that accounted for the difference in quality of life between the shelters and Debre Zeit groups in three of the four quality of life domains of WHOQOL-BREF (physical health, psychological, environment), included protection from insects/rodents and other living conditions. However, to account for the difference in the fourth domain (social relationships), psychosocial factors also contributed significantly. Placement and rehabilitation in a community setting seems better than in the shelters. If this possibility is not available, measures to improve specific living conditions in the shelters are likely to lead to a considerable increase in quality of life.
EAC: A program for the error analysis of STAGS results for plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.; Bains, Nancy Jane C.
1989-01-01
A computer code is now available for estimating the error in results from the STAGS finite element code for a shell unit consisting of a rectangular orthotropic plate. This memorandum contains basic information about the computer code EAC (Error Analysis and Correction) and describes the connection between the input data for the STAGS shell units and the input data necessary to run the error analysis code. The STAGS code returns a set of nodal displacements and a discrete set of stress resultants; the EAC code returns a continuous solution for displacements and stress resultants. The continuous solution is defined by a set of generalized coordinates computed in EAC. The theory and the assumptions that determine the continuous solution are also outlined in this memorandum. An example of application of the code is presented and instructions on its usage on the Cyber and the VAX machines have been provided.
NASA Astrophysics Data System (ADS)
Gu, Yanchao; Fan, Dongming; You, Wei
2017-07-01
Eleven GPS crustal vertical displacement (CVD) solutions for 110 IGS08/IGS14 core stations provided by the International Global Navigation Satellite Systems Service Analysis Centers are compared with seven Gravity Recovery and Climate Experiment (GRACE)-modeled CVD solutions. The results of the internal comparison of the GPS solutions from multiple institutions imply large uncertainty in the GPS postprocessing. There is also evidence that GRACE solutions from both different institutions and different processing approaches (mascon and traditional spherical harmonic coefficients) show similar results, suggesting that GRACE can provide CVD results of good internal consistency. When the uncertainty of the GPS data is accounted for, the GRACE data can explain as much as 50% of the actual signals and more than 80% of the GPS annual signals. Our study strongly indicates that GRACE data have great potential to correct the nontidal loading in GPS time series.
A model that integrates eye velocity commands to keep track of smooth eye displacements.
Blohm, Gunnar; Optican, Lance M; Lefèvre, Philippe
2006-08-01
Past results have reported conflicting findings on the oculomotor system's ability to keep track of smooth eye movements in darkness. Whereas some results indicate that saccades cannot compensate for smooth eye displacements, others report that memory-guided saccades during smooth pursuit are spatially correct. Recently, it was shown that the amount of time before the saccade made a difference: short-latency saccades were retinotopically coded, whereas long-latency saccades were spatially coded. Here, we propose a model of the saccadic system that can explain the available experimental data. The novel part of this model consists of a delayed integration of efferent smooth eye velocity commands. Two alternative physiologically realistic neural mechanisms for this integration stage are proposed. Model simulations accurately reproduced prior findings. Thus, this model reconciles the earlier contradictory reports from the literature about compensation for smooth eye movements before saccades because it involves a slow integration process.
NASA Astrophysics Data System (ADS)
Hartman, John; Kirby, Brian
2017-03-01
Nanoparticle tracking analysis, a multiprobe single particle tracking technique, is a widely used method to quickly determine the concentration and size distribution of colloidal particle suspensions. Many popular tools remove non-Brownian components of particle motion by subtracting the ensemble-average displacement at each time step, which is termed dedrifting. Though critical for accurate size measurements, dedrifting is shown here to introduce significant biasing error and can fundamentally limit the dynamic range of particle size that can be measured for dilute heterogeneous suspensions such as biological extracellular vesicles. We report a more accurate estimate of particle mean-square displacement, which we call decorrelation analysis, that accounts for correlations between individual and ensemble particle motion, which are spuriously introduced by dedrifting. Particle tracking simulation and experimental results show that this approach more accurately determines particle diameters for low-concentration polydisperse suspensions when compared with standard dedrifting techniques.
Dei, Devis; Mecatti, Daniele; Pieraccini, Massimiliano
2013-01-01
Ground-based radar interferometry is an increasingly popular technique for monitoring civil infrastructures. In this paper, the static testing of a bridge is reported. It was an 8-span bridge, 297 m long, named "Ponte degli Alpini," crossing the valley of the Ardo River. The radar has been used for testing a lateral span and a central span. The obtained results present elements of novelty not previously reported in the literature. In fact, some displacement measurements of the lateral span have been affected by a horizontal shift that has to be taken into account for a correct interpretation of the measured data. Furthermore, the measurements of the central span have been carried out with the radar positioned transversally with respect to the bridge deck; this unusual arrangement has allowed for obtaining displacement maps less geometrically distorted with respect to other cases reported in the literature.
High-precision pointing with the Sardinia Radio Telescope
NASA Astrophysics Data System (ADS)
Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco
2010-07-01
We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.
Bicycle helmet size, adjustment, and stability.
Thai, Kim T; McIntosh, Andrew S; Pang, Toh Yen
2015-01-01
One of the main requirements of a protective bicycle helmet is to provide and maintain adequate coverage to the head. A poorly fitting or fastened helmet may be displaced during normal use or even ejected during a crash. The aims of the current study were to identify factors that influence the size of helmet worn, identify factors that influence helmet position and adjustment, and examine the effects of helmet size worn and adjustment on helmet stability. Recreational and commuter cyclists in Sydney were surveyed to determine how helmet size and/or adjustment affected helmet stability in the real world. Anthropometric characteristics of the head were measured and, to assess helmet stability, a test analogous to the requirements of the Australian bicycle helmet standard was undertaken. Two hundred sixty-seven cyclists were recruited across all age groups and 91% wore an AS/NZS 2063-compliant helmet. The main ethnic group was Europeans (71%) followed by Asians (18%). The circumferences of the cyclists' heads matched well the circumference of the relevant ISO headform for the chosen helmet size, but the head shapes differed with respect to ISO headforms. Age and gender were associated with wearing an incorrectly sized helmet and helmet adjustment. Older males (>55 years) were most likely to wear an incorrectly sized helmet. Adult males in the 35-54 year age group were most likely to wear a correctly adjusted helmet. Using quasistatic helmet stability tests, it was found that the correctness of adjustment, rather than size, head dimensions, or shape, significantly affected helmet stability in all test directions. Bicycle helmets worn by recreational and commuter cyclists are often the wrong size and are often worn and adjusted incorrectly, especially in children and young people. Cyclists need to be encouraged to adjust their helmets correctly. Current headforms used in standards testing may not be representative of cyclists' head shapes. This may create challenges to helmet suppliers if on one hand they optimize the helmet to meet tests on ISO-related headforms while on the other seeking to offer greater range of sizes.
Kett, Maria E
2005-01-01
Several hundred thousand people remain internally displaced in Bosnia-Herzegovina living in camps and settlements. The public gaze of the media has long since moved on elsewhere and donors have shifted their resources. Displaced peoples have specific burdens over belonging, housing, occupation, welfare, security and loss of communities. The decision whether to return to their homes is complex, with local and international political pressures adding to their uncertainties and insecurities. In addition there is the impact of the war, the experiences of violence, the remembering and issues of reconciliation, and a variety of mostly unevaluated psychosocial programmes aimed at helping with these. All this has a profound impact on their health and well-being. Understanding these processes and the views of chronically displaced people themselves should guide policies of post-conflict management to plan for the longer-term and to be more focussed on the human factors rather than simply rules and properties.
Murphy, Ryan M; Fallat, Lawrence M; Kish, John P
2014-01-01
The distal chevron osteotomy is a widely accepted technique for the treatment of hallux abductovalgus deformity. Although the osteotomy is considered to be stable, displacements of the capital fragment has been described. We propose a new method for fixation of the osteotomy involving the axial loading screw (ALS) used in addition to single screw fixation. We believe this method will provide a more mechanically stable construct. We reviewed the charts of 46 patients in whom 52 feet underwent a distal chevron osteotomy that was fixated with either 1 screw or 2 screws that included the ALS. We hypothesized that the ALS group would have fewer displacements and would heal more quickly than the single screw fixation group. We found that the group with ALS fixation had healed at a mean of 6.5 weeks and that the group with single screw fixation had healed at 9.53 weeks (p = .001). Also, 8 cases occurred of displacement of the capital fragment in the single screw, control group compared with 2 cases of displacement in the ALS group. However, this finding was not statistically significant. The addition of the ALS to single screw fixation allowed the patients to heal approximately 3 weeks earlier than single screw fixation alone. The ALS is a fixation option for the surgeon to consider when osseous correction of hallux abducto valgus is performed. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Biomechanical Assessment of Patellar Advancement Procedures for Patella Alta.
Seidl, Adam; Baldini, Todd; Krughoff, Kevin; Shapiro, Joshua A; Lindeque, Bennie; Rhodes, Jason; Carollo, James
2016-05-01
Crouch gait deformity is common in children with cerebral palsy and often is associated with patella alta. Patellar tendon advancement typically is used to correct patella alta and restore normal knee mechanics. The purpose of this study was to determine the mechanical strength of surgical constructs used for fixation during patellar advancement procedures. This study used a cadaveric model to determine which of 3 surgical techniques is biomechanically optimal for patellar tendon advancement in treating patella alta. Twenty-four human cadaveric knees (8 per group) were prepared using 1 of 3 different common surgical techniques: tibial tubercle osteotomy, patellar tendon partial resection and repair at the distal patella, and patellar tendon imbrication. The patella was loaded from 25 to 250 N at 1 Hz for 1000 cycles. A significant difference in patella displacement under cyclical loading was found between surgical techniques. Tibial tubercle osteotomy exhibited significantly less displacement under cyclical loading than distal patella excision and repair (P<.0001) or imbrication (P=.0088). Imbrication exhibited significantly less displacement than distal patella excision and repair (P=.0006). Tibial tubercle osteotomy survived longest. Based on failure criteria of 5 mm of displacement, tibial tubercle osteotomy lasted between 250 and 500 cycles. The other 2 techniques failed by 25 cycles. This study offers quantitative evidence regarding the relative mechanical strength of each construct and may influence choice of surgical technique. [Orthopedics. 2016; 39(3):e492-e497.]. Copyright 2016, SLACK Incorporated.
On the biophysics and kinetics of toehold-mediated DNA strand displacement
Srinivas, Niranjan; Ouldridge, Thomas E.; Šulc, Petr; Schaeffer, Joseph M.; Yurke, Bernard; Louis, Ard A.; Doye, Jonathan P. K.; Winfree, Erik
2013-01-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems. PMID:24019238
On the biophysics and kinetics of toehold-mediated DNA strand displacement.
Srinivas, Niranjan; Ouldridge, Thomas E; Sulc, Petr; Schaeffer, Joseph M; Yurke, Bernard; Louis, Ard A; Doye, Jonathan P K; Winfree, Erik
2013-12-01
Dynamic DNA nanotechnology often uses toehold-mediated strand displacement for controlling reaction kinetics. Although the dependence of strand displacement kinetics on toehold length has been experimentally characterized and phenomenologically modeled, detailed biophysical understanding has remained elusive. Here, we study strand displacement at multiple levels of detail, using an intuitive model of a random walk on a 1D energy landscape, a secondary structure kinetics model with single base-pair steps and a coarse-grained molecular model that incorporates 3D geometric and steric effects. Further, we experimentally investigate the thermodynamics of three-way branch migration. Two factors explain the dependence of strand displacement kinetics on toehold length: (i) the physical process by which a single step of branch migration occurs is significantly slower than the fraying of a single base pair and (ii) initiating branch migration incurs a thermodynamic penalty, not captured by state-of-the-art nearest neighbor models of DNA, due to the additional overhang it engenders at the junction. Our findings are consistent with previously measured or inferred rates for hybridization, fraying and branch migration, and they provide a biophysical explanation of strand displacement kinetics. Our work paves the way for accurate modeling of strand displacement cascades, which would facilitate the simulation and construction of more complex molecular systems.
Hansen, Hendrik H.G.; Richards, Michael S.; Doyley, Marvin M.; de Korte, Chris L.
2013-01-01
Atherosclerotic plaque rupture can initiate stroke or myocardial infarction. Lipid-rich plaques with thin fibrous caps have a higher risk to rupture than fibrotic plaques. Elastic moduli differ for lipid-rich and fibrous tissue and can be reconstructed using tissue displacements estimated from intravascular ultrasound radiofrequency (RF) data acquisitions. This study investigated if modulus reconstruction is possible for noninvasive RF acquisitions of vessels in transverse imaging planes using an iterative 2D cross-correlation based displacement estimation algorithm. Furthermore, since it is known that displacements can be improved by compounding of displacements estimated at various beam steering angles, we compared the performance of the modulus reconstruction with and without compounding. For the comparison, simulated and experimental RF data were generated of various vessel-mimicking phantoms. Reconstruction errors were less than 10%, which seems adequate for distinguishing lipid-rich from fibrous tissue. Compounding outperformed single-angle reconstruction: the interquartile range of the reconstructed moduli for the various homogeneous phantom layers was approximately two times smaller. Additionally, the estimated lateral displacements were a factor of 2–3 better matched to the displacements corresponding to the reconstructed modulus distribution. Thus, noninvasive elastic modulus reconstruction is possible for transverse vessel cross sections using this cross-correlation method and is more accurate with compounding. PMID:23478602
Effect of soil parameters on the kinetics of the displacement of Fe from FeEDDHA chelates by Cu.
Schenkeveld, Walter D C; Reichwein, Arjen M; Temminghoff, Erwin J M; van Riemsdijk, Willem H
2012-06-28
In soil application, o,o-FeEDDHA (iron (3+) ethylene diamine-N,N'-bis(2-hydroxy phenyl acetic acid) complex) is the active ingredient of FeEDDHA chelate-based Fe fertilizers. The effectiveness of o,o-FeEDDHA is potentially compromised by the displacement of Fe from FeEDDHA by Cu. The actual impact of Cu competition is codetermined by the kinetics of the displacement reaction. In this study, the influence of soil parameters on the displacement kinetics has been examined in goethite suspensions. The displacement reaction predominantly takes place on the reactive surface rather than in solution. The rate at which the o,o-FeEDDHA concentration declined depended on the available reactive surface area, the Cu loading, and the FeEDDHA loading. Soil factors reducing FeEDDHA adsorption (high ionic strength, humic acid adsorption onto the goethite surface, and monovalent instead of divalent cations in the electrolyte) decreased the displacement rate. For meso o,o-FeEDDHA, the displacement rate equation was derived, which is first order in FeEDDHA loading and half order in Cu loading. For soil conditions, the equation can be simplified to an exponential decay function in meso o,o-FeEDDHA solution concentration.
Adolescent clavicle nonunions: potential risk factors and surgical management.
Pennock, Andrew T; Edmonds, Eric W; Bae, Donald S; Kocher, Mininder S; Li, Ying; Farley, Frances A; Ellis, Henry B; Wilson, Philip L; Nepple, Jeffrey; Gordon, J Eric; Willimon, Samuel C; Busch, Michael T; Spence, David D; Kelly, Derek M; Pandya, Nirav K; Sabatini, Coleen S; Shea, Kevin G; Heyworth, Benton E
2018-01-01
Clavicle nonunions in adolescent patients are exceedingly rare. The purpose of this study was to evaluate a series of clavicle nonunions from a pediatric multicenter study group to assess potential risk factors and treatment outcomes. A retrospective review of all clavicle nonunions in patients younger than 19 years was performed at 9 pediatric hospitals between 2006 and 2016. Demographic and surgical data were documented. Radiographs were evaluated for initial fracture classification, displacement, shortening, angulation, and nonunion type. Clinical outcomes were evaluated, including rate of healing, time to union, return to sports, and complications. Risk factors for nonunion were assessed by comparing the study cohort with a separate cohort of age-matched patients with a diaphyseal clavicle fracture. There were 25 nonunions (mean age, 14.5 years; range, 10.0-18.9 years) identified, all of which underwent surgical fixation. Most fractures were completely displaced (68%) initially, but 21% were partially displaced and 11% were nondisplaced. Bone grafting was performed in 24 of 25 cases, typically using the hypertrophic callus. Radiographic healing was achieved in 96% of cases. One patient (4%) required 2 additional procedures to achieve union. The primary risk factor for development of a nonunion was a previous history of an ipsilateral clavicle fracture. Clavicle nonunions can occur in the adolescent population but are an uncommon clinical entity. The majority occur in male patients with displaced fractures, many of whom have sustained previous fractures of the same clavicle. High rates of union were achieved with plate fixation and the use of bone graft. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.
The number of displaced rib fractures is more predictive for complications in chest trauma patients.
Chien, Chih-Ying; Chen, Yu-Hsien; Han, Shih-Tsung; Blaney, Gerald N; Huang, Ting-Shuo; Chen, Kuan-Fu
2017-02-28
Traumatic rib fractures can cause chest complications that need further treatment and hospitalization. We hypothesized that an increase in the number of displaced rib fractures will be accompanied by an increase in chest complications. We retrospectively reviewed the trauma registry between January 2013 and May 2015 in a teaching hospital in northeastern Taiwan. Patients admitted with chest trauma and rib fractures without concomitant severe brain, splenic, pelvic or liver injuries were included. The demographic data, such as gender, age, the index of coexistence disease, alcohol consumption, trauma mechanisms were analyzed as potential predictors of pulmonary complications. Pulmonary complications were defined as pneumothorax, hemothorax, flail chest, pulmonary contusion, and pneumonia. In the 29 months of the study period, a total of 3151 trauma patients were admitted to our hospital. Among them, 174 patients were enrolled for final analysis. The most common trauma mechanism was road traffic accidents (58.6%), mainly motorbike accidents (n = 70, 40.2%). Three or more displaced rib fractures had higher specificity for predicting complications, compared to three or more total rib fractures (95.5% vs 59.1%). Adjusting the severity of chest trauma using TTSS and Ribscore by multivariable logistic regression analysis, we found that three or more rib fractures or any displaced rib fracture was the most significant predictor for developing pulmonary complication (aOR: 5.49 95% CI: 1.82-16.55). Furthermore, there were 18/57 (31.6%) patients with fewer than three ribs fractures developed pulmonary complications. In these 18 patients, only five patients had delayed onset complications and four of them had at least one displaced rib fracture. In this retrospective cohort study, we found that the number of displaced or total rib fractures, bilateral rib fractures, and rib fractures in more than two areas were associated with the more chest complications. Furthermore, three or more rib fracture or any displacement were found to be the most sensitive risk factor for chest complications, independent of other risk factors or severity index. The number of displaced rib fractures could be a strong predictor for developing pulmonary complications. For patients with fewer than three rib fractures without rib displacement and initial lung or other organ injuries, outpatient management could be safe and efficient.
1985-04-01
Selenide (ZnSe) and Zinc Sulphide (ZnS). The mechanical properties used in the evaluation include tension, compression and flexure at room temperature...communicates with the atmosphere through a mercury column in order that the change in volume can be read directly in a burette. 17...The correction of the basket is subtracted from the measured mercury displacement and the result used to calculate specimen en~halpy above 32 ’F. The
T1 weighted fat/water separated PROPELLER acquired with dual bandwidths.
Rydén, Henric; Berglund, Johan; Norbeck, Ola; Avventi, Enrico; Skare, Stefan
2018-04-24
To describe a fat/water separated dual receiver bandwidth (rBW) spin echo PROPELLER sequence that eliminates the dead time associated with single rBW sequences. A nonuniform noise whitening by regularization of the fat/water inverse problem is proposed, to enable dual rBW reconstructions. Bipolar, flyback, and dual spin echo sequences were developed. All sequences acquire two echoes with different rBW without dead time. Chemical shift displacement was corrected by performing the fat/water separation in k-space, prior to gridding. The proposed sequences were compared to fat saturation, and single rBW sequences, in terms of SNR and CNR efficiency, using clinically relevant acquisition parameters. The impact of motion was investigated. Chemical shift correction greatly improved the image quality, especially at high resolution acquired with low rBW, and also improved motion estimates. SNR efficiency of the dual spin echo sequence was up to 20% higher than the single rBW acquisition, while CNR efficiency was 50% higher for the bipolar acquisition. Noise whitening was deemed necessary for all dual rBW acquisitions, rendering high image quality with strong and homogenous fat suppression. Dual rBW sequences eliminate the dead time present in single rBW sequences, which improves SNR efficiency. In combination with the proposed regularization, this enables highly efficient T1-weighted PROPELLER images without chemical shift displacement. © 2018 International Society for Magnetic Resonance in Medicine.
Fabrication and Analysis of 150-mm-Aperture Nb 3Sn MQXF Coils
Holik, E. F.; Ambrosio, G.; Anerella, M.; ...
2016-01-12
The U.S. LHC Accelerator Research Program (LARP) and CERN are combining efforts for the HiLumi-LHC upgrade to design and fabricate 150-mm-aperture, interaction region quadrupoles with a nominal gradient of 130 T/m using Nb 3Sn. To successfully produce the necessary long MQXF triplets, the HiLumi-LHC collaboration is systematically reducing risk and design modification by heavily relying upon the experience gained from the successful 120-mm-aperture LARP HQ program. First generation MQXF short (MQXFS) coils were predominately a scaling up of the HQ quadrupole design allowing comparable cable expansion during Nb 3Sn formation heat treatment and increased insulation fraction for electrical robustness. Amore » total of 13 first generation MQXFS coils were fabricated between LARP and CERN. Systematic differences in coil size, coil alignment symmetry, and coil length contraction during heat treatment are observed and likely due to slight variances in tooling and insulation/cable systems. Analysis of coil cross sections indicate that field-shaping wedges and adjacent coil turns are systematically displaced from the nominal location and the cable is expanding less than nominally designed. Lastly, a second generation MQXF coil design seeks to correct the expansion and displacement discrepancies by increasing insulation and adding adjustable shims at the coil pole and midplanes to correct allowed magnetic field harmonics.« less
Ronchi, Roberta; Revol, Patrice; Katayama, Masahiro; Rossetti, Yves; Farnè, Alessandro
2011-01-01
During the procedure of prism adaptation, subjects execute pointing movements to visual targets under a lateral optical displacement: As consequence of the discrepancy between visual and proprioceptive inputs, their visuo-motor activity is characterized by pointing errors. The perception of such final errors triggers error-correction processes that eventually result into sensori-motor compensation, opposite to the prismatic displacement (i.e., after-effects). Here we tested whether the mere observation of erroneous pointing movements, similar to those executed during prism adaptation, is sufficient to produce adaptation-like after-effects. Neurotypical participants observed, from a first-person perspective, the examiner's arm making incorrect pointing movements that systematically overshot visual targets location to the right, thus simulating a rightward optical deviation. Three classical after-effect measures (proprioceptive, visual and visual-proprioceptive shift) were recorded before and after first-person's perspective observation of pointing errors. Results showed that mere visual exposure to an arm that systematically points on the right-side of a target (i.e., without error correction) produces a leftward after-effect, which mostly affects the observer's proprioceptive estimation of her body midline. In addition, being exposed to such a constant visual error induced in the observer the illusion “to feel” the seen movement. These findings indicate that it is possible to elicit sensori-motor after-effects by mere observation of movement errors. PMID:21731649
GGFC Special Bureau for Loading: current status and plans
NASA Astrophysics Data System (ADS)
van Dam, T.; Plag, H.-P.; Francis, O.; Gegout, P.
The Earth's surface is perpetually being displaced due to temporally varying atmospheric, oceanic and continental water mass surface loads. These non-geodynamic signals are of substantial magnitude that they contribute significantly to the scatter in geodetic observations of crustal motion. In February, 2002, the International Earth Rotation Service (IERS) established a Special Bureau of Loading (SBL) whose primary charge is to provide consistent and valid estimates of surface mass loading effects to the IERS community for the purpose of correcting geodetic time series. Here we outline the primary principles involved in modelling the surface displacements and gravity changes induced by surface mass loading including the basic theory, the Earth model and the surface load data. We then identify a list of operational issues, including product validation, that need to be addressed by the SBL before products can be provided to the community. Finally, we outline areas for future research to further improve the loading estimates. We conclude by formulating a recommendation on the best procedure for including loading corrections into geodetic data. Success of the SBL will depend on our ability to efficiently provide consistent and reliable estimates of surface mass loading effects. It is imperative that we work closely with the existing Global Geophysical Fluids Center (GGFC) Special Bureaus and with the community to as much as possible to verify the products.
Management of posttraumatic enophthalmos.
Chen, Chien-Tzung; Huang, Faye; Chen, Yu-Ray
2006-01-01
Posttraumatic enophthalmos is one of the common sequelae that appears after facial injury and remains a challenge to treat for craniomaxillofacial surgeons. Several theories have been advocated regarding enophthalmos; however, the most well accepted concept is the enlargement of the orbital cavity after displacement due to orbital fractures. Generally, a 1 cm3 increase in orbital volume causes 0.8 mm of enophthalmos. Thorough knowledge of the orbital anatomy is fundamental and critical for the successful surgical correction of enophthalmos because most treatment failures are due to inadequate orbital dissection from fear of injuring the optic nerve and globe. A complete preoperative plan should be built on a comprehensive clinical examination of the periorbital soft tissue and bony components, detailed ophthalmic examination, and high resolution computed tomography scans in the axial, coronal and reformatted sagittal planes. Based on the anatomic deformities, there are two major fracture types including orbital blow out fractures and zygomatico-orbital fractures, resulting in posttraumatic enophthalmos. Treatment modalities and methods of approach are adapted according to the severity of the orbital deformities. Minor complications include ectropion, entropion, dystopia, diplopia, and residual enophthalmos. Rare but severe complications such as intraconal misplacement of the bone graft or retrobulbar hemorrhage with subsequent blindness may be encountered. The success of the procedures depend on adequate dissection and mobilization of the displaced soft tissue, correct repositioning of the dislocated or malunited bony orbit, and proper intra-orbital grafting.
Jana C. Lee; Shakeeb M. Hamud; Jose F. Negron; Jeffrey J. Witcosky; Steven J. Seybold
2010-01-01
A seven-state survey showed that the recently detected invasive Asian banded elm bark beetle, Scolytus schevyrewi Semenov, was abundant in areas of Colorado and Wyoming, whereas the long-established European elm bark beetle, S. multistriatus (Marsham), was not as abundant. In one of a series of studies to evaluate whether S. schevyrewi is competitively displacing S....
Geodetic imaging of tectonic deformation with InSAR
NASA Astrophysics Data System (ADS)
Fattahi, Heresh
Precise measurements of ground deformation across the plate boundaries are crucial observations to evaluate the location of strain localization and to understand the pattern of strain accumulation at depth. Such information can be used to evaluate the possible location and magnitude of future earthquakes. Interferometric Synthetic Aperture Radar (InSAR) potentially can deliver small-scale (few mm/yr) ground displacement over long distances (hundreds of kilometers) across the plate boundaries and over continents. However, Given the ground displacement as our signal of interest, the InSAR observations of ground deformation are usually affected by several sources of systematic and random noises. In this dissertation I identify several sources of systematic and random noise, develop new methods to model and mitigate the systematic noise and to evaluate the uncertainty of the ground displacement measured with InSAR. I use the developed approach to characterize the tectonic deformation and evaluate the rate of strain accumulation along the Chaman fault system, the western boundary of the India with Eurasia tectonic plates. I evaluate the bias due to the topographic residuals in the InSAR range-change time-series and develope a new method to estimate the topographic residuals and mitigate the effect from the InSAR range-change time-series (Chapter 2). I develop a new method to evaluate the uncertainty of the InSAR velocity field due to the uncertainty of the satellite orbits (Chapter 3) and a new algorithm to automatically detect and correct the phase unwrapping errors in a dense network of interferograms (Chapter 4). I develop a new approach to evaluate the impact of systematic and stochastic components of the tropospheric delay on the InSAR displacement time-series and its uncertainty (Chapter 5). Using the new InSAR time-series approach developed in the previous chapters, I study the tectonic deformation across the western boundary of the India plate with Eurasia and evaluated the rate of strain accumulation along the Chaman fault system (Chapter 5). I also evaluate the co-seismic and post-seismic displacement of a moderate M5.5 earthquake on the Ghazaband fault (Chapter 6). The developed methods to mitigate the systematic noise from InSAR time-series, significantly improve the accuracy of the InSAR displacement time-series and velocity. The approaches to evaluate the effect of the stochastic components of noise in InSAR displacement time-series enable us to obtain the variance-covariance matrix of the InSAR displacement time-series and to express their uncertainties. The effect of the topographic residuals in the InSAR range-change time-series is proportional to the perpendicular baseline history of the set of SAR acquisitions. The proposed method for topographic residual correction, efficiently corrects the displacement time-series. Evaluation of the uncertainty of velocity due to the orbital errors shows that for modern SAR satellites with precise orbits such as TerraSAR-X and Sentinel-1, the uncertainty of 0.2 mm/yr per 100 km and for older satellites with less accurate orbits such as ERS and Envisat, the uncertainty of 1.5 and 0.5mm/yr per 100 km, respectively are achievable. However, the uncertainty due to the orbital errors depends on the orbital uncertainties, the number and time span of SAR acquisitions. Contribution of the tropospheric delay to the InSAR range-change time-series can be subdivided to systematic (seasonal delay) and stochastic components. The systematic component biases the displacement times-series and velocity field as a function of the acquisition time and the non-seasonal component significantly contributes to the InSAR uncertainty. Both components are spatially correlated and therefore the covariance of noise between pixels should be considered for evaluating the uncertainty due to the random tropospheric delay. The relative velocity uncertainty due to the random tropospheric delay depends on the scatter of the random tropospheric delay, and is inversely proportional to the number of acquisitions, and the total time span covered by the SAR acquisitions. InSAR observations across the Chaman fault system shows that relative motion between India and Eurasia in the western boundary is distributed among different faults. The InSAR velocity field indicates strain localization on the Chaman fault and Ghazaband fault with slip rates of ~8 and ~16 mm/yr, respectively. High rate of strain accumulation on the Ghazaband fault and lack of evidence for rupturing the fault during the 1935 Quetta earthquake indicates that enough strain has been accumulated for large (M>7) earthquake, which threatens Balochistan and the City of Quetta. Chaman fault from latitudes ~29.5 N to ~32.5 N is creeping with a maximum surface creep rate of 8 mm/yr, which indicates that Chaman fault is only partially locked and therefore moderate earthquakes (M<7) similar to what has been recorded in last 100 years are expected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathew, D; Tanny, S; Parsai, E
2015-06-15
Purpose: The current small field dosimetry formalism utilizes quality correction factors to compensate for the difference in detector response relative to dose deposited in water. The correction factors are defined on a machine-specific basis for each beam quality and detector combination. Some research has suggested that the correction factors may only be weakly dependent on machine-to-machine variations, allowing for determinations of class-specific correction factors for various accelerator models. This research examines the differences in small field correction factors for three detectors across two Varian Truebeam accelerators to determine the correction factor dependence on machine-specific characteristics. Methods: Output factors were measuredmore » on two Varian Truebeam accelerators for equivalently tuned 6 MV and 6 FFF beams. Measurements were obtained using a commercial plastic scintillation detector (PSD), two ion chambers, and a diode detector. Measurements were made at a depth of 10 cm with an SSD of 100 cm for jaw-defined field sizes ranging from 3×3 cm{sup 2} to 0.6×0.6 cm{sup 2}, normalized to values at 5×5cm{sup 2}. Correction factors for each field on each machine were calculated as the ratio of the detector response to the PSD response. Percent change of correction factors for the chambers are presented relative to the primary machine. Results: The Exradin A26 demonstrates a difference of 9% for 6×6mm{sup 2} fields in both the 6FFF and 6MV beams. The A16 chamber demonstrates a 5%, and 3% difference in 6FFF and 6MV fields at the same field size respectively. The Edge diode exhibits less than 1.5% difference across both evaluated energies. Field sizes larger than 1.4×1.4cm2 demonstrated less than 1% difference for all detectors. Conclusion: Preliminary results suggest that class-specific correction may not be appropriate for micro-ionization chamber. For diode systems, the correction factor was substantially similar and may be useful for class-specific reference conditions.« less
Association between oral habits, mouth breathing and malocclusion.
Grippaudo, C; Paolantonio, E G; Antonini, G; Saulle, R; La Torre, G; Deli, R
2016-10-01
The ratio of bad habits, mouth breathing and malocclusion is an important issue in view of prevention and early treatment of disorders of the craniofacial growth. While bad habits can interfere with the position of the teeth and normal pattern of skeletal growth, on the other hand obstruction of the upper airway, resulting in mouth breathing, changes the pattern of craniofacial growth causing malocclusion. Our crosssectional study, carried out on 3017 children using the ROMA index, was developed to verify if there was a significant correlation between bad habits/mouth breathing and malocclusion. The results showed that an increase in the degree of the index increases the prevalence of bad habits and mouth breathing, meaning that these factors are associated with more severe malocclusions. Moreover, we found a significant association of bad habits with increased overjet and openbite, while no association was found with crossbite. Additionally, we found that mouth breathing is closely related to increased overjet, reduced overjet, anterior or posterior crossbite, openbite and displacement of contact points. Therefore, it is necessary to intervene early on these aetiological factors of malocclusion to prevent its development or worsening and, if already developed, correct it by early orthodontic treatment to promote eugnatic skeletal growth. © Copyright by Società Italiana di Otorinolaringologia e Chirurgia Cervico-Facciale, Rome, Italy.
Pattern recognition of the targets with help of polarization properties of the signal
NASA Astrophysics Data System (ADS)
Ponomaryov, Volodymyr I.; de Rivera, Luis N.; Castellanos, Aldo B.; Popov, Anatoly V.
1999-10-01
We proposed to use the possibility of recognition of the targets on background of the scattering from the surface, weather objects with the help of polarimetric 3-cm radar. It has been investigated such polarization characteristics: the amplitudes of the polarization matrix elements; an anisotropy coefficient; depolarization coefficient; asymmetry coefficient; the energy section was less than 1 dB at ranges up to 15 km and less than 1.5 dB at ranges up to 100 km. During the experiments urban objects and 6 various ships of small displacement having the closest values of the backscattering cross-section were used. The analysis has shown: the factor of the polarization selection for anisotropy objects and weather objects had the values about 0.02-0.08 Isotropy had the values of polarimetric correlation factor for hydrometers about 0.7-0.8, for earth surface about 0.8-0.9, for sea surface - from 0.33 to 0.7. The results of the work of recognition algorithm of a class 'concrete objects', and 'metal objects' are submitted as example in the paper. The result of experiments have shown that the probability of correct recognition of the identified objects was in the limits from 0.93 to 0.97.
Pattern-projected schlieren imaging method using a diffractive optics element
NASA Astrophysics Data System (ADS)
Min, Gihyeon; Lee, Byung-Tak; Kim, Nac Woo; Lee, Munseob
2018-04-01
We propose a novel schlieren imaging method by projecting a random dot pattern, which is generated in a light source module that includes a diffractive optical element. All apparatuses are located in the source side, which leads to one-body sensor applications. This pattern is distorted by the deflections of schlieren objects such that the displacement vectors of random dots in the pixels can be obtained using the particle image velocity algorithm. The air turbulences induced by a burning candle, boiling pot, heater, and gas torch were successfully imaged, and it was shown that imaging up to a size of 0.7 m × 0.57 m is possible. An algorithm to correct the non-uniform sensitivity according to the position of a schlieren object was analytically derived. This algorithm was applied to schlieren images of lenses. Comparing the corrected versions to the original schlieren images, we showed a corrected uniform sensitivity of 14.15 times on average.
Correlation processing for correction of phase distortions in subaperture imaging.
Tavh, B; Karaman, M
1999-01-01
Ultrasonic subaperture imaging combines synthetic aperture and phased array approaches and permits low-cost systems with improved image quality. In subaperture processing, a large array is synthesized using echo signals collected from a number of receive subapertures by multiple firings of a phased transmit subaperture. Tissue inhomogeneities and displacements in subaperture imaging may cause significant phase distortions on received echo signals. Correlation processing on reference echo signals can be used for correction of the phase distortions, for which the accuracy and robustness are critically limited by the signal correlation. In this study, we explore correlation processing techniques for adaptive subaperture imaging with phase correction for motion and tissue inhomogeneities. The proposed techniques use new subaperture data acquisition schemes to produce reference signal sets with improved signal correlation. The experimental test results were obtained using raw radio frequency (RF) data acquired from two different phantoms with 3.5 MHz, 128-element transducer array. The results show that phase distortions can effectively be compensated by the proposed techniques in real-time adaptive subaperture imaging.
Thermo-elastic optical coherence tomography.
Wang, Tianshi; Pfeiffer, Tom; Wu, Min; Wieser, Wolfgang; Amenta, Gaetano; Draxinger, Wolfgang; van der Steen, Antonius F W; Huber, Robert; Soest, Gijs van
2017-09-01
The absorption of nanosecond laser pulses induces rapid thermo-elastic deformation in tissue. A sub-micrometer scale displacement occurs within a few microseconds after the pulse arrival. In this Letter, we investigate the laser-induced thermo-elastic deformation using a 1.5 MHz phase-sensitive optical coherence tomography (OCT) system. A displacement image can be reconstructed, which enables a new modality of phase-sensitive OCT, called thermo-elastic OCT. An analysis of the results shows that the optical absorption is a dominating factor for the displacement. Thermo-elastic OCT is capable of visualizing inclusions that do not appear on the structural OCT image, providing additional tissue type information.
NASA Astrophysics Data System (ADS)
Mahboob, I.; Flurin, E.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2010-12-01
A nanofield-effect transistor (nano-FET) is coupled to a massive piezoelectricity based electromechanical resonator integrated with a parametric amplifier. The mechanical parametric amplifier can enhance the resonator's displacement and the resulting electrical signal is further amplified by the nano-FET. This hybrid amplification scheme yields an increase in the mechanical displacement signal by 70 dB resulting in a force sensitivity of 200 aN Hz-1/2 at 3 K. The mechanical parametric amplifier can also squeeze the displacement noise in one oscillation phase by 5 dB enabling a factor of 4 reduction in the thermomechanical noise force level.
Bias-correction of CORDEX-MENA projections using the Distribution Based Scaling method
NASA Astrophysics Data System (ADS)
Bosshard, Thomas; Yang, Wei; Sjökvist, Elin; Arheimer, Berit; Graham, L. Phil
2014-05-01
Within the Regional Initiative for the Assessment of the Impact of Climate Change on Water Resources and Socio-Economic Vulnerability in the Arab Region (RICCAR) lead by UN ESCWA, CORDEX RCM projections for the Middle East Northern Africa (MENA) domain are used to drive hydrological impacts models. Bias-correction of newly available CORDEX-MENA projections is a central part of this project. In this study, the distribution based scaling (DBS) method has been applied to 6 regional climate model projections driven by 2 RCP emission scenarios. The DBS method uses a quantile mapping approach and features a conditional temperature correction dependent on the wet/dry state in the climate model data. The CORDEX-MENA domain is particularly challenging for bias-correction as it spans very diverse climates showing pronounced dry and wet seasons. Results show that the regional climate models simulate too low temperatures and often have a displaced rainfall band compared to WATCH ERA-Interim forcing data in the reference period 1979-2008. DBS is able to correct the temperature biases as well as some aspects of the precipitation biases. Special focus is given to the analysis of the influence of the dry-frequency bias (i.e. climate models simulating too few rain days) on the bias-corrected projections and on the modification of the climate change signal by the DBS method.
Prolonged internal displacement and common mental disorders in Sri Lanka: the COMRAID study.
Siriwardhana, Chesmal; Adikari, Anushka; Pannala, Gayani; Siribaddana, Sisira; Abas, Melanie; Sumathipala, Athula; Stewart, Robert
2013-01-01
Evidence is lacking on the mental health issues of internally displaced persons, particularly where displacement is prolonged. The COMRAID study was carried out in year 2011 as a comprehensive evaluation of Muslims in North-Western Sri Lanka who had been displaced since 1990 due to conflict, to investigate the prevalence and correlates of common mental disorders. A cross-sectional survey was carried out among a randomly selected sample of internally displaced people who had migrated within last 20 years or were born in displacement. The total sample consisted of 450 adults aged 18-65 years selected from 141 settlements. Common mental disorders (CMDs) and post-traumatic stress disorder (PTSD) prevalences were measured using the Patient Health Questionnaire and CIDI sub-scale respectively. The prevalence of any CMD was 18.8%, and prevalence for subtypes was as follows: somatoform disorder 14.0%, anxiety disorder 1.3%, major depression 5.1%, other depressive syndromes 7.3%. PTSD prevalence was 2.4%. The following factors were significantly associated with CMDs: unemployment (odds ratio 2.8, 95% confidence interval 1.6-4.9), widowed or divorced status (4.9, 2.3-10.1) and food insecurity (1.7, 1.0-2.9). This is the first study investigating the mental health impact of prolonged forced displacement in post-conflict Sri Lanka. Findings add new insight in to mental health issues faced by internally displaced persons in Sri Lanka and globally, highlighting the need to explore broader mental health issues of vulnerable populations affected by forced displacement.
Radanović-Grgurić, Ljiljana; Barkić, Jelena; Filaković, Pavo; Koić, Oliver; Laufer, Davor; Petek, Anamarija; Mandić, Nikola
2009-12-01
Our research objective was to estimate the characteristics of major depressive disorder and social adaptation of women displaced during the war in Croatia in the early 1990s. We aimed to establish the relationship between major depressive disorder and displacement and study its impact on the outcome of depression in order to improve treatment and avoid possible complications. A group of 20 women, 35 to 55 years of age, displaced some time during the 199l.-1995. war in Croatia were compared to 27 women of the same age but with no experience of exile. All the patients suffered from major depressive disorder based upon DSM-IV diagnostic criteria. The Hamilton Rating Scale for Depression, the Zung Self Rating Depression Scale and the Social Adaptation Self-evaluation Scale were used. The objective intensity of depression of the displaced significantly decreased over time but not their personal experience of depression. All depressed patients manifested poor social adaptation. Many aspects of social functioning remained poor even after the improvement of depressive disorder. Displacement characteristics were: the length of time spent in exile, the place, and the circumstances of displacement regarding the members of the family accompanying the displaced women. These characteristics significantly influenced the expression of their major depressive disorder as well as social functioning. Displaced persons/refugees are at high risk of developing depressive disorder. Recognition of all risk factors and early diagnosis of depressive disorder followed by appropriate treatment could decrease the risk of chronic and complicated depression as well as the risk of poor social adaptation.
Correction of image drift and distortion in a scanning electron microscopy.
Jin, P; Li, X
2015-12-01
Continuous research on small-scale mechanical structures and systems has attracted strong demand for ultrafine deformation and strain measurements. Conventional optical microscope cannot meet such requirements owing to its lower spatial resolution. Therefore, high-resolution scanning electron microscope has become the preferred system for high spatial resolution imaging and measurements. However, scanning electron microscope usually is contaminated by distortion and drift aberrations which cause serious errors to precise imaging and measurements of tiny structures. This paper develops a new method to correct drift and distortion aberrations of scanning electron microscope images, and evaluates the effect of correction by comparing corrected images with scanning electron microscope image of a standard sample. The drift correction is based on the interpolation scheme, where a series of images are captured at one location of the sample and perform image correlation between the first image and the consequent images to interpolate the drift-time relationship of scanning electron microscope images. The distortion correction employs the axial symmetry model of charged particle imaging theory to two images sharing with the same location of one object under different imaging fields of view. The difference apart from rigid displacement between the mentioned two images will give distortion parameters. Three-order precision is considered in the model and experiment shows that one pixel maximum correction is obtained for the employed high-resolution electron microscopic system. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Neuroticism and stress: the role of displacement behavior.
Mohiyeddini, Changiz; Bauer, Stephanie; Semple, Stuart
2015-01-01
Neuroticism is linked with an impaired ability to cope with stress and is an important risk factor for stress-related disorders. Hence, there is interest in exploring the behavioral correlates of neuroticism and how such behaviors may moderate the link between neuroticism and the response to stress. Displacement behavior - activity such as face touching and scratching - is important to investigate in this respect, as recent studies indicate that such behavior is linked to negative emotional states and has an important stress coping function. Here, we explored the relationship between neuroticism, displacement behavior, and stress in a healthy population of men. This was a cross-sectional, quasiexperimentally controlled study. We assessed participants' levels of neuroticism, and then during a Trier Social Stress Test quantified displacement behavior, physiological, and cognitive indices of the stress response; after the test we measured the self-reported experience of stress. Displacement behavior was negatively correlated with self-reported experience, physiological, and cognitive measures of stress and moderated the relationships between neuroticism, self-reported experience, and cognitive index of stress. Our results suggest displacement behavior plays an important role in shaping the link between neuroticism and the response to stress.
Does juvenile competition explain displacement of a native crayfish by an introduced crayfish?
Larson, E.R.; Magoulick, D.D.
2009-01-01
The coldwater crayfish Orconectes eupunctus is endemic to the Spring and Eleven Point Rivers of Arkansas and Missouri, and appears to have been displaced from a portion of its range by the recently introduced ringed crayfish Orconectes neglectus. We examined competition among juveniles as a potential mechanism for this crayfish species displacement through laboratory and field experiments. Orconectes eupunctus juveniles survived and grew in stream cages in their former range, implicating biotic interactions rather than habitat degradation in the displacement. Laboratory experiments revealed O. neglectus juveniles were dominant in the presence of limited food, whereas size rather than species determined occupancy of limited shelter. In a field competition experiment using stream cages, O. neglectus juveniles did not inhibit growth or reduce survival of O. eupunctus juveniles. Consequently, laboratory evidence of O. neglectus dominance did not correspond with competition under field conditions. Combined with previous studies examining the effects of O. neglectus on O. eupunctus, these results suggest that competition may not be a factor in this crayfish species displacement. Alternate mechanisms for the apparent displacement of O. eupunctus by O. neglectus, such as differential predation or reproductive interference, should be investigated. ?? 2008 Springer Science+Business Media B.V.
Hierarchies in Quantum Gravity: Large Numbers, Small Numbers, and Axions
NASA Astrophysics Data System (ADS)
Stout, John Eldon
Our knowledge of the physical world is mediated by relatively simple, effective descriptions of complex processes. By their very nature, these effective theories obscure any phenomena outside their finite range of validity, discarding information crucial to understanding the full, quantum gravitational theory. However, we may gain enormous insight into the full theory by understanding how effective theories with extreme characteristics--for example, those which realize large-field inflation or have disparate hierarchies of scales--can be naturally realized in consistent theories of quantum gravity. The work in this dissertation focuses on understanding the quantum gravitational constraints on these "extreme" theories in well-controlled corners of string theory. Axion monodromy provides one mechanism for realizing large-field inflation in quantum gravity. These models spontaneously break an axion's discrete shift symmetry and, assuming that the corrections induced by this breaking remain small throughout the excursion, create a long, quasi-flat direction in field space. This weakly-broken shift symmetry has been used to construct a dynamical solution to the Higgs hierarchy problem, dubbed the "relaxion." We study this relaxion mechanism and show that--without major modifications--it can not be naturally embedded within string theory. In particular, we find corrections to the relaxion potential--due to the ten-dimensional backreaction of monodromy charge--that conflict with naive notions of technical naturalness and render the mechanism ineffective. The super-Planckian field displacements necessary for large-field inflation may also be realized via the collective motion of many aligned axions. However, it is not clear that string theory provides the structures necessary for this to occur. We search for these structures by explicitly constructing the leading order potential for C4 axions and computing the maximum possible field displacement in all compactifications of type IIB string theory on toric Calabi-Yau hypersurfaces with h1,1 ≤ 4 in the Kreuzer-Skarke database. While none of these examples can sustain a super-Planckian displacement--the largest possible is 0.3 Mpl--we find an alignment mechanism responsible for large displacements in random matrix models at large h 1,1 >> 1, indicating that large-field inflation may be feasible in compactifications with tens or hundreds of axions. These results represent a modest step toward a complete understanding of large hierarchies and naturalness in quantum gravity.
A new look at the simultaneous analysis and design of structures
NASA Technical Reports Server (NTRS)
Striz, Alfred G.
1994-01-01
The minimum weight optimization of structural systems, subject to strength and displacement constraints as well as size side constraints, was investigated by the Simultaneous ANalysis and Design (SAND) approach. As an optimizer, the code NPSOL was used which is based on a sequential quadratic programming (SQP) algorithm. The structures were modeled by the finite element method. The finite element related input to NPSOL was automatically generated from the input decks of such standard FEM/optimization codes as NASTRAN or ASTROS, with the stiffness matrices, at present, extracted from the FEM code ANALYZE. In order to avoid ill-conditioned matrices that can be encountered when the global stiffness equations are used as additional nonlinear equality constraints in the SAND approach (with the displacements as additional variables), the matrix displacement method was applied. In this approach, the element stiffness equations are used as constraints instead of the global stiffness equations, in conjunction with the nodal force equilibrium equations. This approach adds the element forces as variables to the system. Since, for complex structures and the associated large and very sparce matrices, the execution times of the optimization code became excessive due to the large number of required constraint gradient evaluations, the Kreisselmeier-Steinhauser function approach was used to decrease the computational effort by reducing the nonlinear equality constraint system to essentially a single combined constraint equation. As the linear equality and inequality constraints require much less computational effort to evaluate, they were kept in their previous form to limit the complexity of the KS function evaluation. To date, the standard three-bar, ten-bar, and 72-bar trusses have been tested. For the standard SAND approach, correct results were obtained for all three trusses although convergence became slower for the 72-bar truss. When the matrix displacement method was used, correct results were still obtained, but the execution times became excessive due to the large number of constraint gradient evaluations required. Using the KS function, the computational effort dropped, but the optimization seemed to become less robust. The investigation of this phenomenon is continuing. As an alternate approach, the code MINOS for the optimization of sparse matrices can be applied to the problem in lieu of the Kreisselmeier-Steinhauser function. This investigation is underway.
Lovelock, D Michael; Messineo, Alessandra P; Cox, Brett W; Kollmeier, Marisa A; Zelefsky, Michael J
2015-03-01
To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment. Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting the couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time. After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure. CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovelock, D. Michael, E-mail: lovelocm@mskcc.org; Messineo, Alessandra P.; Cox, Brett W.
2015-03-01
Purpose: To compare the potential benefits of continuous monitoring of prostate position and intervention (CMI) using 2-mm displacement thresholds during stereotactic body radiation therapy (SBRT) treatment to those of a conventional image-guided procedure involving single localization prior to treatment. Methods and Materials: Eighty-nine patients accrued to a prostate SBRT dose escalation protocol were implanted with radiofrequency transponder beacons. The planning target volume (PTV) margin was 5 mm in all directions, except for 3 mm in the posterior direction. The prostate was kept within 2 mm of its planned position by the therapists halting dose delivery and, if necessary, correcting themore » couch position. We computed the number, type, and time required for interventions and where the prostate would have been during dose delivery had there been, instead, a single image-guided setup procedure prior to each treatment. Distributions of prostate displacements were computed as a function of time. Results: After the initial setup, 1.7 interventions per fraction were required, with a concomitant increase in time for dose delivery of approximately 65 seconds. Small systematic drifts in prostate position in the posterior and inferior directions were observed in the study patients. Without CMI, intrafractional motion would have resulted in approximately 10% of patients having a delivered dose that did not meet our clinical coverage requirement, that is, a PTV D95 of >90%. The posterior PTV margin required for 95% of the dose to be delivered with the target positioned within the PTV was computed as a function of time. The margin necessary was found to increase by 2 mm every 5 minutes, starting from the time of the imaging procedure. Conclusions: CMI using a tight 2-mm displacement threshold was not only feasible but was found to deliver superior PTV coverage compared with the conventional image-guided procedure in the SBRT setting.« less
Freas, Cody A.; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas, whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees. PMID:29422880
Freas, Cody A; Wystrach, Antione; Narendra, Ajay; Cheng, Ken
2018-01-01
Solitary foraging ants commonly use visual cues from their environment for navigation. Foragers are known to store visual scenes from the surrounding panorama for later guidance to known resources and to return successfully back to the nest. Several ant species travel not only on the ground, but also climb trees to locate resources. The navigational information that guides animals back home during their descent, while their body is perpendicular to the ground, is largely unknown. Here, we investigate in a nocturnal ant, Myrmecia midas , whether foragers travelling down a tree use visual information to return home. These ants establish nests at the base of a tree on which they forage and in addition, they also forage on nearby trees. We collected foragers and placed them on the trunk of the nest tree or a foraging tree in multiple compass directions. Regardless of the displacement location, upon release ants immediately moved to the side of the trunk facing the nest during their descent. When ants were released on non-foraging trees near the nest, displaced foragers again travelled around the tree to the side facing the nest. All the displaced foragers reached the correct side of the tree well before reaching the ground. However, when the terrestrial cues around the tree were blocked, foragers were unable to orient correctly, suggesting that the surrounding panorama is critical to successful orientation on the tree. Through analysis of panoramic pictures, we show that views acquired at the base of the foraging tree nest can provide reliable nest-ward orientation up to 1.75 m above the ground. We discuss, how animals descending from trees compare their current scene to a memorised scene and report on the similarities in visually guided behaviour while navigating on the ground and descending from trees.
Dynamic ductile fracture of a central crack
NASA Technical Reports Server (NTRS)
Tsai, Y. M.
1976-01-01
A central crack, symmetrically growing at a constant speed in a two dimensional ductile material subject to uniform tension at infinity, is investigated using the integral transform methods. The crack is assumed to be the Dugdale crack, and the finite stress condition at the crack tip is satisfied during the propagation of the crack. Exact expressions of solution are obtained for the finite stress condition at the crack tip, the crack shape, the crack opening displacement, and the energy release rate. All those expressions are written as the product of explicit dimensional quantities and a nondimensional dynamic correction function. The expressions reduce to the associated static results when the crack speed tends to zero, and the nondimensional dynamic correction functions were calculated for various values of the parameter involved.
Zachiu, Cornel; Denis de Senneville, Baudouin; Moonen, Chrit; Ries, Mario
2015-07-01
While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. The therapeutic workflow of a MR-guided HIFU intervention is in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zachiu, Cornel, E-mail: C.Zachiu@umcutrecht.nl; Moonen, Chrit; Ries, Mario
Purpose: While respiratory motion compensation for magnetic resonance (MR)-guided high intensity focused ultrasound (HIFU) interventions has been extensively studied, the influence of slow physiological motion due to, for example, peristaltic activity, has so far been largely neglected. During lengthy interventions, the magnitude of the latter can exceed acceptable therapeutic margins. The goal of the present study is to exploit the episodic workflow of these therapies to implement a motion correction strategy for slow varying drifts of the target area and organs at risk over the entire duration of the intervention. Methods: The therapeutic workflow of a MR-guided HIFU intervention ismore » in practice often episodic: Bursts of energy delivery are interleaved with periods of inactivity, allowing the effects of the beam on healthy tissues to recede and/or during which the plan of the intervention is reoptimized. These periods usually last for at least several minutes. It is at this time scale that organ drifts due to slow physiological motion become significant. In order to capture these drifts, the authors propose the integration of 3D MR scans in the therapy workflow during the inactivity intervals. Displacements were estimated using an optical flow algorithm applied on the 3D acquired images. A preliminary study was conducted on ten healthy volunteers. For each volunteer, 3D MR images of the abdomen were acquired at regular intervals of 10 min over a total duration of 80 min. Motion analysis was restricted to the liver and kidneys. For validating the compatibility of the proposed motion correction strategy with the workflow of a MR-guided HIFU therapy, an in vivo experiment on a porcine liver was conducted. A volumetric HIFU ablation was completed over a time span of 2 h. A 3D image was acquired before the first sonication, as well as after each sonication. Results: Following the volunteer study, drifts larger than 8 mm for the liver and 5 mm for the kidneys prove that slow physiological motion can exceed acceptable therapeutic margins. In the animal experiment, motion tracking revealed an initial shift of up to 4 mm during the first 10 min and a subsequent continuous shift of ∼2 mm/h until the end of the intervention. This leads to a continuously increasing mismatch of the initial shot planning, the thermal dose measurements, and the true underlying anatomy. The estimated displacements allowed correcting the planned sonication cell cluster positions to the true target position, as well as the thermal dose estimates during the entire intervention and to correct the nonperfused volume measurement. A spatial coherence of all three is particularly important to assure a confluent ablation volume and to prevent remaining islets of viable malignant tissue. Conclusions: This study proposes a motion correction strategy for displacements resulting from slowly varying physiological motion that might occur during a MR-guided HIFU intervention. The authors have shown that such drifts can lead to a misalignment between interventional planning, energy delivery, and therapeutic validation. The presented volunteer study and in vivo experiment demonstrate both the relevance of the problem for HIFU therapies and the compatibility of the proposed motion compensation framework with the workflow of a HIFU intervention under clinical conditions.« less
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Thermodynamic properties of semiconductor compounds studied based on Debye-Waller factors
NASA Astrophysics Data System (ADS)
Van Hung, Nguyen; Toan, Nguyen Cong; Ba Duc, Nguyen; Vuong, Dinh Quoc
2015-08-01
Thermodynamic properties of semiconductor compounds have been studied based on Debye-Waller factors (DWFs) described by the mean square displacement (MSD) which has close relation with the mean square relative displacement (MSRD). Their analytical expressions have been derived based on the statistical moment method (SMM) and the empirical many-body Stillinger-Weber potentials. Numerical results for the MSDs of GaAs, GaP, InP, InSb, which have zinc-blende structure, are found to be in reasonable agreement with experiment and other theories. This paper shows that an elements value for MSD is dependent on the binary semiconductor compound within which it resides.
Factors influencing the life cycle burdens of the recovery of energy from residual municipal waste.
Burnley, Stephen; Coleman, Terry; Peirce, Adam
2015-05-01
A life cycle assessment was carried out to assess a selection of the factors influencing the environmental impacts and benefits of incinerating the fraction of municipal waste remaining after source-separation for reuse, recycling, composting or anaerobic digestion. The factors investigated were the extent of any metal and aggregate recovery from the bottom ash, the thermal efficiency of the process, and the conventional fuel for electricity generation displaced by the power generated. The results demonstrate that incineration has significant advantages over landfill with lower impacts from climate change, resource depletion, acidification, eutrophication human toxicity and aquatic ecotoxicity. To maximise the benefits of energy recovery, metals, particularly aluminium, should be reclaimed from the residual bottom ash and the energy recovery stage of the process should be as efficient as possible. The overall environmental benefits/burdens of energy from waste also strongly depend on the source of the power displaced by the energy from waste, with coal giving the greatest benefits and combined cycle turbines fuelled by natural gas the lowest of those considered. Regardless of the conventional power displaced incineration presents a lower environmental burden than landfill. Copyright © 2015 Elsevier Ltd. All rights reserved.
García-Garduño, Olivia A; Rodríguez-Ávila, Manuel A; Lárraga-Gutiérrez, José M
2018-01-01
Silicon-diode-based detectors are commonly used for the dosimetry of small radiotherapy beams due to their relatively small volumes and high sensitivity to ionizing radiation. Nevertheless, silicon-diode-based detectors tend to over-respond in small fields because of their high density relative to water. For that reason, detector-specific beam correction factors ([Formula: see text]) have been recommended not only to correct the total scatter factors but also to correct the tissue maximum and off-axis ratios. However, the application of [Formula: see text] to in-depth and off-axis locations has not been studied. The goal of this work is to address the impact of the correction factors on the calculated dose distribution in static non-conventional photon beams (specifically, in stereotactic radiosurgery with circular collimators). To achieve this goal, the total scatter factors, tissue maximum, and off-axis ratios were measured with a stereotactic field diode for 4.0-, 10.0-, and 20.0-mm circular collimators. The irradiation was performed with a Novalis® linear accelerator using a 6-MV photon beam. The detector-specific correction factors were calculated and applied to the experimental dosimetry data for in-depth and off-axis locations. The corrected and uncorrected dosimetry data were used to commission a treatment planning system for radiosurgery planning. Various plans were calculated with simulated lesions using the uncorrected and corrected dosimetry. The resulting dose calculations were compared using the gamma index test with several criteria. The results of this work presented important conclusions for the use of detector-specific beam correction factors ([Formula: see text] in a treatment planning system. The use of [Formula: see text] for total scatter factors has an important impact on monitor unit calculation. On the contrary, the use of [Formula: see text] for tissue-maximum and off-axis ratios has not an important impact on the dose distribution calculation by the treatment planning system. This conclusion is only valid for the combination of treatment planning system, detector, and correction factors used in this work; however, this technique can be applied to other treatment planning systems, detectors, and correction factors.
Liu, W; Xiao, J; Ji, F; Xie, Y; Hao, Y
2015-04-01
The optimal treatment of midshaft clavicle fractures remains controversial. Nonunion is usually considered to be an uncommon complication following a nonoperatively treated clavicle fracture. Not every midshaft clavicular fractures shares the same risk of developing nonunion after nonoperative treatment. The present study was performed to identify the intrinsic and extrinsic independent factors that are independently predictive of nonunion in patients with midshaft clavicular fractures after nonoperative treatment. We performed a retrospective study of a series of 804 patients (391 men and 413 women with a median age of 51.3 years) with a radiographically confirmed midshaft clavicle fracture, which was treated nonoperatively. There were 96 patients who underwent nonunion. Putative intrinsic (patient-related) and extrinsic (injured-related) risk factors associated with nonunion were determined with the use of bivariate and multivariate statistical analyses. By bivariate analysis, the risk of nonunion was significantly increased by several intrinsic risk factors including age, sex, and smoking and extrinsic risk factors including displacement of the fracture and the presence of comminution (P<0.05 for all). On multivariate analysis, smoking (OR=4.16, 95% CI: 1.01-14.16), fracture displacement (OR=7.81, 95% CI: 2.27-25.38) and comminution of fracture (OR=3.86, 95% CI: 1.16-13.46) were identified as independent predictive factors. The risk factors for nonunion after nonoperative treatment of midshaft clavicle fractures are multifactorial. Smoking, fracture displacement and comminution of fracture are independent predictors for an individual likelihood of nonunion. Further studies are still required to evaluate these factors in the future. Level III, case-control study. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Walsh, Seán; Roelofs, Erik; Kuess, Peter; van Wijk, Yvonka; Lambin, Philippe; Jones, Bleddyn; Verhaegen, Frank
2018-01-01
We present a methodology which can be utilized to select proton or photon radiotherapy in prostate cancer patients. Four state-of-the-art competing treatment modalities were compared (by way of an in silico trial) for a cohort of 25 prostate cancer patients, with and without correction strategies for prostate displacements. Metrics measured from clinical image guidance systems were used. Three correction strategies were investigated; no-correction, extended-no-action-limit, and online-correction. Clinical efficacy was estimated via radiobiological models incorporating robustness (how probable a given treatment plan was delivered) and stability (the consistency between the probable best and worst delivered treatments at the 95% confidence limit). The results obtained at the cohort level enabled the determination of a threshold for likely clinical benefit at the individual level. Depending on the imaging system and correction strategy; 24%, 32% and 44% of patients were identified as suitable candidates for proton therapy. For the constraints of this study: Intensity-modulated proton therapy with online-correction was on average the most effective modality. Irrespective of the imaging system, each treatment modality is similar in terms of robustness, with and without the correction strategies. Conversely, there is substantial variation in stability between the treatment modalities, which is greatly reduced by correction strategies. This study provides a ‘proof-of-concept’ methodology to enable the prospective identification of individual patients that will most likely (above a certain threshold) benefit from proton therapy. PMID:29463018
Casual instrument corrections for short-period and broadband seismometers
Haney, Matthew M.; Power, John; West, Michael; Michaels, Paul
2012-01-01
Of all the filters applied to recordings of seismic waves, which include source, path, and site effects, the one we know most precisely is the instrument filter. Therefore, it behooves seismologists to accurately remove the effect of the instrument from raw seismograms. Applying instrument corrections allows analysis of the seismogram in terms of physical units (e.g., displacement or particle velocity of the Earth’s surface) instead of the output of the instrument (e.g., digital counts). The instrument correction can be considered the most fundamental processing step in seismology since it relates the raw data to an observable quantity of interest to seismologists. Complicating matters is the fact that, in practice, the term “instrument correction” refers to more than simply the seismometer. The instrument correction compensates for the complete recording system including the seismometer, telemetry, digitizer, and any anti‐alias filters. Knowledge of all these components is necessary to perform an accurate instrument correction. The subject of instrument corrections has been covered extensively in the literature (Seidl, 1980; Scherbaum, 1996). However, the prospect of applying instrument corrections still evokes angst among many seismologists—the authors of this paper included. There may be several reasons for this. For instance, the seminal paper by Seidl (1980) exists in a journal that is not currently available in electronic format and cannot be accessed online. Also, a standard method for applying instrument corrections involves the programs TRANSFER and EVALRESP in the Seismic Analysis Code (SAC) package (Goldstein et al., 2003). The exact mathematical methods implemented in these codes are not thoroughly described in the documentation accompanying SAC.
Betancourt, Theresa S.; Salhi, Carmel; Buka, Stephen; Leaning, Jennifer; Dunn, Gillian; Earls, Felton
2013-01-01
The study investigated factors associated with internalising emotional and behavioural problems among adolescents displaced during the most recent Chechen conflict. A cross-sectional survey (N=183) examined relationships between social support and connectedness with family, peers and community in relation to internalising problems. Levels of internalising were higher in displaced Chechen youth compared to published norms among non-referred youth in the United States and among Russian children not affected by conflict. Girls demonstrated higher problem scores compared to boys. Significant inverse correlations were observed between family, peer and community connectedness and internalising problems. In multivariate analyses, family connectedness was indicated as a significant predictor of internalising problems, independent of age, gender, housing status and other forms of support evaluated. Sub-analyses by gender indicated stronger protective relationships between family connectedness and internalising problems in boys. Results indicate that family connectedness is an important protective factor requiring further exploration by gender in war-affected adolescents. PMID:22443099
Hubbard, T L
1995-09-01
Memory for the final position of a moving target is often shifted or displaced from the true final position of that target. Early studies of this memory shift focused on parallels between the momentum of the target and the momentum of the representation of the target and called this displacementrepresentational momentum, but many factors other than momentum contribute to the memory shift. A consideration of the empirical literature on representational momentum and related types of displacement suggests there are at least four different types of factors influencing the direction and magnitude of such memory shifts: stimulus characteristics (e.g., target direction, target velocity), implied dynamics and environmental invariants (e.g., implied momentum, gravity, friction, centripetal force), memory averaging of target and nontarget context (e.g., biases toward previous target locations or nontarget context), and observers' expectations (both tacit and conscious) regarding future target motion and target/context interactions. Several theories purporting to account for representational momentum and related types of displacement are also considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung
Purpose: Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A secondmore » study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. Methods: In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Results: Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Conclusions: Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2–3 weeks after simulation)« less
Dzyubak, Oleksandr; Kincaid, Russell; Hertanto, Agung; Hu, Yu-Chi; Pham, Hai; Rimner, Andreas; Yorke, Ellen; Zhang, Qinghui; Mageras, Gig S
2014-10-01
Target localization accuracy of cone-beam CT (CBCT) images used in radiation treatment of respiratory disease sites is affected by motion artifacts (blurring and streaking). The authors have previously reported on a method of respiratory motion correction in thoracic CBCT at end expiration (EE). The previous retrospective study was limited to examination of reducing motion artifacts in a small number of patient cases. They report here on a prospective study in a larger group of lung cancer patients to evaluate respiratory motion-corrected (RMC)-CBCT ability to improve lung tumor localization accuracy and reduce motion artifacts in Linac-mounted CBCT images. A second study goal examines whether the motion correction derived from a respiration-correlated CT (RCCT) at simulation yields similar tumor localization accuracy at treatment. In an IRB-approved study, 19 lung cancer patients (22 tumors) received a RCCT at simulation, and on one treatment day received a RCCT, a respiratory-gated CBCT at end expiration, and a 1-min CBCT. A respiration monitor of abdominal displacement was used during all scans. In addition to a CBCT reconstruction without motion correction, the motion correction method was applied to the same 1-min scan. Projection images were sorted into ten bins based on abdominal displacement, and each bin was reconstructed to produce ten intermediate CBCT images. Each intermediate CBCT was deformed to the end expiration state using a motion model derived from RCCT. The deformed intermediate CBCT images were then added to produce a final RMC-CBCT. In order to evaluate the second study goal, the CBCT was corrected in two ways, one using a model derived from the RCCT at simulation [RMC-CBCT(sim)], the other from the RCCT at treatment [RMC-CBCT(tx)]. Image evaluation compared uncorrected CBCT, RMC-CBCT(sim), and RMC-CBCT(tx). The gated CBCT at end expiration served as the criterion standard for comparison. Using automatic rigid image registration, each CBCT was registered twice to the gated CBCT, first aligned to spine, second to tumor in lung. Localization discrepancy was defined as the difference between tumor and spine registration. Agreement in tumor localization with the gated CBCT was further evaluated by calculating a normalized cross correlation (NCC) of pixel intensities within a volume-of-interest enclosing the tumor in lung. Tumor localization discrepancy was reduced with RMC-CBCT(tx) in 17 out of 22 cases relative to no correction. If one considers cases in which tumor motion is 5 mm or more in the RCCT, tumor localization discrepancy is reduced with RMC-CBCT(tx) in 14 out of 17 cases (p = 0.04), and with RMC-CBCT(sim) in 13 out of 17 cases (p = 0.05). Differences in localization discrepancy between correction models [RMC-CBCT(sim) vs RMC-CBCT(tx)] were less than 2 mm. In 21 out of 22 cases, improvement in NCC was higher with RMC-CBCT(tx) relative to no correction (p < 0.0001). Differences in NCC between RMC-CBCT(sim) and RMC-CBCT(tx) were small. Motion-corrected CBCT improves lung tumor localization accuracy and reduces motion artifacts in nearly all cases. Motion correction at end expiration using RCCT acquired at simulation yields similar results to that using a RCCT on the treatment day (2-3 weeks after simulation).
No Substitute for Going to the Field: Correcting Lidar DEMs in Salt Marshes
NASA Astrophysics Data System (ADS)
Renken, K.; Morris, J. T.; Lynch, J.; Bayley, H.; Neil, A.; Rasmussen, S.; Tyrrell, M.; Tanis, M.
2016-12-01
Models that forecast the response of salt marshes to current and future trends in sea level rise increasingly are used to guide management of these vulnerable ecosystems. Lidar-derived DEMs serve as the foundation for modeling landform change. However, caution is advised when using these DEMs as the starting point for models of salt marsh evolution. While broad vegetation class (i.e., young forest, old forest, grasslands, desert, etc.) has proven to be a significant predictor of vertical displacement error in terrestrial environments, differentiating error among different species or community types within the same ecosystem has received less attention. Salt marshes are dominated by monocultures of grass species and thus are an ideal environment to examine the within-species effect on lidar DEM error. We analyzed error of lidar DEMs using elevations from real-time kinematic (RTK) surveys in saltmarshes in multiple national parks and wildlife refuge areas from the mouth of the Chesapeake Bay to Massachusetts. Error of the lidar DEMs was sometimes large, on the order of 0.25 m, and varied significantly between sites because vegetation cover varies seasonally and lidar data was not always collected in the same season for each park. Vegetation cover and composition were used to explain differences between RTK elevations and lidar DEMs. This research underscores the importance of collecting RTK elevation data and vegetation cover data coincident with lidar data to produce correction factors specific to individual salt marsh sites.
Comparison of the efficacy of tooth alignment among lingual and labial brackets: an in vitro study.
Alobeid, Ahmad; El-Bialy, Tarek; Reimann, Susanne; Keilig, Ludger; Cornelius, Dirk; Jäger, Andreas; Bourauel, Christoph
2018-03-13
The aim of this study was to evaluate the efficacy of tooth alignment with conventional and self-ligating labial and lingual orthodontic bracket systems. We tested labial brackets (0.022″ slot size) and lingual brackets (0.018″ slot size). The labial brackets were: (i) regular twin brackets (GAC-Twin [Dentsply]), (ii) passive self-ligating brackets including (Damon-Q® [ORMCO]; Ortho classic H4™ [Orthoclassic]; FLI®SL [RMO]), and (iii) active self-ligating brackets (GAC In-Ovation®C [DENTSPLY] and SPEED™[Strite]). The lingual brackets included (i) twin bracket systems (Incognito [3M] and Joy™ [Adenta]), (ii) passive self-ligating bracket system (GAC In-Ovation®LM™ [Dentsply]), and (iii) active self-ligating bracket system (Evolution SLT [Adenta]). The tested wires were Thermalloy-NiTi 0.013″ and 0.014″ (RMO). The archwires were tied to the regular twin brackets with stainless steel ligatures 0.010″ (RMO). The malocclusion simulated a displaced maxillary central incisor in the x-axis (2 mm gingivally) and in the z-axis (2 mm labially). The results showed that lingual brackets are less efficient in aligning teeth when compared with labial brackets in general. The vertical correction achieved by labial bracket systems ranged from 72 to 95 per cent with 13″ Thermalloy wires and from 70 to 87 per cent with 14″ Thermalloy wires. In contrast, the achieved corrections by lingual brackets with 13″ Thermalloy wires ranged between 25-44 per cent and 29-52 per cent for the 14" Thermalloy wires. The anteroposterior correction achieved by labial brackets ranged between 83 and 138 per cent for the 13″ Thermalloy and between 82 and 129 per cent for the 14″ Thermalloy wires. On the other hand, lingual brackets corrections ranged between 12 and 40 per cent for the 13″ Thermalloy wires and between 30 and 45 per cent for the 14″ Thermalloy wires. This is a lab-based study with different labial and lingual bracket slot sizes (however they are the commonly used ones in clinical orthodontics) and study did not consider saliva, periodontal ligament, mastication and other oral functions. The effectiveness of lingual brackets in correcting vertical and anteroposterior displacement achieved during the initial alignment phase of orthodontic treatment is lower than that of the effectiveness of labial brackets.
MRI-Guided Regional Personalized Electrical Stimulation in Multisession and Home Treatments
Cancelli, Andrea; Cottone, Carlo; Giordani, Alessandro; Asta, Giampiero; Lupoi, Domenico; Pizzella, Vittorio; Tecchio, Franca
2018-01-01
The shape and position of the electrodes is a key factor for the efficacy of transcranial electrical stimulations (tES). We have recently introduced the Regional Personalized Electrode (RePE), a tES electrode fitting the personal cortical folding, that has been able to differentiate the stimulation of close by regions, in particular the primary sensory (S1) and motor (M1) cortices, and to personalize tES onto such an extended cortical district. However, neuronavigation on individual brain was compulsory for the correct montage. Here, we aimed at developing and testing a neuronavigation-free procedure for easy and quick positioning RePE, enabling multisession RePE-tES at home. We used off-line individual MRI to shape RePE via an ad-hoc computerized procedure, while an ad-hoc developed Adjustable Helmet Frame (AHF) was used to properly position it in multisession treatments, even at home. We used neuronavigation to test the RePE shape and position obtained by the new computerized procedure and the re-positioning obtained via the AHF. Using Finite Element Method (FEM) model, we also estimated the intra-cerebral current distribution induced by transcranial direct current stimulation (tDCS) comparing RePE vs. non-RePE with fixed reference. Additionally, we tested, using FEM, various shapes, and positions of the reference electrode taking into account possible small displacements of RePE, to test feasibility of RePE-tES sessions at home. The new RePE neuronavigation-free positioning relies on brain MRI space distances, and produced a mean displacement of 3.5 ± 0.8 mm, and the re-positioning of 4.8 ± 1.1 mm. Higher electric field in S1 than in M1 was best obtained with the occipital reference electrode, a montage that proved to feature low sensitivity to typical RePE millimetric displacements. Additionally, a new tES accessory was developed to enable repositioning the electrodes over the scalp also at home, with a precision which is acceptable according to the modeling-estimated intracerebral currents. Altogether, we provide here a procedure to simplify and make easily applicable RePE-tDCS, which enables efficacious personalized treatments. PMID:29867308
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T.; Kuncic, Zdenka; Keall, Paul J.
2014-01-01
Purpose: Respiratory signal, binning method, and reconstruction algorithm are three major controllable factors affecting image quality in thoracic 4D cone-beam CT (4D-CBCT), which is widely used in image guided radiotherapy (IGRT). Previous studies have investigated each of these factors individually, but no integrated sensitivity analysis has been performed. In addition, projection angular spacing is also a key factor in reconstruction, but how it affects image quality is not obvious. An investigation of the impacts of these four factors on image quality can help determine the most effective strategy in improving 4D-CBCT for IGRT. Methods: Fourteen 4D-CBCT patient projection datasets with various respiratory motion features were reconstructed with the following controllable factors: (i) respiratory signal (real-time position management, projection image intensity analysis, or fiducial marker tracking), (ii) binning method (phase, displacement, or equal-projection-density displacement binning), and (iii) reconstruction algorithm [Feldkamp–Davis–Kress (FDK), McKinnon–Bates (MKB), or adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS)]. The image quality was quantified using signal-to-noise ratio (SNR), contrast-to-noise ratio, and edge-response width in order to assess noise/streaking and blur. The SNR values were also analyzed with respect to the maximum, mean, and root-mean-squared-error (RMSE) projection angular spacing to investigate how projection angular spacing affects image quality. Results: The choice of respiratory signals was found to have no significant impact on image quality. Displacement-based binning was found to be less prone to motion artifacts compared to phase binning in more than half of the cases, but was shown to suffer from large interbin image quality variation and large projection angular gaps. Both MKB and ASD-POCS resulted in noticeably improved image quality almost 100% of the time relative to FDK. In addition, SNR values were found to increase with decreasing RMSE values of projection angular gaps with strong correlations (r ≈ −0.7) regardless of the reconstruction algorithm used. Conclusions: Based on the authors’ results, displacement-based binning methods, better reconstruction algorithms, and the acquisition of even projection angular views are the most important factors to consider for improving thoracic 4D-CBCT image quality. In view of the practical issues with displacement-based binning and the fact that projection angular spacing is not currently directly controllable, development of better reconstruction algorithms represents the most effective strategy for improving image quality in thoracic 4D-CBCT for IGRT applications at the current stage. PMID:24694143
Identifying the time scale of synchronous movement: a study on tropical snakes.
Lindström, Tom; Phillips, Benjamin L; Brown, Gregory P; Shine, Richard
2015-01-01
Individual movement is critical to organismal fitness and also influences broader population processes such as demographic stochasticity and gene flow. Climatic change and habitat fragmentation render the drivers of individual movement especially critical to understand. Rates of movement of free-ranging animals through the landscape are influenced both by intrinsic attributes of an organism (e.g., size, body condition, age), and by external forces (e.g., weather, predation risk). Statistical modelling can clarify the relative importance of those processes, because externally-imposed pressures should generate synchronous displacements among individuals within a population, whereas intrinsic factors should generate consistency through time within each individual. External and intrinsic factors may vary in importance at different time scales. In this study we focused on daily displacement of an ambush-foraging snake from tropical Australia (the Northern Death Adder Acanthophis praelongus), based on a radiotelemetric study. We used a mixture of spectral representation and Bayesian inference to study synchrony in snake displacement by phase shift analysis. We further studied autocorrelation in fluctuations of displacement distances as "one over f noise". Displacement distances were positively autocorrelated with all considered noise colour parameters estimated as >0. We show how the methodology can reveal time scales of particular interest for synchrony and found that for the analysed data, synchrony was only present at time scales above approximately three weeks. We conclude that the spectral representation combined with Bayesian inference is a promising approach for analysis of movement data. Applying the framework to telemetry data of A. praelongus, we were able to identify a cut-off time scale above which we found support for synchrony, thus revealing a time scale where global external drivers have a larger impact on the movement behaviour. Our results suggest that for the considered study period, movement at shorter time scales was primarily driven by factors at the individual level; daily fluctuations in weather conditions had little effect on snake movement.
Miniature and Low-cost Wireless Sensor Platform for Environmental Monitoring
2007-09-01
Simple error correction algorithm Figure 19. Mechanical positioning of the sensor components Figure 20. Side view of the floater Figure 21. Floater ...battery pack), and the weight is about 0.5 lb. The sensor node is housed in a floater (buoy) with dimensions 12”x 12”x 6”. The cost of one such...gravity and the water displacement forces balanced when the floater is submerged to approximately one half of its height. To enhance stability in water
SOME NEW PROCESSING TECHNIQUES FOR THE IMPERIAL VALLEY 1979 AFTERSHOCKS.
Brady, A. Gerald; ,
1983-01-01
This paper describes some of the features of the latest processing improvements that the U. S. Geological Survey (USGS) is currently applying to strong-motion accelerograms from the national network of permanent stations. At the same time it introduces the application of this processing to the set of Imperial Valley aftershocks recorded following the main shock of October 15, 1979. Earlier processing of the 22 main shock recordings provided corrected accelerations, velocity and displacement, response spectra, and Fourier spectra.
Resistivity Correction Factor for the Four-Probe Method: Experiment III
NASA Astrophysics Data System (ADS)
Yamashita, Masato; Nishii, Toshifumi; Kurihara, Hiroshi; Enjoji, Hideo; Iwata, Atsushi
1990-04-01
Experimental verification of the theoretically derived resistivity correction factor F is presented. Factor F is applied to a system consisting of a rectangular parallelepiped sample and a square four-probe array. Resistivity and sheet resistance measurements are made on isotropic graphites and crystalline ITO films. Factor F corrects experimental data and leads to reasonable resistivity and sheet resistance.
Application of wavelet multi-resolution analysis for correction of seismic acceleration records
NASA Astrophysics Data System (ADS)
Ansari, Anooshiravan; Noorzad, Assadollah; Zare, Mehdi
2007-12-01
During an earthquake, many stations record the ground motion, but only a few of them could be corrected using conventional high-pass and low-pass filtering methods and the others were identified as highly contaminated by noise and as a result useless. There are two major problems associated with these noisy records. First, since the signal to noise ratio (S/N) is low, it is not possible to discriminate between the original signal and noise either in the frequency domain or in the time domain. Consequently, it is not possible to cancel out noise using conventional filtering methods. The second problem is the non-stationary characteristics of the noise. In other words, in many cases the characteristics of the noise are varied over time and in these situations, it is not possible to apply frequency domain correction schemes. When correcting acceleration signals contaminated with high-level non-stationary noise, there is an important question whether it is possible to estimate the state of the noise in different bands of time and frequency. Wavelet multi-resolution analysis decomposes a signal into different time-frequency components, and besides introducing a suitable criterion for identification of the noise among each component, also provides the required mathematical tool for correction of highly noisy acceleration records. In this paper, the characteristics of the wavelet de-noising procedures are examined through the correction of selected real and synthetic acceleration time histories. It is concluded that this method provides a very flexible and efficient tool for the correction of very noisy and non-stationary records of ground acceleration. In addition, a two-step correction scheme is proposed for long period correction of the acceleration records. This method has the advantage of stable results in displacement time history and response spectrum.
Nightingale, K R; Nightingale, R W; Palmeri, M L; Trahey, G E
2000-01-01
The early detection of breast cancer reduces patient mortality. The most common method of breast cancer detection is palpation. However, lesions that lie deep within the breast are difficult to palpate when they are small. Thus, a method of remote palpation, which may allow the detection of small lesions lying deep within the breast, is currently under investigation. In this method, acoustic radiation force is used to apply localized forces within tissue (to tissue volumes on the order of 2 mm3) and the resulting tissue displacements are mapped using ultrasonic correlation based methods. A volume of tissue that is stiffer than the surrounding medium (i.e., a lesion) distributes the force throughout the tissue beneath it, resulting in larger regions of displacement, and smaller maximum displacements. The resulting displacement maps may be used to image tissue stiffness. A finite-element-model (FEM) of acoustic remote palpation is presented in this paper. Using this model, a parametric analysis of the affect of varying tissue and acoustic beam characteristics on radiation force induced tissue displacements is performed. The results are used to evaluate the potential of acoustic remote palpation to provide useful diagnostic information in a clinical setting. The potential for using a single diagnostic transducer to both generate radiation force and track the resulting displacements is investigated.
NASA Astrophysics Data System (ADS)
Hu, R.; Wan, J.; Chen, Y.
2016-12-01
Wettability is a factor controlling the fluid-fluid displacement pattern in porous media and significantly affects the flow and transport of supercritical (sc) CO2 in geologic carbon sequestration. Using a high-pressure micromodel-microscopy system, we performed drainage experiments of scCO2 invasion into brine-saturated water-wet and intermediate-wet micromodels; we visualized the scCO2 invasion morphology at pore-scale under reservoir conditions. We also performed pore-scale numerical simulations of the Navier-Stokes equations to obtain 3D details of fluid-fluid displacement processes. Simulation results are qualitatively consistent with the experiments, showing wider scCO2 fingering, higher percentage of scCO2 and more compact displacement pattern in intermediate-wet micromodel. Through quantitative analysis based on pore-scale simulation, we found that the reduced wettability reduces the displacement front velocity, promotes the pore-filling events in the longitudinal direction, delays the breakthrough time of invading fluid, and then increases the displacement efficiency. Simulated results also show that the fluid-fluid interface area follows a unified power-law relation with scCO2 saturation, and show smaller interface area in intermediate-wet case which suppresses the mass transfer between the phases. These pore-scale results provide insights for the wettability effects on CO2 - brine immiscible displacement in geologic carbon sequestration.
Can small field diode correction factors be applied universally?
Liu, Paul Z Y; Suchowerska, Natalka; McKenzie, David R
2014-09-01
Diode detectors are commonly used in dosimetry, but have been reported to over-respond in small fields. Diode correction factors have been reported in the literature. The purpose of this study is to determine whether correction factors for a given diode type can be universally applied over a range of irradiation conditions including beams of different qualities. A mathematical relation of diode over-response as a function of the field size was developed using previously published experimental data in which diodes were compared to an air core scintillation dosimeter. Correction factors calculated from the mathematical relation were then compared those available in the literature. The mathematical relation established between diode over-response and the field size was found to predict the measured diode correction factors for fields between 5 and 30 mm in width. The average deviation between measured and predicted over-response was 0.32% for IBA SFD and PTW Type E diodes. Diode over-response was found to be not strongly dependent on the type of linac, the method of collimation or the measurement depth. The mathematical relation was found to agree with published diode correction factors derived from Monte Carlo simulations and measurements, indicating that correction factors are robust in their transportability between different radiation beams. Copyright © 2014. Published by Elsevier Ireland Ltd.
Critical factors in displacement ductility assessment of high-strength concrete columns
NASA Astrophysics Data System (ADS)
Taheri, Ali; Moghadam, Abdolreza S.; Tasnimi, Abass Ali
2017-12-01
Ductility of high-strength concrete (HSC) columns with rectangular sections was assessed in this study by reviewing experimental data from the available literature. Up to 112 normal weights concrete columns with strength in the range of 50-130 MPa were considered and presented as a database. The data included the results of column testes under axial and reversed lateral loading. Displacement ductility of HSC columns was evaluated in terms of their concrete and reinforcement strengths, bar arrangement, volumetric ratio of transverse reinforcement, and axial loading. The results indicated that the confinement requirements and displacement ductility in HSC columns are more sensitive than those in normal strength concrete columns. Moreover, ductility is descended by increasing concrete strength. However, it was possible to obtain ductile behavior in HSC columns through proper confinement. Furthermore, this study casts doubt about capability of P/ A g f c' ratio that being inversely proportional to displacement ductility of HSC columns.
Numerical modeling and model updating for smart laminated structures with viscoelastic damping
NASA Astrophysics Data System (ADS)
Lu, Jun; Zhan, Zhenfei; Liu, Xu; Wang, Pan
2018-07-01
This paper presents a numerical modeling method combined with model updating techniques for the analysis of smart laminated structures with viscoelastic damping. Starting with finite element formulation, the dynamics model with piezoelectric actuators is derived based on the constitutive law of the multilayer plate structure. The frequency-dependent characteristics of the viscoelastic core are represented utilizing the anelastic displacement fields (ADF) parametric model in the time domain. The analytical model is validated experimentally and used to analyze the influencing factors of kinetic parameters under parametric variations. Emphasis is placed upon model updating for smart laminated structures to improve the accuracy of the numerical model. Key design variables are selected through the smoothing spline ANOVA statistical technique to mitigate the computational cost. This updating strategy not only corrects the natural frequencies but also improves the accuracy of damping prediction. The effectiveness of the approach is examined through an application problem of a smart laminated plate. It is shown that a good consistency can be achieved between updated results and measurements. The proposed method is computationally efficient.