Proton Nonionizing Energy Loss (NIEL) for Device Applications
NASA Technical Reports Server (NTRS)
Jun, Insoo; Xapsos, Michael A.; Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Summers, Geoff; Jordan, Thomas
2003-01-01
Nonionizing energy loss (NIEL) is a quantity that describes the rate of energy loss due to atomic displacements as a particle traverses a material. The product of the NIEL and the particle fluence (time integrated flux) gives the displacement damage energy deposition per unit mass of material. NIEL plays the same role to the displacement damage energy deposition as the stopping power to the total ionizing dose (TID). The concept of NIEL has been very useful for correlating particle induced displacement damage effects in semiconductor and optical devices. Many studies have successfully demonstrated that the degradation of semiconductor devices or optical sensors in a radiation field can be linearly correlated to the displacement damage energy, and subsequently to the NIEL deposited in the semiconductor devices or optical sensors. In addition, the NIEL concept was also useful in the study of both Si and GaAs solar cells and of high temperature superconductors, and at predicting the survivability of detectors used at the LHC at CERN. On the other hand, there are some instances where discrepancies are observed in the application of NIEL, most notably in GaAs semiconductor devices. However, NIEL is still a valuable tool, and can be used to scale damages produced by different particles and in different environments, even though this is not understood at the microscopic level.
NASA Astrophysics Data System (ADS)
Delaye, J. M.; Ghaleb, D.
1998-02-01
We have performed some molecular dynamics calculations of displacement cascades in a simplified nuclear glass (SiO 2 + B 2O 3 + Na 2O + Al 2O 3 + ZrO 2). We have observed that the damaged volume at the end of the collision sequence can be divided into a so called highly damaged volume and lightly damaged volume. The aim of this paper is to propose an explanation of this phenomenon by considering that some regions are easy to cross by the projectile and others are difficult to cross by the projectile. Regions which are easy to cross correspond to those containing Na atoms with a low level of polymerisation, and regions which are difficult to cross are areas no containing Na atoms with a high level of polymerisation.
Study of ion-irradiated tungsten in deuterium plasma
NASA Astrophysics Data System (ADS)
Khripunov, B. I.; Gureev, V. M.; Koidan, V. S.; Kornienko, S. N.; Latushkin, S. T.; Petrov, V. B.; Ryazanov, A. I.; Semenov, E. V.; Stolyarova, V. G.; Danelyan, L. S.; Kulikauskas, V. S.; Zatekin, V. V.; Unezhev, V. N.
2013-07-01
Experimental study aimed at investigation of neutron induced damage influence on fusion reactor plasma facing materials is reported. Displacement damage was produced in tungsten by high-energy helium and carbon ions at 3-10 MeV. The reached level of displacement damage ranged from several dpa to 600 dpa. The properties of the irradiated tungsten were studied in steady-state deuterium plasma on the LENTA linear divertor simulator. Plasma exposures were made at 250 eV of ion energy to fluence 1021-1022 ion/сm2. Erosion dynamics of the damaged layer and deuterium retention were observed. Surface microstructure modifications and important damage of the 5 μm layer shown. Deuterium retention in helium-damaged tungsten (ERD) showed its complex behavior (increase or decrease) depending on implanted helium quantity and the structure of the surface layer.
Mechanisms of Radiation Induced Effects in Carbon Nanotubes
2016-10-01
the defect types created for both ionizing and non-ionizing particles under exposure to high total ionization and displacement damage doses. Carbon...and displacement damage doses. Additionally, the radiation effects on CNT carrier transport parameters (mobility, lifetime, conductivity) have been...thermal oxidation. 2. Radiation Testing of SWCNTs 2.1 Displacement Damage Dose Effects as a Function of SWCNT Electronic-Type Displacement damage does
Displacement Damage in Bipolar Linear Integrated Circuits
NASA Technical Reports Server (NTRS)
Rax, B. G.; Johnston, A. H.; Miyahira, T.
2000-01-01
Although many different processes can be used to manufacture linear integrated circuits, the process that is used for most circuits is optimized for high voltage -- a total power supply voltage of about 40 V -- and low cost. This process, which has changed little during the last twenty years, uses lateral and substrate p-n-p transistors. These p-n-p transistors have very wide base regions, increasing their sensitivity to displacement damage from electrons and protons. Although displacement damage effects can be easily treated for individual transistors, the net effect on linear circuits can be far more complex because circuit operation often depends on the interaction of several internal transistors. Note also that some circuits are made with more advanced processes with much narrower base widths. Devices fabricated with these newer processes are not expected to be significantly affected by displacement damage for proton fluences below 1 x 10(exp 12) p/sq cm. This paper discusses displacement damage in linear integrated circuits with more complex failure modes than those exhibited by simpler devices, such as the LM111 comparator, where the dominant response mode is gain degradation of the input transistor. Some circuits fail catastrophically at much lower equivalent total dose levels compared to tests with gamma rays. The device works satisfactorily up to nearly 1 Mrad(Si) when it is irradiated with gamma rays, but fails catastrophically between 50 and 70 krad(Si) when it is irradiated with protons.
Proton Irradiation as a Screen for Displacement-Damage Sensitivity in Bipolar Junction Transistors
NASA Astrophysics Data System (ADS)
Arutt, Charles N.; Warren, Kevin M.; Schrimpf, Ronald D.; Weller, Robert A.; Kauppila, Jeffrey S.; Rowe, Jason D.; Sternberg, Andrew L.; Reed, Robert A.; Ball, Dennis R.; Fleetwood, Daniel M.
2015-12-01
NPN and PNP bipolar junction transistors of varying sizes are irradiated with 4-MeV protons and 10-keV X-rays to determine the amount of ionization-related degradation caused by protons and calculate an improved estimate of displacement-related degradation due to protons. While different ratios of degradation produced by displacement damage and ionization effects will occur for different device technologies, this general approach, with suitable margin, can be used as a screen for sensitivity to neutron-induced displacement damage. Further calculations are performed to estimate the amount of degradation produced by 1-MeV equivalent neutron displacement damage compared to that produced by the displacement damage due to protons. The results are compared to previous work.
NASA Astrophysics Data System (ADS)
Borodin, V. A.; Vladimirov, P. V.
2017-12-01
The determination of primary damage production efficiency in metals irradiated with fast neutrons is a complex problem. Typically, the majority of atoms are displaced from their lattice positions not by neutrons themselves, but by energetic primary recoils, that can produce both single Frenkel pairs and dense localized cascades. Though a number of codes are available for the calculation of displacement damage from fast ions, they commonly use binary collision (BC) approximation, which is unreliable for dense cascades and thus tend to overestimate the number of created displacements. In order to amend the radiation damage predictions, this work suggests a combined approach, where the BC approximation is used for counting single Frenkel pairs only, whereas the secondary recoils able to produce localized dense cascades are stored for later processing, but not followed explicitly. The displacement production in dense cascades is then determined independently from molecular dynamics (MD) simulations. Combining contributions from different calculations, one gets the total number of displacements created by particular neutron spectrum. The approach is applied here to the case of beryllium irradiation in a fusion reactor. Using a relevant calculated energy spectrum of primary knocked-on atoms (PKAs), it is demonstrated that more than a half of the primary point defects (˜150/PKA) is produced by low-energy recoils in the form of single Frenkel pairs. The contribution to the damage from the dense cascades as predicted using the mixed BC/MD scheme, i.e. ˜110/PKA, is remarkably lower than the value deduced from uncorrected SRIM calculations (˜145/PKA), so that in the studied case SRIM tends to overpredict the total primary damage level.
33 CFR 74.01-1 - Claim for damage, destruction, or displacement.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Claim for damage, destruction, or displacement. 74.01-1 Section 74.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Claim for damage, destruction, or displacement. Whenever an aid to navigation is damaged, destroyed, or...
33 CFR 74.01-1 - Claim for damage, destruction, or displacement.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 1 2014-07-01 2014-07-01 false Claim for damage, destruction, or displacement. 74.01-1 Section 74.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Claim for damage, destruction, or displacement. Whenever an aid to navigation is damaged, destroyed, or...
33 CFR 74.01-1 - Claim for damage, destruction, or displacement.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Claim for damage, destruction, or displacement. 74.01-1 Section 74.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Claim for damage, destruction, or displacement. Whenever an aid to navigation is damaged, destroyed, or...
33 CFR 74.01-1 - Claim for damage, destruction, or displacement.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Claim for damage, destruction, or displacement. 74.01-1 Section 74.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Claim for damage, destruction, or displacement. Whenever an aid to navigation is damaged, destroyed, or...
33 CFR 74.01-1 - Claim for damage, destruction, or displacement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Claim for damage, destruction, or displacement. 74.01-1 Section 74.01-1 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND... Claim for damage, destruction, or displacement. Whenever an aid to navigation is damaged, destroyed, or...
Irradiation effect on mechanical properties in structural materials of fast breeder reactor plant
NASA Astrophysics Data System (ADS)
Nagae, Yuji; Takaya, Shigeru; Wakai, Eiichi; Aoto, Kazumi
2011-07-01
The effects of displacement per atom (dpa) level, helium content, and the ratio of helium content to dpa level on the tensile and creep properties have been investigated in the assumed irradiation damage range of FBR structural materials. The assumed irradiation damage range is up to about 1 dpa and about 30 appm for helium content. Austenitic stainless steel and high-chromium martensitic steel are considered as FBR structural materials. As a result, it is shown that the dpa level is a promising index for evaluating neutron irradiation damage.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
Proton irradiation effects on advanced digital and microwave III-V components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.
1994-09-01
A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage wasmore » observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].« less
Proton irradiation effects on advanced digital and microwave III-V components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.
1994-12-01
A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10[sup 10] to 2 [times] 10[sup 14] protons/cm[sup 2]. Large soft-error rates were measured for digital GaAs MESFET (3 [times] 10[sup [minus]5] errors/bit-day) and heterojunction bipolar circuits (10[sup [minus]5] errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage wasmore » observed for 1.0-[mu]m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10[sup 14] protons/cm[sup 2] [equivalent to total doses in excess of 10 Mrad (GaAs)].« less
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; Label, Kenneth A.; Ladbury, Raymond L.; Mondy, Timothy K.; O'Bryan, Martha V.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices. Displacement Damage, Optoelectronics, Proton Damage, Single Event Effects, and Total Ionizing Dose.
NASA Astrophysics Data System (ADS)
Griffin, Patrick; Rochman, Dimitri; Koning, Arjan
2017-09-01
A rigorous treatment of the uncertainty in the underlying nuclear data on silicon displacement damage metrics is presented. The uncertainty in the cross sections and recoil atom spectra are propagated into the energy-dependent uncertainty contribution in the silicon displacement kerma and damage energy using a Total Monte Carlo treatment. An energy-dependent covariance matrix is used to characterize the resulting uncertainty. A strong correlation between different reaction channels is observed in the high energy neutron contributions to the displacement damage metrics which supports the necessity of using a Monte Carlo based method to address the nonlinear nature of the uncertainty propagation.
Helium vs. Proton Induced Displacement Damage in Electronic Materials
NASA Technical Reports Server (NTRS)
Ringo, Sawnese; Barghouty, A. F.
2010-01-01
In this project, the specific effects of displacement damage due to the passage of protons and helium nuclei on some typical electronic materials will be evaluated and contrasted. As the electronic material absorbs the energetic proton and helium momentum, degradation of performance occurs, eventually leading to overall failure. Helium nuclei traveling at the same speed as protons are expected to impart more to the material displacement damage; due to the larger mass, and thus momentum, of helium nuclei compared to protons. Damage due to displacement of atoms in their crystalline structure can change the physical properties and hence performance of the electronic materials.
NASA Technical Reports Server (NTRS)
Marshall, Paul; Reed, Robert; Fodness, Bryan; Jordan, Tom; Pickel, Jim; Xapsos, Michael; Burke, Ed
2004-01-01
This slide presentation examines motivation for Monte Carlo methods, charge deposition in sensor arrays, displacement damage calculations, and future work. The discussion of charge deposition sensor arrays includes Si active pixel sensor APS arrays and LWIR HgCdTe FPAs. The discussion of displacement damage calculations includes nonionizing energy loss (NIEL), HgCdTe NIEL calculation results including variance, and implications for damage in HgCdTe detector arrays.
NASA Astrophysics Data System (ADS)
Okuno, Y.; Okuda, S.; Akiyoshi, M.; Oka, T.; Harumoto, M.; Omura, K.; Kawakita, S.; Imaizumi, M.; Messenger, S. R.; Lee, K. H.; Yamaguchi, M.
2017-09-01
InGaP solar cells are not predicted to be susceptible to displacement damage by irradiation with electrons at energies lower than 100 keV from non-ionizing energy loss (NIEL) calculations. However, it is recently observed that InGaP solar cells are shown to degrade by irradiation with 60 keV electrons. This degradation is considered to be caused by radiation defects but is not clear. In this study, the kind of the defects generated by electrons at energies lower than 100 keV is found by deep-level transient spectroscopy (DLTS). The result of DLTS indicates that the prediction of primary knock-on atoms by using the radiation damage model is different from the experiment. In order to suggest the generation mechanism of radiation defects, we propose a new displacement threshold energy (Ed) by using a new technique in which NIEL and the introduction rate of radiation defects are combined. The degradation prediction by using estimated Ed is found to agree well with the degradation of electric power of InGaP solar cells irradiated by low-energy electrons. From the theory of radiation defects, we propose a new obtaining process of suitable degradation prediction by the displacement damage dose method.
NASA Technical Reports Server (NTRS)
Ball, D. R.; Schrimpf, R. D.; Barnaby, H. J.
2006-01-01
The electrical characteristics of proton-irradiated bipolar transistors are affected by ionization damage to the insulating oxide and displacement damage to the semiconductor bulk. While both types of damage degrade the transistor, it is important to understand the mechanisms individually and to be able to analyze them separately. In this paper, a method for analyzing the effects of ionization and displacement damage using gate-controlled lateral PNP bipolar junction transistors is described. This technique allows the effects of oxide charge, surface recombination velocity, and bulk traps to be measured independently.
Energy dependence of proton displacement damage factors for bipolar transistors
NASA Astrophysics Data System (ADS)
Summers, Geoffrey P.; Xapsos, Michael A.; Dale, Cheryl J.; Wolicki, Eligius A.; Marshall, Paul
1986-12-01
Displacement damage factors, K(p), have been measured as a function of collector current for proton irradiations of 2N2222A (npn) and 2N2907A (pnp) switching transistors and 2N3055 (npn) power transistors over the energy range 5.0 to 60.3 MeV. The measurements of K(p) were made on specially selected lots of devices and were compared to values of the neutron damage factors, K(n), for 1-MeV displacement damage equivalent neutrons made on the same devices. The results show that, so far as device operation is concerned, the nature of the displacement damage produced by high energy protons and by fission neutrons is essentially the same. Over the energy range studied, protons were found to be more damaging than neutrons. For 5.0 MeV protons Kp/Kn was about 8.5 compared to about 1.8 for 60.3 MeV protons.
NASA Astrophysics Data System (ADS)
Naseralavi, S. S.; Salajegheh, E.; Fadaee, M. J.; Salajegheh, J.
2014-06-01
This paper presents a technique for damage detection in structures under unknown periodic excitations using the transient displacement response. The method is capable of identifying the damage parameters without finding the input excitations. We first define the concept of displacement space as a linear space in which each point represents displacements of structure under an excitation and initial condition. Roughly speaking, the method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering this novel geometrical viewpoint, an equation called kernel parallelization equation (KPE) is derived for damage detection under unknown periodic excitations and a sensitivity-based algorithm for solving KPE is proposed accordingly. The method is evaluated via three case studies under periodic excitations, which confirm the efficiency of the proposed method.
Correlation of Particle-Induced Displacement Damage in Silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Burke, E. A.; Dale, C. J.; Wolicki, E. A.; Marshall, P. W.; Gehlhausen, M. A.
1987-12-01
Correlation is made between the effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1 MeV equivalent neutrons. These measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7 - 175 MeV protons, 4.3 - 37 MeV deuterons, and 16.8 - 65 MeV helium ions. Long term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered. The main conclusions of the work are as follows: 1) The ratio of the displacement damage factors for a given charged particle to the 1 MeV equivalent neutron damage factor, as a function of energy, falls on a common curve which is independent of collector current. 2) Deuterons of a given energy are about twice as damaging as protons and helium ions are about eighteen times as damaging as protons.
The Random Telegraph Signal Behavior of Intermittently Stuck Bits in SDRAMs
NASA Astrophysics Data System (ADS)
Chugg, Andrew Michael; Burnell, Andrew J.; Duncan, Peter H.; Parker, Sarah; Ward, Jonathan J.
2009-12-01
This paper reports behavior analogous to the Random Telegraph Signal (RTS) seen in the leakage currents from radiation induced hot pixels in Charge Coupled Devices (CCDs), but in the context of stuck bits in Synchronous Dynamic Random Access Memories (SDRAMs). Our analysis suggests that pseudo-random sticking and unsticking of the SDRAM bits is due to thermally induced fluctuations in leakage current through displacement damage complexes in depletion regions that were created by high-energy neutron and proton interactions. It is shown that the number of observed stuck bits increases exponentially with temperature, due to the general increase in the leakage currents through the damage centers with temperature. Nevertheless, some stuck bits are seen to pseudo-randomly stick and unstick in the context of a continuously rising trend of temperature, thus demonstrating that their damage centers can exist in multiple widely spaced, discrete levels of leakage current, which is highly consistent with RTS. This implies that these intermittently stuck bits (ISBs) are a displacement damage phenomenon and are unrelated to microdose issues, which is confirmed by the observation that they also occur in unbiased irradiation. Finally, we note that observed variations in the periodicity of the sticking and unsticking behavior on several timescales is most readily explained by multiple leakage current pathways through displacement damage complexes spontaneously and independently opening and closing under the influence of thermal vibrations.
Seismic response of reinforced concrete frames at different damage levels
NASA Astrophysics Data System (ADS)
Morales-González, Merangeli; Vidot-Vega, Aidcer L.
2017-03-01
Performance-based seismic engineering is focused on the definition of limit states to represent different levels of damage, which can be described by material strains, drifts, displacements or even changes in dissipating properties and stiffness of the structure. This study presents a research plan to evaluate the behavior of reinforced concrete (RC) moment resistant frames at different performance levels established by the ASCE 41-06 seismic rehabilitation code. Sixteen RC plane moment frames with different span-to-depth ratios and three 3D RC frames were analyzed to evaluate their seismic behavior at different damage levels established by the ASCE 41-06. For each span-to-depth ratio, four different beam longitudinal reinforcement steel ratios were used that varied from 0.85 to 2.5% for the 2D frames. Nonlinear time history analyses of the frames were performed using scaled ground motions. The impact of different span-to-depth and reinforcement ratios on the damage levels was evaluated. Material strains, rotations and seismic hysteretic energy changes at different damage levels were studied.
Vizkelethy, G.; King, M. P.; Aktas, O.; ...
2016-12-02
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, G.; King, M. P.; Aktas, O.
Radiation responses of high-voltage, vertical gallium-nitride (GaN) diodes were investigated using Sandia National Laboratories’ nuclear microprobe. Effects of the ionization and the displacement damage were studied using various ion beams. We found that the devices show avalanche effect for heavy ions operated under bias well below the breakdown voltage. Here, the displacement damage experiments showed a surprising effect for moderate damage: the charge collection efficiency demonstrated an increase instead of a decrease for higher bias voltages.
NASA Astrophysics Data System (ADS)
Rihal, S. S.
1980-12-01
The effects of inter-story displacement (drift) during simllated earthquake conditions are reported. The correlation between inter-story relative displacement and building partition behavior, the threshold levels of partition damage, and the fundamental characteristics of non-structural building partitions (stiffness, energy absorption capacity, and strength) under horizontal racking actions were investigated. Parameters in this study consist of geometry of partition configuration and placement of gypsum wallboard panels.
Confidence Level Based Approach to Total Dose Specification for Spacecraft Electronics
NASA Technical Reports Server (NTRS)
Xapsos, M. A.; Stauffer, C.; Phan, A.; McClure, S. S.; Ladbury, R. L.; Pellish, J. A.; Campola, M. J.; Label, K. A.
2017-01-01
A confidence level based approach to total dose radiation hardness assurance is presented for spacecraft electronics. It is applicable to both ionizing and displacement damage dose. Results are compared to the traditional approach that uses radiation design margin and advantages of the new approach are discussed.
Use of Displacement Damage Dose in an Engineering Model of GaAs Solar Cell Radiation Damage
NASA Technical Reports Server (NTRS)
Morton, T. L.; Chock, R.; Long, K. J.; Bailey, S.; Messenger, S. R.; Walters, R. J.; Summers, G. P.
2005-01-01
Current methods for calculating damage to solar cells are well documented in the GaAs Solar Cell Radiation Handbook (JPL 96-9). An alternative, the displacement damage dose (D(sub d)) method, has been developed by Summers, et al. This method is currently being implemented in the SAVANT computer program.
The development of a high sensitivity neutron displacement damage sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.
Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 10 12 - 1 x 10 14 1-MeV(Si)-Eqv.-n/cm 2. In this work we seek to extend the range of this test method to lower fluencemore » environments utilizing the 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 10 10 1-MeV(Si)-Eqv.-n/cm 2.« less
The development of a high sensitivity neutron displacement damage sensor
Tonigan, Andrew M.; Parma, Edward J.; Martin, William J.
2016-11-23
Here, the capability to characterize the neutron energy spectrum and fluence received by a test object is crucial to under-standing the damage effects observed in electronic components. For nuclear research reactors and high energy density physics fa-cilities this can pose exceptional challenges, especially with low level neutron fluences. An ASTM test method for characterizing neutron environments utilizes the 2N2222A transistor as a 1-MeV equivalent neutron fluence sensor and is applicable for environ-ments with 1 x 10 12 - 1 x 10 14 1-MeV(Si)-Eqv.-n/cm 2. In this work we seek to extend the range of this test method to lower fluencemore » environments utilizing the 2N1486 transistor. Here, the 2N1486 is shown to be an effective neutron displacement damage sensor as low as 1 x 10 10 1-MeV(Si)-Eqv.-n/cm 2.« less
Damage Model of Reinforced Concrete Members under Cyclic Loading
NASA Astrophysics Data System (ADS)
Wei, Bo Chen; Zhang, Jing Shu; Zhang, Yin Hua; Zhou, Jia Lai
2018-06-01
Based on the Kumar damage model, a new damage model for reinforced concrete members is established in this paper. According to the damage characteristics of reinforced concrete members subjected to cyclic loading, four judgment conditions for determining the rationality of damage models are put forward. An ideal damage index (D) is supposed to vary within a scale of zero (no damage) to one (collapse). D should be a monotone increasing function which tends to increase in the case of the same displacement amplitude. As for members under large displacement amplitude loading, the growth rate of D should be greater than that of D under small amplitude displacement loading. Subsequently, the Park-Ang damage model, the Niu-Ren damage model, the Lu-Wang damage model and the proposed damage model are analyzed for 30 experimental reinforced concrete members, including slabs, walls, beams and columns. The results show that current damage models do not fully matches the reasonable judgment conditions, but the proposed damage model does. Therefore, a conclusion can be drawn that the proposed damage model can be used for evaluating and predicting damage performance of RC members under cyclic loading.
NASA Astrophysics Data System (ADS)
Holcomb, David E.; Miller, Don W.
1993-08-01
A study of the relative damage effects of neutrons and gamma rays on silica glass in a nuclear reactor radiation environment is reported. The neutron and gamma energy spectra of the Ohio State University Research Reactor beam port #1 were applied to silica glass to obtain primary knock-on charged particle energy spectra. The resultant charged particle spectra were then applied to the polyatomic forms of the Lindhard et al. integrodifferential equation for damage energy and the Parkin and Coulter integrodifferential equation for net atomic displacement. The results show that near a nuclear reactor core the vast majority of the dose to silica is due to gamma rays (factor of roughly 40) and that neutrons cause much more displacement damage than gamma rays (35 times the oxygen displacement rate and 500 times the silicon displacement rate). However, pure silica core optical fibers irradiated in a nuclear reactor's mixed neutron/gamma environment exhibit little difference in transmission loss on an equal dose basis compared to fibers irradiated in a gamma only environment, indicating that atomic displacement is not a significant damage mechanism.
Butterworth, A; Ferrari, A; Tsoulou, E; Vlachoudis, V; Wijnands, T
2005-01-01
Monte Carlo simulations have been performed to estimate the radiation damage induced by high-energy hadrons in the digital electronics of the RF low-level systems in the LHC cavities. High-energy hadrons are generated when the proton beams interact with the residual gas. The contributions from various elements-vacuum chambers, cryogenic cavities, wideband pickups and cryomodule beam tubes-have been considered individually, with each contribution depending on the gas composition and density. The probability of displacement damage and single event effects (mainly single event upsets) is derived for the LHC start-up conditions.
NASA Astrophysics Data System (ADS)
Srinivas, V.; Jeyasehar, C. Antony; Ramanjaneyulu, K.; Sasmal, Saptarshi
2012-02-01
Need for developing efficient non-destructive damage assessment procedures for civil engineering structures is growing rapidly towards structural health assessment and management of existing structures. Damage assessment of structures by monitoring changes in the dynamic properties or response of the structure has received considerable attention in recent years. In the present study, damage assessment studies have been carried out on a reinforced concrete beam by evaluating the changes in vibration characteristics with the changes in damage levels. Structural damage is introduced by static load applied through a hydraulic jack. After each stage of damage, vibration testing is performed and system parameters were evaluated from the measured acceleration and displacement responses. Reduction in fundamental frequencies in first three modes is observed for different levels of damage. It is found that a consistent decrease in fundamental frequency with increase in damage magnitude is noted. The beam is numerically simulated and found that the vibration characteristics obtained from the measured data are in close agreement with the numerical data.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Boutte, Alvin J.; Chen, Dakai; Pellish, Jonathan A.; Ladbury, Raymond L.; Casey, Megan C.; Campola, Michael J.; Wilcox, Edward P.; Obryan, Martha V.; LaBel, Kenneth A.;
2012-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear, and hybrid devices.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Sudipta; Deb, Debasis
2016-07-01
Digital image correlation (DIC) is a technique developed for monitoring surface deformation/displacement of an object under loading conditions. This method is further refined to make it capable of handling discontinuities on the surface of the sample. A damage zone is referred to a surface area fractured and opened in due course of loading. In this study, an algorithm is presented to automatically detect multiple damage zones in deformed image. The algorithm identifies the pixels located inside these zones and eliminate them from FEM-DIC processes. The proposed algorithm is successfully implemented on several damaged samples to estimate displacement fields of an object under loading conditions. This study shows that displacement fields represent the damage conditions reasonably well as compared to regular FEM-DIC technique without considering the damage zones.
Total Ionizing Dose and Displacement Damage Compendium of Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Chen, Dakai; Oldham, Timothy R.; Sanders, Anthony B.; Kim, Hak S.; Campola, Michael J.; Buchner, Stephen P.; LaBel, Kenneth A.; Marshall, Cheryl J.; Pellish, Jonathan A.;
2010-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
1989-12-01
Growth Commercial Fishing and Commercial Fishing 91 Fleet Q Employment 92 R Population and Community Growth , Including 92 Displacement S Public Facilities...Community Growth , Including 128 Displacement S Public Facilities and Services 129 T Transportation 129 U Navigation 130 V Recreation and Open Space 133 W... Growth and more intensive development in this already densely built-up area, plus rising sea levels, guarantee the continuation of a dangerous
Impact Damage and Strain Rate Effects for Toughened Epoxy Composite Structures
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Minnetyan, Levon
2006-01-01
Structural integrity of composite systems under dynamic impact loading is investigated herein. The GENOA virtual testing software environment is used to implement the effects of dynamic loading on fracture progression and damage tolerance. Combinations of graphite and glass fibers with a toughened epoxy matrix are investigated. The effect of a ceramic coating for the absorption of impact energy is also included. Impact and post impact simulations include verification and prediction of (1) Load and Impact Energy, (2) Impact Damage Size, (3) Maximum Impact Peak Load, (4) Residual Strength, (5) Maximum Displacement, (6) Contribution of Failure Modes to Failure Mechanisms, (7) Prediction of Impact Load Versus Time, and (8) Damage, and Fracture Pattern. A computer model is utilized for the assessment of structural response, progressive fracture, and defect/damage tolerance characteristics. Results show the damage progression sequence and the changes in the structural response characteristics due to dynamic impact. The fundamental premise of computational simulation is that the complete evaluation of composite fracture requires an assessment of ply and subply level damage/fracture processes as the structure is subjected to loads. Simulation results for the graphite/epoxy composite were compared with the impact and tension failure test data, correlation and verification was obtained that included: (1) impact energy, (2) damage size, (3) maximum impact peak load, (4) residual strength, (5) maximum displacement, and (6) failure mechanisms of the composite structure.
NASA Astrophysics Data System (ADS)
Cruz Inclán, Carlos M.; González Lazo, Eduardo; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
The present work deals with the numerical simulation of gamma and electron radiation damage processes under high brightness and radiation particle fluency on regard to two new radiation induced atom displacement processes, which concern with both, the Monte Carlo Method based numerical simulation of the occurrence of atom displacement process as a result of gamma and electron interactions and transport in a solid matrix and the atom displacement threshold energies calculated by Molecular Dynamic methodologies. The two new radiation damage processes here considered in the framework of high brightness and particle fluency irradiation conditions are: 1) The radiation induced atom displacement processes due to a single primary knockout atom excitation in a defective target crystal matrix increasing its defect concentrations (vacancies, interstitials and Frenkel pairs) as a result of a severe and progressive material radiation damage and 2) The occurrence of atom displacements related to multiple primary knockout atom excitations for the same or different atomic species in an perfect target crystal matrix due to subsequent electron elastic atomic scattering in the same atomic neighborhood during a crystal lattice relaxation time. In the present work a review numeral simulation attempts of these two new radiation damage processes are presented, starting from the former developed algorithms and codes for Monte Carlo simulation of atom displacements induced by electron and gamma in
Electron-Induced Displacement Damage Effects in CCDs
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Elliott, Tom; Alexander, James W.
2006-01-01
We compare differences in parametric degradation for CCDs irradiated to the same displacement damage dose with 10-MeV and 50-MeV electrons. Charge transfer efficiency degradation was observed to not scale with NIEL for small signals.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Boutte, Alvin J.; Campola, Michael J.; Carts, Martin A.; Casey, Megan C.; Chen, Dakai; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Marshall, Cheryl J.;
2011-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Correlation of particle-induced displacement damage in silicon
NASA Astrophysics Data System (ADS)
Summers, G. P.; Dale, C. J.; Burke, E. A.; Wolicki, E. A.; Marshall, P. W.
1987-12-01
The effects of displacement damage caused in several types of silicon bipolar transistors by protons, deuterons, helium ions, and by 1-MeV-equivalent neutrons are considered. Measurements are compared to calculations of the nonionizing energy deposition in silicon as a function of particle type and energy. Measurements were made of displacement damage factors for 2N2222A and 2N2907A switching transistors, and for 2N3055, 2N6678, and 2N6547 power transistors, as a function of collector current using 3.7-175-MeV protons, 4.3-37-MeV deuterons, and 16.8-65-MeV helium ions. Long-term ionization effects on the value of the displacement damage factors were taken into account. In calculating the energy dependence of the nonionizing energy deposition, Rutherford, nuclear elastic, and nuclear inelastic interactions, and Lindhard energy partition were considered.
Testing and Qualifying Linear Integrated Circuits for Radiation Degradation in Space
NASA Technical Reports Server (NTRS)
Johnston, Allan H.; Rax, Bernard G.
2006-01-01
This paper discusses mechanisms and circuit-related factors that affect the degradation of linear integrated circuits from radiation in space. For some circuits there is sufficient degradation to affect performance at total dose levels below 4 krad(Si) because the circuit design techniques require higher gain for the pnp transistors that are the most sensitive to radiation. Qualification methods are recommended that include displacement damage as well as ionization damage.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; O'Bryan, Martha V.; Buchner, Stephen P.; Poivey, Christian; Ladbury, Ray L.; LaBel, Kenneth A.
2007-01-01
Sensitivity of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1996-01-01
The measured degradation of epitaxial shallow homojunction n(+)/p InP solar cells under 1 MeV electron irradiation is correlated with that measured under 3 MeV proton irradiation based on 'displacement damage dose'. The measured data is analyzed as a function of displacement damage dose from which an electron to proton dose equivalency ratio is determined which enables the electron and proton degradation data to be described by a single degradation curve. It is discussed how this single curve can be used to predict the cell degradation under irradiation by any particle energy. The degradation curve is used to compare the radiation response of InP and GaAs/Ge cells on an absolute damage energy scale. The comparison shows InP to be inherently more resistant to displacement damage deposition than the GaAs/Ge.
2017-12-31
random radial displacement a fiber is given in simulation of the manufacturing process. As seen in the figure, the crack driving force increases...will incorporate voids along with irregular fiber distributions as consequences of composite manufacturing. The crack opening displacement in the as...subjected to IMPa pressure (ANSYS does not allow the, mathematically equivalent, tensile stresses applied at both ends without any displacement constraints
Compendium of Current Total Ionizing Dose and Displacement Damage Results from NASA GSFC and NEPP
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Label, Kenneth A.; Cochran, Donna J.; O'Bryan, Martha V.
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include opto-electronics, digital, analog, linear bipolar devices, and hybrid devices.
Sampson, Laura; Lowe, Sarah R; Gruebner, Oliver; Cohen, Gregory H; Galea, Sandro
2016-06-01
We aimed to explore how individually experienced disaster-related stressors and collectively experienced community-level damage influenced perceived need for mental health services in the aftermath of Hurricane Sandy. In a cross-sectional study we analyzed 418 adults who lived in the most affected areas of New York City at the time of the storm. Participants indicated whether they perceived a need for mental health services since the storm and reported on their exposure to disaster-related stressors (eg, displacement, property damage). We located participants in communities (n=293 census tracts) and gathered community-level demographic data through the US Census and data on the number of damaged buildings in each community from the Federal Emergency Management Agency Modeling Task Force. A total of 7.9% of participants reported mental health service need since the hurricane. Through multilevel binomial logistic regression analysis, we found a cross-level interaction (P=0.04) between individual-level exposure to disaster-related stressors and community-level building damage. Individual-level stressors were significantly predictive of individual service needs in communities with building damage (adjusted odds ratio: 2.56; 95% confidence interval: 1.58-4.16) and not in communities without damage. Individuals who experienced individual stressors and who lived in more damaged communities were more likely to report need for services than were other persons after Hurricane Sandy. (Disaster Med Public Health Preparedness. 2016;10:428-435).
Proton Effects and Test Issues for Satellite Designers
NASA Technical Reports Server (NTRS)
Marshall, Cheryl J.; Marshall, Paul W.
1999-01-01
Microelectronic and photonic systems in the natural space environment are bombarded by a variety of charged particles including electrons, trapped protons, cosmic rays, and solar particles (protons and other heavy ions). These incident particles cause both ionizing and non-ionizing effects when traversing a device, and the effects can be either transient or permanent. The vast majority of the kinetic energy of an incident proton is lost to ionization, creating the single event effects (SEES) and total ionizing dose (TID) effects. However, the small portion of energy lost in non-ionizing processes causes atoms to be removed from their lattice sites and form permanent electrically active defects in semiconductor materials. These defects, i.e., "displacement damage," can significantly degrade device performance. In general, most of the displacement damage effects in the natural space environment can be attributed to protons since they are plentiful and extremely energetic (and therefore not readily shielded against). For this reason, we consider only proton induced displacement damage in this course. (Nevertheless, we identify solar cells as an important example of a case where both electron and proton damage can be important since only very light shielding is feasible.) The interested reader is encouraged to explore the three previous NSREC and RADECS short courses which also treat displacement damage issues for satellite applications. Part A of this segment of the short course introduces the space environment, proton shielding issues, and requirements specifications for proton-rich environments. In order to exercise the displacement damage analysis tools for on-orbit performance predictions, the requirements document must provide the relevant proton spectra in addition to the usual total ionizing dose-depth curves. Ion-solid interactions and the nature of the displacement damage they generate have been studied extensively for over half a century, yet they still remain a subject of investigation. In this section, a description of the mechanisms by which displacement damage is produced will be followed by a summary of the major consequences for device performance in a space environment. Often the degradation of a device parameter can be characterized by a damage factor (measured in a laboratory using monoenergetic protons) that is simply the change in a particular electrical or optical parameter per unit proton fluence. In addition, we will describe the concept of a non-ionizing energy loss rate (NIEL) which quantifies that portion of the energy lost by an incident ion that goes into displacements. It has been calculated as a function of proton energy, and is analogous to (and has the same units as) the linear energy transfer (LET) for ionizing energy. We will discover that, to first order, the calculated NIEL describes the energy dependence of the measured device damage factors. This observation provides the basis for predicting proton induced device degradation in a space environment based on both the calculated NIEL and relatively few laboratory test measurements. The methodology of such on-orbit device performance predictions will be described, as well as the limitations. Several classes of devices for which displacement damage is a significant (if not the dominant) mode of radiation induced degradation will be presented.
Radiation-hardened backside-illuminated 512 x 512 charge-coupled device
NASA Astrophysics Data System (ADS)
Bates, Philip A.; Levine, Peter A.; Sauer, Donald J.; Hsueh, Fu-Lung; Shallcross, Frank V.; Smeltzer, Ronald K.; Meray, Grazyna M.; Taylor, Gordon C.; Tower, John R.
1995-04-01
A four-port 512 X 512 charge coupled device (CCD) imager hardened against proton displacement damage and total dose degradation has been fabricated and tested. The device is based upon an established thinned, backside illuminated, triple polysilicon, buried channel CCD process technology. The technology includes buried blooming drains. A three step approach has been taken to hardening the device. The first phase addressed hardening against proton displacement damage. The second phase addressed hardening against both proton displacement damage and total dose degradation. The third phase addresses final optimization of the design. Test results from the first and second phase efforts are presented. Plans for the third phase are discussed.
Visual method for detecting critical damage in railway contact strips
NASA Astrophysics Data System (ADS)
Judek, S.; Skibicki, J.
2018-05-01
Ensuring an uninterrupted supply of power in the electric traction is vital for the safety of this important transport system. For this purpose, monitoring and diagnostics of the technical condition of the vehicle’s power supply elements are becoming increasingly common. This paper presents a new visual method for detecting contact strip damage, based on measurement and analysis of the movement of the overhead contact line (OCL) wire. A measurement system configuration with a 2D camera was proposed. The experimental method has shown that contact strips damage can be detected by transverse displacement signal analysis. It has been proven that the velocity signal numerically established on that basis has a comparable level in the case of identical damage, regardless of its location on the surface of the contact strip. The proposed method belongs to the group of contact-less measurements, so it does not require interference with the structure of the catenary network nor the mounting of sensors in its vicinity. Measurement of displacements of the contact wire in 2D space makes it possible to combine the functions of existing diagnostic stands assessing the correctness of the mean contact force control adjustment of the current collector with the elements of the contact strip diagnostics, which involves detecting their damage which may result in overhead contact line rupture.
Displacement Cascade Damage Production in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai
Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
NASA Technical Reports Server (NTRS)
Topper, Alyson D.; Campola, Michael J.; Chen, Dakai; Casey, Megan C.; Yau, Ka-Yen; Cochran, Donna J.; LaBel, Kenneth A.; Ladbury, Raymond L.; Lauenstein, Jean-Marie; Mondy, Timothy K.;
2017-01-01
Total ionizing dose and displacement damage testing was performed to characterize and determine the suitability of candidate electronics for NASA space utilization. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.
2004-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACS), among others.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Kniffin, Scott D.; LaBel, Kenneth A.; OBryan, Martha V.; Reed, Robert A.; Ladbury, Ray L.; Howard, James W., Jr.; Poivey, Christian; Buchner, Stephen P.; Marshall, Cheryl J.
2003-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to-Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others.
Stiffness degradation-based damage model for RC members and structures using fiber-beam elements
NASA Astrophysics Data System (ADS)
Guo, Zongming; Zhang, Yaoting; Lu, Jiezhi; Fan, Jian
2016-12-01
To meet the demand for an accurate and highly efficient damage model with a distinct physical meaning for performance-based earthquake engineering applications, a stiffness degradation-based damage model for reinforced concrete (RC) members and structures was developed using fiber beam-column elements. In this model, damage indices for concrete and steel fibers were defined by the degradation of the initial reloading modulus and the low-cycle fatigue law. Then, section, member, story and structure damage was evaluated by the degradation of the sectional bending stiffness, rod-end bending stiffness, story lateral stiffness and structure lateral stiffness, respectively. The damage model was realized in Matlab by reading in the outputs of OpenSees. The application of the damage model to RC columns and a RC frame indicates that the damage model is capable of accurately predicting the magnitude, position, and evolutionary process of damage, and estimating story damage more precisely than inter-story drift. Additionally, the damage model establishes a close connection between damage indices at various levels without introducing weighting coefficients or force-displacement relationships. The development of the model has perfected the damage assessment function of OpenSees, laying a solid foundation for damage estimation at various levels of a large-scale structure subjected to seismic loading.
2017-09-30
Model Assembly of the RYE The size of the embedding composite region was determined based on Hill ’ s criterion, which states that uniform displacement ...traction at the boundary where displacement was applied was monitored. The results are as shown in Figure 2. The studies show that the size of the...EFFECTIVE OMPO !TE MATRIX Under transverse displacement at the boundary of the model assembly, the response of the inner RYE was monitored. The
Ionizing doses and displacement damage testing of COTS CMOS imagers
NASA Astrophysics Data System (ADS)
Bernard, Frédéric; Petit, Sophie; Courtade, Sophie
2017-11-01
CMOS sensors begin to be a credible alternative to CCD sensors in some space missions. However, technology evolution of CMOS sensors is much faster than CCD one's. So a continuous technology evaluation is needed for CMOS imagers. Many of commercial COTS (Components Off The Shelf) CMOS sensors use organic filters, micro-lenses and non rad-hard technologies. An evaluation of the possibilities offered by such technologies is interesting before any custom development. This can be obtained by testing commercial COTS imagers. This article will present electro-optical performances evolution of off the shelves CMOS imagers after Ionizing Doses until 50kRad(Si) and Displacement Damage environment tests (until 1011 p/cm2 at 50 MeV). Dark current level and non uniformity evolutions are compared and discussed. Relative spectral response measurement and associated evolution with irradiation will also be presented and discussed. Tests have been performed on CNES detection benches.
Proton Effects and Test Issues for Satellite Designers. Section 4; Ionization Effects
NASA Technical Reports Server (NTRS)
Marshall, Paul W.; Marshall, Cheryl J.
1999-01-01
This portion of the Short Course is divided into two segments to separately address the two major proton-related effects confronting satellite designers: ionization effects and displacement damage effects. While both of these topics are deeply rooted in "traditional" descriptions of space radiation effects, there are several factors at play to cause renewed concern for satellite systems being designed today. For example, emphasis on Commercial Off-The-Shelf (COTS) technologies in both commercial and government systems increases both Total Ionizing Dose (TID) and Single Event Effect (SEE) concerns. Scaling trends exacerbate the problems, especially with regard to SEEs where protons can dominate soft error rates and even cause destructive failure. In addition, proton-induced displacement damage at fluences encountered in natural space environments can cause degradation in modern bipolar circuitry as well as in many emerging electronic and opto-electronic technologies. A crude, but nevertheless telling, indication of the level of concern for proton effects follows from surveying the themes treated in papers presented at this conference. The table lists themes found in the IEEE Transaction on Nuclear Science (TNS) December issue from the past year and compares them with the December issue's content a decade earlier. Ten years ago there were nine papers, or about 10% of the total, dealing with the four indicated topics. At that time, single event effects from protons were the primary concern, and these were thought to be possible only when a nuclear reaction initiated energetic recoil atoms. This is shown in the table as the 'traditional" SEE subject. A decade later, submissions addressing this topic had doubled, while papers devoted to displacement damage studies had increased from one to nine! More importantly, displacement damage effects in the natural space environments have become a concern for degradation in modern devices (other than solar cells), and this was not so ten years earlier.
NASA Technical Reports Server (NTRS)
Cochran, Donna J.; Buchner, Stephen P.; Irwin, Tim L.; LaBel, Kenneth A.; Marshall, Cheryl J.; Reed, Robert A.; Sanders, Anthony B.; Hawkins, Donald K.; Flanigan, Ryan J.; Cox, Stephen R.
2005-01-01
We present data on the vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage. Devices tested include optoelectronics, digital, analog, linear bipolar devices, hybrid devices, Analog-to- Digital Converters (ADCs), and Digital-to-Analog Converters (DACs), among others. T
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; O'Bryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.;
2014-01-01
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion-induced single-event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). This paper is a summary of test results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Huang, Shaoyan; Liu, Minbo
The experiments of displacement damage effects on CMOS APS image sensors induced by neutron irradiation from a nuclear reactor are presented. The CMOS APS image sensors are manufactured in the standard 0.35 μm CMOS technology. The flux of neutron beams was about 1.33 × 10{sup 8} n/cm{sup 2}s. The three samples were exposed by 1 MeV neutron equivalent-fluence of 1 × 10{sup 11}, 5 × 10{sup 11}, and 1 × 10{sup 12} n/cm{sup 2}, respectively. The mean dark signal (K{sub D}), dark signal spike, dark signal non-uniformity (DSNU), noise (V{sub N}), saturation output signal voltage (V{sub S}), and dynamic rangemore » (DR) versus neutron fluence are investigated. The degradation mechanisms of CMOS APS image sensors are analyzed. The mean dark signal increase due to neutron displacement damage appears to be proportional to displacement damage dose. The dark images from CMOS APS image sensors irradiated by neutrons are presented to investigate the generation of dark signal spike.« less
NASA Astrophysics Data System (ADS)
Yan, Qiang; Shao, Lin
2017-03-01
Current popular Monte Carlo simulation codes for simulating electron bombardment in solids focus primarily on electron trajectories, instead of electron-induced displacements. Here we report a Monte Carol simulation code, DEEPER (damage creation and particle transport in matter), developed for calculating 3-D distributions of displacements produced by electrons of incident energies up to 900 MeV. Electron elastic scattering is calculated by using full-Mott cross sections for high accuracy, and primary-knock-on-atoms (PKAs)-induced damage cascades are modeled using ZBL potential. We compare and show large differences in 3-D distributions of displacements and electrons in electron-irradiated Fe. The distributions of total displacements are similar to that of PKAs at low electron energies. But they are substantially different for higher energy electrons due to the shifting of PKA energy spectra towards higher energies. The study is important to evaluate electron-induced radiation damage, for the applications using high flux electron beams to intentionally introduce defects and using an electron analysis beam for microstructural characterization of nuclear materials.
NASA Technical Reports Server (NTRS)
Laird, Jamie S.; Onoda, Shinobu; Hirao, Toshio; Becker, Heidi; Johnston, Allan; Laird, Jamie S.; Itoh, Hisayoshi
2006-01-01
Effects of displacement damage and ionization damage induced by gamma irradiation on the dark current and impulse response of a high-bandwidth low breakdown voltage Si Avalanche Photodiode has been investigated using picosecond laser microscopy. At doses as high as 10Mrad (Si) minimal alteration in the impulse response and bandwidth were observed. However, dark current measurements also performed with and without biased irradiation exhibit anomalously large damage factors for applied biases close to breakdown. The absence of any degradation in the impulse response is discussed as are possible mechanisms for higher dark current damage factors observed for biased irradiation.
Characterization of Radiation Hardened Bipolar Linear Devices for High Total Dose Missions
NASA Technical Reports Server (NTRS)
McClure, Steven S.; Harris, Richard D.; Rax, Bernard G.; Thorbourn, Dennis O.
2012-01-01
Radiation hardened linear devices are characterized for performance in combined total dose and displacement damage environments for a mission scenario with a high radiation level. Performance at low and high dose rate for both biased and unbiased conditions is compared and the impact to hardness assurance methodology is discussed.
NASA Astrophysics Data System (ADS)
Voyevodin, V. N.; Karpov, S. A.; Kopanets, I. E.; Ruzhytskyi, V. V.; Tolstolutskaya, G. D.; Garner, F. A.
2016-01-01
The behavior of ion-implanted hydrogen (deuterium) and helium in austenitic 18Cr10NiTi stainless steel, EI-852 ferritic steel and ferritic/martensitic steel EP-450 and their interaction with displacement damage were investigated. Energetic argon irradiation was used to produce displacement damage and bubble formation to simulate nuclear power environments. The influence of damage morphology and the features of radiation-induced defects on deuterium and helium trapping in structural alloys was studied using ion implantation, the nuclear reaction D(3He,p)4He, thermal desorption spectrometry and transmission electron microscopy. It was found in the case of helium irradiation that various kinds of helium-radiation defect complexes are formed in the implanted layer that lead to a more complicated spectra of thermal desorption. Additional small changes in the helium spectra after irradiation with argon ions to a dose of ≤25 dpa show that the binding energy of helium with these traps is weakly dependent on the displacement damage. It was established that retention of deuterium in ferritic and ferritic-martensitic alloys is three times less than in austenitic steel at damage of ∼1 dpa. The retention of deuterium in steels is strongly enhanced by presence of radiation damages created by argon ion irradiation, with a shift in the hydrogen release temperature interval of 200 K to higher temperature. At elevated temperatures of irradiation the efficiency of deuterium trapping is reduced by two orders of magnitude.
Seismic fragility assessment of low-rise stone masonry buildings
NASA Astrophysics Data System (ADS)
Abo-El-Ezz, Ahmad; Nollet, Marie-José; Nastev, Miroslav
2013-03-01
Many historic buildings in old urban centers in Eastern Canada are made of stone masonry reputed to be highly vulnerable to seismic loads. Seismic risk assessment of stone masonry buildings is therefore the first step in the risk mitigation process to provide adequate planning for retrofit and preservation of historical urban centers. This paper focuses on development of analytical displacement-based fragility curves reflecting the characteristics of existing stone masonry buildings in Eastern Canada. The old historic center of Quebec City has been selected as a typical study area. The standard fragility analysis combines the inelastic spectral displacement, a structure-dependent earthquake intensity measure, and the building damage state correlated to the induced building displacement. The proposed procedure consists of a three-step development process: (1) mechanics-based capacity model, (2) displacement-based damage model and (3) seismic demand model. The damage estimation for a uniform hazard scenario of 2% in 50 years probability of exceedance indicates that slight to moderate damage is the most probable damage experienced by these stone masonry buildings. Comparison is also made with fragility curves implicit in the seismic risk assessment tools Hazus and ELER. Hazus shows the highest probability of the occurrence of no to slight damage, whereas the highest probability of extensive and complete damage is predicted with ELER. This comparison shows the importance of the development of fragility curves specific to the generic construction characteristics in the study area and emphasizes the need for critical use of regional risk assessment tools and generated results.
Plafker, George; Kachadoorian, Reuben; Eckel, Edwin B.; Mayo, Lawrence R.
1969-01-01
The 1964 earthquake caused wide-spread damage to inhabited places throughout more than 60,000 square miles of south-central Alaska. This report describes damage to all communities in the area except Anchorage, Whittier, Homer, Valdez, Seward, the communities of the Kodiak group of islands, and communities in the Copper River Basin; these were discussed in previous chapters of the Geological Survey's series of reports on the earthquake. At the communities discussed herein, damage resulted primarily from sea waves of diverse origins, displacements of the land relative to sea level, and seismic shaking. Waves took all of the 31 lives lost at those communities; physical damage was primarily from the waves and vertical displacements of the land relative to sea level. Destructive waves of local origin struck during or immediately after the earthquake throughout much of Prince William Sound, the southern Kenai Peninsula, and the shores of Kenai Lake. In Prince William Sound, waves demolished all but one home at the native village of Chenega, destroyed homesites at Point Nowell and Anderson Bay, and caused varying amounts of damage to waterfront facilities at Sawmill Bay, Latouche, Port Oceanic, Port Nellie Juan, Perry Island, and western Port Valdez. The local waves, which ran up as high as 70 feet above tide level at Chenega and more than 170 feet in several uninhabited parts of the Sound, took nearly all of the lives lost by drowning at these communities. Destructive local waves that devastated shores of Anderson Bay and adjacent parts of western Port Valdez probably were generated primarily by massive submarine slides of glacial and fluvioglacial deposits ; the origin of the waves that caused damage at most of the other communities and at extensive uninhabited segments of shoreline is not known. At these places the most probable generative mechanisms are: unidentified submarine slides of unconsolidated deposits, and (or) the horizontal tectonic displacements, of 20 to more than 60 feet, that occurred in the Prince William Sound region during the earthquake. A train of long-period seismic sea waves that began about 20 minutes after the start of the earthquake inundated shores along the Gulf of Alaska coast to a maximum height of 35 feet above tide level. At the communities described, they virtually destroyed two logging camps at Whidbey Bay and Puget Bay on the south coast of the Kenai Peninsula, caused moderate damage to boat harbors and docks at Seldovia and Cordova, floated away some beach cabins in the Cordova area, and drowned two people, one at Point Whitshed near Cordora and one at the Cape Saint Elias Light Station. The seismic sea waves were generated by regional tectonic uplift of the sea floor on the Continental Shelf. Vertical tectonic displacements of the land relative to sea level that accompanied the earthquake affected virtually all the coastal communities. Tectonic subsidence of 5 to 6 feet, augmented locally by surficial subsidence of unconsolidated deposits required either the relocation or raising of structures at Portage, Girdwood, and Hope on Turnagain Arm. Shoreline submergence resulting from about 3½ feet of tectonic subsidence at Seldovia necessitated raising all waterfront facilities and the airstrip above the level of high tides. On the other hand, tectonic uplift of the land in the Prince Williams Sound region required deepening of the small-boat harbors at Cordora and Tatitlek, dredging of the waterways in the Cordova area, and lengthening of some docks or piers at Cordova, the Cape Hinchinbrook Light Station, and in Sawmill Bay. Significant structural damage from direct seismic shaking was largely confined to fluid containers and a pier facility near Kenai. Indirect damage from fissuring and differential settling of foundation mterials in the vicinity of the Cordova airfield mused damage to a building, underground utilities, an airfield fill, and the highway. Minor amounts of direct and indirect damage from seismic vibrations were sustained by most of the communities situated on unconsolidated deposits as far east as Yakutat, north to Fairbanks, and west to King Salmon. Except for a few cracked or toppled chimney, all the damage from shaking was confined to areas of thick, unconsolidated deposits. Foundation damage was almost entirely restricted to water-saturated unconsolidated deposits which, when liquefied by seismic shaking, could spread laterally toward free faces and (or) settle differentially through compaction.
Target depth dependence of damage rate in metals by 150 MeV proton irradiation
NASA Astrophysics Data System (ADS)
Yoshiie, T.; Ishi, Y.; Kuriyama, Y.; Mori, Y.; Sato, K.; Uesugi, T.; Xu, Q.
2015-01-01
A series of irradiation experiments with 150 MeV protons was performed. The relationship between target depth (or shield thickness) and displacement damage during proton irradiation was obtained by in situ electrical resistance measurements at 20 K. Positron annihilation lifetime measurements were also performed at room temperature after irradiation, as a function of the target thickness. The displacement damage was found to be high close to the beam incident surface area, and decreased with increasing target depth. The experimental results were compared with damage production calculated with an advanced Monte Carlo particle transport code system (PHITS).
Curvature methods of damage detection using digital image correlation
NASA Astrophysics Data System (ADS)
Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter
2009-03-01
Analytical models have shown that local damage in a structure can be detected by studying changes in the curvature of the structure's displaced shape while under an applied load. In order for damage to be detected, located, and quantified using curvature methods, a spatially dense set of measurement points is required on the structure of interest and the change in curvature must be measurable. Experimental testing done to validate the theory is often plagued by sparse data sets and experimental noise. Furthermore, the type of load, the location and severity of the damage, and the mechanical properties (material and geometry) of the structure have a significant effect on how much the curvature will change. Within this paper, three-dimensional (3D) Digital Image Correlation (DIC) as one possible method for detecting damage through curvature methods is investigated. 3D DIC is a non-contacting full-field measurement technique which uses a stereo pair of digital cameras to capture surface shape. This approach allows for an extremely dense data set across the entire visible surface of an object. A test is performed to validate the approach on an aluminum cantilever beam. A dynamic load is applied to the beam which allows for measurements to be made of the beam's response at each of its first three resonant frequencies, corresponding to the first three bending modes of the structure. DIC measurements are used with damage detection algorithms to predict damage location with varying levels of damage inflicted in the form of a crack with a prescribed depth. The testing demonstrated that this technique will likely only work with structures where a large displaced shape is easily achieved and in cases where the damage is relatively severe. Practical applications and limitations of the technique are discussed.
Enhancement of the Feature Extraction Capability in Global Damage Detection Using Wavelet Theory
NASA Technical Reports Server (NTRS)
Saleeb, Atef F.; Ponnaluru, Gopi Krishna
2006-01-01
The main objective of this study is to assess the specific capabilities of the defect energy parameter technique for global damage detection developed by Saleeb and coworkers. The feature extraction is the most important capability in any damage-detection technique. Features are any parameters extracted from the processed measurement data in order to enhance damage detection. The damage feature extraction capability was studied extensively by analyzing various simulation results. The practical significance in structural health monitoring is that the detection at early stages of small-size defects is always desirable. The amount of changes in the structure's response due to these small defects was determined to show the needed level of accuracy in the experimental methods. The arrangement of fine/extensive sensor network to measure required data for the detection is an "unlimited" ability, but there is a difficulty to place extensive number of sensors on a structure. Therefore, an investigation was conducted using the measurements of coarse sensor network. The white and the pink noises, which cover most of the frequency ranges that are typically encountered in the many measuring devices used (e.g., accelerometers, strain gauges, etc.) are added to the displacements to investigate the effect of noisy measurements in the detection technique. The noisy displacements and the noisy damage parameter values are used to study the signal feature reconstruction using wavelets. The enhancement of the feature extraction capability was successfully achieved by the wavelet theory.
Petit, Yvan; Cloutier, Luc P; Duke, Kajsa; Laflamme, G Yves
2012-04-01
Greater trochanter (GT) stabilization techniques following a fracture or an osteotomy are still showing high levels of postoperative complications. Understanding the effect of femoral neck cut placement, cable tension and muscles forces on GT fragment displacements could help surgeons optimize their techniques. A 3D finite element model has been developed to evaluate, through a statistical experimental design, the impact of the above variables on the GT fragment gap and sliding displacements. Muscles forces were simulating typical daily activities. Stresses were also investigated. The femoral neck cut placement had the most significant effect on the fragment displacement. Lowering it by 5 mm increased the gap and sliding fragment displacements by 288 and 128 %, respectively. Excessive cable tightening provided no significant reduction in fragment displacement. Muscle activities increased the gap and the sliding displacements for all muscle configurations. The maximum total displacement of 0.41 mm was present with a 10 mm femoral neck cut, a cable tension of 178 N, and stair climbing. Caution must be used not to over tighten the cables as the potential damage caused by the increased stress is more significant than any reduction in fragment displacement. Furthermore, preservation of the contact area is important for GT stabilization.
Fault Damage Zone Permeability in Crystalline Rocks from Combined Field and Laboratory Measurements
NASA Astrophysics Data System (ADS)
Mitchell, T.; Faulkner, D.
2008-12-01
In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Nordlund, Kai; Melerba, L
The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
Rotor damage detection by using piezoelectric impedance
NASA Astrophysics Data System (ADS)
Qin, Y.; Tao, Y.; Mao, Y. F.
2016-04-01
Rotor is a core component of rotary machinery. Once the rotor has the damage, it may lead to a major accident. Thus the quantitative rotor damage detection method based on piezoelectric impedance is studied in this paper. With the governing equation of piezoelectric transducer (PZT) in a cylindrical coordinate, the displacement along the radius direction is derived. The charge of PZT is calculated by the electric displacement. Then, by the use of the obtained displacement and charge, an analytic piezoelectric impedance model of the rotor is built. Given the circular boundary condition of a rotor, annular elements are used as the analyzed objects and spectral element method is used to set up the damage detection model. The Electro-Mechanical (E/M) coupled impedance expression of an undamaged rotor is deduced with the application of a low-cost impedance test circuit. A Taylor expansion method is used to obtain the approximate E/M coupled impedance expression for the damaged rotor. After obtaining the difference between the undamaged and damaged rotor impedance, a rotor damage detection method is proposed. This method can directly calculate the change of bending stiffness of the structural elements, it follows that the rotor damage can be effectively detected. Finally, a preset damage configuration is used for the numerical simulation. The result shows that the quantitative damage detection algorithm based on spectral element method and piezoelectric impedance proposed in this paper can identify the location and the severity of the damaged rotor accurately.
NASA Technical Reports Server (NTRS)
Summers, Geoffrey P.; Burke, Edward A.; Shapiro, Philip; Statler, Richard; Messenger, Scott R.; Walters, Robert J.
1994-01-01
It has been found useful in the past to use the concept of 'equivalent fluence' to compare the radiation response of different solar cell technologies. Results are usually given in terms of an equivalent 1 MeV electron or an equivalent 10 MeV proton fluence. To specify cell response in a complex space-radiation environment in terms of an equivalent fluence, it is necessary to measure damage coefficients for a number of representative electron and proton energies. However, at the last Photovoltaic Specialist Conference we showed that nonionizing energy loss (NIEL) could be used to correlate damage coefficients for protons, using measurements for GaAs as an example. This correlation means that damage coefficients for all proton energies except near threshold can be predicted from a measurement made at one particular energy. NIEL is the exact equivalent for displacement damage of linear energy transfer (LET) for ionization energy loss. The use of NIEL in this way leads naturally to the concept of 10 MeV equivalent proton fluence. The situation for electron damage is more complex, however. It is shown that the concept of 'displacement damage dose' gives a more general way of unifying damage coefficients. It follows that 1 MeV electron equivalent fluence is a special case of a more general quantity for unifying electron damage coefficients which we call the 'effective 1 MeV electron equivalent dose'.
DNA damage mediated transcription arrest: Step back to go forward.
Mullenders, Leon
2015-12-01
The disturbance of DNA helix conformation by bulky DNA damage poses hindrance to transcription elongating due to stalling of RNA polymerase at transcription blocking lesions. Stalling of RNA polymerase provokes the formation of R-loops, i.e. the formation of a DNA-RNA hybrid and a displaced single stranded DNA strand as well as displacement of spliceosomes. R-loops are processed into DNA single and double strand breaks by NER factors depending on TC-NER factors leading to genome instability. Moreover, stalling of RNA polymerase induces a strong signal for cell cycle arrest and apoptosis. These toxic and mutagenic effects are counteracted by a rapid recruitment of DNA repair proteins to perform transcription coupled nucleotide excision repair (TC-NER) to remove the blocking DNA lesions and to restore transcription. Recent studies have highlighted the role of backtracking of RNA polymerase to facilitate TC-NER and identified novel factors that play key roles in TC-NER and in restoration of transcription. On the molecular level these factors facilitate stability of the repair complex by promotion and regulation of various post-translational modifications of NER factors and chromatin substrate. In addition, the continuous flow of new factors that emerge from screening assays hints to several regulatory levels to safeguard the integrity of transcription elongation after disturbance by DNA damage that have yet to be explored. Copyright © 2015 Elsevier B.V. All rights reserved.
Structural kinematics based damage zone prediction in gradient structures using vibration database
NASA Astrophysics Data System (ADS)
Talha, Mohammad; Ashokkumar, Chimpalthradi R.
2014-05-01
To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.
Improving atomic displacement and replacement calculations with physically realistic damage models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models
Nordlund, Kai; Zinkle, Steven J.; Sand, Andrea E.; ...
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor ofmore » 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.« less
Improving atomic displacement and replacement calculations with physically realistic damage models.
Nordlund, Kai; Zinkle, Steven J; Sand, Andrea E; Granberg, Fredric; Averback, Robert S; Stoller, Roger; Suzudo, Tomoaki; Malerba, Lorenzo; Banhart, Florian; Weber, William J; Willaime, Francois; Dudarev, Sergei L; Simeone, David
2018-03-14
Atomic collision processes are fundamental to numerous advanced materials technologies such as electron microscopy, semiconductor processing and nuclear power generation. Extensive experimental and computer simulation studies over the past several decades provide the physical basis for understanding the atomic-scale processes occurring during primary displacement events. The current international standard for quantifying this energetic particle damage, the Norgett-Robinson-Torrens displacements per atom (NRT-dpa) model, has nowadays several well-known limitations. In particular, the number of radiation defects produced in energetic cascades in metals is only ~1/3 the NRT-dpa prediction, while the number of atoms involved in atomic mixing is about a factor of 30 larger than the dpa value. Here we propose two new complementary displacement production estimators (athermal recombination corrected dpa, arc-dpa) and atomic mixing (replacements per atom, rpa) functions that extend the NRT-dpa by providing more physically realistic descriptions of primary defect creation in materials and may become additional standard measures for radiation damage quantification.
Damage tolerant design using collapse techniques
NASA Technical Reports Server (NTRS)
Haftka, R. T.
1982-01-01
A new approach to the design of structures for improved global damage tolerance is presented. In its undamaged condition the structure is designed subject to strength, displacement and buckling constraints. In the damaged condition the only constraint is that the structure will not collapse. The collapse load calculation is formulated as a maximization problem and solved by an interior extended penalty function. The design for minimum weight subject to constraints on the undamaged structure and a specified level of the collapse load is a minimization problem which is also solved by a penalty function formulation. Thus the overall problem is of a nested or multilevel optimization. Examples are presented to demonstrate the difference between the present and more traditional approaches.
A flexural crack model for damage detection in reinforced concrete structures
NASA Astrophysics Data System (ADS)
Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.
2011-07-01
The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.
Predictions of Poisson's ratio in cross-ply laminates containing matrix cracks and delaminations
NASA Technical Reports Server (NTRS)
Harris, Charles E.; Allen, David H.; Nottorf, Eric W.
1989-01-01
A damage-dependent constitutive model for laminated composites has been developed for the combined damage modes of matrix cracks and delaminations. The model is based on the concept of continuum damage mechanics and uses second-order tensor valued internal state variables to represent each mode of damage. The internal state variables are defined as the local volume average of the relative crack face displacements. Since the local volume for delaminations is specified at the laminate level, the constitutive model takes the form of laminate analysis equations modified by the internal state variables. Model implementation is demonstrated for the laminate engineering modulus E(x) and Poisson's ratio nu(xy) of quasi-isotropic and cross-ply laminates. The model predictions are in close agreement to experimental results obtained for graphite/epoxy laminates.
Siebenlist, S; Sandmann, G; Kirchhoff, C; Biberthaler, P; Neumaier, M
2013-01-01
Fractures of the medial clavicle third are rare injuries. Even in case of significant fracture displacement, their therapeutic management has been nonoperative. Recently, surgical intervention has become mandatory for displaced fractures types to prevent non-union and functional complaints, but the optimal operative strategy is being discussed controversially. We describe the case of a 63-year-old male patient with a significantly displaced medial clavicle fracture after failed conservative treatment resulting in restricted, painful shoulder function. The patient underwent open reduction and osteosynthesis with an anatomically precontoured locking compression plate (LCP). One year after surgery the patient is free of complaints and has returned to his preinjury activity level without any functional restrictions. As a not yet reported operative approach, anatomically preshaped locking plating seems to be an effective fixation method for displaced fractures of the medial clavicle third. The operative management is described in detail and discussed with the current literature. Based on the presented case, we underline the statement that displaced medial clavicle fractures should be surgically addressed to avoid late damage.
NASA Astrophysics Data System (ADS)
Hajdas, Wojtek; Mrigakshi, Alankrita; Xiao, Hualin
2017-04-01
The primary concern of the ESA JUICE mission to Jupiter is the harsh particle radiation environment. Ionizing particles introduce radiation damage by total dose effects, displacement damages or single events effects. Therefore, both the total ionizing dose and the displacement damage equivalent fluence must be assessed to alert spacecraft and its payload as well as to quantify radiation levels for the entire mission lifetime. We present a concept and implementations steps for simplified method used to compute in flight a dose rate and total dose caused by protons. We also provide refinement of the method previously developed for electrons. The dose rates values are given for predefined active volumes located behind layers of materials with known thickness. Both methods are based on the electron and proton flux measurements provided by the Electron and Proton Detectors inside the Radiation Hard Electron Monitor (RADEM) located on-board of JUICE. The trade-off between method accuracy and programming limitations for in-flight computations are discussed. More comprehensive and precise dose rate computations based on detailed analysis of all stack detectors will be made during off-line data processing. It will utilize full spectral unfolding from all RADEM detector subsystems.
Differential dpa calculations with SPECTRA-PKA
NASA Astrophysics Data System (ADS)
Gilbert, M. R.; Sublet, J.-Ch.
2018-06-01
The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.
NASA Technical Reports Server (NTRS)
Jegley, Dawn C.
1989-01-01
Results of a series of tests to determine the effects of adhesive interleaving and discontinuous plies (plies with end-to-end gaps) on the displacements, failure loads and failure modes of graphite-epoxy laminates subjected to transverse normal loads are presented. Adhesive interleaving can be used to contain local damage within a group of plies, i.e., to arrest crack propagation on the interlaminate level, and it can increase the amount of normal displacement the laminate can withstand before failure. However, the addition of adhesive interleaving to a laminate does not significantly increase its load carrying capability. A few discontinuous plies in a laminate can reduce the normal displacement and load at failure by 10 to 40 percent compared to a laminate with no discontinuous plies, but the presence of the ply discontinuities does not generally change the failure location or the failure mode of the laminate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
Tonigan, Andrew M.; Arutt, Charles N.; Parma, Edward J.; ...
2017-11-16
For this research, a bipolar-transistor-based sensor technique has been used to compare silicon displacement damage from known and unknown neutron energy spectra generated in nuclear reactor and high-energy-density physics environments. The technique has been shown to yield 1-MeV(Si) equivalent neutron fluence measurements comparable to traditional neutron activation dosimetry. This study significantly extends previous results by evaluating three types of bipolar devices utilized as displacement damage sensors at a nuclear research reactor and at a Pelletron particle accelerator. Ionizing dose effects are compensated for via comparisons with 10-keV x-ray and/or cobalt-60 gamma ray irradiations. Non-ionizing energy loss calculations adequately approximate themore » correlations between particle-device responses and provide evidence for the use of one particle type to screen the sensitivity of the other.« less
NASA Astrophysics Data System (ADS)
Felipe-Sesé, Luis; Díaz, Francisco A.
2018-02-01
The recent improvement in accessibility to high speed digital cameras has enabled three dimensional (3D) vibration measurements employing full-field optical techniques. Moreover, there is a need to develop a cost-effective and non-destructive testing method to quantify the severity of damages arising from impacts and thus, enhance the service life. This effect is more interesting in composite structures since possible internal damage has low external manifestation. Those possible damages have been previously studied experimentally by using vibration testing. Namely, those analyses were focused on variations in the modal frequencies or, more recently, mode shapes variations employing punctual accelerometers or vibrometers. In this paper it is presented an alternative method to investigate the severity of damage on a composite structure and how the damage affects to its integrity through the analysis of the full field modal behaviour. In this case, instead of punctual measurements, displacement maps are analysed by employing a combination of FP + 2D-DIC during vibration experiments in an industrial component. In addition, to analyse possible mode shape changes, differences between damaged and undamaged specimens are studied by employing a recent methodology based on Adaptive Image Decomposition (AGMD) procedure. It will be demonstrated that AGMD Image decomposition procedure, which decompose the displacement field into shape descriptors, is capable to detect and quantify the differences between mode shapes. As an application example, the proposed approach has been evaluated on two large industrial components (car bonnets) made of short-fibre reinforced composite. Specifically, the evolution of normalized AGMD shape descriptors has been evaluated for three different components with different damage levels. Results demonstrate the potential of the presented approach making it possible to measure the severity of a structural damage by evaluating the mode shape based in the analysis of its shape descriptors.
Evaluating the Dynamic Characteristics of Retrofitted RC Beams
NASA Astrophysics Data System (ADS)
Ghods, Amir S.; Esfahani, Mohamad R.; Moghaddasie, Behrang
2008-07-01
The aim of this experimental study was to investigate the relationship between the damage and changes in dynamic characteristics of reinforced concrete members strengthened with Carbon Fiber Reinforced Polymer (CFRP). Modal analysis is a popular non-destructive method for evaluating health of structural systems. A total of 8 reinforced concrete beams with similar dimensions were made using concrete with two different compressive strengths and reinforcement ratios. Monotonic loading was applied with four-point-bending setup in order to generate different damage levels in the specimens while dynamic testing was conducted to monitor the changes in dynamic characteristics of the specimens. In order to investigate the effect of CFRP on static and dynamic properties of specimens, some of the beams were loaded to half of their ultimate load carrying capacity and then were retrofitted using composite laminates with different configuration. Retrofitted specimens demonstrated elevated load carrying capacity, higher flexural stiffness and lower displacement ductility. By increasing the damage level in specimens, frequencies of the beams were decreased and after strengthening these values were improved significantly. The intensity of the damage level in each specimen affects the shape of its mode as well. Fixed points and curvatures of mode shapes of beams tend to move toward the location of the damage in each case.
Insights on surface spalling of rock
NASA Astrophysics Data System (ADS)
Tarokh, Ali; Kao, Chu-Shu; Fakhimi, Ali; Labuz, Joseph F.
2016-07-01
Surface spalling is a complex failure phenomenon that features crack propagation and detachment of thin pieces of rock near free surfaces, particularly in brittle rock around underground excavations when large in situ stresses are involved. A surface instability apparatus was used to study failure of rock close to a free surface, and damage evolution was monitored by digital image correlation (DIC). Lateral displacement at the free face was used as the feedback signal to control the post-peak response of the specimen. DIC was implemented in order to obtain the incremental displacement fields during the spalling process. Displacement fields were computed in the early stage of loading as well as close to the peak stress. Fracture from the spalling phenomenon was revealed by incremental lateral displacement contours. The axial and lateral displacements suggested that the displacement gradient was uniform in both directions at early loading stages and as the load increased, the free-face effect started to influence the displacements, especially the lateral displacement field. A numerical approach, based on the discrete element method, was developed and validated from element testing. Damage evolution and localization observed in numerical simulations were similar to those observed in experiments. By performing simulations in two- and three-dimensions, it was revealed that the intermediate principal stress and platen-rock interfaces have important effects on simulation of surface spalling.
NASA Technical Reports Server (NTRS)
Starbuck, J. Michael; Guerdal, Zafer; Pindera, Marek-Jerzy; Poe, Clarence C.
1990-01-01
Damage states in laminated composites were studied by considering the model problem of a laminated beam subjected to three-point bending. A combination of experimental and theoretical research techniques was used to correlate the experimental results with the analytical stress distributions. The analytical solution procedure was based on the stress formulation approach of the mathematical theory of elasticity. The solution procedure is capable of calculating the ply-level stresses and beam displacements for any laminated beam of finite length using the generalized plane deformation or plane stress state assumption. Prior to conducting the experimental phase, the results from preliminary analyses were examined. Significant effects in the ply-level stress distributions were seen depending on the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking sequence was used. The experimental investigation was conducted to determine the different damage modes in laminated three-point bend specimens. The test matrix consisted of three-point bend specimens of 0 deg unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the damage initiation loads and ultimate failure loads were studied, and their relation to damage susceptibility and damage tolerance of the mean configuration was discussed. Damage modes were identified by visual inspection of the damaged specimens using an optical microscope. The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber breakage, and crushing. The correlation study between the experimental results and the analytical results were performed for the midspan deflection, indentation, damage modes, and damage susceptibility.
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Faulkner, D. R.
2009-04-01
Models predicting crustal fluid flow are important for a variety of reasons; for example earthquake models invoking fluid triggering, predicting crustal strength modelling flow surrounding deep waste repositories or the recovery of natural resources. Crustal fluid flow is controlled by both the bulk transport properties of rocks as well as heterogeneities such as faults. In nature, permeability is enhanced in the damage zone of faults, where fracturing occurs on a wide range of scales. Here we analyze the contribution of microfracture damage on the permeability of faults that cut through low porosity, crystalline rocks by combining field and laboratory measurements. Microfracture densities surrounding strike-slip faults with well-constrained displacements ranging over 3 orders of magnitude (~0.12 m - 5000 m) have been analyzed. The faults studied are excellently exposed within the Atacama Fault Zone, where exhumation from 6-10 km has occurred. Microfractures in the form of fluid inclusion planes (FIPs) show a log-linear decrease in fracture density with perpendicular distance from the fault core. Damage zone widths defined by the density of FIPs scale with fault displacement, and an empirical relationship for microfracture density distribution throughout the damage zone with displacement is derived. Damage zone rocks will have experienced differential stresses that were less than, but some proportion of, the failure stress. As such, permeability data from progressively loaded, initially intact laboratory samples, in the pre-failure region provide useful insights into fluid flow properties of various parts of the damage zone. The permeability evolution of initially intact crystalline rocks under increasing differential load leading to macroscopic failure was determined at water pore pressures of 50 MPa and effective pressure of 10 MPa. Permeability is seen to increase by up to, and over, two orders of magnitude prior to macroscopic failure. Further experiments were stopped at various points in the loading history in order to correlate microfracture density within the samples with permeability. By combining empirical relationships determined from both quantitative fieldwork and experiments we present a new model that allows microfracture permeability distribution throughout the damage zone to be determined as function of increasing fault displacement.
NASA Astrophysics Data System (ADS)
Tsibanos, V.; Wang, G.
2017-12-01
The Long Point Fault located in Houston Texas is a complex system of normal faults which causes significant damage to urban infrastructure on both private and public property. This case study focuses on the 20-km long fault using high accuracy continuously operating global positioning satellite (GPS) stations to delineate fault movement over five years (2012 - 2017). The Long Point Fault is the longest active fault in the greater Houston area that damages roads, buried pipes, concrete structures and buildings and creates a financial burden for the city of Houston and the residents who live in close vicinity to the fault trace. In order to monitor fault displacement along the surface 11 permanent and continuously operating GPS stations were installed 6 on the hanging wall and 5 on the footwall. This study is an overview of the GPS observations from 2013 to 2017. GPS positions were processed with both relative (double differencing) and absolute Precise Point Positioning (PPP) techniques. The PPP solutions that are referred to IGS08 reference frame were transformed to the Stable Houston Reference Frame (SHRF16). Our results show no considerable horizontal displacements across the fault, but do show uneven vertical displacement attributed to regional subsidence in the range of (5 - 10 mm/yr). This subsidence can be associated to compaction of silty clays in the Chicot and Evangeline aquifers whose water depths are approximately 50m and 80m below the land surface (bls). These levels are below the regional pre-consolidation head that is about 30 to 40m bls. Recent research indicates subsidence will continue to occur until the aquifer levels reach the pre-consolidation head. With further GPS observations both the Long Point Fault and regional land subsidence can be monitored providing important geological data to the Houston community.
NASA Astrophysics Data System (ADS)
Salameh, Christelle; Bard, Pierre-Yves; Guillier, Bertrand; Harb, Jacques; Cornou, Cécile; Gérard, Jocelyne; Almakari, Michelle
2017-04-01
Post-seismic investigations repeatedly indicate that structures having frequencies close to foundation soil frequencies exhibit significantly heavier damages (Caracas 1967; Mexico 1985; Pujili, Ecuador 1996; L'Aquila 2009). However, observations of modal frequencies of soils and buildings in a region or within a current seismic risk analysis are not fully considered together, even when past earthquakes have demonstrated that coinciding soil and building frequencies leads to greater damage. The present paper thus focuses on a comprehensive numerical analysis to investigate the effect of coincidence between site and building frequencies. A total of 887 realistic soil profiles are coupled with a set of 141 single-degree-of-freedom elastoplastic oscillators, and their combined (nonlinear) response is computed for both linear and nonlinear soil behaviors, for a large number (60) of synthetic input signals with various PGA levels and frequency contents. The associated damage is quantified on the basis of the maximum displacement as compared to both yield and ultimate post-elastic displacements, according to the RISK-UE project recommendations (Lagomarsino and Giovinazzi in Bull Earthq Eng 4(4):415-443, 2006), and compared with the damage obtained in the case of a similar building located on rock. The correlation between this soil/rock damage increment and a number of simplified mechanical and loading parameters is then analyzed using a neural network approach. The results emphasize the key role played by the building/soil frequency ratio even when both soil and building behave nonlinearly; other important parameters are the PGA level, the soil/rock velocity contrast and the building ductility. A numerical investigation based on simulation of ambient noise for the whole set of 887 profiles also indicates that the amplitude of H/ V ratio may be considered as a satisfactory proxy for site amplification when applied to measurements at urban scale. A very easy implementation of this method, using ambient vibration measurements both at ground level and within buildings, is illustrated with an example application for the city of Beirut (Lebanon).[Figure not available: see fulltext.
Gray, Clark; Frankenberg, Elizabeth; Gillespie, Thomas; Sumantri, Cecep; Thomas, Duncan
2014-01-01
Understanding of human vulnerability to environmental change has advanced in recent years, but measuring vulnerability and interpreting mobility across many sites differentially affected by change remains a significant challenge. Drawing on longitudinal data collected on the same respondents who were living in coastal areas of Indonesia before the 2004 Indian Ocean tsunami and were re-interviewed after the tsunami, this paper illustrates how the combination of population-based survey methods, satellite imagery and multivariate statistical analyses has the potential to provide new insights into vulnerability, mobility and impacts of major disasters on population well-being. The data are used to map and analyze vulnerability to post-tsunami displacement across the provinces of Aceh and North Sumatra and to compare patterns of migration after the tsunami between damaged areas and areas not directly affected by the tsunami. The comparison reveals that migration after a disaster is less selective overall than migration in other contexts. Gender and age, for example, are strong predictors of moving from undamaged areas but are not related to displacement in areas experiencing damage. In our analyses traditional predictors of vulnerability do not always operate in expected directions. Low levels of socioeconomic status and education were not predictive of moving after the tsunami, although for those who did move, they were predictive of displacement to a camp rather than a private home. This survey-based approach, though not without difficulties, is broadly applicable to many topics in human-environment research, and potentially opens the door to rigorous testing of new hypotheses in this literature. PMID:24839300
Dose dependence of radiation damage in nano-structured amorphous SiOC/crystalline Fe composite
Su, Qing; Price, Lloyd; Shao, Lin; ...
2015-10-29
Here, through examination of radiation tolerance properties of amorphous silicon oxycarbide (SiOC) and crystalline Fe composite to averaged damage levels, from approximately 8 to 30 displacements per atom (dpa), we demonstrated that the Fe/SiOC interface and the Fe/amorphous Fe xSi yO z interface act as efficient defect sinks and promote the recombination of vacancies and interstitials. For thick Fe/SiOC multilayers, a clear Fe/SiOC interface remained and no irradiation-induced mixing was observed even after 32 dpa. For thin Fe/SiOC multilayers, an amorphous Fe xSi yO z intermixed layer was observed to form at 8 dpa, but no further layer growth wasmore » observed for higher dpa levels.« less
Aluminum Pitting Corrosion in Halide Media: A Quantum Model and Empirical Evidence
NASA Astrophysics Data System (ADS)
Lashgari, Mohsen; Kianpour, Effat; Mohammadi, Esmaeil
2013-12-01
The phenomenon of localized damage of aluminum oxide surface in the presence of halide anions was scrutinized at an atomistic level, through the cluster approach and density functional theory. The phenomenon was also investigated empirically through Tafel polarization plots and scanning electron microscopy. A distinct behavior witnessed in the fluoride medium was justified through the hard-soft acid-base principle. The atomistic investigations revealed the greatest potency for chloride entrance into the metal oxide lattice and rationalized to the severity of damage. The interaction of halide anions with the oxide surface causing some displacements on the position of Al atoms provides a mechanistic insight of the phenomenon.
VanLandingham, Mark
2009-01-01
Objectives. We examined whether there were high levels of mental illness among displaced New Orleans, LA, residents in the fall of 2006, 1 year after Hurricane Katrina. Methods. We used data from the Displaced New Orleans Residents Pilot Study, which measured the prevalence of probable mild or moderate and serious mental illness among a representative sample of people who resided in New Orleans at the time of the hurricane, including people who evacuated the city and did not return. We also analyzed disparities in mental illness by race, education, and income. Results. We found high rates of mental illness in our sample and major disparities in mental illness by race, education, and income. Severe damage to or destruction of an individual's home was a major covariate of mental illness. Conclusions. The prevalence of mental illness remained high in the year following Hurricane Katrina, in contrast to the pattern found after other disasters. Economic losses and displacement may account for this finding as well as the disparity in mental illness between Blacks and Whites. PMID:19890178
Acoustic Emission Parameters of Three Gorges Sandstone during Shear Failure
NASA Astrophysics Data System (ADS)
Xu, Jiang; Liu, Yixin; Peng, Shoujian
2016-12-01
In this paper, an experimental investigation of sandstone samples from the Three Gorges during shear failure was conducted using acoustic emission (AE) and direct shear tests. The AE count rate, cumulative AE count, AE energy, and amplitude of the sandstone samples were determined. Then, the relationships among the AE signals and shearing behaviors of the samples were analyzed in order to detect micro-crack initiation and propagation and reflect shear failure. The results indicated that both the shear strength and displacement exhibited a logarithmic relationship with the displacement rate at peak levels of stress. In addition, the various characteristics of the AE signals were apparent in various situations. The AE signals corresponded with the shear stress under different displacement rates. As the displacement rate increased, the amount of accumulative damage to each specimen decreased, while the AE energy peaked earlier and more significantly. The cumulative AE count primarily increased during the post-peak period. Furthermore, the AE count rate and amplitude exhibited two peaks during the peak shear stress period due to crack coalescence and rock bridge breakage. These isolated cracks later formed larger fractures and eventually caused ruptures.
NASA Astrophysics Data System (ADS)
Saha, Uttiyoarnab; Devan, K.; Bachchan, Abhitab; Pandikumar, G.; Ganesan, S.
2018-04-01
The radiation damage in the structural materials of a 500 MWe Indian prototype fast breeder reactor (PFBR) is re-assessed by computing the neutron displacement per atom (dpa) cross-sections from the recent nuclear data library evaluated by the USA, ENDF / B-VII.1, wherein revisions were taken place in the new evaluations of basic nuclear data because of using the state-of-the-art neutron cross-section experiments, nuclear model-based predictions and modern data evaluation techniques. An indigenous computer code, computation of radiation damage (CRaD), is developed at our centre to compute primary-knock-on atom (PKA) spectra and displacement cross-sections of materials both in point-wise and any chosen group structure from the evaluated nuclear data libraries. The new radiation damage model, athermal recombination-corrected displacement per atom (arc-dpa), developed based on molecular dynamics simulations is also incorporated in our study. This work is the result of our earlier initiatives to overcome some of the limitations experienced while using codes like RECOIL, SPECTER and NJOY 2016, to estimate radiation damage. Agreement of CRaD results with other codes and ASTM standard for Fe dpa cross-section is found good. The present estimate of total dpa in D-9 steel of PFBR necessitates renormalisation of experimental correlations of dpa and radiation damage to ensure consistency of damage prediction with ENDF / B-VII.1 library.
1990-02-01
ELECTRONICS IN ARMOURED VEHICLES byo0 T. Cousins and TJ. Jamieson co N OTIC L , k .. •, ’" DEFENCE RESEARCH ESTABLISHMENT OTTAWA REPORT NO.1032 February...DISPLACEMENT DAMAGE TO ELECTRONICS IN ARMOURED VEHICLES by T. Cousins Nuclear Effects Section EAectronics Divsion and TJ. Jamkson Science Applications...The degree of protection from neutron irradiation afforded to electronics by armoured vehicles is most correctly defined by the outside-to-inside ratio
Dark Current Degradation of Near Infrared Avalanche Photodiodes from Proton Irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi N.; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes (APDs) are examined for the effects of 63-MeV protons on dark current. Dark current increases were large and similar to prior results for silicon APDs, despite the smaller size of InGaAs and Ge devices. Bulk dark current increases from displacement damage in the depletion regions appeared to be the dominant contributor to overall dark current degradation. Differences in displacement damage factors are discussed as they relate to structural and material differences between devices.
NASA Astrophysics Data System (ADS)
Bhagat, Satish; Wijeyewickrema, Anil C.
2017-04-01
This paper reports on an investigation of the seismic response of base-isolated reinforced concrete buildings, which considers various isolation system parameters under bidirectional near-fault and far-fault motions. Three-dimensional models of 4-, 8-, and 12-story base-isolated buildings with nonlinear effects in the isolation system and the superstructure are investigated, and nonlinear response history analysis is carried out. The bounding values of isolation system properties that incorporate the aging effect of isolators are also taken into account, as is the current state of practice in the design and analysis of base-isolated buildings. The response indicators of the buildings are studied for near-fault and far-fault motions weight-scaled to represent the design earthquake (DE) level and the risk-targeted maximum considered earthquake (MCER) level. Results of the nonlinear response history analyses indicate no structural damage under DE-level motions for near-fault and far-fault motions and for MCER-level far-fault motions, whereas minor structural damage is observed under MCER-level near-fault motions. Results of the base-isolated buildings are compared with their fixed-base counterparts. Significant reduction of the superstructure response of the 12-story base-isolated building compared to the fixed-base condition indicates that base isolation can be effectively used in taller buildings to enhance performance. Additionally, the applicability of a rigid superstructure to predict the isolator displacement demand is also investigated. It is found that the isolator displacements can be estimated accurately using a rigid body model for the superstructure for the buildings considered.
In Situ Observation of Hard Surrounding Rock Displacement at 2400-m-Deep Tunnels
NASA Astrophysics Data System (ADS)
Feng, Xia-Ting; Yao, Zhi-Bin; Li, Shao-Jun; Wu, Shi-Yong; Yang, Cheng-Xiang; Guo, Hao-Sen; Zhong, Shan
2018-03-01
This paper presents the results of in situ investigation of the internal displacement of hard surrounding rock masses within deep tunnels at China's Jinping Underground Laboratory Phase II. The displacement evolution of the surrounding rock during the entire excavation processes was monitored continuously using pre-installed continuous-recording multi-point extensometers. The evolution of excavation-damaged zones and fractures in rock masses were also observed using acoustic velocity testing and digital borehole cameras, respectively. The results show four kinds of displacement behaviours of the hard surrounding rock masses during the excavation process. The displacement in the inner region of the surrounding rock was found to be greater than that of the rock masses near the tunnel's side walls in some excavation stages. This leads to a multi-modal distribution characteristic of internal displacement for hard surrounding rock masses within deep tunnels. A further analysis of the evolution information on the damages and fractures inside the surrounding rock masses reveals the effects of excavation disturbances and local geological conditions. This recognition can be used as the reference for excavation and supporting design and stability evaluations of hard-rock tunnels under high-stress conditions.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... property, loss of life, and displacement of individuals and families from their homes and communities. The... is published quarterly. Since the damage to property and the displacement of families and individuals...
Ion irradiation-induced crystal structure changes in inverse spinel MgIn 2O 4
Tang, Ming; Valdez, James A.; Wang, Yongqiang; ...
2016-07-29
We performed 400 keV Ne and 200 keV He ion irradiations on fully inverse MgIn 2O 4 samples at cryogenic temperature (~ 77 K), in order to examine the influence of radiation-induced cation disordering on crystal structure. In the case of MgIn 2O 4 samples irradiated with Ne ions to a peak displacement damage dose of 4 displacements per atom (dpa), a spinel-to-rocksalt phase transformation was observed. Conversely, for MgIn 2O 4 samples irradiated with He ions to a peak displacement damage dose of 5 dpa, the only observed structural effect involved cation rearrangements from an inverse to a “random”more » spinel structure.« less
Wilson, Robin; Zu Erbach-Schoenberg, Elisabeth; Albert, Maximilian; Power, Daniel; Tudge, Simon; Gonzalez, Miguel; Guthrie, Sam; Chamberlain, Heather; Brooks, Christopher; Hughes, Christopher; Pitonakova, Lenka; Buckee, Caroline; Lu, Xin; Wetter, Erik; Tatem, Andrew; Bengtsson, Linus
2016-02-24
Sudden impact disasters often result in the displacement of large numbers of people. These movements can occur prior to events, due to early warning messages, or take place post-event due to damages to shelters and livelihoods as well as a result of long-term reconstruction efforts. Displaced populations are especially vulnerable and often in need of support. However, timely and accurate data on the numbers and destinations of displaced populations are extremely challenging to collect across temporal and spatial scales, especially in the aftermath of disasters. Mobile phone call detail records were shown to be a valid data source for estimates of population movements after the 2010 Haiti earthquake, but their potential to provide near real-time ongoing measurements of population displacements immediately after a natural disaster has not been demonstrated. A computational architecture and analytical capacity were rapidly deployed within nine days of the Nepal earthquake of 25th April 2015, to provide spatiotemporally detailed estimates of population displacements from call detail records based on movements of 12 million de-identified mobile phones users. Analysis shows the evolution of population mobility patterns after the earthquake and the patterns of return to affected areas, at a high level of detail. Particularly notable is the movement of an estimated 390,000 people above normal from the Kathmandu valley after the earthquake, with most people moving to surrounding areas and the highly-populated areas in the central southern area of Nepal. This analysis provides an unprecedented level of information about human movement after a natural disaster, provided within a very short timeframe after the earthquake occurred. The patterns revealed using this method are almost impossible to find through other methods, and are of great interest to humanitarian agencies.
Chang, Shu-Wei; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-01-01
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future. PMID:29271937
Chang, Shu-Wei; Lin, Tzu-Kang; Kuo, Shih-Yu; Huang, Ting-Hsuan
2017-12-22
This paper presents a novel experimental design for complex structural health monitoring (SHM) studies achieved by integrating 3D printing technologies, high-resolution laser displacement sensors, and multiscale entropy SHM theory. A seven-story structure with a variety of composite bracing systems was constructed using a dual-material 3D printer. A wireless Bluetooth vibration speaker was used to excite the ground floor of the structure, and high-resolution laser displacement sensors (1-μm resolution) were used to monitor the displacement history on different floors. Our results showed that the multiscale entropy SHM method could detect damage on the 3D-printed structures. The results of this study demonstrate that integrating 3D printing technologies and high-resolution laser displacement sensors enables the design of cheap, fast processing, complex, small-scale civil structures for future SHM studies. The novel experimental design proposed in this study provides a suitable platform for investigating the validity and sensitivity of SHM in different composite structures and damage conditions for real life applications in the future.
Inelastic Strain and Damage in Surface Instability Tests
NASA Astrophysics Data System (ADS)
Kao, Chu-Shu; Tarokh, Ali; Biolzi, Luigi; Labuz, Joseph F.
2016-02-01
Spalling near a free surface in laboratory experiments on two sandstones was characterized using acoustic emission and digital image correlation. A surface instability apparatus was used to reproduce a state of plane strain near a free surface in a modeled semi-infinite medium subjected to far-field compressive stress. Comparison between AE locations and crack trajectory mapped after the test showed good consistency. Digital image correlation was used to find the displacements in directions parallel (axial direction) and perpendicular (lateral direction) to the free surface at various stages of loading. At a load ratio, LR = current load/peak load, of approximately 30 %, elastic deformation was measured. At 70-80 % LR, the free-face effect started to appear in the displacement contours, especially for the lateral displacement measurements. As the axial compressive stress increased close to peak, extensional lateral strain started to show concentrations associated with localized damage. Continuum damage mechanics was used to describe damage evolution in the surface instability test, and it was shown that a critical value of extensional inelastic strain, on the order of -10-3 for the virgin sandstones, may provide an indicator for determining the onset of surface spalling.
Full-field Deformation Measurement Techniques for a Rotating Composite Shaft
NASA Technical Reports Server (NTRS)
Kohlman, Lee W.; Ruggeri, Charles R.; Martin, Richard E.; Roberts, Gary D.; Handschuh, Robert F.; Roth, Don J.
2012-01-01
Test methods were developed to view global and local deformation in a composite tube during a test in which the tube is rotating at speeds and torques relevant to rotorcraft shafts. Digital image correlation (DIC) was used to provide quantitative displacement measurements during the tests. High speed cameras were used for the DIC measurements in order to capture images at sufficient frame rates and with sufficient resolution while the tube was rotating at speeds up to 5,000 rpm. Surface displacement data was resolved into cylindrical coordinates in order to measure rigid body rotation and global deformation of the tube. Tests were performed on both undamaged and impact damaged tubes in order to evaluate the capability to detect local deformation near an impact damaged site. Measurement of radial displacement clearly indicated a local buckling deformation near the impacted site in both dynamic and static tests. X-ray computed tomography (CT) was used to investigate variations in fiber architecture within the composite tube and to detect impact damage. No growth in the impact damage area was observed by DIC during dynamic testing or by x-ray CT in post test inspection of the composite tube.
Research on Damage Identification of Bridge Based on Digital Image Measurement
NASA Astrophysics Data System (ADS)
Liang, Yingjing; Huan, Shi; Tao, Weijun
2017-12-01
In recent years, the number of the damage bridge due to excessive deformation gradually increased, which caused significant property damage and casualties. Hence health monitoring and the damage detection of the bridge structure based on the deflection measurement are particularly important. The current conventional deflection measurement methods, such as total station, connected pipe, GPS, etc., have many shortcomings as low efficiency, heavy workload, low degree of automation, operating frequency and working time constrained. GPS has a low accuracy in the vertical displacement measurement and cannot meet the dynamic measured requirements of the current bridge engineering. This paper presents a bridge health monitoring and damage detection technology based on digital image measurement method in which the measurement accuracy is sub-millimeter level and can achieve the 24-hour automatic non-destructive monitoring for the deflection. It can be concluded from this paper that it is feasible to use digital image measurement method for identification of the damage in the bridge structure, because it has been validated by the theoretical analysis, the laboratory model and the application of the real bridge.
Performance-based methodology for assessing seismic vulnerability and capacity of buildings
NASA Astrophysics Data System (ADS)
Shibin, Lin; Lili, Xie; Maosheng, Gong; Ming, Li
2010-06-01
This paper presents a performance-based methodology for the assessment of seismic vulnerability and capacity of buildings. The vulnerability assessment methodology is based on the HAZUS methodology and the improved capacitydemand-diagram method. The spectral displacement ( S d ) of performance points on a capacity curve is used to estimate the damage level of a building. The relationship between S d and peak ground acceleration (PGA) is established, and then a new vulnerability function is expressed in terms of PGA. Furthermore, the expected value of the seismic capacity index (SCev) is provided to estimate the seismic capacity of buildings based on the probability distribution of damage levels and the corresponding seismic capacity index. The results indicate that the proposed vulnerability methodology is able to assess seismic damage of a large number of building stock directly and quickly following an earthquake. The SCev provides an effective index to measure the seismic capacity of buildings and illustrate the relationship between the seismic capacity of buildings and seismic action. The estimated result is compared with damage surveys of the cities of Dujiangyan and Jiangyou in the M8.0 Wenchuan earthquake, revealing that the methodology is acceptable for seismic risk assessment and decision making. The primary reasons for discrepancies between the estimated results and the damage surveys are discussed.
High-performance visible/UV CCD focal plane technology for spacebased applications
NASA Technical Reports Server (NTRS)
Burke, B. E.; Mountain, R. W.; Gregory, J. A.; Huang, J. C. M.; Cooper, M. J.; Savoye, E. D.; Kosicki, B. B.
1993-01-01
We describe recent technology developments aimed at large CCD imagers for space based applications in the visible and UV. Some of the principal areas of effort include work on reducing device degradation in the natural space-radiation environment, improvements in quantum efficiency in the visible and UV, and larger-device formats. One of the most serious hazards for space based CCD's operating at low signal levels is the displacement damage resulting from bombardment by energetic protons. Such damage degrades charge-transfer efficiency and increases dark current. We have achieved improved hardness to proton-induced displacement damage by selective ion implants into the CCD channel and by reduced temperature of operation. To attain high quantum efficiency across the visible and UV we have developed a technology for back-illuminated CCD's. With suitable antireflection (AR) coatings such devices have quantum efficiencies near 90 percent in the 500-700-nm band. In the UV band from 200 to 400 nm, where it is difficult to find coatings that are sufficiently transparent and can provide good matching to the high refractive index of silicon, we have been able to substantially increase the quantum efficiency using a thin film of HfO2 as an AR coating. These technology efforts were applied to a 420 x 420-pixel frame-transfer imager, and future work will be extended to a 1024 x 1024-pixel device now under development.
Statistical Nature of Atomic Disorder in Irradiated Crystals.
Boulle, A; Debelle, A
2016-06-17
Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ=0.73-0.37 range, i.e., far from the commonly assumed Gaussian case (γ=2)]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter f_{D}^{XRD} to quantify the disordering. f_{D}^{XRD} is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.
Statistical Nature of Atomic Disorder in Irradiated Crystals
NASA Astrophysics Data System (ADS)
Boulle, A.; Debelle, A.
2016-06-01
Atomic disorder in irradiated materials is investigated by means of x-ray diffraction, using cubic SiC single crystals as a model material. It is shown that, besides the determination of depth-resolved strain and damage profiles, x-ray diffraction can be efficiently used to determine the probability density function (PDF) of the atomic displacements within the crystal. This task is achieved by analyzing the diffraction-order dependence of the damage profiles. We thereby demonstrate that atomic displacements undergo Lévy flights, with a displacement PDF exhibiting heavy tails [with a tail index in the γ =0.73 - 0.37 range, i.e., far from the commonly assumed Gaussian case (γ =2 )]. It is further demonstrated that these heavy tails are crucial to account for the amorphization kinetics in SiC. From the retrieved displacement PDFs we introduce a dimensionless parameter fDXRD to quantify the disordering. fDXRD is found to be consistent with both independent measurements using ion channeling and with molecular dynamics calculations.
EFFECTS OF OVERPRESSURES IN GROUP SHELTERS ON ANIMALS AND DUMMIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, J.E.; White, C.S.; Chiffelle, T.L.
1953-09-01
S>Relative biological hazards of blast were studied in two types of communal air-raid shelters during Shots 1 and 8. Dogs, restrained within the shelters during detonation, were studied pathologically and clinically for blast injuries. Two anthropometric dummies were test objects for displacement studies utilizing high-speed photography. Physical data included pressure vs time and air-drag determinations. During Shot 1, animals sustained marked blast damages (hemorrhages in lungs and abdominal organs), three dogs were ataxic. and the dummies were rather violently displaced. In Shot 8, however, no significant injuries were found in the animals, and the dummies were minimally displaced. Analysis ofmore » the physical data indicated that blast injuries and violent displacements may occur at much lower static overpressures than previously assumed from conventional explosion data. Furthermore, biological damage appeared to be related to the rate of rise of the overpressure and air drag, as well as the maximum overpressure values. (auth)« less
NASA Astrophysics Data System (ADS)
Sahoo, Deepak Ranjan; Szlufarska, Izabela; Morgan, Dane; Swaminathan, Narasimhan
2018-01-01
Molecular dynamics simulations of displacement cascades were conducted to study the effect of point defects on the primary damage production in β-SiC. Although all types of point defects and Frenkel pairs were considered, Si interstitials and Si Frenkel pairs were unstable and hence excluded from the cascade studies. Si (C) vacancies had the maximum influence, enhancing C (Si) antisites and suppressing C interstitial production, when compared to the sample without any defects. The intracascade recombination mechanisms, in the presence of pre-existing defects, is explored by examining the evolution of point defects during the cascade. To ascertain the role of the unstable Si defects on amorphization, simulations involving explicit displacements of Si atoms were conducted. The dose to amorphization with only Si displacements was much lower than what was observed with only C displacements. The release of elastic energy accumulated due to Si defects, is found to be the amorphizing mechanism.
NASA Astrophysics Data System (ADS)
Montero, Marc Villa; Barjasteh, Ehsan; Baid, Harsh K.; Godines, Cody; Abdi, Frank; Nikbin, Kamran
A multi-scale micromechanics approach along with finite element (FE) model predictive tool is developed to analyze low-energy-impact damage footprint and compression-after-impact (CAI) of composite laminates which is also tested and verified with experimental data. Effective fiber and matrix properties were reverse-engineered from lamina properties using an optimization algorithm and used to assess damage at the micro-level during impact and post-impact FE simulations. Progressive failure dynamic analysis (PFDA) was performed for a two step-process simulation. Damage mechanisms at the micro-level were continuously evaluated during the analyses. Contribution of each failure mode was tracked during the simulations and damage and delamination footprint size and shape were predicted to understand when, where and why failure occurred during both impact and CAI events. The composite laminate was manufactured by the vacuum infusion of the aero-grade toughened Benzoxazine system into the fabric preform. Delamination footprint was measured using C-scan data from the impacted panels and compared with the predicated values obtained from proposed multi-scale micromechanics coupled with FE analysis. Furthermore, the residual strength was predicted from the load-displacement curve and compared with the experimental values as well.
Long Term Displacement Data of Woven Fabric Webbings Under Constant Load for Inflatable Structures
NASA Technical Reports Server (NTRS)
Kenner, Winfred S.; Jones, Thomas C.; Doggett, William R.; Lucy, Melvin H.; Grondin, Trevor A.; Whitley, Karen S.; Duncan, Quinton; Plant, James V.
2014-01-01
Inflatable modules for space applications offer weight and launch volume savings relative to current metallic modules. Limited data exist on the creep behavior of the restraint layer of inflatable modules. Long-term displacement and strain data of two high strength woven fabric webbings, Kevlar and Vectran, under constant load is presented. The creep behavior of webbings is required by designers to help determine service life parameters of inflatable modules. Four groups of different webbings with different loads were defined for this study. Group 1 consisted of 4K Kevlar webbings loaded to 33% ultimate tensile strength and 6K Vectran webbings loaded to 27% ultimate tensile strength, group 2 consisted of 6K Kevlar webbings loaded to 40% and 43% ultimate tensile strength, and 6K Vectran webbings loaded to 50% ultimate tensile strength, group 3 consisted of 6K Kevlar webbings loaded to 52% ultimate tensile strength and 6K Vectran webbings loaded to 60% ultimate tensile strength, and group 4 consisted of 12.5K Kevlar webbings loaded to 22% ultimate tensile strength, and 12.5K Vectran webbings loaded to 22% ultimate tensile strength. The uniquely designed test facility, hardware, displacement measuring devices, and test data are presented. Test data indicate that immediately after loading all webbings stretch an inch or more, however as time increases displacement values significantly decrease to fall within a range of several hundredth of an inch over the remainder of test period. Webbings in group 1 exhibit near constant displacements and strains over a 17-month period. Data acquisition was suspended after the 17th month, however webbings continue to sustain load without any local webbing damage as of the 21st month of testing. Webbings in group 2 exhibit a combination of initial constant displacement and subsequent increases in displacement rates over a 16-month period. Webbings in group 3 exhibit steady increases in displacement rates leading to webbing failure over a 3-month period. Five of six webbings experienced local damage and subsequent failure in group 3. Data from group 4 indicates increasing webbing displacements over a 7-month period. All webbings in groups 1, 2, and 4 remain suspended without any local damage as of the writing of this paper. Variations in facility temperatures over test period seem to have had limited effect on long-term webbing displacement data.
Ritter, E F; Lee, C G; Tyler, D; Ferraro, F; Whiddon, C; Rudner, A M; Scully, S
1997-02-01
As a part of multimodality therapy, many patients with tumors of the trunk receive radiation therapy. The major morbidity of this therapy is often secondary to incidental radiation damage to tissues adjacent to treatment areas. We detail our use of saline breast implants placed in polyglycolic acid mesh sheets to displace visceral and solid organs away from the radiation field. Analysis of CT scans and dose volume histograms reveal that this technique successfully displaces uninvolved organs away from the radiation fields, thereby minimizing the radiation dose to such organs and tissues. We believe this is a safe and efficacious method to prevent radiation damage to visceral and solid organs adjacent to trunk tumor sites.
NASA Astrophysics Data System (ADS)
Got, J. L.; Amitrano, D.; Carrier, A.; Marsan, D.; Jouanne, F.; Vogfjord, K. S.
2017-12-01
At Grimsvötn volcano, high-quality earthquake and continuous GPS data were recorded by the Icelandic Meteorological Office during its 2004-2011 inter-eruptive period and exhibited remarkable patterns : acceleration of the cumulated earthquake number, and a 2-year exponential decrease in displacement rate followed by a 4-year constant inflation rate. We proposed a model with one magma reservoir in a non-linear elastic damaging edifice, with incompressible magma and a constant pressure at the base of the magma conduit. We first modelled seismicity rate and damage as a function of time, and show that Kachanov's elastic brittle damage law may be used to express the decrease of the effective shear modulus with time. We then derived simple analytical expressions for the magma reservoir overpressure and the surface displacement as a function of time. We got a very good fit of the seismicity and surface displacement data by adjusting only three phenomenological parameters and computed magma reservoir overpressure, magma flow and strain power as a function of time. Overpressure decrease is controlled by damage and shear modulus decrease. Displacement increases, although overpressure is decreasing, because shear modulus decreases more than overpressure. Normalized strain power reaches a maximum 0.25 value. This maximum is a physical limit, after which the elasticity laws are no longer valid, earthquakes cluster, cumulative number of earthquakes departs from the model. State variable extrema provide four reference times that may be used to assess the mechanical state and dynamics of the volcanic edifice. We also performed the spatial modelling of the progressive damage and strain localization around a pressurized magma reservoir. We used Kachanov's damage law and finite element modelling of an initially elastic volcanic edifice pressurized by a spherical magma reservoir, with a constant pressure in the reservoir and various external boundary conditions. At each node of the model, Young's modulus is decreased if deviatoric stress locally reaches the Mohr-Coulomb plastic threshold. For a compressive horizontal stress, the result shows a complex strain localization pattern, showing reverse and normal faulting very similar to what is obtained from analog modelling and observed at volcanic resurgent domes.
Synchronous parallel spatially resolved stochastic cluster dynamics
Dunn, Aaron; Dingreville, Rémi; Martínez, Enrique; ...
2016-04-23
In this work, a spatially resolved stochastic cluster dynamics (SRSCD) model for radiation damage accumulation in metals is implemented using a synchronous parallel kinetic Monte Carlo algorithm. The parallel algorithm is shown to significantly increase the size of representative volumes achievable in SRSCD simulations of radiation damage accumulation. Additionally, weak scaling performance of the method is tested in two cases: (1) an idealized case of Frenkel pair diffusion and annihilation, and (2) a characteristic example problem including defect cluster formation and growth in α-Fe. For the latter case, weak scaling is tested using both Frenkel pair and displacement cascade damage.more » To improve scaling of simulations with cascade damage, an explicit cascade implantation scheme is developed for cases in which fast-moving defects are created in displacement cascades. For the first time, simulation of radiation damage accumulation in nanopolycrystals can be achieved with a three dimensional rendition of the microstructure, allowing demonstration of the effect of grain size on defect accumulation in Frenkel pair-irradiated α-Fe.« less
Single Particle Damage Events in Candidate Star Camera Sensors
NASA Technical Reports Server (NTRS)
Marshall, Paul; Marshall, Cheryl; Polidan, Elizabeth; Wacyznski, Augustyn; Johnson, Scott
2005-01-01
This viewgraph presentation presents information on the following topics: 1) Solar and trapped protons and shielding; 2) Proton interactions in Si; 3) Displacement damage effects in detectors; 4) Hot pixel mechanisms, introduction rates, and annealing.
A Compendium of Recent Optocoupler Radiation Test Data
NASA Technical Reports Server (NTRS)
Label, K. A.; Kniffin, S. D.; Reed, R. A.; Kim, H. S.; Wert, J. L.; Oberg, D. L.; Normand, E.; Johnston, A. H.; Lum, G. K.; Koga, R.;
2000-01-01
We present a compendium of optocoupler radiation test data including neutron, proton and heavy ion Displacement Damage (DD), Single Event Transients (SET) and Total Ionizing Dose (TID). Proton data includes ionizing and non-ionizing damage mechanisms.
Waanders, Daan; Janssen, Dennis; Miller, Mark A.; Mann, Kenneth A.; Verdonschot, Nico
2009-01-01
The goal of this study was to quantify the micromechanics of the cement-bone interface under tensile fatigue loading using finite element analysis (FEA) and to understand the underlying mechanisms that play a role in the fatigue behavior of this interface. Laboratory cement-bone specimens were subjected to a tensile fatigue load, while local displacements and crack growth on the specimen's surface were monitored. FEA models were created from these specimens based upon micro-computed tomography data. To accurately model interfacial gaps at the interface between the bone and cement, a custom-written erosion algorithm was applied to the bone model. A fatigue load was simulated in the FEA models while monitoring the local displacements and crack propagation. The results showed the FEA models were able to capture the general experimental creep damage behavior and creep stages of the interface. Consistent with the experiments, the majority of the deformation took place at the contact interface. Additionally, the FEA models predicted fatigue crack patterns similar to experimental findings. Experimental surface cracks correlated moderately with FEA surface cracks (r2=0.43), but did not correlate with the simulated crack volume fraction (r2=0.06). Although there was no relationship between experimental surface cracks and experimental creep damage displacement (r2=0.07), there was a strong relationship between the FEA crack volume fraction and the FEA creep damage displacement (r2=0.76). This study shows the additional value of FEA of the cement-bone interface relative to experimental studies and can therefore be used to optimize its mechanical properties. PMID:19682690
Stengärde, Lena; Tråvén, Madeleine; Emanuelson, Ulf; Holtenius, Kjell; Hultgren, Jan; Niskanen, Rauni
2008-01-01
Background Body condition score and blood profiles have been used to monitor management and herd health in dairy cows. The aim of this study was to examine BCS and extended metabolic profiles, reflecting both energy metabolism and liver status around calving in high-producing herds with a high incidence of abomasal displacement and ketosis and to evaluate if such profiles can be used at herd level to pinpoint specific herd problems. Methods Body condition score and metabolic profiles around calving in five high-producing herds with high incidences of abomasal displacement and ketosis were assessed using linear mixed models (94 cows, 326 examinations). Cows were examined and blood sampled every three weeks from four weeks ante partum (ap) to nine weeks postpartum (pp). Blood parameters studied were glucose, fructosamine, non-esterified fatty acids (NEFA), insulin, β-hydroxybutyrate, aspartate aminotransferase, glutamate dehydrogenase, haptoglobin and cholesterol. Results All herds had overconditioned dry cows that lost body condition substantially the first 4–6 weeks pp. Two herds had elevated levels of NEFA ap and three herds had elevated levels pp. One herd had low levels of insulin ap and low levels of cholesterol pp. Haptoglobin was detected pp in all herds and its usefulness is discussed. Conclusion NEFA was the parameter that most closely reflected the body condition losses while these losses were not seen in glucose and fructosamine levels. Insulin and cholesterol were potentially useful in herd profiles but need further investigation. Increased glutamate dehydrogenase suggested liver cell damage in all herds. PMID:18687108
Genetic fuzzy system for online structural health monitoring of composite helicopter rotor blades
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Ganguli, Ranjan
2007-07-01
A structural health monitoring (SHM) methodology is developed for composite rotor blades. An aeroelastic analysis of composite rotor blades based on the finite element method in space and time and with implanted matrix cracking and debonding/delamination damage is used to obtain measurable system parameters such as blade response, loads and strains. A rotor blade with a two-cell airfoil section and [0/±45/90]s family of laminates is used for numerical simulations. The model based measurements are contaminated with noise to simulate real data. Genetic fuzzy systems (GFS) are developed for global online damage detection using displacement and force-based measurement deviations between damaged and undamaged conditions and for local online damage detection using strains. It is observed that the success rate of the GFS depends on number of measurements, type of measurements and training and testing noise level. The GFS work quite well with noisy data and is recommended for online SHM of composite helicopter rotor blades.
NASA Astrophysics Data System (ADS)
Mansur, L. K.; Grossbeck, M. L.
1988-07-01
Effects of helium on mechanical properties of irradiated structural materials are reviewed. In particular, variations in response to the ratio of helium to displacement damage serve as the focus. Ductility in creep and tensile tests is emphasized. A variety of early work has led to the current concentration on helium effects for fusion reactor materials applications. A battery of techniques has been developed by which the helium to displacement ratio can be varied. Our main discussion is devoted to the techniques of spectral tailoring and isotopic alloying currently of interest for mixed-spectrum reactors. Theoretical models of physical mechanisms by which helium interacts with displacement damage have been developed in terms of hardening to dislocation motion and grain boundary cavitation. Austenitic stainless steels, ferritic/martensitic steels and vanadium alloys are considered. In each case, work at low strain rates, where the main problems may lie, at the helium to displacement ratios appropriate to fusion reactor materials is lacking. Recent experimental evidence suggests that both in-reactor and high helium results may differ substantially from post-irradiation or low helium results. It is suggested that work in these areas is especially needed.
Evaluation of advanced materials through experimental mechanics and modelling
NASA Technical Reports Server (NTRS)
Yang, Yii-Ching
1993-01-01
Composite materials have been frequently used in aerospace vehicles. Very often defects are inherited during the manufacture and damages are inherited during the construction and services. It becomes critical to understand the mechanical behavior of such composite structure before it can be further used. One good example of these composite structures is the cylindrical bottle of solid rocket motor case with accidental impact damages. Since the replacement of this cylindrical bottle is expensive, it is valuable to know how the damages affects the material, and how it can be repaired. To reach this goal, the damage must be characterized and the stress/strain field must be carefully analyzed. First the damage area, due to impact, is surveyed and identified with a shearography technique which uses the principle of speckle shearing interferometry to measure displacement gradient. Within the damage area of a composite laminate, such as the bottle of solid rocket motor case, all layers are considered to be degraded. Once a lamina being degraded the stiffness as well as strength will be drastically decreased. It becomes a critical area of failure to the whole bottle. And hence the stress/strain field within and around a damage should be accurately evaluated for failure prediction. To investigate the stress/strain field around damages a Hybrid-Numerical method which combines experimental measurement and finite element analysis is used. It is known the stress or strain at the singular point can not be accurately measured by an experimental technique. Nevertheless, if the location is far away from the singular spot, the displacement can be found accurately. Since it reflects the true displacement field locally regardless of the boundary conditions, it is an excellent input data for a finite element analysis to replace the usually assumed boundary conditions. Therefore, the Hybrid-Numerical method is chosen to avoid the difficulty and to take advantage of both experimental technique and finite element analysis. Experimentally, the digital image correlation technique is employed to measure the displacement field. It is done by comparing two digitized images, before and after loading. Numerically, the finite element program, ABAQUS (version 5.2), is used to analyze the stress and strain field. It takes advantage of the high speed and huge memory size of modern supercomputer, CRAY Y-MP, at NASA Marshall Space Flight Center.
Roughness Effects on Fretting Fatigue
NASA Astrophysics Data System (ADS)
Yue, Tongyan; Abdel Wahab, Magd
2017-05-01
Fretting is a small oscillatory relative motion between two normal loaded contact surfaces. It may cause fretting fatigue, fretting wear and/or fretting corrosion damage depending on various fretting couples and working conditions. Fretting fatigue usually occurs at partial slip condition, and results in catastrophic failure at the stress levels below the fatigue limit of the material. Many parameters may affect fretting behaviour, including the applied normal load and displacement, material properties, roughness of the contact surfaces, frequency, etc. Since fretting damage is undesirable due to contacting, the effect of rough contact surfaces on fretting damage has been studied by many researchers. Experimental method on this topic is usually focusing on rough surface effects by finishing treatment and random rough surface effects in order to increase fretting fatigue life. However, most of numerical models on roughness are based on random surface. This paper reviewed both experimental and numerical methodology on the rough surface effects on fretting fatigue.
2002-11-01
hand crack tip (point B) and with angular displacement from the x-axis. As the stress element is moved closer to the crack tip, the stresses are...on the methods of obtaining the required relationships are presented by Broek [1974]. The necessary relationships for Vσ, VF, Vp and Vst ...4.5.18. Geometrical and Displacement Parameters Relative to the Crack Tip 4.5.21 Vσ + VF + Vp = Vst (4.5.15) substituting the expressions 4.5.6
Protein Interactions in T7 DNA Replisome Facilitate DNA Damage Bypass.
Zou, Zhenyu; Chen, Ze; Xue, Qizhen; Xu, Ying; Xiong, Jingyuan; Yang, Ping; Le, Shuai; Zhang, Huidong
2018-06-14
DNA replisome inevitably encounters DNA damage during DNA replication. T7 DNA replisome contains DNA polymerase (gp5), the processivity factor thioredoxin (trx), helicase-primase (gp4), and ssDNA binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated the strand-displacement DNA synthesis past 8-oxoG or O6-MeG at the synthetic DNA fork by T7 DNA replisome. DNA damage does not obviously affect the binding affinities among helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6-MeG, as well as GC-rich template sequence clusters, inhibit the strand-displacement DNA synthesis and produce partial extension products. Relative to gp4 ΔC-tail, gp4 promotes the DNA damage bypass. The presence of gp2.5 further promotes this bypass. Thus, the interactions of polymerase with helicase and ssDNA binidng protein faciliate the DNA damage bypass. Similarly, accessory proteins in other complicated DNA replisomes also facilitate the DNA damage bypass. This work provides the novel mechanism information of DNA damage bypass by DNA replisome. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Study on influence of vibration behavior of composite material damage by holography
NASA Astrophysics Data System (ADS)
Guo, Linfeng; Zhao, Zhimin; Gao, Mingjuan; Zhuang, Xianzhong
2006-01-01
Composite material has been applied widely in aeronautics, astronautics and some other fields due to their high strength, light weight and antifatigue and etc. But in the application, composite material may be destroyed or damaged, which may have impact on its further applications. Therefore, study on the influence of behavior of composite material damage becomes a hot research. In this paper, the common composite material for aircraft is used as the test object, and a study is conducted to investigate the influence of vibration behavior of composite material damage. The authors adopt the method of light-carrier wave and time-average holography. Compared the interference fringes of composite materials before and after damage, the width of the interference fringes of hologram of the damaged composite material is narrower than that of the fringes before. It means that the off-plane displacement of each point on the test object is larger than before. Based on the elastic mechanics theory, the off-plane displacement is inverse to the bending stiffness, and the bending stiffness of the test object will decrease after it is damaged. In other words, the vibration property of the composite material changes after damages occur. The research results of the paper show that the results accord with the analysis of theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wnek, Shawn M.; Kuhlman, Christopher L.; Camarillo, Jeannie M.
2011-11-15
Exposure of human bladder urothelial cells (UROtsa) to 50 nM of the arsenic metabolite, monomethylarsonous acid (MMA{sup III}), for 12 weeks results in irreversible malignant transformation. The ability of continuous, low-level MMA{sup III} exposure to cause an increase in genotoxic potential by inhibiting repair processes necessary to maintain genomic stability is unknown. Following genomic insult within cellular systems poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger protein, is rapidly activated and recruited to sites of DNA strand breaks. When UROtsa cells are continuously exposed to 50 nM MMA{sup III}, PARP-1 activity does not increase despite the increase in MMA{sup III}-induced DNA single-strandmore » breaks through 12 weeks of exposure. When UROtsa cells are removed from continuous MMA{sup III} exposure (2 weeks), PARP-1 activity increases coinciding with a subsequent decrease in DNA damage levels. Paradoxically, PARP-1 mRNA expression and protein levels are elevated in the presence of continuous MMA{sup III} indicating a possible mechanism to compensate for the inhibition of PARP-1 activity in the presence of MMA{sup III}. The zinc finger domains of PARP-1 contain vicinal sulfhydryl groups which may act as a potential site for MMA{sup III} to bind, displace zinc ion, and render PARP-1 inactive. Mass spectrometry analysis demonstrates the ability of MMA{sup III} to bind a synthetic peptide representing the zinc-finger domain of PARP-1, and displace zinc from the peptide in a dose-dependent manner. In the presence of continuous MMA{sup III} exposure, continuous 4-week zinc supplementation restored PARP-1 activity levels and reduced the genotoxicity associated with MMA{sup III}. Zinc supplementation did not produce an overall increase in PARP-1 protein levels, decrease the levels of MMA{sup III}-induced reactive oxygen species, or alter Cu-Zn superoxide dismutase levels. Overall, these results present two potential interdependent mechanisms in which MMA{sup III} may increase the susceptibility of UROtsa cells to genotoxic insult and/or malignant transformation: elevated levels of MMA{sup III}-induced DNA damage through the production of reactive oxygen species, and the direct MMA{sup III}-induced inhibition of PARP-1.« less
Modeling of displacement damage in silicon carbide detectors resulting from neutron irradiation
NASA Astrophysics Data System (ADS)
Khorsandi, Behrooz
There is considerable interest in developing a power monitor system for Generation IV reactors (for instance GT-MHR). A new type of semiconductor radiation detector is under development based on silicon carbide (SiC) technology for these reactors. SiC has been selected as the semiconductor material due to its superior thermal-electrical-neutronic properties. Compared to Si, SiC is a radiation hard material; however, like Si, the properties of SiC are changed by irradiation by a large fluence of energetic neutrons, as a consequence of displacement damage, and that irradiation decreases the life-time of detectors. Predictions of displacement damage and the concomitant radiation effects are important for deciding where the SiC detectors should be placed. The purpose of this dissertation is to develop computer simulation methods to estimate the number of various defects created in SiC detectors, because of neutron irradiation, and predict at what positions of a reactor, SiC detectors could monitor the neutron flux with high reliability. The simulation modeling includes several well-known---and commercial---codes (MCNP5, TRIM, MARLOWE and VASP), and two kinetic Monte Carlo codes written by the author (MCASIC and DCRSIC). My dissertation will highlight the displacement damage that may happen in SiC detectors located in available positions in the OSURR, GT-MHR and IRIS. As extra modeling output data, the count rates of SiC for the specified locations are calculated. A conclusion of this thesis is SiC detectors that are placed in the thermal neutron region of a graphite moderator-reflector reactor have a chance to survive at least one reactor refueling cycle, while their count rates are acceptably high.
Fault zone architecture within Miocene-Pliocene syn-rift sediments, Northwestern Red Sea, Egypt
NASA Astrophysics Data System (ADS)
Zaky, Khairy S.
2017-04-01
The present study focusses on field description of small normal fault zones in Upper Miocene-Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW-SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE-SW. The minimum ( σ3) and intermediate ( σ2) paleostress axes are generally sub-horizontal and the maximum paleostress axis ( σ1) is sub-vertical. The fault zones are composed of damage zones and fault core. The damage zone is characterized by subsidiary faults and fractures that are asymmetrically developed on the hanging wall and footwall of the main fault. The width of the damage zone varies for each fault depending on the lithology, amount of displacement and irregularity of the fault trace. The average ratio between the hanging wall and the footwall damage zones width is about 3:1. The fault core consists of fault gouge and breccia. It is generally concentrated in a narrow zone of ˜0.5 to ˜8 cm width. The overall pattern of the fault core indicates that the width increases with increasing displacement. The faults with displacement < 1 m have fault cores ranging from 0.5 to 4.0 cm, while the faults with displacements of > 2 m have fault cores ranging from 4.0 to 8.0 cm. The fault zones are associated with sliver fault blocks, clay smear, segmented faults and fault lenses' structural features. These features are mechanically related to the growth and linkage of the fault arrays. The structural features may represent a neotectonic and indicate that the architecture of the fault zones is developed as several tectonic phases.
Wang, Song; Wang, Fei; Liao, Zhenhua; Wang, Qingliang; Liu, Yuhong; Liu, Weiqiang
2015-10-01
A ball-on-socket contact configuration was designed to simulate an artificial cervical disk in structure. UHMWPE (ultra high molecular weight polyethylene) hot pressed by powders and Ti6Al4V alloy were selected as the material combination of ball and socket. The socket surface was coated by a ~500 nm C-DLC (carbon ion implantation-diamond like carbon) mixed layer to improve its surface nano hardness and wear resistance. The torsional fretting wear behavior of the ball-on-socket model was tested at different angular displacements under 25% bovine serum lubrication with an axial force of 100 N to obtain more realistic results with that in vivo. The fretting running regimes and wear damage characteristics as well as wear mechanisms for both ball and socket were studied based on 2D (two dimension) optical microscope, SEM (scanning electron microscope) and 3D (three dimension) profiles. With the increase of angular displacement amplitude from 1° to 7°, three types of T-θ (Torsional torque-angular displacement amplitude) curves (i.e., linear, elliptical and parallelogram loops) corresponding to running regimes of PSR (partial slip regime), MR (mixed regime) and SR (slip regime) were observed and analyzed. Both the central region and the edge zone of the ball and socket were damaged. The worn surfaces were characterized by wear scratches and wear debris. In addition, more severe wear damage and more wear debris appeared on the central region of the socket at higher angular displacement amplitude. The dominant damage mechanism was a mix of surface scratch, adhesive wear and abrasive wear for the UHMWPE ball while that for the coated socket was abrasive wear by PE particles and some polishing and rolling process on the raised overgrown DLC grains. The frictional kinetic behavior, wear type, damage region and damage mechanism for the ball-on-socket model revealed significant differences with those of a ball-on-flat contact while showing better consistency with that of in vitro cervical prosthesis simulations according to the literature. Copyright © 2015. Published by Elsevier B.V.
USDA-ARS?s Scientific Manuscript database
Annual domestic impacts associated with introduced weeds are conservatively estimated at $27 billion, incorporating costs of weed management, crop losses and displacement of productive rangeland, and displacement of some environmental services. Estimating the total economic damage of invasive weed...
NASA Astrophysics Data System (ADS)
Dinitz, L.; Wein, A. M.; Johnson, L. A.; Jones, J. L.
2015-12-01
This research led by the U.S. Geological Survey aims to inform and stimulate the development of plans and policies in disaster management and hazard mitigation that will help improve the capacity of residents, businesses and communities to rebound from disasters. As was evidenced in the 1994 Northridge earthquake, "ghost towns" emerged in neighborhoods with high concentrations of damaged rental housing. Also, rental properties that served predominantly lower income households had more difficulty financing repairs which led to blight and other long-term community recovery challenges. Our approach is to develop a framework for identifying and spatially analyzing communities at risk of long-term displacement and recovery challenges for an earthquake scenario. The HayWired scenario postulates a M7.05 earthquake on the Hayward Fault in the San Francisco Bay Area with surface fault rupture, liquefaction, landslides, and fires, as well as subsequent aftershocks. The analytical framework relies on the literature and prior disaster experience to identify and systematically combine physical and socioeconomic impacts of the earthquake sequence with pre-existing socioeconomic conditions to identify areas where housing and building damage, lifeline service disruption, and socioeconomic challenges intersect and can potentially lead to long-term displacements of people, businesses, and jobs. Hazus analyses estimate $46 billion in building damage from the HayWired main shock, which increases by 10-25% due to aftershocks. Heavy damage to large apartment buildings exceeds many other housing types, and preliminary analyses identify neighborhoods where these damage concentrations also intersect with concentrations of low income households. Also, in some counties, the estimated population displaced from severely damaged housing far exceeds the number of vacant housing units, which means residents may be forced to move well away from former neighborhoods and even outside the region altogether.
Yang, Xue; Qian, Yu-Fen
2016-08-01
To investigate the relationship between torque control and movement type of the teeth and to investigate the correlation between reconstruction of the alveolar bone and retraction of the upper anterior teeth. Cephalograms of pre-treatment and post-treatment of 111 cases and cone-beam computed tomography of pre-retraction and post-retraction of 7 cases were collected. The inclination degree of the upper anterior teeth, the horizontal and vertical displacement of edge and apex,and the thickness of the alveolar bone at the apex level were measured. Student's t test and Pearson χ2 test were performed for statistical analysis with SAS 8.02 software package. Cases who received torque control during the period of retraction displayed less change of inclination degree of the upper anterior teeth, less lingual displacement of the edge, more lingual displacement of the apex. The total thickness of the alveolar bone at the apex level and the length of the teeth significantly decreased after retraction(P<0.05). The amount of the alveolar bone rebuilt after retraction was less than that of the tooth movement, and there was no significant difference between teenagers and adults. During retraction of the upper anterior teeth, cases who received torque control showed less inclination degree change of the upper anterior teeth, less lingual displacement of the edge, more lingual displacement of the apex. More bodily movement and partially controlled tipping movement as well as higher incident rate of severe root resorption would also arise. There was correlation between reconstruction of the alveolar bone and the tooth movement. Since the amount of adaptive reconstruction of the lingual alveolar bone was limited, and there was no difference between teenagers and adults, excessive lingual displacement would surpass its adaption ability, and gave rise to alveolar bone and tooth damage.
NASA Technical Reports Server (NTRS)
Marshall, Cheryl J.; Marshall, Paul W.
1999-01-01
This portion of the Short Course is divided into two segments to separately address the two major proton-related effects confronting satellite designers: ionization effects and displacement damage effects. While both of these topics are deeply rooted in "traditional" descriptions of space radiation effects, there are several factors at play to cause renewed concern for satellite systems being designed today. For example, emphasis on Commercial Off-The-Shelf (COTS) technologies in both commercial and government systems increases both Total Ionizing Dose (TID) and Single Event Effect (SEE) concerns. Scaling trends exacerbate the problems, especially with regard to SEEs where protons can dominate soft error rates and even cause destructive failure. In addition, proton-induced displacement damage at fluences encountered in natural space environments can cause degradation in modern bipolar circuitry as well as in many emerging electronic and opto-electronic technologies.
The viscoelastic behavior of notched glassy polymers
NASA Technical Reports Server (NTRS)
Crook, R. A.; Letton, Alan
1993-01-01
In the bulk, glassy polymers exhibit a nonlinear viscoelastic response during deformation. Stress or strain induced damage (i.e. crazing, microshear banding) results in the production of nonrecoverable work and observed nonlinearity. Stress or strain dependent shift factors have been used to mathematically model the mechanical behavior of these polymers. Glassy polymers that have been notched, may exhibit very different load displacement response compared to the same material under bulk deformation. If a sharp notch is introduced into the body then loaded, the load displacement trace may appear to be single-valued in the absence of viscoelasticity and crack growth. This suggests the volume of damaged material is small compared to the overall dimensions of the specimen. The ability to produce a single-valued load-load-line displacement trace through the use of the Correspondence Principle may prove to be useful for fracture of viscoelastic materials.
NASA Astrophysics Data System (ADS)
Wright, Graham; Kesler, Leigh Ann; Whyte, Dennis
2013-10-01
The extrusion of nano-tendrils from high temperature (>1000 K) tungsten (W) targets exposed to helium (He) plasma ions remains a concern for future fusion reactors. Previous work on the Alcator C-Mod tokamak has demonstrated it is possible to form these structures in a tokamak environment. However, one area where Alcator C-Mod and a fusion reactor differ is total neutron flux at the wall and the displacement damage these neutrons produce in the plasma-facing materials. This dsiplacement damage may affect the size and number He bubbles precipitating in the W target, which is a key factor in the formation and growth of the nano-tendrils. The DIONISOS experiment directly measures the impact of the displacement damage by simultaneously bombarding high temperature W targets with MeV-range ions (to simulate the displacement damage caused by neutron flux) and high flux of He plasma ions. Different combinations of irradiating ion species and W target temperatures are used to vary the different processes and rates that are involved such as He trapping rate, vacancy production and annealing rates, and nano-tendril growth rate. The nano-tendril growth is characterized by SEM imaging and focused ion beam (FIB) cross-sectioning and compared to nano-tendril formation without the presence of the irradiating ion beam. This work is supported by US DOE award DE-SC00-02060.
2018-01-23
aluminum plate; and the time history of the aluminum back surface displacement located directly under the sphere. Figures 2-4 present the computed results... displacements as a function of time. It is clear that the computed results using no bond produce more damage in the ceramic plate and much more... displacement of the aluminum back plate. Figures 5-7 present the computed results for boron carbide (using the TR model), for impact velocities of V
The Effects of Space Radiation on Linear Integrated Circuit
NASA Technical Reports Server (NTRS)
Johnston, A.
2000-01-01
Permanent and transient effects are discussed that are induced in linear integrated circuits by space radiation. Recent developments include enhanced damage at low dose rate, increased damage from protons due to displacement effects, and transients in digital comparators that can cause circuit malfunctions.
Fracture behavior of unidirectional boron/aluminum composite laminates
NASA Technical Reports Server (NTRS)
Goree, J. G.; Jones, W. F.
1983-01-01
An experiment was conducted to verify the results of mathematical models which predict the stresses and displacements of fibers and the amount of damage growth in a center-notched lamina as a function of the applied remote stress and the matrix and fiber material properties. A brittle lacquer coating was used to detect the yielding in the matrix while X-ray techniques were used to determine the number of broken fibers in the laminate. The notched strengths and the amounts of damage found in the specimens agree well with those predicted by the mathematical model. It is shown that the amount of damage and the crack opening displacement does not depend strongly on the number of plies in the laminate for a given notch width. By heat-treating certain laminates to increase the yield stress of the alumina matrix, the effect of different matrix properties on the fracture behavior was investigated. The stronger matrix is shown to weaken the notched laminate by decreasing the amount of matrix damage, thereby making the laminate more notch sensitive.
Analysis of progressive damage in thin circular laminates due to static-equivalent impact loads
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Elber, W.; Illg, W.
1983-01-01
Clamped circular graphite/epoxy plates (25.4, 38.1, and 50.8 mm radii) with an 8-ply quasi-isotropic layup were analyzed for static-equivalent impact loads using the minimum-total-potential-energy method and the von Karman strain-displacement equations. A step-by-step incremental transverse displacement procedure was used to calculate plate load and ply stresses. The ply failure region was calculated using the Tsai-Wu criterion. The corresponding failure modes (splitting and fiber failure) were determined using the maximum stress criteria. The first-failure mode was splitting and initiated first in the bottom ply. The splitting-failure thresholds were relatively low and tended to be lower for larger plates than for small plates. The splitting-damage region in each ply was elongated in its fiber direction; the bottom ply had the largest damage region. The calculated damage region for the 25.4-mm-radius plate agreed with limited static test results from the literature.
Recent advances to obtain real - Time displacements for engineering applications
Celebi, M.
2005-01-01
This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.
Correlations between Energy and Displacement Demands for Performance-Based Seismic Engineering
NASA Astrophysics Data System (ADS)
Mollaioli, Fabrizio; Bruno, Silvia; Decanini, Luis; Saragoni, Rodolfo
2011-01-01
The development of a scientific framework for performance-based seismic engineering requires, among other steps, the evaluation of ground motion intensity measures at a site and the characterization of their relationship with suitable engineering demand parameters (EDPs) which describe the performance of a structure. In order to be able to predict the damage resulting from earthquake ground motions in a structural system, it is first necessary to properly identify ground motion parameters that are well correlated with structural response and, in turn, with damage. Since structural damage during an earthquake ground motion may be due to excessive deformation or to cumulative cyclic damage, reliable methods for estimating displacement demands on structures are needed. Even though the seismic performance is directly related to the global and local deformations of the structure, energy-based methodologies appear more helpful in concept, as they permit a rational assessment of the energy absorption and dissipation mechanisms that can be effectively accomplished to balance the energy imparted to the structure. Moreover, energy-based parameters are directly related to cycles of response of the structure and, therefore, they can implicitly capture the effect of ground motion duration, which is ignored by conventional spectral parameters. Therefore, the identification of reliable relationships between energy and displacement demands represents a fundamental issue in both the development of more reliable seismic code provisions and the evaluation of seismic vulnerability aimed at the upgrading of existing hazardous facilities. As these two aspects could become consistently integrated within a performance-based seismic design methodology, understanding how input and dissipated energy are correlated with displacement demands emerges as a decisive prerequisite. The aim of the present study is the establishment of functional relationships between input and dissipated energy (that can be considered as parameters representative of the amplitude, frequency content and duration of earthquake ground motions) and displacement-based response measures that are well correlated to structural and non-structural damage. For the purpose of quantifying the EDPs to be related to the energy measures, for comprehensive range of ground motion and structural characteristics, both simplified and more accurate numerical models will be used in this study for the estimation of local and global displacement and energy demands. Parametric linear and nonlinear time-history analyses will be performed on elastic and inelastic SDOF and MDOF systems, in order to assume information on the seismic response of a wide range of current structures. Hysteretic models typical of frame force/displacement behavior will be assumed for the local inelastic cyclic response of the systems. A wide range of vibration periods will be taken into account so as to define displacement, interstory drift and energy spectra for MDOF systems. Various scalar measures related to the deformation demand will be used in this research. These include the spectral displacements, the peak roof drift ratio, and the peak interstory drift ratio. A total of about 900 recorded ground motions covering a broad variety of condition in terms of frequency content, duration and amplitude will be used as input in the dynamic analyses. The records are obtained from 40 earthquakes and grouped as a function of magnitude of the event, source-to-site condition and site soil condition. In addition, in the data-set of records a considerable number of near-fault signals is included, in recognition of the particular significance of pulse-like time histories in causing large seismic demands to the structures.
Self-ion irradiation effects on mechanical properties of nanocrystalline zirconium films
Wang, Baoming; Haque, M. A.; Tomar, Vikas; ...
2017-07-13
Zirconium thin films were irradiated at room temperature with an 800 keV Zr + beam using a 6 MV HVE Tandem accelerator to 1.36 displacement per atom damage. Freestanding tensile specimens, 100 nm thick and 10 nm grain size, were tested in-situ inside a transmission electron microscope. Significant grain growth (>300%), texture evolution, and displacement damage defects were observed. Here, stress-strain profiles were mostly linear elastic below 20 nm grain size, but above this limit the samples demonstrated yielding and strain hardening. Experimental results support the hypothesis that grain boundaries in nanocrystalline metals act as very effective defect sinks.
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; OBryan, Martha V.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Pellish, Jonathan A.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Topper, Alyson D.; Ladbury, Raymond L.;
2014-01-01
We present results and analysis investigating the effects of radiation on a variety of candidate spacecraft electronics to proton and heavy ion induced single event effects (SEE), proton-induced displacement damage (DD), and total ionizing dose (TID). Introduction: This paper is a summary of test results.NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment is often limited by its susceptibility to single event effects (SEE), total ionizing dose (TID), and displacement damage (DD). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is quite difficult. Given the rapidly changing nature of technology, radiation test data are most often application-specific and adequate understanding of the test conditions is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), single-event transient (SET), TID, enhanced low dose rate sensitivity (ELDRS), and DD effects.
NASA Technical Reports Server (NTRS)
Baker, Donald J.; Li, Ji-An
2005-01-01
The experimental results from a stitched VaRTM carbon-epoxy composite panel tested under uni-axial compression loading are presented along with nonlinear finite element analysis prediction of the response. The curved panel is divided by frames and stringers into six bays with a column of three bays along the compressive loading direction. The frames are supported at the frame ends to resist out-of-plane translation. Back-to-back strain gages are used to record the strain and displacement transducers were used to record the out-of-plane displacements. In addition a full-field-displacement measurement technique that utilizes a camera-based-stereo-vision system was used to record the displacements. The panel was loaded to 1.5 times the predicted initial buckling load (1st bay buckling load, P(sub er) from the nonlinear finite element analysis and then was removed from the test machine for impact testing. After impacting with 20 ft-lbs of energy using a spherical impactor to produce barely visible damage the panel was loaded in compression until failure. The buckling load of the first bay to buckle was 97% of the buckling load before impact. The stitching constrained the impact damage from growing during the loading to failure. Impact damage had very little overall effect on panel stiffness. Panel stiffness measured by the full-field-displacement technique indicated a 13% loss in stiffness after impact. The panel failed at 1.64 times the first panel buckling load. The barely visible impact damage did not grow noticeably as the panel failed by global instability due to stringer-web terminations at the frame locations. The predictions from the nonlinear analysis of the finite element modeling of the entire specimen were very effective in the capture of the initial buckling and global behavior of the panel. In addition, the prediction highlighted the weakness of the panel under compression due to stringer web terminations. Both the test results and the nonlinear predictions serve to reinforce the severe penalty in structural integrity caused by the low cost manufacturing technique to terminate the stringer webs, and demonstrates the importance of this type of sub-component testing and high fidelity failure analysis in the design of a composite fuselage.
Simulations of threshold displacement in beryllium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, Matthew L.; Culham Centre for Fusion Energy, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB; Fossati, Paul C. M.
Atomic scale molecular dynamics simulations of radiation damage have been performed on beryllium. Direct threshold displacement simulations along a geodesic projection of directions were used to investigate the directional dependence with a high spatial resolution. It was found that the directionally averaged probability of displacement increases from 0 at 35 eV, with the energy at which there is a 50% chance of a displacement occurring is 70 eV and asymptotically approaching 1 for higher energies. This is, however, strongly directionally dependent with a 50% probability of displacement varying from 35 to 120 eV, with low energy directions corresponding to the nearest neighbour directions.more » A new kinetic energy dependent expression for the average maximum displacement of an atom as a function of energy is derived which closely matches the simulated data.« less
A study to compute integrated dpa for neutron and ion irradiation environments using SRIM-2013
NASA Astrophysics Data System (ADS)
Saha, Uttiyoarnab; Devan, K.; Ganesan, S.
2018-05-01
Displacements per atom (dpa), estimated based on the standard Norgett-Robinson-Torrens (NRT) model, is used for assessing radiation damage effects in fast reactor materials. A computer code CRaD has been indigenously developed towards establishing the infrastructure to perform improved radiation damage studies in Indian fast reactors. We propose a method for computing multigroup neutron NRT dpa cross sections based on SRIM-2013 simulations. In this method, for each neutron group, the recoil or primary knock-on atom (PKA) spectrum and its average energy are first estimated with CRaD code from ENDF/B-VII.1. This average PKA energy forms the input for SRIM simulation, wherein the recoil atom is taken as the incoming ion on the target. The NRT-dpa cross section of iron computed with "Quick" Kinchin-Pease (K-P) option of SRIM-2013 is found to agree within 10% with the standard NRT-dpa values, if damage energy from SRIM simulation is used. SRIM-2013 NRT-dpa cross sections applied to estimate the integrated dpa for Fe, Cr and Ni are in good agreement with established computer codes and data. A similar study carried out for polyatomic material, SiC, shows encouraging results. In this case, it is observed that the NRT approach with average lattice displacement energy of 25 eV coupled with the damage energies from the K-P option of SRIM-2013 gives reliable displacement cross sections and integrated dpa for various reactor spectra. The source term of neutron damage can be equivalently determined in the units of dpa by simulating self-ion bombardment. This shows that the information of primary recoils obtained from CRaD can be reliably applied to estimate the integrated dpa and damage assessment studies in accelerator-based self-ion irradiation experiments of structural materials. This study would help to advance the investigation of possible correlations between the damages induced by ions and reactor neutrons.
Radiation Effects on Optoelectronic Devices in Space Missions
NASA Technical Reports Server (NTRS)
Johnston, Allan H.
2006-01-01
Radiation degradation of optoelectronic devices is discussed, including effects on optical emitters, detectors and optocouplers. The importance of displacement damage is emphasized, including the limitations of non-ionizing energy loss (NIEL) in normalizing damage. Failures of optoelectronics in fielded space systems are discussed, along with testing and qualification methods.
An Overview of Recent PISCES Program PMI Results
NASA Astrophysics Data System (ADS)
Tynan, George; Doerner, Russell; Abe, Shota; Baldwin, Matthew; Barton, Joseph; Chen, Renkun; Gosselin, Jordan; Hollmann, Eric; Nishijima, Daisuke; Simmonds, Michael; Wang, Yong; Yu, Jonathan
2015-11-01
The PISCES Program is focused on fundamental PMI studies of Be and W-based solid plasma facing components under steady-state and transient conditions. We will show results from studies in W, Be and mixed W-Be material systems. Topics of investigation include formation of near-surface nanobubbles from He plasma ion implantation, growth of W-fuzz from these bubbles in steady-state and transient conditions, D retention in Be and W and development of a D-retention model for both H/D isotope exchange and displacement damage experiments. Initial studies of PMI in displacement damaged W are also presented, showing the effect of damage and exposure temperature on D retention, D diffusion, W thermal conductivity. Be-based results include morphology evolution under high plasma flux exposure, Be erosion mechanisms, and retention in Be-based materials. Future plans and connections to fusion energy system requirements will be discussed. This work supported by grant DE-FG02-07ER54912.
Monte Carlo Treatment of Displacement Damage in Bandgap Engineered HgCdTe Detectors
NASA Technical Reports Server (NTRS)
Fodness, Bryan C.; Marshall, Paul W.; Reed, Robert A.; Jordan, Thomas M.; Pickel, James C.; Jun, Insoo; Xapsos, Michael A.; Burke, Edward A.
2003-01-01
The conclusion are: 1. Description of NIEL calculation for short, mid, and longwave HgCdTe material compositions. 2. Full recoil spectra details captured and analyzed Importance of variance in high Z materials. 3. Can be applied directly to calculate damage distributions in arrays. 4. Future work will provide comparisons of measured array damage with calculated NIEL and damage energy distributions. 5. Technique to assess the full recoil spectrum behavior is extendable to other materials.
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R., E-mail: wrwampl@sandia.gov; Myers, Samuel M.
A model is presented for recombination of charge carriers at evolving displacement damage in gallium arsenide, which includes clustering of the defects in atomic displacement cascades produced by neutron or ion irradiation. The carrier recombination model is based on an atomistic description of capture and emission of carriers by the defects with time evolution resulting from the migration and reaction of the defects. The physics and equations on which the model is based are presented, along with the details of the numerical methods used for their solution. The model uses a continuum description of diffusion, field-drift and reaction of carriers,more » and defects within a representative spherically symmetric cluster of defects. The initial radial defect profiles within the cluster were determined through pair-correlation-function analysis of the spatial distribution of defects obtained from the binary-collision code MARLOWE, using recoil energies for fission neutrons. Properties of the defects are discussed and values for their parameters are given, many of which were obtained from density functional theory. The model provides a basis for predicting the transient response of III-V heterojunction bipolar transistors to displacement damage from energetic particle irradiation.« less
First-Principles Investigation of Radiation Induced Defects in SiC and Si.
NASA Astrophysics Data System (ADS)
Windl, Wolfgang; Lenosky, Thomas J.; Kress, Joel D.; Voter, Arthur F.
1997-03-01
SiC shows promise as a structural material for fusion reactors, partly because of its low activation under neutron irradiation. This radiation, however, can cause damage to its crystal structure, thereby degrading its properties. The focus of this work is the understanding of this neutron-induced radiation damage to SiC. Neutrons interact with matter primarily by scattering off nuclei, an event which suddenly imparts energy and momentum to an atom. If enough energy is transferred, this scattering event creates structural damage, such as displacement of the impacted atom from its original position to an interstitial site. We performed quantum molecular dynamics simulations to determine the displacement energy threshold, i.e., the minimum energy transfer required to create damage. To do this, we used the self-consistent Demkov-Ortega-Grumbach-Sankey (DOGS) extension(A. A. Demkov et al.), Phys. Rev. B 52, 1618 (1995). of the Harris-functional local orbital LDA method of Sankey et al. In order to benchmark the quality of our methodology for studying radiation damage, we compare our results to those of calculations employing classical interatomic potentials; furthermore, we performed similar simulations for Si, where experimental data exist.
Nateghi, Roshanak; Bricker, Jeremy D; Guikema, Seth D; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged.
Nateghi, Roshanak; Bricker, Jeremy D.; Guikema, Seth D.; Bessho, Akane
2016-01-01
The Pacific coast of the Tohoku region of Japan experiences repeated tsunamis, with the most recent events having occurred in 1896, 1933, 1960, and 2011. These events have caused large loss of life and damage throughout the coastal region. There is uncertainty about the degree to which seawalls reduce deaths and building damage during tsunamis in Japan. On the one hand they provide physical protection against tsunamis as long as they are not overtopped and do not fail. On the other hand, the presence of a seawall may induce a false sense of security, encouraging additional development behind the seawall and reducing evacuation rates during an event. We analyze municipality-level and sub-municipality-level data on the impacts of the 1896, 1933, 1960, and 2011 tsunamis, finding that seawalls larger than 5 m in height generally have served a protective role in these past events, reducing both death rates and the damage rates of residential buildings. However, seawalls smaller than 5 m in height appear to have encouraged development in vulnerable areas and exacerbated damage. We also find that the extent of flooding is a critical factor in estimating both death rates and building damage rates, suggesting that additional measures, such as multiple lines of defense and elevating topography, may have significant benefits in reducing the impacts of tsunamis. Moreover, the area of coastal forests was found to be inversely related to death and destruction rates, indicating that forests either mitigated the impacts of these tsunamis, or displaced development that would otherwise have been damaged. PMID:27508461
3D ductile crack propagation within a polycrystalline microstructure using XFEM
NASA Astrophysics Data System (ADS)
Beese, Steffen; Loehnert, Stefan; Wriggers, Peter
2018-02-01
In this contribution we present a gradient enhanced damage based method to simulate discrete crack propagation in 3D polycrystalline microstructures. Discrete cracks are represented using the eXtended finite element method. The crack propagation criterion and the crack propagation direction for each point along the crack front line is based on the gradient enhanced damage variable. This approach requires the solution of a coupled problem for the balance of momentum and the additional global equation for the gradient enhanced damage field. To capture the discontinuity of the displacements as well as the gradient enhanced damage along the discrete crack, both fields are enriched using the XFEM in combination with level sets. Knowing the crack front velocity, level set methods are used to compute the updated crack geometry after each crack propagation step. The applied material model is a crystal plasticity model often used for polycrystalline microstructures of metals in combination with the gradient enhanced damage model. Due to the inelastic material behaviour after each discrete crack propagation step a projection of the internal variables from the old to the new crack configuration is required. Since for arbitrary crack geometries ill-conditioning of the equation system may occur due to (near) linear dependencies between standard and enriched degrees of freedom, an XFEM stabilisation technique based on a singular value decomposition of the element stiffness matrix is proposed. The performance of the presented methodology to capture crack propagation in polycrystalline microstructures is demonstrated with a number of numerical examples.
NASA Astrophysics Data System (ADS)
Dansereau, V.; Got, J. L.
2017-12-01
Before a volcanic eruption, the pressurization of the volcanic edifice by a magma reservoir induces earthquakes and damage in the edifice; damage lowers the strength of the edifice and decreases its elastic properties. Anelastic deformations cumulate and lead to rupture and eruption. These deformations translate into surface displacements, measurable via GPS or InSAR (e.g., Kilauea, southern flank, or Piton de la Fournaise, eastern flank).Attempts to represent these processes are usually based on a linear-elastic rheology. More recently, linear elastic-perfectly plastic or elastic-brittle damage approaches were used to explain the time evolution of the surface displacements in basaltic volcanoes before an eruption. However these models are non-linear elastic, and can not account for the anelastic deformation that occurs during the pre-eruptive process. Therefore, they can not be used to represent the complete eruptive cycle, comprising loading and unloading phases. Here we present a new rheological approach for modelling the eruptive cycle called Maxwell-Elasto-Brittle, which incorporates a viscous-like relaxation of the stresses in an elastic-brittle damage framework. This mechanism allows accounting for the anelastic deformations that cumulate and lead to rupture and eruption. The inclusion of healing processes in this model is another step towards a complete spatio-temporal representation of the eruptive cycle. Plane-strain Maxwell-EB modelling of the deformation of a magma reservoir and volcanic edifice will be presented. The model represents the propagation of damage towards the surface and the progressive localization of the deformation along faults under the pressurization of the magma reservoir. This model allows a complete spatio-temporal representation of the rupture process. We will also discuss how available seismicity records and time series of surface displacements could be used jointly to constrain the model.
Non-local damage rheology and size effect
NASA Astrophysics Data System (ADS)
Lyakhovsky, V.
2011-12-01
We study scaling relations controlling the onset of transiently-accelerating fracturing and transition to dynamic rupture propagation in a non-local damage rheology model. The size effect is caused principally by growth of a fracture process zone, involving stress redistribution and energy release associated with a large fracture. This implies that rupture nucleation and transition to dynamic propagation are inherently scale-dependent processes. Linear elastic fracture mechanics (LEFM) and local damage mechanics are formulated in terms of dimensionless strain components and thus do not allow introducing any space scaling, except linear relations between fracture length and displacements. Generalization of Weibull theory provides scaling relations between stress and crack length at the onset of failure. A powerful extension of the LEFM formulation is the displacement-weakening model which postulates that yielding is complete when the crack wall displacement exceeds some critical value or slip-weakening distance Dc at which a transition to kinetic friction is complete. Scaling relations controlling the transition to dynamic rupture propagation in slip-weakening formulation are widely accepted in earthquake physics. Strong micro-crack interaction in a process zone may be accounted for by adopting either integral or gradient type non-local damage models. We formulate a gradient-type model with free energy depending on the scalar damage parameter and its spatial derivative. The damage-gradient term leads to structural stresses in the constitutive stress-strain relations and a damage diffusion term in the kinetic equation for damage evolution. The damage diffusion eliminates the singular localization predicted by local models. The finite width of the localization zone provides a fundamental length scale that allows numerical simulations with the model to achieve the continuum limit. A diffusive term in the damage evolution gives rise to additional damage diffusive time scale associated with the structural length scale. The ratio between two time scales associated with damage accumulation and diffusion, the damage diffusivity ratio, reflects the role of the diffusion-controlled delocalization. We demonstrate that localized fracturing occurs at the damage diffusivity ratio below certain critical value leading to a linear scaling between stress and crack length compatible with size effect for failures at crack initiation. A subseuqent quasi-static fracture growth is self-similar with increasing size of the process zone proportional to the fracture length. At a certain stage, controlled by dynamic weakening, the self-similarity breaks down and crack velocity significantly deviates from that predicted by the quasi-static regime, the size of the process zone decreases, and the rate of crack growth ceases to be controlled by the rate of damage increase. Furthermore, the crack speed approaches that predicted by the elasto-dynamic equation. The non-local damage rheology model predicts that the nucleation size of the dynamic fracture scales with fault zone thickness distance of the stress interraction.
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
Antoshchenkova, E.; Luneville, L.; Simeone, D.; ...
2014-12-12
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Fragmentation of displacement cascades into subcascades: A molecular dynamics study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoshchenkova, E.; Luneville, L.; Simeone, D.
The fragmentation of displacement cascades into subcascades in copper and iron has been investigated through the molecular dynamics technique. A two-point density correlation function has been used to analyze the cascades as a function of the primary knock-on (PKA) energy. This approach is used as a tool for detecting subcascade formation. The fragmentation can already be identified at the end of the ballistic phase. Its resulting evolution in the peak damage state discriminates between unconnected and connected subcascades. The damage zone at the end of the ballistic phase is the precursor of the extended regions that contain the surviving defects.more » A fractal analysis of the cascade exhibits a dependence on both the stage of the cascade development and the PKA energy. This type of analysis enables the minimum and maximum displacement spike energies together with the subcascade formation threshold energy to be determined. (C) 2014 Elsevier B.V. All rights reserved.« less
Low-Cost GNSS Receivers for Local Monitoring: Experimental Simulation, and Analysis of Displacements
Biagi, Ludovico; Grec, Florin Cătălin; Negretti, Marco
2016-01-01
The geodetic monitoring of local displacements and deformations is often needed for civil engineering structures and natural phenomena like, for example, landslides. A local permanent GNSS (Global Navigation Satellite Systems) network can be installed: receiver positions in the interest area are estimated and monitored with respect to reference stations. Usually, GNSS geodetic receivers are adopted and provide results with accuracies at the millimeter level: however, they are very expensive and the initial cost and the risk of damage and loss can discourage this approach. In this paper the accuracy and the reliability of low-cost u-blox GNSS receivers are experimentally investigated for local monitoring. Two experiments are analyzed. In the first, a baseline (65 m long) between one geodetic reference receiver and one u-blox is continuously observed for one week: the data are processed by hourly sessions and the results provide comparisons between two processing packages and a preliminary accuracy assessment. Then, a network composed of one geodetic and two u-blox receivers is set up. One u-blox is installed on a device (slide) that allows to apply controlled displacements. The geodetic and the other u-blox (at about 130 m) act as references. The experiment lasts about two weeks. The data are again processed by hourly sessions. The estimated displacements of the u-blox on the slide are analyzed and compared with the imposed displacements. All of the results are encouraging: in the first experiment the standard deviations of the residuals are smaller than 5 mm both in the horizontal and vertical; in the second, they are slightly worse but still satisfactory (5 mm in the horizontal and 13 mm in vertical) and the imposed displacements are almost correctly identified. PMID:27983707
Biagi, Ludovico; Grec, Florin Cătălin; Negretti, Marco
2016-12-15
The geodetic monitoring of local displacements and deformations is often needed for civil engineering structures and natural phenomena like, for example, landslides. A local permanent GNSS (Global Navigation Satellite Systems) network can be installed: receiver positions in the interest area are estimated and monitored with respect to reference stations. Usually, GNSS geodetic receivers are adopted and provide results with accuracies at the millimeter level: however, they are very expensive and the initial cost and the risk of damage and loss can discourage this approach. In this paper the accuracy and the reliability of low-cost u-blox GNSS receivers are experimentally investigated for local monitoring. Two experiments are analyzed. In the first, a baseline (65 m long) between one geodetic reference receiver and one u-blox is continuously observed for one week: the data are processed by hourly sessions and the results provide comparisons between two processing packages and a preliminary accuracy assessment. Then, a network composed of one geodetic and two u-blox receivers is set up. One u-blox is installed on a device (slide) that allows to apply controlled displacements. The geodetic and the other u-blox (at about 130 m) act as references. The experiment lasts about two weeks. The data are again processed by hourly sessions. The estimated displacements of the u-blox on the slide are analyzed and compared with the imposed displacements. All of the results are encouraging: in the first experiment the standard deviations of the residuals are smaller than 5 mm both in the horizontal and vertical; in the second, they are slightly worse but still satisfactory (5 mm in the horizontal and 13 mm in vertical) and the imposed displacements are almost correctly identified.
78 FR 11563 - Airworthiness Directives; Pratt & Whitney Canada Corp Turboshaft Engines
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-19
... and repetitive borescope inspections to verify the presence of a retaining ring securing the power... states: There have been 5 reported incidents of second stage Power Turbine (PT) disk damage caused by the... investigation has determined that the root cause for the PT baffle displacement and the resultant PT disk damage...
Faults and structure in the Pierre Shale, central south Dakota
Nichols, Thomas C.; Collins, Donley S.; Jones-Cecil, Meridee; Swolfs, Henri S.
1994-01-01
Numerous faults observed at the surface and (or) determined by geometric and geophysical methods to be present as much as several hundred meters below the surface (near-surface faults) have been mapped in a 2,000-km2 area west of Pierre, S. Dakota. Many of these faults surround an east-west-trending structural high that has been mapped on the lower part of the Virgin Creek Member of the Pierre Shale. Generally, the geometry and displacement of many of the faults precludes slumping from surficial erosion as a mechanism to explain the faults. Seismic-reflection data indicate that several of the faults directly overlie faults in Precambrian basement that have cumulative vertical displacements of as much as 340 m. The structural high is interpreted to have been uplifted by displacements along faults that cut Upper Cretaceous sedimentary rocks. Recent low-level seismicity and fluvial-geomorphic studies of stream patterns, gradients, and orders suggest that rejuvenation of drainages may be taking place as a result of rebound or other tectonic activity. The studies indicate that repeated uplift and subsidence may have been the cause of extensive faulting mapped in the Pierre Shale since its deposition in Cretaceous time. Surficial fault displacements that cause damage to engineered structures are thought to be the result of construction-induced rebound in the Pierre Shale, although tectonic uplift cannot be ruled out as a cause.
Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward; ...
2015-12-01
In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Auden, Elizabeth C.; Pacheco, Jose L.; Bielejec, Edward
In this study, displacement damage reduces ion beam induced charge (IBIC) through Shockley-Read-Hall recombination. Closely spaced pulses of 200 keV Si ++ ions focused in a 40 nm beam spot are used to create damage cascades within 0.25 μm 2 areas. Damaged areas are detected through contrast in IBIC signals generated with focused ion beams of 200 keV Si ++ ions and 60 keV Li + ions. IBIC signal reduction can be resolved over sub-micron regions of a silicon detector damaged by as few as 1000 heavy ions.
Klevenhusen, Fenja; Humer, Elke; Metzler-Zebeli, Barbara; Podstatzky-Lichtenstein, Leopold; Wittek, Thomas; Zebeli, Qendrim
2015-01-01
Simple Summary This research established an association between lactation number and milk production and metabolic and inflammatory responses in high-producing dairy cows affected by left abomasal displacement in small-scaled dairy farms. The study showed metabolic alterations, liver damage, and inflammation in the sick cows, which were further exacerbated with increasing lactation number and milk yield of the cows. Abstract Left displaced abomasum (LDA) is a severe metabolic disease of cattle with a strong negative impact on production efficiency of dairy farms. Metabolic and inflammatory alterations associated with this disease have been reported in earlier studies, conducted mostly in large dairy farms. This research aimed to: (1) evaluate metabolic and inflammatory responses in dairy cows affected by LDA in small-scaled dairy farms; and (2) establish an association between lactation number and milk production with the outcome of metabolic variables. The cows with LDA had lower serum calcium (Ca), but greater concentrations of non-esterified fatty acids (NEFA) and beta-hydroxy-butyrate (BHBA), in particular when lactation number was >2. Cows with LDA showed elevated levels of aspartate aminotransferase, glutamate dehydrogenase, and serum amyloid A (SAA), regardless of lactation number. In addition, this study revealed strong associations between milk yield and the alteration of metabolic profile but not with inflammation in the sick cows. Results indicate metabolic alterations, liver damage, and inflammation in LDA cows kept under small-scale farm conditions. Furthermore, the data suggest exacerbation of metabolic profile and Ca metabolism but not of inflammation and liver health with increasing lactation number and milk yield in cows affected by LDA. PMID:26479481
Larsen, Peter; Elsoe, Rasmus; Rathleff, Michael S
2016-05-01
Displaced stress fractures of the femoral shaft are very uncommon. The proportion of middle-aged and older age groups participating in long-distance running, triathlon and other high intensity sports is increasing. As a consequence stress fracture of the femoral shaft may be on the rise in the future. The patient was 43 years old male caucasian triathlete. The authors met the patient after he was admitted with a displaced femoral shaft fracture. The fracture occurred during running at the national championship in ½ Ironman. The patient reported that his symptoms had gradually developed over the last month before the fracture with pain localized anterior to the thigh. The patient interpreted the symptoms as local muscle damage. A clinical examination was conducted by a physiotherapist and the symptoms were interpreted as a simple muscle injury in the quadriceps. When presented with a patient with non-traumatic, diffuse anterior thigh pain in an individual of this age, who is participating in high-level endurance running; clinicians should consider the possibility that the cause of the symptoms may be a femoral shaft stress fracture. Copyright © 2015 Elsevier Ltd. All rights reserved.
Experimental study and FEM simulation of the simple shear test of cylindrical rods
NASA Astrophysics Data System (ADS)
Wirti, Pedro H. B.; Costa, André L. M.; Misiolek, Wojciech Z.; Valberg, Henry S.
2018-05-01
In the presented work an experimental simple shear device for cutting cylindrical rods was used to obtain force-displacement data for a low-carbon steel. In addition, and FEM 3D-simulation was applied to obtain internal shear stress and strain maps for this material. The experimental longitudinal grid patterns and force-displacement curve were compared with numerical simulation results. Many aspects of the elastic and plastic deformations were described. It was found that bending reduces the shear yield stress of the rod material. Shearing starts on top and bottom die-workpiece contact lines evolving in an arc-shaped area. Due to this geometry, stress concentrates on the surface of the rod until the level of damage reaches the critical value and the fracture starts here. The volume of material in the plastic zone subjected to shearing stress has a very complex shape and is function of a dimensionless geometrical parameter. Expressions to calculate the true shear stress τ and strain γ from the experimental force-displacement data were proposed. The equations' constants are determined by fitting the experimental curve with the stress τ and strain γ simulation point tracked data.
The role of nitric oxide in low level light therapy
NASA Astrophysics Data System (ADS)
Hamblin, Michael R.
2008-02-01
The use of low levels of visible or near infrared light for reducing pain, inflammation and edema, promoting healing of wounds, deeper tissues and nerves, and preventing tissue damage by reducing cellular apoptosis has been known for almost forty years since the invention of lasers. Despite many reports of positive findings from experiments conducted in vitro, in animal models and in randomized controlled clinical trials, LLLT remains controversial. Firstly the biochemical mechanisms underlying the positive effects are incompletely understood, and secondly the complexity of choosing amongst a large number of illumination parameters has led to the publication of a number of negative studies as well as many positive ones. This review will focus on the role of nitric oxide in the cellular and tissue effects of LLLT. Red and near-IR light is primarily absorbed by cytochrome c oxidase (unit four in the mitochondrial respiratory chain). Nitric oxide produced in the mitochondria can inhibit respiration by binding to cytochrome c oxidase and competitively displacing oxygen, especially in stressed or hypoxic cells. If light absorption displaced the nitric oxide and thus allowed the cytochrome c oxidase to recover and cellular respiration to resume, this would explain many of the observations made in LLLT. Why the effect is only seen in hypoxic, stressed or damaged cells or tissues? How the effects can keep working for some time (hours or days) postillumination? Why increased NO concentrations are sometimes measured in cell culture or in animals? How blood flow can be increased? Why angiogenesis is sometimes increased after LLLT in vivo?
Micromanipulation of statoliths in gravity-sensing Chara rhizoids by optical tweezers.
Leitz, G; Schnepf, E; Greulich, K O
1995-09-01
Infrared laser traps (optical tweezers) were used to micromanipulate statoliths in gravity-sensing rhizoids of the green alga Chara vulgaris Vail. We were able to hold and move statoliths with high accuracy and to observe directly the effects of statolith position on cell growth in horizontally positioned rhizoids. The first step in gravitropism, namely the physical action of gravity on statoliths, can be simulated by optical tweezers. The direct laser microirradiation of the rhizoid apex did not cause any visible damage to the cells. Through lateral positioning of statoliths a differential growth of the opposite flank of the cell wall could be induced, corresponding to bending growth in gravitropism. The acropetal displacement of the statolith complex into the extreme apex of the rhizoid caused a temporary decrease in cell growth rate. The rhizoids regained normal growth after remigration of the statoliths to their initial position 10-30 micrometers basal to the rhizoid apex. During basipetal displacement of statoliths, cell growth continued and the statoliths remigrated towards the rhizoid tip after release from the optical trap. The resistance to statolith displacement increased towards the nucleus. The basipetal displacement of the whole complex of statoliths for a long distance (>100 micrometers) caused an increase in cell diameter and a subsequent regaining of normal growth after the statoliths reappeared in the rhizoid apex. We conclude that the statolith displacement interferes with the mechanism of tip growth, i.e. with the transport of Golgi vesicles, either directly by mechanically blocking their flow and/or, indirectly, by disturbing the actomyosin system. In the presence of the actin inhibitor cytochalasin B the optical forces required for acropetal and basipetal displacement of statoliths were significantly reduced to a similar level. The lateral displacement of statoliths was not changed by cytochalasin B. The results indicate: (i) the viscous resistance to optical displacement of statoliths depend mainly on actin, (ii) the lateral displacement of statoliths is not impeded by actin filaments, (iii) the axially directed actin-mediated forces against optical displacement of statoliths (for a distance of 10 micrometers) are stronger in the basipetal than in the acropetal direction, (iv) the forces acting on single statoliths by axially oriented actin filaments are estimated to be in the range of 11-110 pN for acropetal and of 18-180 pN for basipetal statolith displacements.
The influence of operational and environmental loads on the process of assessing damages in beams
NASA Astrophysics Data System (ADS)
Furdui, H.; Muntean, F.; Minda, A. A.; Praisach, Z. I.; Gillich, N.
2015-07-01
Damage detection methods based on vibration analysis make use of the modal parameter changes. Natural frequencies are the features that can be acquired most simply and inexpensively. But this parameter is influenced by environmental conditions, e.g. temperature and operational loads as additional masses or axial loads induced by restraint displacements. The effect of these factors is not completely known, but in the numerous actual research it is considered that they affect negatively the damage assessment process. This is justified by the small frequency changes occurring due to damage, which can be masked by the frequency shifts due to external loads. The paper intends to clarify the effect of external loads on the natural frequencies of beams and truss elements, and to show in which manner the damage detection process is affected by these loads. The finite element analysis, performed on diverse structures for a large range of temperature values, has shown that the temperature itself has a very limited effect on the frequency changes. Thus, axial forces resulted due to obstructed displacements can influence more substantially the frequency changes. These facts are demonstrated by experimental and theoretical studies. Finally, we succeed to adapt a prior contrived relation providing the frequency changes due to damage in order to fit the case of known external loads. Whereas a new baseline for damage detection was found, considering the effect of temperature and external loads, this process can be performed without other complication.
Microstructure-Based Computational Modeling of Mechanical Behavior of Polymer Micro/Nano Composites
2013-12-01
K. ......... 165 Fig. 5.11. Comparison between experimental data and calibrated numerical models for displacement control tests, at three different...displacement control simulation) for all mesh densities for both work-conjugate and non work-conjugate. ........................ 302 Fig. 9.3. Damage...some large deformation experimental tests (and also accepting the non -uniformity of the strain field). In the established well-known theorem for
NASA Technical Reports Server (NTRS)
Yeh, C. S.; Li, S. S.; Loo, R. Y.
1987-01-01
A theoretical model for computing the displacement damage defect density and the short-circuit current (I sub sc) degradation in proton-irradiated (AlGa)As-GaAs p-n junction solar cells is presented. Assumptions were made with justification that the radiation induced displacement defects form an effective recombination center which controls the electron and hole lifetimes in the junction space charge region and in the n-GaAs active layer of the irradiated GaAs p-n junction cells. The degradation of I sub sc in the (AlGa)As layer was found to be negligible compared to the total degradation. In order to determine the I sub sc degradation, the displacement defect density, path length, range, reduced energy after penetrating a distance x, and the average number of displacements formed by one proton scattering event were first calculated. The I sub sc degradation was calculated by using the electron capture cross section in the p-diffused layer and the hole capture cross section in the n-base layer as well as the wavelength dependent absorption coefficients. Excellent agreement was found between the researchers calculated values and the measured I sub sc in the proton irradiated GaAs solar cells for proton energies of 100 KeV to 10 MeV and fluences from 10 to the 10th power p/square cm to 10 to the 12th power p/square cm.
Biochemical, physical and tactical analysis of a simulated game in young soccer players.
Aquino, Rodrigo L; Gonçalves, Luiz G; Vieira, Luiz H; Oliveira, Lucas P; Alves, Guilherme F; Santiago, Paulo R; Puggina, Enrico F
2016-12-01
The objectives of this study were to describe and compare the displacement patterns and the tactical performance of the players in the first to the second game time and verify possible associations between indirect markers of muscle damage with displacement patterns in a simulated game played by young soccer players. Eighteen young soccer players were submitted to a simulated game and two blood collections, one before and another 30 minutes post-game to analyze the behavior of creatine kinase and lactate dehydrogenase enzymes. The patterns of displacement and tactics variables were obtained through functions developed in MATLAB environment (MathWorks, Inc., Natick, MA, USA). It is observed a significant increase in average speed (P=0.05), number of sprints (P<0.001), the percentage the total distance covered at high intensity (P<0.001) and tactical variables (team surface area: P=0.002; spreading: P=0.001) in the second period of the simulated game. In addition, there was significant reduction in the percentage of the total distance at low intensity (P≤0.05) in the second period, and there was a strong association between the percentage of change delta of creatine kinase and lactate dehydrogenase with the displacement patterns in the simulated game. The results show that indirect markers of muscle damage have great association with displacement patterns in game performed in training conditions for young soccer players, evidencing a need for reflection on the post-training recovery sessions strategies, contributing to better planning of sessions throughout the macrocycle.
Race, socioeconomic status, and return migration to New Orleans after Hurricane Katrina
Sastry, Narayan; VanLandingham, Mark
2010-01-01
Hurricane Katrina struck New Orleans on the 29th of August 2005 and displaced virtually the entire population of the city. Soon after, observers predicted the city would become whiter and wealthier as a result of selective return migration, although challenges related to sampling and data collection in a post-disaster environment have hampered evaluation of these hypotheses. In this article, we investigate return to the city by displaced residents over a period of approximately 14 months following the storm, describing overall return rates and examining differences in return rates by race and socioeconomic status. We use unique data from a representative sample of pre-Katrina New Orleans residents collected in the Displaced New Orleans Residents Pilot Survey. We find that black residents returned to the city at a much slower pace than white residents even after controlling for socioeconomic status and demographic characteristics. However, the racial disparity disappears after controlling for housing damage. We conclude that blacks tended to live in areas that experienced greater flooding and hence suffered more severe housing damage which, in turn, led to their delayed return to the city. The full-scale survey of displaced residents being fielded in 2009–2010 will show whether the repopulation of the city was selective over a longer period. PMID:20440381
NASA Astrophysics Data System (ADS)
Kerschbaum, M.; Hopmann, C.
2016-06-01
The computationally efficient simulation of the progressive damage behaviour of continuous fibre reinforced plastics is still a challenging task with currently available computer aided engineering methods. This paper presents an original approach for an energy based continuum damage model which accounts for stress-/strain nonlinearities, transverse and shear stress interaction phenomena, quasi-plastic shear strain components, strain rate effects, regularised damage evolution and consideration of load reversal effects. The physically based modelling approach enables experimental determination of all parameters on ply level to avoid expensive inverse analysis procedures. The modelling strategy, implementation and verification of this model using commercially available explicit finite element software are detailed. The model is then applied to simulate the impact and penetration of carbon fibre reinforced cross-ply specimens with variation of the impact speed. The simulation results show that the presented approach enables a good representation of the force-/displacement curves and especially well agreement with the experimentally observed fracture patterns. In addition, the mesh dependency of the results were assessed for one impact case showing only very little change of the simulation results which emphasises the general applicability of the presented method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Bu; Yu, Yingtian; Bauchy, Mathieu, E-mail: bauchy@ucla.edu
Although quartz (α-form) is a mineral used in numerous applications wherein radiation exposure is an issue, the nature of the atomistic defects formed during radiation-induced damage has not been fully clarified. Especially, the extent of oxygen vacancy formation is still debated, which is an issue of primary importance as optical techniques based on charged oxygen vacancies have been utilized to assess the level of radiation damage in quartz. In this paper, molecular dynamics simulations are applied to study the effects of ballistic impacts on the atomic network of quartz. We show that the defects that are formed mainly consist ofmore » over-coordinated Si and O, as well as Si–O connectivity defects, e.g., small Si–O rings and edge-sharing Si tetrahedra. Oxygen vacancies, on the contrary, are found in relatively low abundance, suggesting that characterizations based on E′ centers do not adequately capture radiation-induced structural damage in quartz. Finally, we evaluate the dependence on the incident energy, of the amount of each type of the point defects formed, and quantify unambiguously the threshold displacement energies for both O and Si atoms. These results provide a comprehensive basis to assess the nature and extent of radiation damage in quartz.« less
Shao, Lin; Wei, C. -C.; Gigax, J.; ...
2014-06-10
Ion irradiation has been widely used to simulate radiation damage induced by neutrons. However, there are a number of features of ion-induced damage that differ from neutron-induced damage, and these differences require investigation before behavior arising from neutron bombardment can be confidently predicted from ion data. In this study 3.5 MeV self-ion irradiation of pure iron was used to study the influence on void swelling of the depth-dependent defect imbalance between vacancies and interstitials that arises from various surface effects, forward scattering of displaced atoms, and especially the injected interstitial effect. The depth dependence of void swelling was observed notmore » to follow the behavior anticipated from the depth dependence of the damage rate. Void nucleation and growth develop first in the lower-dose, near-surface region, and then, during continued irradiation, move to progressively deeper and higher-damage depths. This indicates a strong initial suppression of void nucleation in the peak damage region that continued irradiation eventually overcomes. This phenomenon is shown by the Boltzmann transport equation method to be due to depth-dependent defect imbalances created under ion irradiation. These findings thus demonstrate that void swelling does not depend solely on the local dose level and that this sensitivity of swelling to depth must be considered in extracting and interpreting ion-induced swelling data.« less
NASA Astrophysics Data System (ADS)
Shi, Binkai; Qiao, Pizhong
2018-03-01
Vibration-based nondestructive testing is an area of growing interest and worthy of exploring new and innovative approaches. The displacement mode shape is often chosen to identify damage due to its local detailed characteristic and less sensitivity to surrounding noise. Requirement for baseline mode shape in most vibration-based damage identification limits application of such a strategy. In this study, a new surface fractal dimension called edge perimeter dimension (EPD) is formulated, from which an EPD-based window dimension locus (EPD-WDL) algorithm for irregularity or damage identification of plate-type structures is established. An analytical notch-type damage model of simply-supported plates is proposed to evaluate notch effect on plate vibration performance; while a sub-domain of notch cases with less effect is selected to investigate robustness of the proposed damage identification algorithm. Then, fundamental aspects of EPD-WDL algorithm in term of notch localization, notch quantification, and noise immunity are assessed. A mathematical solution called isomorphism is implemented to remove false peaks caused by inflexions of mode shapes when applying the EPD-WDL algorithm to higher mode shapes. The effectiveness and practicability of the EPD-WDL algorithm are demonstrated by an experimental procedure on damage identification of an artificially-induced notched aluminum cantilever plate using a measurement system of piezoelectric lead-zirconate (PZT) actuator and scanning laser Doppler vibrometer (SLDV). As demonstrated in both the analytical and experimental evaluations, the new surface fractal dimension technique developed is capable of effectively identifying damage in plate-type structures.
NASA Astrophysics Data System (ADS)
Korkmaz, K. A.
2009-06-01
Pakistan and neighbourhood experience numerous earthquakes, most of which result in damaged or collapsed buildings and loss of life that also affect the economy adversely. On 29 October, 2008, an earthquake of magnitude 6.5 occurred in Ziarat, Quetta Region, Pakistan which was followed by more than 400 aftershocks. Many villages were completely destroyed and more than 200 people died. The previous major earthquake was in 2005, known as the South Asian earthquake (Mw=7.6) occurred in Kashmir, where 80 000 people died. Inadequate building stock is to be blamed for the degree of disaster, as the majority of the buildings in the region are unreinforced masonry low-rise buildings. In this study, seismic vulnerability of regionally common unreinforced masonry low-rise buildings was investigated using probabilistic based seismic safety assessment. The results of the study showed that unreinforced masonry low-rise buildings display higher displacements and shear force. Probability of damage due to higher displacements and shear forces can be directly related to damage or collapse.
In-Situ RBS Channelling Studies Of Ion Implanted Semiconductors And Insulators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wendler, E.
2011-06-01
The experimental set-up at the ion beam facility in Jena allows the performance of Rutherford backscattering spectrometry (RBS) in channeling configuration at any temperature between 15 K and room temperature without changing the environment or the temperature of the sample. Doing RBS channeling studies at 15 K increases the sensitivity to defects, because the influence of lattice vibrations is reduced. Thus, the very early processes of ion induced damage formation can be studied and the cross section of damage formation per ion in virgin material, P, can be determined. At 15 K ion-beam induced damage formation itself can be investigated,more » because the occurrence of thermal effects can be widely excluded. In AlAs, GaN, and ZnO the cross section P measured at 15 K can be used to estimate the displacement energy for the heavier component, which is in reasonable agreement with other experiments or theoretical calculations. For a given ion species (here Ar ions) the measured cross section P exhibits a quadratic dependence P{proportional_to}P{sub SRIM}{sup 2} with P{sub SRIM} being the value calculated with SRIM using established displacement energies from other sources. From these results the displacement energy of AlN can be estimated to about 40 eV. Applying the computer code DICADA to calculate the depth distribution of displaced lattice atoms from the channeling spectra, indirect information about the type of defects produced during ion implantation at 15 K can be obtained. In some materials like GaN or ZnO the results indicate the formation of extended defects most probably dislocation loops and thus suggest an athermal mobility of defect at 15 K.« less
NASA Technical Reports Server (NTRS)
Humphreys, E. A.
1981-01-01
A computerized, analytical methodology was developed to study damage accumulation during low velocity lateral impact of layered composite plates. The impact event was modeled as perfectly plastic with complete momentum transfer to the plate structure. A transient dynamic finite element approach was selected to predict the displacement time response of the plate structure. Composite ply and interlaminar stresses were computed at selected time intervals and subsequently evaluated to predict layer and interlaminar damage. The effects of damage on elemental stiffness were then incorporated back into the analysis for subsequent time steps. Damage predicted included fiber failure, matrix ply failure and interlaminar delamination.
Weninger, Patrick; Tschabitscher, Manfred; Traxler, Hannes; Pfafl, Veronika; Hertz, Harald
2010-04-01
Although a lateral starting point for tibial nailing is recommended to avoid valgus misalignment, higher rates of intra-articular damage were described compared with a medial parapatellar approach. The aim of this anatomic study was to evaluate the fracture level allowing for a safe medial nail entry point without misalignment or dislocation of fragments. Thirty-two fresh-frozen cadaver lower extremities were used to create 1-cm osteotomies at four different levels (n = 8) from 2 cm to 8 cm below the tibial tuberosity. Nine-millimeter unreamed solid titanium tibial nails (Connex, I.T.S. Spectromed, Lassnitzhohe, Austria) were inserted from a medial parapatellar incision. Misalignment (degree) and dislocation of the distal fragment were measured in the frontal and sagittal plane. A medial parapatellar approach for tibial nail insertion mainly caused valgus and anterior bow misalignment and ventral and medial fragment displacement. Mean misalignment and fragment displacement did not exceed 0.5 degree if the osteotomy was performed 8 cm to 9 cm below the tibial tuberosity. According to the results of this study, a medial parapatellar approach can be performed without misalignment and fragment dislocation in proximal tibia fractures extending 8 cm or more below the tibial tuberosity.
Representing target motion: the role of the right hemisphere in the forward displacement bias.
McGeorge, Peter; Beschin, Nicoletta; Della Sala, Sergio
2006-11-01
Patients with left spatial neglect, patients with right hemisphere damage but no neglect, and a control group were asked to judge the final position of a series of moving targets. Both patient groups showed attentional deficits. All 3 groups demonstrated a forward displacement bias, overestimating the final target position along the object trajectory. However, in both patient groups the size of this forward displacement bias decreased as the distance the target traveled before vanishing increased. For horizontally moving targets, at the maximum distance only the control group showed significant forward displacement. For all 3 groups, the direction in which the target traveled had no influence, but the size of the forward displacement increased as target speed increased. Several attentional explanations of these results are considered, including the differential allocation of spatial attention between central and peripheral locations, differences between exogenous and endogenous attention, and deficits in sustained attention.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigax, J. G.; Chen, T.; Kim, Hyosim
Ferritic/martensitic alloys are required for advanced reactor components to survive 500e600 neutroninduced dpa. Ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500e600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damage level of 250more » dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an “internal temperature shift” that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. In comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.« less
Silicon Schottky Diode Safe Operating Area
NASA Technical Reports Server (NTRS)
Casey, Megan C.; Campola, Michael J.; Lauenstein, Jean-Marie; Wilcox, Edward P.; Phan, Anthony M.; LaBel, Kenneth A.
2016-01-01
Vulnerability of a variety of candidate spacecraft electronics to total ionizing dose and displacement damage is studied. Devices tested include optoelectronics, digital, analog, linear bipolar devices, and hybrid devices.
Seismic Rehabilitation of RC Frames by Using Steel Panels
NASA Astrophysics Data System (ADS)
Mowrtage, Waiel
2008-07-01
Every major earthquake in Turkey causes a large number of building suffer moderate damage due to poor construction. If a proper and fast retrofit is not applied, the aftershocks, which may sometimes come days or weeks after the main shock, can push a moderately damaged building into a major damage or even total collapse. This paper presents a practical retrofit method for moderately damaged buildings, which increases the seismic performance of the structural system by reducing the displacement demand. Fabricated steel panels are used for the retrofit. They are light-weight, easy to handle, and can be constructed very quickly. Moreover, they are cheap, and do not need formwork or skilled workers. They can be designed to compensate for the stiffness and strength degradation, and to fit easily inside a moderately damaged reinforced concrete frame. To test the concept, a half-scale, single-story 3D reinforced concrete frame specimen was constructed at the shake-table laboratories of the Kandilli Observatory and Earthquake Research Institute of Bogazici University, and subjected to recorded real earthquake base accelerations. The amplitudes of base accelerations were increased until a moderate damage level is reached. Then, the damaged RC frames was retrofitted by means of steel panels and tested under the same earthquake. The seismic performance of the specimen before and after the retrofit was evaluated using FEMA356 standards, and the results were compared in terms of stiffness, strength, and deformability. The results have confirmed effectiveness of the proposed retrofit scheme.
NASA Astrophysics Data System (ADS)
Nussbaum, C.; Guglielmi, Y.
2016-12-01
The FS experiment at the Mont Terri underground research laboratory consists of a series of controlled field stimulation tests conducted in a fault zone intersecting a shale formation. The Main Fault is a secondary order reverse fault that formed during the creation of the Jura fold-and-thrust belt, associated to a large décollement. The fault zone is up to 6 m wide, with micron-thick shear zones, calcite veins, scaly clay and clay gouge. We conducted fluid injection tests in 4 packed-off borehole intervals across the Main Fault using mHPP probes that allow to monitor 3D displacement between two points anchored to the borehole walls at the same time as fluid pressure and flow rate. While pressurizing the intervals above injection pressures of 3.9 to 5.3 MPa, there is an irreversible change in the displacements magnitude and orientation associated to the hydraulic opening of natural shear planes oriented N59 to N69 and dipping 39 to 58°. Displacements of 0.01 mm to larger than 0.1 mm were captured, the highest value being observed at the interface between the low permeable fault core and the damage zone. Contrasted fault movements were observed, mainly dilatant in the fault core, highly dilatant-normal slip at the fault core-damage zone interface and low dilatant-strike-slip-reverse in the damage-to-intact zones. First using a slip-tendency approach based on Coulomb reactivation potential of fault planes, we computed a stress tensor orientation for each test. The input parameters are the measured displacement vectors above the hydraulic opening pressure and the detailed fault geometry of each intervals. All measurements from the damage zone can be explained by a stress tensor in strike-slip regime. Fault movements measured at the core-damage zone interface and within the fault core are in agreement with the same stress orientations but changed as normal faulting, explaining the significant dilatant movements. We then conducted dynamic hydromechanical simulations of the Coulomb stress variations on discrete fault planes, considering the injection pressure variations with time in the packed-off sections as the source parameters. Results suggest that the fault architecture and heterogeneity play an important role on the local stress variation at the core-damage zone interface, favouring slip activation below sigma 3.
NASA Technical Reports Server (NTRS)
Lyle, Karen H.
2008-01-01
The Space Shuttle Columbia Accident Investigation Board recommended that NASA develop, validate, and maintain a modeling tool capable of predicting the damage threshold for debris impacts on the Space Shuttle Reinforced Carbon-Carbon (RCC) wing leading edge and nosecap assembly. The results presented in this paper are one part of a multi-level approach that supported the development of the predictive tool used to recertify the shuttle for flight following the Columbia Accident. The assessment of predictive capability was largely based on test analysis comparisons for simpler component structures. This paper provides comparisons of finite element simulations with test data for external tank foam debris impacts onto 6-in. square RCC flat panels. Both quantitative displacement and qualitative damage assessment correlations are provided. The comparisons show good agreement and provided the Space Shuttle Program with confidence in the predictive tool.
Fatigue behavior of type 316 stainless steel following neutron irradiation inducing helium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grossbeck, M.L.; Liu, K.C.
1980-01-01
Since a tokamak fusion reactor operates in a cyclic mode, thermal stresses will result in fatigue in structural components, especially the first wall and blanket. Type 316 stainless steel in the 20% cold-worked condition has been irradiated in the HFIR in order to introduce helium as well as displacement damage. A miniature hourglass specimen was developed for the reactor irradiations and subsequent fully reversed low cycle fatigue testing. For material irradiated and tested at 430/sup 0/C in vacuum to a damage level of 7 to 15 dpa and containing 200 to 1000 appm He, a reduction in life by amore » factor of 3 to 10 was observed. An attempt was made to predict irradiated fatigue life by fitting data from irradiated material to a power law equation similar to the universal slopes equation and using ductility ratios from tensile tests to modify the equation for irradiated material.« less
Tritium retention in reduced-activation ferritic/martensitic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hatano, Y.; Abe, S.; Matsuyama, M.
Reduced-activation ferritic/martensitic (RAFM) steels are structural material candidates for breeding blankets of future fusion reactors. Therefore, tritium (T) retention in RAFM steels is an important problem in assessing the T inventory of blankets. In this study, specimens of RAFM steels were subjected to irradiation of 20 MeV W ions to 0.54 displacements per atom (dpa), exposure to high flux D plasmas at 400 and 600 K and that to pulsed heat loads. The specimens thus prepared were exposed to DT gas at 473 K. Despite severe modification in the surface morphology, heat loads had negligible effects on T retention. Significantmore » increase in T retention at the surface and/or subsurface was observed after D plasma exposure. However, T trapped at the surface/subsurface layer was easily removed by maintaining the specimens in the air at about 300 K. Displacement damage led to increase in T retention in the bulk due to the trapping effects of defects, and T trapped was stable at 300 K. It was therefore concluded that displacement damages had the largest influence on T retention under the present conditions.« less
Quantifying yield behaviour in metals by X-ray nanotomography
Mostafavi, M.; Bradley, R.; Armstrong, D. E. J.; Marrow, T. J.
2016-01-01
Nanoindentation of engineering materials is commonly used to study, at small length scales, the continuum mechanical properties of elastic modulus and yield strength. However, it is difficult to measure strain hardening via nanoindentation. Strain hardening, which describes the increase in strength with plastic deformation, affects fracture toughness and ductility, and is an important engineering material property. The problem is that the load-displacement data of a single nanoindentation do not provide a unique solution for the material’s plastic properties, which can be described by its stress-strain behaviour. Three-dimensional mapping of the displacement field beneath the indentation provides additional information that can overcome this difficulty. We have applied digital volume correlation of X-ray nano-tomographs of a nanoindentation to measure the sub-surface displacement field and so obtain the plastic properties of a nano-structured oxide dispersion strengthened steel. This steel has potential applications in advanced nuclear energy systems, and this novel method could characterise samples where proton irradiation of the surface simulates the effects of fast neutron damage, since facilities do not yet exist that can replicate this damage in bulk materials. PMID:27698472
Screening Adhesively Bonded Single-Lap-Joint Testing Results Using Nonlinear Calculation Parameters
2012-03-01
versus displacement response for single-lap-joints bonded with damage-tolerant adhe- sives, such the polyurea adhesive plotted in Figure 2, is much...displacement response for a single-lap-joint bonded with a polyurea adhesive. Complex x-y plots are commonly fitted using the Levenberg-Marquardt...expected decrease in maximum strength for the polyurea in compar- ison to the epoxy, which could have been obtained using a traditional analysis approach
Chen, Hsin-Hsiung; Fan, Ping; Chang, Szu-Wei; Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li
2017-03-28
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer.
Tsao, Yeou-Ping; Huang, Hsiang-Po; Chen, Show-Li
2017-01-01
Both nuclear receptor interaction protein (NRIP) and DNA damage binding protein 2 (DDB2) belong to the Cullin 4 (CUL4)-DDB1 binding protein family and are androgen receptor (AR)-interacting proteins. Here, we investigated the expression patterns of the NRIP, DDB2 and AR proteins in human prostate cancer tissues and found that the expression levels of NRIP and AR were higher, but the DDB2 level was lower, in prostate cancer tissues than in non-neoplastic controls, suggesting NRIP as a candidate tumor promoter and DDB2 as a tumor suppressor in prostate cancer. Furthermore, both NRIP and DDB2 shared the same AR binding domain; they were competitors for the AR, but not for DDB1 binding, in the AR-DDB2-DDB1-CUL4A complex. Conclusively, NRIP stabilizes the AR protein by displacing DDB2 from the AR-DDB2 complex. Consistent with our hypothesis, a specific expression pattern with high levels of NRIP and AR, together with a low level of DDB2, was found more frequently in the human prostate cancer tissues with a cribriform pattern than in non-cribriform tumors, suggesting that disruption of the balance between NRIP and DDB2 may change AR protein homeostasis and contribute to pathogenesis in certain aggressive types of prostate cancer. PMID:28212551
1928-01-01
(1).—Varieties of spinal injuries, the three groups of common usage: fractures, dislocations, fracture-dislocations. Shall not refer in detail to fractures of the spinous or transverse processes. (2) Mechanics of injury to vertebræ. Two variables: (1) the nature of the bones; (2) the qualities of the force. Spinal injury usually caused by indirect violence. (3) The different results of injuries applied to the head; may break skull, failing that, the neck. Atlas fracture. Difference in qualities of the force causing atlas fracture and low cervical dislocation. (4) The compound nature of the vertebral body. The two columns, anterior, spongy; posterior, compact. The nature of wedge-compression of the vertebral body. Variations in the shape of the wedge. Reasons. Occur at all levels, including cervical spine. (5) Frequency of injury at different levels of vertebral column. “Localization” of injury. The two places of the graph of injury. The cervical at C. 5. Reason. The thoracic-lumbar peak at T. 12, L. 1 industrial. Is there a third peak at C. 2? (6) The effects of violent flexion of the spine: cervical flexion causes luxation at C. 5 or so. Extension causes fracture of odontoid. Violent flexion and extension therefore cause injury at very different levels. Thoracic region, why is there no “peak” of injury at T.6, 7? Lumbar region. (7) Displacement of fragments. Continuation of violence after the essential injury has been effected. Kümmell's disease, no inflammatory process involved. (8) Injury to the intervertebral discs, essential for displacement. Imperfect rupture a cause for difficulty in reducing luxations. The worst cases those in which it is most easily done, but most of these have cord damage. (9) Spinal injury from minimal violence. Examples of trivial cases, diving, brushing hair and so forth. Vertebral displacement in disease a much more serious thing. (10) Curious stability of many cervical luxations. Reasons. Locking of the inferior zygaphophyses. (11) Injury to nervous elements left principally to other speakers. Cord compression very rare. Immediate and irremediable damage. Root injuries. Falling mortality of modern statistics due to better diagnosis. (12) Primary operation for fractures of spine relegated to oblivion. Rarity of indications for open operation. Reduction the best treatment. ImagesFig. 5Fig. 6 PMID:19986314
NASA Astrophysics Data System (ADS)
McKenna, Alice
One of the functions of graphite is as a moderator in several nuclear reactor designs, including the Advanced Gas-cooled Reactor (AGR). In the reactor graphite is used to thermalise the neutrons produced in the fission reaction thus allowing a self-sustained reaction to occur. The graphite blocks, acting as the moderator, are constantly irradiated and consequently suffer damage. This thesis examines the types of damage caused using molecular dynamic (MD) simulations and ab intio calculations. Neutron damage starts with a primary knock-on atom (PKA), which is travelling so fast that it creates damage through electronic and thermal excitation (this is addressed with thermal spike simulations). When the PKA has lost energy the subsequent cascade is based on ballistic atomic displacement. These two types of simulations were performed on single crystal graphite and other carbon structures such as diamond and amorphous carbon as a comparison. The thermal spike in single crystal graphite produced results which varied from no defects to a small number of permanent defects in the structure. It is only at the high energy range that more damage is seen but these energies are less likely to occur in the nuclear reactor. The thermal spike does not create damage but it is possible that it can heal damaged sections of the graphite, which can be demonstrated with the motion of the defects when a thermal spike is applied. The cascade simulations create more damage than the thermal spike even though less energy is applied to the system. A new damage function is found with a threshold region that varies with the square root of energy in excess of the energy threshold. This is further broken down in to contributions from primary and subsequent knock-on atoms. The threshold displacement energy (TDE) is found to be Ed=25eV at 300K. In both these types of simulation graphite acts very differently to the other carbon structures. There are two types of polycrystalline graphite structures which simulations have been performed on. The difference between the two is at the grain boundaries with one having dangling bonds and the other one being bonded. The cascade showed the grain boundaries acting as a trap for the knock-on atoms which produces more damage compared with the single crystal. Finally the effects of turbostratic disorder on damage is considered. Density functional theory (DFT) was used to look at interstitials in (002) twist boundaries and how they act compared to AB stacked graphite. The results of these calculations show that the spiro interstitial is more stable in these grain boundaries, so at temperatures where the interstitial can migrate along the c direction they will segregate to (002) twist boundaries.
Irradiation effects in UO2 and CeO2
NASA Astrophysics Data System (ADS)
Ye, Bei; Oaks, Aaron; Kirk, Mark; Yun, Di; Chen, Wei-Ying; Holtzman, Benjamin; Stubbins, James F.
2013-10-01
Single crystal CeO2, as a surrogate material to UO2, was irradiated with 500 keV xenon ions at 800 °C while being observed using in situ transmission electron microscopy (TEM). Experimental results show the formation and growth of defect clusters including dislocation loops and cavities as a function of increasing atomic displacement dose. At high dose, the dislocation loop structure evolves into an extended dislocation line structure, which appears to remain stable to the high dose levels examined in this study. A high concentration of cavities was also present in the microstructure. Despite high atomic displacement doses, the specimen remained crystalline to a cumulated dose of 5 × 1015 ions/cm2, which is consistent with the known stability of the fluorite structure under high dose irradiation. Kinetic Monte Carlo calculations show that oxygen mobility is substantially higher in hypo-stoichiometric UO2/CeO2 than hyper-stoichiometric systems. This result is consistent with the ability of irradiation damage to recover even at intermediate irradiation temperatures.
NASA Astrophysics Data System (ADS)
Williams, Kevin Vaughan
Rapid growth in use of composite materials in structural applications drives the need for a more detailed understanding of damage tolerant and damage resistant design. Current analytical techniques provide sufficient understanding and predictive capabilities for application in preliminary design, but current numerical models applicable to composites are few and far between and their development into well tested, rigorous material models is currently one of the most challenging fields in composite materials. The present work focuses on the development, implementation, and verification of a plane-stress continuum damage mechanics based model for composite materials. A physical treatment of damage growth based on the extensive body of experimental literature on the subject is combined with the mathematical rigour of a continuum damage mechanics description to form the foundation of the model. The model has been implemented in the LS-DYNA3D commercial finite element hydrocode and the results of the application of the model are shown to be physically meaningful and accurate. Furthermore it is demonstrated that the material characterization parameters can be extracted from the results of standard test methodologies for which a large body of published data already exists for many materials. Two case studies are undertaken to verify the model by comparison with measured experimental data. The first series of analyses demonstrate the ability of the model to predict the extent and growth of damage in T800/3900-2 carbon fibre reinforced polymer (CFRP) plates subjected to normal impacts over a range of impact energy levels. The predicted force-time and force-displacement response of the panels compare well with experimental measurements. The damage growth and stiffness reduction properties of the T800/3900-2 CFRP are derived using published data from a variety of sources without the need for parametric studies. To further demonstrate the physical nature of the model, a IM6/937 CFRP with a more brittle matrix system than 3900-2 is also analysed. Results of analyses performed under the same impact conditions do not compare as well quantitatively with measurements but the results are still promising and qualitative differences between the T800/3900-2 and IM6/937 are accurately captured. Finally, to further demonstrate the capability of the model, the response of a notched CFRP plate under quasi-static tensile loading is simulated and compared to experimental measurements. Of particular significance is the fact that the experimental test modelled in this case is uniquely suited to the characterization of the strain softening phenomenon observed in FRP laminates. Results of this virtual experiment compare very favourably with the measured damage growth and force-displacement curves.
Correlation of electron and proton irradiation-induced damage in InP solar cells
NASA Technical Reports Server (NTRS)
Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.
1995-01-01
When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.
NASA Astrophysics Data System (ADS)
Owen, S. E.; Fielding, E. J.; Yun, S. H.; Yue, H.; Polet, J.; Riel, B. V.; Liang, C.; Huang, M. H.; Webb, F.; Simons, M.; Moore, A. W.; Agram, P. S.; Barnhart, W. D.; Hua, H.; Liu, Z.; Milillo, P.; Sacco, G. F.; Rosen, P. A.; Manipon, G.
2015-12-01
On April 25, 2015, the M7.8 Gorkha earthquake struck Nepal and the city of Kathmandu. The quake caused a significant humanitarian crisis and killed more than 8,000 due to widespread building damage and triggered landslides throughout the region. This was the strongest earthquake to occur in the region since the 1934 Nepal-Bihar magnitude 8.0 quake caused more than 10,000 fatalities. In the days following the earthquake, the JPL/Caltech ARIA project produced coseismic GPS and SAR displacements, fault slip models, and damage assessments from SAR coherence change that were helpful in both understanding the event and in the response efforts. The ARIA project produced InSAR observations from two new SAR missions - JAXA's ALOS-2 and ESA's Sentinel 1a. The GPS coseismic displacements showed ~1.8 meters of southward motion and ~1.3 meters of uplift in Kathmandu. InSAR images of the displacement field and fault models show that the rupture extended 135 km southeast of the epicenter. The SAR imagery also confirmed that the fault slip did not extend to the surface, though localized offsets formed due to liquefaction. The GPS and SAR analysis has continued to image the large M7.3 aftershock and postseismic deformation. The damage assessments from coherence change were used by several organizations guiding the response effort, including the NGA, the World Bank, and OFDA/USAID. We will present imaging, modeling, and damage assessment results from the recent April 25, 2015 M7.8 earthquake in Nepal, and its largest aftershock, a M7.3 event on May 12, 2015. We also discuss how these data were used for understanding the event, guiding the response, and for educational outreach.
Radiation response of alloy T91 at damage levels up to 1000 peak dpa
Gigax, J. G.; Chen, T.; Kim, Hyosim; ...
2016-10-04
Ferritic/martensitic alloys are required for advanced reactor components to survive 500–600 neutron-induced dpa. In this paper, ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 °C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500–600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damagemore » level of 250 dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an “internal temperature shift” that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. Finally, in comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.« less
Numerical and Experimental Validation of a New Damage Initiation Criterion
NASA Astrophysics Data System (ADS)
Sadhinoch, M.; Atzema, E. H.; Perdahcioglu, E. S.; van den Boogaard, A. H.
2017-09-01
Most commercial finite element software packages, like Abaqus, have a built-in coupled damage model where a damage evolution needs to be defined in terms of a single fracture energy value for all stress states. The Johnson-Cook criterion has been modified to be Lode parameter dependent and this Modified Johnson-Cook (MJC) criterion is used as a Damage Initiation Surface (DIS) in combination with the built-in Abaqus ductile damage model. An exponential damage evolution law has been used with a single fracture energy value. Ultimately, the simulated force-displacement curves are compared with experiments to validate the MJC criterion. 7 out of 9 fracture experiments were predicted accurately. The limitations and accuracy of the failure predictions of the newly developed damage initiation criterion will be discussed shortly.
Determination of recombination radius in Si for binary collision approximation codes
Vizkelethy, Gyorgy; Foiles, Stephen M.
2015-09-11
Displacement damage caused by ions or neutrons in microelectronic devices can have significant effect on the performance of these devices. Therefore, it is important to predict not only the displacement damage profile, but also its magnitude precisely. Analytical methods and binary collision approximation codes working with amorphous targets use the concept of displacement energy, the energy that a lattice atom has to receive to create a permanent replacement. It was found that this “displacement energy” is direction dependent; it can range from 12 to 32 eV in silicon. Obviously, this model fails in BCA codes that work with crystalline targets,more » such as Marlowe. Marlowe does not use displacement energy; instead, it uses lattice binding energy only and then pairs the interstitial atoms with vacancies. Then based on the configuration of the Frenkel pairs it classifies them as close, near, or distant pairs, and considers the distant pairs the permanent replacements. Unfortunately, this separation is an ad hoc assumption, and the results do not agree with molecular dynamics calculations. After irradiation, there is a prompt recombination of interstitials and vacancies if they are nearby, within a recombination radius. In order to implement this recombination radius in Marlowe, we used the comparison of MD and Marlowe calculation in a range of ion energies in single crystal silicon target. As a result, the calculations showed that a single recombination radius of ~7.4 Å in Marlowe for a range of ion energies gives an excellent agreement with MD.« less
Smart RC elements for long-life monitoring of civil infrastructures
NASA Astrophysics Data System (ADS)
Zonta, Daniele; Pozzi, Matteo; Forti, Marco; Bursi, Oreste S.
2005-05-01
A research effort has been launched at the University of Trento, aimed at developing an innovative distributed construction system based on smart prefabricated concrete elements allowing for real-time condition assessment of civil infrastructures. So far, two reduced-scale prototypes have been produced, each consisting of a 0.2 by 0.3 by 5.6m RC beam specifically designed for permanent instrumentation with 8 long-gauge Fiber Optics Sensors (FOS) at the lower edge. The sensors employed are Fiber Bragg Grating (FBG) -based and can measure finite displacements both in statics and dynamics. The acquisition module uses a single commercial interrogation unit and a software-controlled optical switch, allowing acquisition of dynamic multi-channel signals from FBG-FOS, with a sample frequency of 625 Hz per channel. The performance of the system underwent validation I n the laboratory. The scope of the experiment was to correlate changes in the dynamic response of the beams with different damage scenarios, using a direct modal strain approach. Each specimen was dynamically characterized in the undamaged state and in various damage conditions, simulating different cracking levels and recurrent deterioration scenarios, including concrete cover spalling and partial corrosion of the reinforcement. The location and the extent of damage are evaluated by calculating damage indices which take account of changes in frequency and in strain-mode-shapes. This paper presents in detail the results of the experiment and demonstrates how the damage distribution detected by the system is fully compatible with the damage extent appraised by inspection.
NASA Astrophysics Data System (ADS)
Iwamoto, Yosuke
2018-03-01
In this study, the Monte Carlo displacement damage calculation method in the Particle and Heavy-Ion Transport code System (PHITS) was improved to calculate displacements per atom (DPA) values due to irradiation by electrons (or positrons) and gamma rays. For the damage due to electrons and gamma rays, PHITS simulates electromagnetic cascades using the Electron Gamma Shower version 5 (EGS5) algorithm and calculates DPA values using the recoil energies and the McKinley-Feshbach cross section. A comparison of DPA values calculated by PHITS and the Monte Carlo assisted Classical Method (MCCM) reveals that they were in good agreement for gamma-ray irradiations of silicon and iron at energies that were less than 10 MeV. Above 10 MeV, PHITS can calculate DPA values not only for electrons but also for charged particles produced by photonuclear reactions. In DPA depth distributions under electron and gamma-ray irradiations, build-up effects can be observed near the target's surface. For irradiation of 90-cm-thick carbon by protons with energies of more than 30 GeV, the ratio of the secondary electron DPA values to the total DPA values is more than 10% and increases with an increase in incident energy. In summary, PHITS can calculate DPA values for all particles and materials over a wide energy range between 1 keV and 1 TeV for electrons, gamma rays, and charged particles and between 10-5 eV and 1 TeV for neutrons.
Probabilistic Evaluation of Blade Impact Damage
NASA Technical Reports Server (NTRS)
Chamis, C. C.; Abumeri, G. H.
2003-01-01
The response to high velocity impact of a composite blade is probabilistically evaluated. The evaluation is focused on quantifying probabilistically the effects of uncertainties (scatter) in the variables that describe the impact, the blade make-up (geometry and material), the blade response (displacements, strains, stresses, frequencies), the blade residual strength after impact, and the blade damage tolerance. The results of probabilistic evaluations results are in terms of probability cumulative distribution functions and probabilistic sensitivities. Results show that the blade has relatively low damage tolerance at 0.999 probability of structural failure and substantial at 0.01 probability.
Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption.
Charif, Razan; Granotier-Beckers, Christine; Bertrand, Hélène Charlotte; Poupon, Joël; Ségal-Bendirdjian, Evelyne; Teulade-Fichou, Marie-Paule; Boussin, François D; Bombard, Sophie
2017-08-21
Telomeres protect the ends of chromosomes against illegitimate recombination and repair. They can be targets for G-quadruplex ligands and platinum complexes due to their repeated G-rich sequences. Protection of telomeres is ensured by a complex of six proteins, including TRF2, which inhibits the DNA damage response pathway. We analyzed telomere modifications induced in cancer cells by the experimental hybrid platinum complex, Pt-MPQ, comprising both an ethylene diamine monofunctional platinum complex and a G-quadruplex recognition moiety (MPQ). Pt-MPQ promotes the displacement of two telomeric proteins (TRF2 and TRF1) from telomeres, as well as the formation of telomere damage and telomere sister losses, whereas the control compound MPQ does not. This suggests that the platinum moiety potentiates the targeting of the G-quadruplex ligand to telomeres, opening a new perspective for telomere biology and anticancer therapy. Interestingly, the chemotherapy drug cisplatin, which has no specific affinity for G-quadruplex structures, partially induces the TRF2 delocalization from telomeres but produces less telomeric DNA damage, suggesting that this TRF2 displacement could be independent of G-quadruplex recognition.
Displacement damage and predicted non-ionizing energy loss in GaAs
NASA Astrophysics Data System (ADS)
Gao, Fei; Chen, Nanjun; Hernandez-Rivera, Efrain; Huang, Danhong; LeVan, Paul D.
2017-03-01
Large-scale molecular dynamics (MD) simulations, along with bond-order interatomic potentials, have been applied to study the defect production for lattice atom recoil energies from 500 eV to 20 keV in gallium arsenide (GaAs). At low energies, the most surviving defects are single interstitials and vacancies, and only 20% of the interstitial population is contained in clusters. However, a direct-impact amorphization in GaAs occurs with a high degree of probability during the cascade lifetime for Ga PKAs (primary knock-on atoms) with energies larger than 2 keV. The results reveal a non-linear defect production that increases with the PKA energy. The damage density within a cascade core is evaluated, and used to develop a model that describes a new energy partition function. Based on the MD results, we have developed a model to determine the non-ionizing energy loss (NIEL) in GaAs, which can be used to predict the displacement damage degradation induced by space radiation on electronic components. The calculated NIEL predictions are compared with the available data, thus validating the NIEL model developed in this study.
Oxidation of silicon with a 5 eV O(-) beam
NASA Technical Reports Server (NTRS)
Hecht, M. H.; Orient, O. J.; Chutjian, A.; Vasquez, R. P.
1989-01-01
A silicon wafer has been oxidized at room temperature in vacuum using a pure, ground-state beam of O(-) ions. The beam was of sufficiently low energy that no displacement damage or implantation was energetically possible. The resulting SiO2 films were analyzed with X-ray photoelectron spectroscopy. A logarithmic dependence of oxide thickness on dose was observed, with an extrapolated oxidation efficiency of unity for the clean silicon surface. A distinct initial oxidation phase was observed, with an anomalously high level of silicon suboxides. In addition, the valence-band offset between the silicon and the oxide was unusually small, suggesting a large interfacial dipole.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Yang, Ying; Chen, Tianyi
Advanced nuclear reactors as well as the life extension of light water reactors require advanced alloys capable of satisfactory operation up to neutron damage levels approaching 200 displacements per atom (dpa). Extensive studies, including fundamental theories, have demonstrated the superior resistance to radiation-induced swelling in ferritic steels, primarily inherited from their body-centered cubic (bcc) structure. This study aims at developing nanoprecipitates strengthened advanced ferritic alloys for advanced nuclear reactor applications. To be more specific, this study aims at enhancing the amorphization ability of some precipitates, such as Laves phase and other types of intermetallic phases, through smart alloying strategy, andmore » thereby promote the crystalline®amorphous transformation of these precipitates under irradiation.« less
Three-dimensional numerical modeling of land subsidence in Shanghai, China
NASA Astrophysics Data System (ADS)
Ye, Shujun; Luo, Yue; Wu, Jichun; Yan, Xuexin; Wang, Hanmei; Jiao, Xun; Teatini, Pietro
2016-05-01
Shanghai, in China, has experienced two periods of rapid land subsidence mainly caused by groundwater exploitation related to economic and population growth. The first period occurred during 1956-1965 and was characterized by an average land subsidence rate of 83 mm/yr, and the second period occurred during 1990-1998 with an average subsidence rate of 16 mm/yr. Owing to the establishment of monitoring networks for groundwater levels and land subsidence, a valuable dataset has been collected since the 1960s and used to develop regional land subsidence models applied to manage groundwater resources and mitigate land subsidence. The previous geomechanical modeling approaches to simulate land subsidence were based on one-dimensional (1D) vertical stress and deformation. In this study, a numerical model of land subsidence is developed to simulate explicitly coupled three-dimensional (3D) groundwater flow and 3D aquifer-system displacements in downtown Shanghai from 30 December 1979 to 30 December 1995. The model is calibrated using piezometric, geodetic-leveling, and borehole extensometer measurements made during the 16-year simulation period. The 3D model satisfactorily reproduces the measured piezometric and deformation observations. For the first time, the capability exists to provide some preliminary estimations on the horizontal displacement field associated with the well-known land subsidence in Shanghai and for which no measurements are available. The simulated horizontal displacements peak at 11 mm, i.e. less than 10 % of the simulated maximum land subsidence, and seems too small to seriously damage infrastructure such as the subways (metro lines) in the center area of Shanghai.
Self-Healing of Proton Damage in Lithium Niobite LiNbO2
NASA Astrophysics Data System (ADS)
Shank, Joshua C.; Tellekamp, M. Brooks; Zhang, En Xia; Bennett, W. Geoff; McCurdy, Michael W.; Fleetwood, Daniel M.; Alles, Michael L.; Schrimpf, Ronald D.; Doolittle, W. Alan
2015-04-01
Proton radiation damage and short-term annealing are investigated for lithium niobite (LiNbO2) mixed electronic-ionic memristors. Radiation damage and short-term annealing were characterized using Electrochemical Impedance Spectroscopy (EIS) to determine changes in the device resistance and the lithium ion mobility. The radiation damage resulted in a 0.48% change in the resistance at a fluence of 1014 cm-2. In-situ short-term annealing at room temperature reduced the net detrimental effect of the damage with a time constant of about 9 minutes. The radiation damage mechanism is attributed predominantly to displacement damage at the niobium and oxygen sites trapping lithium ions that are responsible for induced polarization within the material. Short term annealing is attributed to room temperature thermal annealing of these defects, freeing the highly mobile lithium ions.
Adhesive Characterization and Progressive Damage Analysis of Bonded Composite Joints
NASA Technical Reports Server (NTRS)
Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung
2014-01-01
The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.
NASA Astrophysics Data System (ADS)
Hilarov, V. L.
2017-09-01
The response of a material with a random uniform distribution of pores to a sound impulse was studied. The behavior of the numerical characteristics of the recurrence plots (RP) of the normal displacement vector component depending on the degree of damage was investigated. It was shown that the recurrence quantification analysis (RQA) parameters could be very informative for sonic fault detection.
Impact of nuclear transmutations on the primary damage production: The example of Ni based steels
NASA Astrophysics Data System (ADS)
Luneville, Laurence; Sublet, Jean Christphe; Simeone, David
2018-07-01
The recent nuclear evaluations describe more accurately the elastic and inelastic neutron-atoms interactions and allow calculating more realistically primary damage induced by nuclear reactions. Even if these calculations do not take into account relaxation processes occurring at the end of the displacement cascade (calculations are performed within the Binary Collision Approximation), they can accurately describe primary and recoil spectra in different reactors opening the door for simulating aging of nuclear materials with Ion Beam facilities. Since neutrons are only sensitive to isotopes, these spectra must be calculated weighting isotope spectra by the isotopic composition of materials under investigation. To highlight such a point, primary damage are calculated in pure Ni exhibiting a meta-stable isotope produced under neutron flux by inelastic neutron-isotope processes. These calculations clearly point out that the instantaneous primary damage production, the displacement per atom rate (dpa/s), responsible for the micro-structure evolution, strongly depends on the 59N i isotopic fractions closely related to the inelastic neutron isotope processes. Since the isotopic composition of the meta-stable isotope vanishes for large fluences, the long term impact of this isotope does not largely modify drastically the total dpa number in Ni based steels materials irradiate in nuclear plants.
DISPLACEMENT CASCADE SIMULATION IN TUNGSTEN AT 1025 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2013-09-30
Molecular dynamics simulation was employed to investigate the irradiation damage properties of bulk tungsten at 1025 K (0.25 melting temperature). A comprehensive data set of primary cascade damage was generated up to primary knock-on atom (PKA) energies 100 keV. The dependence of the number of surviving Frenkel pairs (NFP) on the PKA energy (E) exhibits three different characteristic domains presumably related to the different cascade morphologies that form. The low-energy regime < 0.2 keV is characterized by a hit-or-miss type of Frenkel pair (FP) production near the displacement threshold energy of 128 eV. The middle regime 0.3 – 30 keVmore » exhibits a sublinear dependence of log(NFP) vs log(E) associated with compact cascade morphology with a slope of 0.73. Above 30 keV, the cascade morphology consists of complex branches or interconnected damage regions. In this extended morphology, large interstitial clusters form from superposition of interstitials from nearby damage regions. Strong clustering above 30 keV results in a superlinear dependence of log(NFP) vs log(E) with a slope of 1.365. At 100 keV, an interstitial cluster of size 92 and a vacancy cluster of size 114 were observed.« less
Correlating Fast Fluence to dpa in Atypical Locations
NASA Astrophysics Data System (ADS)
Drury, Thomas H.
2016-02-01
Damage to a nuclear reactor's materials by high-energy neutrons causes changes in the ductility and fracture toughness of the materials. The reactor vessel and its associated piping's ability to withstand stress without brittle fracture are paramount to safety. Theoretically, the material damage is directly related to the displacements per atom (dpa) via the residual defects from induced displacements. However in practice, the material damage is based on a correlation to the high-energy (E > 1.0 MeV) neutron fluence. While the correlated approach is applicable when the material in question has experienced the same neutron spectrum as test specimens which were the basis of the correlation, this approach is not generically acceptable. Using Monte Carlo and discrete ordinates transport codes, the energy dependent neutron flux is determined throughout the reactor structures and the reactor vessel. Results from the models provide the dpa response in addition to the high-energy neutron flux. Ratios of dpa to fast fluence are calculated throughout the models. The comparisons show a constant ratio in the areas of historical concern and thus the validity of the correlated approach to these areas. In regions above and below the fuel however, the flux spectrum has changed significantly. The correlated relationship of material damage to fluence is not valid in these regions without adjustment. An adjustment mechanism is proposed.
He-irradiation effects on glass-ceramics for joining of SiC-based materials
NASA Astrophysics Data System (ADS)
Gozzelino, L.; Casalegno, V.; Ghigo, G.; Moskalewicz, T.; Czyrska-Filemonowicz, A.; Ferraris, M.
2016-04-01
CaO-Al2O3 (CA) and SiO2-Al2O3-Y2O3 (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV 4He+ ions at an average temperature of 75 °C up to a fluence of almost 2.3·1018 cm-2. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY).
Radiation-induced amorphization of Langasite La3Ga5SiO14
NASA Astrophysics Data System (ADS)
Yao, Tiankai; Lu, Fengyuan; Zhang, Haifeng; Gong, Bowen; Ji, Wei; Zuo, Lei; Lian, Jie
2018-03-01
Single crystals of Langasite La3Ga5SiO14 (LGS) were irradiated by 1 MeV Kr2+ ions at temperature range from 298 to 898 K in order to simulate the damage effect of neutron radiation on Langasite, a candidate sensor material proposed as high temperature and pressure sensors in nuclear reactors. The microstructure evolution of LGS as functions of irradiation dose and temperature was followed by in-situ TEM observation through electron diffraction pattern. LGS is found to be sensitive to ion beam irradiation-induced amorphization from displacive heavy ions with a low critical dose of ∼0.5 ± 0.2 dpa (neutron fluence of (1.6 ± 0.6) × 1019 neutrons/cm2) at room temperature. The critical amorphization temperature, Tc, is determined to be 910 ± 10 K. Under simultaneous ionizing electron (300 keV, 45 nA) and displacive heavy ion irradiations (1-MeV Kr2+ and flux of 6.25 × 1011 ions/cm2·s), LGS displayed greater stability of crystal structure against amorphization, possibly due to the electron radiation-induced recovery of displacive damage by heavy ions.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU.
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-11-09
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges.
Some mean atmospheric characteristics for snowfall occurrences in southern Brazil
NASA Astrophysics Data System (ADS)
Mintegui, Jéssica Melo; Puhales, Franciano Scremin; Boiaski, Nathalie Tissot; Nascimento, Ernani de Lima; Anabor, Vagner
2018-01-01
Snowfall is considered a natural disaster in southern Brazil, where a little infrastructure exists up to prevent against the damage it induces, making snowfall forecast a matter of great interest in this region. The present article aims to describe the mean behavior of low, mid, and high atmospheric levels during snowfall occurrences in southern Brazil. Sea-level pressure (SLP), 1000-500 hPa atmospheric thickness, geopotential height at 500 hPa, and wind speed at 200 hPa have been analyzed. One hundred and ninety-six snowfall records from the conventional surface meteorological stations have been selected for the period from 1979 to 2015. The surface synoptic pattern associated with snowfall occurrences has been obtained from ERA-Interim reanalysis data with horizontal spatial resolution of 0.75° × 0.75° and temporal resolution of 12 h. SLP fields show a high-pressure transient system displacement from the Pacific Ocean to northeastern Argentina. In addition, it is possible to relate snowfall with displacement of a low-pressure system on the coast of southern Brazil. Thickness fields indicate shallow cold air mass intrusions one day before snowfall. Such a cold air continues moving towards low latitudes during consecutive snowfall days and it may be responsible for frost events in climatologically warm regions. Finally, mid and high atmospheric levels show an eastward propagating wave amplified by the Andes.
Celebi, M.
1996-01-01
The purpose of this paper is to examine the response records and thereby the performance of the base-isolated University of Southern California (USC) hospital building during the Ms = 6-8 Northridge (California) earthquake of 17 January 1994. The data retrieved from the building is the first set of data from any base-isolated building that (a) was tested to acceleration levels at the free-field similar to the zero period acceleration (ZPA) level postulated in the seismic design criteria of the building and (b) exhibits levels of relative displacement excursions which puts the isolators into the nonlinear range. The variation of the fundamental frequency as a function of changing instantaneous stiffness of the isolators is identifiable. During the shaking, the isolators (a) performed well and, having attained up to 10% hysteretic damping, effectively dissipated the incoming energy of motions and (b) reduced the drift ratios of the superstructure of the building to a maximum of 10% of the allowable, which should explain the fact that there was no damage to the structure or its contents. The primary conclusion of this study is that this base-isolated building performed well during the Northridge earthquake of 17 January 1994 when only approximately 10% of the displacement capability of the isolators were utilized. Therefore, there is every reason to believe that the building will perform well during future earthquakes in the region.
The influence of bone damage on press-fit mechanics.
Bishop, Nicholas E; Höhn, Jan-Christian; Rothstock, Stephan; Damm, Niklas B; Morlock, Michael M
2014-04-11
Press-fitting is used to anchor uncemented implants in bone. It relies in part on friction resistance to relative motion at the implant-bone interface to allow bone ingrowth and long-term stability. Frictional shear capacity is related to the interference fit of the implant and the roughness of its surface. It was hypothesised here that a rough implant could generate trabecular bone damage during implantation, which would reduce its stability. A device was constructed to simulate implantation by displacement of angled platens with varying surface finishes (polished, beaded and flaked) onto the surface of an embedded trabecular bone cube, to different nominal interferences. Push-in (implantation) and Pull-out forces were measured and micro-CT scans were made before and after testing to assess permanent bone deformation. Depth of permanent trabecular bone deformation ('damage'), Pull-out force and Radial force all increased with implantation displacement and with implantation force, for all surface roughnesses. The proposed hypothesis was rejected, since primary stability did not decrease with trabecular bone damage. In fact, Pull-out force linearly increased with push-in force, independently of trabecular bone damage or implant surface. This similar behaviour for the different surfaces might be explained by the compaction of bone into the surfaces during push-in so that Pull-out resistance is governed by bone-on-bone, rather than implant surface-on-bone friction. The data suggest that maximum stability is achieved for the maximum implantation force possible (regardless of trabecular bone damage or surface roughness), but this must be limited to prevent periprosthetic cortical bone fracture, patient damage and component malpositioning. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Blake, Daniel M.; Deligne, Natalia I.; Wilson, Thomas M.; Lindsay, Jan M.; Woods, Richard
2017-06-01
Transportation networks are critical infrastructure in urban environments. Before, during and following volcanic activity, these networks can incur direct and indirect impacts, which subsequently reduces the Level-of-Service available to transportation end-users. Additionally, reductions in service can arise from management strategies including evacuation zoning, causing additional complications for transportation end-users and operators. Here, we develop metrics that incorporate Level-of-Service for transportation end-users as the key measure of vulnerability for multi-hazard volcanic impact and risk assessments. A hypothetical eruption scenario recently developed for the Auckland Volcanic Field, New Zealand, is applied to describe potential impacts of a small basaltic eruption on different transportation modes, namely road, rail, and activities at airports and ports. We demonstrate how the new metrics can be applied at specific locations worldwide by considering the geophysical hazard sequence and evacuation zones in this scenario, a process that was strongly informed by consultation with transportation infrastructure providers and emergency management officials. We also discuss the potential implications of modified hazard sequences (e.g. different wind profiles during the scenario, and unrest with no resulting eruption) on transportation vulnerability and population displacement. The vent area of the eruption scenario used in our study is located north of the Māngere Bridge suburb of Auckland. The volcanic activity in the scenario progresses from seismic unrest, through phreatomagmatic explosions generating pyroclastic surges to a magmatic phase generating a scoria cone and lava flows. We find that most physical damage to transportation networks occurs from pyroclastic surges during the initial stages of the eruption. However, the most extensive service reduction across all networks occurs 6 days prior to the eruption onset, largely attributed to the implementation of evacuation zones; these disrupt crucial north-south links through the south eastern Auckland isthmus, and at times cause up to 435,000 residents and many businesses to be displaced. Ash deposition on road and rail following tephra-producing eruptive phases causes widespread Level-of-Service reduction, and some disruption continues for > 1 month following the end of the eruption until clean-up and re-entry to most evacuated zones is completed. Different tephra dispersal and deposition patterns can result in substantial variations to Level-of-Service and consequences for transportation management. Additional complexities may also arise during times of unrest with no eruption, particularly as residents are potentially displaced for longer periods of time due to extended uncertainties on potential vent location. The Level-of-Service metrics developed here effectively highlight the importance of considering transportation end-users when developing volcanic impact and risk assessments. We suggest that the metrics are universally applicable in other urban environments.
Tsuchiya, Naho; Nakaya, Naoki; Nakamura, Tomohiro; Narita, Akira; Kogure, Mana; Aida, Jun; Tsuji, Ichiro; Hozawa, Atsushi; Tomita, Hiroaki
2017-01-01
Social capital has been considered an important factor affecting mental-health outcomes, such as psychological distress in post-disaster settings. Although disaster-related house condition and displacement could affect both social capital and psychological distress, limited studies have investigated interactions. This study aimed to examine the association between social capital and psychological distress, taking into consideration the interaction of disaster-related house condition after the Great East Japan Earthquake of 2011. Using data from 3793 adults living in Shichigahama, Miyagi Prefecture, Japan, we examined the association between social capital measured by generalized trust and psychological distress measured by the Kessler 6 scale. We conducted stratified analysis to investigate an interaction of house destruction and displacement. Multivariate analyses taking into consideration the interaction were performed. In the crude analysis, low social capital (odds ratio [OR] 4.46; 95% confidence interval [CI], 3.27-6.07) and large-scale house destruction (OR 1.96; 95%CI, 1.47-2.62) were significantly associated with psychological distress. Stratified analyses detected an interaction with house destruction and displacement (P for interaction = 0.04). Multivariate analysis with interaction term revealed that individuals with low social capital, large-scale house damage, and displacement were at greater risk of psychological distress, corresponding to adjusted OR of 5.78 (95%CI, 3.48-9.60). In the post-disaster setting, low social capital increased the risk of psychological distress, especially among individuals who had large-scale house destruction. Among the participants with severe disaster damage, high social capital would play an important role in protecting mental health. © 2016 The Authors. Psychiatry and Clinical Neurosciences published by John Wiley & Sons Australia, Ltd on behalf of Japanese Society of Psychiatry and Neurology.
Gali, Rajasekhar; Devireddy, Sathya Kumar; Venkata, Kishore Kumar Rayadurgam; Kanubaddy, Sridhar Reddy; Nemaly, Chaithanyaa; Dasari, Mallikarjuna
2016-01-01
Free grafting or extracorporeal fixation of traumatically displaced mandibular condyles is sometimes required in patients with severe anteromedial displacement of condylar head. Majority of the published studies report the use of a submandibular, retromandibular or preauricular incisions for the access which have demerits of limited visibility, access and potential to cause damage to facial nerve and other parotid gland related complications. This retrospective clinical case record study was done to evaluate the preauricular transmasseteric anteroparotid (P-TMAP) approach for open reduction and extracorporeal fixation of displaced and dislocated high condylar fractures of the mandible. This retrospective study involved search of clinical case records of seven patients with displaced and dislocated high condylar fractures treated by open reduction and extracorporeal fixation over a 3-year period. The parameters assessed were as follows: a) the ease of access for retrieval, reimplantation and fixation of the proximal segment; b) the postoperative approach related complications; c) the adequacy of anatomical reduction and stability of fixation; d) the occlusal changes; and the e) TMJ function and radiological changes. Accessibility and visibility were good. Accurate anatomical reduction and fixation were achieved in all the patients. The recorded complications were minimal and transient. Facial nerve (buccal branch) palsy was noted in one patient with spontaneous resolution within 3 months. No cases of sialocele or Frey's syndrome were seen. The P-TMAP approach provides good access for open reduction and extracorporeal fixation of severely displaced condylar fractures. It facilitates retrieval, transplantation, repositioning, fixing the condyle and also reduces the chances of requirement of a vertical ramus osteotomy. It gives straight-line access to condylar head and ramus thereby permitting perpendicular placement of screws with minimal risk of damage to the facial nerve.
Gali, Rajasekhar; Devireddy, Sathya Kumar; Venkata, Kishore Kumar Rayadurgam; Kanubaddy, Sridhar Reddy; Nemaly, Chaithanyaa; Dasari, Mallikarjuna
2016-01-01
Introduction: Free grafting or extracorporeal fixation of traumatically displaced mandibular condyles is sometimes required in patients with severe anteromedial displacement of condylar head. Majority of the published studies report the use of a submandibular, retromandibular or preauricular incisions for the access which have demerits of limited visibility, access and potential to cause damage to facial nerve and other parotid gland related complications. Purpose: This retrospective clinical case record study was done to evaluate the preauricular transmasseteric anteroparotid (P-TMAP) approach for open reduction and extracorporeal fixation of displaced and dislocated high condylar fractures of the mandible. Patients and Methods: This retrospective study involved search of clinical case records of seven patients with displaced and dislocated high condylar fractures treated by open reduction and extracorporeal fixation over a 3-year period. The parameters assessed were as follows: a) the ease of access for retrieval, reimplantation and fixation of the proximal segment; b) the postoperative approach related complications; c) the adequacy of anatomical reduction and stability of fixation; d) the occlusal changes; and the e) TMJ function and radiological changes. Results: Accessibility and visibility were good. Accurate anatomical reduction and fixation were achieved in all the patients. The recorded complications were minimal and transient. Facial nerve (buccal branch) palsy was noted in one patient with spontaneous resolution within 3 months. No cases of sialocele or Frey's syndrome were seen. Conclusion: The P-TMAP approach provides good access for open reduction and extracorporeal fixation of severely displaced condylar fractures. It facilitates retrieval, transplantation, repositioning, fixing the condyle and also reduces the chances of requirement of a vertical ramus osteotomy. It gives straight-line access to condylar head and ramus thereby permitting perpendicular placement of screws with minimal risk of damage to the facial nerve. PMID:27274123
NASA Astrophysics Data System (ADS)
Xu, Shiluo; Niu, Ruiqing
2018-02-01
Every year, landslides pose huge threats to thousands of people in China, especially those in the Three Gorges area. It is thus necessary to establish an early warning system to help prevent property damage and save peoples' lives. Most of the landslide displacement prediction models that have been proposed are static models. However, landslides are dynamic systems. In this paper, the total accumulative displacement of the Baijiabao landslide is divided into trend and periodic components using empirical mode decomposition. The trend component is predicted using an S-curve estimation, and the total periodic component is predicted using a long short-term memory neural network (LSTM). LSTM is a dynamic model that can remember historical information and apply it to the current output. Six triggering factors are chosen to predict the periodic term using the Pearson cross-correlation coefficient and mutual information. These factors include the cumulative precipitation during the previous month, the cumulative precipitation during a two-month period, the reservoir level during the current month, the change in the reservoir level during the previous month, the cumulative increment of the reservoir level during the current month, and the cumulative displacement during the previous month. When using one-step-ahead prediction, LSTM yields a root mean squared error (RMSE) value of 6.112 mm, while the support vector machine for regression (SVR) and the back-propagation neural network (BP) yield values of 10.686 mm and 8.237 mm, respectively. Meanwhile, the Elman network (Elman) yields an RMSE value of 6.579 mm. In addition, when using multi-step-ahead prediction, LSTM obtains an RMSE value of 8.648 mm, while SVR, BP and the Elman network obtains RSME values of 13.418 mm, 13.014 mm, and 13.370 mm. The predicted results indicate that, to some extent, the dynamic model (LSTM) achieves results that are more accurate than those of the static models (i.e., SVR and BP). LSTM even displays better performance than the Elman network, which is also a dynamic method.
NASA Astrophysics Data System (ADS)
Delle Piane, Claudio; Giwelli, Ausama; Clennell, M. Ben; Esteban, Lionel; Nogueira Kiewiet, Melissa Cristina D.; Kiewiet, Leigh; Kager, Shane; Raimon, John
2016-10-01
We present a novel experimental approach devised to test the hydro-mechanical behaviour of different structural elements of carbonate fault rocks during experimental re-activation. Experimentally faulted core plugs were subject to triaxial tests under water saturated conditions simulating depletion processes in reservoirs. Different fault zone structural elements were created by shearing initially intact travertine blocks (nominal size: 240 × 110 × 150 mm) to a maximum displacement of 20 and 120 mm under different normal stresses. Meso-and microstructural features of these sample and the thickness to displacement ratio characteristics of their deformation zones allowed to classify them as experimentally created damage zones (displacement of 20 mm) and fault cores (displacement of 120 mm). Following direct shear testing, cylindrical plugs with diameter of 38 mm were drilled across the slip surface to be re-activated in a conventional triaxial configuration monitoring the permeability and frictional behaviour of the samples as a function of applied stress. All re-activation experiments on faulted plugs showed consistent frictional response consisting of an initial fast hardening followed by apparent yield up to a friction coefficient of approximately 0.6 attained at around 2 mm of displacement. Permeability in the re-activation experiments shows exponential decay with increasing mean effective stress. The rate of permeability decline with mean effective stress is higher in the fault core plugs than in the simulated damage zone ones. It can be concluded that the presence of gouge in un-cemented carbonate faults results in their sealing character and that leakage cannot be achieved by renewed movement on the fault plane alone, at least not within the range of slip measureable with our apparatus (i.e. approximately 7 mm of cumulative displacement). Additionally, it is shown that under sub seismic slip rates re-activated carbonate faults remain strong and no frictional weakening was observed during re-activation.
McCulloch, David S.; Bonilla, Manuel G.
1970-01-01
In the 1964 Alaska earthquake, the federally owned Alaska Railroad sustained damage of more than $35 million: 54 percent of the cost for port facilities; 25 percent, roadbed and track; 9 percent, buildings and utilities; 7 percent, bridges and culverts; and 5 percent, landslide removal. Principal causes of damage were: (1) landslides, landslide-generated waves, and seismic sea waves that destroyed costly port facilities built on deltas; (2) regional tectonic subsidence that necessitated raising and armoring 22 miles of roadbed made susceptible to marine erosion; and (3), of greatest importance in terms of potential damage in seismically active areas, a general loss of strength experienced by wet waterlaid unconsolidated granular sediments (silt to coarse gravel) that allowed embankments to settle and enabled sediments to undergo fiowlike displacement toward topographic depressions, even in fiat-lying areas. The term “landspreading” is proposed for the lateral displacement and distension of mobilized sediments; landspreading appears to have resulted largely from liquefaction. Because mobilization is time dependent and its effects cumulative, the long duration of strong ground motion (timed as 3 to 4 minutes) along the southern 150 miles of the rail line made landspreading an important cause of damage. Sediments moved toward natural and manmade topographic depressions (stream valleys, gullies, drainage ditches, borrow pits, and lakes). Stream widths decreased, often about 20 inches but at some places by as much as 6.5 feet, and sediments moved upward beneath stream channels. Landspreading toward streams and even small drainage ditches crushed concrete and metal culverts. Bridge superstructures were compressed and failed by lateral buckling, or more commonly were driven into, through, or over bulkheads. Piles and piers were torn free of superstructures by moving sediments, crowded toward stream channels, and lifted in the center. The lifted piles arched the superstructures. Vertical pile displacement was independent of the depth of the pile penetration in the sediment and thus was due to vertical movement of the sediments, rather than to differential compaction. The fact that bridge piles were carried laterally without notable tilting suggests that mobilization exceeded pile depths, which averaged about 20 feet. Field observations, largely duplicated by vibrated sandbox models of stream channels, suggest that movement was distributed throughout the sediments, rather than restricted to finite failure surfaces. Landspreading generated stress that produced cracks in the ground surface adjacent to depressions. The distribution of this stress controlled the crack patterns: tension cracks parallel to straight or concave streambanks, shear cracks intersecting at 45° to 70° on convex banks where there was some component of radial spreading, and orthogonal cracks on the insides of tight meander bends or islands where spreading was omnidirectional. Ground cracks of these kinds commonly extended 500 feet, and occasionally about 1,000 feet, back from streams, which indicates that landspreading occurred over large areas. In areas of landspreading, highway and railroad embankments, pavements, and rails were pulled apart endways and were displaced laterally if they lay at an angle to the direction of sediment displacement. Sediment movement commonly skewed bridges that crossed streams obliquely. The maximum horizontal skew was 10 feet. Embankment settlement, nearly universal in areas of landspreading, also occurred in areas where there was no evidence for widespread loss of strength in the unconsolidated sediments. In the latter areas embankments themselves clearly caused the loss of bearing strength in the underlying sediment. In both areas, settlement was accompanied by the formation of ground cracks approximately parallel to the embankment in the adjacent sediments. Sediment-laden ground water was discharged from the cracks, and extreme local settlements (as much as 6 ft) were associated with large discharges. Landspreading was accompanied by transient horizontal displacement of the ground that pounded bridge ends with slight or considerable force. The deck of a 105-foot bridge was repeatedly arched up off its piles by transient compression. Bridges may also have developed high horizontal accelerations. One bridge deck, driven through its bulkhead, appears to have had an acceleration of at least 1.1 to 1.7 g; however, most evidence for high accelerations is ambiguous. Limited standard penetration data show that landspreading damage was not restricted to soft sediments. Some bridges were severely damaged by displacement of piles driven in sediments classified as compact and dense. Total thickness of unconsolidated sediments strongly controlled the degree of damage. In areas underlain by wet water-laid sediments the degree of damage to uniformly designed and built wooden railroad bridges shows a closer correlation with total sediment thickness at the bridge site than with the grain size of the material in which the piles were driven. Local geology and physiography largely controlled the kind, distribution, and severity of damage to the railroad. This relationship is so clear that maps of surficial geology and physiography of damaged areas of the rail belt show that only a few geologic-physiographic units serve to identify these areas: 1. Bedrock and glacial till on bedrock. No foundation displacements, but ground vibration increased toward the area of maximum strain-energy release. 2. Glacial outwash terraces. Landspreading and damage ranged from none where the water table was low and the terrace undissected to severe where the water table was near the surface and the terrace dissected by streams. 3. Inactive flood plains. Landspreading, ground cracking, flooding by ejected ground water, and damage were generally slight but increased to severe toward lower, wetter active flood plains or river channels. 4. Active flood plains. Landspreading, ground cracking, and flooding were nearly universal and were greater than on adjacent inactive flood plains. 5. Fan deltas. Radial downhill spreading and ground cracking were considerable near the lower edges of the fan deltas and were accompanied by ground-water discharge. Landslides were common from edges of deltas. Damage, landspreading, ground crack-ing, vibration, and flooding by ground water generally increased with (1) increasing thickness of unconsolidated sediments, (2) decreasing depth to the water table, (3) proximity to topographic depressions, and (4) proximity to the area of maximum strain-energy release.
Is fibular fracture displacement consistent with tibiotalar displacement?
van den Bekerom, Michel P J; van Dijk, C Niek
2010-04-01
We believed open reduction with internal fixation is required for supination-external rotation ankle fractures located at the level of the distal tibiofibular syndesmosis (Lauge-Hanssen SER II and Weber B) with 2 mm or more fibular fracture displacement. The rationale for surgery for these ankle fractures is based on the notion of elevated intraarticular contact pressures with lateral displacement. To diagnose these injuries, we presumed that in patients with a fibular fracture with at least 2 mm fracture displacement, the lateral malleolus and talus have moved at least 2 mm in a lateral direction without medial displacement of the proximal fibula. We reviewed 55 adult patients treated operatively for a supination-external rotation II ankle fracture (2 mm or more fibular fracture displacement) between 1990 and 1998. On standard radiographs, distance from the tibia to the proximal fibula, distance from the tibia to the distal fibula, and displacement at the level of the fibular fracture were measured. These distances were compared preoperatively and postoperatively. We concluded tibiotalar displacement cannot be reliably assessed at the level of the fracture. Based on this and other studies, we believe there is little evidence to perform open reduction and internal fixation of supination-external rotation II ankle fractures. Level IV, case series. See Guidelines for Authors for a complete description of levels of evidence.
Goldzak, Mario; Mittlmeier, Thomas; Simon, Patrick
2012-05-01
Although open reduction and internal fixation is considered the best method for treating displaced articular fractures of the calcaneus, lateral approach is at high risk for wound healing complications. For this reason, the authors developed a posterior approach and a new implant to perform both intrafocal reduction and internal fixation. The aim of this technical note is to describe this method of treatment for displaced articular fractures of the calcaneus, which offered the following advantages: (a) the creation of a working channel that provides also a significant bone autograft, (b) the intrafocal reduction of the displaced articular surface, (c) the insertion of a locking nail that maintains the reduced articular surface at the right height, (d) the possibility to switch from an ORIF to a reconstruction arthrodesis with the same approach and instrumentation in case of severely damaged posterior facet.
Fretting corrosion of CoCr alloy: Effect of load and displacement on the degradation mechanisms.
Bryant, Michael; Neville, Anne
2017-02-01
Fretting corrosion of medical devices is of growing concern, yet, the interactions between tribological and electrochemical parameters are not fully understood. Fretting corrosion of CoCr alloy was simulated, and the components of damage were monitored as a function of displacement and contact pressure. Free corrosion potential (E corr ), intermittent linear polarisation resistance and cathodic potentiostatic methods were used to characterise the system. Interferometry was used to estimate material loss post rubbing. The fretting regime influenced the total material lost and the dominant degradation mechanism. At high contact pressures and low displacements, pure corrosion was dominant with wear and its synergies becoming more important as the contact pressure and displacement decreased and increased, respectively. In some cases, an antagonistic effect from the corrosion-enhanced wear contributor was observed suggesting that film formation and removal may be present. The relationship between slip mechanism and the contributors to tribocorrosion degradation is presented.
Simulation of irradiation creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reiley, T.C.; Jung, P.
1977-01-01
The results to date in the area of radiation enhanced deformation using beams of light ions to simulate fast neutron displacement damage are reviewed. A comparison is made between these results and those of in-reactor experiments. Particular attention is given to the displacement rate calculations for light ions and the electronic energy losses and their effect on the displacement cross section. Differences in the displacement processes for light ions and neutrons which may effect the irradiation creep process are discussed. The experimental constraints and potential problem areas associated with these experiments are compared to the advantages of simulation. Support experimentsmore » on the effect of thickness on thermal creep are presented. A brief description of the experiments in progress is presented for the following laboratories: HEDL, NRL, ORNL, PNL, U. of Lowell/MIT in the United States, AERE Harwell in the United Kingdom, CEN Saclay in France, GRK Karlsruhe and KFA Julich in West Germany.« less
Relative degradation of near infrared avalanche photodiodes from proton irradiation
NASA Technical Reports Server (NTRS)
Becker, Heidi; Johnston, Allan H.
2004-01-01
InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.
Tooth loss caused by displaced elastic during simple preprosthetic orthodontic treatment
Dianiskova, Simona; Calzolari, Chiara; Migliorati, Marco; Silvestrini-Biavati, Armando; Isola, Gaetano; Savoldi, Fabio; Dalessandri, Domenico; Paganelli, Corrado
2016-01-01
The use of elastics to close a diastema or correct tooth malpositions can create unintended consequences if not properly controlled. The American Association of Orthodontists recently issued a consumer alert, warning of “a substantial risk for irreparable damage” from a new trend called “do-it-yourself” orthodontics, consisting of patients autonomously using elastics to correct tooth position. The elastics can work their way below the gums and around the roots of the teeth, causing damage to the periodontium and even resulting in tooth loss. The cost of implants to replace these teeth would well exceed the cost of proper orthodontic care. This damage could also occur in a dental office, when a general dentist tries to perform a simplified orthodontic correction of a minor tooth malposition. The present case report describes a case of tooth loss caused by a displaced intraoral elastic, which occurred during a simple preprosthetic orthodontic treatment. PMID:27672645
Atomistic modeling and experimental studies of radiation damage in monazite-type LaPO4 ceramics
NASA Astrophysics Data System (ADS)
Ji, Yaqi; Kowalski, Piotr M.; Neumeier, Stefan; Deissmann, Guido; Kulriya, Pawan K.; Gale, Julian D.
2017-02-01
We simulated the threshold displacement energies (Ed), the related displacement and defect formation probabilities, and the energy barriers in LaPO4 monazite-type ceramics. The obtained Ed values for La, P, O primary knock-on atoms (PKA) are 56 eV, 75 eV and 8 eV, respectively. We found that these energies can be correlated with the energy barriers that separate the defect from the initial states. The Ed values are about twice the values of energy barriers, which is explained through an efficient dissipation of the PKA kinetic energy in the considered system. The computed Ed were used in simulations of the extent of radiation damage in La0.2Gd0.8PO4 solid solution, investigated experimentally. We found that this lanthanide phosphate fully amorphises in the ion beam experiments for fluences higher than ∼1013 ions/cm2.
Radiation Damage Study in Natural Zircon Using Neutrons Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lwin, Maung Tin Moe; Amin, Yusoff Mohd.; Kassim, Hasan Abu
2011-03-30
Changes of atomic displacements in crystalline structure of natural zircon (ZrSiO{sub 4}) can be studied by using neutron irradiation on the surface of zircon and compared the data from XRD measurements before and after irradiation. The results of neutron irradiation on natural zircon using Pneumatic Transfer System (PTS) at PUSPATI TRIGA Research Reactor in the Malaysian Nuclear Agency are discussed in this work. The reactor produces maximum thermal power output of 1 MWatt and the neutron flux of up to 1x10{sup 13} ncm{sup -2}s{sup -1}. From serial decay processes of uranium and thorium radionuclides in zircon crystalline structure, the emissionmore » of alpha particles can produce damage in terms of atomic displacements in zircon. Hence, zircon has been extensively studied as a possible candidate for immobilization of fission products and actinides.« less
NASA Astrophysics Data System (ADS)
Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin
2014-01-01
DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag+-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science.
Primary radiation damage of an FeCr alloy under pressure: Atomistic simulation
NASA Astrophysics Data System (ADS)
Tikhonchev, M. Yu.; Svetukhin, V. V.
2017-05-01
The primary radiation damage of a binary FeCr alloy deformed by applied mechanical loading is studied by an atomistic molecular dynamics simulation. Loading is simulated by specifying an applied pressure of 0.25, 1.0, and 2.5 GPa of both signs. Hydrostatic and uniaxial loading is considered along the [001], [111], [112], and [210] directions. The influence of loading on the energy of point defect formation and the threshold atomic displacement energy in single-component bcc iron is investigated. The 10-keV atomic displacement cascades in a "random" binary Fe-9 at % Cr alloy are simulated at an initial temperature of 300 K. The number of the point defects generated in a cascade is estimated, and the clustering of point defects and the spatial orientation of interstitial configurations are analyzed. Our results agree with the results of other researchers and supplement them.
Houston-Galveston Bay area, Texas, from space; a new tool for mapping land subsidence
Stork, Sylvia V.; Sneed, Michelle
2002-01-01
Interferometric Synthetic Aperture Radar (InSAR) is a powerful new tool that uses radar signals to measure displacement (subsidence and uplift) of the Earth's crust at an unprecedented level of spatial detail and high degree of measurement resolution.The Houston-Galveston Bay area, possibly more than any other metropolitan area in the United States, has been adversely affected by land subsidence. Extensive subsidence, caused mainly by ground-water pumping but also by oil and gas extraction, has increased the frequency of flooding, caused extensive damage to industrial and transportation infrastructure, motivated major investments in levees, reservoirs, and surfacewater distribution facilities, and caused substantial loss of wetland habitat. Ongoing patterns of subsidence in the Houston area have been carefully monitored using borehole extensometers, Global Positioning System (GPS) and conventional spirit-leveling surveys, and more recently, an emerging technology—Interferometric Synthetic Aperture Radar (InSAR)—which enables development of spatially-detailed maps of land-surface displacement over broad areas. This report, prepared by the U.S. Geological Survey (USGS) in cooperation with the U.S. Fish and Wildlife Service, briefly summarizes the history of subsidence in the area and the local consequences of subsidence and describes the use of InSAR as one of several tools in an integrated subsidence-monitoring program in the area.
Mathematical modeling of damage in unidirectional composites
NASA Technical Reports Server (NTRS)
Goree, J. G.; Dharani, L. R.; Jones, W. F.
1981-01-01
A review of some approximate analytical models for damaged, fiber reinforced composite materials is presented. Using the classical shear lag stress displacement assumption, solutions are presented for a unidirectional laminate containing a notch, a rectangular cut-out, and a circular hole. The models account for longitudinal matrix yielding and splitting as well as transverse matrix yielding and fiber breakage. The constraining influence of a cover sheet on the unidirectional laminate is also modeled.
NASA Astrophysics Data System (ADS)
Martín-González, Fidel; Perez-Lopez, Raul; Rodrigez-Pascua, Miguel Angel; Martin-Velazquez, Silvia
2014-05-01
The intensity scales determined the damage caused by an earthquake. However, a new methodology takes into account not only the damage but the type of damage "Earthquake Archaeological Effects" EAE's, and its orientation (e.g. displaced masonry blocks, impact marks, conjugated fractures, fallen and oriented columns, dipping broken corners, etc.). It focuses not only on the amount of damage but also in its orientation, giving information about the ground motion during the earthquake. In 2010 an earthquake of magnitude 6.2 took place in Christchurch (New Zealand) (22-2-2010), 185 casualties, making it the second-deadliest natural disaster in New Zealand. Due to the magnitude of the catastrophe, the city centre (CBD) was closed and the most damaged buildings were closed and later demolished. For this reason it could not be possible to access to sampling or make observations in the most damaged areas. However, the cemeteries were not closed and a year later still remained intact since the financial means to recover were used to reconstruct infrastructures and housing the city. This peculiarity of the cemeteries made measures of the earthquake effects possible. Orientation damage was measured on the tombs, crosses and headstones of the cemeteries (mainly on falling objects such as fallen crosses, obelisks, displaced tombstones, etc.). 140 data were taken in the most important cemeteries (Barbadoes, Addington, Pebleton, Woodston, Broomley and Linwood cemeteries) covering much of the city area. The procedure involved two main phases: a) inventory and identification of damages, and b) analysis of the damage orientations. The orientation was calculated for each element and plotted in a map and statistically in rose diagrams. The orientation dispersion is high in some cemeteries but damage orientation S-N and E-W is observed. However, due to the multiple seismogenic faults responsible for earthquakes and damages in Christchurch during the year after the 2010 earthquake, a more detailed correlation of the ground acceleration and the damages is being carried out. The orientation of the damage is not usually recorded after an earthquake; however, it can provide information on the orientation of the peak ground acceleration. Thus, when an earthquake occurs, the analysis of the damage orientation can provide information about the seismic source.
Mohiyeddini, Changiz; Bauer, Stephanie; Semple, Stuart
2013-07-01
When stressed, people typically show elevated rates of displacement behaviour--activities such as scratching and face touching that seem irrelevant to the ongoing situation. Growing evidence indicates that displacement behaviour may play a role in regulating stress levels, and thus may represent an important component of the coping response. Recently, we found evidence that this stress-regulating effect of displacement behaviour is found in men but not in women. This sex difference may result from women's higher levels of public self-consciousness, which could inhibit expression of displacement behaviour due to the fear of projecting an inappropriate image. Here, we explored the link between public self-consciousness, displacement behaviour and stress among 62 healthy women (mean age = 26.59 years; SD = 3.61). We first assessed participants' public self-consciousness, and then quantified displacement behaviour, heart rate and cognitive performance during a Trier Social Stress Test (TSST) and used self-report questionnaires to assess the experience of stress afterwards. Public self-consciousness was negatively correlated with rate of displacement behaviour, and positively correlated with both the subjective experience of stress post-TSST and the number of mistakes in the cognitive task. Moderation analyses revealed that for women high in public self-consciousness, high levels of displacement behaviour were associated with higher reported levels of stress and poorer cognitive performance. For women low in public self-consciousness, stress levels and cognitive performance were unrelated to displacement behaviour. Our findings indicate that public self-consciousness is associated with both the expression of displacement behaviour and how such behaviour mediates responses to social stress.
ELER software - a new tool for urban earthquake loss assessment
NASA Astrophysics Data System (ADS)
Hancilar, U.; Tuzun, C.; Yenidogan, C.; Erdik, M.
2010-12-01
Rapid loss estimation after potentially damaging earthquakes is critical for effective emergency response and public information. A methodology and software package, ELER-Earthquake Loss Estimation Routine, for rapid estimation of earthquake shaking and losses throughout the Euro-Mediterranean region was developed under the Joint Research Activity-3 (JRA3) of the EC FP6 Project entitled "Network of Research Infrastructures for European Seismology-NERIES". Recently, a new version (v2.0) of ELER software has been released. The multi-level methodology developed is capable of incorporating regional variability and uncertainty originating from ground motion predictions, fault finiteness, site modifications, inventory of physical and social elements subjected to earthquake hazard and the associated vulnerability relationships. Although primarily intended for quasi real-time estimation of earthquake shaking and losses, the routine is also equally capable of incorporating scenario-based earthquake loss assessments. This paper introduces the urban earthquake loss assessment module (Level 2) of the ELER software which makes use of the most detailed inventory databases of physical and social elements at risk in combination with the analytical vulnerability relationships and building damage-related casualty vulnerability models for the estimation of building damage and casualty distributions, respectively. Spectral capacity-based loss assessment methodology and its vital components are presented. The analysis methods of the Level 2 module, i.e. Capacity Spectrum Method (ATC-40, 1996), Modified Acceleration-Displacement Response Spectrum Method (FEMA 440, 2005), Reduction Factor Method (Fajfar, 2000) and Coefficient Method (ASCE 41-06, 2006), are applied to the selected building types for validation and verification purposes. The damage estimates are compared to the results obtained from the other studies available in the literature, i.e. SELENA v4.0 (Molina et al., 2008) and ATC-55 (Yang, 2005). An urban loss assessment exercise for a scenario earthquake for the city of Istanbul is conducted and physical and social losses are presented. Damage to the urban environment is compared to the results obtained from similar software, i.e. KOERILoss (KOERI, 2002) and DBELA (Crowley et al., 2004). The European rapid loss estimation tool is expected to help enable effective emergency response, on both local and global level, as well as public information.
Vulnerability Assessment of Coastal Structure: A Case Study on Light Houses
NASA Astrophysics Data System (ADS)
Chenna, Rajaram; Teegala, Ashwini Reddy; Kummara, Renuka Devi; Ramancharla, Pradeep Kumar
2017-06-01
Lighthouses are the road signs of the ocean. They guide sailors through dangerous waters. Each lighthouse design is based on the land it is built on, its purpose, and the technology available. The Geometry of the lighthouses is round, square, octagonal, or conical in shape. These lighthouses need to be in operation 24 × 7 guiding the ships coming towards the coast. However, these lighthouses got affected during past earthquakes. The main objective of this work is to perform the nonlinear time history analysis of Navadra, Kachchigadh and Dwaraka point lighthouses subjected to eight ground motions. Since most of the Gujarat state is under Zone-III, IV and V, the analysis is carried out by normalizing them to respective zone factors as suggested by Bureau of Indian Standards IS 1893 (part-1): 2002. Using energy dissipation approach, damage is quantified at every displacement level. A fragility curve has been developed to quantify the damage of the above lighthouses with respect to different peak ground accelerations. Based on the fragility analysis of lighthouses, the following conclusions are drawn. It is concluded that the damage of the Navadra lighthouse at Mandi, Jodiya and Jhangi is 0.2, 0.08 and 0.68 respectively.
NASA Astrophysics Data System (ADS)
Lissak Borges, Candide; Maquaire, Olivier; Malet, Jean-Philippe; Gomez, Christopher; Lavigne, Franck
2010-05-01
The Villerville and Cricqueboeuf coastal landslides (Calvados, Normandy, North-West France) have occurred in marly, sandy and chalky formations. The slope instability probably started during the last Quaternary period and is still active over the recent historic period. Since 1982, the slope is affected by a permanent activity (following the Varnes classification) with an annual average displacement of 5-10 cm.y-1 depending on the season. Three major events occurred in 1988, 1995 and 2001 and are controlled by the hydro-climatic conditions. These events induced pluri-decimetres to pluri-meters displacements (e.g. 5m horizontal displacements have been observed in 2001 at Cricqueboeuf) and generated economical and physical damage to buildings and roads. The landslide morphology is characterized by multi-metres scarps, reverse slopes caused by the tilting of landslide blocks and evolving cracks. The objective of this paper is to present the methodology used to characterize the recent historical (since 1808) geomorphological evolution of the landslides, and to discuss the spatio-temporal pattern of observed displacements. A multi-technique research approach has been applied and consisted in historical research, geomorphological mapping, geodetic monitoring and engineering geotechnical investigation. Information gained from different documents and techniques has been combined to propose a conceptual model of landslide evolution: - a retrospective study on landslide events inventoried in the historic period (archive investigation, newspapers); - a multi-temporal (1955-2006) analysis of aerial photographs (image processing, traditional stereoscopic techniques and image orthorectification), ancient maps and cadastres; - the creation of a detailed geomorphological map in 2009; - an analysis of recent displacements monitored since 1985 with traditional geodetic techniques (tacheometry, dGPS, micro-levelling) - geophysical investigation by ground-penetrating radar along the main road in order to assess the subsidence of the road according to the thickness of the filling material. Integration of the knowledge allows to characterize the landscape changes over the historical time. Displacement values obtained over nearly 200 years reflect annual slow movement and crisis acceleration. Values are dispersed in space and time. An average of displacements of 12.30 m year-1 (σ = 8.50) between 1829 and 2006 is observed for the Villerville landslide. This average allows calculating an annual displacement of 0.07 m which can be compared to data recorded since 1985 and by annual DGPS measurement data between 2008 and 2009.
A wireless laser displacement sensor node for structural health monitoring.
Park, Hyo Seon; Kim, Jong Moon; Choi, Se Woon; Kim, Yousok
2013-09-30
This study describes a wireless laser displacement sensor node that measures displacement as a representative damage index for structural health monitoring (SHM). The proposed measurement system consists of a laser displacement sensor (LDS) and a customized wireless sensor node. Wireless communication is enabled by a sensor node that consists of a sensor module, a code division multiple access (CDMA) communication module, a processor, and a power module. An LDS with a long measurement distance is chosen to increase field applicability. For a wireless sensor node driven by a battery, we use a power control module with a low-power processor, which facilitates switching between the sleep and active modes, thus maximizing the power consumption efficiency during non-measurement and non-transfer periods. The CDMA mode is also used to overcome the limitation of communication distance, which is a challenge for wireless sensor networks and wireless communication. To evaluate the reliability and field applicability of the proposed wireless displacement measurement system, the system is tested onsite to obtain the required vertical displacement measurements during the construction of mega-trusses and an edge truss, which are the primary structural members in a large-scale irregular building currently under construction. The measurement values confirm the validity of the proposed wireless displacement measurement system and its potential for use in safety evaluations of structural elements.
Holló, Gábor
2016-12-01
Myelinated retinal nerve fibers (MRNF) represent an asymptomatic developmental anomaly in which myelin sheaths extend to a group of retinal nerve fibers along their intraocular portion. The additional volume of the myelin sheaths causes displacement of the axons toward the vitreous body. We investigated the effect of localized MRNF on peripapillary vessel density measurement results using optical coherence tomography (OCT) angiography. Peripapillary angioflow density measurements (PAFD, % of the analyzed retinal area) were made with the AngioVue OCT (Optovue Inc., Fremont, USA). In both cases, the predominant position of MRNF was inferonasal to the disk. Vessel density was clearly greater in the area of the MRNF than in the surrounding retina in the optic nerve head (ONH) level, but it was lower than in the surrounding retina in the retinal nerve fiber layer (RNFL) level. In the ONH level, PAFD was higher in the MRNF area than in the spatially corresponding superonasal area (Case 1: 64.6 vs. 57.6 %; Case 2: 65.8 vs. 56.3 %). In contrast, in the RNFL level, PAFD was lower in the MRNF area than in the corresponding superonasal area (Case 1: 60.1 vs. 65.4 %; Case 2: 46.5 vs. 58.5 %). Our cases show that the effect of MRNF on OCT angiography vessel density is different in the different measurement layers. Clinicians may separate decreased vessel density caused by anterior RNFL displacement in MRNF areas from that caused by nerve fiber damage in optic neuropathies by evaluating PAFD in both the ONH and RNFL levels.
Modeling of a viscoelastic damper and its application in structural control.
Mehrabi, M H; Suhatril, Meldi; Ibrahim, Zainah; Ghodsi, S S; Khatibi, Hamed
2017-01-01
Conventional seismic rehabilitation methods may not be suitable for some buildings owing to their high cost and time-consuming foundation work. In recent years, viscoelastic dampers (VEDs) have been widely used in many mid- and high-rise buildings. This study introduces a viscoelastic passive control system called rotary rubber braced damper (RRBD). The RRBD is an economical, lightweight, and easy-to-assemble device. A finite element model considering nonlinearity, large deformation, and material damage is developed to conduct a parametric study on different damper sizes under pushover cyclic loading. The fundamental characteristics of this VED system are clarified by analyzing building structures under cyclic loading. The result show excellent energy absorption and stable hysteresis loops in all specimens. Additionally, by using a sinusoidal shaking table test, the effectiveness of the RRBD to manage the response displacement and acceleration of steel frames is considered. The RRBD functioned at early stages of lateral displacement, indicating that the system is effective for all levels of vibration. Moreover, the proposed damper shows significantly better performance in terms of the column compression force resulting from the brace action compared to chevron bracing (CB).
Forcellini, Davide; Tarantino, Angelo Marcello
2014-01-01
Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading. PMID:24592148
Forcellini, Davide; Tarantino, Angelo Marcello
2014-01-01
Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.
Chen, Rui; Branum, David M.; Wills, Chris J.; Hill, David P.
2014-06-30
As part of the U.S. Geological Survey’s (USGS) multi-hazards project in the Long Valley Caldera-Mono Lake area, the California Geological Survey (CGS) developed several earthquake scenarios and evaluated potential seismic hazards, including ground shaking, surface fault rupture, liquefaction, and landslide hazards associated with these earthquake scenarios. The results of these analyses can be useful in estimating the extent of potential damage and economic losses because of potential earthquakes and also for preparing emergency response plans.The Long Valley Caldera-Mono Lake area has numerous active faults. Five of these faults or fault zones are considered capable of producing magnitude ≥6.7 earthquakes according to the Uniform California Earthquake Rupture Forecast, Version 2 (UCERF 2) developed by the 2007 Working Group on California Earthquake Probabilities (WGCEP) and the USGS National Seismic Hazard Mapping Program. These five faults are the Fish Slough, Hartley Springs, Hilton Creek, Mono Lake, and Round Valley Faults. CGS developed earthquake scenarios for these five faults in the study area and for the White Mountains Fault Zone to the east of the study area.In this report, an earthquake scenario is intended to depict the potential consequences of significant earthquakes. A scenario earthquake is not necessarily the largest or most damaging earthquake possible on a recognized fault. Rather it is both large enough and likely enough that emergency planners should consider it in regional emergency response plans. In particular, the ground motion predicted for a given scenario earthquake does not represent a full probabilistic hazard assessment, and thus it does not provide the basis for hazard zoning and earthquake-resistant building design.Earthquake scenarios presented here are based on fault geometry and activity data developed by the WGCEP, and are consistent with the 2008 Update of the United States National Seismic Hazard Maps (NSHM). Alternatives to the NSHM scenario were developed for the Hilton Creek and Hartley Springs Faults to account for different opinions in how far these two faults extend into Long Valley Caldera. For each scenario, ground motions were calculated using the current standard practice: the deterministic seismic hazard analysis program developed by Art Frankel of USGS and three Next Generation Ground Motion Attenuation (NGA) models. Ground motion calculations incorporated the potential amplification of seismic shaking by near-surface soils defined by a map of the average shear wave velocity in the uppermost 30 m (VS30) developed by CGS.In addition to ground shaking and shaking-related ground failure such as liquefaction and earthquake induced landslides, earthquakes cause surface rupture displacement, which can lead to severe damage of buildings and lifelines. For each earthquake scenario, potential surface fault displacements are estimated using deterministic and probabilistic approaches. Liquefaction occurs when saturated sediments lose their strength because of ground shaking. Zones of potential liquefaction are mapped by incorporating areas where loose sandy sediments, shallow groundwater, and strong earthquake shaking coincide in the earthquake scenario. The process for defining zones of potential landslide and rockfall incorporates rock strength, surface slope, and existing landslides, with ground motions caused by the scenario earthquake.Each scenario is illustrated with maps of seismic shaking potential and fault displacement, liquefaction, and landslide potential. Seismic shaking is depicted by the distribution of shaking intensity, peak ground acceleration, and 1.0-second spectral acceleration. One-second spectral acceleration correlates well with structural damage to surface facilities. Acceleration greater than 0.2 g is often associated with strong ground shaking and may cause moderate to heavy damage. The extent of strong shaking is influenced by subsurface fault dip and near surface materials. Strong shaking is more widespread in the hanging wall regions of a normal fault. Larger ground motions also occur where young alluvial sediments amplify the shaking. Both of these effects can lead to strong shaking that extends farther from the fault on the valley side than on the hill side.The effect of fault rupture displacements may be localized along the surface trace of the mapped earthquake fault if fault geometry is simple and the fault traces are accurately located. However, surface displacement hazards can spread over a few hundred meters to a few kilometers if the earthquake fault has numerous splays or branches, such as the Hilton Creek Fault. Faulting displacements are estimated to be about 1 meter along normal faults in the study area and close to 2 meters along the White Mountains Fault Zone.All scenarios show the possibility of widespread ground failure. Liquefaction damage would likely occur in the areas of higher ground shaking near the faults where there are sandy/silty sediments and the depth to groundwater is 6.1 meters (20 feet) or less. Generally, this means damage is most common near lakes and streams in the areas of strongest shaking. Landslide potential exists throughout the study region. All steep slopes (>30 degrees) present a potential hazard at any level of shaking. Lesser slopes may have landslides within the areas of the higher ground shaking. The landslide hazard zones also are likely sources for snow avalanches during winter months and for large boulders that can be shaken loose and roll hundreds of feet down hill, which happened during the 1980 Mammoth Lakes earthquakes.Whereas methodologies used in estimating ground shaking, liquefaction, and landslides are well developed and have been applied in published hazard maps; methodologies used in estimating surface fault displacement are still being developed. Therefore, this report provides a more in-depth and detailed discussion of methodologies used for deterministic and probabilistic fault displacement hazard analyses for this project.
Radiation 101: Effects on Hardware and Robotic Systems
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2015-01-01
We present basic information on different types of radiation effects, including total ionizing dose, displacement damage, and single-event effects. The content is designed to educate space weather professionals, space operations professionals, and other science and engineering stakeholders.
DOT National Transportation Integrated Search
2002-11-01
The catalog documents the seismic performance of bridges and ancillary components in the presence of liquefaction-induced ground displacements. Data pertaining to seismological, geotechnical, and structural aspects of numerous case studies are presen...
Molecular Dynamics Simulation of Fission Fragment Damage in Nuclear Fuel and Surrogate Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram
ABSTRACT We have performed classical molecular dynamics simulations of swift heavy ion damage, typical of fission fragments, in nuclear fuel (UO 2) for energy deposition per unit length of 3.9 keV/nm. We did not observe amorphization. The damage mainly consisted of isolated point defects. Only about 1% of the displacements occur on the uranium sublattice. Oxygen Frenkel pairs are an order of magnitude more numerous than uranium Frenkel pairs in the primary damage state. In contrast, previous results show that the ratio of Frenkel pairs on the two sublattices is close to the stoichiometric ratio in ceria. These differences inmore » the primary damage state may lead to differences in radiation response of UO 2and CeO 2.« less
Full-Field Indentation Damage Measurement Using Digital Image Correlation
López-Alba, Elías; Díaz-Garrido, Francisco A.
2017-01-01
A novel approach based on full-field indentation measurements to characterize and quantify the effect of contact in thin plates is presented. The proposed method has been employed to evaluate the indentation damage generated in the presence of bending deformation, resulting from the contact between a thin plate and a rigid sphere. For this purpose, the 3D Digital Image Correlation (3D-DIC) technique has been adopted to quantify the out of plane displacements at the back face of the plate. Tests were conducted using aluminum thin plates and a rigid bearing sphere to evaluate the influence of the thickness and the material behavior during contact. Information provided by the 3D-DIC technique has been employed to perform an indirect measurement of the contact area during the loading and unloading path of the test. A symmetrical distribution in the contact damage region due to the symmetry of the indenter was always observed. In the case of aluminum plates, the presence of a high level of plasticity caused shearing deformation as the load increased. Results show the full-field contact damage area for different plates’ thicknesses at different loads. The contact damage region was bigger when the thickness of the specimen increased, and therefore, bending deformation was reduced. With the proposed approach, the elastic recovery at the contact location was quantified during the unloading, as well as the remaining permanent indentation damage after releasing the load. Results show the information obtained by full-field measurements at the contact location during the test, which implies a substantial improvement compared with pointwise techniques. PMID:28773137
NASA Astrophysics Data System (ADS)
Marian, Jaime; Hoang, Tuan; Fluss, Michael; Hsiung, Luke L.
2015-07-01
Under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effects and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with helium and hydrogen implantation) and the synergistic effects of hydrogen.
Marian, Jaime; Hoang, Tuan; Fluss, Michael; ...
2014-12-29
Here, under fusion reactor conditions, large quantities of irradiation defects and transmutation gases are produced per unit time by neutrons, resulting in accelerated degradation of structural candidate ferritic (F) and ferritic/martensitic (F/M) steels. Due to the lack of a suitable fusion neutron testing facility, we must rely on high-dose-rate ion-beam experiments and present-day crude modeling estimates. Of particular interest is the possibility of synergistic (positive feedback) effects on materials properties due to the simultaneous action of He, H, and displacement damage (dpa) during operation. In this paper we discuss the state-of-the-art in terms of the experimental understanding of synergistic effectsmore » and carry out simulations of triple-species irradiation under ion-beam conditions using first-of-its-kind modeling techniques. Although, state-of-the-art modeling and simulation is not sufficiently well developed to shed light on the experimental uncertainties, we are able to conclude that it is not clear whether synergistic effects, the evidence of which is still not conclusive, will ultimately play a critical role in material performance under fusion energy conditions. We review here some of the evidence for the synergistic effects of hydrogen in the presence of helium and displacement damage, and also include some recent data from our research. While the experimental results to date suggest possible mechanisms for the observed synergistic effects, it is only with more advanced modeling that we can hope to understand the details underlying the experimental observations. By employing modeling and simulation we propose an interaction model that is qualitatively consistent with experimental observations of dpa/He/H irradiation behavior. Our modeling, the results of which should be helpful to researchers going forward, points to gaps and voids in the current understanding of triple ion-beam irradiation effects (displacement damage produced simultaneously with helium and hydrogen implantation) and the synergistic effects of hydrogen.« less
Internal displacement and the Syrian crisis: an analysis of trends from 2011-2014.
Doocy, Shannon; Lyles, Emily; Delbiso, Tefera D; Robinson, Courtland W
2015-01-01
Since the start of the Syrian crisis in 2011, civil unrest and armed conflict in the country have resulted in a rapidly increasing number of people displaced both within and outside of Syria. Those displaced face immense challenges in meeting their basic needs. This study sought to characterize internal displacement in Syria, including trends in both time and place, and to provide insights on the association between displacement and selected measures of household well-being and humanitarian needs. This study presents findings from two complementary methods: a desk review of displaced population estimates and movements and a needs assessment of 3930 Syrian households affected by the crisis. The first method, a desk review of displaced population estimates and movements, provides a retrospective analysis of national trends in displacement from March 2011 through June 2014. The second method, analysis of findings from a 2014 needs assessment by displacement status, provides insight into the displaced population and the association between displacement and humanitarian needs. Findings indicate that while displacement often corresponds to conflict levels, such trends were not uniformly observed in governorate-level analysis. Governorate level IDP estimates do not provide information on a scale detailed enough to adequately plan humanitarian assistance. Furthermore, such estimates are often influenced by obstructed access to certain areas, unsubstantiated reports, and substantial discrepancies in reporting. Secondary displacement is not consistently reported across sources nor are additional details about displacement, including whether displaced individuals originated within the current governorate or outside of the governorate. More than half (56.4 %) of households reported being displaced more than once, with a majority displaced for more than one year (73.3 %). Some differences between displaced and non-displaced population were observed in residence crowding, food consumption, health access, and education. Differences in reported living conditions and key health, nutrition, and education indicators between displaced and non-displaced populations indicate a need to better understand migration trends in order to inform planning and provision of live saving humanitarian assistance.
Nuclear analysis of structural damage and nuclear heating on enhanced K-DEMO divertor model
NASA Astrophysics Data System (ADS)
Park, J.; Im, K.; Kwon, S.; Kim, J.; Kim, D.; Woo, M.; Shin, C.
2017-12-01
This paper addresses nuclear analysis on the Korean fusion demonstration reactor (K-DEMO) divertor to estimate the overall trend of nuclear heating values and displacement damages. The K-DEMO divertor model was created and converted by the CAD (Pro-Engineer™) and Monte Carlo automatic modeling programs as a 22.5° sector of the tokamak. The Monte Carlo neutron photon transport and ADVANTG codes were used in this calculation with the FENDL-2.1 nuclear data library. The calculation results indicate that the highest values appeared on the upper outboard target (OT) area, which means the OT is exposed to the highest radiation conditions among the three plasma-facing parts (inboard, central and outboard) in the divertor. Especially, much lower nuclear heating values and displacement damages are indicated on the lower part of the OT area than others. These are important results contributing to thermal-hydraulic and thermo-mechanical analyses on the divertor and also it is expected that the copper alloy materials may be partially used as a heat sink only at the lower part of the OT instead of the reduced activation ferritic-martensitic steel due to copper alloy’s high thermal conductivity.
NASA Astrophysics Data System (ADS)
François, Bertrand; Labiouse, Vincent; Dizier, Arnaud; Marinelli, Ferdinando; Charlier, Robert; Collin, Frédéric
2014-01-01
Boom Clay is extensively studied as a potential candidate to host underground nuclear waste disposal in Belgium. To guarantee the safety of such a disposal, the mechanical behaviour of the clay during gallery excavation must be properly predicted. In that purpose, a hollow cylinder experiment on Boom Clay has been designed to reproduce, in a small-scale test, the Excavation Damaged Zone (EDZ) as experienced during the excavation of a disposal gallery in the underground. In this article, the focus is made on the hydro-mechanical constitutive interpretation of the displacement (experimentally obtained by medium resolution X-ray tomography scanning). The coupled hydro-mechanical response of Boom Clay in this experiment is addressed through finite element computations with a constitutive model including strain hardening/softening, elastic and plastic cross-anisotropy and a regularization method for the modelling of strain localization processes. The obtained results evidence the directional dependency of the mechanical response of the clay. The softening behaviour induces transient strain localization processes, addressed through a hydro-mechanical second grade model. The shape of the obtained damaged zone is clearly affected by the anisotropy of the materials, evidencing an eye-shaped EDZ. The modelling results agree with experiments not only qualitatively (in terms of the shape of the induced damaged zone), but also quantitatively (for the obtained displacement in three particular radial directions).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, B.C.
This study is an assessment of the ground shock which may be generated in the event of an accidental explosion at J5 or the Proposed Large Altitude Rocket Cell (LARC) at the Arnold Engineering Development Center (AEDC). The assessment is accomplished by reviewing existing empirical relationships for predicting ground motion from ground shock. These relationships are compared with data for surface explosions at sites with similar geology and with yields similar to expected conditions at AEDC. Empirical relationships are developed from these data and a judgment made whether to use existing empirical relationships or the relationships developed in this study.more » An existing relationship (Lipner et al.) is used to predict velocity; the empirical relationships developed in the course of this study are used to predict acceleration and displacement. The ground motions are presented in table form and as contour plots. Included also is a discussion of damage criteria from blast and earthquake studies. This report recommends using velocity rather than acceleration as an indicator of structural blast damage. It is recommended that v = 2 ips (v = .167 fps) be used as the damage threshold value (no major damage for v less than or equal to 2 ips). 13 references, 25 figures, 6 tables.« less
Liquefaction-induced lateral spreading in Oceano, California, during the 2003 San Simeon Earthquake
Holzer, Thomas L.; Noce, Thomas E.; Bennett, Michael J.; Di Alessandro, Carola; Boatwright, John; Tinsley, John C.; Sell, Russell W.; Rosenberg, Lewis I.
2004-01-01
The December 22, 2003, San Simeon, California, (M6.5) earthquake caused damage to houses, road surfaces, and underground utilities in Oceano, California. The community of Oceano is approximately 50 miles (80 km) from the earthquake epicenter. Damage at this distance from a M6.5 earthquake is unusual. To understand the causes of this damage, the U.S. Geological Survey conducted extensive subsurface exploration and monitoring of aftershocks in the months after the earthquake. The investigation included 37 seismic cone penetration tests, 5 soil borings, and aftershock monitoring from January 28 to March 7, 2004. The USGS investigation identified two earthquake hazards in Oceano that explain the San Simeon earthquake damage?site amplification and liquefaction. Site amplification is a phenomenon observed in many earthquakes where the strength of the shaking increases abnormally in areas where the seismic-wave velocity of shallow geologic layers is low. As a result, earthquake shaking is felt more strongly than in surrounding areas without similar geologic conditions. Site amplification in Oceano is indicated by the physical properties of the geologic layers beneath Oceano and was confirmed by monitoring aftershocks. Liquefaction, which is also commonly observed during earthquakes, is a phenomenon where saturated sands lose their strength during an earthquake and become fluid-like and mobile. As a result, the ground may undergo large permanent displacements that can damage underground utilities and well-built surface structures. The type of displacement of major concern associated with liquefaction is lateral spreading because it involves displacement of large blocks of ground down gentle slopes or towards stream channels. The USGS investigation indicates that the shallow geologic units beneath Oceano are very susceptible to liquefaction. They include young sand dunes and clean sandy artificial fill that was used to bury and convert marshes into developable lots. Most of the 2003 damage was caused by lateral spreading in two separate areas, one near Norswing Drive and the other near Juanita Avenue. The areas coincided with areas with the highest liquefaction potential found in Oceano. Areas with site amplification conditions similar to those in Oceano are particularly vulnerable to earthquakes. Site amplification may cause shaking from distant earthquakes, which normally would not cause damage, to increase locally to damaging levels. The vulnerability in Oceano is compounded by the widespread distribution of highly liquefiable soils that will reliquefy when ground shaking is amplified as it was during the San Simeon earthquake. The experience in Oceano can be expected to repeat because the region has many active faults capable of generating large earthquakes. In addition, liquefaction and lateral spreading will be more extensive for moderate-size earthquakes that are closer to Oceano than was the 2003 San Simeon earthquake. Site amplification and liquefaction can be mitigated. Shaking is typically mitigated in California by adopting and enforcing up-to-date building codes. Although not a guarantee of safety, application of these codes ensures that the best practice is used in construction. Building codes, however, do not always require the upgrading of older structures to new code requirements. Consequently, many older structures may not be as resistant to earthquake shaking as new ones. For older structures, retrofitting is required to bring them up to code. Seismic provisions in codes also generally do not apply to nonstructural elements such as drywall, heating systems, and shelving. Frequently, nonstructural damage dominates the earthquake loss. Mitigation of potential liquefaction in Oceano presently is voluntary for existing buildings, but required by San Luis Obispo County for new construction. Multiple mitigation procedures are available to individual property owners. These procedures typically involve either
Annealing displacement damage in GaAs LEDs: another Galileo success story
NASA Technical Reports Server (NTRS)
Swift, G. M.; Levanas, G. C.; Ratliff, J. M.; Johnston, A. H.
2003-01-01
A recent failure of Galileo's magnetic recorder was identified as LED degradation. Annealing the culprit OP133s proved successful and the irreplaceable data was recovered. Test data and modeling results calibrate an understanding of this incident.
Carrier tunneling in models of irradiated heterojunction bipolar transistors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wampler, William R.; Myers, Samuel Maxwell
2014-08-01
As part of Sandia's program to simulate the effect of displacement damage on operation of heterojunction bipolar transistors (HBTs), we are examining the formulation in 1-D of band-to-band (bb) and band-to-trap (b-t) carrier tunneling.
Determination Method of Bridge Rotation Angle Response Using MEMS IMU
Sekiya, Hidehiko; Kinomoto, Takeshi; Miki, Chitoshi
2016-01-01
To implement steel bridge maintenance, especially that related to fatigue damage, it is important to monitor bridge deformations under traffic conditions. Bridges deform and rotate differently under traffic load conditions because their structures differ in terms of length and flexibility. Such monitoring enables the identification of the cause of stress concentrations that cause fatigue damage and the proposal of appropriate countermeasures. However, although bridge deformation monitoring requires observations of bridge angle response as well as the bridge displacement response, measuring the rotation angle response of a bridge subject to traffic loads is difficult. Theoretically, the rotation angle response can be calculated by integrating the angular velocity, but for field measurements of actual in-service bridges, estimating the necessary boundary conditions would be difficult due to traffic-induced vibration. To solve the problem, this paper proposes a method for determining the rotation angle response of an in-service bridge from its angular velocity, as measured by a inertial measurement unit (IMU). To verify our proposed method, field measurements were conducted using nine micro-electrical mechanical systems (MEMS) IMUs and two contact displacement gauges. The results showed that our proposed method provided high accuracy when compared to the reference responses calculated by the contact displacement gauges. PMID:27834871
NASA Technical Reports Server (NTRS)
Girolamo, Donato; Davila, Carlos G.; Leone, Frank A.; Lin, Shih-Yung
2015-01-01
The results of an experimental/numerical campaign aimed to develop progressive damage analysis (PDA) tools for predicting the strength of a composite bonded joint under tensile loads are presented. The PDA is based on continuum damage mechanics (CDM) to account for intralaminar damage, and cohesive laws to account for interlaminar and adhesive damage. The adhesive response is characterized using standard fracture specimens and digital image correlation (DIC). The displacement fields measured by DIC are used to calculate the J-integrals, from which the associated cohesive laws of the structural adhesive can be derived. A finite element model of a sandwich conventional splice joint (CSJ) under tensile loads was developed. The simulations, in agreement with experimental tests, indicate that the model is capable of predicting the interactions of damage modes that lead to the failure of the joint.
Jovanovich, Elizabeth Nora; Howard, James F
2017-12-01
Posttraumatic brachial plexopathies can occur following displaced proximal humeral fractures, causing profound functional deficits. Described here is an unusual case of a displaced proximal humeral metaphyseal fracture in a young child. The patient underwent closed reduction and serial casting, but hand weakness and forearm sensory loss persisted. Needle electromyography localized the injury to the mid/proximal arm near the fracture site, resulting in damage to the posterior and medial cords of the brachial plexus with profound involvement of the radial, ulnar, and median nerves and sparing of the axillary nerve. After months of occupational therapy, hand strength improved, with a nearly full return of function. V. Copyright © 2017 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Linear Static Behavior of Damaged Laminated Composite Plates and Shells
2017-01-01
A mathematical scheme is proposed here to model a damaged mechanical configuration for laminated and sandwich structures. In particular, two kinds of functions defined in the reference domain of plates and shells are introduced to weaken their mechanical properties in terms of engineering constants: a two-dimensional Gaussian function and an ellipse shaped function. By varying the geometric parameters of these distributions, several damaged configurations are analyzed and investigated through a set of parametric studies. The effect of a progressive damage is studied in terms of displacement profiles and through-the-thickness variations of stress, strain, and displacement components. To this end, a posteriori recovery procedure based on the three-dimensional equilibrium equations for shell structures in orthogonal curvilinear coordinates is introduced. The theoretical framework for the two-dimensional shell model is based on a unified formulation able to study and compare several Higher-order Shear Deformation Theories (HSDTs), including Murakami’s function for the so-called zig-zag effect. Thus, various higher-order models are used and compared also to investigate the differences which can arise from the choice of the order of the kinematic expansion. Their ability to deal with several damaged configurations is analyzed as well. The paper can be placed also in the field of numerical analysis, since the solution to the static problem at issue is achieved by means of the Generalized Differential Quadrature (GDQ) method, whose accuracy and stability are proven by a set of convergence analyses and by the comparison with the results obtained through a commercial finite element software. PMID:28773170
Baum, R.L.; Messerich, J.; Fleming, R.W.
1998-01-01
Two slow-moving landslides in Honolulu, Hawaii, were the subject of photogrammetric measurements, field mapping, and subsurface investigation to learn whether surface observations can yield useful information consistent with results of subsurface investigation. Mapping focused on structural damage and on surface features such as scarps, shears, and toes. The x-y-z positions of photo-identifiable points were obtained from aerial photographs taken at three different times. The measurements were intended to learn if the shape of the landslide failure surface can be determined from systematic surface observations and whether surface observations about deformation are consistent with photogrammetrically-obtained displacement gradients. Field and aerial photographic measurements were evaluated to identify the boundaries of the landslides, distinguish areas of incipient landslide enlargement, and identify zones of active and passive failure in the landslides. Data reported here apply mainly to the Alani-Paty landslide, a translational, earth-block landslide that damaged property in a 3.4-ha residential area. It began moving in the 1970s and displacement through 1991 totaled 4 m. Thickness, determined from borehole data, ranges from about 7 to 10 m; and the slope of the ground surface averages about 9??. Field evidence of deformation indicated areas of potential landslide enlargement outside the well-formed landslide boundaries. Displacement gradients obtained photogrammetrically and deformation mapping both identified similar zones of active failure (longitudinal stretching) and passive failure (longitudinal shortening) within the body of the landslide. Surface displacement on the landslide is approximately parallel to the broadly concave slip surface.
NASA Astrophysics Data System (ADS)
Siler-Evans, Kyle
There is growing interest in reducing the environmental and human-health impacts resulting from electricity generation. Renewable energy, energy efficiency, and energy conservation are all commonly suggested solutions. Such interventions may provide health and environmental benefits by displacing emissions from conventional power plants. However, the generation mix varies considerably from region to region and emissions vary by the type and age of a generator. Thus, the benefits of an intervention will depend on the specific generators that are displaced, which vary depending on the timing and location of the intervention. Marginal emissions factors (MEFs) give a consistent measure of the avoided emissions per megawatt-hour of displaced electricity, which can be used to evaluate the change in emissions resulting from a variety of interventions. This thesis presents the first systematic calculation of MEFs for the U.S. electricity system. Using regressions of hourly generation and emissions data from 2006 through 2011, I estimate regional MEFs for CO2, NO x, and SO2, as well as the share of marginal generation from coal-, gas-, and oil-fired generators. This work highlights significant regional differences in the emissions benefits of displacing a unit of electricity: compared to the West, displacing one megawatt-hour of electricity in the Midwest is expected to avoid roughly 70% more CO2, 12 times more SO 2, and 3 times more NOx emissions. I go on to explore regional variations in the performance of wind turbines and solar panels, where performance is measured relative to three objectives: energy production, avoided CO2 emissions, and avoided health and environmental damages from criteria pollutants. For 22 regions of the United States, I use regressions of historic emissions and generation data to estimate marginal impact factors, a measure of the avoided health and environmental damages per megawatt-hour of displaced electricity. Marginal impact factors are used to evaluate the effects of an additional wind turbine or solar panel in the U.S. electricity system. I find that the most attractive sites for renewables depend strongly on one's objective. A solar panel in Iowa displaces 20% more CO2 emissions than a panel in Arizona, though energy production from the Iowa panel is 25% less. Similarly, despite a modest wind resource, a wind turbine in West Virginia is expected to displace 7 times more health and environmental damages than a wind turbine in Oklahoma. Finally, I shift focus and explore the economics of small-scale cogeneration, which has long been recognized as a more efficient alternative to central-station power. Although the benefits of distributed cogeneration are widely cited, adoption has been slow in the U.S. Adoption could be encouraged by making cogeneration more economically attractive, either by increasing the expected returns or decreasing the risks of such investments. I present a case study of a 300-kilowatt cogeneration unit and evaluate the expected returns from: demand response, capacity markets, regulation markets, accelerated depreciation, a price on CO2 emissions, and net metering. In addition, I explore the effectiveness of feed-in tariffs at mitigating the energy-price risks to cogeneration projects.
NASA Astrophysics Data System (ADS)
Graizer, V.
2012-12-01
The MW 5.8 Mineral, Virginia earthquake was recorded at a relatively short epicentral distance of about 18 km at the North Anna Nuclear Power Plant (NPP) by the SMA-3 magnetic tape digital accelerographs installed inside the plant's containment at the foundation and deck levels. The North Anna NPP is operated by the Virginia Electric and Power Company (VEPCO) and has two pressurized water reactors (PWR) units that began operation in 1978 and 1980, respectively. Following the earthquake, both units were safely shutdown. The strong-motion records were processed to get velocity, displacement, Fourier and 5% damped response spectra. The basemat record demonstrated relatively high amplitudes of acceleration of 0.26 g and velocity of 13.8 cm/sec with a relatively short duration of strong motion of 2-3 sec. Recorded 5% damped Response Spectra exceed Design Basis Earthquake for the existing Units 1 and 2, while comprehensive plant inspections performed by VEPCO and U.S. Nuclear Regulatory Commission have concluded that the damage to the plant was minimal not affecting any structures and equipment significant to plant operation. This can be explained in part by short duration of the earthquake ground motion at the plant. The North Anna NPP did not have free-field strong motion instrumentation at the time of the earthquake. Since the containment is founded on rock there is a tendency to consider basemat record as an approximation of the free-field recording. However, comparisons of deck and basemat records demonstrate that the basemat recording is also affected by structural resonance frequencies higher than 3 Hz. Structural resonances in the frequency range of 3-4 Hz can at least partially explain significant exceedance of observed motions relative to ground motion calculated using ground motion prediction equations.cceleration, velocity and displacement at the North Anna NPP basemat level. Amplitudes of acceleration, velocity and displacement at basemat and deck levels
The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis
Zhang, Xin; Trépanier, Véronique; Beaujois, Remy; Viranaicken, Wildriss; Drobetsky, Elliot; DesGroseillers, Luc
2016-01-01
Staufen2 (Stau2) is an RNA-binding protein involved in cell fate decision by controlling several facets of mRNA processing including localization, splicing, translation and stability. Herein we report that exposure to DNA-damaging agents that generate replicative stress such as camptothecin (CPT), 5-fluoro-uracil (5FU) and ultraviolet radiation (UVC) causes downregulation of Stau2 in HCT116 colorectal cancer cells. In contrast, other agents such as doxorubicin and ionizing radiation had no effect on Stau2 expression. Consistently, Stau2 expression is regulated by the ataxia telangiectasia and Rad3-related (ATR) signaling pathway but not by the DNA-PK or ataxia telangiectasia mutated/checkpoint kinase 2 pathways. Stau2 downregulation is initiated at the level of transcription, independently of apoptosis induction. Promoter analysis identified a short 198 bp region which is necessary and sufficient for both basal and CPT-regulated Stau2 expression. The E2F1 transcription factor regulates Stau2 in untreated cells, an effect that is abolished by CPT treatment due to E2F1 displacement from the promoter. Strikingly, Stau2 downregulation enhances levels of DNA damage and promotes apoptosis in CPT-treated cells. Taken together our results suggest that Stau2 is an anti-apoptotic protein that could be involved in DNA replication and/or maintenance of genome integrity and that its expression is regulated by E2F1 via the ATR signaling pathway. PMID:26843428
Mixed-Mode Decohesion Elements for Analyses of Progressive Delamination
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.; deMoura, Marcelo F.
2001-01-01
A new 8-node decohesion element with mixed mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a strain softening law to track the damage state of the interface. The method can be used in conjunction with conventional material degradation procedures to account for inplane and intra-laminar damage modes. The accuracy of the predictions is evaluated in single mode delamination tests, in the mixed-mode bending test, and in a structural configuration consisting of the debonding of a stiffener flange from its skin.
Quantifying Low Energy Proton Damage in Multijunction Solar Cells
NASA Technical Reports Server (NTRS)
Messenger, Scott R.; Burke, Edward A.; Walters, Robert J.; Warner, Jeffrey H.; Summers, Geoffrey P.; Lorentzen, Justin R.; Morton, Thomas L.; Taylor, Steven J.
2007-01-01
An analysis of the effects of low energy proton irradiation on the electrical performance of triple junction (3J) InGaP2/GaAs/Ge solar cells is presented. The Monte Carlo ion transport code (SRIM) is used to simulate the damage profile induced in a 3J solar cell under the conditions of typical ground testing and that of the space environment. The results are used to present a quantitative analysis of the defect, and hence damage, distribution induced in the cell active region by the different radiation conditions. The modelling results show that, in the space environment, the solar cell will experience a uniform damage distribution through the active region of the cell. Through an application of the displacement damage dose analysis methodology, the implications of this result on mission performance predictions are investigated.
The use of the SRIM code for calculation of radiation damage induced by neutrons
NASA Astrophysics Data System (ADS)
Mohammadi, A.; Hamidi, S.; Asadabad, Mohsen Asadi
2017-12-01
Materials subjected to neutron irradiation will being evolve to structural changes by the displacement cascades initiated by nuclear reaction. This study discusses a methodology to compute primary knock-on atoms or PKAs information that lead to radiation damage. A program AMTRACK has been developed for assessing of the PKAs information. This software determines the specifications of recoil atoms (using PTRAC card of MCNPX code) and also the kinematics of interactions. The deterministic method was used for verification of the results of (MCNPX+AMTRACK). The SRIM (formely TRIM) code is capable to compute neutron radiation damage. The PKAs information was extracted by AMTRACK program, which can be used as an input of SRIM codes for systematic analysis of primary radiation damage. Then the Bushehr Nuclear Power Plant (BNPP) radiation damage on reactor pressure vessel is calculated.
Damage Progression in Buckle-Resistant Notched Composite Plates Loaded in Uniaxial Compression
NASA Technical Reports Server (NTRS)
McGowan, David M.; Davila, Carlos G.; Ambur, Damodar R.
2001-01-01
Results of an experimental and analytical evaluation of damage progression in three stitched composite plates containing an angled central notch and subjected to compression loading are presented. Parametric studies were conducted systematically to identify the relative effects of the material strength parameters on damage initiation and growth. Comparisons with experiments were conducted to determine the appropriate in situ values of strengths for progressive failure analysis. These parametric studies indicated that the in situ value of the fiber buckling strength is the most important parameter in the prediction of damage initiation and growth in these notched composite plates. Analyses of the damage progression in the notched, compression-loaded plates were conducted using in situ material strengths. Comparisons of results obtained from these analyses with experimental results for displacements and axial strains show good agreement.
NASA Astrophysics Data System (ADS)
Inoue, N.; Kitada, N.; Tonagi, M.
2016-12-01
Distributed fault displacements in Probabilistic Fault Displace- ment Analysis (PFDHA) have an important rule in evaluation of important facilities such as Nuclear Installations. In Japan, the Nu- clear Installations should be constructed where there is no possibility that the displacement by the earthquake on the active faults occurs. Youngs et al. (2003) defined the distributed fault as displacement on other faults or shears, or fractures in the vicinity of the principal rup- ture in response to the principal faulting. Other researchers treated the data of distribution fault around principal fault and modeled according to their definitions (e.g. Petersen et al., 2011; Takao et al., 2013 ). We organized Japanese fault displacements data and constructed the slip-distance relationship depending on fault types. In the case of reverse fault, slip-distance relationship on the foot-wall indicated difference trend compared with that on hanging-wall. The process zone or damaged zone have been studied as weak structure around principal faults. The density or number is rapidly decrease away from the principal faults. We contrasted the trend of these zones with that of distributed slip-distance distributions. The subsurface FEM simulation have been carried out to inves- tigate the distribution of stress around principal faults. The results indicated similar trend compared with the distribution of field obser- vations. This research was part of the 2014-2015 research project `Development of evaluating method for fault displacement` by the Secretariat of Nuclear Regulation Authority (S/NRA), Japan.
NASA Technical Reports Server (NTRS)
Hardage, Donna (Technical Monitor); Walters, R. J.; Morton, T. L.; Messenger, S. R.
2004-01-01
The objective is to develop an improved space solar cell radiation response analysis capability and to produce a computer modeling tool which implements the analysis. This was accomplished through analysis of solar cell flight data taken on the Microelectronics and Photonics Test Bed experiment. This effort specifically addresses issues related to rapid technological change in the area of solar cells for space applications in order to enhance system performance, decrease risk, and reduce cost for future missions.
2016-12-31
PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 M1601473 I 505170-0000112...likely to influence the quasi -static and dynamic crack growth in the composite system. For this step we need a method that reduces/eliminates stress...1 0 7 0 E 0 E _, - 5 _, Fig. 2.1. Quasi -static stretching of an elastic material. Bottom row shows the horizontal displacement obtained with
Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin
2018-01-14
The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model.
Zhang, Yongquan; Tang, Huiming; Li, Changdong; Lu, Guiying; Cai, Yi; Zhang, Junrong; Tan, Fulin
2018-01-01
The physical model test of landslides is important for studying landslide structural damage, and parameter measurement is key in this process. To meet the measurement requirements for deep displacement in landslide physical models, an automatic flexible inclinometer probe with good coupling and large deformation capacity was designed. The flexible inclinometer probe consists of several gravity acceleration sensing units that are protected and positioned by silicon encapsulation, all the units are connected to a 485-comunication bus. By sensing the two-axis tilt angle, the direction and magnitude of the displacement for a measurement unit can be calculated, then the overall displacement is accumulated according to all units, integrated from bottom to top in turn. In the conversion from angle to displacement, two spline interpolation methods are introduced to correct and resample the data; one is to interpolate the displacement after conversion, and the other is to interpolate the angle before conversion; compared with the result read from checkered paper, the latter is proved to have a better effect, with an additional condition that the displacement curve move up half the length of the unit. The flexible inclinometer is verified with respect to its principle and arrangement by a laboratory physical model test, and the test results are highly consistent with the actual deformation of the landslide model. PMID:29342902
Estimation of Surface Deformation due to Pasni Earthquake Using SAR Interferometry
NASA Astrophysics Data System (ADS)
Ali, M.; Shahzad, M. I.; Nazeer, M.; Kazmi, J. H.
2018-04-01
Earthquake cause ground deformation in sedimented surface areas like Pasni and that is a hazard. Such earthquake induced ground displacements can seriously damage building structures. On 7 February 2017, an earthquake with 6.3 magnitudes strike near to Pasni. We have successfully distinguished widely spread ground displacements for the Pasni earthquake by using InSAR-based analysis with Sentinel-1 satellite C-band data. The maps of surface displacement field resulting from the earthquake are generated. Sentinel-1 Wide Swath data acquired from 9 December 2016 to 28 February 2017 was used to generate displacement map. The interferogram revealed the area of deformation. The comparison map of interferometric vertical displacement in different time period was treated as an evidence of deformation caused by earthquake. Profile graphs of interferogram were created to estimate the vertical displacement range and trend. Pasni lies in strong earthquake magnitude effected area. The major surface deformation areas are divided into different zones based on significance of deformation. The average displacement in Pasni is estimated about 250 mm. Maximum pasni area is uplifted by earthquake and maximum uplifting occurs was about 1200 mm. Some of areas was subsidized like the areas near to shoreline and maximum subsidence was estimated about 1500 mm. Pasni is facing many problems due to increasing sea water intrusion under prevailing climatic change where land deformation due to a strong earthquake can augment its vulnerability.
HELIUM EFFECTS ON DISPLACEMENT CASCADE IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Setyawan, Wahyu; Nandipati, Giridhar; Roche, Kenneth J.
2013-09-30
Molecular dynamics (MD) simulations were performed to investigate He effects on displacement cascades in W. Helium content, proportion of interstitial and substitutional He and temperature were varied to reveal the various effects. The effect of interstitial He on the number of self-interstitial atoms (SIAs) produced during cascade damage appears to be insignificant. However, interstitial He tends to fill a vacancy (V). Nevertheless, this process is less favorable than SIA-V recombination particularly when excess SIAs are present before a cascade. The efficiency of He filling and SIA-V recombination increases as temperature increases due to increased point defect mobility. Likewise, substitutional Hemore » is more susceptible to displacement during a collision cascade than W. This susceptibility increases towards higher temperatures. Consequently, the number of surviving V is governed by the interplay between displaced substitutional He and SIA-V recombination. The temperature dependence of these processes results in a minimum number of V reached at an intermediate temperature.« less
NASA Astrophysics Data System (ADS)
Miroshnichenko, I. P.; Parinov, I. A.
2017-06-01
It is proposed the computational-experimental ground of newly developed optical device for contactless measurement of small spatial displacements of control object surfaces based on the use of new methods of laser interferometry. The proposed device allows one to register linear and angular components of the small displacements of control object surfaces during the diagnosis of the condition of structural materials for forced elements of goods under exploring by using acoustic non-destructive testing methods. The described results are the most suitable for application in the process of high-precision measurements of small linear and angular displacements of control object surfaces during experimental research, the evaluation and diagnosis of the state of construction materials for forced elements of goods, the study of fast wave propagation in layered constructions of complex shape, manufactured of anisotropic composite materials, the study of damage processes in modern construction materials in mechanical engineering, shipbuilding, aviation, instrumentation, power engineering, etc.
NASA Astrophysics Data System (ADS)
Kaduri, M.; Gratier, J. P.; Renard, F.; Cakir, Z.; Lasserre, C.
2015-12-01
Aseismic creep is found along several sections of major active faults at shallow depth, such as the North Anatolian Fault in Turkey, the San Andreas Fault in California (USA), the Longitudinal Valley Fault in Taiwan, the Haiyuan fault in China and the El Pilar Fault in Venezuela. Identifying the mechanisms controlling creep and their evolution with time and space represents a major challenge for predicting the mechanical evolution of active faults, the interplay between creep and earthquakes, and the link between short-term observations from geodesy and the geological setting. Hence, studying the evolution of initial rock into damaged rock, then into gouge, is one of the key question for understanding the origin of fault creep. In order to address this question we collected samples from a dozen well-preserved fault outcrops along creeping and locked sections of the North Anatolian Fault. We used various methods such as microscopic and geological observations, EPMA, XRD analysis, combined with image processing, to characterize their mineralogy and strain. We conclude that (1) there is a clear correlation between creep localization and gouge composition. The locked sections of the fault are mostly composed of massive limestone. The creeping sections comprises clay gouges with 40-80% low friction minerals such as smectite, saponite, kaolinite, that facilitates the creeping. (2) The fault gouge shows two main structures that evolve with displacement: anastomosing cleavage develop during the first stage of displacement; amplifying displacement leads to layering development oblique or sub-parallel to the fault. (3) We demonstrate that the fault gouge result from a progressive evolution of initial volcanic rocks including dissolution of soluble species that move at least partially toward the damage zones and alteration transformations by fluid flow that weaken the gouge and strengthen the damage zone.
Microstructural evolution in fast-neutron-irradiated austenitic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, R.E.
1987-12-01
The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less
Measurement of Seaward Ground Displacements on Coastal Landfill Area Using Radar Interferometry
NASA Astrophysics Data System (ADS)
Baek, W.-K.; Jung, H.-S.
2018-04-01
In order to understand the mechanism of subsidence and help reducing damage, researchers has been observed the line-of-sight subsidence on the Noksan industrial complex using SAR Interferometry(InSAR) and suggested subsidence prediction models. Although these researches explained a spatially uneven ground subsidence near the seaside, they could not have been explained the occurrence of the newly proposed seaward horizontal, especially nearly north-ward, displacement because of the geometric limitation of InSAR measurements. In this study, we measured the seaward ground displacements trend on the coastal landfill area, Noksan Industrial Complex. We set the interferometric pairs from an ascending and a descending orbits strip map data of ALOS PALSAR2. We employed InSAR and MAI stacking approaches for the both orbits respectively in order to improve the measurement. Finally, seaward deformation was estimated by retrieving three-dimensional displacements from multi-geometric displacements. As a results, maximally 3.3 and 0.7 cm/year of ground displacements for the vertical and seaward directions. In further study, we plan to generate InSAR and MAI stacking measurements with additional SAR data to mitigate tropospheric effect and noise well. Such a seaward observation approach using spaceborne radar is expected to be effective in observing the long-term movements on coastal landfill area.
NASA Astrophysics Data System (ADS)
Su, Ray Kai Leung; Lee, Chien-Liang
2013-06-01
This study presents a seismic fragility analysis and ultimate spectral displacement assessment of regular low-rise masonry infilled (MI) reinforced concrete (RC) buildings using a coefficient-based method. The coefficient-based method does not require a complicated finite element analysis; instead, it is a simplified procedure for assessing the spectral acceleration and displacement of buildings subjected to earthquakes. A regression analysis was first performed to obtain the best-fitting equations for the inter-story drift ratio (IDR) and period shift factor of low-rise MI RC buildings in response to the peak ground acceleration of earthquakes using published results obtained from shaking table tests. Both spectral acceleration- and spectral displacement-based fragility curves under various damage states (in terms of IDR) were then constructed using the coefficient-based method. Finally, the spectral displacements of low-rise MI RC buildings at the ultimate (or nearcollapse) state obtained from this paper and the literature were compared. The simulation results indicate that the fragility curves obtained from this study and other previous work correspond well. Furthermore, most of the spectral displacements of low-rise MI RC buildings at the ultimate state from the literature fall within the bounded spectral displacements predicted by the coefficient-based method.
NASA Astrophysics Data System (ADS)
Wan, Xiang; Tse, Peter W.; Zhang, Xuhui; Xu, Guanghua; Zhang, Qing; Fan, Hongwei; Mao, Qinghua; Dong, Ming; Wang, Chuanwei; Ma, Hongwei
2018-04-01
Under the discipline of nonlinear ultrasonics, in addition to second harmonic generation, static component generation is another frequently used nonlinear ultrasonic behavior in non-destructive testing (NDT) and structural health monitoring (SHM) communities. However, most previous studies on static component generation are mainly based on using longitudinal waves. It is desirable to extend static component generation from primary longitudinal waves to primary Lamb waves. In this paper, static component generation from the primary Lamb waves is studied. Two major issues are numerically investigated. First, the mode of static displacement component generated from different primary Lamb wave modes is identified. Second, cumulative effect of static displacement component from different primary Lamb wave modes is also discussed. Our study results show that the static component wave packets generated from the primary S0, A0 and S1 modes share the almost same group velocity equal to the phase velocity of S0 mode tending to zero frequency c plate . The finding indicates that whether the primary mode is S0, A0 or S1, the static components generated from these primary modes always share the nature of S0 mode. This conclusion is also verified by the displacement filed of these static components that the horizontal displacement field is almost uniform and the vertical displacement filed is antisymmetric across the thickness of the plate. The uniform distribution of horizontal displacement filed enables the static component, regardless of the primary Lamb modes, to be a promising technique for evaluating microstructural damages buried in the interior of a structure. Our study also illustrates that the static components are cumulative regardless of whether the phase velocity of the primary and secondary waves is matched or not. This observation indicates that the static component overcomes the limitations of the traditional nonlinear Lamb waves satisfying phase velocity matching condition to achieve cumulative second harmonic generation. This nature also enables the primary Lamb waves excited at a low center frequency to generate static component used for inspecting large-scale structures with micro-scale damages.
Optimization of Aerospace Structure Subject to Damage Tolerance Criteria
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.
1999-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers. It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages. A common method for topology optimization is that of compliance minimization which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system. Sherrnan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this. SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Atwani, O.; Esquivel, E.; Efe, M.
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
El-Atwani, O.; Esquivel, E.; Efe, M.; ...
2018-02-20
Displacement damage, through heavy ion irradiation was studied on two tungsten grades (coarse grained tungsten (CGW) and nanocrystalline and ultrafine grained tungsten (NCW)) using different displacement per atom rates and different irradiation temperatures (RT and 1050 K). Percentage of <111> and <100> type loops at the irradiation conditions was determined. Irradiation damage in the microstructure was quantified using average loop areas and densities (method A) and loop areal fraction in the grain matrices under 2-beam diffraction conditions (method B). Average values of <111> and <100> loops were calculated from method A. Loop coalescence was shown to occur for CGW atmore » 0.25 dpa. Using both methods of quantifying microstructural damage, no effect of dpa rate was observed and damage in CGW was shown to be the same at RT and 1050 K. Swelling from voids observed at 1050 K was quantified. The loop damage in NCW was compared to CGW at the same diffraction and imaging conditions. NCW was shown to possess enhanced irradiation resistance at RT regarding loop damage and higher swelling resistance at 1050 K compared to CGW. For irradiation at 1050 K, the NCW was shown to have a similar defect densities to the CGW which is attributed to higher surface effects in the CGW, vacancy loop growth to voids and a better sink efficiency in the CGW deduced from the vacancy distribution profiles from Kinetic Monte Carlo simulations. Loop density and swelling was shown to have similar values in grains sizes that range from 80-600 nm. No loop or void denuded zones occurred at any of the irradiation conditions. This work has a collection of experiments and conclusions that are of vital importance to materials and nuclear communities.« less
Damage assessment of RC buildings subjected to the different strong motion duration
NASA Astrophysics Data System (ADS)
Mortezaei, Alireza; mohajer Tabrizi, Mohsen
2015-07-01
An earthquake has three important characteristics; namely, amplitude, frequency content and duration. Amplitude and frequency content have a direct impact but not necessarily the sole cause of structural damage. Regarding the duration, some researchers show a high correlation between strong motion duration and structural damage whereas some others find no relation. This paper focuses on the ground motion durations characterized by Arias Intensity (AI). High duration may increase the damage state of structure for the damage accumulation. This paper investigates the response time histories (acceleration, velocity and displacement) of RC buildings under the different strong motion durations. Generally, eight earthquake records were selected from different soil type, and these records were grouped according to their PGA and frequency ranges. Maximum plastic rotation and drift response was chosen as damage indicator. In general, there was a positive correlation between strong motion duration and damage; however, in some PGA and frequency ranges input motions with shorter durations might cause more damage than the input motions with longer durations. In soft soils, input motions with longer durations caused more damage than the input motions with shorter durations.
NASA Technical Reports Server (NTRS)
Palmer, Susan O.; Nettles, Alan T.; Poe, C. C.
1998-01-01
A series of tests was conducted to support development of an analytical model for predicting the failure strains of stitched warp-knit carbon/epoxy composite materials with through-thicknesss damage in the form of a crack-like notch. Measurements of strain near notch tips, crack opening displacement (COD), and applied load were monitored in all tests. The out-of-plane displacement at the center of the notch was also measured when the specimen was subjected to bending. Three types of loading were applied: pure bending, pure tension, and combined bending and tension.
Xiong, Yanxiang; Wei, Min; Wei, Wei; Yin, Lihong; Pu, Yuepu; Liu, Songqin
2014-01-24
DNA hairpin structure probes are usually designed by forming intra-molecular duplex based on Watson-Crick hydrogen bonds. In this paper, a molecular beacon based on silver ions-mediated cytosine-Ag(+)-cytosine base pairs was used to detect DNA. The inherent characteristic of the metal ligation facilitated the design of functional probe and the adjustment of its binding strength compared to traditional DNA hairpin structure probes, which make it be used to detect DNA in a simple, rapid and easy way with the help of DNA strands displacement reaction. The method was sensitive and also possesses the good specificity to differentiate the single base mismatched DNA from the complementary DNA. It was also successfully applied to study the damage effect of classic genotoxicity chemicals such as styrene oxide and sodium arsenite on DNA, which was significant in food science, environmental science and pharmaceutical science. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
NASA Technical Reports Server (NTRS)
Decker, A. J.
2001-01-01
A neural-net inspection process has been combined with a bootstrap training procedure and electronic holography to detect changes or damage in a pressure-cycled International Space Station cold plate to be used for cooling instrumentation. The cold plate was excited to vibrate in a normal mode at low amplitude, and the neural net was trained by example to flag small changes in the mode shape. The NDE (nondestructive-evaluation) technique is straightforward but in its infancy; its applications are ad-hoc and uncalibrated. Nevertheless previous research has shown that the neural net can detect displacement changes to better than 1/100 the maximum displacement amplitude. Development efforts that support the NDE technique are mentioned briefly, followed by descriptions of electronic holography and neural-net processing. The bootstrap training procedure and its application to detection of damage in a pressure-cycled cold plate are discussed. Suggestions for calibrating and quantifying the NDE procedure are presented.
Pathomorphism of spiral tibial fractures in computed tomography imaging.
Guzik, Grzegorz
2011-01-01
Spiral fractures of the tibia are virtually homogeneous with regard to their pathomorphism. The differences that are seen concern the level of fracture of the fibula, and, to a lesser extent, the level of fracture of the tibia, the length of fracture cleft, and limb shortening following the trauma. While conventional radiographs provide sufficient information about the pathomorphism of fractures, computed tomography can be useful in demonstrating the spatial arrangement of bone fragments and topography of soft tissues surrounding the fracture site. Multiple cross-sectional computed tomography views of spiral fractures of the tibia show the details of the alignment of bone chips at the fracture site, axis of the tibial fracture cleft, and topography of soft tissues that are not visible on standard radiographs. A model of a spiral tibial fracture reveals periosteal stretching with increasing spiral and longitudinal displacement. The cleft in tibial fractures has a spiral shape and its line is invariable. Every spiral fracture of both crural bones results in extensive damage to the periosteum and may damage bellies of the long flexor muscle of toes, flexor hallucis longus as well as the posterior tibial muscle. Computed tomography images of spiral fractures of the tibia show details of damage that are otherwise invisible on standard radiographs. Moreover, CT images provide useful information about the spatial location of the bone chips as well as possible threats to soft tissues that surround the fracture site. Every spiral fracture of the tibia is associated with disruption of the periosteum. 1. Computed tomography images of spiral fractures of the tibia show details of damage otherwise invisible on standard radiographs, 2. The sharp end of the distal tibial chip can damage the tibialis posterior muscle, long flexor muscles of the toes and the flexor hallucis longus, 3. Every spiral fracture of the tibia is associated with disruption of the periosteum.
NASA Technical Reports Server (NTRS)
Baaklini, George Y.; Smith, Kevin; Raulerson, David; Gyekenyesi, Andrew L.; Sawicki, Jerzy T.; Brasche, Lisa
2003-01-01
Tools for Engine Diagnostics is a major task in the Propulsion System Health Management area of the Single Aircraft Accident Prevention project under NASA s Aviation Safety Program. The major goal of the Aviation Safety Program is to reduce fatal aircraft accidents by 80 percent within 10 years and by 90 percent within 25 years. The goal of the Propulsion System Health Management area is to eliminate propulsion system malfunctions as a primary or contributing factor to the cause of aircraft accidents. The purpose of Tools for Engine Diagnostics, a 2-yr-old task, is to establish and improve tools for engine diagnostics and prognostics that measure the deformation and damage of rotating engine components at the ground level and that perform intermittent or continuous monitoring on the engine wing. In this work, nondestructive-evaluation- (NDE-) based technology is combined with model-dependent disk spin experimental simulation systems, like finite element modeling (FEM) and modal norms, to monitor and predict rotor damage in real time. Fracture mechanics time-dependent fatigue crack growth and damage-mechanics-based life estimation are being developed, and their potential use investigated. In addition, wireless eddy current and advanced acoustics are being developed for on-wing and just-in-time NDE engine inspection to provide deeper access and higher sensitivity to extend on-wing capabilities and improve inspection readiness. In the long run, these methods could establish a base for prognostic sensing while an engine is running, without any overt actions, like inspections. This damage-detection strategy includes experimentally acquired vibration-, eddy-current- and capacitance-based displacement measurements and analytically computed FEM-, modal norms-, and conventional rotordynamics-based models of well-defined damages and critical mass imbalances in rotating disks and rotors.
NASA Astrophysics Data System (ADS)
Pigazzini, M. S.; Bazilevs, Y.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on isogeometric analysis, where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum damage mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
NASA Astrophysics Data System (ADS)
Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H.
2017-11-01
In this two-part paper we introduce a new formulation for modeling progressive damage in laminated composite structures. We adopt a multi-layer modeling approach, based on Isogeometric Analysis (IGA), where each ply or lamina is represented by a spline surface, and modeled as a Kirchhoff-Love thin shell. Continuum Damage Mechanics is used to model intralaminar damage, and a new zero-thickness cohesive-interface formulation is introduced to model delamination as well as permitting laminate-level transverse shear compliance. In Part I of this series we focus on the presentation of the modeling framework, validation of the framework using standard Mode I and Mode II delamination tests, and assessment of its suitability for modeling thick laminates. In Part II of this series we focus on the application of the proposed framework to modeling and simulation of damage in composite laminates resulting from impact. The proposed approach has significant accuracy and efficiency advantages over existing methods for modeling impact damage. These stem from the use of IGA-based Kirchhoff-Love shells to represent the individual plies of the composite laminate, while the compliant cohesive interfaces enable transverse shear deformation of the laminate. Kirchhoff-Love shells give a faithful representation of the ply deformation behavior, and, unlike solids or traditional shear-deformable shells, do not suffer from transverse-shear locking in the limit of vanishing thickness. This, in combination with higher-order accurate and smooth representation of the shell midsurface displacement field, allows us to adopt relatively coarse in-plane discretizations without sacrificing solution accuracy. Furthermore, the thin-shell formulation employed does not use rotational degrees of freedom, which gives additional efficiency benefits relative to more standard shell formulations.
GIS-based seismic shaking slope vulnerability map of Sicily (Central Mediterranean)
NASA Astrophysics Data System (ADS)
Nigro, Fabrizio; Arisco, Giuseppe; Perricone, Marcella; Renda, Pietro; Favara, Rocco
2010-05-01
Earthquakes often represent very dangerouses natural events in terms of human life and economic losses and their damage effects are amplified by the synchronous occurrence of seismically-induced ground-shaking failures in wide regions around the seismogenic source. In fact, the shaking associated with big earthquakes triggers extensive landsliding, sometimes at distances of more than 100 km from the epicenter. The active tectonics and the geomorphic/morphodinamic pattern of the regions affected by earthquakes contribute to the slopes instability tendency. In fact, earthquake-induced groun-motion loading determines inertial forces activation within slopes that, combined with the intrinsic pre-existing static forces, reduces the slope stability towards its failure. Basically, under zero-shear stress reversals conditions, a catastrophic failure will take place if the earthquake-induced shear displacement exceeds the critical level of undrained shear strength to a value equal to the gravitational shear stress. However, seismic stability analyses carried out for various infinite slopes by using the existing Newmark-like methods reveal that estimated permanent displacements smaller than the critical value should also be regarded as dangerous for the post-earthquake slope safety, in terms of human activities use. Earthquake-induced (often high-speed) landslides are among the most destructive phenomena related to slopes failure during earthquakes. In fact, damage from earthquake-induced landslides (and other ground-failures), sometimes exceeds the buildings/infrastructures damage directly related to ground-shaking for fault breaking. For this matter, several hearthquakes-related slope failures methods have been developed, for the evaluation of the combined hazard types represented by seismically ground-motion landslides. The methodologies of analysis of the engineering seismic risk related to the slopes instability processes is often achieved through the evaluation of the permanent displacement potentially induced by an seismic scenario. Such methodologies found on the consideration that the conditions of seismic stability and the post-seismic functionality of engineering structures are tightly related to the entity of the permanent deformations that an earthquake can induce. Regarding the existing simplified procedures among slope stability models, Newmark's model is often used to derive indications about slope instabilities due to earthquakes. In this way, we have evaluated the seismically-induced landslides hazard in Sicily (Central Mediterranean) using the Newmark-like model. In order to determine the map distribution of the seismic ground-acceleration from an earthquake scenario, the attenuation-law of Sabetta & Pugliese has been used, analyzing some seismic recordings occurred in Italy. Also, by evaluating permanent displacements, the correlation of Ambraseys & Menu has been assumed. The seismic shaking slope vulnerability map of Sicily has been carried out using GIS application, also considering max seismic ground-acceleration peak distribution (in terms of exceedance probability for fixed time), slope acclivity, cohesion/angle of internal friction of outcropping rocks, allowing the zoning of the unstable slopes under seismic forces.
A Coupled Community-Level Assessment of Social and Physical Vulnerability to Hurricane Disasters
NASA Astrophysics Data System (ADS)
Kim, J. H.; Sutley, E. J.; Chowdhury, A. G.; Hamideh, S.
2017-12-01
A significant portion of the U.S. building inventory exists in hurricane- and flood-prone regions. The accompanying storm surge and rising water levels often result in the inundation of residential homes, particularly those occupied by low income households and forcing displacement. In order to mitigate potential damages, a popular design technique is to elevate the structure using piers or piles to above the base flood elevation. This is observed for single-family and multi-family homes, including manufactured homes and post-disaster temporary housing, albeit at lower elevations. Although this design alleviates potential flood damage, it affects the wind-structure interaction by subjecting the structure to higher wind speeds due to its increased height and also having a path for the wind to pass underneath the structure potentially creating new vulnerabilities to wind loading. The current ASCE 7 Standard (2016) does not include a methodology for addressing the modified aerodynamics and estimating wind loads for elevated structures, and thus the potential vulnerability during high wind events is unaccounted for in design. Using experimentally measured wind pressures on elevated and non-elevated residential building models, tax data, and census data, a coupled vulnerability assessment is performed at the community-level. Galveston, Texas is selected as the case study community. Using the coupled assessment model, a hindcast of 2008 Hurricane Ike is used for predicting physical damage and household dislocation. The predicted results are compared with the actual outcomes of the 2008 hurricane disaster. Recommendations are made (1) for code adoption based on the experimentally measured wind loads, and (2) for mitigation actions and policies that would could decrease population dislocation and promote recovery.
NASA Astrophysics Data System (ADS)
Su, Yu-Min; Hou, Tsung-Chin; Chen, Guan-Ying; Hou, Ping-Ni
2017-04-01
The research objective was to evaluate Ordinary Portland Cement concrete subject to various elevated temperatures. Single OPC concrete mixture with water to cementitious (w/c) equal to 0.45 was proportioned. Concrete specimens were cast and placed in the curing tank in which water was saturated with calcium hydroxide. After ninety days of moist-cure, three elevated temperatures, namely 300, 600, and 900-°C, were carried out upon hardened concrete specimens. Furthermore, two post-damaged curing conditions were executed to recover damaged concrete specimens: one was to recure under 23°C with 50% humidity in a controlled environmental chamber and the other was to recure in the same curing tank. Acoustic emission apparatus coupled with the splitting tensile test was utilized and found able to assess damaged concrete. Before concrete subject to elevated temperatures, the development of indirect tensile strength versus displacement diagram fit well with the tendency of AE energy release. It was found there was a large amount of AE energy released when stress and displacement diagram developed about 40-50%. As such could be identified as the onset of first fracture and the plain concrete generally exhibited a quasi-brittle fracture with two major series of AE energy dissipations; however when concrete specimens were subject to elevated temperatures, the damaged concrete specimens displayed neither fracture pattern nor the "double-hump" AE energy dissipation in comparison with those of plain concrete.
Novel SHM method to locate damages in substructures based on VARX models
NASA Astrophysics Data System (ADS)
Ugalde, U.; Anduaga, J.; Martínez, F.; Iturrospe, A.
2015-07-01
A novel damage localization method is proposed, which is based on a substructuring approach and makes use of Vector Auto-Regressive with eXogenous input (VARX) models. The substructuring approach aims to divide the monitored structure into several multi-DOF isolated substructures. Later, each individual substructure is modelled as a VARX model, and the health of each substructure is determined analyzing the variation of the VARX model. The method allows to detect whether the isolated substructure is damaged, and besides allows to locate and quantify the damage within the substructure. It is not necessary to have a theoretical model of the structure and only the measured displacement data is required to estimate the isolated substructure's VARX model. The proposed method is validated by simulations of a two-dimensional lattice structure.
Zuo, Yue Yue J; Hébraud, Pascal; Hemar, Yacine; Ashokkumar, Muthupandian
2012-05-01
A simple light microscopic technique was developed in order to quantify the damage inflicted by high-power low-frequency ultrasound (0-160 W, 20 kHz) treatment on potato starch granules in aqueous dispersions. The surface properties of the starch granules were modified using ethanol and SDS washing methods, which are known to displace proteins and lipids from the surface of the starch granules. The study showed that in the case of normal and ethanol-washed potato starch dispersions, two linear regions were observed. The number of defects first increased linearly with an increase in ultrasound power up to a threshold level. This was then followed by another linear dependence of the number of defects on the ultrasound power. The power threshold where the change-over occurred was higher for the ethanol-washed potato dispersions compared to non-washed potato dispersions. In the case of SDS-washed potato starch, although the increase in defects was linear with the ultrasound power, the power threshold for a second linear region was not observed. These results are discussed in terms of the different possible mechanisms of cavitation induced-damage (hydrodynamic shear stresses and micro-jetting) and by taking into account the hydrophobicity of the starch granule surface. Copyright © 2011 Elsevier B.V. All rights reserved.
A Temperature-Dependent Phase-Field Model for Phase Separation and Damage
NASA Astrophysics Data System (ADS)
Heinemann, Christian; Kraus, Christiane; Rocca, Elisabetta; Rossi, Riccarda
2017-07-01
In this paper we study a model for phase separation and damage in thermoviscoelastic materials. The main novelty of the paper consists in the fact that, in contrast with previous works in the literature concerning phase separation and damage processes in elastic media, in our model we encompass thermal processes, nonlinearly coupled with the damage, concentration and displacement evolutions. More particularly, we prove the existence of "entropic weak solutions", resorting to a solvability concept first introduced in Feireisl (Comput Math Appl 53:461-490, 2007) in the framework of Fourier-Navier-Stokes systems and then recently employed in Feireisl et al. (Math Methods Appl Sci 32:1345-1369, 2009) and Rocca and Rossi (Math Models Methods Appl Sci 24:1265-1341, 2014) for the study of PDE systems for phase transition and damage. Our global-in-time existence result is obtained by passing to the limit in a carefully devised time-discretization scheme.
HREM study of irradiation damage in human dental enamel crystals.
Brès, E F; Hutchison, J L; Senger, B; Voegel, J C; Frank, R M
1991-06-01
Several phenomena have been observed during the examination of human dental enamel crystals (mainly constituted by hydroxyapatite (OHAP] by high-resolution electron microscopy (HREM) at 300 and 400 keV: orientation-dependent damage in the form of mass loss from voids or uniform destruction of crystal structure, beam-induced diffusion creating outgrowths at the crystal surfaces, recrystallization of the bulk crystal and crystallization of the inorganic components of the matrix surrounding the crystals. These beam-induced crystals have the CaO structure. The phenomena observed are most likely due to various electron-crystal interaction mechanisms (ballistic knock-on damage, electronic excitations, temperature rise, etc.). In this paper, the contribution of the ballistic process to the phenomena observed is discussed. The quantitative description of the knock-on collisions rests on the McKinley-Feshbach cross-section formula. The minimum ion displacement energies which appear in this expression have been estimated on the basis of the electrostatic ion binding energies, and the covalent bond energies if required. It is shown that hydroxyl, calcium and oxygen ions can effectively be displaced by the incident 300 and 400 keV electrons. Thus, the formation of CaO crystals by the combination of calcium and oxygen ions diffusing from their initial sites inside the OHAP lattice can tentatively be explained.
Assessment of eccentric exercise-induced muscle damage of the elbow flexors by tensiomyography.
Hunter, Angus M; Galloway, Stuart D R; Smith, Iain J; Tallent, Jamie; Ditroilo, Massimiliano; Fairweather, Malcolm M; Howatson, Glyn
2012-06-01
Exercise induced muscle damage (EIMD) impairs maximal torque production which can cause a decline in athletic performance and/or mobility. EIMD is commonly assessed by using maximal voluntary contraction (MVC), creatine kinase (CK) and muscle soreness. We propose as an additional technique, tensiomyography (TMG), recently introduced to measure mechanical and muscle contractile characteristics. The purpose of this study was to determine the validity of TMG in detecting changes in maximal torque following EIMD. Nineteen participants performed eccentric elbow flexions to achieve EIMD on the non- dominant arm and used the dominant elbow flexor as a control. TMG parameters, MVC and rate of torque development (RTD) were measured prior to EIMD and repeated for another six consecutive days. Creatine kinase, muscle soreness and limb girth were also measured during this period. Twenty four hours after inducing EIMD, MVC torque, RTD and TMG maximal displacement had significantly (p<0.01) declined by 37%, 44% and 31%, respectively. By day 6 MVC, RTD and TMG recovered to 12%, 24% and 17% of respective pre-EIMD values. In conclusion, as hypothesised TMG maximal displacement significantly followed other standard EIMD responses. This could therefore be useful in detecting muscle damage from impaired muscle function and its recovery following EIMD. Copyright © 2012 Elsevier Ltd. All rights reserved.
An Experimental Study of Shear-Dominated Failure in the 2013 Sandia Fracture Challenge Specimen
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo; Deibler, Lisa Anne; Reedlunn, Benjamin
2015-04-01
This report presents an experimental study motivated by results obtained during the 2013 Sandia Fracture Challenge. The challenge involved A286 steel, shear-dominated compression specimens whose load-deflection response contained a load maximum fol- lowed by significant displacement under decreasing load, ending with a catastrophic fracture. Blind numerical simulations deviated from the experiments well before the maximum load and did not predict the failure displacement. A series of new tests were conducted on specimens machined from the original A286 steel stock to learn more about the deformation and failure processes in the specimen and potentially improve future numerical simulations. The study consistedmore » of several uniaxial tension tests to explore anisotropy in the material, and a set of new tests on the compression speci- men. In some compression specimen tests, stereo digital image correlation (DIC) was used to measure the surface strain fields local to the region of interest. In others, the compression specimen was loaded to a given displacement prior to failure, unloaded, sectioned, and imaged under the microscope to determine when material damage first appeared and how it spread. The experiments brought the following observations to light. The tensile tests revealed that the plastic response of the material is anisotropic. DIC during the shear- dominated compression tests showed that all three in-plane surface strain components had maxima in the order of 50% at the maximum load. Sectioning of the specimens revealed no signs of material damage at the point where simulations deviated from the experiments. Cracks and other damage did start to form approximately when the max- imum load was reached, and they grew as the load decreased, eventually culminating in catastrophic failure of the specimens. In addition to the steel specimens, a similar study was carried out for aluminum 7075-T651 specimens. These specimens achieved much lower loads and displacements, and failure occurred very close to the maximum in the load-deflection response. No material damage was observed in these specimens, even when failure was imminent. In the future, we plan to use these experimental results to improve numerical simu- lations of the A286 steel experiments, and to improve plasticity and failure models for the Al 7075 stock. The ultimate goal of our efforts is to increase our confidence in the results of numerical simulations of elastic-plastic structural behavior and failure.« less
Strong ground motion in Port-au-Prince, Haiti, during the M7.0 12 January 2010 Haiti earthquake
Hough, Susan E; Given, Doug; Taniguchi, Tomoyo; Altidor, J.R.; Anglade, Dieuseul; Mildor, S-L.
2011-01-01
No strong motion records are available for the 12 January 2010 M7.0 Haiti earthquake. We use aftershock recordings as well as detailed considerations of damage to estimate the severity and distribution of mainshock shaking in Port-au-Prince. Relative to ground motions at a hard - rock reference site, peak accelerations are amplified by a factor of approximately 2 at sites on low-lying deposits in central Port-au-Prince and by a factor of 2.5 - 3.5 on a steep foothill ridge in the southern Port-au-Prince metropolitan region. The observed amplification along the ridge cannot be explained by sediment - induced amplification , but is consistent with predicted topographic amplification by a steep, narrow ridge. Although damage was largely a consequence of poor construction , the damage pattern inferred from analysis of remote sensing imagery provides evidence for a correspondence between small-scale (0.1 - 1.0 km) topographic relief and high damage. Mainshock shaking intensity can be estimated crudely from a consideration of macroseismic effects . We further present detailed, quantitative analysis of the marks left on a tile floor by an industrial battery rack displaced during the mainshock, at the location where we observed the highest weak motion amplifications. Results of this analysis indicate that mainshock shaking was significantly higher at this location (~0.5 g , MMI VIII) relative to the shaking in parts of Port-au-Prince that experienced light damage. Our results further illustrate how observations of rigid body horizontal displacement during earthquakes can be used to estimate peak ground accelerations in the absence of instrumental data .
Modeling of a viscoelastic damper and its application in structural control
Ibrahim, Zainah; Ghodsi, S. S.; Khatibi, Hamed
2017-01-01
Conventional seismic rehabilitation methods may not be suitable for some buildings owing to their high cost and time-consuming foundation work. In recent years, viscoelastic dampers (VEDs) have been widely used in many mid- and high-rise buildings. This study introduces a viscoelastic passive control system called rotary rubber braced damper (RRBD). The RRBD is an economical, lightweight, and easy-to-assemble device. A finite element model considering nonlinearity, large deformation, and material damage is developed to conduct a parametric study on different damper sizes under pushover cyclic loading. The fundamental characteristics of this VED system are clarified by analyzing building structures under cyclic loading. The result show excellent energy absorption and stable hysteresis loops in all specimens. Additionally, by using a sinusoidal shaking table test, the effectiveness of the RRBD to manage the response displacement and acceleration of steel frames is considered. The RRBD functioned at early stages of lateral displacement, indicating that the system is effective for all levels of vibration. Moreover, the proposed damper shows significantly better performance in terms of the column compression force resulting from the brace action compared to chevron bracing (CB). PMID:28570657
Gamma non-ionizing energy loss: Comparison with the damage factor in silicon devices
NASA Astrophysics Data System (ADS)
El Allam, E.; Inguimbert, C.; Meulenberg, A.; Jorio, A.; Zorkani, I.
2018-03-01
The concept of non-ionizing energy loss (NIEL) has been demonstrated to be a successful approach to describe the displacement damage effects in silicon materials and devices. However, some discrepancies exist in the literature between experimental damage factors and theoretical NIELs. 60Co gamma rays having a low NIEL are an interesting particle source that can be used to validate the NIEL scaling approach. This paper presents different 60Co gamma ray NIEL values for silicon targets. They are compared with the radiation-induced increase in the thermal generation rate of carriers per unit fluence. The differences between the different models, including one using molecular dynamics, are discussed.
Nikolaev, N. I.; Liu, Y.; Hussein, H.; Williams, D. J.
2012-01-01
In the current study, the mechanical and hypothermic damage induced by vibration and cold storage on human mesenchymal stem cells (hMSCs) stored at 2–8°C was quantified by measuring the total cell number and cell viability after exposure to vibration at 50 Hz (peak acceleration 140 m s−2 and peak displacement 1.4 mm), 25 Hz (peak acceleration 140 m s−2, peak displacement 5.7 mm), 10 Hz (peak acceleration 20 m s−2, peak displacement 5.1 mm) and cold storage for several durations. To quantify the viability of the cells, in addition to the trypan blue exclusion method, the combination of annexin V-FITC and propidium iodide was applied to understand the mode of cell death. Cell granularity and a panel of cell surface markers for stemness, including CD29, CD44, CD105 and CD166, were also evaluated for each condition. It was found that hMSCs were sensitive to vibration at 25 Hz, with moderate effects at 50 Hz and no effects at 10 Hz. Vibration at 25 Hz also increased CD29 and CD44 expression. The study further showed that cold storage alone caused a decrease in cell viability, especially after 48 h, and also increased CD29 and CD44 and attenuated CD105 expressions. Cell death would most likely be the consequence of membrane rupture, owing to necrosis induced by cold storage. The sensitivity of cells to different vibrations within the mechanical system is due to a combined effect of displacement and acceleration, and hMSCs with a longer cold storage duration were more susceptible to vibration damage, indicating a coupling between the effects of vibration and cold storage. PMID:22628214
The evolution of fabric with displacement in natural brittle faults
NASA Astrophysics Data System (ADS)
Mittempergher, S.; Di Toro, G.; Gratier, J.; Aretusini, S.; Boullier-Bertrand, A.
2011-12-01
In experiments performed at room temperature on gouges, a characteristic clast size distribution (CSD) is produced with increasing strain, and shear localization is documented to begin after few millimetres of sliding. But in natural faults active at depth in the crust, mechanical processes are associated with fluid-rock interactions, which might control the deformation and strength recovery. We aim to investigate the microstructural, geochemical and mineralogical evolution of low-displacement faults with increasing shear strain. The faults (cataclasite- and pseudotachylyte-bearing) are hosted in tonalite and were active at 9-11 km and 250-300°C. The samples were collected on a large glacier-polished outcrop, where major faults (accommodating up to 4300 mm of displacement) exploit pre-existing magmatic joints and are connected by a network of secondary fractures and faults (accommodating up to 500 mm of displacement) breaking intact tonalite. We performed optical and cathodoluminescence (CL) microscope, Scanning Electron Microscope (SEM), Energy Dispersive X-ray Spectroscopy (EDS), Rietveld X-Ray Powder Diffraction and microprobe chemical analysis in deformation zones of secondary faults with various offsets in order to evaluate the transfer of chemical species between dissolution zones and protected zones. Image analysis techniques were applied on SEM-BSE and optical microscope images to compute the CSD in samples, which experienced an increasing amount of strain. The secondary fractures are up to 5 mm thick. Within the first 20 mm of displacement, shear localizes along Y and R1 surfaces and a cataclastic foliation develops. The CSD evolves from a fractal dimension D of 1.3 in fractures without visible displacement to values above 2 after the first 500 mm of displacement. Chemical maps and CL images indicate that the foliation in cataclasite results from the rotation and fragmentation of clasts, with dissolution of quartz and passive concentration of Ti oxides and titanite in the foliation planes. The cataclasites are cemented by pervasive precipitation of K-feldspar plagues and idiomorphic, randomly oriented, epidote and chlorite. We conclude that the textures of these small displacement (< 500 mm) faults are controlled by brittle processes (fracture propagation and cataclastic comminution) similar to those reproduced in friction experiments performed on granite gouge (e.g., Beeler et al., 1996; Logan, 2007). Then progressively, stress driven fluid-rock reactions develop as fracturing and grain size reduction allows the kinetics of these reactions to be more efficient and fracture interconnection allows fluid infiltration. Healing of microfractures and fault rock cementation caused a rapid posteismic recovery of fault strength. References Beeler, N.M., Tullis, T.E., Blanpied, L., Weeks, J.D., 1996. Frictional behaviour of large displacement experimental faults. Journal of Geophysical Research 101, B4, 8697-8715. Logan, J.M., 2007. The progression from damage to localization of displacement observed in laboratory testing of porous rocks, in Lewis, H., and Couples, G.D. (eds.) The relationship between damage and localization. Geological Society of London Special Publication 289, 75-87.
Association of Ipsilateral Rib Fractures With Displacement of Midshaft Clavicle Fractures.
Stahl, Daniel; Ellington, Matthew; Brennan, Kindyle; Brennan, Michael
2017-04-01
To determine whether the presence of ipsilateral rib fractures affects the rate of a clavicle fracture being unstable (>100% displacement). A retrospective review from 2002-2013 performed at a single level 1 trauma center evaluated 243 midshaft clavicle fractures. Single Level 1 trauma center. These fractures were subdivided into those with ipsilateral rib fractures (CIR; n = 149) and those without ipsilateral rib fractures (CnIR; n = 94). The amount of displacement was measured on the initial injury radiograph and subsequent follow-up radiographs. Fractures were classified into either <100% displacement or >100% displacement, based on anteroposterior radiographs. Ipsilateral rib fractures were recorded based on which number rib was fractured and the total number of fractured ribs. One hundred sixteen (78%) of the CIR group and 51 (54%) of the CnIR group were found to have >100% displacement at follow-up (P = 0.0047). Seventy-two percent of the CIR group demonstrated progression from <100% to >100% displacement of the fracture compared with only 54% of the CnIR group (P < 0.05). The odds ratio for progression of the clavicle fracture to >100% was 4.08 (P = 0.000194) when ribs 1-4 were fractured and not significant for rib fractures 5-8 or 9-12. The presence of concomitant ipsilateral rib fractures significantly increases the rate of midshaft clavicle fractures being >100% displaced. In addition, a fracture involving the upper one-third of the ribs significantly increases the rate of the clavicle fracture being >100% displaced on early follow-up. Clavicle fractures with associated ipsilateral rib fractures tend to demonstrate an increased amount of displacement on follow-up radiographs compared with those without ipsilateral rib fractures. Prognostic Level II. See Instructions for Authors for a complete description of levels of evidence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gigax, J. G.; Chen, T.; Kim, Hyosim
Ferritic/martensitic alloys are required for advanced reactor components to survive 500–600 neutron-induced dpa. In this paper, ion-induced void swelling of ferritic/martensitic alloy T91 in the quenched and tempered condition has been studied using a defocused, non-rastered 3.5 MeV Fe-ion beam at 475 °C to produce damage levels up to 1000 peak displacements per atom (dpa). The high peak damage level of 1000 dpa is required to reach 500–600 dpa level due to injected interstitial suppression of void nucleation in the peak dpa region, requiring data extraction closer to the surface at lower dpa levels. At a relatively low peak damagemore » level of 250 dpa, voids began to develop, appearing first in the near-surface region. With increasing ion fluence, swelling was observed deeper in the specimen, but remained completely suppressed in the back half of the ion range, even at 1000 peak dpa. The local differences in dpa rate in the front half of the ion range induce an “internal temperature shift” that strongly influences the onset of swelling, with shorter transient regimes resulting from lower dpa rates, in agreement not only with observations in neutron irradiation studies but also in various ion irradiations. Swelling was accompanied by radiation-induced precipitation of Cu-rich and Si, Ni, Mn-rich phases were observed by atom probe tomography, indicating concurrent microchemical evolution was in progress. Finally, in comparison to other ferritic/martensitic alloys during ion irradiation, T91 exhibits good swelling resistance with a swelling incubation period of about 400 local dpa.« less
NASA Technical Reports Server (NTRS)
Nettles, A. T.; Hodge, A. J.
1997-01-01
Low velocity dropweight impact tests were conducted on carbon/epoxy laminates under various boundary conditions. The composite plates were 8-ply (+45,0,-45,90)s laminates supported in a clamped-clamped/free-free configuration with varying amounts of in-plane load, N(sub x), applied. Specimens were impacted at energies of 3.4, 4.5, and 6 Joules (2.5, 3.3, and 4.4 ft-lb). The amount of damage induced into the specimen was evaluated using instrumented impact techniques, x-ray inspection, and cross-sectional photomicroscopy. Some static identation tests were performed to examine if the impact events utilized in this study were of a quasi-static nature and also to gain insight into the shape of the deflected surface at various impact load combinations. Load-displacement curves from these tests were compared to those of the impact tests, as was damage determined from x-ray inspection. The finite element technique was used to model the impact event and determine the stress field within the laminae. Results showed that for a given impact energy level, more damage was induced into the specimen as the external in-plane load, N(sub x), was increased. The majority of damage observed consisted of back face splitting of the matrix parallel to the fibers in that ply, associated with delaminations emanating from these splits. The analysis showed qualitatively the results of impact conditions on maximum load of impact, maximum transverse deflection, and first failure mode and location.
Shepherd, Jennifer H.; Riley, Graham P.; Screen, Hazel R.C.
2014-01-01
Many tendon injuries are believed to result from repetitive motion or overuse, leading to the accumulation of micro-damage over time. In vitro fatigue loading can be used to characterise damage during repeated use and investigate how this may relate to the aetiology of tendinopathy. This study considered the effect of fatigue loading on fascicles from two functionally distinct bovine tendons: the digital extensor and deep digital flexor. Micro-scale extension mechanisms were investigated in fascicles before or after a period of cyclic creep loading, comparing two different measurement techniques – the displacement of a photo-bleached grid and the use of nuclei as fiducial markers. Whilst visual damage was clearly identified after only 300 cycles of creep loading, these visual changes did not affect either gross fascicle mechanics or fascicle microstructural extension mechanisms over the 900 fatigue cycles investigated. However, significantly greater fibre sliding was measured when observing grid deformation rather than the analysis of nuclei movement. Measurement of microstructural extension with both techniques was localised and this may explain the absence of change in microstructural deformation in response to fatigue loading. Alternatively, the data may demonstrate that fascicles can withstand a degree of matrix disruption with no impact on mechanics. Whilst use of a photo-bleached grid to directly measure the collagen is the best indicator of matrix deformation, nuclei tracking may provide a better measure of the strain perceived directly by the cells. PMID:25001495
Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2001-01-01
An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.
Approximate Micromechanics Treatise of Composite Impact
NASA Technical Reports Server (NTRS)
Chamis, Christos C.; Handler, Louis M.
2005-01-01
A formalism is described for micromechanic impact of composites. The formalism consists of numerous equations which describe all aspects of impact from impactor and composite conditions to impact contact, damage progression, and penetration or containment. The formalism is based on through-the-thickness displacement increments simulation which makes it convenient to track local damage in terms of microfailure modes and their respective characteristics. A flow chart is provided to cast the formalism (numerous equations) into a computer code for embedment in composite mechanic codes and/or finite element composite structural analysis.
Katrina Effect on Mathematics Achievement in Mississippi
ERIC Educational Resources Information Center
Lamb, John; Lewis, Mark; Gross, Sarah
2013-01-01
Hurricane Katrina caused severe physical damage to the Gulf Coast states of Louisiana, Mississippi, and Alabama. Homes and businesses were destroyed. Natural habitats were annihilated, and many Americans were displaced for days, weeks, and even years. This study investigated the within-subject effects and contrasts of poverty, rurality, and…
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-26
... on soil, slope and hydrological concerns. New system road construction, reconstruction of... natural succession processes. The residual trees would have less competition for sunlight, water and soil... designed to: Minimize soil impacts (erosion, compaction and/or displacement); Minimize damage to residual...
14 CFR 25.795 - Security considerations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... from any occupied areas must be designed to resist penetration by small arms fire and fragmentation... materials displacing against the distribution system: (i) Impact or damage from a 0.5-inch diameter aluminum... 100,000 pounds (45,359 Kilograms) must comply with the following: (1) Least risk bomb location. An...
14 CFR 25.795 - Security considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... from any occupied areas must be designed to resist penetration by small arms fire and fragmentation... materials displacing against the distribution system: (i) Impact or damage from a 0.5-inch diameter aluminum... 100,000 pounds (45,359 Kilograms) must comply with the following: (1) Least risk bomb location. An...
14 CFR 25.795 - Security considerations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... from any occupied areas must be designed to resist penetration by small arms fire and fragmentation... materials displacing against the distribution system: (i) Impact or damage from a 0.5-inch diameter aluminum... 100,000 pounds (45,359 Kilograms) must comply with the following: (1) Least risk bomb location. An...
14 CFR 25.795 - Security considerations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... from any occupied areas must be designed to resist penetration by small arms fire and fragmentation... materials displacing against the distribution system: (i) Impact or damage from a 0.5-inch diameter aluminum... 100,000 pounds (45,359 Kilograms) must comply with the following: (1) Least risk bomb location. An...
DOT National Transportation Integrated Search
2015-04-01
The phenomenon of flying ballast is well-documented in high-speed rail operations. Displaced ballast particles from the track bed : may cause damage to rolling stock as well as the track infrastructure, and wayside structures close to the right of wa...
Pearlman, Jessica
2015-01-01
This paper will examine the impact of worker displacement on health in the United States from 1975–2004, especially the extent to which the impact of displacement on health varies according to the economic conditions in the year of displacement and the education level of the displaced worker. Findings from ordered probit and fixed effects models suggest that the negative impact of displacement on health is exacerbated by a higher unemployment rate at the time of displacement and for displaced workers with a college degree. PMID:26004481
What Reliability Engineers Should Know about Space Radiation Effects
NASA Technical Reports Server (NTRS)
DiBari, Rebecca
2013-01-01
Space radiation in space systems present unique failure modes and considerations for reliability engineers. Radiation effects is not a one size fits all field. Threat conditions that must be addressed for a given mission depend on the mission orbital profile, the technologies of parts used in critical functions and on application considerations, such as supply voltages, temperature, duty cycle, and redundancy. In general, the threats that must be addressed are of two types-the cumulative degradation mechanisms of total ionizing dose (TID) and displacement damage (DD). and the prompt responses of components to ionizing particles (protons and heavy ions) falling under the heading of single-event effects. Generally degradation mechanisms behave like wear-out mechanisms on any active components in a system: Total Ionizing Dose (TID) and Displacement Damage: (1) TID affects all active devices over time. Devices can fail either because of parametric shifts that prevent the device from fulfilling its application or due to device failures where the device stops functioning altogether. Since this failure mode varies from part to part and lot to lot, lot qualification testing with sufficient statistics is vital. Displacement damage failures are caused by the displacement of semiconductor atoms from their lattice positions. As with TID, failures can be either parametric or catastrophic, although parametric degradation is more common for displacement damage. Lot testing is critical not just to assure proper device fi.mctionality throughout the mission. It can also suggest remediation strategies when a device fails. This paper will look at these effects on a variety of devices in a variety of applications. This paper will look at these effects on a variety of devices in a variety of applications. (2) On the NEAR mission a functional failure was traced to a PIN diode failure caused by TID induced high leakage currents. NEAR was able to recover from the failure by reversing the current of a nearby Thermal Electric Cooler (turning the TEC into a heater). The elevated temperature caused the PIN diode to anneal and the device to recover. It was by lot qualification testing that NEAR knew the diode would recover when annealed. This paper will look at these effects on a variety of devices in a variety of applications. Single Event Effects (SEE): (1) In contrast to TID and displacement damage, Single Event Effects (SEE) resemble random failures. SEE modes can range from changes in device logic (single-event upset, or SEU). temporary disturbances (single-event transient) to catastrophic effects such as the destructive SEE modes, single-event latchup (SEL). single-event gate rupture (SEGR) and single-event burnout (SEB) (2) The consequences of nondestructive SEE modes such as SEU and SET depend critically on their application--and may range from trivial nuisance errors to catastrophic loss of mission. It is critical not just to ensure that potentially susceptible devices are well characterized for their susceptibility, but also to work with design engineers to understand the implications of each error mode. -For destructive SEE, the predominant risk mitigation strategy is to avoid susceptible parts, or if that is not possible. to avoid conditions under which the part may be susceptible. Destructive SEE mechanisms are often not well understood, and testing is slow and expensive, making rate prediction very challenging. (3) Because the consequences of radiation failure and degradation modes depend so critically on the application as well as the component technology, it is essential that radiation, component. design and system engineers work togetherpreferably starting early in the program to ensure critical applications are addressed in time to optimize the probability of mission success.
Kim, J H; Nam, D H
2015-10-01
Most surgeons agree that closed treatment provides the best results for condylar fractures in children. Nevertheless, treatment of the paediatric mandibular condyle fracture that is severely displaced or dislocated is controversial. The purpose of this study was to investigate the long-term clinical and radiological outcomes following the treatment of displaced or dislocated condylar fractures in children using threaded Kirschner wire and external rubber traction. This procedure can strengthen the advantage of closed reduction and make up for the shortcomings of open reduction. From March 1, 2005 to December 25, 2011, 11 children aged between 4 and 12 years with displaced or dislocated mandibular condyle fractures were treated using threaded Kirschner wire and external rubber traction under portable C-arm fluoroscopy. All patients had unilateral displaced or dislocated condylar fractures. The follow-up period ranged from 24 to 42 months (mean 29.3 months). Normal occlusion and pain-free function of the temporomandibular joint, without deviation or limitation of jaw opening, was achieved in all patients. This closed reduction technique in displaced or dislocated condylar fractures in children offers a reliable solution in preventing the unfavourable sequelae of closed treatment and the open technique, such as altered morphology, functional disturbances, and facial nerve damage. Copyright © 2015 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Rochcongar, Goulven; Emily, Sébastien; Lebel, Benoit; Pineau, Vincent; Burdin, Gilles; Hulet, Christophe
2012-09-01
Surgical versus orthopedic treatments of acromioclavicular disjunction are still debated. The aim of this study was to measure horizontal and vertical acromion's displacement after cutting the ligament using standard X-ray and an opto-electronic system on cadaver. Ten cadaveric shoulders were studied. A sequential ligament's section was operated by arthroscopy. The sequence of cutting was chosen to fit with Rockwood's grade. The displacement of the acromion was measured on standard X-ray and with an opto-electronic system allowing measuring of the horizontal displacement. Statistical comparisons were performed using a paired Student's t test with significance set at p < 0.05. Cutting the coracoclavicular ligament and delto-trapezius muscles cause a statistical downer displacement of the acromion, but not after sectioning the acromioclavicular ligament. The contact surface between the acromion and the clavicle decreases statistically after sectioning the acromioclavicular ligament and the coracoclavicular ligament with no effect of sectioning the delto-trapezius muscles. Those results are superposing with those dealing with the anterior translation. The measure concerning the acromioclavicular distance and the coracoclavicular distance are superposing with those of Rockwood. However, there is a significant horizontal translation after cutting the acromioclavicular ligament. Taking into account this displacement, it may be interesting to choose either surgical or orthopedic treatment. There is a correlation between anatomical damage and importance of instability. Horizontal instability is misevaluated in clinical practice.
The downregulation of the RNA-binding protein Staufen2 in response to DNA damage promotes apoptosis.
Zhang, Xin; Trépanier, Véronique; Beaujois, Remy; Viranaicken, Wildriss; Drobetsky, Elliot; DesGroseillers, Luc
2016-05-05
Staufen2 (Stau2) is an RNA-binding protein involved in cell fate decision by controlling several facets of mRNA processing including localization, splicing, translation and stability. Herein we report that exposure to DNA-damaging agents that generate replicative stress such as camptothecin (CPT), 5-fluoro-uracil (5FU) and ultraviolet radiation (UVC) causes downregulation of Stau2 in HCT116 colorectal cancer cells. In contrast, other agents such as doxorubicin and ionizing radiation had no effect on Stau2 expression. Consistently, Stau2 expression is regulated by the ataxia telangiectasia and Rad3-related (ATR) signaling pathway but not by the DNA-PK or ataxia telangiectasia mutated/checkpoint kinase 2 pathways. Stau2 downregulation is initiated at the level of transcription, independently of apoptosis induction. Promoter analysis identified a short 198 bp region which is necessary and sufficient for both basal and CPT-regulated Stau2 expression. The E2F1 transcription factor regulates Stau2 in untreated cells, an effect that is abolished by CPT treatment due to E2F1 displacement from the promoter. Strikingly, Stau2 downregulation enhances levels of DNA damage and promotes apoptosis in CPT-treated cells. Taken together our results suggest that Stau2 is an anti-apoptotic protein that could be involved in DNA replication and/or maintenance of genome integrity and that its expression is regulated by E2F1 via the ATR signaling pathway. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Multiple-degree-of-freedom vehicle
Borenstein, Johann
1995-01-01
A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.
Parental Displacement and Adolescent Suicidality: Exploring the Role of Failed Belonging
Timmons, Katherine A.; Selby, Edward A.; Lewinsohn, Peter M.; Joiner, Thomas E.
2011-01-01
Prior studies have demonstrated that events causing displacement from parents—such as parental death, abandonment of the adolescent, or divorce—represent a risk factor for adolescent suicide, but research to date has not established a theoretical model explaining the association between parental displacement and adolescent suicidal behavior. The current studies examined the construct of failed belonging proposed by the interpersonal theory of suicide as one factor that may link parental displacement with adolescent suicide. Study 1 found that low levels of belonging mediated the association between parental displacement and adolescent suicide attempts in a large urban community sample of older adolescents between the ages of 18 and 23. In Study 2, parental displacement interacted with low belonging to predict suicide attempts, such that adolescents (average age 16.6 years; (SD = 1.2) who experienced both displacement and low levels of belonging had the highest risk for suicide. PMID:22023272
Parental displacement and adolescent suicidality: exploring the role of failed belonging.
Timmons, Katherine A; Selby, Edward A; Lewinsohn, Peter M; Joiner, Thomas E
2011-01-01
Prior studies have demonstrated that events causing displacement from parents--such as parental death, abandonment of the adolescent, or divorce--represent a risk factor for adolescent suicide, but research to date has not established a theoretical model explaining the association between parental displacement and adolescent suicidal behavior. The current studies examined the construct of failed belonging proposed by the interpersonal theory of suicide as one factor that may link parental displacement with adolescent suicide. Study 1 found that low levels of belonging mediated the association between parental displacement and adolescent suicide attempts in a large, urban community sample of older adolescents between the ages of 18 and 23. In Study 2, parental displacement interacted with low belonging to predict suicide attempts, such that adolescents (average age = 16.6 years; SD = 1.2) who experienced both displacement and low levels of belonging had the highest risk for suicide.
Sammartino, G; Riccitiello, F; Trosino, O; Marenzi, G; Cioffi, A; Mortellaro, C
2012-05-01
The root displacement into the maxillary sinus could be a complication of oral surgery in the upper jaw. In these cases, the root removal is needed in order to avoid the occurrence of sinus pathologies. Piezosurgery techniques could assure a safer management of such complications, because of the clear surgical visibility and the selective ability of cut. The aim of this article is to present a case of oral surgery complication (root displacement in the right maxillary sinus), in which piezosurgery technique helped for a correct and safe clinical management, allowing to reduce the soft tissue damage.
Faris, Allison T.; Seed, Raymond B.; Kayen, Robert E.; Wu, Jiaer
2006-01-01
During the 1906 San Francisco Earthquake, liquefaction-induced lateral spreading and resultant ground displacements damaged bridges, buried utilities, and lifelines, conventional structures, and other developed works. This paper presents an improved engineering tool for the prediction of maximum displacement due to liquefaction-induced lateral spreading. A semi-empirical approach is employed, combining mechanistic understanding and data from laboratory testing with data and lessons from full-scale earthquake field case histories. The principle of strain potential index, based primary on correlation of cyclic simple shear laboratory testing results with in-situ Standard Penetration Test (SPT) results, is used as an index to characterized the deformation potential of soils after they liquefy. A Bayesian probabilistic approach is adopted for development of the final predictive model, in order to take fullest advantage of the data available and to deal with the inherent uncertainties intrinstiic to the back-analyses of field case histories. A case history from the 1906 San Francisco Earthquake is utilized to demonstrate the ability of the resultant semi-empirical model to estimate maximum horizontal displacement due to liquefaction-induced lateral spreading.
NASA Technical Reports Server (NTRS)
Williams, J. H., Jr.; Marques, E. R. C.; Lee, S. S.
1986-01-01
The far-field displacements in an infinite transversely isotropic elastic medium subjected to an oscillatory concentrated force are derived. The concepts of velocity surface, slowness surface and wave surface are used to describe the geometry of the wave propagation process. It is shown that the decay of the wave amplitudes depends not only on the distance from the source (as in isotropic media) but also depends on the direction of the point of interest from the source. As an example, the displacement field is computed for a laboratory fabricated unidirectional fiberglass epoxy composite. The solution for the displacements is expressed as an amplitude distribution and is presented in polar diagrams. This analysis has potential usefulness in the acoustic emission (AE) and ultrasonic nondestructive evaluation of composite materials. For example, the transient localized disturbances which are generally associated with AE sources can be modeled via this analysis. In which case, knowledge of the displacement field which arrives at a receiving transducer allows inferences regarding the strength and orientation of the source, and consequently perhaps the degree of damage within the composite.
Synchrotron Radiation Damage Mechanism of X-Ray Mask Membranes Irradiated in Helium Environment
NASA Astrophysics Data System (ADS)
Arakawa, Tomiyuki; Okuyama, Hiroshi; Okada, Koichi; Nagasawa, Hiroyuki; Syoki, Tsutomu; Yamaguchi, Yoh-ichi
1992-12-01
The mechanism of X-ray mask membrane displacement induced by synchrotron radiation (SR) has been discussed. Silicon nitride (SiN) and silicon carbide (SiC) membranes were irradiated by SR in a 1 atm helium ambient. SR-induced displacement for both membranes was 25-97 nm (σ). Oxygen concentration in both SiN and SiC was below 0.01 in O/Si atomic ratio. Although an increase in dangling bond density of SiN was observed, no remarkable increase in spin density was detected in SiC. Moreover, the most important finding was that thin oxides were grown on the membrane surface after SR irradiation. From these results, it is considered that the oxide growth on SiC membrane surfaces, and both the oxide growth and the increase of dangling bond density in SiN play an important role in the SR-induced displacement for the X-ray mask membranes.
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
2017-11-13
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min
2014-01-01
A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.
Exonuclease of human DNA polymerase gamma disengages its strand displacement function.
He, Quan; Shumate, Christie K; White, Mark A; Molineux, Ian J; Yin, Y Whitney
2013-11-01
Pol γ, the only DNA polymerase found in human mitochondria, functions in both mtDNA repair and replication. During mtDNA base-excision repair, gaps are created after damaged base excision. Here we show that Pol γ efficiently gap-fills except when the gap is only a single nucleotide. Although wild-type Pol γ has very limited ability for strand displacement DNA synthesis, exo(-) (3'-5' exonuclease-deficient) Pol γ has significantly high activity and rapidly unwinds downstream DNA, synthesizing DNA at a rate comparable to that of the wild-type enzyme on a primer-template. The catalytic subunit Pol γA alone, even when exo(-), is unable to synthesize by strand displacement, making this the only known reaction of Pol γ holoenzyme that has an absolute requirement for the accessory subunit Pol γB. © 2013. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vizkelethy, Gyorgy; Bielejec, Edward S.; Aguirre, Brandon A.
As device dimensions decrease single displacement effects are becoming more important. We measured the gain degradation in III-V Heterojunction Bipolar Transistors due to single particles using a heavy ion microbeam. Two devices with different sizes were irradiated with various ion species ranging from oxygen to gold to study the effect of the irradiation ion mass on the gain change. From the single steps in the inverse gain (which is proportional to the number of defects) we calculated Cumulative Distribution Functions to help determine design margins. The displacement process was modeled using the Marlowe Binary Collision Approximation (BCA) code. The entiremore » structure of the device was modeled and the defects in the base-emitter junction were counted to be compared to the experimental results. While we found good agreement for the large device, we had to modify our model to reach reasonable agreement for the small device.« less
Unemployment in Iraqi Refugees: The Interaction of Pre and Post-Displacement Trauma
Wright, A. Michelle; Dhalimi, Abir; Lumley, Mark A.; Jamil, Hikmet; Pole, Nnamdi; Arnetz, Judith E.; Arnetz, Bengt B.
2016-01-01
Previous refugee research has been unable to link pre-displacement trauma with unemployment in the host country. The current study assessed the role of pre-displacement trauma, post-displacement trauma, and the interaction of both trauma types to prospectively examine unemployment in a random sample of newly-arrived Iraqi refugees. Participants (N=286) were interviewed three times over the first two years post-arrival. Refugees were assessed for pre-displacement trauma exposure, post-displacement trauma exposure, a history of unemployment in the country of origin and host country, and symptoms of posttraumatic stress disorder (PTSD) and depression. Analyses found that neither pre-displacement nor post-displacement trauma independently predicted unemployment 2 years post-arrival; however, the interaction of pre and post-displacement trauma predicted 2-year unemployment. Refugees with high levels of both pre and post-displacement trauma had a 91% predicted probability of unemployment, whereas those with low levels of both traumas had a 20% predicted probability. This interaction remained significant after controlling for sociodemographic variables and mental health upon arrival to the U.S. Resettlement agencies and community organizations should consider the interactive effect of encountering additional trauma after escaping the hardships of the refugee's country of origin. PMID:27535348
Evaluation of damage in reinforced concrete bridge beams using acoustic emission technique
NASA Astrophysics Data System (ADS)
Vidya Sagar, R.; Raghu Prasad, B. K.; Sharma, Reema
2012-06-01
Acoustic emission (AE) testing is a well-known method for damage identification of various concrete structures including bridges. This article presents a method to assess damage in reinforced concrete (RC) bridge beams subjected to incremental cyclic loading. The specifications in the standard NDIS-2421 were used to classify the damage in RC bridge beams. Earlier researchers classified the damage occurring in bridge beams by using crack mouth opening displacement (CMOD) and AE released and proposed a standard (NDIS-2421: the Japanese Society for NonDestructive Inspection). In general, multiple cracks take place in RC beams under bending; therefore, utilisation of CMOD for crack detection may not be appropriate. In the present study, the damage in RC beams is classified by using the AE released, deflection, strains in steel and concrete, because the measurement of the strains in steel and concrete is easy and the codes of practice are specified for different limit states (IS-456:2000). The observations made in the present experimental study have some important practical applications in assessing the state of damage of concrete structural members.
Vibration-response due to thickness loss on steel plate excited by resonance frequency
NASA Astrophysics Data System (ADS)
Kudus, S. A.; Suzuki, Y.; Matsumura, M.; Sugiura, K.
2018-04-01
The degradation of steel structure due to corrosion is a common problem found especially in the marine structure due to exposure to the harsh marine environment. In order to ensure safety and reliability of marine structure, the damage assessment is an indispensable prerequisite for plan of remedial action on damaged structure. The main goal of this paper is to discuss simple vibration measurement on plated structure to give image on overview condition of the monitored structure. The changes of vibration response when damage was introduced in the plate structure were investigated. The damage on plate was simulated in finite element method as loss of thickness section. The size of damage and depth of loss of thickness were varied for different damage cases. The plate was excited with lower order of resonance frequency in accordance estimate the average remaining thickness based on displacement response obtain in the dynamic analysis. Significant reduction of natural frequency and increasing amplitude of vibration can be observed in the presence of severe damage. The vibration analysis summarized in this study can serve as benchmark and reference for researcher and design engineer.
NASA Astrophysics Data System (ADS)
Guo, Tian; Xu, Zili
2018-03-01
Measurement noise is inevitable in practice; thus, it is difficult to identify defects, cracks or damage in a structure while suppressing noise simultaneously. In this work, a novel method is introduced to detect multiple damage in noisy environments. Based on multi-scale space analysis for discrete signals, a method for extracting damage characteristics from the measured displacement mode shape is illustrated. Moreover, the proposed method incorporates a data fusion algorithm to further eliminate measurement noise-based interference. The effectiveness of the method is verified by numerical and experimental methods applied to different structural types. The results demonstrate that there are two advantages to the proposed method. First, damage features are extracted by the difference of the multi-scale representation; this step is taken such that the interference of noise amplification can be avoided. Second, a data fusion technique applied to the proposed method provides a global decision, which retains the damage features while maximally eliminating the uncertainty. Monte Carlo simulations are utilized to validate that the proposed method has a higher accuracy in damage detection.
NASA Astrophysics Data System (ADS)
Mao, Chenxi; Dong, Jinzhi; Li, Hui; Ou, Jinping
2012-04-01
Shear wall system is widely adopted in high rise buildings because of its high lateral stiffness in resisting earthquakes. According to the concept of ductility seismic design, coupling beams in shear wall structure are required to yield prior to the damage of wall limb. However, damage in coupling beams results in repair cost post earthquake and even in some cases it is difficult to repair the coupling beams if the damage is severe. In order to solve this problem, a novel passive SMA damper was proposed in this study. The coupling beams connecting wall limbs are split in the middle, and the dampers are installed between the ends of the two cantilevers. Then the relative flexural deformation of the wall limbs is transferred to the ends of coupling beams and then to the SMA dampers. After earthquakes the deformation of the dampers can recover automatically because of the pseudoelasticity of austenite SMA material. In order to verify the validity of the proposed dampers, seismic responses of a 12-story coupled shear wall with such passive SMA dampers in coupling beams was investigated. The additional stiffness and yielding deformation of the dampers and their ratios to the lateral stiffness and yielding displacements of the wall limbs are key design parameters and were addressed. Analytical results indicate that the displacement responses of the shear wall structure with such dampers are reduced remarkably. The deformation of the structure is concentrated in the dampers and the damage of coupling beams is reduced.
Displacement behaviour regulates the experience of stress in men.
Mohiyeddini, Changiz; Semple, Stuart
2013-03-01
Behavioural coping strategies represent a key means by which people regulate their stress levels. Attention has recently focused on the potential role in coping of 'displacement behaviour' - activities such as scratching, lip biting and face touching. Increased levels of displacement behaviour are associated with feelings of anxiety and stress; however, the extent to which displacement behaviour, as a short-term behavioural response to emotionally challenging stimuli, influences the subsequent experience of stress remains poorly understood. The aim of this study was to investigate the potential role of displacement behaviour in coping with stress. In a study population of 42 healthy adult men (mean age = 28.09 years, SD = 7.98), we quantified displacement behaviour during a Trier Social Stress Test (TSST), and used self-report questionnaires to assess trait and state anxiety before the TSST, and the experience of stress afterwards. We predicted displacement behaviour would diminish the negative impact of the stressful situation, and hence be associated with lower post-TSST stress levels. Furthermore, we predicted displacement behaviour would mediate the link between state and trait anxiety on the one hand and the experience of stress on the other. Results showed the rate of displacement behaviour was positively correlated with state anxiety but unrelated to trait anxiety, and negatively correlated with the self-reported experience of stress, in agreement with the idea that displacement behaviour has a crucial impact on regulation of stress. Moreover, serial mediation analyses using a bias-corrected bootstrapping approach indicated displacement behaviour mediated the relationship between state anxiety and the experience of stress, and that state anxiety and displacement behaviour - in combination, respectively - mediated the link between trait anxiety and experience of stress. These results shed important new light on the function of displacement behaviour, and highlight promising new avenues for research into emotional expression and stress regulation.
Adjoint Techniques for Topology Optimization of Structures Under Damage Conditions
NASA Technical Reports Server (NTRS)
Akgun, Mehmet A.; Haftka, Raphael T.
2000-01-01
The objective of this cooperative agreement was to seek computationally efficient ways to optimize aerospace structures subject to damage tolerance criteria. Optimization was to involve sizing as well as topology optimization. The work was done in collaboration with Steve Scotti, Chauncey Wu and Joanne Walsh at the NASA Langley Research Center. Computation of constraint sensitivity is normally the most time-consuming step of an optimization procedure. The cooperative work first focused on this issue and implemented the adjoint method of sensitivity computation (Haftka and Gurdal, 1992) in an optimization code (runstream) written in Engineering Analysis Language (EAL). The method was implemented both for bar and plate elements including buckling sensitivity for the latter. Lumping of constraints was investigated as a means to reduce the computational cost. Adjoint sensitivity computation was developed and implemented for lumped stress and buckling constraints. Cost of the direct method and the adjoint method was compared for various structures with and without lumping. The results were reported in two papers (Akgun et al., 1998a and 1999). It is desirable to optimize topology of an aerospace structure subject to a large number of damage scenarios so that a damage tolerant structure is obtained. Including damage scenarios in the design procedure is critical in order to avoid large mass penalties at later stages (Haftka et al., 1983). A common method for topology optimization is that of compliance minimization (Bendsoe, 1995) which has not been used for damage tolerant design. In the present work, topology optimization is treated as a conventional problem aiming to minimize the weight subject to stress constraints. Multiple damage configurations (scenarios) are considered. Each configuration has its own structural stiffness matrix and, normally, requires factoring of the matrix and solution of the system of equations. Damage that is expected to be tolerated is local and represents a small change in the stiffness matrix compared to the baseline (undamaged) structure. The exact solution to a slightly modified set of equations can be obtained from the baseline solution economically without actually solving the modified system.. Shennan-Morrison-Woodbury (SMW) formulas are matrix update formulas that allow this (Akgun et al., 1998b). SMW formulas were therefore used here to compute adjoint displacements for sensitivity computation and structural displacements in damaged configurations.
Seismic performance of the typical RC beam-column joint subjected to repeated earthquakes
NASA Astrophysics Data System (ADS)
Hassanshahi, Omid; Majid, Taksiah A.; Lau, Tze Liang; Yousefi, Ali; Tahara, R. M. K.
2017-10-01
It is common that a building experience repeated earthquakes throughout its lifetime. Such earthquake is capable of creating severe damage in primary elements of the building due to accumulation of inelastic displacement from repetition. The present study focuses on the influence of repeated earthquakes on a typical Reinforced Concrete (RC) beam-column joint, especially on the maximum inelastic displacement demand and maximum residual displacement. For this purpose, the capability of nonlinear modelling in simulating the hysteretic behaviour of the prototype experimental specimen is first determined using RUAUMOKO. A nonlinear Incremental Dynamic Analysis (IDA) on the verified model is then carried out in order to estimate with maximum accuracy the ultimate load bearing capacity to progressive collapse of the RC joint under investigation. Twenty ground motions are selected, and single (C1), double (C2), and triple (C3) event of synthetic repeated earthquakes are then considered. The results show that the repeated earthquakes significantly increase the inelastic demand of the RC joint. On average, relative increment of maximum inelastic displacement demand is experienced about 28.9% and 39.4% when C2 and C3 events of repeated earthquakes are induced, respectively. Residual displacements for repeated earthquakes are also significantly higher than that for single earthquakes.
NASA Astrophysics Data System (ADS)
El Amri, Abdelouahid; el yakhloufi Haddou, Mounir; Khamlichi, Abdellatif
2017-10-01
Damage mechanisms in hot metal forming processes are accelerated by mechanical stresses arising during Thermal and mechanical properties variations, because it consists of the materials with different thermal and mechanical loadings and swelling coefficients. In this work, 3D finite element models (FEM) are developed to simulate the effect of Temperature and the stresses on the model development, using a general purpose FE software ABAQUS. Explicit dynamic analysis with coupled Temperature displacement procedure is used for a model. The purpose of this research was to study the thermomechanical damage mechanics in hot forming processes. The important process variables and the main characteristics of various hot forming processes will also be discussed.
NASA Astrophysics Data System (ADS)
Gawronek, Pelagia; Makuch, Maria
2017-12-01
The classical measurements of stability of railway bridge, in the context of determining the vertical displacements of the object, consisted on precise leveling of girders and trigonometric leveling of controlled points (fixed into girders' surface). The construction elements, which were measured in two ways, in real terms belonged to the same vertical planes. Altitude measurements of construction were carried out during periodic structural stability tests and during static load tests of bridge by train. The specificity of displacement measurements, the type of measured object and the rail land surveying measurement conditions were determinants to define methodology of altitude measurement. The article presents compatibility of vertical displacements of steel railway bridge, which were developed in two measurement methods. In conclusion, the authors proposed the optimum concept of determining the vertical displacements of girders by using precise and trigonometric leveling (in terms of accuracy, safety and economy of measurement).
ERIC Educational Resources Information Center
Rosenfeld, Esther
2005-01-01
For people who are living in North America, the destruction caused by Hurricanes Katrina and Rita has shown them both the humbling power of natural forces and the fragility of man-made structures. The devastation to the Gulf Coast of the United States has left destruction and damage to schools and colleges and the displacement of 372,000 K-12…
Invasive plant species in hardwood tree plantations
Rochelle R. Beasley; Paula M. Pijut
2010-01-01
Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...
Compendium of Current Single Event Effects for Candidate Spacecraft Electronics for NASA
NASA Technical Reports Server (NTRS)
O'Bryan, Martha V.; Label, Kenneth A.; Chen, Dakai; Campola, Michael J.; Casey, Megan C.; Lauenstein, Jean-Marie; Pellish, Jonathan A.; Ladbury, Raymond L.; Berg, Melanie D.
2015-01-01
NASA spacecraft are subjected to a harsh space environment that includes exposure to various types of ionizing radiation. The performance of electronic devices in a space radiation environment are often limited by their susceptibility to single event effects (SEE). Ground-based testing is used to evaluate candidate spacecraft electronics to determine risk to spaceflight applications. Interpreting the results of radiation testing of complex devices is and adequate understanding of the test condition is critical. Studies discussed herein were undertaken to establish the application-specific sensitivities of candidate spacecraft and emerging electronic devices to single-event upset (SEU), single-event latchup (SEL), single-event gate rupture (SEGR), single-event burnout (SEB), and single-event transient (SET). For total ionizing dose (TID) and displacement damage dose (DDD) results, see a companion paper submitted to the 2015 Institute of Electrical and Electronics Engineers (IEEE) Nuclear and Space Radiation Effects Conference (NSREC) Radiation Effects Data Workshop (REDW) entitled "compendium of Current Total Ionizing Dose and Displacement Damage for Candidate Spacecraft Electronics for NASA by M. Campola, et al.
Avoiding Complications in Bone and Soft Tissue Ablation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurup, A. Nicholas, E-mail: kurup.anil@mayo.edu; Schmit, Grant D., E-mail: schmit.grant@mayo.edu; Morris, Jonathan M., E-mail: morris.jonathan@mayo.edu
As with percutaneous ablation of tumors in the liver, lungs, and kidneys, ablation of bone and non-visceral soft tissue tumors carries risk, primarily from collateral damage to vital structures in proximity to the target tumor. Certain risks are of particular interest when ablating bone and non-visceral soft tissue tumors, namely neural or skin injury, bowel injury, fracture, and gas embolism from damaged applicators. Ablation of large volume tumors also carries special risk. Many techniques may be employed by the interventional radiologist to minimize complications when treating tumors in the musculoskeletal system. These methods include those to depict, displace, or monitormore » critical structures. Thus, measures to provide thermoprotection may be active, such as careful ablation applicator placement and use of various displacement techniques, as well as passive, including employment of direct temperature, radiographic, or neurophysiologic monitoring techniques. Cementoplasty should be considered in certain skeletal locations at risk of fracture. Patients treated with large volume tumors should be monitored for renal dysfunction and properly hydrated. Finally, ablation applicators should be cautiously placed in the constrained environment of intact bone.« less
NASA Astrophysics Data System (ADS)
Desir, G.; Gutiérrez, F.; Merino, J.; Carbonel, D.; Benito-Calvo, A.; Guerrero, J.; Fabregat, I.
2018-02-01
Investigations dealing with subsidence monitoring in active sinkholes are very scarce, especially when compared with other ground instability phenomena like landslides. This is largely related to the catastrophic behaviour that typifies most sinkholes in carbonate karst areas. Active subsidence in five sinkholes up to ca. 500 m across has been quantitatively characterised by means of high-precision differential leveling. The sinkholes occur on poorly indurated alluvium underlain by salt-bearing evaporites and cause severe damage on various human structures. The leveling data have provided accurate information on multiple features of the subsidence phenomena with practical implications: (1) precise location of the vaguely-defined edges of the subsidence zones and their spatial relationships with surveyed surface deformation features; (2) spatial deformation patterns and relative contribution of subsidence mechanisms (sagging versus collapse); (3) accurate subsidence rates and their spatial variability with maximum and mean vertical displacement rates ranging from 1.0 to 11.8 cm/yr and 1.9 to 26.1 cm/yr, respectively; (4) identification of sinkholes that experience continuous subsidence at constant rates or with significant temporal changes; and (5) rates of volumetric surface changes as an approximation to rates of dissolution-induced volumetric depletion in the subsurface, reaching as much as 10,900 m3/yr in the largest sinkhole. The high subsidence rates as well as the annual volumetric changes are attributed to rapid dissolution of high-solubility salts.
Fatigue failure of osteocyte cellular processes: implications for the repair of bone.
Dooley, C; Cafferky, D; Lee, T C; Taylor, D
2014-01-25
The physical effects of fatigue failure caused by cyclic strain are important and for most materials well understood. However, nothing is known about this mode of failure in living cells. We developed a novel method that allowed us to apply controlled levels of cyclic displacement to networks of osteocytes in bone. We showed that under cyclic loading, fatigue failure takes place in the dendritic processes of osteocytes at cyclic strain levels as low as one tenth of the strain needed for instantaneous rupture. The number of cycles to failure was inversely correlated with the strain level. Further experiments demonstrated that these failures were not artefacts of our methods of sample preparation and testing, and that fatigue failure of cell processes also occurs in vivo. This work is significant as it is the first time it has been possible to conduct fatigue testing on cellular material of any kind. Many types of cells experience repetitive loading which may cause failure or damage requiring repair. It is clinically important to determine how cyclic strain affects cells and how they respond in order to gain a deeper understanding of the physiological processes stimulated in this manner. The more we understand about the natural repair process in bone the more targeted the intervention methods may become if disruption of the repair process occurred. Our results will help to understand how the osteocyte cell network is disrupted in the vicinity of matrix damage, a crucial step in bone remodelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ravotti, F.; Glaser, M.; Saigne, F.
Radiation-sensing metal-oxide-semiconductor field-effect transistors produced by the laboratory LAAS-CNRS were exposed to a harsh hadron field that represents the real radiation environment expected at the CERN Large Hadron Collider experiments. The long-term stability of the transistor's I{sub ds}-V{sub gs} characteristic was investigated using the isochronal annealing technique. In this work, devices exposed to high intensity hadron levels ({phi}{>=}10{sup 12} neutrons/cm{sup 2}) show evidences of displacement damages in the I{sub ds}-V{sub gs} annealing behavior. By comparing experimental and simulated results over 14 months, the isochronal annealing method, originally devoted to oxide trapped charge, is shown to enable prediction of the recoverymore » of silicon bulk defects.« less
Structural Anomaly Detection Using Fiber Optic Sensors and Inverse Finite Element Method
NASA Technical Reports Server (NTRS)
Quach, Cuong C.; Vazquez, Sixto L.; Tessler, Alex; Moore, Jason P.; Cooper, Eric G.; Spangler, Jan. L.
2005-01-01
NASA Langley Research Center is investigating a variety of techniques for mitigating aircraft accidents due to structural component failure. One technique under consideration combines distributed fiber optic strain sensing with an inverse finite element method for detecting and characterizing structural anomalies anomalies that may provide early indication of airframe structure degradation. The technique identifies structural anomalies that result in observable changes in localized strain but do not impact the overall surface shape. Surface shape information is provided by an Inverse Finite Element Method that computes full-field displacements and internal loads using strain data from in-situ fiberoptic sensors. This paper describes a prototype of such a system and reports results from a series of laboratory tests conducted on a test coupon subjected to increasing levels of damage.
Irradiation-enhanced α' precipitation in model FeCrAl alloys
Edmondson, Philip D.; Briggs, Samuel A.; Yamamoto, Yukinori; ...
2016-02-17
We have irradiated the model FeCrAl alloys with varying compositions (Fe(10–18)Cr(10–6)Al at.%) with a neutron at ~ 320 to damage levels of ~ 7 displacements per atom (dpa) to investigate the compositional influence on the formation of irradiation-induced Cr-rich α' precipitates using atom probe tomography. In all alloys, significant number densities of these precipitates were observed. Cluster compositions were investigated and it was found that the average cluster Cr content ranged between 51.1 and 62.5 at.% dependent on initial compositions. Furthermore, this is significantly lower than the Cr-content of α' in binary FeCr alloys. As a result, significant partitioning ofmore » the Al from the α' precipitates was also observed.« less
NASA Astrophysics Data System (ADS)
Harrison, R. W.; Greaves, G.; Hinks, J. A.; Donnelly, S. E.
2017-11-01
Transmission electron microscopy (TEM) with in-situ He ion irradiation has been used to examine the damage microstructure of W when varying the helium concentration to displacement damage ratio, irradiation temperature and total dose. Irradiations employed 15, 60 or 85 keV He ions, at temperatures between 500 and 1000 °C up to doses of ∼3.0 DPA. Once nucleated and grown to an observable size in the TEM, bubble diameter as a function of irradiation dose did not measurably increase at irradiation temperatures of 500 °C between 1.0 and 3.0 DPA; this is attributed to the low mobility of vacancies and He/vacancy complexes at these temperatures. Bubble diameter increased slightly for irradiation temperatures of 750 °C and rapidly increased when irradiated at 1000 °C. Dislocation loops were observed at irradiation temperatures of 500 and 750 °C and no loops were observed at 1000 °C. Burgers vectors of the dislocations were determined to be b = ±½<111> type only and both vacancy and interstitial loops were observed. The proportion of interstitial loops increased with He-appm/DPA ratio and this is attributed to the concomitant increase in bubble areal density, which reduces the vacancy flux for both the growth of vacancy-type loops and the annihilation of interstitial clusters.
Synergetic Effects of Runaway and Disruption Induced by VDE on the First Wall Damage in HL-2A
NASA Astrophysics Data System (ADS)
Song, Xianying; Yang, Jinwei; Li, Xu; Yuan, Guoliang; Zhang, Yipo
2012-03-01
The plasma facing component in HL-2A has been damaged seriously after disruption, and for this reason its operation is suspended for maintenance. The experimental phenomena and plasma configurations, calculated by the current filament code (CF-code) using the plasma parameters measured by diagnostics and the signals of the magnetic probes, confirm that the first wall is damaged by the synergetic effects of runaway electrons and disruption induced by a vertical displacement event (VDE). When the plasma column is displaced upward/downward, the strong runaway electrons normally hit the baffle plate of the MP3 or MP1 coil in the upper and lower divertor during the disruption, causing the baffle plates to be holed and wrinkled by the energetic runaway current, and water (for cooling or heating the baffle plates) to leak into the vacuum vessel. Another disastrous consequence is that bellows underlying the baffle plate and outside the coil of MP3 for connecting two segments of the jacket casing pipe are punctured by arcing. The arc may be part of the halo current that forms a complete circuit. The experimental phenomena are indirect but compelling evidence for the existence of a halo current during the disruption and VDE, though the halo current has not been measured by the diagnostics in the HL-2A tokamak.
Fractal dimension based damage identification incorporating multi-task sparse Bayesian learning
NASA Astrophysics Data System (ADS)
Huang, Yong; Li, Hui; Wu, Stephen; Yang, Yongchao
2018-07-01
Sensitivity to damage and robustness to noise are critical requirements for the effectiveness of structural damage detection. In this study, a two-stage damage identification method based on the fractal dimension analysis and multi-task Bayesian learning is presented. The Higuchi’s fractal dimension (HFD) based damage index is first proposed, directly examining the time-frequency characteristic of local free vibration data of structures based on the irregularity sensitivity and noise robustness analysis of HFD. Katz’s fractal dimension is then presented to analyze the abrupt irregularity change of the spatial curve of the displacement mode shape along the structure. At the second stage, the multi-task sparse Bayesian learning technique is employed to infer the final damage localization vector, which borrow the dependent strength of the two fractal dimension based damage indication information and also incorporate the prior knowledge that structural damage occurs at a limited number of locations in a structure in the absence of its collapse. To validate the capability of the proposed method, a steel beam and a bridge, named Yonghe Bridge, are analyzed as illustrative examples. The damage identification results demonstrate that the proposed method is capable of localizing single and multiple damages regardless of its severity, and show superior robustness under heavy noise as well.
He, Qianping; Chen, Jihua; Keffer, David J; Joy, David C
2014-01-01
Electron microscopy is an essential tool for the evaluation of microstructure and properties of the catalyst layer (CL) of proton exchange membrane fuel cells (PEMFCs). However, electron microscopy has one unavoidable drawback, which is radiation damage. Samples suffer temporary or permanent change of the surface or bulk structure under radiation damage, which can cause ambiguity in the characterization of the sample. To better understand the mechanism of radiation damage of CL samples and to be able to separate the morphological features intrinsic to the material from the consequences of electron radiation damage, a series of experiments based on high-angle annular dark-field-scanning transmission scanning microscope (HAADF-STEM), energy filtering transmission scanning microscope (EFTEM), and electron energy loss spectrum (EELS) are conducted. It is observed that for thin samples (0.3-1 times λ), increasing the incident beam energy can mitigate the radiation damage. Platinum nanoparticles in the CL sample facilitate the radiation damage. The radiation damage of the catalyst sample starts from the interface of Pt/C or defective thin edge and primarily occurs in the form of mass loss accompanied by atomic displacement and edge curl. These results provide important insights on the mechanism of CL radiation damage. Possible strategies of mitigating the radiation damage are provided. © 2013 Wiley Periodicals, Inc.
A broader classification of damage zones
NASA Astrophysics Data System (ADS)
Peacock, D. C. P.; Dimmen, V.; Rotevatn, A.; Sanderson, D. J.
2017-09-01
Damage zones have previously been classified in terms of their positions at fault tips, walls or areas of linkage, with the latter being described in terms of sub-parallel and synchronously active faults. We broaden the idea of linkage to include structures around the intersections of non-parallel and/or non-synchronous faults. These interaction damage zones can be divided into approaching damage zones, where the faults kinematically interact but are not physically connected, and intersection damage zones, where the faults either abut or cross-cut. The damage zone concept is applied to other settings in which strain or displacement variations are taken up by a range of structures, such as at fault bends. It is recommended that a prefix can be added to a wide range of damage zones, to describe the locations in which they formed, e.g., approaching, intersection and fault bend damage zone. Such interpretations are commonly based on limited knowledge of the 3D geometries of the structures, such as from exposure surfaces, and there may be spatial variations. For example, approaching faults and related damage seen in outcrop may be intersecting elsewhere on the fault planes. Dilation in intersection damage zones can represent narrow and localised channels for fluid flow, and such dilation can be influenced by post-faulting stress patterns.
Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
Unemployment in Iraqi refugees: The interaction of pre and post-displacement trauma.
Wright, A Michelle; Dhalimi, Abir; Lumley, Mark A; Jamil, Hikmet; Pole, Nnamdi; Arnetz, Judith E; Arnetz, Bengt B
2016-12-01
Previous refugee research has been unable to link pre-displacement trauma with unemployment in the host country. The current study assessed the role of pre-displacement trauma, post-displacement trauma, and the interaction of both trauma types to prospectively examine unemployment in a random sample of newly-arrived Iraqi refugees. Participants (N = 286) were interviewed three times over the first two years post-arrival. Refugees were assessed for pre-displacement trauma exposure, post-displacement trauma exposure, a history of unemployment in the country of origin and host country, and symptoms of posttraumatic stress disorder (PTSD) and depression. Analyses found that neither pre-displacement nor post-displacement trauma independently predicted unemployment 2 years post-arrival; however, the interaction of pre and post-displacement trauma predicted 2-year unemployment. Refugees with high levels of both pre and post-displacement trauma had a 91% predicted probability of unemployment, whereas those with low levels of both traumas had a 20% predicted probability. This interaction remained significant after controlling for sociodemographic variables and mental health upon arrival to the US. Resettlement agencies and community organizations should consider the interactive effect of encountering additional trauma after escaping the hardships of the refugee's country of origin. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Ischemic Preconditioning Blunts Muscle Damage Responses Induced by Eccentric Exercise.
Franz, Alexander; Behringer, Michael; Harmsen, Jan-Frieder; Mayer, Constantin; Krauspe, Rüdiger; Zilkens, Christoph; Schumann, Moritz
2018-01-01
Ischemic preconditioning (IPC) is known to reduce muscle damage induced by ischemia and reperfusion injury during surgery. Because of similarities between the pathophysiological formation of ischemia and reperfusion injury and eccentric exercise-induced muscle damage (EIMD), as characterized by an intracellular accumulation of Ca, an increased production of reactive oxygen species, and increased proinflammatory signaling, the purpose of the present study was to investigate whether IPC performed before eccentric exercise may also protect against EIMD. Nineteen healthy men were matched to an eccentric-only (ECC; n = 9) or eccentric proceeded by IPC group (IPC + ECC; n = 10). The exercise protocol consisted of bilateral biceps curls (3 × 10 repetitions at 80% of the concentric one-repetition maximum). In IPC + ECC, IPC was applied bilaterally at the upper arms by a tourniquet (200 mm Hg) immediately before the exercise (3 × 5 min of occlusion, separated by 5 min of reperfusion). Creatine kinase (CK), arm circumference, subjective pain (visual analog scale score), and radial displacement (tensiomyography, maximal radial displacement) were assessed before IPC, preexercise, postexercise, and 20 min, 2 h, 24 h, 48 h, and 72 h postexercise. CK differed from baseline only in ECC at 48 h (P < 0.001) and 72 h (P < 0.001) postexercise. After 24, 48, and 72 h, CK was increased in ECC compared with IPC + ECC (between groups: 24 h, P = 0.004; 48 h, P < 0.001; 72 h, P < 0.001). The visual analog scale score was significantly higher in ECC at 24-72 h postexercise when compared with IPC + ECC (between groups: all P values < 0.001). The maximal radial displacement was decreased on all postexercise days in ECC (all P values < 0.001) but remained statistically unchanged in IPC + ECC (between groups: P < 0.01). These findings indicate that IPC performed before a bout of eccentric exercise of the elbow flexors blunts EIMD and exercise-induced pain while maintaining the contractile properties of the muscle.
Medial joint space widening of the ankle in displaced Tillaux and Triplane fractures in children.
Gourineni, Prasad; Gupta, Asheesh
2011-10-01
Tillaux and Triplane fractures occur in children predominantly from external rotation mechanism. We hypothesized that in displaced fractures, the talus would shift laterally along with the distal fibula and the distal tibial epiphyseal fragment increasing the medial joint space. Consecutive cases evaluated retrospectively. Level I and Level II centers. Twenty-two skeletally immature patients with 14 displaced Triplane fractures and eight displaced Tillaux fractures were evaluated for medial joint space widening. Measurement of fracture displacement and medial joint space widening before and after intervention. Thirteen Triplane and six Tillaux fractures (86%) showed medial space widening of 1 to 9 mm and equal to the amount of fracture displacement. Reduction of the fracture reduced the medial space to normal. There were no known complications. Medial space widening of the ankle may be a sign of ankle fracture displacement. Anatomic reduction of the fracture reduces the medial space and may improve the results in Tillaux and Triplane fractures.
Radiation damage calculations for the SINQ Target 5
NASA Astrophysics Data System (ADS)
Wechsler, Monroe S.; Lu, Wei; Dai, Yong
2003-03-01
Calculations are underway of radiation damage (production of displacements, helium, and hydrogen) at Target 5 of the SINQ spallation neutron source at the Paul Scherrer Institute in Switzerland. The target is bombarded by 575-MeV protons, and the spallation-neutron-producing target material is liquid lead. The calculations employ the Monte Carlo code MCNPX (version 2.3.0). The peak proton and neutron fluxes at the aluminum-alloy entrance window are determined to be about 1.9E14 protons/cm2s per mA of incident proton current and 2.4E13 neutrons/cm2s per mA. For a beam exposure of 10 Ahr, the peak damage sustained at the entrance window due to protons and neutrons combined is calculated to be 7.8 dpa, 2000 appmHe, and 4000 appmH. The significance of the damage results for the entrance window and components within Target 5 will be discussed.
Influence of Shear Stiffness Degradation on Crack Paths in Uni-Directional Composite Laminates
NASA Technical Reports Server (NTRS)
Satyanarayana, Arunkumar; Bogert, Phil B.
2017-01-01
Influence of shear stiffness degradation in an element, due to damage, on crack paths in uni-directional laminates has been demonstrated. A new shear stiffness degradation approach to improve crack path prediction has been developed and implemented in an ABAQUS/Explicit frame work using VUMAT. Three progressive failure analysis models, built-in ABAQUS (TradeMark), original COmplete STress Reduction (COSTR) and the modified COSTR damage models have been utilized in this study to simulate crack paths in five unidirectional notched laminates, 15deg, 30deg, 45deg, 60deg and 75deg under uniaxial tension load. Results such as crack paths and load vs. edge displacement curves are documented in this report. Modified COSTR damage model shows better accuracy in predicting crack paths in all the uni-directional laminates compared to the ABAQUS (TradeMark) and the original COSTR damage models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Hyunjo, E-mail: hjjeong@wku.ac.kr; Cho, Sungjong; Zhang, Shuzeng
2016-04-15
In recent studies with nonlinear Rayleigh surface waves, harmonic generation measurements have been successfully employed to characterize material damage and microstructural changes, and found to be sensitive to early stages of damage process. A nonlinearity parameter of Rayleigh surface waves was derived and frequently measured to quantify the level of damage. The accurate measurement of the nonlinearity parameter generally requires making corrections for beam diffraction and medium attenuation. These effects are not generally known for nonlinear Rayleigh waves, and therefore not properly considered in most of previous studies. In this paper, the nonlinearity parameter for a Rayleigh surface wave ismore » defined from the plane wave displacement solutions. We explicitly define the attenuation and diffraction corrections for fundamental and second harmonic Rayleigh wave beams radiated from a uniform line source. Attenuation corrections are obtained from the quasilinear theory of plane Rayleigh wave equations. To obtain closed-form expressions for diffraction corrections, multi-Gaussian beam (MGB) models are employed to represent the integral solutions derived from the quasilinear theory of the full two-dimensional wave equation without parabolic approximation. Diffraction corrections are presented for a couple of transmitter-receiver geometries, and the effects of making attenuation and diffraction corrections are examined through the simulation of nonlinearity parameter determination in a solid sample.« less
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin
2017-05-01
Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 filmmore » amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
Vittone, Ettore; Pastuovic, Zeljko; Breese, Mark B. H.; ...
2016-02-08
This study investigates both theoretically and experimentally the charge collection efficiency (CCE) degradation in silicon diodes induced by energetic ions. Ion Beam Induced Charge (IBIC) measurements carried out on n- and p-type silicon diodes which were previously irradiated with MeV He ions show evidence that the CCE degradation does not only depend on the mass, energy and fluence of the damaging ion, but also depends on the ion probe species and on the polarization state of the device. A general one-dimensional model is derived, which accounts for the ion-induced defect distribution, the ionization profile of the probing ion and themore » charge induction mechanism. Using the ionizing and non-ionizing energy loss profiles resulting from simulations based on the binary collision approximation and on the electrostatic/transport parameters of the diode under study as input, the model is able to accurately reproduce the experimental CCE degradation curves without introducing any phenomenological additional term or formula. Although limited to low level of damage, the model is quite general, including the displacement damage approach as a special case and can be applied to any semiconductor device. It provides a method to measure the capture coefficients of the radiation induced recombination centres. They can be considered indexes, which can contribute to assessing the relative radiation hardness of semiconductor materials.« less
Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films
Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; ...
2017-05-01
Pyrochlore-structure oxides, A 2B 2O 7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. In this paper, the mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La 2Zr 2O 7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr + at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopymore » (STEM). At lower doses, the surface of the La 2Zr 2O 7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La 2Zr 2O 7, the bandgap of a thick La 2Zr 2O 7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.« less
NASA Astrophysics Data System (ADS)
Jing, Chao; Liu, Zhongling; Zhou, Ge; Zhang, Yimo
2011-11-01
The nanometer-level precise phase-shift system is designed to realize the phase-shift interferometry in electronic speckle shearography pattern interferometry. The PZT is used as driving component of phase-shift system and translation component of flexure hinge is developed to realize micro displacement of non-friction and non-clearance. Closed-loop control system is designed for high-precision micro displacement, in which embedded digital control system is developed for completing control algorithm and capacitive sensor is used as feedback part for measuring micro displacement in real time. Dynamic model and control model of the nanometer-level precise phase-shift system is analyzed, and high-precision micro displacement is realized with digital PID control algorithm on this basis. It is proved with experiments that the location precision of the precise phase-shift system to step signal of displacement is less than 2nm and the location precision to continuous signal of displacement is less than 5nm, which is satisfied with the request of the electronic speckle shearography and phase-shift pattern interferometry. The stripe images of four-step phase-shift interferometry and the final phase distributed image correlated with distortion of objects are listed in this paper to prove the validity of nanometer-level precise phase-shift system.
Displacement Behaviour Is Associated with Reduced Stress Levels among Men but Not Women
Mohiyeddini, Changiz; Bauer, Stephanie; Semple, Stuart
2013-01-01
Sex differences in the ability to cope with stress may contribute to the higher prevalence of stress-related disorders among women compared to men. We recently provided evidence that displacement behaviour - activities such as scratching and face touching - represents an important strategy for coping with stressful situations: in a healthy population of men, displacement behaviour during a social stress test attenuated the relationship between anxiety experienced prior to this test, and the subsequent self-reported experience of stress. Here, we extend this work to look at physiological and cognitive (in addition to self-reported) measures of stress, and study both men and women in order to investigate whether sex moderates the link between displacement behaviour and the response to stress. In a healthy study population, we quantified displacement behaviour, heart rate and cognitive performance during the Trier Social Stress Test, and used self-report questionnaires to assess the experience of stress afterwards. Men engaged in displacement behaviour about twice as often as women, and subsequently reported lower levels of stress. Bivariate correlations revealed that for men, higher rates of displacement behaviour were associated with decreased self-reported stress, fewer mistakes in the cognitive task and a trend towards lower heart rate; no relationships between displacement behaviour and stress measures were found for women. Moreover, moderation analyses revealed that high rates of displacement behaviour were associated with lower stress levels in men but not in women, and that high displacement behaviour rates were associated with poorer cognitive performance in women, but not men. These results point to an important sex difference in coping strategies, and highlight new avenues for research into sex biases in stress-related disorders. PMID:23457555
Displacement behaviour is associated with reduced stress levels among men but not women.
Mohiyeddini, Changiz; Bauer, Stephanie; Semple, Stuart
2013-01-01
Sex differences in the ability to cope with stress may contribute to the higher prevalence of stress-related disorders among women compared to men. We recently provided evidence that displacement behaviour--activities such as scratching and face touching--represents an important strategy for coping with stressful situations: in a healthy population of men, displacement behaviour during a social stress test attenuated the relationship between anxiety experienced prior to this test, and the subsequent self-reported experience of stress. Here, we extend this work to look at physiological and cognitive (in addition to self-reported) measures of stress, and study both men and women in order to investigate whether sex moderates the link between displacement behaviour and the response to stress. In a healthy study population, we quantified displacement behaviour, heart rate and cognitive performance during the Trier Social Stress Test, and used self-report questionnaires to assess the experience of stress afterwards. Men engaged in displacement behaviour about twice as often as women, and subsequently reported lower levels of stress. Bivariate correlations revealed that for men, higher rates of displacement behaviour were associated with decreased self-reported stress, fewer mistakes in the cognitive task and a trend towards lower heart rate; no relationships between displacement behaviour and stress measures were found for women. Moreover, moderation analyses revealed that high rates of displacement behaviour were associated with lower stress levels in men but not in women, and that high displacement behaviour rates were associated with poorer cognitive performance in women, but not men. These results point to an important sex difference in coping strategies, and highlight new avenues for research into sex biases in stress-related disorders.
Displacement, county social cohesion, and depression after a large-scale traumatic event.
Lê, Félice; Tracy, Melissa; Norris, Fran H; Galea, Sandro
2013-11-01
Depression is a common and potentially debilitating consequence of traumatic events. Mass traumatic events cause wide-ranging disruptions to community characteristics, influencing the population risk of depression. In the aftermath of such events, population displacement is common. Stressors associated with displacement may increase risk of depression directly. Indirectly, persons who are displaced may experience erosion in social cohesion, further exacerbating their risk for depression. Using data from a population-based cross-sectional survey of adults living in the 23 southernmost counties of Mississippi (N = 708), we modeled the independent and joint relations of displacement and county-level social cohesion with depression 18-24 months after Hurricane Katrina. After adjustment for individual- and county-level socio-demographic characteristics and county-level hurricane exposure, joint exposure to both displacement and low social cohesion was associated with substantially higher log-odds of depression (b = 1.34 [0.86-1.83]). Associations were much weaker for exposure only to low social cohesion (b = 0.28 [-0.35-0.90]) or only to displacement (b = 0.04 [-0.80-0.88]). The associations were robust to additional adjustment for individually perceived social cohesion and social support. Addressing the multiple, simultaneous disruptions that are a hallmark of mass traumatic events is important to identify vulnerable populations and understand the psychological ramifications of these events.
Shepherd, Jennifer H; Riley, Graham P; Screen, Hazel R C
2014-10-01
Many tendon injuries are believed to result from repetitive motion or overuse, leading to the accumulation of micro-damage over time. In vitro fatigue loading can be used to characterise damage during repeated use and investigate how this may relate to the aetiology of tendinopathy. This study considered the effect of fatigue loading on fascicles from two functionally distinct bovine tendons: the digital extensor and deep digital flexor. Micro-scale extension mechanisms were investigated in fascicles before or after a period of cyclic creep loading, comparing two different measurement techniques - the displacement of a photo-bleached grid and the use of nuclei as fiducial markers. Whilst visual damage was clearly identified after only 300 cycles of creep loading, these visual changes did not affect either gross fascicle mechanics or fascicle microstructural extension mechanisms over the 900 fatigue cycles investigated. However, significantly greater fibre sliding was measured when observing grid deformation rather than the analysis of nuclei movement. Measurement of microstructural extension with both techniques was localised and this may explain the absence of change in microstructural deformation in response to fatigue loading. Alternatively, the data may demonstrate that fascicles can withstand a degree of matrix disruption with no impact on mechanics. Whilst use of a photo-bleached grid to directly measure the collagen is the best indicator of matrix deformation, nuclei tracking may provide a better measure of the strain perceived directly by the cells. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on CMOS APS image sensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zujun, E-mail: wangzujun@nint.ac.cn; Chen, Wei; Sheng, Jiangkun
The combined reactor neutron beam and {sup 60}Co γ-ray radiation effects on complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS) have been discussed and some new experimental phenomena are presented. The samples are manufactured in the standard 0.35-μm CMOS technology. Two samples were first exposed to {sup 60}Co γ-rays up to the total ionizing dose (TID) level of 200 krad(Si) at the dose rates of 50.0 and 0.2 rad(Si)/s, and then exposed to neutron fluence up to 1 × 10{sup 11} n/cm{sup 2} (1-MeV equivalent neutron fluence). One sample was first exposed to neutron fluence up to 1 × 10{supmore » 11} n/cm{sup 2} (1-MeV equivalent neutron fluence), and then exposed to {sup 60}Co γ-rays up to the TID level of 200 krad(Si) at the dose rate of 0.2 rad(Si)/s. The mean dark signal (K{sub D}), the dark signal non-uniformity (DSNU), and the noise (V{sub N}) versus the total dose and neutron fluence has been investigated. The degradation mechanisms of CMOS APS image sensors have been analyzed, especially for the interaction induced by neutron displacement damage and TID damage.« less
NASA Astrophysics Data System (ADS)
Zhuang, Weimin; Ao, Wenhong
2018-03-01
Damage propagation induced failure is a predominant damage mechanism. This study is aimed at assessing the damage state and damage propagation induced failure with different stacking angles, of woven carbon fiber/epoxy laminates subjected to quasi-static tensile and bending load. Different stages of damage processing and damage behavior under the bending load are investigated by Scanning Electron Microscopy (SEM). The woven carbon fiber/epoxy laminates which are stacked at six different angles (0°, 15°, 30°, 45°, 60°, 75°) with eight plies have been analyzed: [0]8, [15]8, [30]8, [45]8, [60]8, [75]8. Three-point bending test and quasi-static tensile test are used in validating the woven carbon fiber/epoxy laminates’ mechanical properties. Furthermore, the damage propagation and failure modes observed under flexural loading is correlated with flexural force and load-displacement behaviour respectively for the laminates. The experimental results have indicated that [45]8 laminate exhibits the best flexural performance in terms of energy absorption duo to its pseudo-ductile behaviour but the tensile strength and flexural strength drastically decreased compared to [0]8 laminate. Finally, SEM micrographs of specimens and fracture surfaces are used to reveal the different types of damage of the laminates with different stacking angles.
Zhou, Hongyu; Attard, Thomas L.; Dhiradhamvit, Kittinan; ...
2014-11-07
In this paper, the crashworthiness characteristics of rectangular tubes made from a Carbon-fiber reinforced Hybrid-Polymeric Matrix (CHMC) composite were investigated using quasi-static and impact crush tests. The hybrid matrix formulation of the CHMC was created by combining an epoxy-based thermosetting polymer with a lightly crosslinked polyurea elastomer at various cure-time intervals and volumetric ratios. The load–displacement responses of both CHMC and carbon-fiber reinforced epoxy (CF/epoxy) specimens were obtained under various crushing speeds; and crashworthiness parameters, such as the average crushing force and specific energy absorption (SEA), were calculated using subsequent load–displacement relationships. The CHMC maintained a high level of structuralmore » integrity and post-crush performance, relative to traditional CF/epoxy. The influence of the curing time and volumetric ratios of the polyurea/epoxy dual-hybridized matrix system on the crashworthiness parameters was also investigated. The results reveal that the load carrying capacity and total energy absorption tend to increase with greater polyurea thickness and lower elapsed reaction curing time of the epoxy although this is typically a function of the loading rate. In conclusion, the mechanism by which the CHMC provides increased damage tolerance was also investigated using scanning electron microscopy (SEM).« less
Social preferences toward energy generation with woody biomass from public forests in Montana, USA
Robert M. Campbell; Tyron J. Venn; Nathaniel M. Anderson
2016-01-01
In Montana, USA, there are substantial opportunities for mechanized thinning treatments on public forests to reduce the likelihood of severe and damaging wildfires and improve forest health. These treatments produce residues that can be used to generate renewable energy and displace fossil fuels. The choice modeling method is employed to examine the marginal...
Radiation effects in structural materials of spallation targets
NASA Astrophysics Data System (ADS)
Jung, P.
2002-02-01
Effects of radiation damage by protons and neutrons in structural materials of spallation neutron sources are reviewed. Effects of atomic displacements, defect mobility and transmutation products, especially hydrogen and helium, on physical and mechanical properties are discussed. The most promising candidate materials (austenitic stainless steels, ferritic/martensitic steels and refractory alloys) are compared, and needed investigations are identified.
Has Plan Colombia Ignored Neighboring Countries
2008-06-01
IGNORED NEIGHBORING COUNTRIES? Celso Andrade-Garzon Colonel, Ecuadorian Army, 1981 B.S., University of Loja , Ecuador , 1993 M.S., Institute of...neighboring countries of Ecuador and Venezuela, increasing border violence, population displacement and the creation of refugees, environmental damage...black market weapons trading and drug trafficking. This thesis uses trust and influence theory to analyze how Plan Colombia affects Ecuador and
Damageable contact between an elastic body and a rigid foundation
NASA Astrophysics Data System (ADS)
Campo, M.; Fernández, J. R.; Silva, A.
2009-02-01
In this work, the contact problem between an elastic body and a rigid obstacle is studied, including the development of material damage which results from internal compression or tension. The variational problem is formulated as a first-kind variational inequality for the displacements coupled with a parabolic partial differential equation for the damage field. The existence of a unique local weak solution is stated. Then, a fully discrete scheme is introduced using the finite element method to approximate the spatial variable and an Euler scheme to discretize the time derivatives. Error estimates are derived on the approximate solutions, from which the linear convergence of the algorithm is deduced under suitable regularity conditions. Finally, three two-dimensional numerical simulations are performed to demonstrate the accuracy and the behaviour of the scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hilbert, L.B. Jr.; Fredrich, J.T.; Bruno, M.S.
1996-05-01
In this paper the authors present the results of a coupled nonlinear finite element geomechanics model for reservoir compaction and well-to-well interactions for the high-porosity, low strength diatomite reservoirs of the Belridge field near Bakersfield, California. They show that well damage and failures can occur under the action of two distinct mechanisms: shear deformations induced by pore compaction, and subsidence, and shear deformations due to well-to-well interactions during production or water injection. They show such casting damage or failure can be localized to weak layers that slide or slip under shear due to subsidence. The magnitude of shear displacements andmore » surface subsidence agree with field observations.« less
Damage identification in beams using speckle shearography and an optimal spatial sampling
NASA Astrophysics Data System (ADS)
Mininni, M.; Gabriele, S.; Lopes, H.; Araújo dos Santos, J. V.
2016-10-01
Over the years, the derivatives of modal displacement and rotation fields have been used to localize damage in beams. Usually, the derivatives are computed by applying finite differences. The finite differences propagate and amplify the errors that exist in real measurements, and thus, it is necessary to minimize this problem in order to get reliable damage localizations. A way to decrease the propagation and amplification of the errors is to select an optimal spatial sampling. This paper presents a technique where an optimal spatial sampling of modal rotation fields is computed and used to obtain the modal curvatures. Experimental measurements of modal rotation fields of a beam with single and multiple damages are obtained with shearography, which is an optical technique allowing the measurement of full-fields. These measurements are used to test the validity of the optimal sampling technique for the improvement of damage localization in real structures. An investigation on the ability of a model updating technique to quantify the damage is also reported. The model updating technique is defined by the variations of measured natural frequencies and measured modal rotations and aims at calibrating the values of the second moment of area in the damaged areas, which were previously localized.
Learning to perceive haptic distance-to-break in the presence of friction.
Altenhoff, Bliss M; Pagano, Christopher C; Kil, Irfan; Burg, Timothy C
2017-02-01
Two experiments employed attunement and calibration training to investigate whether observers are able to identify material break points in compliant materials through haptic force application. The task required participants to attune to a recently identified haptic invariant, distance-to-break (DTB), rather than haptic stimulation not related to the invariant, including friction. In the first experiment participants probed simulated force-displacement relationships (materials) under 3 levels of friction with the aim of pushing as far as possible into the materials without breaking them. In a second experiment a different set of participants pulled on the materials. Results revealed that participants are sensitive to DTB for both pushing and pulling, even in the presence of varying levels of friction, and this sensitivity can be improved through training. The results suggest that the simultaneous presence of friction may assist participants in perceiving DTB. Potential applications include the development of haptic training programs for minimally invasive (laparoscopic) surgery to reduce accidental tissue damage. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Gao, Chan; Tian, Dongfeng; Li, Maosheng; Qian, Dazhi
2017-04-01
Different interatomic potentials produce displacement cascades with different features, and hence they significantly influence the results obtained from the displacement cascade simulations. The displacement cascade simulations in α-Fe have been carried out by molecular dynamics with three 'magnetic' potentials (MP) and Mendelev-type potential in this paper. Prior to the cascade simulations, the 'magnetic' potentials are hardened to suit for cascade simulations. We find that the peak time, maximum of defects, cascade volume and cascade density with 'magnetic' potentials are smaller than those with Mendelev-type potential. There is no significant difference within statistical uncertainty in the defect production efficiency with Mendelev-type potential and the second 'magnetic' potential at the same cascade energy, but remarkably smaller than those with the first and third 'magnetic' potential. Self interstitial atom (SIA) clustered fractions with 'magnetic' potentials are smaller than that with Mendelev-type potential, especially at the higher energy, due to the larger interstitial formation energies which result from the 'magnetic' potentials. The defect clustered fractions, which are input data for radiation damage accumulation models, may influence the prediction of microstructural evolution under radiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Busch, Malte, E-mail: der.malte.busch@gmail.com; Garthe, Stefan
Assessment of the displacement impacts of offshore wind farms on seabirds is impeded by a lack of evidence regarding species-specific reactions to developed sites and the potential ecological consequences faced by displaced individuals. In this study, we present a method that makes best use of the currently limited understanding of displacement impacts. The combination of a matrix table displaying the full range of potential displacement and mortality levels together with seasonal potential biological removal (PBR) assessments provides a tool that increases confidence in the conclusions of impact assessments. If unrealistic displacement levels and/or mortality rates are required to equal ormore » approach seasonal PBRs, this gives an indication of the likeliness of adverse impacts on the assessed population. This approach is demonstrated by assessing the displacement impacts of an offshore wind farm cluster in the German North Sea on the local common guillemot (Uria aalge) population. - Highlights: • A novel approach for assessing displacement impacts of offshore wind farms on seabirds is presented making best use of limited data • A displacement matrix approach is linked with PBR analysis to increased confidence in assessment conclusions drawn • A case example demonstrates the applicability of the methods described in practice.« less
NASA Astrophysics Data System (ADS)
Hussein, Rafid M.; Chandrashekhara, K.
2017-11-01
A multi-scale modeling approach is presented to simulate and validate thermo-oxidation shrinkage and cracking damage of a high temperature polymer composite. The multi-scale approach investigates coupled transient diffusion-reaction and static structural at macro- to micro-scale. The micro-scale shrinkage deformation and cracking damage are simulated and validated using 2D and 3D simulations. Localized shrinkage displacement boundary conditions for the micro-scale simulations are determined from the respective meso- and macro-scale simulations, conducted for a cross-ply laminate. The meso-scale geometrical domain and the micro-scale geometry and mesh are developed using the object oriented finite element (OOF). The macro-scale shrinkage and weight loss are measured using unidirectional coupons and used to build the macro-shrinkage model. The cross-ply coupons are used to validate the macro-shrinkage model by the shrinkage profiles acquired using scanning electron images at the cracked surface. The macro-shrinkage model deformation shows a discrepancy when the micro-scale image-based cracking is computed. The local maximum shrinkage strain is assumed to be 13 times the maximum macro-shrinkage strain of 2.5 × 10-5, upon which the discrepancy is minimized. The microcrack damage of the composite is modeled using a static elastic analysis with extended finite element and cohesive surfaces by considering the modulus spatial evolution. The 3D shrinkage displacements are fed to the model using node-wise boundary/domain conditions of the respective oxidized region. Microcrack simulation results: length, meander, and opening are closely matched to the crack in the area of interest for the scanning electron images.
NASA Astrophysics Data System (ADS)
Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano
2017-02-01
Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along the structure.
Freitag, Simone; Braehler, Elmar; Schmidt, Silke; Glaesmer, Heide
2013-02-01
Long-term effects of World War II experiences affect psychological and physical health in aged adults. Forced displacement as a traumatic event is associated with increased psychological burden even after several decades. This study investigates the contribution of forced displacement as a predictor for mental health disorders and adds the aspect of health-related quality of life (QoL). A sample of 1,659 German older adults aged 60-85 years was drawn from a representative survey. Post-traumatic stress disorder (PTSD), somatoform symptoms, depressive syndromes, and health-related QoL were assessed as outcome variables. Chi-square and t-test statistics examined differences between displaced and non-displaced people. Logistic regression analyses were performed to examine the impact of forced displacement on mental health disorders and QoL. Displaced people reported higher levels of PTSD, depressive and somatoform symptoms, and lower levels of health-related QoL. Displacement significantly predicted PTSD and somatoform symptoms in late life, but not depressive disorders. Health-related QoL was predicted by forced displacement and socio-demographic variables. Forced displacement is associated with an elevated risk for PTSD and somatoform symptoms and lowered health-related QoL in aged adults. Its unique impact declines after including socio-demographic variables. Long-term consequences of forced displacement need further investigations and should include positive aspects in terms of resilience and protective coping strategies.
Fiber-optic liquid level sensor
Weiss, Jonathan D.
1991-01-01
A fiber-optic liquid level sensor measures the height of a column of liquid through the hydrostatic pressure it produces. The sensor employs a fiber-optic displacement sensor to detect the pressure-induced displacement of the center of a corrugated diaphragm.
NASA Astrophysics Data System (ADS)
Sagi, D. A.; De Paola, N.; McCaffrey, K. J. W.; Holdsworth, R. E.
2016-10-01
To better understand fault zone architecture and fluid flow in mesoscale fault zones, we studied normal faults in chalks with displacements up to 20 m, at two representative localities in Flamborough Head (UK). At the first locality, chalk contains cm-thick, interlayered marl horizons, whereas at the second locality marl horizons were largely absent. Cm-scale displacement faults at both localities display ramp-flat geometries. Mesoscale fault patterns in the marl-free chalk, including a larger displacement fault (20 m) containing multiple fault strands, show widespread evidence of hydraulically-brecciated rocks, whereas clays smears along fault planes, and injected into open fractures, and a simpler fault zone architecture is observed where marl horizons are present. Hydraulic brecciation and veins observed in the marl-free chalk units suggest that mesoscale fault patterns acted as localized fault conduit allowing for widespread fluid flow. On the other hand, mesoscale fault patterns developed in highly fractured chalk, which contains interlayered marl horizons can act as localized barriers to fluid flow, due to the sealing effect of clays smears along fault planes and introduced into open fractures in the damage zone. To support our field observations, quantitative analyses carried out on the large faults suggest a simple fault zone in the chalk with marl units with fracture density/connectivity decreasing towards the protolith. Where marls are absent, density is high throughout the fault zone, while connectivity is high only in domains nearest the fault core. We suggest that fluid flow in fractured chalk is especially influenced by the presence of marls. When present, it can smear onto fault planes, forming localised barriers. Fluid flow along relatively large displacement faults is additionally controlled by the complexity of the fault zone, especially the size/geometry of weakly and intensely connected damage zone domains.
Prediction of strain values in reinforcements and concrete of a RC frame using neural networks
NASA Astrophysics Data System (ADS)
Vafaei, Mohammadreza; Alih, Sophia C.; Shad, Hossein; Falah, Ali; Halim, Nur Hajarul Falahi Abdul
2018-03-01
The level of strain in structural elements is an important indicator for the presence of damage and its intensity. Considering this fact, often structural health monitoring systems employ strain gauges to measure strains in critical elements. However, because of their sensitivity to the magnetic fields, inadequate long-term durability especially in harsh environments, difficulties in installation on existing structures, and maintenance cost, installation of strain gauges is not always possible for all structural components. Therefore, a reliable method that can accurately estimate strain values in critical structural elements is necessary for damage identification. In this study, a full-scale test was conducted on a planar RC frame to investigate the capability of neural networks for predicting the strain values. Two neural networks each of which having a single hidden layer was trained to relate the measured rotations and vertical displacements of the frame to the strain values measured at different locations of the frame. Results of trained neural networks indicated that they accurately estimated the strain values both in reinforcements and concrete. In addition, the trained neural networks were capable of predicting strains for the unseen input data set.
Numerical study of droplet evaporation in an acoustic levitator
NASA Astrophysics Data System (ADS)
Bänsch, Eberhard; Götz, Michael
2018-03-01
We present a finite element method for the simulation of all relevant processes of the evaporation of a liquid droplet suspended in an acoustic levitation device. The mathematical model and the numerical implementation take into account heat and mass transfer across the interface between the liquid and gaseous phase and the influence of acoustic streaming on this process, as well as the displacement and deformation of the droplet due to acoustic radiation pressure. We apply this numerical method to several theoretical and experimental examples and compare our results with the well-known d2-law for the evaporation of spherical droplets and with theoretical predictions for the acoustic streaming velocity. We study the influence of acoustic streaming on the distribution of water vapor and temperature in the levitation device, with special attention to the vapor distribution in the emerging toroidal vortices. We also compare the evaporation rate of a droplet with and without acoustic streaming, as well as the evaporation rates in dependence of different temperatures and sound pressure levels. Finally, a simple model of protein inactivation due to heat damage is considered and studied for different evaporation settings and their respective influence on protein damage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drellack, S.L.; Prothro, L.B.; Townsend, M.J.
2011-02-01
The geologic setting and history, along with observations through 50 years of detailed geologic field work, show that large-displacement (i.e., greater than 30 meters of displacement) syn- to post-volcanic faults are rare in the Rainier Mesa area. Faults observed in tunnels and drill holes are mostly tight, with small displacements (most less than 1.5 meters) and small associated damage zones. Faults are much more abundant in the zeolitized tuffs than in the overlying vitric tuffs, and there is little evidence that faults extend downward from the tuff section through the argillic paleocolluvium into pre-Tertiary rocks. The differences in geomechanical characteristicsmore » of the various tuff lithologies at Rainier Mesa suggest that most faults on Rainer Mesa are limited to the zeolitic units sandwiched between the overlying vitric bedded tuffs and the underlying pre-Tertiary units (lower carbonate aquifer–3, lower clastic confining unit–1, and Mesozoic granite confining unit).« less
Aftereffects of Subduction-Zone Earthquakes: Potential Tsunami Hazards along the Japan Sea Coast.
Minoura, Koji; Sugawara, Daisuke; Yamanoi, Tohru; Yamada, Tsutomu
2015-10-01
The 2011 Tohoku-Oki Earthquake is a typical subduction-zone earthquake and is the 4th largest earthquake after the beginning of instrumental observation of earthquakes in the 19th century. In fact, the 2011 Tohoku-Oki Earthquake displaced the northeast Japan island arc horizontally and vertically. The displacement largely changed the tectonic situation of the arc from compressive to tensile. The 9th century in Japan was a period of natural hazards caused by frequent large-scale earthquakes. The aseismic tsunamis that inflicted damage on the Japan Sea coast in the 11th century were related to the occurrence of massive earthquakes that represented the final stage of a period of high seismic activity. Anti-compressive tectonics triggered by the subduction-zone earthquakes induced gravitational instability, which resulted in the generation of tsunamis caused by slope failing at the arc-back-arc boundary. The crustal displacement after the 2011 earthquake infers an increased risk of unexpected local tsunami flooding in the Japan Sea coastal areas.
Severe hip displacement reduces health-related quality of life in children with cerebral palsy.
Ramstad, Kjersti; Jahnsen, Reidun B; Terjesen, Terje
2017-04-01
Background and purpose - Hip displacement is common in children with severe cerebral palsy (CP) and can cause problems such as pain, contractures, and nursing difficulties. Caregiver priorities and child health index of life with disabilities (CPCHILD) is a recently developed measure of health-related quality of life (HRQL) in children with severe CP. The associations between CPCHILD scores and hip displacement have not been investigated. We explored the effect of hip displacement on HRQL. Patients and methods - 67 children were recruited from the population-based Norwegian CP register. Mean age was 9 (7-12) years. There were 40 boys. Gross motor function classification system (GMFCS) distribution was 12 level III, 17 level IV, and 38 level V. Hip displacement was assessed by radiographic migration percentage (MP). The criterion for hip displacement was MP of the worst hip of ≥40%. Primary caregivers responded to 5 of the 6 domains of the CPCHILD questionnaire. Results - Hip displacement was found in 18 children and it was significantly associated with lower scores on the CPCHILD domains 3 (Comfort and Emotions) and 5 (Health), but not with domains 1 (Activities of Daily Living/Personal Care), 2 (Positioning, Transfer, and Mobility), and 6 (Overall Quality of Life). GMFCS level V was a significant predictor of low scores in all the domains. Interpretation - For the assessment of HRQL in children with severe CP and hip problems, we propose a modified and simplified version of the CPCHILD consisting of 14 of 37 questions. This would reduce the responders' burden and probably increase the response rate in clinical studies without losing important information.
Positional Change in Displacement of Midshaft Clavicle Fractures: An Aid to Initial Evaluation.
Malik, Awais; Jazini, Ehsan; Song, Xuyang; Johal, Herman; OʼHara, Nathan; Slobogean, Gerard; Abzug, Joshua M
2017-01-01
To determine how change in position affects displacement of midshaft clavicle fractures. Retrospective review. Level I Trauma Center. Eighty patients with displaced midshaft clavicle fractures and presence of supine and semiupright or upright chest radiographs taken within 2 weeks of each other. Supine, semiupright, and upright chest radiographs. Fracture shortening and vertical displacement on supine, semiupright, and upright radiographs. Mean vertical displacement was 9.42 mm [95% confidence interval (95% CI), 8.07-10.77 mm], 11.78 mm (95% CI, 10.25-13.32 mm), and 15.72 mm (95% CI, 13.71-17.72 mm) in supine, semiupright, and upright positions, respectively. Fracture shortening was -0.41 mm (95% CI, -2.53 to 1.70 mm), 2.11 mm (95% CI, -0.84 to 5.07), and 4.86 mm (95% CI, 1.66-8.06 mm) in supine, semiupright, and upright positions, respectively. Change in position from supine to upright significantly increased both vertical displacement and fracture shortening (P < 0.001). In the upright position, the proportion of patients who met operative indications (fracture shortening >20 mm) was 3 times greater when compared with that in the supine position (upright 17.65%; supine 5.88%, P = 0.06). Positional changes in fracture displacement were not associated with body mass index, age, or gender. Patient position is associated with significant changes in fracture displacement. Over 3 times more patients meet operative indications when placed in the upright versus supine position. An upright chest radiograph should be obtained to evaluate midshaft clavicle fracture displacement, as it represents the physiologic stress across the fracture when considering nonoperative management. Prognostic level IV. See Instructions for Authors for a complete description of levels of evidence.
Displacement, county social cohesion and depression after a large-scale traumatic event
Lê, Félice; Tracy, Melissa; Norris, Fran H.; Galea, Sandro
2013-01-01
Background Depression is a common and potentially debilitating consequence of traumatic events. Mass traumatic events cause wide-ranging disruptions to community characteristics, influencing the population risk of depression. In the aftermath of such events, population displacement is common. Stressors associated with displacement may increase risk of depression directly. Indirectly, persons who are displaced may experience erosion in social cohesion, further exacerbating their risk for depression. Methods Using data from a population-based cross-sectional survey of adults living in the 23 southernmost counties of Mississippi (N = 708), we modeled the independent and joint relations of displacement and county-level social cohesion with depression 18–24 months after Hurricane Katrina. Results After adjustment for individual- and county-level sociodemographic characteristics and county-level hurricane exposure, joint exposure to both displacement and low social cohesion was associated with substantially higher log-odds of depression (b = 1.34 [0.86–1.83]). Associations were much weaker for exposure only to low social cohesion (b = 0.28 [−0.35–0.90]) or only to displacement (b = 0.04 [−0.80– 0.88]). The associations were robust to additional adjustment for individually perceived social cohesion and social support. Conclusion Addressing the multiple, simultaneous disruptions that are a hallmark of mass traumatic events is important to identify vulnerable populations and understand the psychological ramifications of these events. PMID:23644724
Frye, Cheryl A; Rhodes, Madeline E
2005-03-15
5 alpha-Pregnan-3 alpha-ol-20-one (3 alpha,5 alpha-THP), progesterone (P4)'s 5 alpha-reduced, 3 alpha-hydroxysteroid oxidoreduced product, facilitates lordosis of rodents in part via agonist-like actions at GABA(A)/benzodiazepine receptor complexes in the ventral tegmental area (VTA). Whether 3 alpha,5 alpha-THP influences another reproductively-relevant behavior, lateral displacement, of hamsters was investigated. Lateral displacement is the movement that female hamsters make with their perineum towards male-like tactile stimulation. This behavior facilitates, and is essential for, successful mating. Hamsters in behavioral estrus had greater lateral displacement responses when endogenous progestin levels were elevated compared to when progestin levels were lower. Administration of P4, a prohormone for 3 alpha,5 alpha-THP, dose-dependently (500 > 200 > 100, 50, or 0 microg) enhanced lateral displacement of ovariectomized hamsters that had been primed with SC estradiol benzoate (5 or 10 microg). Inhibiting P4's metabolism to 3 alpha,5 alpha-THP by co-administering finasteride, a 5 alpha-reductase inhibitor, or indomethacin, a 3 alpha-hydroxysteroid oxidoreductase inhibitor, either systemically or to the VTA, significantly decreased lateral displacement and midbrain progestin levels of naturally receptive or hormone-primed hamsters compared to controls. These data suggest that lateral displacement is progestin-sensitive and requires the formation of 3 alpha,5 alpha-THP in the midbrain VTA.
Nonlinear damage identification of breathing cracks in Truss system
NASA Astrophysics Data System (ADS)
Zhao, Jie; DeSmidt, Hans
2014-03-01
The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.
Conceptualization of a Collaborative Decision Making for Flood Disaster Management
NASA Astrophysics Data System (ADS)
Nur Aishah Zubir, Siti; Thiruchelvam, Sivadass; Nasharuddin Mustapha, Kamal; Che Muda, Zakaria; Ghazali, Azrul; Hakimie, Hazlinda; Razak, Normy Norfiza Abdul; Aziz Mat Isa, Abdul; Hasini, Hasril; Sahari, Khairul Salleh Mohamed; Mat Husin, Norhayati; Ezanee Rusli, Mohd; Sabri Muda, Rahsidi; Mohd Sidek, Lariyah; Basri, Hidayah; Tukiman, Izawati
2016-03-01
Flooding is the utmost major natural hazard in Malaysia in terms of populations affected, frequency, area extent, flood duration and social economic damage. The recent flood devastation towards the end of 2014 witnessed almost 250,000 people being displaced from eight states in Peninsular Malaysia. The affected victims required evacuation within a short period of time to the designated evacuation centres. An effective and efficient flood disaster management would assure non-futile efforts for life-saving. Effective flood disaster management requires collective and cooperative emergency teamwork from various government agencies. Intergovernmental collaborations among government agencies at different levels have become part of flood disaster management due to the need for sharing resources and coordinating efforts. Collaborative decision making during disaster is an integral element in providing prompt and effective response for evacuating the victims.
Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil
2016-06-01
Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang; ...
2017-12-19
Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weaver, Jordan S.; Sun, Cheng; Wang, Yongqiang
Here, recent advances in spherical nanoindentation protocols have proven very useful for capturing the grain-scale mechanical response of different metals. This is achieved by converting the load–displacement response into an effective indentation stress–strain response which reveals latent information such as the elastic–plastic transition or indentation yield strength and work-hardening behavior and subsequently correlating the response with the material structure (e.g., crystal orientation) at the indentation site. Using these protocols, we systematically study and quantify the microscale mechanical effects of He, W, and He + W ion irradiation on commercially pure, polycrystalline tungsten. The indentation stress–strain response is correlated with themore » crystal orientation from electron backscatter diffraction, the defect structure from transmission electron microscopy micrographs, and the stopping range of ions in matter calculations of displacement damage and He concentration. He-implanted grains show a much higher indentation yield strength and saturation stress compared to W-ion-irradiated grains for the same displacement damage. There is also good agreement between the dispersed barrier hardening model with a barrier strength of 0.5–0.8 and void models (Bacon–Kochs–Scattergood and Osetsky–Bacon models) with the experimentally observed changes in indentation strength due to the presence of He bubbles. This finding indicates that a high density (~ 9 × 10 23 m –3) and concentration (~ 1.5 at.%) of small (~ 1 nm diameter) He bubbles can be moderate to strong barriers to dislocation slip in tungsten.« less
Electromechanical Nerve Stimulator
NASA Technical Reports Server (NTRS)
Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.
1993-01-01
Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.
An experimental investigation on the three-point bending behavior of composite laminate
NASA Astrophysics Data System (ADS)
A, Azzam; W, Li
2014-08-01
The response of composite laminate structure to three-point bending load was investigated by subjecting two types of stacking sequences of composite laminate structure by using electronic universal tester (Type: WDW-20) machine. Optical microscope was selected in order to characterize bending damage, delamination, and damage shapes in composite laminate structures. The results showed that the [0/90/-45/45]2s exhibits a brittle behavior, while other laminates exhibit a progressive failure mode consisting of fiber failure, debonding (splitting), and delamination. The [45/45/90/0]2s laminate has a highly nonlinear load- displacement curve due to compressive yielding.
Covariances for the 56Fe radiation damage cross sections
NASA Astrophysics Data System (ADS)
Simakov, Stanislav P.; Koning, Arjan; Konobeyev, Alexander Yu.
2017-09-01
The energy-energy and reaction-reaction covariance matrices were calculated for the n + 56Fe damage cross-sections by Total Monte Carlo method using the TENDL-2013 random files. They were represented in the ENDF-6 format and added to the unperturbed evaluation file. The uncertainties for the spectrum averaged radiation quantities in the representative fission, fusion and spallation facilities were first time assessed as 5-25%. Additional 5 to 20% have to be added to the atom displacement rate uncertainties to account for accuracy of the primary defects simulation in materials. The reaction-reaction correlation were shown to be 1% or less.
Precipitation of α' in neutron irradiated commercial FeCrAl alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Littrell, Kenneth C.; Briggs, Samuel A.
2017-08-17
In this paper, Alkrothal 720 and Kanthal APMT™, two commercial FeCrAl alloys, were neutron irradiated up to damage doses of 7.0 displacements per atom (dpa) in the temperature range of 320 to 382 °C to characterize the α' precipitation in these alloys using small-angle neutron scattering. Both alloys exhibited α' precipitation. Kanthal APMT™ exhibited higher number densities and volume fraction, a result attributed to its higher Cr content compared with Alkrothal 720. Finally, trends observed as a function of damage dose (dpa) are consistent with literature trends for both FeCr and FeCrAl alloys
Discontinuously Stiffened Composite Panel under Compressive Loading
NASA Technical Reports Server (NTRS)
Minnetyan, Levon; Rivers, James M.; Chamis, Christos C.; Murthy, Pappu L. N.
1995-01-01
The design of composite structures requires an evaluation of their safety and durability under service loads and possible overload conditions. This paper presents a computational tool that has been developed to examine the response of stiffened composite panels via the simulation of damage initiation, growth, accumulation, progression, and propagation to structural fracture or collapse. The structural durability of a composite panel with a discontinuous stiffener is investigated under compressive loading induced by the gradual displacement of an end support. Results indicate damage initiation and progression to have significant effects on structural behavior under loading. Utilization of an integrated computer code for structural durability assessment is demonstrated.
Enhanced Assimilation of InSAR Displacement and Well Data for Groundwater Monitoring
NASA Astrophysics Data System (ADS)
Abdullin, A.; Jonsson, S.
2016-12-01
Ground deformation related to aquifer exploitation can cause damage to buildings and infrastructure leading to major economic losses and sometimes even loss of human lives. Understanding reservoir behavior helps in assessing possible future ground movement and water depletion hazard of a region under study. We have developed an InSAR-based data assimilation framework for groundwater reservoirs that efficiently incorporates InSAR data for improved reservoir management and forecasts. InSAR displacement data are integrated with the groundwater modeling software MODFLOW using ensemble-based assimilation approaches. We have examined several Ensemble Methods for updating model parameters such as hydraulic conductivity and model variables like pressure head while simultaneously providing an estimate of the uncertainty. A realistic three-dimensional aquifer model was built to demonstrate the capability of the Ensemble Methods incorporating InSAR-derived displacement measurements. We find from these numerical tests that including both ground deformation and well water level data as observations improves the RMSE of the hydraulic conductivity estimate by up to 20% comparing to using only one type of observations. The RMSE estimation of this property after the final time step is similar for Ensemble Kalman Filter (EnKF), Ensemble Smoother (ES) and ES with multiple data assimilation (ES-MDA) methods. The results suggest that the high spatial and temporal resolution subsidence observations from InSAR are very helpful for accurately quantifying hydraulic parameters. We have tested the framework on several different examples and have found good performance in improving aquifer properties estimation, which should prove useful for groundwater management. Our ongoing work focuses on assimilating real InSAR-derived time series and hydraulic head data for calibrating and predicting aquifer properties of basin-wide groundwater systems.
NASA Astrophysics Data System (ADS)
Rude, C. M.; Li, J. D.; Gowanlock, M.; Herring, T.; Pankratius, V.
2016-12-01
Surface subsidence due to depletion of groundwater can lead to permanent compaction of aquifers and damaged infrastructure. However, studies of such effects on a large scale are challenging and compute intensive because they involve fusing a variety of data sets beyond direct measurements from groundwater wells, such as gravity change measurements from the Gravity Recovery and Climate Experiment (GRACE) or surface displacements measured by GPS receivers. Our work therefore leverages Amazon cloud computing to enable these types of analyses spanning the entire continental US. Changes in groundwater storage are inferred from surface displacements measured by GPS receivers stationed throughout the country. Receivers located on bedrock are anti-correlated with changes in water levels from elastic deformation due to loading, while stations on aquifers correlate with groundwater changes due to poroelastic expansion and compaction. Correlating linearly detrended equivalent water thickness measurements from GRACE with linearly detrended and Kalman filtered vertical displacements of GPS stations located throughout the United States helps compensate for the spatial and temporal limitations of GRACE. Our results show that the majority of GPS stations are negatively correlated with GRACE in a statistically relevant way, as most GPS stations are located on bedrock in order to provide stable reference locations and measure geophysical processes such as tectonic deformations. Additionally, stations located on the Central Valley California aquifer show statistically significant positive correlations. Through the identification of positive and negative correlations, deformation phenomena can be classified as loading or poroelastic expansion due to changes in groundwater. This method facilitates further studies of terrestrial water storage on a global scale. This work is supported by NASA AIST-NNX15AG84G (PI: V. Pankratius) and Amazon.
Spisák, Tamás; Jakab, András; Kis, Sándor A; Opposits, Gábor; Aranyi, Csaba; Berényi, Ervin; Emri, Miklós
2014-01-01
Functional Magnetic Resonance Imaging (fMRI) based brain connectivity analysis maps the functional networks of the brain by estimating the degree of synchronous neuronal activity between brain regions. Recent studies have demonstrated that "resting-state" fMRI-based brain connectivity conclusions may be erroneous when motion artifacts have a differential effect on fMRI BOLD signals for between group comparisons. A potential explanation could be that in-scanner displacement, due to rotational components, is not spatially constant in the whole brain. However, this localized nature of motion artifacts is poorly understood and is rarely considered in brain connectivity studies. In this study, we initially demonstrate the local correspondence between head displacement and the changes in the resting-state fMRI BOLD signal. Than, we investigate how connectivity strength is affected by the population-level variation in the spatial pattern of regional displacement. We introduce Regional Displacement Interaction (RDI), a new covariate parameter set for second-level connectivity analysis and demonstrate its effectiveness in reducing motion related confounds in comparisons of groups with different voxel-vise displacement pattern and preprocessed using various nuisance regression methods. The effect of using RDI as second-level covariate is than demonstrated in autism-related group comparisons. The relationship between the proposed method and some of the prevailing subject-level nuisance regression techniques is evaluated. Our results show that, depending on experimental design, treating in-scanner head motion as a global confound may not be appropriate. The degree of displacement is highly variable among various brain regions, both within and between subjects. These regional differences bias correlation-based measures of brain connectivity. The inclusion of the proposed second-level covariate into the analysis successfully reduces artifactual motion-related group differences and preserves real neuronal differences, as demonstrated by the autism-related comparisons.
Effects of extreme floods on trout populations and fish communities in a Catskill Mountain river
George, Scott D.; Baldigo, Barry P.; Smith, Alexander J.; Robinson, George
2015-01-01
5. Late summer floods may be less damaging to stream fish communities than winter or spring floods as spawning activity is negligible and early life stages of many species are generally larger and less susceptible to displacement and mortality. Additionally, post-flood conditions may be advantageous for brown trout recruitment.
Schools Get Katrina Aid, Uncertainty: $645 Million May Not Cover Costs of Displaced Students
ERIC Educational Resources Information Center
Klein, Alyson
2006-01-01
As federal aid for students uprooted by Hurricanes Katrina and Rita begins making its way to cash-strapped school districts, many educators are worried that the money Congress allocated will fall well short of their costs. Since the hurricanes damaged hundreds of schools in the Gulf Coast region and initially dispersed nearly 375,000 students,…
Radiation Environment Effects on Spacecraft
NASA Technical Reports Server (NTRS)
Ladbury, Ray.
2017-01-01
Space poses a variety of radiation hazards. These hazards pose different risks for different missions depending on the mission environment, duration and requirements. This presentation presents a brief look at several radiation related hazards, including destructive and nondestructive Single-Event Effect, Total Ionizing Dose, Displacement Damage and Spacecraft Charging. The temporal and spatial characteristics for the environments of concern for each are considered.
Crack Opening Displacement Behavior in Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Sevener, Kathy; Tracy, Jared; Chen, Zhe; Daly, Sam; Kiser, Doug
2017-01-01
Ceramic Matrix Composites (CMC) modeling and life prediction strongly depend on oxidation, and therefore require a thorough understanding of when matrix cracks occur, the extent of cracking for given conditions (time-temperature-environment-stress), and the interactions of matrix cracks with fibers and interfaces. In this work, the evolution of matrix cracks in a melt-infiltrated Silicon Carbide/Silicon Carbide (SiC/SiC) CMC under uniaxial tension was examined using scanning electron microscopy (SEM) combined with digital image correlation (DIC) and manual crack opening displacement (COD) measurements. Strain relaxation due to matrix cracking, the relationship between COD's and applied stress, and damage evolution at stresses below the proportional limit were assessed. Direct experimental observation of strain relaxation adjacent to regions of matrix cracking is presented and discussed. Additionally, crack openings were found to increase linearly with increasing applied stress, and no crack was found to pass fully through the gage cross-section. This observation is discussed in the context of the assumption of through-cracks for all loading conditions and fiber architectures in oxidation modeling. Finally, the combination of SEM with DIC is demonstrated throughout to be a powerful means for damage identification and quantification in CMC's at stresses well below the proportional limit.
NASA Technical Reports Server (NTRS)
Walters, Robert; Summers, Geoffrey P.; Warmer. Keffreu J/; Messenger, Scott; Lorentzen, Justin R.; Morton, Thomas; Taylor, Stephen J.; Evans, Hugh; Heynderickx, Daniel; Lei, Fan
2007-01-01
This paper presents a method for using the SPENVIS on-line computational suite to implement the displacement damage dose (D(sub d)) methodology for calculating end-of-life (EOL) solar cell performance for a specific space mission. This paper builds on our previous work that has validated the D(sub d) methodology against both measured space data [1,2] and calculations performed using the equivalent fluence methodology developed by NASA JPL [3]. For several years, the space solar community has considered general implementation of the D(sub d) method, but no computer program exists to enable this implementation. In a collaborative effort, NRL, NASA and OAI have produced the Solar Array Verification and Analysis Tool (SAVANT) under NASA funding, but this program has not progressed beyond the beta-stage [4]. The SPENVIS suite with the Multi Layered Shielding Simulation Software (MULASSIS) contains all of the necessary components to implement the Dd methodology in a format complementary to that of SAVANT [5]. NRL is currently working with ESA and BIRA to include the Dd method of solar cell EOL calculations as an integral part of SPENVIS. This paper describes how this can be accomplished.
In situ studies of ion irradiated inverse spinel compound magnesium stannate (Mg 2SnO 4)
NASA Astrophysics Data System (ADS)
Xu, P.; Tang, M.; Nino, J. C.
2009-06-01
Magnesium stannate spinel (Mg 2SnO 4) was synthesized through conventional solid state processing and then irradiated with 1.0 MeV Kr 2+ ions at low temperatures 50 and 150 K. Structural evolutions during irradiation were monitored and recorded through bright field images and selected-area electron diffraction patterns using in situ transmission electron microscopy. The amorphization of Mg 2SnO 4 was achieved at an ion dose of 5 × 10 19 Kr ions/m 2 at 50 K and 10 20 Kr ions/m 2 at 150 K, which is equivalent to an atomic displacement damage of 5.5 and 11.0 dpa, respectively. The spinel crystal structure was thermally recovered at room temperature from the amorphous phase caused by irradiation at 50 K. The calculated electronic and nuclear stopping powers suggest that the radiation damage caused by 1 MeV Kr 2+ ions in Mg 2SnO 4 is mainly due to atomic displacement induced defect accumulation. The radiation tolerance of Mg 2SnO 4 was finally compared with normal spinel MgAl 2O 4.
Accelerated radiation damage testing of x-ray mask membrane materials
NASA Astrophysics Data System (ADS)
Seese, Philip A.; Cummings, Kevin D.; Resnick, Douglas J.; Yanof, Arnold W.; Johnson, William A.; Wells, Gregory M.; Wallace, John P.
1993-06-01
An accelerated test method and resulting metrology data are presented to show the effects of x- ray radiation on various x-ray mask membrane materials. A focused x-ray beam effectively reduces the radiation time to 1/5 of that required by normal exposure beam flux. Absolute image displacement results determined by this method indicate imperceptible movement for boron-doped silicon and silicon carbide membranes at a total incident dose of 500 KJ/cm2, while image displacement for diamond is 50 nm at 150 KJ/cm2 and silicon nitride is 70 nm at 36 KJ/cm2. Studies of temperature rise during the radiation test and effects of the high flux radiation, i.e., reciprocity tests, demonstrate the validity of this test method.
NASA Technical Reports Server (NTRS)
Palmer, Susan O.; Nettles, Alan T.; Poe, C. C., Jr.
1999-01-01
A series of tests was conducted to measure the strength of stitched carbon/epoxy composites containing through-thickness damage in the form of a crack-like notch. The specimens were subjected to three types of loading: pure bending, pure tension, and combined bending and tension loads. Measurements of applied loads, strains near crack tips, and crack opening displacements (COD) were monitored in all tests. The transverse displacement at the center of the specimen was measured using a Linear Variable Differential Transformer (LVDT). The experimental data showed that the outer surface of the pure tension specimen failed at approximately 6,000 microstrain, while in combined bending and tension loads the measured tensile strains reached 10,000 microstrain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shu, Deming
An U.S. DOE Cooperative Research and Development Agreement (CRADA) between ANL and Optodyne, Inc. has been established to develop a prototype laser Doppler displacement encoder system with ultra-low noise level for linear measurements to sub-nanometer resolution for synchrotron radiation applications. We have improved the heterodyne efficiency and reduced the detector shot noises by proper shielding and adding a low-pass filter. The laser Doppler displacement encoder system prototype demonstrated a ~ 1 nm system output noise floor with single reflection optics. With multiple-pass optical arrangement, 0.1 nm scale closed-loop feedback control is achieved.
Displacement of squeezed propagating microwave states
NASA Astrophysics Data System (ADS)
Fedorov, Kirill G.; Zhong, Ling; Pogorzalek, Stefan; Eder, Peter; Fischer, Michael; Goetz, Jan; Wulschner, Friedrich; Xie, Edwar; Menzel, Edwin; Deppe, Frank; Marx, Achim; Gross, Rudolf
Displacement of propagating squeezed states is a fundamental operation for quantum communications. It can be applied to fundamental studies of macroscopic quantum coherence and has an important role in quantum teleportation protocols with propagating microwaves. We generate propagating squeezed states using a Josephson parametric amplifier and implement displacement using a cryogenic directional coupler. We study single- and two-mode displacement regimes. For the single-mode displacement we find that the squeezing level of the displaced squeezed state does not depend on the displacement amplitude. Also, we observe that quantum entanglement between two spatially separated channels stays constant across 4 orders of displacement power. We acknowledge support by the German Research Foundation through SFB 631 and FE 1564/1-1, the EU project PROMISCE, and Elite Network of Bavaria through the program ExQM.
Hierarchical information fusion for global displacement estimation in microsensor motion capture.
Meng, Xiaoli; Zhang, Zhi-Qiang; Wu, Jian-Kang; Wong, Wai-Choong
2013-07-01
This paper presents a novel hierarchical information fusion algorithm to obtain human global displacement for different gait patterns, including walking, running, and hopping based on seven body-worn inertial and magnetic measurement units. In the first-level sensor fusion, the orientation for each segment is achieved by a complementary Kalman filter (CKF) which compensates for the orientation error of the inertial navigation system solution through its error state vector. For each foot segment, the displacement is also estimated by the CKF, and zero velocity update is included for the drift reduction in foot displacement estimation. Based on the segment orientations and left/right foot locations, two global displacement estimates can be acquired from left/right lower limb separately using a linked biomechanical model. In the second-level geometric fusion, another Kalman filter is deployed to compensate for the difference between the two estimates from the sensor fusion and get more accurate overall global displacement estimation. The updated global displacement will be transmitted to left/right foot based on the human lower biomechanical model to restrict the drifts in both feet displacements. The experimental results have shown that our proposed method can accurately estimate human locomotion for the three different gait patterns with regard to the optical motion tracker.
Ordered Conformational Changes in Damaged DNA Induced by Nucleotide Excision Repair Factors*
Tapias, Angels; Auriol, Jerome; Forget, Diane; Enzlin, Jacqueline H.; Schärer, Orlando D; Coin, Frederic; Coulombe, Benoit; Egly, Jean-Marc
2015-01-01
In response to genotoxic attacks, cells activate sophisticated DNA repair pathways such as nucleotide excision repair (NER), which consists of damage removal via dual incision and DNA resynthesis. Using permanganate footprinting as well as highly purified factors, we show that NER is a dynamic process that takes place in a number of successive steps during which the DNA is remodeled around the lesion in response to the various NER factors. XPC/HR23B first recognizes the damaged structure and initiates the opening of the helix from position −3 to +6. TFIIH is then recruited and, in the presence of ATP, extends the opening from position −6 to +6; it also displaces XPC downstream from the lesion, thereby providing the topological structure for recruiting XPA and RPA, which will enlarge the opening. Once targeted by XPG, the damaged DNA is further melted from position −19 to +8. XPG and XPF/ERCC1 endo-nucleases then cut the damaged DNA at the limit of the opened structure that was previously “labeled” by the positioning of XPC/HR23B and TFIIH. PMID:14981083
Environment of Space Interactions with Space Systems
NASA Technical Reports Server (NTRS)
2004-01-01
The primary product of this research project was a computer program named SAVANT. This program uses the Displacement Damage Dose (DDD) method of calculating radiation damage to solar cells. This calculation method was developed at the Naval Research Laboratory, and uses fundamental physical properties of the solar cell materials to predict radiation damage to the solar cells. This means that fewer experimental measurements are required to characterize the radiation damage to the cells, which results in a substantial cost savings to qualify solar cells for orbital missions. In addition, the DDD method makes it easier to characterize cells that are already being used, but have not been fully tested using the older technique of characterizing radiation damage. The computer program combines an orbit generator with NASA's AP-8 and AE-8 models of trapped protons and electrons. This allows the user to specify an orbit, and the program will calculate how the spacecraft moves during the mission, and the radiation environment that it encounters. With the spectrum of the particles, the program calculates how they would slow down while traversing the coverglass, and provides a slowed-down spectrum.
Real-time seismic monitoring and functionality assessment of a building
Celebi, M.; ,
2005-01-01
This paper presents recent developments and approaches (using GPS technology and real-time double-integration) to obtain displacements and, in turn, drift ratios, in real-time or near real-time to meet the needs of the engineering and user community in seismic monitoring and assessing the functionality and damage condition of structures. Drift ratios computed in near real-time allow technical assessment of the damage condition of a building. Relevant parameters, such as the type of connections and story structural characteristics (including geometry) are used in computing drifts corresponding to several pre-selected threshold stages of damage. Thus, drift ratios determined from real-time monitoring can be compared to pre-computed threshold drift ratios. The approaches described herein can be used for performance evaluation of structures and can be considered as building health-monitoring applications.
NASA Astrophysics Data System (ADS)
Yagoda-Biran, G.; Hatzor, Y. H.
2013-12-01
Evidence for seismically induced damage are preserved in historic masonry structures below the Old City of Jerusalem at a site known locally as the 'Western Wall Tunnels' complex, possibly one of the most important tourist attractions in the world. In the tunnels, structures dated to 500 BC and up until modern times have been uncovered by recent archeological excavation. One of the interesting findings is a 100 m long bridge, composed of two rows of barrel vaults, believed to have been constructed during the 3rd century AD to allow easy access to the Temple Mount. In one of the vaults a single masonry block is displaced 7 cm downward with respect to its neighbors (see figure below). Since the damage seems seismically driven, back analysis of the damage with the numerical Discontinuous Deformation Analysis (DDA) method was performed, in order to constrain the peak ground acceleration (PGA) that had caused the damage. First the numerical method used for back analysis was verified with an analytical solution for the case of a rocking monolithic column, then validated with experimental results for site response analysis. The verification and validation prove the DDA is capable of handling dynamic and wave propagation problems. Next, the back analysis was performed. Results of the dynamic numerical simulations suggest that the damage observed at the vault was induced by seismic vibrations that must have taken place before the bridge was buried underground, namely when it was still in service. We find that the PGA required for causing the observed damage was high - between 1.5 and 2 g. The PGA calculated for Jerusalem on the basis of established attenuation relationships for historic earthquakes that struck the region during the relevant time period is about one order of magnitude lower: 0.14 and 0.48 g, for the events that took place at 362 and 746 AD, respectively. This discrepancy is explained by local site effects that must have amplified bedrock ground motions by a factor of up to 10. This result clearly illustrates the significance of incorporating local site effects when assessing the seismic hazard associated with specific regions in general, and particularly in cities where soft layers separate between the bedrock and the ground surface. The displaced block in Vault 21 in the Western Wall Tunnels.
Electron microscopy observations of radiation damage in irradiated and annealed tungsten
NASA Astrophysics Data System (ADS)
Grzonka, J.; Ciupiński, Ł.; Smalc-Koziorowska, J.; Ogorodnikova, O. V.; Mayer, M.; Kurzydłowski, K. J.
2014-12-01
In the present work tungsten samples were irradiated with W6+ ions with a kinetic energy of 20 MeV in order to simulate radiation damage by fast neutrons. Two samples with cumulative damage of 2.3 and 6.36 displacements per atom were produced. The scanning transmission electron microscopy investigations were carried out in order to determine structure changes resulting from the irradiation. The evolution of the damage with post implantation annealing in the temperature range 673-1100 K was also assessed. Damage profiles were studied at cross-sections. Scanning transmission electron microscopy studies of the lamellae after annealing revealed aggregation of defects and rearrangement as well as partial healing of dislocations at higher temperatures. The results confirm the higher density of radiation-induced dislocations in the near surface area of the sample (1.8 * 1014 m-2) in comparison with a deeper damage area (1.5 * 1014 m-2). Significant decrease of dislocation density was observed after annealing with a concurrent growth of dislocation loops. Transmission electron microscopy analyses show that the dislocation loops are perfect dislocations with the Burgers vectors of b = ½[ 1 1 1].
Reduced deuterium retention in simultaneously damaged and annealed tungsten
NASA Astrophysics Data System (ADS)
Simmonds, M. J.; Wang, Y. Q.; Barton, J. L.; Baldwin, M. J.; Yu, J. H.; Doerner, R. P.; Tynan, G. R.
2017-10-01
Deuterium (D) retention in polycrystalline tungsten (W) with copper (Cu) ion damage concurrently produced at elevated surface temperature is investigated. An in situ heated stage held W samples at a controlled temperature up to 1243 K, which were subjected to displacement damage produced by 3.4 MeV Cu ions. D retention is subsequently explored by exposure of the W samples held at 383 K to a D2 plasma ion fluence of 1024 D+/m2. Nuclear reaction analysis (NRA), utilizing the D(3He,p)4He nuclear reaction, is used to probe the D concentration in the near surface up to 6 μm. Thermal desorption spectroscopy (TDS) is used to measure outgassed HD and D2 molecules to determine the bulk D concentration. Both NRA and TDS measure a significant reduction in D retention for samples damaged at elevated temperature. TDS quantitatively shows that the lowest energy trap remains largely unaffected while higher energy traps, induced by Cu ions, are annealed and approach intrinsic concentrations as the temperature during ion damage approaches 1243 K. Analysis of TDS data yields an activation energy of (0.10 ± 0.02) eV for recovery of ion-damage induced traps at elevated temperature.
A novel method for computing effective diffusivity: Application to helium implanted α-Fe thin films
NASA Astrophysics Data System (ADS)
Dunn, Aaron; Agudo-Merida, Laura; Martin-Bragado, Ignacio; McPhie, Mathieu; Cherkaoui, Mohammed; Capolungo, Laurent
2014-05-01
The effective diffusivity of helium in thin iron films is quantified using spatially resolved stochastic cluster dynamics and object kinetic Monte Carlo simulations. The roles of total displacement dose (in DPA), damage rate, helium to DPA ratio, layer thickness, and damage type (cascade damage vs Frenkel pair implantation) on effective He diffusivity are investigated. Helium diffusivity is found to decrease with increasing total damage and decreasing damage rate. Arrhenius plots show strongly increased helium diffusivity at high temperatures, high total implantation, and low implantation rates due to decreased vacancy and vacancy cluster concentrations. At low temperatures, effective diffusivity is weakly dependent on foil thickness while at high temperatures, narrower foils prevent defect accumulation by releasing all defects at the free surfaces. Helium to DPA ratio is not shown to strongly change helium diffusivity in the range of irradiation conditions simulated. Frenkel pair implantation is shown to cause higher effective diffusivity and more complex diffusion mechanisms than cascade implantation. The results of these simulations indicate that the differences in damage rates between implantation experiments and fission or fusion environments may result in differences in the final microstructure.
Severe hip displacement reduces health-related quality of life in children with cerebral palsy
Ramstad, Kjersti; Jahnsen, Reidun B; Terjesen, Terje
2017-01-01
Background and purpose Hip displacement is common in children with severe cerebral palsy (CP) and can cause problems such as pain, contractures, and nursing difficulties. Caregiver priorities and child health index of life with disabilities (CPCHILD) is a recently developed measure of health-related quality of life (HRQL) in children with severe CP. The associations between CPCHILD scores and hip displacement have not been investigated. We explored the effect of hip displacement on HRQL. Patients and methods 67 children were recruited from the population-based Norwegian CP register. Mean age was 9 (7–12) years. There were 40 boys. Gross motor function classification system (GMFCS) distribution was 12 level III, 17 level IV, and 38 level V. Hip displacement was assessed by radiographic migration percentage (MP). The criterion for hip displacement was MP of the worst hip of ≥40%. Primary caregivers responded to 5 of the 6 domains of the CPCHILD questionnaire. Results Hip displacement was found in 18 children and it was significantly associated with lower scores on the CPCHILD domains 3 (Comfort and Emotions) and 5 (Health), but not with domains 1 (Activities of Daily Living/Personal Care), 2 (Positioning, Transfer, and Mobility), and 6 (Overall Quality of Life). GMFCS level V was a significant predictor of low scores in all the domains. Interpretation For the assessment of HRQL in children with severe CP and hip problems, we propose a modified and simplified version of the CPCHILD consisting of 14 of 37 questions. This would reduce the responders’ burden and probably increase the response rate in clinical studies without losing important information. PMID:27892753
Hu, Jun; Li, Zhi-Wei; Ding, Xiao-Li; Zhu, Jian-Jun
2008-10-21
The M w =7.6 Chi-Chi earthquake in Taiwan occurred in 1999 over the Chelungpu fault and caused a great surface rupture and severe damage. Differential Synthetic Aperture Radar Interferometry (DInSAR) has been applied previously to study the co-seismic ground displacements. There have however been significant limitations in the studies. First, only one-dimensional displacements along the Line-of-Sight (LOS) direction have been measured. The large horizontal displacements along the Chelungpu fault are largely missing from the measurements as the fault is nearly perpendicular to the LOS direction. Second, due to severe signal decorrelation on the hangling wall of the fault, the displacements in that area are un-measurable by differential InSAR method. We estimate the co-seismic displacements in both the azimuth and range directions with the method of SAR amplitude image matching. GPS observations at the 10 GPS stations are used to correct for the orbital ramp in the amplitude matching and to create the two-dimensional (2D) co-seismic surface displacements field using the descending ERS-2 SAR image pair. The results show that the co-seismic displacements range from about -2.0 m to 0.7 m in the azimuth direction (with the positive direction pointing to the flight direction), with the footwall side of the fault moving mainly southwards and the hanging wall side northwards. The displacements in the LOS direction range from about -0.5 m to 1.0 m, with the largest displacement occuring in the northeastern part of the hanging wall (the positive direction points to the satellite from ground). Comparing the results from amplitude matching with those from DInSAR, we can see that while only a very small fraction of the LOS displacement has been recovered by the DInSAR mehtod, the azimuth displacements cannot be well detected with the DInSAR measurements as they are almost perpendicular to the LOS. Therefore, the amplitude matching method is obviously more advantageous than the DInSAR in studying the Chi-Chi earthquake. Another advantage of the method is that the displacement in the hanging wall of the fault that is un-measurable with DInSAR due to severe signal decorrelation can almost completely retrieved in this research. This makes the whole co-seismic displacements field clearly visible and the location of the rupture identifiable. Using displacements measured at 15 independent GPS stations for validation, we found that the RMS values of the differences between the two types of results were 6.9 cm and 5.7 cm respectively in the azimuth and the range directions.
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1981-01-01
Buffer strips greatly improve the damage tolerance of graphite/epoxy laminates loaded in tension. Graphite/polyimide buffer strip panels were made and tested to determine their residual strength at ambient and elevated (177 C) temperature. Each panel was cut in the center to represent damage. Panels were radiographed and crack-opening displacements were recorded to indicate fracture, fracture arrest, and the extent of damage in the buffer strip after arrest. All panels had the same buffer strip spacing and width. The buffer strip material was 0 deg S-glass/PMR-15. The buffer strips were made by replacing narrow strips of the 0 deg graphite plies with strips of the 0 deg S-glass on either a one-for-one or a two-for-one basis. Half of the panels were heated to 177 + or - 3 C before and during the testing. Elevated temperature did not alter the fracture behavior of the buffer configuration.
Hynes, Michelle E; Sterk, Claire E; Hennink, Monique; Patel, Shilpa; DePadilla, Lara; Yount, Kathryn M
2016-01-01
Women displaced by conflict are often exposed to many factors associated with a risk of intimate partner violence (IPV) such as high levels of community violence and the breakdown of social support systems. Previous research found that Colombian women perceived IPV to increase after displacement. This study explored how the experience of displacement altered gendered roles in ways that influenced the risk of IPV. Thirty-three qualitative interviews were conducted with displaced partnered Colombian women. Women disclosed that couples often held patriarchal gender norms; however, the roles of each partner necessitated by conditions of displacement were often in conflict with these norms. Men's underemployment and women's employment outside the home were viewed as gender transgressive within some partnerships and increased relationship conflict. Economic resources intended to empower displaced women, notably women's earnings and home ownership, had unintended negative consequences for women's agency. These consequences included a corresponding decrease in partner financial contributions and reduced mobility. Women's ability to obtain support or leave violent relationships was hindered by interpersonal, social and structural barriers. For women to have agency to leave violent relationships, power relationships at all levels from the interpersonal to societal must be recognised and addressed.
Hotspots, Lifelines, and the Safrr Haywired Earthquake Sequence
NASA Astrophysics Data System (ADS)
Ratliff, J. L.; Porter, K.
2014-12-01
Though California has experienced many large earthquakes (San Francisco, 1906; Loma Prieta, 1989; Northridge, 1994), the San Francisco Bay Area has not had a damaging earthquake for 25 years. Earthquake risk and surging reliance on smartphones and the Internet to handle everyday tasks raise the question: is an increasingly technology-reliant Bay Area prepared for potential infrastructure impacts caused by a major earthquake? How will a major earthquake on the Hayward Fault affect lifelines (roads, power, water, communication, etc.)? The U.S. Geological Survey Science Application for Risk Reduction (SAFRR) program's Haywired disaster scenario, a hypothetical two-year earthquake sequence triggered by a M7.05 mainshock on the Hayward Fault, addresses these and other questions. We explore four geographic aspects of lifeline damage from earthquakes: (1) geographic lifeline concentrations, (2) areas where lifelines pass through high shaking or potential ground-failure zones, (3) areas with diminished lifeline service demand due to severe building damage, and (4) areas with increased lifeline service demand due to displaced residents and businesses. Potential mainshock lifeline vulnerability and spatial demand changes will be discerned by superimposing earthquake shaking, liquefaction probability, and landslide probability damage thresholds with lifeline concentrations and with large-capacity shelters. Intersecting high hazard levels and lifeline clusters represent potential lifeline susceptibility hotspots. We will also analyze possible temporal vulnerability and demand changes using an aftershock shaking threshold. The results of this analysis will inform regional lifeline resilience initiatives and response and recovery planning, as well as reveal potential redundancies and weaknesses for Bay Area lifelines. Identified spatial and temporal hotspots can provide stakeholders with a reference for possible systemic vulnerability resulting from an earthquake sequence.
Experiment on the concrete slab for floor vibration evaluation of deteriorated building
NASA Astrophysics Data System (ADS)
Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.
2014-08-01
Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).
Lee, Christopher; Doocy, Shannon; Deli, Anwar; Kirsch, Thomas; Weiss, William; Robinson, Courtland
2014-11-17
There exists little agreement on the choice of indicators to be used to assess the impact of humanitarian assistance. The 2004 Indian Ocean tsunami led to significant mortality and displacement in Aceh Province, Indonesia, as well as a nearly unprecedented humanitarian response. Six years after the disaster we conducted an impact assessment of humanitarian services rendered in Aceh using a comprehensive set of rights-based indicators and sought to determine modifiable predictors of improved outcomes in disaster-affected households. A sample of 597 returned and non-returned households in Banda Aceh and Meulaboh was selected using a multistage stratified cluster survey design. We employed principle components analysis and the Framework on Durable Solutions for Internally Displaced Persons to develop a comprehensive and rights-based approach to humanitarian impact measurement using multivariate regression models. The attainment of durable solutions was equivalent in both returned households 100.1 [CI] 97.63-102.5) and households that integrated elsewhere (99.37 [CI] 95.43-103.3, P = 0.781). Standard of living as well as education and health facility satisfaction increased significantly whereas monthly income decreased after the tsunami, from 2585241 IDR ([CI] 2357202-2813279 IDR) to 2038963 ([CI] 1786627-2291298 IDR, P < 0.001). Shelter (P = 0.007) and legal assistance (P < 0.001) were both significantly associated with positive durable solutions outcomes, whereas prolonged displacement duration was significantly associated with poorer outcomes (P < 0.001). Livelihood assistance received after one year was associated with higher odds of increasing or maintaining pre-tsunami income levels (OR = 3.02, P = 0.008), whereas livelihood assistance received within one year was associated with lower odds of attaining pre-tsunami income (OR = 0.52, P = 0.010). We find that after adjusting for pre-tsunami conditions and tsunami-related damages, the impact of sectoral responses can be assessed. The duration of displacement was the strongest negative predictive factor for the attainment of durable solutions, suggesting that measures to reduce displacement time may be effective in mitigating the long-term effects of disaster on households. The durable solutions framework is a novel and effective impact measurement tool and can be used to identify factors amenable to intervention and inform future disaster recovery efforts.
Instantaneous Wavenumber Estimation for Damage Quantification in Layered Plate Structures
NASA Technical Reports Server (NTRS)
Mesnil, Olivier; Leckey, Cara A. C.; Ruzzene, Massimo
2014-01-01
This paper illustrates the application of instantaneous and local wavenumber damage quantification techniques for high frequency guided wave interrogation. The proposed methodologies can be considered as first steps towards a hybrid structural health monitoring/ nondestructive evaluation (SHM/NDE) approach for damage assessment in composites. The challenges and opportunities related to the considered type of interrogation and signal processing are explored through the analysis of numerical data obtained via EFIT simulations of damage in CRFP plates. Realistic damage configurations are modeled from x-ray CT scan data of plates subjected to actual impacts, in order to accurately predict wave-damage interactions in terms of scattering and mode conversions. Simulation data is utilized to enhance the information provided by instantaneous and local wavenumbers and mitigate the complexity related to the multi-modal content of the plate response. Signal processing strategies considered for this purpose include modal decoupling through filtering in the frequency/wavenumber domain, the combination of displacement components, and the exploitation of polarization information for the various modes as evaluated through the dispersion analysis of the considered laminate lay-up sequence. The results presented assess the effectiveness of the proposed wavefield processing techniques as a hybrid SHM/NDE technique for damage detection and quantification in composite, plate-like structures.
NASA Astrophysics Data System (ADS)
Hamrick, Joseph L., II
Thin rectangular samples of Ti-6Al-4V were damaged by four methods to represent foreign object damage found in turbine engine blades: (1) impact with 2 mm. and 5 mm diameter glass spheres at 305 m/s, (2) impact with 2 mm and 4 mm diameter steel spheres at 305 m/s, (3) quasi-static displacement controlled indentation using steel chisels with 1 mm, 2 nun and 5 mm diameter tips and (4) shearing notches with a 2 mm. diameter chisel point under a quasi-static loading condition. Finite element analysis was used to study the relationship between the stress state created by the plastic damage and the fatigue strength. A new method of quantifying the amount of plastic damage from multiple methods was developed. The fatigue strength required for crack initiation at 10E7 cycles was found to be a function of the total depth from the edge of the undeformed specimen up to the end of the plastically deformed zone. For damage depths less than 1750 mum, the reduction in fatigue strength is proportional to the depth of total damage. For depths > 1750 mum, there appears to be a threshold value of fatigue strength.
NASA Astrophysics Data System (ADS)
Riva, Federico; Agliardi, Federico; Amitrano, David; Crosta, Giovanni B.
2017-04-01
Large mountain slopes in alpine environments undergo a complex long-term evolution from glacial to postglacial environments, through a transient period of paraglacial readjustment. During and after this transition, the interplay among rock strength, topographic relief, and morpho-climatic drivers varying in space and time can lead to the development of different types of slope instability, from sudden catastrophic failures to large, slow, long-lasting yet potentially catastrophic rockslides. Understanding the long-term evolution of large rock slopes requires accounting for the time-dependence of deglaciation unloading, permeability and fluid pressure distribution, displacements and failure mechanisms. In turn, this is related to a convincing description of rock mass damage processes and to their transition from a sub-critical (progressive failure) to a critical (catastrophic failure) character. Although mechanisms of damage occurrence in rocks have been extensively studied in the laboratory, the description of time-dependent damage under gravitational load and variable external actions remains difficult. In this perspective, starting from a time-dependent model conceived for laboratory rock deformation, we developed Dadyn-RS, a tool to simulate the long-term evolution of real, large rock slopes. Dadyn-RS is a 2D, FEM model programmed in Matlab, which combines damage and time-to-failure laws to reproduce both diffused damage and strain localization meanwhile tracking long-term slope displacements from primary to tertiary creep stages. We implemented in the model the ability to account for rock mass heterogeneity and property upscaling, time-dependent deglaciation, as well as damage-dependent fluid pressure occurrence and stress corrosion. We first tested DaDyn-RS performance on synthetic case studies, to investigate the effect of the different model parameters on the mechanisms and timing of long-term slope behavior. The model reproduces complex interactions between topography, deglaciation rate, mechanical properties and fluid pressure occurrence, resulting in different kinematics, damage patterns and timing of slope instabilities. We assessed the role of groundwater on slope damage and deformation mechanisms by introducing time-dependent pressure cycling within simulations. Then, we applied DaDyn-RS to real slopes located in the Italian Central Alps, affected by an active rockslide and a Deep Seated Gravitational Slope Deformation, respectively. From Last Glacial Maximum to present conditions, our model allows reproducing in an explicitly time-dependent framework the progressive development of damage-induced permeability, strain localization and shear band differentiation at different times between the Lateglacial period and the Mid-Holocene climatic transition. Different mechanisms and timings characterize different styles of slope deformations, consistently with available dating constraints. DaDyn-RS is able to account for different long-term slope dynamics, from slow creep to the delayed transition to fast-moving rockslides.
Experimental and Analytical Seismic Studies of a Four-Span Bridge System with Innovative Materials
NASA Astrophysics Data System (ADS)
Cruz Noguez, Carlos Alonso
As part of a multi-university project utilizing the NSF Network for Earthquake Engineering Simulation (NEES), a quarter-scale model of a four-span bridge incorporating plastic hinges with different advanced materials was tested to failure on the three shake table system at the University of Nevada, Reno (UNR). The bridge was the second test model in a series of three 4-span bridges, with the first model being a conventional reinforced-concrete (RC) structure. The purpose of incorporating advanced materials was to improve the seismic performance of the bridge with respect to two damage indicators: (1) column damage and (2) permanent deformations. The goals of the study presented in this document were to (1) evaluate the seismic performance of a 4-span bridge system incorporating SMA/ECC and built-in rubber pad plastic hinges as well as post-tensioned piers, (2) quantify the relative merit of these advanced materials and details compared to each other and to conventional reinforced concrete plastic hinges, (3) determine the influence of abutment-superstructure interaction on the response, (4) examine the ability of available elaborate analytical modeling techniques to model the performance of advanced materials and details, and (5) conduct an extensive parametric study of different variations of the bridge model to study several important issues in bridge earthquake engineering. The bridge model included six columns, each pair of which utilized a different advanced detail at bottom plastic hinges: shape memory alloys (SMA), special engineered cementitious composites (ECC), elastomeric pads embedded into columns, and post-tensioning tendons. The design of the columns, location of the bents, and selection of the loading protocol were based on pre-test analyses conducted using computer program OpenSees. The bridge model was subjected to two-horizontal components of simulated earthquake records of the 1994 Northridge earthquake. Over 340 channels of data were collected. The test results showed the effectiveness of the advanced materials in reducing damage and permanent displacements. The damage was minimal in plastic hinges with SMA/ECC and those with built-in elastomeric pads. Conventional RC plastic hinges were severely damaged due to spalling of concrete and rupture of the longitudinal and transverse reinforcement. Extensive post-test analytical studies were conducted and it was determined that a computational model of the bridge that included bridge-abutment interaction using OpenSees was able to provide satisfactory estimations of key structural parameters such as superstructure displacements and base shears. The analytical model was also used to conduct parametric studies on single-column and bridge-system response under near-fault ground motions. The effects of vertical excitations and transverse shear-keys at the bridge abutments on the superstructure displacement and column drifts were also explored.
Considerable knock-on displacement of metal atoms under a low energy electron beam.
Gu, Hengfei; Li, Geping; Liu, Chengze; Yuan, Fusen; Han, Fuzhou; Zhang, Lifeng; Wu, Songquan
2017-03-15
Under electron beam irradiation, knock-on atomic displacement is commonly thought to occur only when the incident electron energy is above the incident-energy threshold of the material in question. However, we report that when exposed to intense electrons at room temperature at a low incident energy of 30 keV, which is far below the theoretically predicted incident-energy threshold of zirconium, Zircaloy-4 (Zr-1.50Sn-0.25Fe-0.15Cr (wt.%)) surfaces can undergo considerable displacement damage. We demonstrate that electron beam irradiation of the bulk Zircaloy-4 surface resulted in a striking radiation effect that nanoscale precipitates within the surface layer gradually emerged and became clearly visible with increasing the irradiation time. Our transmission electron microscope (TEM) observations further reveal that electron beam irradiation of the thin-film Zircaly-4 surface caused the sputtering of surface α-Zr atoms, the nanoscale atomic restructuring in the α-Zr matrix, and the amorphization of precipitates. These results are the first direct evidences suggesting that displacement of metal atoms can be induced by a low incident electron energy below threshold. The presented way to irradiate may be extended to other materials aiming at producing appealing properties for applications in fields of nanotechnology, surface technology, and others.
Chao, Shiau-Fang
2016-09-01
This investigation examined whether community cohesion mediates or moderates the relationship between outdoor activities and depressive symptoms in older adults displaced by Typhoon Morakot in Taiwan. This cross-sectional study included 292 adults aged 65 years or older who were relocated to permanent houses after Typhoon Morakot damaged their homes on 8th August 2009. Multiple regression analysis was applied to test the role of community cohesion on the association between outdoor activities and depressive symptoms. The sample of displaced older adults displayed higher prevalence of depressive symptoms than the average for community dwelling older people in Taiwan. Community cohesion fully mediated the relationship between outdoor activities and depressive symptoms. Community cohesion also moderated the relationship between outdoor activities and depressive symptoms. Community cohesion occupies a key role on the link between outdoor activities and depressive symptoms. Participation in outdoor activities was associated positively with community cohesion, while high community cohesion was related negatively to depressive symptoms. Additionally, the benefit of outdoor activities to fewer depressive symptoms only manifested in older adults with high community cohesion. Programs and services should be designed to enhance community cohesion in order to maximize the benefit of outdoor activities to the mental health of displaced older adults after natural disasters.
Data on cost analysis of drilling mud displacement during drilling operation.
Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E
2018-08-01
The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.
Identifying the stored energy of a hyperelastic structure by using an attenuated Landweber method
NASA Astrophysics Data System (ADS)
Seydel, Julia; Schuster, Thomas
2017-12-01
We consider the nonlinear inverse problem of identifying the stored energy function of a hyperelastic material from full knowledge of the displacement field as well as from surface sensor measurements. The displacement field is represented as a solution of Cauchy’s equation of motion, which is a nonlinear elastic wave equation. Hyperelasticity means that the first Piola-Kirchhoff stress tensor is given as the gradient of the stored energy function. We assume that a dictionary of suitable functions is available. The aim is to recover the stored energy with respect to this dictionary. The considered inverse problem is of vital interest for the development of structural health monitoring systems which are constructed to detect defects in elastic materials from boundary measurements of the displacement field, since the stored energy encodes the mechanical properties of the underlying structure. In this article we develop a numerical solver using the attenuated Landweber method. We show that the parameter-to-solution map satisfies the local tangential cone condition. This result can be used to prove local convergence of the attenuated Landweber method in the case that the full displacement field is measured. In our numerical experiments we demonstrate how to construct an appropriate dictionary and show that our method is well suited to localize damages in various situations.
Dailey, Bruno; Jordan, Laurence; Blind, Olivier; Tavernier, Bruno
2009-01-01
The passive fit of a superstructure on implant abutments is essential to success. One source of error when using a tapered cone-screw internal connection may be the difference between the tightening torque level applied to the abutments by the laboratory technician compared to that applied by the treating clinician. The purpose of this study was to measure the axial displacement of tapered cone-screw abutments into implants and their replicas as a function of the tightening torque level. Twenty tapered cone-screw abutments were selected. Two groups were created: 10 abutments were secured into 10 implants, and 10 abutments were secured into 10 corresponding implant replicas. Each abutment was tightened in increasing increments of 5 Ncm, from 0 Ncm to 45 Ncm, with a torque controller. The length of each sample was measured repeatedly with an Electronic Digital Micrometer. The mean axial displacement for the implant group and the replica group was calculated. The data were analyzed by the Mann-Whitney and Spearman tests. For both groups, there was always an axial displacement of the abutment upon each incremental application of torque. The mean axial displacement values varied between 7 and 12 microm for the implant group and between 6 and 21 microm for the replica group at each 5-Ncm increment. From 0 to 45 Ncm, the total mean axial displacement values were 89 microm for the implant group and 122 microm for the replica group. There was a continuous axial displacement of the abutments into implants and implant replicas when the applied torque was raised from 0 to 45 Ncm. Torque applied above the level recommended by the manufacturer increased the difference in displacement between the two groups.
Borcherdt, R.D.; Mark, R.K.
1995-01-01
The Hanshin-Awaji earthquake (also known as the Hyogo-ken Nanbu and the Great Hanshin earthquake) provided an unprecedented set of measurements of strong ground shaking. The measurements constitute the most comprehensive set of strong- motion recordings yet obtained for sites underlain by soft soil deposits of Holocene age within a few kilometers of the crustal rupture zone. The recordings, obtained on or near many important structures, provide an important new empirical data set for evaluating input ground motion levels and site amplification factors for codes and site-specific design procedures world wide. This report describes the data used to prepare a preliminary map summarizing the strong motion data in relation to seismicity and underlying geology (Wentworth, Borcherdt, and Mark., 1995; Figure 1, hereafter referred to as Figure 1/I). The map shows station locations, peak acceleration values, and generalized acceleration contours superimposed on pertinent seismicity and the geologic map of Japan. The map (Figure 1/I) indicates a zone of high acceleration with ground motions throughout the zone greater than 400 gal and locally greater than 800 gal. This zone encompasses the area of most intense damage mapped as JMA intensity level 7, which extends through Kobe City. The zone of most intense damage is parallel, but displaced slightly from the surface projection of the crustal rupture zone implied by aftershock locations. The zone is underlain by soft-soil deposits of Holocene age.
Radiation Effects on the Electrical Properties of Hafnium Oxide Based MOS Capacitors
2011-03-01
Figures Figure Page 1. Conceptual illustration of the creation of electron-hole pairs and displacement damage in a n -type silicon metal-oxide-silicon...Illustration of the effect, in a CV plot, of oxide trapped charge for a hypothetical n -type device...8 5. Illustration of the effect, in a CV plot, of interface trapped charge for a hypothetical n -type device
ERIC Educational Resources Information Center
Roberts, Siân
2017-01-01
During the 1930s and 1940s art increasingly came to be used as a therapeutic tool with children who were perceived as damaged by their experiences of war or displacement. This article explores two related exhibitions--"Children's Art from All Countries" (1941) and "The War as Seen by Children" (1943)--which provided a platform…
Current Status and Future Challenges in Risk-Based Radiation Engineering
NASA Technical Reports Server (NTRS)
Pellish, Jonathan A.
2017-01-01
This presentation covers the basis and challenges for radiation effects in electronic systems. The three main types of radiation effects in electronics are: 1) total ionizing dose (TID), 2) total non-ionizing dose (TNID) / displacement damage dose (DDD), and 3) single-event effect (SEE). Some content on relevant examples of effects, current concerns, and possible environmental model-driven solutions are also included.
Framework for non-coherent interface models at finite displacement jumps and finite strains
NASA Astrophysics Data System (ADS)
Ottosen, Niels Saabye; Ristinmaa, Matti; Mosler, Jörn
2016-05-01
This paper deals with a novel constitutive framework suitable for non-coherent interfaces, such as cracks, undergoing large deformations in a geometrically exact setting. For this type of interface, the displacement field shows a jump across the interface. Within the engineering community, so-called cohesive zone models are frequently applied in order to describe non-coherent interfaces. However, for existing models to comply with the restrictions imposed by (a) thermodynamical consistency (e.g., the second law of thermodynamics), (b) balance equations (in particular, balance of angular momentum) and (c) material frame indifference, these models are essentially fiber models, i.e. models where the traction vector is collinear with the displacement jump. This constraints the ability to model shear and, in addition, anisotropic effects are excluded. A novel, extended constitutive framework which is consistent with the above mentioned fundamental physical principles is elaborated in this paper. In addition to the classical tractions associated with a cohesive zone model, the main idea is to consider additional tractions related to membrane-like forces and out-of-plane shear forces acting within the interface. For zero displacement jump, i.e. coherent interfaces, this framework degenerates to existing formulations presented in the literature. For hyperelasticity, the Helmholtz energy of the proposed novel framework depends on the displacement jump as well as on the tangent vectors of the interface with respect to the current configuration - or equivalently - the Helmholtz energy depends on the displacement jump and the surface deformation gradient. It turns out that by defining the Helmholtz energy in terms of the invariants of these variables, all above-mentioned fundamental physical principles are automatically fulfilled. Extensions of the novel framework necessary for material degradation (damage) and plasticity are also covered.
Chen, Hong; Hou, Gary Y; Han, Yang; Payen, Thomas; Palermo, Carmine F; Olive, Kenneth P; Konofagou, Elisa E
2015-09-01
Harmonic motion imaging (HMI) is a radiationforce- based elasticity imaging technique that tracks oscillatory tissue displacements induced by sinusoidal ultrasonic radiation force to assess the resulting oscillatory displacement denoting the underlying tissue stiffness. The objective of this study was to evaluate the feasibility of HMI in pancreatic tumor detection and high-intensity focused ultrasound (HIFU) treatment monitoring. The HMI system consisted of a focused ultrasound transducer, which generated sinusoidal radiation force to induce oscillatory tissue motion at 50 Hz, and a diagnostic ultrasound transducer, which detected the axial tissue displacements based on acquired radio-frequency signals using a 1-D cross-correlation algorithm. For pancreatic tumor detection, HMI images were generated for pancreatic tumors in transgenic mice and normal pancreases in wild-type mice. The obtained HMI images showed a high contrast between normal and malignant pancreases with an average peak-to-peak HMI displacement ratio of 3.2. Histological analysis showed that no tissue damage was associated with HMI when it was used for the sole purpose of elasticity imaging. For pancreatic tumor ablation monitoring, the focused ultrasound transducer was operated at a higher acoustic power and longer pulse length than that used in tumor detection to simultaneously induce HIFU thermal ablation and oscillatory tissue displacements, allowing HMI monitoring without interrupting tumor ablation. HMI monitoring of HIFU ablation found significant decreases in the peak-to-peak HMI displacements before and after HIFU ablation with a reduction rate ranging from 15.8% to 57.0%. The formation of thermal lesions after HIFU exposure was confirmed by histological analysis. This study demonstrated the feasibility of HMI in abdominal tumor detection and HIFU ablation monitoring.
A microdynamic version of the tensile test machine
NASA Technical Reports Server (NTRS)
Glaser, R. J.
1991-01-01
Very large space structures require structural reactions to control forces associated with nanometer-level displacements; JPL has accordingly built a tensile test machine capable of mN-level force measurements and nm-level displacement measurements, with a view to the study of structural linear joining technology at the lower limit of its resolution. The tester is composed of a moving table that is supported by six flexured legs and a test specimen cantilevered off the table to ground. Three vertical legs contain piezoactuators allowing changes in length up to 200 microns while generating axial load and bending moments. Displacements between ground and table are measured by means of three laser-interferometric channels.
Andrés, R R; Acosta, V M; Lucas, M; Riera, E
2018-01-01
Some industrial processes like particle agglomeration or food dehydration among others can be enhanced by the use of power ultrasonic technologies. These technologies are based on an airborne power ultrasonic transducer (APUT) constituted by a pre-stressed Langevin-type transducer, a mechanical amplifier and an extensive plate radiator. In order to produce the desired effects in industrial processing, the transducer has to vibrate in an extensional mode driving an extensive radiator in the desired flexural mode with high amplitude displacements. Due to the generation of these high amplitude displacements in the radiator surfaces, non-linear effects like frequency shifts, hysteresis or modal interactions, among others, may be produced in the transducer behavior. When any nonlinear effect appears, when applying power, the stability and efficiency of this ultrasonic technology decreases, and the transducer may be damaged depending on the excitation power level and the nature of the nonlinearity. In this paper, an APUT with flat rectangular radiator is presented, as the active part of an innovative system with stepped reflectors. The nonlinear behavior of the APUT has been characterized numerically and experimentally in case of the modal analysis and experimentally in the case of dynamic analysis. According to the results obtained after the experiments, no modal interactions are expected, nor do other nonlinear effects. Copyright © 2017 Elsevier B.V. All rights reserved.
Massonnet, D.; Holzer, T.; Vadon, H.
1997-01-01
Interferometric combination of pairs of synthetic aperture radar (SAR) images acquired by the ERS-1 satellite maps the deformation field associated with the activity of the East Mesa geothermal plant, located in southern California. SAR interferometry is applied to this flat area without the need of a digital terrain model. Several combinations are used to ascertain the nature of the phenomenon. Short term interferograms reveal surface phase changes on agricultural fields similar to what had been observed previously with SEASAT radar data. Long term (2 years) interferograms allow the study of land subsidence and improve prior knowledge of the displacement field, and agree with existing, sparse levelling data. This example illustrates the power of the interferometric technique for deriving accurate industrial intelligence as well as its potential for legal action, in cases involving environmental damages. Copyright 1997 by the American Geophysical Union.
Designing Radiation Resistance in Materials for Fusion Energy
NASA Astrophysics Data System (ADS)
Zinkle, S. J.; Snead, L. L.
2014-07-01
Proposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion-strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
FreeDam - A webtool for free-electron laser-induced damage in femtosecond X-ray crystallography
NASA Astrophysics Data System (ADS)
Jönsson, H. Olof; Östlin, Christofer; Scott, Howard A.; Chapman, Henry N.; Aplin, Steve J.; Tîmneanu, Nicuşor; Caleman, Carl
2018-03-01
Over the last decade X-ray free-electron laser (XFEL) sources have been made available to the scientific community. One of the most successful uses of these new machines has been protein crystallography. When samples are exposed to the intense short X-ray pulses provided by the XFELs, the sample quickly becomes highly ionized and the atomic structure is affected. Here we present a webtool dubbed FreeDam based on non-thermal plasma simulations, for estimation of radiation damage in free-electron laser experiments in terms of ionization, temperatures and atomic displacements. The aim is to make this tool easily accessible to scientists who are planning and performing experiments at XFELs.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model-generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
NASA Technical Reports Server (NTRS)
Decker, A. J.; Fite, E. B.; Thorp, S. A.; Mehmed, O.
1998-01-01
The responses of artificial neural networks to experimental and model-generated inputs are compared for detection of damage in twisted fan blades using electronic holography. The training-set inputs, for this work, are experimentally generated characteristic patterns of the vibrating blades. The outputs are damage-flag indicators or second derivatives of the sensitivity-vector-projected displacement vectors from a finite element model. Artificial neural networks have been trained in the past with computational-model- generated training sets. This approach avoids the difficult inverse calculations traditionally used to compare interference fringes with the models. But the high modeling standards are hard to achieve, even with fan-blade finite-element models.
The Earthquake Early Warning System In Southern Italy: Performance Tests And Next Developments
NASA Astrophysics Data System (ADS)
Zollo, A.; Elia, L.; Martino, C.; Colombelli, S.; Emolo, A.; Festa, G.; Iannaccone, G.
2011-12-01
PRESTo (PRobabilistic and Evolutionary early warning SysTem) is the software platform for Earthquake Early Warning (EEW) in Southern Italy, that integrates recent algorithms for real-time earthquake location, magnitude estimation and damage assessment, into a highly configurable and easily portable package. The system is under active experimentation based on the Irpinia Seismic Network (ISNet). PRESTo processes the live streams of 3C acceleration data for P-wave arrival detection and, while an event is occurring, promptly performs event detection and provides location, magnitude estimations and peak ground shaking predictions at target sites. The earthquake location is obtained by an evolutionary, real-time probabilistic approach based on an equal differential time formulation. At each time step, it uses information from both triggered and not-yet-triggered stations. Magnitude estimation exploits an empirical relationship that correlates it to the filtered Peak Displacement (Pd), measured over the first 2-4 s of P-signal. Peak ground-motion parameters at any distance can be finally estimated by ground motion prediction equations. Alarm messages containing the updated estimates of these parameters can thus reach target sites before the destructive waves, enabling automatic safety procedures. Using the real-time data streaming from the ISNet network, PRESTo has produced a bulletin for about a hundred low-magnitude events occurred during last two years. Meanwhile, the performances of the EEW system were assessed off-line playing-back the records for moderate and large events from Italy, Spain and Japan and synthetic waveforms for large historical events in Italy. These tests have shown that, when a dense seismic network is deployed in the fault area, PRESTo produces reliable estimates of earthquake location and size within 5-6 s from the event origin time (To). Estimates are provided as probability density functions whose uncertainty typically decreases with time, obtaining a stable solution within 10 s from To. The regional approach was recently integrated with a threshold-based early warning method for the definition of alert levels and the estimation of the Potential Damaged Zone (PDZ) in which the highest intensity levels are expected. The dominant period Tau_c and the peak displacement (Pd) are simultaneously measured in a 3s window after the first P-arrival time. Pd and Tau_c are then compared with threshold values, previously established through an empirical regression analysis, that define a decisional table with four alert levels. According to the real-time measured values of Pd and tau_c, each station provides a local alert level that can be used to warn distant sites and to define the extent of the PDZ. The integrated system was validated off-line for the M6.3, 2009 Central Italy earthquake and ten large Japanese events, due to the low-magnitude events currently occurring in Irpinia. The results confirmed the feasibility and the robustness of such an approach, providing reliable predictions of the earthquake damaging effects, that is a relevant information for the efficient planning of the rescue operations in the immediate post-event emergency phase.
Use of airborne and terrestrial lidar to detect ground displacement hazards to water systems
Stewart, J.P.; Hu, Jiawen; Kayen, R.E.; Lembo, A.J.; Collins, B.D.; Davis, C.A.; O'Rourke, T. D.
2009-01-01
We investigate the use of multiepoch airborne and terrestrial lidar to detect and measure ground displacements of sufficient magnitude to damage buried pipelines and other water system facilities that might result, for example, from earthquake or rainfall-induced landslides. Lidar scans are performed at three sites with coincident measurements by total station surveying. Relative horizontal accuracy is evaluated by measurements of lateral dimensions of well defined objects such as buildings and tanks; we find misfits ranging from approximately 5 to 12 cm, which is consistent with previous work. The bias and dispersion of lidar elevation measurements, relative to total station surveying, is assessed at two sites: (1) a power plant site (PP2) with vegetated steeply sloping terrain; and (2) a relatively flat and unvegetated site before and after trenching operations were performed. At PP2, airborne lidar showed minimal elevation bias and a standard deviation of approximately 70 cm, whereas terrestrial lidar did not produce useful results due to beam divergence issues and inadequate sampling of the study region. At the trench site, airborne lidar showed minimal elevation bias and reduced standard deviation relative to PP2 (6-20 cm), whereas terrestrial lidar was nearly unbiased with very low dispersion (4-6 cm). Pre- and posttrench bias-adjusted normalized residuals showed minimal to negligible correlation, but elevation change was affected by relative bias between epochs. The mean of elevation change bias essentially matches the difference in means of pre- and posttrench elevation bias, whereas elevation change standard deviation is sensitive to the dispersion of individual epoch elevations and their correlation coefficient. The observed lidar bias and standard deviations enable reliable detection of damaging ground displacements for some pipelines types (e.g., welded steel) but not all (e.g., concrete with unwelded, mortared joints). ?? ASCE 2009.
NASA Astrophysics Data System (ADS)
Gonzalez Lazo, Eduardo; Cruz Inclán, Carlos M.; Rodríguez Rodríguez, Arturo; Guzmán Martínez, Fernando; Abreu Alfonso, Yamiel; Piñera Hernández, Ibrahin; Leyva Fabelo, Antonio
2017-09-01
A primary approach for evaluating the influence of point defects like vacancies on atom displacement threshold energies values Td in BaTiO3 is attempted. For this purpose Molecular Dynamics Methods, MD, were applied based on previous Td calculations on an ideal tetragonal crystalline structure. It is an important issue in achieving more realistic simulations of radiation damage effects in BaTiO3 ceramic materials. It also involves irradiated samples under severe radiation damage effects due to high fluency expositions. In addition to the above mentioned atom displacement events supported by a single primary knock-on atom, PKA, a new mechanism was introduced. It corresponds to the simultaneous excitation of two close primary knock-on atoms in BaTiO3, which might take place under a high flux irradiation. Therefore, two different BaTiO3 Td MD calculation trials were accomplished. Firstly, single PKA excitations in a defective BaTiO3 tetragonal crystalline structure, consisting in a 2×2×2 BaTiO3 perovskite like super cell, were considered. It contains vacancies on Ba and O atomic positions under the requirements of electrical charge balance. Alternatively, double PKA excitations in a perfect BaTiO3 tetragonal unit cell were also simulated. On this basis, the corresponding primary knock-on atom (PKA) defect formation probability functions were calculated at principal crystal directions, and compared with the previous one we calculated and reported at an ideal BaTiO3 tetrahedral crystal structure. As a general result, a diminution of Td values arises in present calculations in comparison with those calculated for single PKA excitation in an ideal BaTiO3 crystal structure.
NASA Astrophysics Data System (ADS)
Luo, Jun; Cai, Zhenbing; Mo, Jiliang; Peng, Jinfang; Zhu, Minhao
2016-05-01
Rotational fretting which exist in many engineering applications has incurred enormous economic loss. Thus, accessible methods are urgently needed to alleviate or eliminate damage by rotational fretting. Surface engineering is an effective approach that is successfully adopted to enhance the ability of components to resist the fretting damage. In this paper, using a high-velocity oxygen fuel sprayed (HVOF) technique WC-17Co coating is deposited on an LZ50 steel surface to study its properties through Vickers hardness testing, scanning electric microscope (SEM), energy dispersive X-ray spectroscopy (EDX), and X-ray diffractrometry (XRD). Rotational fretting wear tests are conducted under normal load varied from 10 N to 50 N, and angular displacement amplitudes vary from 0.125° to 1°. Wear scars are examined using SEM, EDX, optical microscopy (OM), and surface topography. The experimental results reveal that the WC-17Co coating adjusted the boundary between the partial slip regime (PSR) and the slip regime (SR) to the direction of smaller amplitude displacement. As a result, the coefficients of friction are consistently lower than the substrate's coefficients of friction both in the PSR and SR. The damage to the coating in the PSR is very slight. In the SR, the coating exhibits higher debris removal efficiency and load-carrying capacity. The bulge is not found for the coating due to the coating's higher hardness to restrain plastic flow. This research could provide experimental bases for promoting industrial application of WC-17Co coating in prevention of rotational fretting wear.
Chytas, I D; Antonopoulos, C; Cheva, A; Givissis, P
2018-03-23
We asked whether either open reduction and internal fixation (ORIF) or radial head arthroplasty (RHA), common techniques used for the confrontation of displaced or comminuted radial head fractures, are correlated with cartilage wear of the capitulum. We hypothesized that neither ORIF nor RHA are correlated with capitellar cartilage wear. On 5 cadaveric elbow specimens, osteotomies were employed to simulate radial head comminuted fractures followed with ORIF by Herbert screws. Radial heads were also excised from other 5 cadaveric elbow specimens and were replaced by metallic monopolar implants. Finally 2 elbows were not operated and used as a control group. Custom-made rotary machines, working unstoppably, generated 700.000 pronation and supination forearm movements at an 110° arc of motion. The elbow joints were examined with pre- and postoperative Magnetic Resonance Imaging (MRI) scans and the articular surfaces of the capitula were resected and sent for histopathology study. In the 2 cadaveric elbows of the control group and the 4 elbows treated with ORIF no cartilage damage was found. The fifth one displayed cartilage fissures which were classified according to International Cartilage Repair Society (ICRS) grading system as grade I cartilage damage. On the contrary, all 5 elbows treated with RHA sustained complete cartilage loss, exposure of the subchondral bone and were classified as ICRS grade IV cartilage damage. Our study suggests that metallic monopolar RHA after a displaced or comminuted radial head fracture carries a high risk of rapidly evolving cartilage loss of the capitulum. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Heavy winter precipitation in southwest Arizona
NASA Astrophysics Data System (ADS)
Guttman, Nathaniel B.; Lee, Jung Jin; Wallis, James R.
During December 1992, according to the Weekly Climate Bulletin of the Climate Analysis Center in Washington, D.C., heavy precipitation inundated parts of Arizona causing more than 400% of normal precipitation to fall in the southwestern part of the state. Heavy precipitation continued to fall during the next 2 months, causing extensive flooding along the Gila River.Phoenix Weather Service Forecast Office monthly storm data reports indicated flooding along the Santa Cruz and San Pedro Rivers on December 29. From January 7 to 20, roads, bridges, homes, businesses, and farmland suffered considerable flood damage from Graham County westward to Yuma County as rivers and streams swelled. Several thousand people were isolated in their homes as flood waters cut off roads. The January storm data report shows that the combination of a northward-displaced subtropical jet stream, with its abundant moisture supply and associated low pressure disturbances and a southward-displaced polar jet stream, with its storm track, led to the abnormally wet period from late December to mid-January. In February, severe flooding was reported in several areas as water rose in the Painted Rock Reservoir; water accumulating behind the dam produced the largest lake in the state. After exceeding the 2.5 million acre-feet capacity of the reservoir, water began spilling over the dam and damaging homes, crops, farmland, roads, and bridges. About 3,500 residents were evacuated, and the National Guard responded to the flooding with various relief efforts including helicopter support operations. The U.S. and Arizona Departments of Agriculture reported flood damage in excess of $50 million.
Characterization of human translesion DNA synthesis across a UV-induced DNA lesion
Hedglin, Mark; Pandey, Binod; Benkovic, Stephen J
2016-01-01
Translesion DNA synthesis (TLS) during S-phase uses specialized TLS DNA polymerases to replicate a DNA lesion, allowing stringent DNA synthesis to resume beyond the offending damage. Human TLS involves the conjugation of ubiquitin to PCNA clamps encircling damaged DNA and the role of this post-translational modification is under scrutiny. A widely-accepted model purports that ubiquitinated PCNA recruits TLS polymerases such as pol η to sites of DNA damage where they may also displace a blocked replicative polymerase. We provide extensive quantitative evidence that the binding of pol η to PCNA and the ensuing TLS are both independent of PCNA ubiquitination. Rather, the unique properties of pols η and δ are attuned to promote an efficient and passive exchange of polymerases during TLS on the lagging strand. DOI: http://dx.doi.org/10.7554/eLife.19788.001 PMID:27770570
NASA Technical Reports Server (NTRS)
Pineda, Evan Jorge; Waas, Anthony M.
2013-01-01
A thermodynamically-based work potential theory for modeling progressive damage and failure in fiber-reinforced laminates is presented. The current, multiple-internal state variable (ISV) formulation, referred to as enhanced Schapery theory (EST), utilizes separate ISVs for modeling the effects of damage and failure. Consistent characteristic lengths are introduced into the formulation to govern the evolution of the failure ISVs. Using the stationarity of the total work potential with respect to each ISV, a set of thermodynamically consistent evolution equations for the ISVs are derived. The theory is implemented into a commercial finite element code. The model is verified against experimental results from two laminated, T800/3900-2 panels containing a central notch and different fiber-orientation stacking sequences. Global load versus displacement, global load versus local strain gage data, and macroscopic failure paths obtained from the models are compared against the experimental results.
Observations of a pressurized hydraulic hose under lateral liquid impacts
NASA Astrophysics Data System (ADS)
Stewart, C. D.; Gorman, D. G.
The effects of 'pin-hole' failure of one pressurized hydraulic hose on its neighbour are investigated. A pressurized test hose was inserted into a custom testing apparatus and subjected to a series of ten short duration liquid impacts simulating the pin-hole failure of an initial hose. Subsequent displacements of the hose were filmed and plotted with respect to time. Three distinct pattern groups emerged which were used to explain the resultant damage to the hose. It was observed that the middle pattern, corresponding to impacts 6 and 7, appears to be the point where the very damaging hydraulic penetration mechanism became dominant and the outer layer of the hose failed. On completion of the ten impact series it was observed that a small hole on the outer surface of the hose gave way to a relatively large damaged area in the strength bearing inner braid material.