Phage display-derived human antibodies in clinical development and therapy
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-01-01
ABSTRACT Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of “fully” human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years. PMID:27416017
Phage display-derived human antibodies in clinical development and therapy.
Frenzel, André; Schirrmann, Thomas; Hust, Michael
2016-10-01
Over the last 3 decades, monoclonal antibodies have become the most important class of therapeutic biologicals on the market. Development of therapeutic antibodies was accelerated by recombinant DNA technologies, which allowed the humanization of murine monoclonal antibodies to make them more similar to those of the human body and suitable for a broad range of chronic diseases like cancer and autoimmune diseases. In the early 1990s in vitro antibody selection technologies were developed that enabled the discovery of "fully" human antibodies with potentially superior clinical efficacy and lowest immunogenicity. Antibody phage display is the first and most widely used of the in vitro selection technologies. It has proven to be a robust, versatile platform technology for the discovery of human antibodies and a powerful engineering tool to improve antibody properties. As of the beginning of 2016, 6 human antibodies discovered or further developed by phage display were approved for therapy. In 2002, adalimumab (Humira®) became the first phage display-derived antibody granted a marketing approval. Humira® was also the first approved human antibody, and it is currently the best-selling antibody drug on the market. Numerous phage display-derived antibodies are currently under advanced clinical investigation, and, despite the availability of other technologies such as human antibody-producing transgenic mice, phage display has not lost its importance for the discovery and engineering of therapeutic antibodies. Here, we provide a comprehensive overview about phage display-derived antibodies that are approved for therapy or in clinical development. A selection of these antibodies is described in more detail to demonstrate different aspects of the phage display technology and its development over the last 25 years.
NASA Technical Reports Server (NTRS)
Hess, R. A.
1976-01-01
Paramount to proper utilization of electronic displays is a method for determining pilot-centered display requirements. Display design should be viewed fundamentally as a guidance and control problem which has interactions with the designer's knowledge of human psychomotor activity. From this standpoint, reliable analytical models of human pilots as information processors and controllers can provide valuable insight into the display design process. A relatively straightforward, nearly algorithmic procedure for deriving model-based, pilot-centered display requirements was developed and is presented. The optimal or control theoretic pilot model serves as the backbone of the design methodology, which is specifically directed toward the synthesis of head-down, electronic, cockpit display formats. Some novel applications of the optimal pilot model are discussed. An analytical design example is offered which defines a format for the electronic display to be used in a UH-1H helicopter in a landing approach task involving longitudinal and lateral degrees of freedom.
Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián
2015-09-01
Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.
Lallemand, Benjamin; Ouedraogo, Moustapha; Wauthoz, Nathalie; Lamkami, Touria; Mathieu, Veronique; Jabin, Ivan; Amighi, Karim; Kiss, Robert; Dubois, Jacques; Goole, Jonathan
2013-03-01
The plasma pharmacokinetic profile in CD-1 mice of a novel 18β-glycyrrhetinic acid (GA) derivative, which displays in vitro anti-cancer activity, was assessed. This study involved an original one-step synthesis of N-(2-{3-[3,5-bis(trifluoromethyl)phenyl]ureido}ethyl)-glycyrrhetinamide, (2) a compound that displays marked anti-proteasome and anti-kinase activity. The bioselectivity profile of 2 on human normal NHDF fibroblasts vs human U373 glioblastoma cells was assessed. Maximal tolerated dose (MTD) profiling of 2 was carried out in CD1 mice, and its serum pharmacokinetics were profiled using an acute intravenous administration of 40 mg/kg body weight. Compound 2 displayed IC(50) in vitro growth inhibitory concentrations of 29 and 8 μm on NHDF fibroblasts and U373 glioblastoma cells, respectively, thus a bioselectivity index of ∼4. The intravenous pharmacokinetic parameters revealed that 2 was rapidly distributed (t(1/2dist) of ∼3 min) but slowly eliminated (t(1/2elim) = ∼77 min). This study describes an original and reliable nanoemulsion of a GA derivative with both anti-proteasome and anti-kinase properties and that should be further tested in vivo using various human xenograft or murine syngeneic tumour models with both single and chronic intravenous administration. © 2012 The Authors. JPP © 2012. Royal Pharmaceutical Society.
Visualization of multi-INT fusion data using Java Viewer (JVIEW)
NASA Astrophysics Data System (ADS)
Blasch, Erik; Aved, Alex; Nagy, James; Scott, Stephen
2014-05-01
Visualization is important for multi-intelligence fusion and we demonstrate issues for presenting physics-derived (i.e., hard) and human-derived (i.e., soft) fusion results. Physics-derived solutions (e.g., imagery) typically involve sensor measurements that are objective, while human-derived (e.g., text) typically involve language processing. Both results can be geographically displayed for user-machine fusion. Attributes of an effective and efficient display are not well understood, so we demonstrate issues and results for filtering, correlation, and association of data for users - be they operators or analysts. Operators require near-real time solutions while analysts have the opportunities of non-real time solutions for forensic analysis. In a use case, we demonstrate examples using the JVIEW concept that has been applied to piloting, space situation awareness, and cyber analysis. Using the open-source JVIEW software, we showcase a big data solution for multi-intelligence fusion application for context-enhanced information fusion.
Solving the optimal attention allocation problem in manual control
NASA Technical Reports Server (NTRS)
Kleinman, D. L.
1976-01-01
Within the context of the optimal control model of human response, analytic expressions for the gradients of closed-loop performance metrics with respect to human operator attention allocation are derived. These derivatives serve as the basis for a gradient algorithm that determines the optimal attention that a human should allocate among several display indicators in a steady-state manual control task. Application of the human modeling techniques are made to study the hover control task for a CH-46 VTOL flight tested by NASA.
DOT National Transportation Integrated Search
1995-11-01
A study was conducted to test the effect on airport surface situational awareness of GPS derived position information : depicted on a prototypical electronic taxi chart display. The effect of position error and position uncertainty : symbology were a...
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
CULTURAL DISPLAY RULES DRIVE EYE GAZE DURING THINKING.
McCarthy, Anjanie; Lee, Kang; Itakura, Shoji; Muir, Darwin W
2006-11-01
The authors measured the eye gaze displays of Canadian, Trinidadian, and Japanese participants as they answered questions for which they either knew, or had to derive, the answers. When they knew the answers, Trinidadians maintained the most eye contact, whereas Japanese maintained the least. When thinking about the answers to questions, Canadians and Trinidadians looked up, whereas Japanese looked down. Thus, for humans, gaze displays while thinking are at least in part culturally determined.
NASA Technical Reports Server (NTRS)
Wilber, George F.
2017-01-01
This Software Description Document (SDD) captures the design for developing the Flight Interval Management (FIM) system Configurable Graphics Display (CGD) software. Specifically this SDD describes aspects of the Boeing CGD software and the surrounding context and interfaces. It does not describe the Honeywell components of the CGD system. The SDD provides the system overview, architectural design, and detailed design with all the necessary information to implement the Boeing components of the CGD software and integrate them into the CGD subsystem within the larger FIM system. Overall system and CGD system-level requirements are derived from the CGD SRS (in turn derived from the Boeing System Requirements Design Document (SRDD)). Display and look-and-feel requirements are derived from Human Machine Interface (HMI) design documents and working group recommendations. This Boeing CGD SDD is required to support the upcoming Critical Design Review (CDR).
Ramasubba Rao, Vidadala; Muthenna, Puppala; Shankaraiah, Gundeti; Akileshwari, Chandrasekhar; Hari Babu, Kothapalli; Suresh, Ganji; Suresh Babu, Katragadda; Chandra Kumar, Rotte Sateesh; Rajendra Prasad, Kothakonda; Ashok Yadav, Potharaju; Petrash, J. Mark; Bhanuprakash Reddy, Geereddy; Madhusudana Rao, Janaswamy
2013-01-01
As a continuation of our efforts directed towards the development of anti-diabetic agents from natural sources, piplartine was isolated from Piper chaba, and was found to inhibit recombinant human ALR2 with an IC50 of 160 µM. To improve the efficacy, a series of analogues have been synthesized by modification of the styryl/aromatic and heterocyclic ring functionalities of this natural product lead. All the derivatives were tested for their ALR2 inhibitory activity, and results indicated that adducts 3c, 3e and 2j prepared by the Michael addition of piplartine with indole derivatives displayed potent ARI activity, while the other compounds displayed varying degrees of inhibition. The active compounds were also capable of preventing sorbitol accumulation in human red blood cells. PMID:23124161
The endocranial anatomy of maba 1.
Wu, Xiu-Jie; Bruner, Emiliano
2016-08-01
Maba 1, a partial cranium from Guandong Province (China) tentatively dated between 300 and 130 ka, has been suggested to display a mosaic of archaic and derived features, including facial affinities with Neandertals. This study aims to evaluate whether Maba 1 shows a derived endocranial phenotype, or if it displays a plesiomorphic braincase morphology. We analyzed a set of metric variables on fossil and modern human endocasts using bivariate correlation, principal component analysis, and cluster analyses, to evaluate the morphological affinities of the Maba 1 endocast. The cranial capacity, estimated at around 1300 cc, and the endocranial proportions of Maba 1 are within the ranges of modern humans, Neandertals and Homo heidelbergensis. However, the frontal lobes are narrow and the parietal areas are short and flattened, as in H. heidelbergensis and H. erectus. Nonetheless, the position of the frontal lobes relative to the orbits, the morphology of the frontal sinus and the curve of the frontal squama are more derived, being similar to Neandertals and modern humans. The endocast displays a general archaic morphology, although with some derived features associated with the spatial relationships with the face. A similar admixture was described for other Middle Pleistocene samples, like Sima de los Huesos. Future phylogenetic studies must re-evaluate the facial skeleton to consider whether its features can be considered as related to the Neandertal lineage. Alternatively, they should be interpreted as the result of homoplasy and parallelism within the genus Homo, and may reflect a predominantly Asian variation. Am J Phys Anthropol 160:633-643, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David
2016-01-01
The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.
Stabilization of the T-state of human hemoglobin by proflavine, an antiseptic drug.
Ascenzi, P; Colasanti, M; Fasano, M; Bertollini, A
1999-06-01
The effect of proflavine (3,6-diaminoacridine), an antiseptic drug, on the spectroscopic and oxygen binding properties of ferrous human adult hemoglobin (Hb) has been investigated. Upon binding of proflavine to the nitric oxide derivative of ferrous human adult hemoglobin (HbNO), the X-band EPR spectrum displays the characteristics which have been attributed to the T-state of the ligated tetramer. In parallel, oxygen affinity for the deoxygenated derivative of ferrous human adult Hb decreases in the presence of proflavine. The effect of proflavine on the spectroscopic and ligand binding properties of ferrous human adult Hb is reminiscent that of 2,3-D-glycerate bisphosphate, the physiological modulator of Hb action.
NASA Technical Reports Server (NTRS)
Boton, Matthew L.; Bass, Ellen J.; Comstock, James R., Jr.
2006-01-01
The evaluation of human-centered systems can be performed using a variety of different methodologies. This paper describes a human-centered systems evaluation methodology where participants watch 5-second non-interactive videos of a system in operation before supplying judgments and subjective measures based on the information conveyed in the videos. This methodology was used to evaluate the ability of different textures and fields of view to convey spatial awareness in synthetic vision systems (SVS) displays. It produced significant results for both judgment based and subjective measures. This method is compared to other methods commonly used to evaluate SVS displays based on cost, the amount of experimental time required, experimental flexibility, and the type of data provided.
Gender Recognition from Point-Light Walkers
ERIC Educational Resources Information Center
Pollick, Frank E.; Kay, Jim W.; Heim, Katrin; Stringer, Rebecca
2005-01-01
Point-light displays of human gait provide information sufficient to recognize the gender of a walker and are taken as evidence of the exquisite tuning of the visual system to biological motion. The authors revisit this topic with the goals of quantifying human efficiency at gender recognition. To achieve this, the authors first derive an ideal…
The many mysteries of Homo naledi.
Stringer, Chris
2015-09-10
More than 1500 fossils from the Rising Star cave system in South Africa have been assigned to a new human species, Homo naledi, which displays a unique combination of primitive and derived traits throughout the skeleton.
Therapeutic Antibodies by Phage Display.
Shim, Hyunbo
2016-01-01
Antibody phage display is a major technological platform for the generation of fully human antibodies for therapeutic purposes. The in vitro binder selection by phage display allows researchers to have more extensive control over binding parameters and facilitates the isolation of clinical candidate antibodies with desired binding and/or functional profiles. Since the invention of antibody phage display in late 1980s, significant technological advancements in the design, construction, and selection of the antibody libraries have been made, and several fully human antibodies generated by phage display are currently approved or in various clinical development stages. In this review, the background and details of antibody phage display technology, and representative antibody libraries with natural or synthetic sequence diversity and different construction strategies are described. The generation, optimization, functional and biophysical properties, and preclinical and clinical developments of some of the phage display-derived therapeutic antibodies approved for use in patients or in late-stage clinical trials are also discussed. With evolving novel disease targets and therapeutic strategies, antibody phage display is expected to continue to play a central role in the development of the next generation of therapeutic antibodies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita
2018-04-16
A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.
The many mysteries of Homo naledi
2015-01-01
More than 1500 fossils from the Rising Star cave system in South Africa have been assigned to a new human species, Homo naledi, which displays a unique combination of primitive and derived traits throughout the skeleton. PMID:26354290
Conceptual Design Standards for eXternal Visibility System (XVS) Sensor and Display Resolution
NASA Technical Reports Server (NTRS)
Bailey, Randall E.; Wilz, Susan J.; Arthur, Jarvis J, III
2012-01-01
NASA is investigating eXternal Visibility Systems (XVS) concepts which are a combination of sensor and display technologies designed to achieve an equivalent level of safety and performance to that provided by forward-facing windows in today s subsonic aircraft. This report provides the background for conceptual XVS design standards for display and sensor resolution. XVS resolution requirements were derived from the basis of equivalent performance. Three measures were investigated: a) human vision performance; b) see-and-avoid performance and safety; and c) see-to-follow performance. From these three factors, a minimum but perhaps not sufficient resolution requirement of 60 pixels per degree was shown for human vision equivalence. However, see-and-avoid and see-to-follow performance requirements are nearly double. This report also reviewed historical XVS testing.
Bae, Yoonhee; Lee, Sunray; Green, Eric S; Park, Jung Hyun; Ko, Kyung Soo; Han, Jin; Choi, Joon Sig
2016-03-30
Since mesenchymal stem cells (MSCs) can self-renew and differentiate into multiple cell types, the delivery of genes to this type of cell can be an important tool in the emerging field of tissue regeneration and engineering. However, development of more efficient and safe nonviral vectors for gene delivery to stem cells in particular still remains a great challenge. In this study, we describe a group of nonviral gene delivery vectors, conjugated PAMAM derivatives (PAMAM-H-R, PAMAM-H-K, and PAMAM-H-O), displaying affinity toward human adipose-derived mesenchymal stem cells (AD-MSCs). Transfection efficiency using pDNA encoding for luciferase (Luc) and enhanced green fluorescent protein (EGFP), and cytotoxicity assays were performed in human AD-MSCs. The results show that transfection efficiencies of conjugated PAMAM derivatives are improved significantly compared to native PAMAM dendrimer, and that among PAMAM derivatives, cytotoxicity of PAMAM-H-K and PAMAM-H-O were very low. Also, treatment of human AD-MSCs to polyplex formation in conjugated PAMAM derivatives, their cellular uptake and localization were analyzed by flow cytometry and confocal microscopy. Copyright © 2016 Elsevier B.V. All rights reserved.
Rojas, Gertrudis; Carmenate, Tania; Leon, Kalet
2015-04-01
A mutein with stronger antitumor activity and lower toxicity than wild-type human interleukin-2 (IL-2) has been recently described. The rationale behind its design was to reinforce the immunostimulatory potential through the introduction of four mutations that would selectively disrupt the interaction with the IL-2 receptor alpha chain (thought to be critical for both IL-2-driven expansion of T regulatory cells and IL-2-mediated toxic effects). Despite the successful results of the mutein in several tumor models, characterization of its interactions was still to be performed. The current work, based on phage display of IL-2-derived variants, showed the individual contribution of each mutation to the impairment of alpha chain binding. A more sensitive assay, based on the ability of phage-displayed IL-2 variants to induce proliferation of the IL-2-dependent CTLL-2 cell line, revealed differences between the mutated variants. The results validated the mutein design, highlighting the importance of the combined effects of the four mutations. The developed phage display-based platform is robust and sensitive, allows a fast comparative evaluation of multiple variants, and could be broadly used to engineer IL-2 and related cytokines, accelerating the development of cytokine-derived therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.
Secondary metabolites from a marine-derived endophytic fungus Penicillium chrysogenum QEN-24S.
Gao, Shu-Shan; Li, Xiao-Ming; Du, Feng-Yu; Li, Chun-Shun; Proksch, Peter; Wang, Bin-Gui
2010-12-27
Penicillium chrysogenum QEN-24S, an endophytic fungus isolated from an unidentified marine red algal species of the genus Laurencia, displayed inhibitory activity against the growth of pathogen Alternaria brassicae in dual culture test. Chemical investigation of this fungal strain resulted in the isolation of four new (1-3 and 5) and one known (4) secondary metabolites. Their structures were identified as two polyketide derivatives penicitides A and B (1 and 2), two glycerol derivatives 2-(2,4-dihydroxy-6-methylbenzoyl)-glycerol (3) and 1-(2,4-dihydroxy-6-methylbenzoyl)- glycerol (4), and one monoterpene derivative penicimonoterpene (5). Penicitides A and B (1 and 2) feature a unique 10-hydroxy- or 7,10-dihydroxy-5,7-dimethylundecyl moiety substituting at C-5 of the α-tetrahydropyrone ring, which is not reported previously among natural products. Compound 5 displayed potent activity against the pathogen A. brassicae, while compound 1 exhibited moderate cytotoxic activity against the human hepatocellular liver carcinoma cell line.
Modulation of 3,4-methylenedioxymethamphetamine effects by endocannabinoid system.
Valverde, Olga; Rodríguez-Árias, Marta
2013-01-01
The amphetamine derivative 3, 4 Methylenedioxymethanphetamine (MDMA) is a powerful central nervous system stimulant that displays numerous pharmacological effects, including neurotoxicity. MDMA, or ecstasy, acts by inducing the release of different neurotransmitters depending on the animal species and, in particular, it produces the release of serotonin and dopamine. MDMA induces rewarding and reinforcing effects in rodents, primates and humans, and is currently consumed as an illicit psychostimulant among young people. One of the most reported side effects is the hyperthermic effect and the neurotoxicity on central serotonergic and dopaminergic neurons, depending on the species of animal. It seems that MDMA may also produce neurotoxic effects in humans. To date, the most consistent findings associated to MDMA consumption in humans relate to cognitive deficits in heavy users. MDMA when consumed as an illicit psychostimulant is commonly co-used with other abusers, being frequently associated with cannabinoids. The interaction between MDMA and cannabis effects is complex. Cannabis derivatives act on endocannabinoid system. Thus, at cellular levels, cannabinoids acting through CB1 cannabinoid receptors display opposite effects to those induced by MDMA, and they have been reported to develop neuroprotective actions, including the blockage of MDMA induced neurotoxicity, in laboratory animals. However, cannabis use is a recognized risk factor in the presentation and development of neuropsychiatric disorders, and also contributes to the development of psychological problems and cognitive failures observed in MDMA users. This paper represents a brief overview of the pharmacological interaction between MDMA and cannabis derivatives acting in the endocannabinoid system. We have evaluated recent findings in the literature of the most representative pharmacological effects displayed by both types of drugs. We analyze both, the synergic and opposite effects produced by these two compounds and we have found a gap regarding the negative consequences of long-term human consumption of MDMA alone or in combination with cannabis.
Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D
2013-03-01
The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Geetanjali B.; Srivastava, Rupesh K.; Gupta, Navita
2010-03-12
Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation into multiple cell lineages. Presently, bone marrow is considered as a prime source of MSCs; however, there are some drawbacks and limitations in use of these MSCs for cell therapy. In this study, we demonstrate that human gingival tissue-derived MSCs have several advantages over bone marrow-derived MSCs. Gingival MSCs are easy to isolate, homogenous and proliferate faster than bone marrow MSCs without any growth factor. Importantly, gingival MSCs display stable morphology and do not loose MSC characteristic at higher passages. In addition, gingival MSCs maintain normal karyotype and telomerase activitymore » in long-term cultures, and are not tumorigenic. Thus, we reveal that human gingiva is a better source of MSCs than bone marrow, and large number of functionally competent clinical grade MSCs can be generated in short duration for cell therapy in regenerative medicine and tissue engineering.« less
Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn
2016-01-01
Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
A method to measure cellular adhesion utilizing a polymer micro-cantilever
NASA Astrophysics Data System (ADS)
Gaitas, Angelo; Malhotra, Ricky; Pienta, Kenneth
2013-09-01
In the present study we engineered a micro-machined polyimide cantilever with an embedded sensing element to investigate cellular adhesion, in terms of its relative ability to stick to a cross-linker, 3,3'-dithiobis[sulfosuccinimidylpropionate], coated on the cantilever surface. To achieve this objective, we investigated adhesive properties of three human prostate cancer cell lines, namely, a bone metastasis derived human prostate cancer cell line (PC3), a brain metastasis derived human prostate cancer cell line (DU145), and a subclone of PC3 (PC3-EMT14). We found that PC3-EMT14, which displays a mesenchymal phenotype, has the least adhesion compared to PC3 and DU145, which exhibit an epithelial phenotype.
Evaluation of 111In-labeled EPep and FibPep as tracers for fibrin SPECT imaging.
Starmans, Lucas W E; van Duijnhoven, Sander M J; Rossin, Raffaella; Berben, Monique; Aime, Silvio; Daemen, Mat J A P; Nicolay, Klaas; Grüll, Holger
2013-11-04
Fibrin targeting is an attractive strategy for nuclear imaging of thrombosis, atherosclerosis and cancer. Recently, FibPep, an (111)In-labeled fibrin-binding peptide, was established as a tracer for fibrin SPECT imaging and was reported to allow sensitive detection of minute thrombi in mice using SPECT. In this study, we developed EPep, a novel (111)In-labeled fibrin-binding peptide containing the fibrin-binding domain of the clinically verified EP-2104R peptide, and sought to compare the potential of EPep and FibPep as tracers for fibrin SPECT imaging. In vitro, both EPep and FibPep showed high stability in serum, but were less stable in liver and kidney homogenate assays. Both peptide probes displayed comparable affinities toward human and mouse derived fibrin (Kd ≈ 1 μM), and similarly to FibPep, EPep showed fast blood clearance, low nontarget uptake and high thrombus uptake (6.8 ± 1.2% ID g(-1)) in a mouse carotid artery thrombosis model. Furthermore, EPep showed a similar affinity toward rat derived fibrin (Kd ≈ 1 μM), displayed high thrombus uptake in a rat carotid artery thrombosis model (0.74 ± 0.39% ID g(-1)), and allowed sensitive detection of thrombosis in rats using SPECT. In contrast, FibPep displayed a significantly lower affinity toward rat derived fibrin (Kd ≈ 14 μM) and low uptake in rat thrombi (0.06 ± 0.02% ID g(-1)) and did not allow clear visualization of carotid artery thrombosis in rats using SPECT. These results were confirmed ex vivo by autoradiography, which showed a 7-fold higher ratio of activity in the thrombus over the contralateral carotid artery for EPep in comparison to FibPep. These findings suggest that the FibPep binding fibrin epitope is not fully homologous between humans and rats, and that preclinical rat models of disease should not be employed to gauge the clinical potential of FibPep. In conclusion, both peptides showed approximately similar metabolic stability and affinity toward human and mouse derived fibrin, and displayed high thrombus uptake in a mouse carotid artery thrombosis model. Therefore, both EPep and FibPep are promising fibrin targeted tracers for translation into clinical settings to serve as novel tools for molecular imaging of fibrin.
Kachhadia, Virendra; Rajagopal, Sridharan; Ponpandian, Thanasekaran; Vignesh, Radhakrishnan; Anandhan, Karnambaram; Prabhu, Daivasigamani; Rajendran, Praveen; Nidhyanandan, Saranya; Roy, Anshu Mittal; Ahamed, Fakrudeen Ali; Surendran, Narayanan; Rajagopal, Sriram; Narayanan, Shridhar; Gopalan, Balasubramanian
2016-01-27
Herein we report the synthesis and activity of a novel class of HDAC inhibitors based on 2, 3-diphenyl acrylic acid derivatives. The compounds in this series have shown to be potent HDAC inhibitors possessing significant antiproliferative activity. Further compounds in this series were subjected to metabolic stability in human liver microsomes (HLM), mouse liver microsomes (MLM), and exhibits promising stability in both. These efforts culminated with the identification of a developmental candidate (5a), which displayed desirable PK/PD relationships, significant efficacy in the xenograft models and attractive ADME profiles. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Villar, Rosa M; Gil-Longo, José; Daranas, Antonio H; Souto, María L; Fernández, José J; Peixinho, Solange; Barral, Miguel A; Santafé, Gilmar; Rodríguez, Jaime; Jiménez, Carlos
2003-05-15
Ten zoanthamine-type alkaloids from two marine zoanthids belonging to the Zoanthus genus (Zoanthus nymphaeus and Zoanthus sp.) along with one semisynthetic derivative were evaluated for their antiplatelet activities on human platelet aggregation induced by several stimulating agents. 11-Hydroxyzoanthamine (11) and a synthetic derivative of norzoanthamine (16) showed strong inhibition against thrombin-, collagen- and arachidonic acid-induced aggregation, zoanthenol (15) displayed a selective inhibitory activity induced by collagen, while zoanthaminone (10) behaved as a potent aggregant agent. These evaluations allowed us to deduce several structure-activity relationships and suggest some mechanisms of action for this type of compounds.
Adipose-derived stromal cells for the reconstruction of a human vesical equivalent.
Rousseau, Alexandre; Fradette, Julie; Bernard, Geneviève; Gauvin, Robert; Laterreur, Véronique; Bolduc, Stéphane
2015-11-01
Despite a wide panel of tissue-engineering models available for vesical reconstruction, the lack of a differentiated urothelium remains their main common limitation. For the first time to our knowledge, an entirely human vesical equivalent, free of exogenous matrix, has been reconstructed using the self-assembly method. Moreover, we tested the contribution of adipose-derived stromal cells, an easily available source of mesenchymal cells featuring many potential advantages, by reconstructing three types of equivalent, named fibroblast vesical equivalent, adipose-derived stromal cell vesical equivalent and hybrid vesical equivalent--the latter containing both adipose-derived stromal cells and fibroblasts. The new substitutes have been compared and characterized for matrix composition and organization, functionality and mechanical behaviour. Although all three vesical equivalents displayed adequate collagen type I and III expression, only two of them, fibroblast vesical equivalent and hybrid vesical equivalent, sustained the development of a differentiated and functional urothelium. The presence of uroplakins Ib, II and III and the tight junction marker ZO-1 was detected and correlated with impermeability. The mechanical resistance of these tissues was sufficient for use by surgeons. We present here in vitro tissue-engineered vesical equivalents, built without the use of any exogenous matrix, able to sustain mechanical stress and to support the formation of a functional urothelium, i.e. able to display a barrier function similar to that of native tissue. Copyright © 2013 John Wiley & Sons, Ltd.
Structure, Content, and Bioactivity of Food-Derived Peptides in the Body.
Sato, Kenji
2018-03-28
Orally administered peptides are assumed to be degraded into amino acids in the body. However, our recent studies revealed some food-derived prolyl and pyroglutamyl peptides with 2-3 amino acid residues in the blood of humans and animals, while most of the peptides in the endoproteinase digest of food protein are degraded by exopeptidase. Some food-derived dipeptides in the body display in vitro and in vivo biological activities. These facts indicate that the biological activities of food-derived peptides in the body rather than those in food are crucial to understanding the mechanism of the beneficial effects of orally administered peptides.
Peixoto, Juliana A; Andrade E Silva, Márcio Luis; Crotti, Antônio E M; Cassio Sola Veneziani, Rodrigo; Gimenez, Valéria M M; Januário, Ana H; Groppo, Milton; Magalhães, Lizandra G; Dos Santos, Fransérgio F; Albuquerque, Sérgio; da Silva Filho, Ademar A; Cunha, Wilson R
2011-02-22
The in vitro activity of the crude hydroalcoholic extract of the aerial parts of Miconia langsdorffii Cogn. was evaluated against the promastigote forms of L. amazonensis, the causative agent of cutaneous leishmaniasis in humans. The bioassay-guided fractionation of this extract led to identification of the triterpenes ursolic acid and oleanolic acid as the major compounds in the fraction that displayed the highest activity. Several ursolic acid semi-synthetic derivatives were prepared, to find out whether more active compounds could be obtained. Among these ursolic acid-derived substances, the C-28 methyl ester derivative exhibited the best antileishmanial activity.
Principles and application of antibody libraries for infectious diseases.
Lim, Bee Nar; Tye, Gee Jun; Choong, Yee Siew; Ong, Eugene Boon Beng; Ismail, Asma; Lim, Theam Soon
2014-12-01
Antibodies have been used efficiently for the treatment and diagnosis of many diseases. Recombinant antibody technology allows the generation of fully human antibodies. Phage display is the gold standard for the production of human antibodies in vitro. To generate monoclonal antibodies by phage display, the generation of antibody libraries is crucial. Antibody libraries are classified according to the source where the antibody gene sequences were obtained. The most useful library for infectious diseases is the immunized library. Immunized libraries would allow better and selective enrichment of antibodies against disease antigens. The antibodies generated from these libraries can be translated for both diagnostic and therapeutic applications. This review focuses on the generation of immunized antibody libraries and the potential applications of the antibodies derived from these libraries.
Applications of Human Performance Models to System Design: Defense Research Series. Volume 2
1989-01-01
definition of display-ccntrol task demands. For first use, derivation is manual. For initial aplication , the sources of data for estimating task...describing human operator control of slowly responding complex systems. Delft (The Netherlands) Delft Univ. Tech., 235 pp., Ph.D. Thesis . Kok, J.J. and...Netherlands), Delft Univ. Tech., 157 pp., Ph.D. Thesis . van Lunteren, A. and Stassen, H.G. (1967). Investigations on the charac- teristics of the
In vitro control of human bone marrow stromal cells for bone tissue engineering.
Anselme, Karine; Broux, Odile; Noel, Benoit; Bouxin, Bertrand; Bascoulergue, Gerard; Dudermel, Anne-France; Bianchi, Fabien; Jeanfils, Joseph; Hardouin, Pierre
2002-12-01
For the clinical application of cultured human mesenchymal stem cells (MSCs), cells must have minimal contact with fetal calf serum (FCS) because it might be a potential vector for contamination by adventitious agents. The use of human plasma and serum for clinical applications also continues to give rise to considerable concerns with respect to the transmission of known and unknown human infectious agents. With the objective of clinical applications of cultured human MSCs, we tested the ability of autologous plasma, AB human serum, FCS, and artificial serum substitutes containing animal-derived proteins (Ultroser G) or vegetable-derived proteins (Prolifix S6) to permit their growth and differentiation in vitro. To conserve as much autologous plasma as possible, we attempted to mix it at decreasing concentrations with the serum substitute containing vegetable-derived mitogenic factors. Under control conditions, by day 10 all the fibroblast colony-forming units (CFU-Fs) were alkaline phosphatase (ALP) positive. However, their number and size were highly variable among donors. Better CFU-F formation was obtained with Ultroser G, and with human AB serum and autologous plasma mixed at, respectively, 5 and 1% with Prolifix S6. The effects of these mixtures on CFU-F formation demonstrate synergy, with the human serum or plasma supplying the factors that favor differentiation of MSCs while Prolifix S6 supplies the mitogenic factors. Finally, we demonstrated the possibility of controlling human MSC growth and differentiation in vitro. Notably, by means of a minimal quantity of human serum or human plasma mixed with a new serum substitute containing vegetable-derived proteins, we displayed growth and differentiation of human MSCs comparable to that obtained with FCS or serum substitutes containing animal-derived proteins. These results will have crucial significance for future applications of cultured human MSCs in bone tissue engineering.
Application of multi-function display and control technology
NASA Technical Reports Server (NTRS)
Spiger, R. J.; Farrell, R. J.; Holcomb, G. A.
1982-01-01
The NASA orbiter spacecraft incorporates a complex array of systems, displays, and controls. The incorporation of discrete dedicated controls into a multifunction display and control system (MFDCS) offers the potential for savings in weight, power, panel space, and crew training time. Technology identified as applicable to a MFDCS is applied to the orbiter orbital maneuvering system (OMS) and the electrical power distribution and control system (EPDCS) to derive concepts for a MFDCS design. Several concepts of varying degrees of performance and complexity are discussed and a suggested concept for further development is presented in greater detail. Both the hardware and software aspects and the human factors considerations of the designs are included.
Yang, Jing; Lam, Dang Hoang; Goh, Sally Sallee; Lee, Esther Xingwei; Zhao, Ying; Tay, Felix Chang; Chen, Can; Du, Shouhui; Balasundaram, Ghayathri; Shahbazi, Mohammad; Tham, Chee Kian; Ng, Wai Hoe; Toh, Han Chong; Wang, Shu
2012-05-01
Human pluripotent stem cells can serve as an accessible and reliable source for the generation of functional human cells for medical therapies. In this study, we used a conventional lentiviral transduction method to derive human-induced pluripotent stem (iPS) cells from primary human fibroblasts and then generated neural stem cells (NSCs) from the iPS cells. Using a dual-color whole-body imaging technology, we demonstrated that after tail vein injection, these human NSCs displayed a robust migratory capacity outside the central nervous system in both immunodeficient and immunocompetent mice and homed in on established orthotopic 4T1 mouse mammary tumors. To investigate whether the iPS cell-derived NSCs can be used as a cellular delivery vehicle for cancer gene therapy, the cells were transduced with a baculoviral vector containing the herpes simplex virus thymidine kinase suicide gene and injected through tail vein into 4T1 tumor-bearing mice. The transduced NSCs were effective in inhibiting the growth of the orthotopic 4T1 breast tumor and the metastatic spread of the cancer cells in the presence of ganciclovir, leading to prolonged survival of the tumor-bearing mice. The use of iPS cell-derived NSCs for cancer gene therapy bypasses the sensitive ethical issue surrounding the use of cells derived from human fetal tissues or human embryonic stem cells. This approach may also help to overcome problems associated with allogeneic transplantation of other types of human NSCs. Copyright © 2012 AlphaMed Press.
Hrušková, Kateřina; Potůčková, Eliška; Opálka, Lukáš; Hergeselová, Tereza; Hašková, Pavlína; Kovaříková, Petra; Šimůnek, Tomáš; Vávrová, Kateřina
2018-05-23
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
2006-03-31
chlorogenic acid , and rosmari- nic acid did not display any cytoprotective effect in this assay at 15 lM (data not shown). Within the same pas- sage of HUVEC...Cytoprotective effect of caffeic acid phenethyl ester (CAPE) and catechol ring-fluorinated CAPE derivatives against menadione-induced oxidative...accepted 13 March 2006 Available online 31 March 2006 Abstract—Caffeic acid phenethyl ester (CAPE), a natural polyphenolic compound with many
Exploration of (hetero)aryl derived thienylchalcones for antiviral and anticancer activities.
Patil, Vikrant; Patil, Siddappa A; Patil, Renukadevi; Bugarin, Alejandro; Beaman, Kenneth; Patil, Shivaputra A
2018-05-23
Search for new antiviral and anticancer agents are essential because of the emergence of drug resistance in recent years. In continuation of our efforts in identifying the new small molecule antiviral and anticancer agents, we identified chalcones as potent antiviral and anticancer agents. With the aim of identifying the broad acting antiviral and anticancer agents, we discovered substituted aryl/heteroaryl derived thienyl chalcones as antiviral and anticancer agents. A focused set of thienyl chalcone derivaties II-VI was screened for selected viruses Hepatitis B virus (HBV), Herpes simplex virus 1 (HSV-1), Human cytomegalovirus (HCMV), Dengue virus 2 (DENV2), Influenza A (H1N1) virus, MERS coronavirus, Poliovirus 1 (PV 1), Rift Valley fever (RVF), Tacaribe virus (TCRV), Venezuelan equine encephalitis virus (VEE) and Zika virus (ZIKV) using the National Institute of Allergy and Infectious Diseases (NIAID)'s Division of Microbiology and Infectious Diseases (DMID) antiviral screening program. Additionally, a cyclopropylquinoline derivative IV has been screened for 60 human cancer cell lines using the Development Therapeutics Program (DTP) of NCI. All thienyl chalcone derivatives II-VI displayed moderate to excellent antiviral activity towards several viruses tested. Compounds V and VI were turned out be active compounds towards human cytomegalovirus for both normal strain (AD169) as well as resistant isolate (GDGr K17). Particularly, cyano derivative V showed very high potency (EC50: <0.05 µM) towards AD169 strain of HCMV compared to standard drug Ganciclovir (EC50: 0.12 µM). Additionally, it showed moderate activity in the secondary assay (AD169; EC50: 2.30 µM). The cyclopropylquinoline derivative IV displayed high potency towards Rift Valley fever virus (RVFV) and Tacaribe virus (TCRV). The cyclopropylquinoline derivative IV is nearly 28 times more potent in our initial in vitro visual assay (EC50: 0.39 μg/ml) and nearly 17 times more potent in neutral red assay (EC50: 0.71 μg/ml) compared to the standard drug Ribavirin (EC50: 11 μg/ml; visual assay and EC50: 12 μg/ml; neutral red assay). It is nearly 12 times more potent in our initial in vitro visual assay (EC50: >1 μg/ml) and nearly 8 times more potent in neutral red assay (EC50: >1.3 μg/ml) compared to the standard drug Ribavirin (EC50: 12 μg/ml; visual assay and EC50: 9.9 μg/ml; neutral red assay) towards Tacaribe virus (TCRV). Additionally, cyclopropylquinoline derivative IV has shown strong growth inhibitory activity towards three major cancer (colon, breast, and leukemia) cell lines and moderate growth inhibition shown towards other cancer cell lines screened. Compounds V and VI were demonstrated viral inhibition towards Human cytomegalovirus, whereas cyclopropylquinoline derivative IV towards Rift Valley fever virus and Tacaribe virus. Additionally, cyclopropylquinoline derivative IV has displayed very good cytotoxicity against colon, breast and leukemia cell lines in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Altered proliferation and networks in neural cells derived from idiopathic autistic individuals.
Marchetto, Maria C; Belinson, Haim; Tian, Yuan; Freitas, Beatriz C; Fu, Chen; Vadodaria, Krishna; Beltrao-Braga, Patricia; Trujillo, Cleber A; Mendes, Ana P D; Padmanabhan, Krishnan; Nunez, Yanelli; Ou, Jing; Ghosh, Himanish; Wright, Rebecca; Brennand, Kristen; Pierce, Karen; Eichenfield, Lawrence; Pramparo, Tiziano; Eyler, Lisa; Barnes, Cynthia C; Courchesne, Eric; Geschwind, Daniel H; Gage, Fred H; Wynshaw-Boris, Anthony; Muotri, Alysson R
2017-06-01
Autism spectrum disorders (ASD) are common, complex and heterogeneous neurodevelopmental disorders. Cellular and molecular mechanisms responsible for ASD pathogenesis have been proposed based on genetic studies, brain pathology and imaging, but a major impediment to testing ASD hypotheses is the lack of human cell models. Here, we reprogrammed fibroblasts to generate induced pluripotent stem cells, neural progenitor cells (NPCs) and neurons from ASD individuals with early brain overgrowth and non-ASD controls with normal brain size. ASD-derived NPCs display increased cell proliferation because of dysregulation of a β-catenin/BRN2 transcriptional cascade. ASD-derived neurons display abnormal neurogenesis and reduced synaptogenesis leading to functional defects in neuronal networks. Interestingly, defects in neuronal networks could be rescued by insulin growth factor 1 (IGF-1), a drug that is currently in clinical trials for ASD. This work demonstrates that selection of ASD subjects based on endophenotypes unraveled biologically relevant pathway disruption and revealed a potential cellular mechanism for the therapeutic effect of IGF-1.
Bowers, Peter M.; Neben, Tamlyn Y.; Tomlinson, Geoffery L.; Dalton, Jennifer L.; Altobell, Larry; Zhang, Xue; Macomber, John L.; Wu, Betty F.; Toobian, Rachelle M.; McConnell, Audrey D.; Verdino, Petra; Chau, Betty; Horlick, Robert A.; King, David J.
2013-01-01
A method for simultaneous humanization and affinity maturation of monoclonal antibodies has been developed using heavy chain complementarity-determining region (CDR) 3 grafting combined with somatic hypermutation in vitro. To minimize the amount of murine antibody-derived antibody sequence used during humanization, only the CDR3 region from a murine antibody that recognizes the cytokine hβNGF was grafted into a nonhomologous human germ line V region. The resulting CDR3-grafted HC was paired with a CDR-grafted light chain, displayed on the surface of HEK293 cells, and matured using in vitro somatic hypermutation. A high affinity humanized antibody was derived that was considerably more potent than the parental antibody, possessed a low pm dissociation constant, and demonstrated potent inhibition of hβNGF activity in vitro. The resulting antibody contained half the heavy chain murine donor sequence compared with the same antibody humanized using traditional methods. PMID:23355464
Ribosome display: next-generation display technologies for production of antibodies in vitro.
He, Mingyue; Khan, Farid
2005-06-01
Antibodies represent an important and growing class of biologic research reagents and biopharmaceutical products. They can be used as therapeutics in a variety of diseases. With the rapid expansion of proteomic studies and biomarker discovery, there is a need for the generation of highly specific binding reagents to study the vast number of proteins encoded by the genome. Display technologies provide powerful tools for obtaining antibodies. Aside from the preservation of natural antibody repertoires, they are capable of exploiting diversity by DNA recombination to create very large libraries for selection of novel molecules. In contrast to in vivo immunization processes, display technologies allow selection of antibodies under in vitro-defined selection condition(s), resulting in enrichment of antibodies with desired properties from large populations. In addition, in vitro selection enables the isolation of antibodies against difficult antigens including self-antigens, and this can be applied to the generation of human antibodies against human targets. Display technologies can also be combined with DNA mutagenesis for antibody evolution in vitro. Some methods are amenable to automation, permitting high-throughput generation of antibodies. Ribosome display is considered as representative of the next generation of display technologies since it overcomes the limitations of cell-based display methods by using a cell-free system, offering advantages of screening larger libraries and continuously expanding new diversity during selection. Production of display-derived antibodies can be achieved by choosing one of a variety of prokaryotic and eukaryotic cell-based expression systems. In the near future, cell-free protein synthesis may be developed as an alternative for large-scale generation of antibodies.
Yeh, Erika; Dao, Dang Q.; Wu, Zhi Y.; Kandalam, Santoshi M.; Camacho, Federico M.; Tom, Curtis; Zhang, Wandong; Krencik, Robert; Rauen, Katherine A.; Ullian, Erik M.; Weiss, Lauren A.
2017-01-01
Ras/MAPK pathway signaling is a major participant in neurodevelopment, and evidence suggests that BRAF, a key Ras signal mediator, influences human behavior. We studied the role of the mutation BRAFQ257R, the most common cause of cardiofaciocutaneous syndrome (CFC), in an induced pluripotent stem cell (iPSC)-derived model of human neurodevelopment. In iPSC-derived neuronal cultures from CFC subjects, we observed decreased p-AKT and p-ERK1/2 compared to controls, as well as a depleted neural progenitor pool and rapid neuronal maturation. Pharmacological PI3K/AKT pathway manipulation recapitulated cellular phenotypes in control cells and attenuated them in CFC cells. CFC cultures displayed altered cellular subtype ratios and increased intrinsic excitability. Moreover, in CFC cells, Ras/MAPK pathway activation and morphological abnormalities exhibited cell subtype-specific differences. Our results highlight the importance of exploring specific cellular subtypes and of using iPSC models to reveal relevant human-specific neurodevelopmental events. PMID:29158583
Sabapathy, Vikram; Ravi, Saranya; Srivastava, Vivi; Srivastava, Alok; Kumar, Sanjay
2012-01-01
Mesenchymal stem cells (MSCs) are an alluring therapeutic resource because of their plasticity, immunoregulatory capacity and ease of availability. Human BM-derived MSCs have limited proliferative capability, consequently, it is challenging to use in tissue engineering and regenerative medicine applications. Hence, placental MSCs of maternal origin, which is one of richest sources of MSCs were chosen to establish long-term culture from the cotyledons of full-term human placenta. Flow analysis established bonafied MSCs phenotypic characteristics, staining positively for CD29, CD73, CD90, CD105 and negatively for CD14, CD34, CD45 markers. Pluripotency of the cultured MSCs was assessed by in vitro differentiation towards not only intralineage cells like adipocytes, osteocytes, chondrocytes, and myotubules cells but also translineage differentiated towards pancreatic progenitor cells, neural cells, and retinal cells displaying plasticity. These cells did not significantly alter cell cycle or apoptosis pattern while maintaining the normal karyotype; they also have limited expression of MHC-II antigens and are Naive for stimulatory factors CD80 and CD 86. Further soft agar assays revealed that placental MSCs do not have the ability to form invasive colonies. Taking together all these characteristics into consideration, it indicates that placental MSCs could serve as good candidates for development and progress of stem-cell based therapeutics. PMID:22550499
Peptides of the Constant Region of Antibodies Display Fungicidal Activity
Polonelli, Luciano; Ciociola, Tecla; Magliani, Walter; Zanello, Pier Paolo; D'Adda, Tiziana; Galati, Serena; De Bernardis, Flavia; Arancia, Silvia; Gabrielli, Elena; Pericolini, Eva; Vecchiarelli, Anna; Arruda, Denise C.; Pinto, Marcia R.; Travassos, Luiz R.; Pertinhez, Thelma A.; Spisni, Alberto; Conti, Stefania
2012-01-01
Synthetic peptides with sequences identical to fragments of the constant region of different classes (IgG, IgM, IgA) of antibodies (Fc-peptides) exerted a fungicidal activity in vitro against pathogenic yeasts, such as Candida albicans, Candida glabrata, Cryptococcus neoformans, and Malassezia furfur, including caspofungin and triazole resistant strains. Alanine-substituted derivatives of fungicidal Fc-peptides, tested to evaluate the critical role of each residue, displayed unaltered, increased or decreased candidacidal activity in vitro. An Fc-peptide, included in all human IgGs, displayed a therapeutic effect against experimental mucosal and systemic candidiasis in mouse models. It is intriguing to hypothesize that some Fc-peptides may influence the antifungal immune response and constitute the basis for devising new antifungal agents. PMID:22470523
Isolation and characterization of human umbilical cord-derived endothelial colony-forming cells
Zhang, Hao; Tao, Yanling; Ren, Saisai; Liu, Haihui; Zhou, Hui; Hu, Jiangwei; Tang, Yongyong; Zhang, Bin; Chen, Hu
2017-01-01
Endothelial colony-forming cells (ECFCs) are a population of endothelial progenitor cells (EPCs) that display robust proliferative potential and vessel-forming capability. Previous studies have demonstrated that a limited number of ECFCs may be obtained from adult bone marrow, peripheral blood and umbilical cord (UC) blood. The present study describes an effective method for isolating ECFCs from human UC. The ECFCs derived from human UC displayed the full properties of EPCs. Analysis of the growth kinetics, cell cycle and colony-forming ability of the isolated human UC-ECFCs indicated that the cells demonstrated properties of stem cells, including relative stability and rapid proliferation in vitro. Gene expression of Fms related tyrosine kinase 1, kinase insert domain receptor, vascular endothelial cadherin, cluster of differentiation (CD)31, CD34, epidermal growth factor homology domains-2, von Willebrand factor and endothelial nitric oxide synthase was assessed by reverse transcription-polymerase chain reaction. The cells were positive for CD34, CD31, CD73, CD105 and vascular endothelial growth factor receptor-2, and negative for CD45, CD90 and human leukocyte antigen-antigen D related protein according to flow cytometry. 1,1′-dioctadecyl-3,3,3′,3′-tetra-methyl-indocarbocyanine perchlorate-labeled acetylated low-density lipoprotein and fluorescein isothiocyanate-Ulex europaeus-l were used to verify the identity of the UC-ECFCs. Matrigel was used to investigate tube formation capability. The results demonstrated that the reported technique is a valuable method for isolating human UC-ECFCs, which have potential for use in vascular regeneration. PMID:29067104
Loi, Monica; Di Paolo, Daniela; Soster, Marco; Brignole, Chiara; Bartolini, Alice; Emionite, Laura; Sun, Jessica; Becherini, Pamela; Curnis, Flavio; Petretto, Andrea; Sani, Monica; Gori, Alessandro; Milanese, Marco; Gambini, Claudio; Longhi, Renato; Cilli, Michele; Allen, Theresa M; Bussolino, Federico; Arap, Wadih; Pasqualini, Renata; Corti, Angelo; Ponzoni, Mirco; Marchiò, Serena; Pastorino, Fabio
2013-09-10
Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Côrte-Real, Leonor; Teixeira, Ricardo G; Gírio, Patrícia; Comsa, Elisabeta; Moreno, Alexis; Nasr, Rachad; Baubichon-Cortay, Hélène; Avecilla, Fernando; Marques, Fernanda; Robalo, M Paula; Mendes, Paulo; Ramalho, João P Prates; Garcia, M Helena; Falson, Pierre; Valente, Andreia
2018-04-16
New ruthenium methyl-cyclopentadienyl compounds bearing bipyridine derivatives with the general formula [Ru(η 5 -MeCp)(PPh 3 )(4,4'-R-2,2'-bpy)] + (Ru1, R = H; Ru2, R = CH 3 ; and Ru3, R = CH 2 OH) have been synthesized and characterized by spectroscopic and analytical techniques. Ru1 crystallized in the monoclinic P2 1 / c, Ru2 in the triclinic P1̅, and Ru3 in the monoclinic P2 1 / n space group. In all molecular structures, the ruthenium center adopts a "piano stool" distribution. Density functional theory calculations were performed for all complexes, and the results support spectroscopic data. Ru1 and Ru3 were poor substrates of the main multidrug resistance human pumps, ABCB1, ABCG2, ABCC1, and ABCC2, while Ru2 displayed inhibitory properties of ABCC1 and ABCC2 pumps. Importantly, all compounds displayed a very high cytotoxic profile for ovarian cancer cells (sensitive and resistant) that was much more pronounced than that observed with cisplatin, making them very promising anticancer agents.
Chen, Ying; Zhou, Wenda; Roh, Terrence; Estes, Mary K; Kaplan, David L
2017-01-01
There is a need for functional in vitro 3D human intestine systems that can bridge the gap between conventional cell culture studies and human trials. The successful engineering in vitro of human intestinal tissues relies on the use of the appropriate cell sources, biomimetic scaffolds, and 3D culture conditions to support vital organ functions. We previously established a compartmentalized scaffold consisting of a hollow space within a porous bulk matrix, in which a functional and physiologically relevant intestinal epithelium system was generated using intestinal cell lines. In this study, we adopt the 3D scaffold system for the cultivation of stem cell-derived human small intestinal enteriods (HIEs) to engineer an in vitro 3D model of a nonstransformed human small intestinal epithelium. Characterization of tissue properties revealed a mature HIE-derived epithelium displaying four major terminally differentiated epithelial cell types (enterocytes, Goblet cells, Paneth cells, enteroendocrine cells), with tight junction formation, microvilli polarization, digestive enzyme secretion, and low oxygen tension in the lumen. Moreover, the tissue model demonstrates significant antibacterial responses to E. coli infection, as evidenced by the significant upregulation of genes involved in the innate immune response. Importantly, many of these genes are activated in human patients with inflammatory bowel disease (IBD), implicating the potential application of the 3D stem-cell derived epithelium for the in vitro study of host-microbe-pathogen interplay and IBD pathogenesis.
Human Plasmacytoid Dendritic Cells Display and Shed B Cell Maturation Antigen upon TLR Engagement.
Schuh, Elisabeth; Musumeci, Andrea; Thaler, Franziska S; Laurent, Sarah; Ellwart, Joachim W; Hohlfeld, Reinhard; Krug, Anne; Meinl, Edgar
2017-04-15
The BAFF-APRIL system is best known for its control of B cell homeostasis, and it is a target of therapeutic intervention in autoimmune diseases and lymphoma. By analyzing the expression of the three receptors of this system, B cell maturation Ag (BCMA), transmembrane activator and CAML interactor, and BAFF receptor, in sorted human immune cell subsets, we found that BCMA was transcribed in plasmacytoid dendritic cells (pDCs) in both blood and lymphoid tissue. Circulating human pDCs contained BCMA protein without displaying it on the cell surface. After engagement of TLR7/8 or TLR9, BCMA was detected also on the cell surface of pDCs. The display of BCMA on the surface of human pDCs was accompanied by release of soluble BCMA (sBCMA); inhibition of γ-secretase enhanced surface expression of BCMA and reduced the release of sBCMA by pDCs. In contrast with human pDCs, murine pDCs did not express BCMA, not even after TLR9 activation. In this study, we extend the spectrum of BCMA expression to human pDCs. sBCMA derived from pDCs might determine local availability of its high-affinity ligand APRIL, because sBCMA has been shown to function as an APRIL-specific decoy. Further, therapeutic trials targeting BCMA in patients with multiple myeloma should consider possible effects on pDCs. Copyright © 2017 by The American Association of Immunologists, Inc.
Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze
2016-01-01
A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.
Putaporntip, Chaturong; Thongaree, Siriporn; Jongwutiwes, Somchai
2013-08-01
To determine the genetic diversity and potential transmission routes of Plasmodium knowlesi, we analyzed the complete nucleotide sequence of the gene encoding the merozoite surface protein-1 of this simian malaria (Pkmsp-1), an asexual blood-stage vaccine candidate, from naturally infected humans and macaques in Thailand. Analysis of Pkmsp-1 sequences from humans (n=12) and monkeys (n=12) reveals five conserved and four variable domains. Most nucleotide substitutions in conserved domains were dimorphic whereas three of four variable domains contained complex repeats with extensive sequence and size variation. Besides purifying selection in conserved domains, evidence of intragenic recombination scattering across Pkmsp-1 was detected. The number of haplotypes, haplotype diversity, nucleotide diversity and recombination sites of human-derived sequences exceeded that of monkey-derived sequences. Phylogenetic networks based on concatenated conserved sequences of Pkmsp-1 displayed a character pattern that could have arisen from sampling process or the presence of two independent routes of P. knowlesi transmission, i.e. from macaques to human and from human to humans in Thailand. Copyright © 2013 Elsevier B.V. All rights reserved.
Huang, Guang; Zhao, Hui-Ran; Meng, Qing-Qing; Zhang, Qi-Jing; Dong, Jin-Yun; Zhu, Bao-Quan; Li, Shao-Shun
2018-01-01
As a continuation of our research on developing potent and potentially safe antineoplastic agents, a set of forty five sulfur-containing shikonin oxime derivatives were synthesized and evaluated for their in vitro cytotoxic activity against human colon cancer (HCT-15), gastric carcinoma (MGC-803), liver (Bel7402), breast (MCF-7) cancer cells and human skin fibroblast (HSF) cells. All the synthesized compounds exhibited potent cytotoxic activity selectively towards HCT-15 cells and did not display apparent toxicity to the normal HSF cells, some of which were more or comparatively effective to the parent compound against HCT-15, MGC-803 and Bel7402 cells. The most active agent 9m displayed high potency against human cancer cells with IC 50 ranging from 0.27 ± 0.02 to 9.23 ± 0.12 μM. The structure-activity relationships (SARs) studies suggested that the nature of substituent group in the side chain is important for antitumor potency in vitro. Additionally, nitric oxide release studies revealed that the amount of nitric oxide generated from these oxime derivatives was relatively low. Furthermore, cellular mechanism investigations indicated that compound 9m could arrest cell cycle at G1 phase and induce a strong apoptotic response in HCT-15 cells. Moreover, western blot studies revealed that compound 9m induced apoptosis through the down-regulation of Bcl-2 and up-regulation of Bax, caspase 3 and 9. For all these reasons, compound 9m hold promising potential as antineoplastic agent. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens
Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R
2007-01-01
Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.
Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells
Golebiewska, Anna; Bougnaud, Sébastien; Stieber, Daniel; Brons, Nicolaas H. C.; Vallar, Laurent; Hertel, Frank; Klink, Barbara; Schröck, Evelin; Bjerkvig, Rolf
2013-01-01
The identification and significance of cancer stem-like cells in malignant gliomas remains controversial. It has been proposed that cancer stem-like cells display increased drug resistance, through the expression of ATP-binding cassette transporters that detoxify cells by effluxing exogenous compounds. Here, we investigated the ‘side population’ phenotype based on efflux properties of ATP-binding cassette transporters in freshly isolated human glioblastoma samples and intracranial xenografts derived thereof. Using fluorescence in situ hybridization analysis on sorted cells obtained from glioblastoma biopsies, as well as human tumour xenografts developed in immunodeficient enhanced green fluorescence protein-expressing mice that allow an unequivocal tumour-stroma discrimination, we show that side population cells in human glioblastoma are non-neoplastic and exclusively stroma-derived. Tumour cells were consistently devoid of efflux properties regardless of their genetic background, tumour ploidy or stem cell associated marker expression. Using multi-parameter flow cytometry we identified the stromal side population in human glioblastoma to be brain-derived endothelial cells with a minor contribution of astrocytes. In contrast with their foetal counterpart, neural stem/progenitor cells in the adult brain did not display the side population phenotype. Of note, we show that CD133-positive cells often associated with cancer stem-like cells in glioblastoma biopsies, do not represent a homogenous cell population and include CD31-positive endothelial cells. Interestingly, treatment of brain tumours with the anti-angiogenic agent bevacizumab reduced total vessel density, but did not affect the efflux properties of endothelial cells. In conclusion our findings contribute to an unbiased identification of cancer stem-like cells and stromal cells in brain neoplasms, and provide novel insight into the complex issue of drug delivery to the brain. Since efflux properties of endothelial cells are likely to compromise drug availability, transiently targeting ATP-binding cassette transporters may be a valuable therapeutic strategy to improve treatment effects in brain tumours. PMID:23460667
Maruotti, Julien; Sripathi, Srinivas R; Bharti, Kapil; Fuller, John; Wahlin, Karl J; Ranganathan, Vinod; Sluch, Valentin M; Berlinicke, Cynthia A; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z; Bhutto, Imran; Lutty, Gerard A; Zack, Donald J
2015-09-01
Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.
Maruotti, Julien; Sripathi, Srinivas R.; Bharti, Kapil; Fuller, John; Wahlin, Karl J.; Ranganathan, Vinod; Sluch, Valentin M.; Berlinicke, Cynthia A.; Davis, Janine; Kim, Catherine; Zhao, Lijun; Wan, Jun; Qian, Jiang; Corneo, Barbara; Temple, Sally; Dubey, Ramin; Olenyuk, Bogdan Z.; Bhutto, Imran; Lutty, Gerard A.; Zack, Donald J.
2015-01-01
Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule–only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. PMID:26269569
Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells.
Fogaça, Tatiana B; Martins, Rosiane M; Begnini, Karine R; Carapina, Caroline; Ritter, Marina; de Pereira, Claudio M P; Seixas, Fabiana K; Collares, Tiago
2017-02-01
A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC 50 values ranging from 5.52 to 34.23μM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Infectivity of five different types of macrophages by Leishmania infantum.
Maia, C; Rolão, N; Nunes, M; Gonçalves, L; Campino, L
2007-08-01
Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.
Hydroxyurea derivatives of irofulven with improved antitumor efficacy.
Staake, Michael D; Kashinatham, Alisala; McMorris, Trevor C; Estes, Leita A; Kelner, Michael J
2016-04-01
Irofulven is a semi-synthetic derivative of Illudin S, a toxic sesquiterpene isolated from the mushroom Omphalotus illudens. Irofulven has displayed significant antitumor activity in various clinical trials but displayed a limited therapeutic index. A new derivative of irofulven was prepared by reacting hydroxyurea with irofulven under acidic conditions. Acetylation of this new compound with acetic anhydride produced a second derivative. Both of these new derivatives displayed significant antitumor activity in vitro and in vivo comparable to or exceeding that of irofulven. Copyright © 2016 Elsevier Ltd. All rights reserved.
Isolation of Human Colon Stem Cells Using Surface Expression of PTK7.
Jung, Peter; Sommer, Christian; Barriga, Francisco M; Buczacki, Simon J; Hernando-Momblona, Xavier; Sevillano, Marta; Duran-Frigola, Miquel; Aloy, Patrick; Selbach, Matthias; Winton, Douglas J; Batlle, Eduard
2015-12-08
Insertion of reporter cassettes into the Lgr5 locus has enabled the characterization of mouse intestinal stem cells (ISCs). However, low cell surface abundance of LGR5 protein and lack of high-affinity anti-LGR5 antibodies represent a roadblock to efficiently isolate human colonic stem cells (hCoSCs). We set out to identify stem cell markers that would allow for purification of hCoSCs. In an unbiased approach, membrane-enriched protein fractions derived from in vitro human colonic organoids were analyzed by quantitative mass spectrometry. Protein tyrosine pseudokinase PTK7 specified a cell population within human colonic organoids characterized by highest self-renewal and re-seeding capacity. Antibodies recognizing the extracellular domain of PTK7 allowed us to isolate and expand hCoSCs directly from patient-derived mucosa samples. Human PTK7+ cells display features of canonical Lgr5+ ISCs and include a fraction of cells that undergo differentiation toward enteroendocrine lineage that resemble crypt label retaining cells (LRCs). Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display
NASA Astrophysics Data System (ADS)
Long, David L.
Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers.
Antimicrobial Effects of Helix D-derived Peptides of Human Antithrombin III*
Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K. V.; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2014-01-01
Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix d-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. PMID:25202017
Antimicrobial effects of helix D-derived peptides of human antithrombin III.
Papareddy, Praveen; Kalle, Martina; Bhongir, Ravi K V; Mörgelin, Matthias; Malmsten, Martin; Schmidtchen, Artur
2014-10-24
Antithrombin III (ATIII) is a key antiproteinase involved in blood coagulation. Previous investigations have shown that ATIII is degraded by Staphylococcus aureus V8 protease, leading to release of heparin binding fragments derived from its D helix. As heparin binding and antimicrobial activity of peptides frequently overlap, we here set out to explore possible antibacterial effects of intact and degraded ATIII. In contrast to intact ATIII, the results showed that extensive degradation of the molecule yielded fragments with antimicrobial activity. Correspondingly, the heparin-binding, helix D-derived, peptide FFFAKLNCRLYRKANKSSKLV (FFF21) of human ATIII, was found to be antimicrobial against particularly the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa. Fluorescence microscopy and electron microscopy studies demonstrated that FFF21 binds to and permeabilizes bacterial membranes. Analogously, FFF21 was found to induce membrane leakage of model anionic liposomes. In vivo, FFF21 significantly reduced P. aeruginosa infection in mice. Additionally, FFF21 displayed anti-endotoxic effects in vitro. Taken together, our results suggest novel roles for ATIII-derived peptide fragments in host defense. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peabody, David S.; Chackerian, Bryce; Ashley, Carlee
The invention relates to virus-like particles of bacteriophage MS2 (MS2 VLPs) displaying peptide epitopes or peptide mimics of epitopes of Nipah Virus envelope glycoprotein that elicit an immune response against Nipah Virus upon vaccination of humans or animals. Affinity selection on Nipah Virus-neutralizing monoclonal antibodies using random sequence peptide libraries on MS2 VLPs selected peptides with sequence similarity to peptide sequences found within the envelope glycoprotein of Nipah itself, thus identifying the epitopes the antibodies recognize. The selected peptide sequences themselves are not necessarily identical in all respects to a sequence within Nipah Virus glycoprotein, and therefore may be referredmore » to as epitope mimics VLPs displaying these epitope mimics can serve as vaccine. On the other hand, display of the corresponding wild-type sequence derived from Nipah Virus and corresponding to the epitope mapped by affinity selection, may also be used as a vaccine.« less
Martinčič, Rok; Mravljak, Janez; Švajger, Urban; Perdih, Andrej; Anderluh, Marko; Novič, Marjana
2015-01-01
A pigment from the edible mushroom Xerocomus badius norbadione A, which is a natural derivative of pulvinic acid, was found to possess antioxidant properties. Since the pulvinic acid represents a novel antioxidant scaffold, several other derivatives were recently synthetized and evaluated experimentally, along with some structurally related coumarine derivatives. The obtained data formed the basis for the construction of several quantitative structure-activity and pharmacophore models, which were employed in the virtual screening experiments of compound libraries and for the prediction of their antioxidant activity, with the goal of discovering novel compounds possessing antioxidant properties. A final prioritization list of 21 novel compounds alongside 8 established antioxidant compounds was created for their experimental evaluation, consisting of the DPPH assay, 2-deoxyribose assay, β-carotene bleaching assay and the cellular antioxidant activity assay. Ten novel compounds from the tetronic acid and barbituric acid chemical classes displayed promising antioxidant activity in at least one of the used assays, that is comparable to or even better than some standard antioxidants. Compounds 5, 7 and 9 displayed good activity in all the assays, and were furthermore effective preventers of oxidative stress in human peripheral blood mononuclear cells, which are promising features for the potential therapeutic use of such compounds. PMID:26474393
Kralova, Jarmila; Synytsya, Alla; Pouckova, Pavla; Koc, Michal; Dvorak, Michal; Kral, Vladimir
2006-01-01
In the present study we investigated the photosensitizing properties of two novel mono- and bis-cyclodextrin tetrakis (pentafluorophenyl) porphyrin derivatives in several tumor cell lines and in BALB/c mice bearing subcutaneously transplanted syngeneic mouse mammary carcinoma 4T1. Both studied sensitizers were localized mainly in lysosomes and were found to induce cell death by triggering apoptosis in human leukemic cells HL-60. In 4T1 and other cell lines both apoptotic and necrotic modes of cell death occurred depending on drug and light doses. Mono-cyclodextrin porphyrin derivative P(beta-CD)1 exhibited stronger in vitro phototoxic effect than bis-cyclodextrin derivative P(beta-CD)2. However, in vivo P(beta-CD)2 displayed faster tumor uptake with maximal accumulation 6 h after application, leading to complete and prolonged elimination of subcutaneous tumors within 3 days after irradiation (100 J cm(-2)). In contrast, P(beta-CD)1 uptake was slower (48 h) and the reduction of tumor mass was only transient, reaching the maximum at the 12 h interval when a favorable tumor-to-skin ratio appeared. Thus, P(beta-CD)2 represents a new photosensitizing drug displaying fast and selective tumor uptake, strong antitumor activity and fast elimination from the body.
Sánchez-Gómez, Susana; Ferrer-Espada, Raquel; Stewart, Philip S; Pitts, Betsey; Lohner, Karl; Martínez de Tejada, Guillermo
2015-07-07
Infections by Pseudomonas aeruginosa constitute a serious health threat because this pathogen -particularly when it forms biofilms - can acquire resistance to the majority of conventional antibiotics. This study evaluated the antimicrobial activity of synthetic peptides based on LF11, an 11-mer peptide derived from human lactoferricin against P. aeruginosa planktonic and biofilm-forming cells. We included in this analysis selected N-acylated derivatives of the peptides to analyze the effect of acylation in antimicrobial activity. To assess the efficacy of compounds against planktonic bacteria, microdilution assays to determine the minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill studies were conducted. The anti-biofilm activity of the agents was assessed on biofilms grown under static (on microplates) and dynamic (in a CDC-reactor) flow regimes. The antimicrobial activity of lipopeptides differed from that of non-acylated peptides in their killing mechanisms on planktonic and biofilm-forming cells. Thus, acylation enhanced the bactericidal activity of the parental peptides and resulted in lipopeptides that were uniformly bactericidal at their MIC. In contrast, acylation of the most potent anti-biofilm peptides resulted in compounds with lower anti-biofilm activity. Both peptides and lipopeptides displayed very rapid killing kinetics and all of them required less than 21 min to reduce 1,000 times the viability of planktonic cells when tested at 2 times their MBC. The peptides, LF11-215 (FWRIRIRR) and LF11-227 (FWRRFWRR), displayed the most potent anti-biofilm activity causing a 10,000 fold reduction in cell viability after 1 h of treatment at 10 times their MIC. At that concentration, these two compounds exhibited low citotoxicity on human cells. In addition to its bactericidal activity, LF11-227 removed more that 50 % of the biofilm mass in independent assays. Peptide LF11-215 and two of the shortest and least hydrophobic lipopeptides, DI-MB-LF11-322 (2,2-dimethylbutanoyl-PFWRIRIRR) and DI-MB-LF11-215, penetrated deep into the biofilm structure and homogenously killed biofilm-forming bacteria. We identified peptides derived from human lactoferricin with potent antimicrobial activity against P. aeruginosa growing either in planktonic or in biofilm mode. Although further structure-activity relationship analyses are necessary to optimize the anti-biofilm activity of these compounds, the results indicate that lactoferricin derived peptides are promising anti-biofilm agents.
Manchang, T K; Ajonina-Ekoti, I; Ndjonka, D; Eisenbarth, A; Achukwi, M D; Renz, A; Brattig, N W; Liebau, E; Breloer, M
2015-05-01
Onchocerca volvulus is a tissue-dwelling, vector-borne nematode parasite of humans and is the causative agent of onchocerciasis or river blindness. Natural infections of BALB/c mice with Litomosoides sigmodontis and of cattle with Onchocerca ochengi were used as models to study the immune responses to O. volvulus-derived recombinant proteins (OvALT-2, OvNLT-1, Ov103 and Ov7). The humoral immune response of O. volvulus-infected humans against OvALT-2, OvNLT-1 and Ov7 revealed pronounced immunoglobulin G (IgG) titres which were, however, significantly lower than against the lysate of O. volvulus adult female worms. Sera derived from patients displaying the hyperreactive form of onchocerciasis showed a uniform trend of higher IgG reactivity both to the single proteins and the O. volvulus lysate. Sera derived from L. sigmodontis-infected mice and from calves exposed to O. ochengi transmission in a hyperendemic area also contained IgM and IgG1 specific for O. volvulus-derived recombinant proteins. These results strongly suggest that L. sigmodontis-specific and O. ochengi-specific immunoglobulins elicited during natural infection of mice and cattle cross-reacted with O. volvulus-derived recombinant antigens. Monitoring O. ochengi-infected calves over a 26-month period, provided a comprehensive kinetic of the humoral response to infection that was strictly correlated with parasite load and occurrence of microfilariae.
Operator vision aids for space teleoperation assembly and servicing
NASA Technical Reports Server (NTRS)
Brooks, Thurston L.; Ince, Ilhan; Lee, Greg
1992-01-01
This paper investigates concepts for visual operator aids required for effective telerobotic control. Operator visual aids, as defined here, mean any operational enhancement that improves man-machine control through the visual system. These concepts were derived as part of a study of vision issues for space teleoperation. Extensive literature on teleoperation, robotics, and human factors was surveyed to definitively specify appropriate requirements. This paper presents these visual aids in three general categories of camera/lighting functions, display enhancements, and operator cues. In the area of camera/lighting functions concepts are discussed for: (1) automatic end effector or task tracking; (2) novel camera designs; (3) computer-generated virtual camera views; (4) computer assisted camera/lighting placement; and (5) voice control. In the technology area of display aids, concepts are presented for: (1) zone displays, such as imminent collision or indexing limits; (2) predictive displays for temporal and spatial location; (3) stimulus-response reconciliation displays; (4) graphical display of depth cues such as 2-D symbolic depth, virtual views, and perspective depth; and (5) view enhancements through image processing and symbolic representations. Finally, operator visual cues (e.g., targets) that help identify size, distance, shape, orientation and location are discussed.
Huang, Johnny X.; Bishop-Hurley, Sharon L.
2012-01-01
The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens. PMID:22664969
Huang, Johnny X; Bishop-Hurley, Sharon L; Cooper, Matthew A
2012-09-01
The vast majority of anti-infective therapeutics on the market or in development are small molecules; however, there is now a nascent pipeline of biological agents in development. Until recently, phage display technologies were used mainly to produce monoclonal antibodies (MAbs) targeted against cancer or inflammatory disease targets. Patent disputes impeded broad use of these methods and contributed to the dearth of candidates in the clinic during the 1990s. Today, however, phage display is recognized as a powerful tool for selecting novel peptides and antibodies that can bind to a wide range of antigens, ranging from whole cells to proteins and lipid targets. In this review, we highlight research that exploits phage display technology as a means of discovering novel therapeutics against infectious diseases, with a focus on antimicrobial peptides and antibodies in clinical or preclinical development. We discuss the different strategies and methods used to derive, select, and develop anti-infectives from phage display libraries and then highlight case studies of drug candidates in the process of development and commercialization. Advances in screening, manufacturing, and humanization technologies now mean that phage display can make a significant contribution in the fight against clinically important pathogens.
Antiamnesic properties of analogs and mimetics of the tripeptide human urocortin 3.
Telegdy, Gyula; Kovács, Anita Kármen; Rákosi, Kinga; Zarándi, Márta; Tóth, Gábor K
2016-09-01
Amnesia is a deficit in memory caused by brain damage, disease, or trauma. Until now, there are no successful medications on the drug market available to treat amnesia. Short analogs and mimetics of human urocortin 3 (Ucn 3) tripeptide were synthetized and tested for their action against amnesia induced by eletroconvulsion in mice. Among the 16 investigated derivatives of Ucn 3 tripeptide, eight compounds displayed antiamnesic effect. Our results proved that the configuration of chiral center of glutamine does not affect the antiamnesic properties. Alkyl amide or isoleucyl amide at the C-terminus may lead to antiamnesic compounds. As concerned the N-terminus, acetyl, Boc, and alkyl ureido moieties were found among the active analogs, but the free amino function at the N-terminus usually led to an inactive derivatives. These observations may lead to the design and synthesis of small peptidomimetics and amino acid derivatives as antiamnesic drug candidates, although the elucidation of the mechanism of the action requires further investigations.
Bosak, Anita; Knežević, Anamarija; Gazić Smilović, Ivana; Šinko, Goran; Kovarik, Zrinka
2017-12-01
We investigated the influence of bronchodilating β2-agonists on the activity of human acetylcholinesterase (AChE) and usual, atypical and fluoride-resistant butyrylcholinesterase (BChE). We determined the inhibition potency of racemate and enantiomers of fenoterol as a resorcinol derivative, isoetharine and epinephrine as catechol derivatives and salbutamol and salmeterol as saligenin derivatives. All of the tested compounds reversibly inhibited cholinesterases with K i constants ranging from 9.4 μM to 6.4 mM and had the highest inhibition potency towards usual BChE, but generally none of the cholinesterases displayed any stereoselectivity. Kinetic and docking results revealed that the inhibition potency of the studied compounds could be related to the size of the hydroxyaminoethyl chain on the benzene ring. The additional π-π interaction of salmeterol's benzene ring and Trp286 and hydrogen bond with His447 probably enhanced inhibition by salmeterol which was singled out as the most potent inhibitor of all the cholinesterases.
Immune surveillance properties of human NK cell-derived exosomes.
Lugini, Luana; Cecchetti, Serena; Huber, Veronica; Luciani, Francesca; Macchia, Gianfranco; Spadaro, Francesca; Paris, Luisa; Abalsamo, Laura; Colone, Marisa; Molinari, Agnese; Podo, Franca; Rivoltini, Licia; Ramoni, Carlo; Fais, Stefano
2012-09-15
Exosomes are nanovesicles released by normal and tumor cells, which are detectable in cell culture supernatant and human biological fluids, such as plasma. Functions of exosomes released by "normal" cells are not well understood. In fact, several studies have been carried out on exosomes derived from hematopoietic cells, but very little is known about NK cell exosomes, despite the importance of these cells in innate and adaptive immunity. In this paper, we report that resting and activated NK cells, freshly isolated from blood of healthy donors, release exosomes expressing typical protein markers of NK cells and containing killer proteins (i.e., Fas ligand and perforin molecules). These nanovesicles display cytotoxic activity against several tumor cell lines and activated, but not resting, immune cells. We also show that NK-derived exosomes undergo uptake by tumor target cells but not by resting PBMC. Exosomes purified from plasma of healthy donors express NK cell markers, including CD56+ and perforin, and exert cytotoxic activity against different human tumor target cells and activated immune cells as well. The results of this study propose an important role of NK cell-derived exosomes in immune surveillance and homeostasis. Moreover, this study supports the use of exosomes as an almost perfect example of biomimetic nanovesicles possibly useful in future therapeutic approaches against various diseases, including tumors.
Davies, Timothy J.
2012-01-01
The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027
Synthesis and proapoptotic activity of oleanolic acid derived amides.
Heller, Lucie; Knorrscheidt, Anja; Flemming, Franziska; Wiemann, Jana; Sommerwerk, Sven; Pavel, Ioana Z; Al-Harrasi, Ahmed; Csuk, René
2016-10-01
Thirty-one different 3-O-acetyl-OA derived amides have been prepared and screened for their cytotoxic activity. In the SRB assays nearly all the carboxamides displayed good cytotoxicity in the low μM range for several human tumor cell lines. Low EC50 values were obtained especially for the picolinylamides 14-16, for a N-[2-(dimethylamino)-ethyl] derivative 27 and a N-[2-(pyrrolinyl)-ethyl] carboxamide 28. These compounds were submitted to an extensive biological testing and proved compound 15 to act mainly by an arrest of the tumor cells in the S phase of the cell cycle. Cell death occurred by autophagy while compounds 27 and 28 triggered apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Derivation, propagation and differentiation of human embryonic stem cells.
Conley, Brock J; Young, Julia C; Trounson, Alan O; Mollard, Richard
2004-04-01
Embryonic stem (ES) cells are in vitro cultivated pluripotent cells derived from the inner cell mass (ICM) of the embryonic blastocyst. Attesting to their pluripotency, ES cells can be differentiated into representative derivatives of all three embryonic germ layers (endoderm, ectoderm and mesoderm) both in vitro and in vivo. Although mouse ES cells have been studied for many years, human ES cells have only more recently been derived and successfully propagated. Many biochemical differences and culture requirements between mouse and human ES cells have been described, yet despite these differences the study of murine ES cells has provided important insights into methodologies aimed at generating a greater and more in depth understanding of human ES cell biology. One common feature of both mouse and human ES cells is their capacity to undergo controlled differentiation into spheroid structures termed embryoid bodies (EBs). EBs recapitulate several aspects of early development, displaying regional-specific differentiation programs into derivatives of all three embryonic germ layers. For this reason, EB formation has been utilised as an initial step in a wide range of studies aimed at differentiating both mouse and human ES cells into a specific and desired cell type. Recent reports utilising specific growth factor combinations and cell-cell induction systems have provided alternative strategies for the directed differentiation of cells into a desired lineage. According to each one of these strategies, however, a relatively high cell lineage heterogeneity remains, necessitating subsequent purification steps including mechanical dissection, selective media or fluorescent or magnetic activated cell sorting (FACS and MACS, respectively). In the future, the ability to specifically direct differentiation of human ES cells at 100% efficiency into a desired lineage will allow us to fully explore the potential of these cells in the analysis of early human development, drug discovery, drug testing and repair of damaged or diseased tissues via transplantation.
Tsurushita, N; Fu, H; Warren, C
1996-06-12
New phage display vectors for in vivo recombination of immunoglobulin (Ig) heavy (VH) and light (VL) chain variable genes, to make single-chain Fv fragments (scFv), were constructed. The VH and VL genes of monoclonal antibody (mAb) EP-5C7, which binds to both human E- and P-selectin, were cloned into a pUC19-derived plasmid vector, pCW93, and a pACYC184-derived phagemid vector, pCW99, respectively. Upon induction of Cre recombinase (phage P1 recombinase), the VH and VL genes were efficiently recombined into the same plasmid via the two loxP sites (phage P1 recombination sites), one located downstream from a VH gene in pCW93 and another upstream from a VL gene in pCW99. In the resulting phagemid, the loxP sequence also encodes a polypeptide linker connecting the VH and VL domains to form a scFv of EP-5C7. Whether expressed on the phage surface or as a soluble form, the EP-5C7 scFv showed specific binding to human E- and P-selectin. This phagemid vector system provides a way to recombine VH and VL gene libraries efficiently in vivo to make extremely large Ig combinatorial libraries.
Companion animals: Translational scientist’s new best friends
Kol, Amir; Arzi, Boaz; Athanasiou, Kyriacos A.; Farmer, Diana L.; Nolta, Jan A.; Rebhun, Robert B.; Chen, Xinbin; Griffiths, Leigh G.; Verstraete, Frank J. M.; Murphy, Christopher J.; Borjesson, Dori L.
2016-01-01
Knowledge and resources derived from veterinary medicine represent an underused resource that could serve as a bridge between data obtained from diseases models in laboratory animals and human clinical trials. Naturally occurring disease in companion animals that display the defining attributes of similar, if not identical, diseases in humans hold promise for providing predictive proof of concept in the evaluation of new therapeutics and devices. Here we outline comparative aspects of naturally occurring diseases in companion animals and discuss their current uses in translational medicine, benefits, and shortcomings. Last, we envision how these natural models of disease might ultimately decrease the failure rate in human clinical trials and accelerate the delivery of effective treatments to the human clinical market. PMID:26446953
Accurate Prediction of Drug-Induced Liver Injury Using Stem Cell-Derived Populations
Szkolnicka, Dagmara; Farnworth, Sarah L.; Lucendo-Villarin, Baltasar; Storck, Christopher; Zhou, Wenli; Iredale, John P.; Flint, Oliver
2014-01-01
Despite major progress in the knowledge and management of human liver injury, there are millions of people suffering from chronic liver disease. Currently, the only cure for end-stage liver disease is orthotopic liver transplantation; however, this approach is severely limited by organ donation. Alternative approaches to restoring liver function have therefore been pursued, including the use of somatic and stem cell populations. Although such approaches are essential in developing scalable treatments, there is also an imperative to develop predictive human systems that more effectively study and/or prevent the onset of liver disease and decompensated organ function. We used a renewable human stem cell resource, from defined genetic backgrounds, and drove them through developmental intermediates to yield highly active, drug-inducible, and predictive human hepatocyte populations. Most importantly, stem cell-derived hepatocytes displayed equivalence to primary adult hepatocytes, following incubation with known hepatotoxins. In summary, we have developed a serum-free, scalable, and shippable cell-based model that faithfully predicts the potential for human liver injury. Such a resource has direct application in human modeling and, in the future, could play an important role in developing renewable cell-based therapies. PMID:24375539
Analysis of the viewing zone of the Cambridge autostereoscopic display.
Dodgson, N A
1996-04-01
The Cambridge autostereoscopic three-dimensional display is a time-multiplexed device that gives both stereo and movement parallax to the viewer without the need for any special glasses. This analysis derives the size and position of the fully illuminated, and hence useful, viewing zone for a Cambridge display. The viewing zone of such a display is shown to be completely determined by four parameters: the width of the screen, the optimal distance of the viewer from the screen, the width over which an image can be seen across the whole screen at this optimal distance, and the number of views. A display's viewing zone can thus be completely described without reference to the internal implementation of the device. An equation that describes what the eye sees from any position in front of the display is derived. The equations derived can be used in both the analysis and design of this type of time-multiplexed autostereoscopic display.
Lacroix, Isabelle M E; Li-Chan, Eunice C Y
2015-07-01
The enzyme dipeptidyl-peptidase IV (DPP-IV) is recognized to be a promising target for the management of type 2 diabetes. Over the last decade, numerous synthetic molecules and more recently, peptides from dietary proteins, have been reported to be able to inhibit DPP-IV activity. Most studies that have investigated the in vitro effect of these inhibitors have used porcine or human DPP-IV. Although structurally alike, it is unclear whether these two species display similar inhibition patterns. Therefore, the objective of this study was to compare the effects of protein-derived peptides on the activity of porcine and recombinant human DPP-IV. The two species showed different inhibition susceptibility to 43 of the 62 peptide sequences investigated. While 37 protein-derived peptides were more effective at inhibiting the porcine DPP-IV, only six caused a stronger inhibition of the activity of the human enzyme. Although the peptides WR, IPIQY and WCKDDQNPHS were found to be among the most potent inhibitors of both species, the inhibitory effect was greater on the porcine enzyme than on human DPP-IV (αKi or Ki=11.5, 13.4, 13.3 μM and 31.4, 28.2, 75.0 μM for porcine and human DPP-IV, respectively). Investigation into the mode of action of the most effective inhibitory peptides revealed that both species were inhibited in a similar manner by short fragments (≤5 amino acid residues), but that some of the longer peptides acted differently on the enzymes. This study shows that porcine DPP-IV is generally inhibited with greater potency by protein-derived peptides than is the human enzyme. Copyright © 2015 Elsevier Inc. All rights reserved.
Synthesis and cytotoxic activity of some 17-picolyl and 17-picolinylidene androstane derivatives.
Djurendić, Evgenija A; Ajduković, Jovana J; Sakač, Marija N; Csanádi, János J; Kojić, Vesna V; Bogdanović, Gordana M; Penov Gaši, Katarina M
2012-08-01
New 17-picolyl and 17-picolinylidene androstane derivatives, 3-10, 15, 18, 19, 22 and 23, were synthesized starting from 17α-picolyl-androst-5-en-3β,17β-diol (1) and 17(Z)-picolinylidene-androst-5-en-3β-ol (2). Reaction of 1 with m-chloroperoxybenzoic acid gives 5α,6α-epoxy N-oxide derivative 3, or, with Jones reagent, 3,6-dione derivative 4; while 17α-picolyl-androst-5-en-3β,4α,17β-triol (5) or 3β,4β,17β-triol (6) derivatives are obtainable from 1 using SeO(2) in dioxane. Base-catalyzed tosyl group elimination from 7 or 9 affords AB conjugated derivatives 8 and 10. Oppenauer oxidation of 1 and 2 yields 4-en-3-one derivatives 11 and 12, which, with H(2)O(2) in 4 M NaOH, affords 4α,5α and 4β,5β-epoxides 13, 14, 16 and 17. New 4-methoxy-3-keto derivatives 15 and 18 were obtained from 13 and 14, or, with methanol in 4 M NaOH, from 16 and 17. Reduction of 11 with NaBH(4) gives 22, which was then acetylated to obtain 23. All new derivatives were screened for antitumor activity against human breast adenocarcinoma ER+, MCF-7; human breast adenocarcinoma ER-, MDA-MB-231; prostate cancer AR-, PC-3; human cervix carcinoma, HeLa; and colon cancer, HT-29 cells; as well as one human non-tumor cell line, MRC-5. Compounds 3, 5, 6, 8, 10, 18, 19 and 22 exhibited significant antitumor activity against MDA-MB-231 breast cancer cells; while 5, 6 and 10 also showed strong cytotoxicity against HT-29. Only compound 19 exhibited significant activity against MCF-7 breast cancer cells. No compounds displayed cytotoxicity against non-tumor MRC-5 cells. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Poeschl, Sandra; Doering, Nicola
2013-01-01
Virtual training applications with high levels of immersion or fidelity (for example for social phobia treatment) produce high levels of presence and therefore belong to the most successful Virtual Reality developments. Whereas display and interaction fidelity (as sub-dimensions of immersion) and their influence on presence are well researched, realism of the displayed simulation depends on the specific application and is therefore difficult to measure. We propose to measure simulation realism by using a self-report questionnaire. The German VR Simulation Realism Scale for VR training applications was developed based on a translation of scene realism items from the Witmer-Singer-Presence Questionnaire. Items for realism of virtual humans (for example for social phobia training applications) were supplemented. A sample of N = 151 students rated simulation realism of a Fear of Public Speaking application. Four factors were derived by item- and principle component analysis (Varimax rotation), representing Scene Realism, Audience Behavior, Audience Appearance and Sound Realism. The scale developed can be used as a starting point for future research and measurement of simulation realism for applications including virtual humans.
Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S
2006-07-01
Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.
Zha, Zhihao; Choi, Seok Rye; Ploessl, Karl; Lieberman, Brian P; Qu, Wenchao; Hefti, Franz; Mintun, Mark; Skovronsky, Daniel; Kung, Hank F
2011-12-08
β-Amyloid plaques (Aβ plaques) in the brain are associated with cerebral amyloid angiopathy (CAA). Imaging agents that could target the Aβ plaques in the living human brain would be potentially valuable as biomarkers in patients with CAA. A new series of (18)F styrylpyridine derivatives with high molecular weights for selectively targeting Aβ plaques in the blood vessels of the brain but excluded from the brain parenchyma is reported. The styrylpyridine derivatives, 8a-c, display high binding affinities and specificity to Aβ plaques (K(i) = 2.87, 3.24, and 7.71 nM, respectively). In vitro autoradiography of [(18)F]8a shows labeling of β-amyloid plaques associated with blood vessel walls in human brain sections of subjects with CAA and also in the tissue of AD brain sections. The results suggest that [(18)F]8a may be a useful PET imaging agent for selectively detecting Aβ plaques associated with cerebral vessels in the living human brain.
Mandal, Arundhati; Raju, Sheena; Viswanathan, Chandra
2016-02-01
Human embryonic stem cells (hESCs) are predicted to be an unlimited source of hepatocytes which can pave the way for applications such as cell replacement therapies or as a model of human development or even to predict the hepatotoxicity of drug compounds. We have optimized a 23-d differentiation protocol to generate hepatocyte-like cells (HLCs) from hESCs, obtaining a relatively pure population which expresses the major hepatic markers and is functional and mature. The stability of the HLCs in terms of hepato-specific marker expression and functionality was found to be intact even after an extended period of in vitro culture and cryopreservation. The hESC-derived HLCs have shown the capability to display sensitivity and an alteration in the level of CYP enzyme upon drug induction. This illustrates the potential of such assays in predicting the hepatotoxicity of a drug compound leading to advancement of pharmacology.
Vibrotactile display for mobile applications based on dielectric elastomer stack actuators
NASA Astrophysics Data System (ADS)
Matysek, Marc; Lotz, Peter; Flittner, Klaus; Schlaak, Helmut F.
2010-04-01
Dielectric elastomer stack actuators (DESA) offer the possibility to build actuator arrays at very high density. The driving voltage can be defined by the film thickness, ranging from 80 μm down to 5 μm and driving field strength of 30 V/μm. In this paper we present the development of a vibrotactile display based on multilayer technology. The display is used to present several operating conditions of a machine in form of haptic information to a human finger. As an example the design of a mp3-player interface is introduced. To build up an intuitive and user friendly interface several aspects of human haptic perception have to be considered. Using the results of preliminary user tests the interface is designed and an appropriate actuator layout is derived. Controlling these actuators is important because there are many possibilities to present different information, e.g. by varying the driving parameters. A built demonstrator is used to verify the concept: a high recognition rate of more than 90% validates the concept. A characterization of mechanical and electrical parameters proofs the suitability of dielectric elastomer stack actuators for the use in mobile applications.
OMV man/system simulation integration: A preliminary analysis and recommendation
NASA Technical Reports Server (NTRS)
Rogers, Jon G.
1988-01-01
The Orbital Maneuvering Vehicle (OMV) presents a series of challenges to the human operator. Some are unique to the OMV system itself, and are largely due to remote control versus control from the cockpit. Other challenges are not necessarily unique to the OMV, but are characteristic of many man-machine space flight systems. All of these challenges affect the operator's ability to perform his portion of the mission, and could lead to human error which might jeopardize the vehicle, mission, or both. It is imperative to make every effort to design the control and displays to facilitate the operator's task. The experimental program should address the perceptual, mediational, and motor dimensions of operator performance. With this in mind, a literature review with relevant design considerations was initiated, and a comprehensive outline of control/display parameters were developed. Out of this, a series of questions not answered in the literature was derived which can be converted into experimental protocols for the simulation program. A major task of the aircraft pilot as well as the OMV operator is prediction. Certain display principles have proved to enhance the pilot's ability to predict. A brief examination of some of these principles in relationship to OMV may be useful.
Strobel, Oliver; Dadabaeva, Nigora; Felix, Klaus; Hackert, Thilo; Giese, Nathalia A; Jesenofsky, Ralf; Werner, Jens
2016-02-01
Pancreatic stellate cells (PSCs) play a critical role in pancreatic ductal adenocarcinoma (PDAC). Activated PSCs are the main source of fibrosis in chronic pancreatitis and of desmoplasia in PDAC. The majority of studies on PSC are based on in vitro experiments relying on immortalized cell lines derived from diseased human pancreas or from animal models. These PSCs are usually activated and may not represent the biological context of their tissue of origin. (1) To isolate and culture primary human PSC from different disease contexts with minimal impact on their state of activation. (2) To perform a comparative analysis of phenotypes of PSC derived from different contexts. PSCs were isolated from normal pancreas, chronic pancreatitis, and PDAC using a hybrid method of digestion and outgrowth. To minimize activation by serum compounds, cells were cultured in a low-serum environment (2.5 % fetal bovine serum (FBS)). Expression patterns of commonly used markers for PSC phenotype and activity were compared between primary PSC lines derived from different contexts and correlated to expression in their original tissues. Isolation was successful from 14 of 17 tissues (82 %). Isolated PSC displayed stable viability and phenotype in low-serum environment. Expression profiles of isolated PSC and matched original tissues were closely correlated. PDAC-derived PSC tended to have a higher status of activation if compared to PSC derived from non-cancerous tissues. Primary human PSCs isolated from different contexts and cultured in a low-serum environment maintain a phenotype that reflects the stromal activity present in their tissue of origin.
Aberdam, Edith; Petit, Isabelle; Sangari, Linda; Aberdam, Daniel
2017-01-01
Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests.
Aberdam, Edith; Petit, Isabelle; Sangari, Linda
2017-01-01
Induced pluripotent stem cells hold great potential to produce unlimited amount of differentiated cells as cellular source for regenerative medicine but also for in vitro drug screening and cytotoxicity tests. Ocular toxicity testing is mandatory to evaluate the risks of drugs and cosmetic products before their application to human patients by preventing eye irritation or insult. Since the global ban to use animals, many human-derived alternatives have been proposed, from ex-vivo enucleated postmortem cornea, primary corneal cell culture and immortalized corneal epithelial cell lines. All of them share limitations for their routine use. Using an improved protocol, we derived limbal epithelial cells from human induced pluripotent stem cells, named LiPSC, that are able to be passaged and differentiate further into corneal epithelial cells. Comparative RT-qPCR, immunofluorescence staining, flow cytometry analysis and zymography assays demonstrate that LiPSC are morphologically and molecularly similar to the adult stem cells. Moreover, contrary to HCE, LiPSC and primary limbal cells display similarly sensitive to cytotoxicity treatment among passages. Our data strongly suggest that LiPSC could become a powerful alternative cellular model for cosmetic and drug tests. PMID:28640863
Enterobactin: An archetype for microbial iron transport
Raymond, Kenneth N.; Dertz, Emily A.; Kim, Sanggoo S.
2003-01-01
Bacteria have aggressive acquisition processes for iron, an essential nutrient. Siderophores are small iron chelators that facilitate cellular iron transport. The siderophore enterobactin is a triscatechol derivative of a cyclic triserine lactone. Studies of the chemistry, regulation, synthesis, recognition, and transport of enterobactin make it perhaps the best understood of the siderophore-mediated iron uptake systems, displaying a lot of function packed into this small molecule. However, recent surprises include the isolation of corynebactin, a closely related trithreonine triscatechol derivative lactone first found in Gram-positive bacteria, and the crystal structure of a ferric enterobactin complex of a protein identified as an antibacterial component of the human innate immune system. PMID:12655062
Guiding plant virus particles to integrin-displaying cells
NASA Astrophysics Data System (ADS)
Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.
2012-05-01
Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b
KIM, JAEHYUP; BREUNIG, MELISSA J.; ESCALANTE, LEAH E.; BHATIA, NEEHAR; DENU, RYAN A.; DOLLAR, BRIDGET A.; STEIN, ANDREW P.; HANSON, SUMMER E.; NADERI, NADIA; RADEK, JAMES; HAUGHY, DERMOT; BLOOM, DEBRA D.; ASSADI-PORTER, FARIBA M.; HEMATTI, PEIMAN
2012-01-01
Background aims Mesenchymal stromal cells (MSC) have now been shown to reside in numerous tissues throughout the body, including the pancreas. Ex vivo culture-expanded MSC derived from many tissues display important interactions with different types of immune cells in vitro and potentially play a significant role in tissue homeostasis in vivo. In this study, we investigated the biologic and immunomodulatory properties of human pancreatic islet-derived MSC. Methods We culture-expanded MSC from cadaveric human pancreatic islets and characterized them using flow cytometry, differentiation assays and nuclear magnetic resonance-based metabolomics. We also investigated the immunologic properties of pancreatic islet-derived MSC compared with bone marrow (BM) MSC. Results Pancreatic islet and BM-derived MSC expressed the same cell-surface markers by flow cytometry, and both could differentiate into bone, fat and cartilage. Metabolomics analysis of MSC from BM and pancreatic islets also showed a similar set of metabolic markers but quantitative polymerase chain reactions showed that pancreatic islet MSC expressed more interleukin(IL)-1b, IL-6, STAT3 and FGF9 compared with BM MSC, and less IL-10. However, similar to BM MSC, pancreatic islet MSC were able to suppress proliferation of allogeneic T lymphocytes stimulated with anti-CD3 and anti-CD28 antibodies. Conclusions Our in vitro analysis shows pancreatic islet-derived MSC have phenotypic, biologic and immunomodulatory characteristics similar, but not identical, to BM-derived MSC. We propose that pancreatic islet-derived MSC could potentially play an important role in improving the outcome of pancreatic islet transplantation by promoting engraftment and creating a favorable immune environment for long-term survival of islet allografts. PMID:22571381
An integrated vector system for cellular studies of phage display-derived peptides.
Voss, Stephan D; DeGrand, Alec M; Romeo, Giulio R; Cantley, Lewis C; Frangioni, John V
2002-09-15
Peptide phage display is a method by which large numbers of diverse peptides can be screened for binding to a target of interest. Even when successful, the rate-limiting step is usually validation of peptide bioactivity using living cells. In this paper, we describe an integrated system of vectors that expedites both the screening and the characterization processes. Library construction and screening is performed using an optimized type 3 phage display vector, mJ(1), which is shown to accept peptide libraries of at least 23 amino acids in length. Peptide coding sequences are shuttled from mJ(1) into one of three families of mammalian expression vectors for cell physiological studies. The vector pAL(1) expresses phage display-derived peptides as Gal4 DNA binding domain fusion proteins for transcriptional activation studies. The vectors pG(1), pG(1)N, and pG(1)C express phage display-derived peptides as green fluorescent protein fusions targeted to the entire cell, nucleus, or cytoplasm, respectively. The vector pAP(1) expresses phage display-derived peptides as fusions to secreted placental alkaline phosphatase. Such enzyme fusions can be used as highly sensitive affinity reagents for high-throughput assays and for cloning of peptide-binding cell surface receptors. Taken together, this system of vectors should facilitate the development of phage display-derived peptides into useful biomolecules.
Cai, Ming-Guang; Wu, Yang; Chang, Jun
2016-05-15
With an intention to find more potent antibacterial agents, four halogen disubstituted thiazolineone derivatives (2a-d), five halogen monosubstituted thiazolineone derivatives (2e-i), and eleven 2-arylimino-3-pyridin-thiazolineone derivatives (2j-t) were synthesized and screened for their antibacterial activity, bactericidal activity, cytotoxicity, and erythrocyte hemolysis. Most of the synthesized derivatives showed antibacterial activity in inhibiting the growth of S. epidermidis and MRSA, and exhibited safety in the cytotoxicity study on the Vero cells and hemolytic activities test on healthy human erythrocytes. 2-Arylimino-3-pyridin-thiazolineone derivatives not only improved the clog P, but also showed potent antibacterial activity in inhibiting the growth of S. epidermidis and MRSA. In particularly, several compounds (2f, 2i, 2r and 2t) showed bactericidal activity, in which compound 2r displayed the best inhibitory capacity among the synthesized compounds, and further druggability research is on going. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drago-Serrano, Maria Elisa; Campos-Rodriguez, Rafael; Carrero, Julio Cesar; de la Garza, Mireya
2018-03-27
Lactoferrin (Lf) is a conserved cationic non-heme glycoprotein that is part of the innate immune defense system of mammals. Lf is present in colostrum, milk and mucosal sites, and it is also produced by polymorphonuclear neutrophils and secreted at infection sites. Lf and Lf N-terminus peptide-derivatives named lactoferricins (Lfcins) are molecules with microbiostatic and microbicidal action in a wide array of pathogens. In addition, they display regulatory properties on components of nonspecific immunity, including toll-like receptors, pro- and anti-inflammatory cytokines, and reactive oxygen species. Mechanisms explaining the ability of Lf and Lfcins to display both up- and down-modulatory properties on cells are not fully understood but result, in part, from their interactions with membrane receptors that elicit biochemical signal pathways, whereas other receptors enable the nuclear translocation of these molecules for the modulation of target genes. The dual role of Lf and Lfcins as antimicrobials and immunomodulators is of biotechnological and pharmaceutical interest. Native Lf and its peptide-derivatives from human and bovine sources, the recombinant versions of the human protein, and their synthetic peptides have potential application as adjunctive agents in therapies to combat infections caused by multi-resistant bacteria and those caused by fungi, protozoa and viruses, as well as in the prevention and reduction of several types of cancer and response to LPS-shock, among other effects. In this review, we summarize the immunomodulatory properties of the unique multifunctional protein Lf and its N-terminus peptides. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Tatematsu, Kenji; Iijima, Masumi; Yoshimoto, Nobuo; Nakai, Tadashi; Okajima, Toshihide; Kuroda, Shun'ichi
2016-04-15
The bio-nanocapsule (BNC) is an approximately 30-nm particle comprising the hepatitis B virus (HBV) envelope L protein and a lipid bilayer. The L protein harbors the HBV-derived infection machinery; therefore, BNC can encapsulate payloads such as drugs, nucleic acids, and proteins and deliver them into human hepatocytes specifically in vitro and in vivo. To diversify the possible functions of BNC, we generated ZZ-BNC by replacing the domain indispensable for the human hepatotrophic property of BNC (N-terminal region of L protein) with the tandem form of the IgG Fc-binding Z domain of Staphylococcus aureus protein A. Thus, the ZZ-BNC is an active targeting-based drug delivery system (DDS) nanocarrier that depends on the specificity of the IgGs displayed. However, the Z domain limits the animal species and subtypes of IgGs that can be displayed on ZZ-BNC. In this study, we introduced into BNC an Ig κ light chain-binding B1 domain of Finegoldia magna protein L (protein-L B1 domain) and an Ig Fc-binding C2 domain of Streptococcus species protein G (protein-G C2 domain) to produce LG-BNC. The LL-BNC was constructed in a similar way using a tandem form of the protein-L B1 domain. Both LG-BNC and LL-BNC could display rat IgGs, mouse IgG1, human IgG3, and human IgM, all of which not binding to ZZ-BNC, and accumulate in target cells in an antibody specificity-dependent manner. Thus, these BNCs could display a broad spectrum of Igs, significantly improving the prospects for BNCs as active targeting-based DDS nanocarriers. We previously reported that ZZ-BNC, bio-nanocapsule deploying the IgG-binding Z domain of protein A, could display cell-specific antibody in an oriented immobilization manner, and act as an active targeting-based DDS nanocarrier. Since the Z domain can only bind to limited types of Igs, we generated BNCs deploying other Ig-binding domains: LL-BNC harboring the tandem form of Ig-binding domain of protein L, and LG-BNC harboring the Ig binding domains of protein L and protein G sequentially. Both BNCs could display a broader spectrum of Igs than does the ZZ-BNC. When these BNCs displayed anti-CD11c IgG or anti-EGFR IgG, both of which cannot bind to Z domain, they could bind to and then enter their respective target cells. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Miocene small-bodied ape from Eurasia sheds light on hominoid evolution.
Alba, David M; Almécija, Sergio; DeMiguel, Daniel; Fortuny, Josep; Pérez de los Ríos, Miriam; Pina, Marta; Robles, Josep M; Moyà-Solà, Salvador
2015-10-30
Miocene small-bodied anthropoid primates from Africa and Eurasia are generally considered to precede the divergence between the two groups of extant catarrhines—hominoids (apes and humans) and Old World monkeys—and are thus viewed as more primitive than the stem ape Proconsul. Here we describe Pliobates cataloniae gen. et sp. nov., a small-bodied (4 to 5 kilograms) primate from the Iberian Miocene (11.6 million years ago) that displays a mosaic of primitive characteristics coupled with multiple cranial and postcranial shared derived features of extant hominoids. Our cladistic analyses show that Pliobates is a stem hominoid that is more derived than previously described small catarrhines and Proconsul. This forces us to reevaluate the role played by small-bodied catarrhines in ape evolution and provides key insight into the last common ancestor of hylobatids (gibbons) and hominids (great apes and humans). Copyright © 2015, American Association for the Advancement of Science.
Sevšek, Alen; Šrot, Luka; Rihter, Jakob; Čelan, Maša; van Ufford, Linda Quarles; Moret, Ed E; Martin, Nathaniel I; Pieters, Roland J
2017-04-06
A series of lipidated guanidino and urea derivatives of 1,5-dideoxy-1,5-imino-d-xylitol were prepared from d-xylose using a concise synthetic protocol. Inhibition assays with a panel of glycosidases revealed that the guanidino analogues display potent inhibition against human recombinant β-glucocerebrosidase with IC 50 values in the low nanomolar range. Related urea analogues of 1,5-dideoxy-1,5-imino-d-xylitol were also synthesized and evaluated in the same fashion and found to be selective for β-galactosidase from bovine liver. No inhibition of human recombinant β-glucocerebrosidase was observed for the urea analogues. Computational studies provided insight into the potent activity of analogues bearing the substituted guanidine moiety in the inhibition of lysosomal glucocerebrosidase (GBA). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Alsalme, Ali; Laeeq, Sameen; Dwivedi, Sourabh; Khan, Mohd. Shahnawaz; Al Farhan, Khalid; Musarrat, Javed; Khan, Rais Ahmad
2016-06-01
We have synthesized two new complexes of platinum (1) and ruthenium (2) with α-amino acid, L-alanine, and 2,3-dihydroxybenzaldehyde derived Schiff base (L). The ligand and both complexes were characterized by using elemental analysis and several other spectroscopic techniques viz; IR, 1H, 13C NMR, EPR, and ESI-MS. Furthermore, the protein-binding ability of synthesized complexes was monitored by UV-visible, fluorescence and circular dichroism techniques with a model protein, human serum albumin (HSA). Both the PtL2 and RuL2 complexes displayed significant binding towards HSA. Also, in vitro cytotoxicity assay for both complexes was carried out on human hepatocellular carcinoma cancer (HepG2) cell line. The results showed concentration-dependent inhibition of cell viability. Moreover, the generation of reactive oxygen species was also evaluated, and results exhibited substantial role in cytotoxicity.
Advances in phage display technology for drug discovery.
Omidfar, Kobra; Daneshpour, Maryam
2015-06-01
Over the past decade, several library-based methods have been developed to discover ligands with strong binding affinities for their targets. These methods mimic the natural evolution for screening and identifying ligand-target interactions with specific functional properties. Phage display technology is a well-established method that has been applied to many technological challenges including novel drug discovery. This review describes the recent advances in the use of phage display technology for discovering novel bioactive compounds. Furthermore, it discusses the application of this technology to produce proteins and peptides as well as minimize the use of antibodies, such as antigen-binding fragment, single-chain fragment variable or single-domain antibody fragments like VHHs. Advances in screening, manufacturing and humanization technologies demonstrate that phage display derived products can play a significant role in the diagnosis and treatment of disease. The effects of this technology are inevitable in the development pipeline for bringing therapeutics into the market, and this number is expected to rise significantly in the future as new advances continue to take place in display methods. Furthermore, a widespread application of this methodology is predicted in different medical technological areas, including biosensing, monitoring, molecular imaging, gene therapy, vaccine development and nanotechnology.
Man-vehicle systems research facility: Design and operating characteristics
NASA Technical Reports Server (NTRS)
1983-01-01
The Man-Vehicle Systems Research Facility (MVSRF) provides the capability of simulating aircraft (two with full crews), en route and terminal air traffic control and aircrew interactions, and advanced cockpit (1995) display representative of future generations of aircraft, all within the full mission context. The characteristics of this facility derive from research, addressing critical human factors issues that pertain to: (1) information requirements for the utilization and integration of advanced electronic display systems, (2) the interaction and distribution of responsibilities between aircrews and ground controllers, and (3) the automation of aircrew functions. This research has emphasized the need for high fidelity in simulations and for the capability to conduct full mission simulations of relevant aircraft operations. This report briefly describes the MVSRF design and operating characteristics.
Requirement for Jagged1-Notch2 signaling in patterning the bones of the mouse and human middle ear.
Teng, Camilla S; Yen, Hai-Yun; Barske, Lindsey; Smith, Bea; Llamas, Juan; Segil, Neil; Go, John; Sanchez-Lara, Pedro A; Maxson, Robert E; Crump, J Gage
2017-05-31
Whereas Jagged1-Notch2 signaling is known to pattern the sensorineural components of the inner ear, its role in middle ear development has been less clear. We previously reported a role for Jagged-Notch signaling in shaping skeletal elements derived from the first two pharyngeal arches of zebrafish. Here we show a conserved requirement for Jagged1-Notch2 signaling in patterning the stapes and incus middle ear bones derived from the equivalent pharyngeal arches of mammals. Mice lacking Jagged1 or Notch2 in neural crest-derived cells (NCCs) of the pharyngeal arches display a malformed stapes. Heterozygous Jagged1 knockout mice, a model for Alagille Syndrome (AGS), also display stapes and incus defects. We find that Jagged1-Notch2 signaling functions early to pattern the stapes cartilage template, with stapes malformations correlating with hearing loss across all frequencies. We observe similar stapes defects and hearing loss in one patient with heterozygous JAGGED1 loss, and a diversity of conductive and sensorineural hearing loss in nearly half of AGS patients, many of which carry JAGGED1 mutations. Our findings reveal deep conservation of Jagged1-Notch2 signaling in patterning the pharyngeal arches from fish to mouse to man, despite the very different functions of their skeletal derivatives in jaw support and sound transduction.
Visual field information in Nap-of-the-Earth flight by teleoperated Helmet-Mounted displays
NASA Technical Reports Server (NTRS)
Grunwald, Arthur J.; Kohn, S.; Merhav, S. J.
1991-01-01
The human ability to derive Control-Oriented Visual Field Information from teleoperated Helmet-Mounted displays in Nap-of-the-Earth flight, is investigated. The visual field with these types of displays originates from a Forward Looking Infrared Radiation Camera, gimbal-mounted at the front of the aircraft and slaved to the pilot's line-of-sight, to obtain wide-angle visual coverage. Although these displays are proved to be effective in Apache and Cobra helicopter night operations, they demand very high pilot proficiency and work load. Experimental work presented in the paper has shown that part of the difficulties encountered in vehicular control by means of these displays can be attributed to the narrow viewing aperture and head/camera slaving system phase lags. Both these shortcomings will impair visuo-vestibular coordination, when voluntary head rotation is present. This might result in errors in estimating the Control-Oriented Visual Field Information vital in vehicular control, such as the vehicle yaw rate or the anticipated flight path, or might even lead to visuo-vestibular conflicts (motion sickness). Since, under these conditions, the pilot will tend to minimize head rotation, the full wide-angle coverage of the Helmet-Mounted Display, provided by the line-of-sight slaving system, is not always fully utilized.
Olazaran, Fabián E; Rivera, Gildardo; Pérez-Vázquez, Alondra M; Morales-Reyes, Cynthia M; Segura-Cabrera, Aldo; Balderas-Rentería, Isaías
2017-01-12
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [ N -( p -methoxy-phenyl)-2-( p -methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site.
2016-01-01
Potential anticancer activity of 16 azetidin-2-one derivatives was evaluated showing that compound 6 [N-(p-methoxy-phenyl)-2-(p-methyl-phenyl)-3-phenoxy-azetidin-2-one] presented cytotoxic activity in SiHa cells and B16F10 cells. The caspase-3 assay in B16F10 cells displayed that azetidin-2-one derivatives induce apoptosis. Microarray and molecular analysis showed that compound 6 was involved on specific gene overexpression of cytoskeleton regulation and apoptosis due to the inhibition of some cell cycle genes. From the 16 derivatives, compound 6 showed the highest selectivity to neoplastic cells, it was an inducer of apoptosis, and according to an in silico analysis of chemical interactions with colchicine binding site of human α/β-tubulin, the mechanism of action could be a molecular interaction involving the amino acids outlining such binding site. PMID:28105271
NASA Astrophysics Data System (ADS)
Lo, Mei-Chun; Hsieh, Tsung-Hsien; Perng, Ruey-Kuen; Chen, Jiong-Qiao
2010-01-01
The aim of this research is to derive illuminant-independent type of HDR imaging modules which can optimally multispectrally reconstruct of every color concerned in high-dynamic-range of original images for preferable cross-media color reproduction applications. Each module, based on either of broadband and multispectral approach, would be incorporated models of perceptual HDR tone-mapping, device characterization. In this study, an xvYCC format of HDR digital camera was used to capture HDR scene images for test. A tone-mapping module was derived based on a multiscale representation of the human visual system and used equations similar to a photoreceptor adaptation equation, proposed by Michaelis-Menten. Additionally, an adaptive bilateral type of gamut mapping algorithm, using approach of a multiple conversing-points (previously derived), was incorporated with or without adaptive Un-sharp Masking (USM) to carry out the optimization of HDR image rendering. An LCD with standard color space of Adobe RGB (D65) was used as a soft-proofing platform to display/represent HDR original RGB images, and also evaluate both renditionquality and prediction-performance of modules derived. Also, another LCD with standard color space of sRGB was used to test gamut-mapping algorithms, used to be integrated with tone-mapping module derived.
Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes.
Sancilio, Silvia; Di Staso, Silvio; Sebastiani, Stefano; Centurione, Lucia; Di Girolamo, Nick; Ciancaglini, Marco; Di Pietro, Roberta
2017-01-01
Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody) and CD140 (anti-fibroblast transmembrane glycoprotein antibody) expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium.
Curcuma longa Is Able to Induce Apoptotic Cell Death of Pterygium-Derived Human Keratinocytes
Sancilio, Silvia; Di Staso, Silvio; Sebastiani, Stefano; Centurione, Lucia; Ciancaglini, Marco
2017-01-01
Pterygium is a relatively common eye disease that can display an aggressive clinical behaviour. To evaluate the in vitro effects of Curcuma longa on human pterygium-derived keratinocytes, specimens of pterygium from 20 patients undergoing pterygium surgical excision were collected. Pterygium explants were put into culture and derived keratinocytes were treated with an alcoholic extract of 1.3% Curcuma longa in 0.001% Benzalkonium Chloride for 3, 6, and 24 h. Cultured cells were examined for CAM5.2 (anti-cytokeratin antibody) and CD140 (anti-fibroblast transmembrane glycoprotein antibody) expression between 3th and 16th passage to assess cell homogeneity. TUNEL technique and Annexin-V/PI staining in flow cytometry were used to detect keratinocyte apoptosis. We showed that Curcuma longa exerts a proapoptotic effect on pterygium-derived keratinocytes already after 3 h treatment. Moreover, after 24 h treatment, Curcuma longa induces a significant increase in TUNEL as well as Annexin-V/PI positive cells in comparison to untreated samples. Our study confirms previous observations highlighting the expression, in pterygium keratinocytes, of nuclear VEGF and gives evidence for the first time to the expression of nuclear and cytoplasmic VEGF-R1. All in all, these findings suggest that Curcuma longa could have some therapeutic potential in the treatment and prevention of human pterygium. PMID:29392130
Derivation of the King's College London human embryonic stem cell lines.
Stephenson, Emma L; Braude, Peter R
2010-04-01
Since the derivation of the first human embryonic stem cell (hESC) line in 1998, there has been substantial interest in the potential of these cells for regenerative medicine and cell therapy and in the use of hESCs carrying clinically relevant genetic mutations as models for disease research and therapeutic target identification. There is still a need to improve derivation efficiency and further the understanding of the basic biology of these cells and to develop clinical grade culture systems with the aim of producing cell lines suitable for subsequent manipulation for therapy. The derivation of initial hESC lines at King's College London is discussed here, with focus on derivation methodology. Each of the derivations was distinctive. Although the stage and morphology of each blastocyst were generally similar in each attempt, the behaviour of the colonies was unpredictable; colony morphology and development was different with each attempt. Days 5, 6 and 7 blastocysts were used successfully, and the number of days until appearance of stem-like cells varied from 4 to 14 d. Routine characterisation analyses were performed on three lines, all of which displayed appropriate marker expression and survived cryopreservation-thaw cycles. From the lines discussed, four are at various stages of the deposition process with the UKSCB, one is pending submission and two are unsuitable for banking. Continued open and transparent reporting of results and collaborations will maximise the efficiency of derivation and facilitate the development of standardised protocols for the derivation and early culture of hESC lines.
Borsotti, Chiara; Danzl, Nichole M; Nauman, Grace; Hölzl, Markus A; French, Clare; Chavez, Estefania; Khosravi-Maharlooei, Mohsen; Glauzy, Salome; Delmotte, Fabien R; Meffre, Eric; Savage, David G; Campbell, Sean R; Goland, Robin; Greenberg, Ellen; Bi, Jing; Satwani, Prakash; Yang, Suxiao; Bathon, Joan; Winchester, Robert; Sykes, Megan
2017-10-24
B cells play a major role in antigen presentation and antibody production in the development of autoimmune diseases, and some of these diseases disproportionally occur in females. Moreover, immune responses tend to be stronger in female vs male humans and mice. Because it is challenging to distinguish intrinsic from extrinsic influences on human immune responses, we used a personalized immune (PI) humanized mouse model, in which immune systems were generated de novo from adult human hematopoietic stem cells (HSCs) in immunodeficient mice. We assessed the effect of recipient sex and of donor autoimmune diseases (type 1 diabetes [T1D] and rheumatoid arthritis [RA]) on human B-cell development in PI mice. We observed that human B-cell levels were increased in female recipients regardless of the source of human HSCs or the strain of immunodeficient recipient mice. Moreover, mice injected with T1D- or RA-derived HSCs displayed B-cell abnormalities compared with healthy control HSC-derived mice, including altered B-cell levels, increased proportions of mature B cells and reduced CD19 expression. Our study revealed an HSC-extrinsic effect of recipient sex on human B-cell reconstitution. Moreover, the PI humanized mouse model revealed HSC-intrinsic defects in central B-cell tolerance that recapitulated those in patients with autoimmune diseases. These results demonstrate the utility of humanized mouse models as a tool to better understand human immune cell development and regulation.
Hu, Zu-Quan; Liu, Jin-Long; Li, He-Ping; Xing, Shu; Xue, Sheng; Zhang, Jing-Bo; Wang, Jian-Hua; Nölke, Greta; Liao, Yu-Cai
2012-01-01
Fusarium verticillioides is the primary causal agent of Fusarium ear and kernel rot in maize, producing fumonisin mycotoxins that are toxic to humans and domestic animals. Rapid detection and monitoring of fumonisin-producing fungi are pivotally important for the prevention of mycotoxins from entering into food/feed products. Chicken-derived single-chain variable fragments (scFvs) against cell wall-bound proteins from F. verticillioides were isolated from an immunocompetent phage display library. Comparative phage enzyme-linked immunosorbant assays (ELISAs) and sequencing analyses identified four different scFv antibodies with high sensitivity. Soluble antibody ELISAs identified two highly sensitive scFv antibodies, FvCA3 and FvCA4, with the latter being slightly more sensitive. Three-dimensional modeling revealed that the FvCA4 may hold a better overall structure with CDRH3, CDRL1 and CDRL3 centered in the core region of antibody surface compared with that of other scFvs. Immunofluorescence labeling revealed that the binding of FvCA4 antibody was localized to the cell walls of conidiospores and hyphae of F. verticillioides, confirming the specificity of this antibody for a surface target. This scFv antibody was able to detect the fungal mycelium as low as 10−2 μg/mL and contaminating mycelium at a quantity of 10−2 mg/g maize. This is the first report that scFv antibodies derived from phage display have a wide application for rapid and accurate detection and monitoring of fumonisin-producing pathogens in agricultural samples. PMID:22837678
Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells
2016-10-01
lentiviral knockdown, and CRISPR /Cas9 genome editing in embryonic stem cells (ESCs). We have characterized the iPSCs extensively and found that they display...induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) reprogramming CRISPR /Cas9 genome editing neural stem cells (NSCs) neural crest... CRISPR /cas9 in two additional human pluripotent stem cell lines (WA07 (H7) – female cell line registry #0061; and a control male iPSC lines generated
Di Maggio, Nunzia; Martella, Elisa; Frismantiene, Agne; Resink, Therese J.; Schreiner, Simone; Lucarelli, Enrico; Jaquiery, Claude; Schaefer, Dirk J.; Martin, Ivan; Scherberich, Arnaud
2017-01-01
Stromal vascular fraction (SVF) cells of human adipose tissue have the capacity to generate osteogenic grafts with intrinsic vasculogenic properties. However, adipose-derived stromal/stem cells (ASC), even after minimal monolayer expansion, display poor osteogenic capacity in vivo. We investigated whether ASC bone-forming capacity may be maintained by culture within a self-produced extracellular matrix (ECM) that recapitulates the native environment. SVF cells expanded without passaging up to 28 days (Unpass-ASC) deposited a fibronectin-rich extracellular matrix and displayed greater clonogenicity and differentiation potential in vitro compared to ASC expanded only for 6 days (P0-ASC) or for 28 days with regular passaging (Pass-ASC). When implanted subcutaneously, Unpass-ASC produced bone tissue similarly to SVF cells, in contrast to P0- and Pass-ASC, which mainly formed fibrous tissue. Interestingly, clonogenic progenitors from native SVF and Unpass-ASC expressed low levels of the fibronectin receptor α5 integrin (CD49e), which was instead upregulated in P0- and Pass-ASC. Mechanistically, induced activation of α5β1 integrin in Unpass-ASC led to a significant loss of bone formation in vivo. This study shows that ECM and regulation of α5β1-integrin signaling preserve ASC progenitor properties, including bone tissue-forming capacity, during in vitro expansion. PMID:28290502
NASA Astrophysics Data System (ADS)
Arafath, Md. Azharul; Adam, Farook; Al-Suede, Fouad Saleih R.; Razali, Mohd R.; Ahamed, Mohamed B. Khadeer; Abdul Majid, Amin Malik Shah; Hassan, Mohd Zaheen; Osman, Hasnah; Abubakar, Saifullah
2017-12-01
Four heterocyclic embedded Schiff base derivatives (1-4) were synthesized and characterized by melting point, elemental analysis, FTIR, 1H, 13C NMR, UV-Visible spectral data. The structures of compounds 1, 2 and 4 were successfully established through single crystal X-ray diffraction analysis. In vitro cholinesterase inhibition assays showed that the cyclized derivative 1 displayed higher BuChE enzyme inhibitory activity with IC50 value of 1.45 ± 0.09 μM. The anti-proliferative efficacies of the compounds were also evaluated using human colorectal HCT 116 and breast MCF-7 adenocarcinoma cell lines. In addition, a human normal endothelial cell line (Ea.hy926) was also tested to assess the safety and selectivity of the compounds towards normal and cancer cells, respectively. Among the compounds tested, compound 2 displayed potent cytotoxic effect (IC50 = 34 μM) against HCT 116 cells with highest selectivity index of 3.1 with respect to the normal endothelial cells. Whereas, compound 4 exhibited significant anti-proliferative effect (IC50 = 21.1 μM) against MCF-7 cells with highest selectivity index of 3.3 with respect to the normal endothelial cells. The docking result of these compounds against hAChE showed potent activities with different binding modes. These compounds could be a promising pharmacological agent to treat cancer and Alzheimer's disease.
Endocrine cells in human Bartholin's glands. An immunohistochemical and ultrastructural analysis.
Fetissof, F; Arbeille, B; Bellet, D; Barre, I; Lansac, J
1989-01-01
Endocrine cells were investigated in human Bartholin's glands by use of histochemical, immunohistochemical and ultrastructural methods. Endocrine cells represent normal constituents of these glands, being mainly distributed throughout the transitional epithelium of the major excretory duct; however, single elements are dispersed among the acinar lobules. Serotonin-, calcitonin-, katacalcin-, bombesin- and alpha-hCG-immunoreactive cells were recognized, with serotonin-immunoreactive cells predominating. Co-expression of calcitonin, katacalcin or alpha-hCG with serotonin was observed in single endocrine cells. At the ultrastructural level, these cells are richly granulated and show typical neuroendocrine features. Bartholin's glands display an endocrine profile quite similar to that of other cloacal-derived tissues.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Molina-Molina, Jose-Manuel; INSERM, U896, Montpellier, F-34298; Universite Montpellier1, Montpellier, F-34298
Benzophenone (BP) derivatives, BP1 (2,4-dihydroxybenzophenone), BP2 (2,2',4,4'-tetrahydroxybenzophenone), BP3 (2-hydroxy-4-methoxybenzophenone), and THB (2,4,4'-trihydroxybenzophenone) are UV-absorbing chemicals widely used in pharmaceutical, cosmetics, and industrial applications, such as topical sunscreens in lotions and hair sprays to protect skin and hair from UV irradiation. Studies on their endocrine disrupting properties have mostly focused on their interaction with human estrogen receptor alpha (hER{alpha}), and there has been no comprehensive analysis of their potency in a system allowing comparison between hER{alpha} and hER{beta} activities. The objective of this study was to provide a comprehensive ER activation profile of BP derivatives using ER from human and fishmore » origin in a battery of in vitro tests, i.e., competitive binding, reporter gene based assays, vitellogenin (Vtg) induction in isolated rainbow trout hepatocytes, and proliferation based assays. The ability to induce human androgen receptor (hAR)-mediated reporter gene expression was also examined. All BP derivatives tested except BP3 were full hER{alpha} and hER{beta} agonists (BP2 > THB > BP1) and displayed a stronger activation of hER{beta} compared with hER{alpha}, the opposite effect to that of estradiol (E{sub 2}). Unlike E{sub 2}, BPs were more active in rainbow trout ER{alpha} (rtER{alpha}) than in hER{alpha} assay. All four BP derivatives showed anti-androgenic activity (THB > BP2 > BP1 > BP3). Overall, the observed anti-androgenic potencies of BP derivatives, together with their proposed greater effect on ER{beta} versus ER{alpha} activation, support further investigation of their role as endocrine disrupters in humans and wildlife.« less
Dupont, Kenneth M; Boerckel, Joel D; Stevens, Hazel Y; Diab, Tamim; Kolambkar, Yash M; Takahata, Masahiko; Schwarz, Edward M; Guldberg, Robert E
2012-03-01
Biomaterial scaffolds functionalized to stimulate endogenous repair mechanisms via the incorporation of osteogenic cues offer a potential alternative to bone grafting for the treatment of large bone defects. We first quantified the ability of a self-complementary adeno-associated viral vector encoding bone morphogenetic protein 2 (scAAV2.5-BMP2) to enhance human stem cell osteogenic differentiation in vitro. In two-dimensional culture, scAAV2.5-BMP2-transduced human mesenchymal stem cells (hMSCs) displayed significant increases in BMP2 production and alkaline phosphatase activity compared with controls. hMSCs and human amniotic-fluid-derived stem cells (hAFS cells) seeded on scAAV2.5-BMP2-coated three-dimensional porous polymer Poly(ε-caprolactone) (PCL) scaffolds also displayed significant increases in BMP2 production compared with controls during 12 weeks of culture, although only hMSC-seeded scaffolds displayed significantly increased mineral formation. PCL scaffolds coated with scAAV2.5-BMP2 were implanted into critically sized immunocompromised rat femoral defects, both with or without pre-seeding of hMSCs, representing ex vivo and in vivo gene therapy treatments, respectively. After 12 weeks, defects treated with acellular scAAV2.5-BMP2-coated scaffolds displayed increased bony bridging and had significantly higher bone ingrowth and mechanical properties compared with controls, whereas defects treated with scAAV2.5-BMP2 scaffolds pre-seeded with hMSCs failed to display significant differences relative to controls. When pooled, defect treatment with scAAV2.5-BMP2-coated scaffolds, both with or without inclusion of pre-seeded hMSCs, led to significant increases in defect mineral formation at all time points and increased mechanical properties compared with controls. This study thus presents a novel acellular bone-graft-free endogenous repair therapy for orthotopic tissue-engineered bone regeneration.
Orban, Oliver C F; Korn, Ricarda S; Benítez, Diego; Medeiros, Andrea; Preu, Lutz; Loaëc, Nadège; Meijer, Laurent; Koch, Oliver; Comini, Marcelo A; Kunick, Conrad
2016-08-15
Trypanothione synthetase is an essential enzyme for kinetoplastid parasites which cause highly disabling and fatal diseases in humans and animals. Inspired by the observation that N(5)-substituted paullones inhibit the trypanothione synthetase from the related parasite Leishmania infantum, we designed and synthesized a series of new derivatives. Although none of the new compounds displayed strong inhibition of Trypanosoma brucei trypanothione synthetase, several of them caused a remarkable growth inhibition of cultivated Trypanosoma brucei bloodstream forms. The most potent congener 3a showed antitrypanosomal activity in double digit nanomolar concentrations and a selectivity index of three orders of magnitude versus murine macrophage cells. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huczyński, Adam; Rutkowski, Jacek; Borowicz, Izabela; Wietrzyk, Joanna; Maj, Ewa; Brzezinski, Bogumil
2013-09-15
Seven Mannich base derivatives of polyether antibiotic Lasalocid acid (2a-2g) were synthesized and screened for their antiproliferative activity against various human cancer cell lines. A novel chemoselective one-pot synthesis of these Mannich bases was developed. Compounds 2a-2c and 2g with sterically smaller dialkylamine substituent, displayed potent antiproliferative activity (IC50: 3.2-7.3 μM), and demonstrated higher than twofold selectivity for specific type of cancer. The nature of Mannich base substituent on C-2 atom at the aromatic ring may be critical in the search for selectivity towards a particular cancer cell. Copyright © 2013 Elsevier Ltd. All rights reserved.
Intrinsic membrane hyperexcitability of amyotrophic lateral sclerosis patient-derived motor neurons.
Wainger, Brian J; Kiskinis, Evangelos; Mellin, Cassidy; Wiskow, Ole; Han, Steve S W; Sandoe, Jackson; Perez, Numa P; Williams, Luis A; Lee, Seungkyu; Boulting, Gabriella; Berry, James D; Brown, Robert H; Cudkowicz, Merit E; Bean, Bruce P; Eggan, Kevin; Woolf, Clifford J
2014-04-10
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease of the motor nervous system. We show using multielectrode array and patch-clamp recordings that hyperexcitability detected by clinical neurophysiological studies of ALS patients is recapitulated in induced pluripotent stem cell-derived motor neurons from ALS patients harboring superoxide dismutase 1 (SOD1), C9orf72, and fused-in-sarcoma mutations. Motor neurons produced from a genetically corrected but otherwise isogenic SOD1(+/+) stem cell line do not display the hyperexcitability phenotype. SOD1(A4V/+) ALS patient-derived motor neurons have reduced delayed-rectifier potassium current amplitudes relative to control-derived motor neurons, a deficit that may underlie their hyperexcitability. The Kv7 channel activator retigabine both blocks the hyperexcitability and improves motor neuron survival in vitro when tested in SOD1 mutant ALS cases. Therefore, electrophysiological characterization of human stem cell-derived neurons can reveal disease-related mechanisms and identify therapeutic candidates. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Krejciova, Zuzana; De Sousa, Paul; Manson, Jean; Ironside, James W.; Head, Mark W.
2014-01-01
The molecular mechanisms involved in human cellular susceptibility to prion infection remain poorly defined. This is due, in part, to the absence of any well characterized and relevant cultured human cells susceptible to infection with human prions, such as those involved in Creutzfeldt-Jakob disease. In variant Creutzfeldt-Jakob disease, prion replication is thought to occur first in the lymphoreticular system and then spread into the brain. We have, therefore, examined the susceptibility of a human tonsil-derived follicular dendritic cell-like cell line (HK) to prion infection. HK cells were found to display a readily detectable, time-dependent increase in cell-associated abnormal prion protein (PrPTSE) when exposed to medium spiked with Creutzfeldt-Jakob disease brain homogenate, resulting in a coarse granular perinuclear PrPTSE staining pattern. Despite their high level of cellular prion protein expression, HK cells failed to support infection, as judged by longer term maintenance of PrPTSE accumulation. Colocalization studies revealed that exposure of HK cells to brain homogenate resulted in increased numbers of detectable lysosomes and that these structures immunostained intensely for PrPTSE after exposure to Creutzfeldt-Jakob disease brain homogenate. Our data suggest that human follicular dendritic-like cells and perhaps other human cell types are able to avoid prion infection by efficient lysosomal degradation of PrPTSE. PMID:24183781
Depth reversals in stereoscopic displays driven by apparent size
NASA Astrophysics Data System (ADS)
Sacher, Gunnar; Hayes, Amy; Thornton, Ian M.; Sereno, Margaret E.; Malony, Allen D.
1998-04-01
In visual scenes, depth information is derived from a variety of monocular and binocular cues. When in conflict, a monocular cue is sometimes able to override the binocular information. We examined the accuracy of relative depth judgments in orthographic, stereoscopic displays and found that perceived relative size can override binocular disparity as a depth cue in a situation where the relative size information is itself generated from disparity information, not from retinal size difference. A size discrimination task confirmed the assumption that disparity information was perceived and used to generate apparent size differences. The tendency for the apparent size cue to override disparity information can be modulated by varying the strength of the apparent size cue. In addition, an analysis of reaction times provides supporting evidence for this novel depth reversal effect. We believe that human perception must be regarded as an important component of stereoscopic applications. Hence, if applications are to be effective and accurate, it is necessary to take into account the richness and complexity of the human visual perceptual system that interacts with them. We discuss implications of this and similar research for human performance in virtual environments, the design of visual presentations for virtual worlds, and the design of visualization tools.
Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.
Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris
2010-04-01
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.
Ramaraju, Harsha; Miller, Sharon J; Kohn, David H
2017-07-01
Design of biomaterials for cell-based therapies requires presentation of specific physical and chemical cues to cells, analogous to cues provided by native extracellular matrices (ECM). We previously identified a peptide sequence with high affinity towards apatite (VTKHLNQISQSY, VTK) using phage display. The aims of this study were to identify a human MSC-specific peptide sequence through phage display, combine it with the apatite-specific sequence, and verify the specificity of the combined dual-functioning peptide to both apatite and human bone marrow stromal cells. In this study, a combinatorial phage display identified the cell binding sequence (DPIYALSWSGMA, DPI) which was combined with the mineral binding sequence to generate the dual peptide DPI-VTK. DPI-VTK demonstrated significantly greater binding affinity (1/K D ) to apatite surfaces compared to VTK, phosphorylated VTK (VTK phos ), DPI-VTK phos , RGD-VTK, and peptide-free apatite surfaces (p < 0.01), while significantly increasing hBMSC adhesion strength (τ 50 , p < 0.01). MSCs demonstrated significantly greater adhesion strength to DPI-VTK compared to other cell types, while attachment of MC3T3 pre-osteoblasts and murine fibroblasts was limited (p < 0.01). MSCs on DPI-VTK coated surfaces also demonstrated increased spreading compared to pre-osteoblasts and fibroblasts. MSCs cultured on DPI-VTK coated apatite films exhibited significantly greater proliferation compared to controls (p < 0.001). Moreover, early and late stage osteogenic differentiation markers were elevated on DPI-VTK coated apatite films compared to controls. Taken together, phage display can identify non-obvious cell and material specific peptides to increase human MSC adhesion strength to specific biomaterial surfaces and subsequently increase cell proliferation and differentiation. These new peptides expand biomaterial design methodology for cell-based regeneration of bone defects. This strategy of combining cell and material binding phage display derived peptides is broadly applicable to a variety of systems requiring targeted adhesion of specific cell populations, and may be generalized to the engineering of any adhesion surface. Copyright © 2017 Elsevier Ltd. All rights reserved.
Liu, Senquan; Ye, Zhaohui; Gao, Yongxing; He, Chaoxia; Williams, Donna W; Moliterno, Alison; Spivak, Jerry; Huang, He; Cheng, Linzhao
2017-01-01
Activating point mutations in the MPL gene encoding the thrombopoietin receptor are found in 3%-10% of essential thrombocythemia (ET) and myelofibrosis patients. Here, we report the derivation of induced pluripotent stem cells (iPSCs) from an ET patient with a heterozygous MPL V501L mutation. Peripheral blood CD34 + progenitor cells were reprogrammed by transient plasmid expression of OCT4, SOX2, KLF4, c-MYC plus BCL2L1 (BCL-xL) genes. The derived line M494 carries a MPL V501L mutation, displays typical iPSC morphology and characteristics, are pluripotent and karyotypically normal. Upon differentiation, the iPSCs are able to differentiate into cells derived from three germ layers. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Polychromatic plots: graphical display of multidimensional data.
Roederer, Mario; Moody, M Anthony
2008-09-01
Limitations of graphical displays as well as human perception make the presentation and analysis of multidimensional data challenging. Graphical display of information on paper or by current projectors is perforce limited to two dimensions; the encoding of information from other dimensions must be overloaded into the two physical dimensions. A number of alternative means of encoding this information have been implemented, such as offsetting data points at an angle (e.g., three-dimensional projections onto a two-dimensional surface) or generating derived parameters that are combinations of other variables (e.g., principal components). Here, we explore the use of color to encode additional dimensions of data. PolyChromatic Plots are standard dot plots, where the color of each event is defined by the values of one, two, or three of the measurements for that event. The measurements for these parameters are mapped onto an intensity value for each primary color (red, green, or blue) based on different functions. In addition, differential weighting of the priority with which overlapping events are displayed can be defined by these same measurements. PolyChromatic Plots can encode up to five independent dimensions of data in a single display. By altering the color mapping function and the priority function, very different displays that highlight or de-emphasize populations of events can be generated. As for standard black-and-white dot plots, frequency information can be significantly biased by this display; care must be taken to ensure appropriate interpretation of the displays. PolyChromatic Plots are a powerful display type that enables rapid data exploration. By virtue of encoding as many as five dimensions of data independently, an enormous amount of information can be gleaned from the displays. In many ways, the display performs somewhat like an unsupervised cluster algorithm, by highlighting events of similar distributions in multivariate space.
Image quality metrics for volumetric laser displays
NASA Astrophysics Data System (ADS)
Williams, Rodney D.; Donohoo, Daniel
1991-08-01
This paper addresses the extensions to the image quality metrics and related human factors research that are needed to establish the baseline standards for emerging volume display technologies. The existing and recently developed technologies for multiplanar volume displays are reviewed with an emphasis on basic human visual issues. Human factors image quality metrics and guidelines are needed to firmly establish this technology in the marketplace. The human visual requirements and the display design tradeoffs for these prototype laser-based volume displays are addressed and several critical image quality issues identified for further research. The American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSIHFS-100) and other international standards (ISO, DIN) can serve as a starting point, but this research base must be extended to provide new image quality metrics for this new technology for volume displays.
Pfliegler, Walter P; Boros, Enikő; Pázmándi, Kitti; Jakab, Ágnes; Zsuga, Imre; Kovács, Renátó; Urbán, Edit; Antunovics, Zsuzsa; Bácsi, Attila; Sipiczki, Matthias; Majoros, László; Pócsi, István
2017-11-01
Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood. In this study, we characterize clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after coincubation with yeasts is largely donor and not isolate dependent. Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure toward higher virulence/pathogenicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bajpai, Vivek K.; Mistriotis, Panagiotis; Loh, Yuin-Han; Daley, George Q.; Andreadis, Stelios T.
2012-01-01
Aims Smooth muscle cells (SMC) play an important role in vascular homeostasis and disease. Although adult mesenchymal stem cells (MSC) have been used as a source of contractile SMC, they suffer from limited proliferation potential and culture senescence, particularly when originating from older donors. By comparison, human induced pluripotent stem cells (hiPSC) can provide an unlimited source of functional SMC for autologous cell-based therapies and for creating models of vascular disease. Our goal was to develop an efficient strategy to derive functional, contractile SMC from hiPSC. Methods and results We developed a robust, stage-wise, feeder-free strategy for hiPSC differentiation into functional SMC through an intermediate stage of multipotent MSC, which could be coaxed to differentiate into fat, bone, cartilage, and muscle. At this stage, the cells were highly proliferative and displayed higher clonogenic potential and reduced senescence when compared with parental hair follicle mesenchymal stem cells. In addition, when exposed to differentiation medium, the myogenic proteins such as α-smooth muscle actin, calponin, and myosin heavy chain were significantly upregulated and displayed robust fibrillar organization, suggesting the development of a contractile phenotype. Indeed, tissue constructs prepared from these cells exhibited high levels of contractility in response to receptor- and non-receptor-mediated agonists. Conclusion We developed an efficient stage-wise strategy that enabled hiPSC differentiation into contractile SMC through an intermediate population of clonogenic and multipotent MSC. The high yield of MSC and SMC derivation suggests that our strategy may facilitate an acquisition of the large numbers of cells required for regenerative medicine or for studying vascular disease pathophysiology. PMID:22941255
Recent advances in photorefractive polymers
NASA Astrophysics Data System (ADS)
Thomas, Jayan; Christenson, C. W.; Lynn, B.; Blanche, P.-A.; Voorakaranam, R.; Norwood, R. A.; Yamamoto, M.; Peyghambarian, N.
2011-10-01
Photorefractive composites derived from conducting polymers offer the advantage of dynamically recording holograms without the need for processing of any kind. Thus, they are the material of choice for many cutting edge applications, such as updatable three-dimensional (3D) displays and 3D telepresence. Using photorefractive polymers, 3D images or holograms can be seen with the unassisted eye and are very similar to how humans see the actual environment surrounding them. Absence of a large-area and dynamically updatable holographic recording medium has prevented realization of the concept. The development of a novel nonlinear optical chromophore doped photoconductive polymer composite as the recording medium for a refreshable holographic display is discussed. Further improvements in the polymer composites could bring applications in telemedicine, advertising, updatable 3D maps and entertainment.
Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion
NASA Astrophysics Data System (ADS)
Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.
1992-01-01
Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.
Liu, Jiannan; Sun, Yuping; Zhang, Huarong; Ji, Dexin; Wu, Fei; Tian, Huihui; Liu, Kun; Zhang, Ying; Wu, Benhao; Zhang, Guoying
2016-11-15
Cervical cancer is the third most prevalent cancer among women worldwide. Theanine from tea and its derivatives show some anticancer activities. However, the role of theanine and its derivatives against human cervical cancer and the molecular mechanisms of action remain unclear. Thus, in this study, we aim to investigate the anticancer activities and underlying mechanisms of theanine and a theanine derivative, ethyl 6-bromocoumarin-3- carboxylyl L-theanine (TBrC), against human cervical cancer. In vitro and in vivo assays for cancer cell growth and migration have confirmed the inhibition of the cell growth and migration by TBrC and theanine in highly-metastatic human cervical cancer. TBrC displays much stronger activity than theanine on inhibition of the cell growth and migration as well as induction of apoptosis and regulation of related protein expressions in the human cervical cancer cells. TBrC and theanine greatly reduced endogenous and exogenous factors-stimulated cell migration and completely repressed HGF- and EGF+HGF-activated EGFR/Met-Akt/NF-κB signaling by reducing the phosphorylation and expressions of EGFR, Met, Akt, and NF-κB in cervical cancer cells. The enhancer of zeste homolog 2 (EZH2) knockdown decreased the cancer cell migration and NF-κB expression. The NF-κB knockdown reduced the cancer cell migration. TBrC and theanine reduced the EZH2 expression by more than 80%. In addition, TBrC and theanine significantly suppressed human cervical tumor growth in tumor-bearing nude mice without toxicity to the mice. Our results suggest that TBrC and theanine may have the potentials of the therapeutic and/or adjuvant therapeutic application in the treatment of human cervical cancer. Copyright © 2016 Elsevier B.V. All rights reserved.
Cytotoxicity of bacterial-derived toxins to immortal lung epithelial and macrophage cells.
Peterson, Dianne E; Collier, Jayne M; Katterman, Matthew E; Turner, Rachael A; Riley, Mark R
2010-03-01
Health risks associated with inhalation and deposition of biological materials have been a topic of great concern due to highly publicized cases of inhalation anthrax, of new regulations on the release of particulate matter, and to increased concerns on the hazards of indoor air pollution. Here, we present an evaluation of the sensitivity of two immortal cell lines (A549, human lung carcinoma epithelia) and NR8383 (rat alveolar macrophages) to a variety of bacterial-derived inhalation hazards and simulants including etoposide, gliotoxin, streptolysin O, and warfarin. The cell response is evaluated through quantification of changes in mitochondrial succinate dehydrogenase activity, release of lactate dehydrogenase, initiation of apoptosis, and through changes in morphology as determined by visible light microscopy and scanning electron microscopy. These cells display dose-response relations to each toxin, except for triton which has a step change response. The first observable responses of the epithelial cells to these compounds are changes in metabolism for one toxin (warfarin) and alterations in membrane permeability for another (gliotoxin). The other four toxins display a similar time course in response as gauged by changes in metabolism and loss of membrane integrity. Macrophages are more sensitive to most toxins; however, they display a lower level of stability. This information can be used in the design of cell-based sensors responding to these and similar hazards.
Simara, Pavel; Tesarova, Lenka; Rehakova, Daniela; Farkas, Simon; Salingova, Barbara; Kutalkova, Katerina; Vavreckova, Eva; Matula, Pavel; Matula, Petr; Veverkova, Lenka; Koutna, Irena
2018-01-01
New approaches in regenerative medicine and vasculogenesis have generated a demand for sufficient numbers of human endothelial cells (ECs). ECs and their progenitors reside on the interior surface of blood and lymphatic vessels or circulate in peripheral blood; however, their numbers are limited, and they are difficult to expand after isolation. Recent advances in human induced pluripotent stem cell (hiPSC) research have opened possible avenues to generate unlimited numbers of ECs from easily accessible cell sources, such as the peripheral blood. In this study, we reprogrammed peripheral blood mononuclear cells, human umbilical vein endothelial cells (HUVECs), and human saphenous vein endothelial cells (HSVECs) into hiPSCs and differentiated them into ECs. The phenotype profiles, functionality, and genome stability of all hiPSC-derived ECs were assessed and compared with HUVECs and HSVECs. hiPSC-derived ECs resembled their natural EC counterparts, as shown by the expression of the endothelial surface markers CD31 and CD144 and the results of the functional analysis. Higher expression of endothelial progenitor markers CD34 and kinase insert domain receptor (KDR) was measured in hiPSC-derived ECs. An analysis of phosphorylated histone H2AX (γH2AX) foci revealed that an increased number of DNA double-strand breaks upon reprogramming into pluripotent cells. However, differentiation into ECs restored a normal number of γH2AX foci. Our hiPSCs retained a normal karyotype, with the exception of the HSVEC-derived hiPSC line, which displayed mosaicism due to a gain of chromosome 1. Peripheral blood from adult donors is a suitable source for the unlimited production of patient-specific ECs through the hiPSC interstage. hiPSC-derived ECs are fully functional and comparable to natural ECs. The protocol is eligible for clinical applications in regenerative medicine, if the genomic stability of the pluripotent cell stage is closely monitored.
Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen
2017-10-01
This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.
Real time speech formant analyzer and display
Holland, George E.; Struve, Walter S.; Homer, John F.
1987-01-01
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user.
Real time speech formant analyzer and display
Holland, G.E.; Struve, W.S.; Homer, J.F.
1987-02-03
A speech analyzer for interpretation of sound includes a sound input which converts the sound into a signal representing the sound. The signal is passed through a plurality of frequency pass filters to derive a plurality of frequency formants. These formants are converted to voltage signals by frequency-to-voltage converters and then are prepared for visual display in continuous real time. Parameters from the inputted sound are also derived and displayed. The display may then be interpreted by the user. The preferred embodiment includes a microprocessor which is interfaced with a television set for displaying of the sound formants. The microprocessor software enables the sound analyzer to present a variety of display modes for interpretive and therapeutic used by the user. 19 figs.
Marrow-Derived Antibody Library for Treatment of Neuroblastoma
2013-09-01
to capture the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this...project is to use NB patient-derived materials to create NB cell lines, xenograft models, NB specific phage display libraries and to identify and...the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this project is to
Perceptual issues for color helmet-mounted displays: luminance and color contrast requirements
NASA Astrophysics Data System (ADS)
Harding, Thomas H.; Rash, Clarence E.; Lattimore, Morris R.; Statz, Jonathan; Martin, John S.
2016-05-01
Color is one of the latest design characteristics of helmet-mounted displays (HMDs). It's inclusion in design specifications is based on two suppositions: 1) color provides an additional method of encoding information, and 2) color provides a more realistic, and hence more intuitive, presentation of information, especially pilotage imagery. To some degree, these two perceived advantages have been validated with head-down panel-mounted displays, although not without a few problems associated with visual physiology and perception. These problems become more prevalent when the user population expands beyond military aviators to a general user population, of which a significant portion may have color vision deficiencies. When color is implemented in HMDs, which are eyes-out, see-through displays, visual perception issues become an increased concern. A major confound with HMDs is their inherent see-through (transparent) property. The result is color in the displayed image combines with color from the outside (or in-cockpit) world, possibly producing a false perception of either or both images. While human-factors derived guidelines based on trial and error have been developed, color HMD systems still place more emphasis on colorimetric than perceptual standards. This paper identifies the luminance and color contrast requirements for see-through HMDs. Also included is a discussion of ambient scene metrics and the choice of symbology color.
Correia, Cláudia; Koshkin, Alexey; Duarte, Patrícia; Hu, Dongjian; Carido, Madalena; Sebastião, Maria J; Gomes-Alves, Patrícia; Elliott, David A; Domian, Ibrahim J; Teixeira, Ana P; Alves, Paula M; Serra, Margarida
2018-03-01
Three-dimensional (3D) cultures of human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) hold great promise for drug discovery, providing a better approximation to the in vivo physiology over standard two-dimensional (2D) monolayer cultures. However, the transition of CM differentiation protocols from 2D to 3D cultures is not straightforward. In this work, we relied on the aggregation of hPSC-derived cardiac progenitors and their culture under agitated conditions to generate highly pure cardiomyocyte aggregates. Whole-transcriptome analysis and 13 C-metabolic flux analysis allowed to demonstrate at both molecular and fluxome levels that such 3D culture environment enhances metabolic maturation of hiPSC-CMs. When compared to 2D, 3D cultures of hiPSC-CMs displayed down-regulation of genes involved in glycolysis and lipid biosynthesis and increased expression of genes involved in OXPHOS. Accordingly, 3D cultures of hiPSC-CMs had lower fluxes through glycolysis and fatty acid synthesis and increased TCA-cycle activity. Importantly, we demonstrated that the 3D culture environment reproducibly improved both CM purity and metabolic maturation across different hPSC lines, thereby providing a robust strategy to derive enriched hPSC-CMs with metabolic features closer to that of adult CMs. © 2017 Wiley Periodicals, Inc.
Gilbert, Ashley N; Anderson, Joshua C; Duarte, Christine W; Shevin, Rachael S; Langford, Catherine P; Singh, Raj; Gillespie, G Yancey; Willey, Christopher D
2018-05-30
Glioblastoma multiforme (GBM), the most common form of primary malignant brain cancer in adults, is a devastating disease for which effective treatment has remained elusive for over 75 years. One reason for the minimal progress during this time is the lack of accurate preclinical models to represent the patient's tumor's in vivo environment, causing a disconnect in drug therapy effectiveness between the laboratory and clinic. While patient-derived xenografts (PDX's or xenolines) are excellent human tumor representations, they are not amenable to high throughput testing. Therefore, we developed a miniaturized xenoline system (microtumors) for drug testing. Nineteen GBM xenolines were profiled for global kinase (kinomic) activity revealing actionable kinase targets associated with intracranial tumor growth rate. Kinase inhibitors for these targets (WP1066, selumetinib, crizotinib, and cediranib) were selected for single and combination therapy using a fully human-derived three-dimensional (3D) microtumor model of GBM xenoline cells embedded in HuBiogel for subsequent molecular and phenotype assays. GBM microtumors closely resembled orthotopically-implanted tumors based on immunohistochemical analysis and displayed kinomic and morphological diversity. Drug response testing could be reproducibly performed in a 96-well format identifying several synergistic combinations. Our findings indicate that 3D microtumors can provide a suitable high-throughput model for combination drug testing.
Chan, Conrad E Z; Chan, Annie H Y; Lim, Angeline P C; Hanson, Brendon J
2011-10-28
Rapid development of diagnostic immunoassays against novel emerging or genetically modified pathogens in an emergency situation is dependent on the timely isolation of specific antibodies. Non-immune antibody phage display libraries are an efficient in vitro method for selecting monoclonal antibodies and hence ideal in these circumstances. Such libraries can be constructed from a variety of sources e.g. B cell cDNA or synthetically generated, and use a variety of antibody formats, typically scFv or Fab. However, antibody source and format can impact on the quality of antibodies generated and hence the effectiveness of this methodology for the timely production of antibodies. We have carried out a comparative screening of two antibody libraries, a semi-synthetic scFv library and a human-derived Fab library against the protective antigen toxin component of Bacillus anthracis and the epsilon toxin of Clostridium botulinum. We have shown that while the synthetic library produced a diverse collection of specific scFv-phage, these contained a high frequency of unnatural amber stops and glycosylation sites which limited their conversion to IgG, and also a high number which lost specificity when expressed as IgG. In contrast, these limitations were overcome by the use of a natural human library. Antibodies from both libraries could be used to develop sandwich ELISA assays with similar sensitivity. However, the ease and speed with which full-length IgG could be generated from the human-derived Fab library makes screening this type of library the preferable method for rapid antibody generation for diagnostic assay development. Copyright © 2011 Elsevier B.V. All rights reserved.
Burmaoglu, Serdar; Yilmaz, Ali O; Taslimi, Parham; Algul, Oztekin; Kilic, Deryanur; Gulcin, Ilhami
2018-02-01
A series of novel phloroglucinol derivatives were designed, synthesized, characterized spectroscopically and tested for their inhibitory activity against selected metabolic enzymes, including α-glycosidase, acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and human carbonic anhydrase I and II (hCA I and II). These compounds displayed nanomolar inhibition levels and showed K i values of 1.14-3.92 nM against AChE, 0.24-1.64 nM against BChE, 6.73-51.10 nM against α-glycosidase, 1.80-5.10 nM against hCA I, and 1.14-5.45 nM against hCA II. © 2018 Deutsche Pharmazeutische Gesellschaft.
Characterization of immortalized human brown and white pre-adipocyte cell models from a single donor
Andersen, Elise S.; Rasmussen, Nanna E.; Petersen, Louise I.; Pedersen, Steen B.; Richelsen, Bjørn
2017-01-01
Brown adipose tissue with its constituent brown adipocytes is a promising therapeutic target in metabolic disorders due to its ability to dissipate energy and improve systemic insulin sensitivity and glucose homeostasis. The molecular control of brown adipocyte differentiation and function has been extensively studied in mice, but relatively little is known about such regulatory mechanisms in humans, which in part is due to lack of human brown adipose tissue derived cell models. Here, we used retrovirus-mediated overexpression to stably integrate human telomerase reverse transcriptase (TERT) into stromal-vascular cell fractions from deep and superficial human neck adipose tissue biopsies from the same donor. The brown and white pre-adipocyte cell models (TERT-hBA and TERT-hWA, respectively) displayed a stable proliferation rate and differentiation until at least passage 20. Mature TERT-hBA adipocytes expressed higher levels of thermogenic marker genes and displayed a higher maximal respiratory capacity than mature TERT-hWA adipocytes. TERT-hBA adipocytes were UCP1-positive and responded to β-adrenergic stimulation by activating the PKA-MKK3/6-p38 MAPK signaling module and increasing thermogenic gene expression and oxygen consumption. Mature TERT-hWA adipocytes underwent efficient rosiglitazone-induced ‘browning’, as demonstrated by strongly increased expression of UCP1 and other brown adipocyte-enriched genes. In summary, the TERT-hBA and TERT-hWA cell models represent useful tools to obtain a better understanding of the molecular control of human brown and white adipocyte differentiation and function as well as of browning of human white adipocytes. PMID:28957413
Lorig-Roach, Nicholas; Hamkins-Indik, Frances; Johnson, Tyler A; Tenney, Karen; Valeriote, Frederick A; Crews, Phillip
2018-01-11
Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC 50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin ( 1 ) and the new derivative, 6-Br-8-keto-conicamin A ( 2 ), were identified and 2 (IC 50 1.5 μM for the natural product vs 4.1 μM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.
Effects of Two Fullerene Derivatives on Monocytes and Macrophages
Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Da Ros, Tatiana; Prato, Maurizio
2015-01-01
Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells. PMID:26090460
Knowledge of the ordinal position of list items in pigeons.
Scarf, Damian; Colombo, Michael
2011-10-01
Ordinal knowledge is a fundamental aspect of advanced cognition. It is self-evident that humans represent ordinal knowledge, and over the past 20 years it has become clear that nonhuman primates share this ability. In contrast, evidence that nonprimate species represent ordinal knowledge is missing from the comparative literature. To address this issue, in the present experiment we trained pigeons on three 4-item lists and then tested them with derived lists in which, relative to the training lists, the ordinal position of the items was either maintained or changed. Similar to the findings with human and nonhuman primates, our pigeons performed markedly better on the maintained lists compared to the changed lists, and displayed errors consistent with the view that they used their knowledge of ordinal position to guide responding on the derived lists. These findings demonstrate that the ability to acquire ordinal knowledge is not unique to the primate lineage. (PsycINFO Database Record (c) 2011 APA, all rights reserved).
Genomic Diversity of Lactobacillus salivarius▿ †
Raftis, Emma J.; Salvetti, Elisa; Torriani, Sandra; Felis, Giovanna E.; O'Toole, Paul W.
2011-01-01
Strains of Lactobacillus salivarius are increasingly employed as probiotic agents for humans or animals. Despite the diversity of environmental sources from which they have been isolated, the genomic diversity of L. salivarius has been poorly characterized, and the implications of this diversity for strain selection have not been examined. To tackle this, we applied comparative genomic hybridization (CGH) and multilocus sequence typing (MLST) to 33 strains derived from humans, animals, or food. The CGH, based on total genome content, including small plasmids, identified 18 major regions of genomic variation, or hot spots for variation. Three major divisions were thus identified, with only a subset of the human isolates constituting an ecologically discernible group. Omission of the small plasmids from the CGH or analysis by MLST provided broadly concordant fine divisions and separated human-derived and animal-derived strains more clearly. The two gene clusters for exopolysaccharide (EPS) biosynthesis corresponded to regions of significant genomic diversity. The CGH-based groupings of these regions did not correlate with levels of production of bound or released EPS. Furthermore, EPS production was significantly modulated by available carbohydrate. In addition to proving difficult to predict from the gene content, EPS production levels correlated inversely with production of biofilms, a trait considered desirable in probiotic commensals. L. salivarius displays a high level of genomic diversity, and while selection of L. salivarius strains for probiotic use can be informed by CGH or MLST, it also requires pragmatic experimental validation of desired phenotypic traits. PMID:21131523
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
Sun, Jin; Wang, Shan; Bu, Wei; Wei, Meng-Ying; Li, Wei-Wei; Yao, Min-Na; Ma, Zhong-Ying; Lu, Cheng-Tao; Li, Hui-Hui; Hu, Na-Ping; Zhang, En-Hu; Yang, Guo-Dong; Wen, Ai-Dong; Zhu, Xiao-He
2016-01-01
In this study, a novel adamantyl nitroxide derivative was synthesized and its antitumor activities in vitro and in vivo were investigated. The adamantyl nitroxide derivative 4 displayed a potent anticancer activity against all the tested human hepatoma cells, especially with IC50 of 68.1 μM in Bel-7404 cells, compared to the positive control 5-FU (IC50=607.7 μM). The significant inhibition of cell growth was also observed in xenograft mouse model, with low toxicity. Compound 4 suppressed the cell migration and invasion, induced the G2/M phase arrest. Further mechanistic studies revealed that compound 4 induced cell death, which was accompanied with damaging mitochondria, increasing the generation of intracellular reactive oxygen species, cleavages of caspase-9 and caspase-3, as well as activations of Bax and Bcl-2. These results confirmed that adamantyl nitroxide derivative exhibited selective antitumor activities via mitochondrial apoptosis pathway in Bel-7404 cells, and would be a potential anticancer agent for liver cancer. PMID:27429843
Synthesis of indolizidinone analogues of cytotoxic alkaloids: monocyclic precursors are also active.
Boto, Alicia; Miguélez, Javier; Marín, Raquel; Díaz, Mario
2012-05-15
Readily available proline derivatives can be transformed in just two steps into analogues of cytotoxic phenanthroindolizidine alkaloids. The key step uses a sequential radical scission-oxidation-alkylation process, which yields 2-substituted pyrrolidine amides. A second process effects the cyclization to give the desired alkaloid analogues, which possess an indolizidine core. The major and minor isomers (dr 3:2 to 3:1) can be easily separated, allowing their use to study structure-activity relationships (SAR). The process is versatile and allows the introduction of aryl and heteroaryl groups (including biphenyl, halogenated phenyl, and pyrrole rings). Some of these alkaloid analogues displayed a selective cytotoxic activity against tumorogenic human neuronal and mammary cancer cells, and one derivative caused around 80% cell death in both tumor lines at micromolar doses. The cytotoxicity of some monocyclic precursors was also studied, being comparable or superior to the bicyclic derivatives. Copyright © 2012 Elsevier Ltd. All rights reserved.
Tracanna, María I; Fortuna, Antonio M; Cárdenas, Angel V Contreras; Marr, Alexandra K; McMaster, W Robert; Gómez-Velasco, Anaximandro; Sánchez-Arreola, Eugenio; Hernández, Luis Ricardo; Bach, Horacio
2015-03-01
A new phenolic derivative, 2,8-dihydroxy-7H-furo[2,3-f]chromen-7-one (1), together with isoquercitrin (2), was isolated from the aerial parts of Tibouchina paratropica. Compound structures were elucidated by spectroscopic methods. Both compounds show antimicrobial activity towards a panel of bacterial and fungal pathogens, and compound 1 displayed potent anti-parasitic activity against Leishmania donovani (IC50 = 0.809 µg/mL). In addition, an 85% reduction in the secretion of the pro-inflammatory cytokine IL-6 was recorded when macrophages challenged with lipopolysaccharide were exposed to compound 1, but no effect on the anti-inflammatory IL-10 was observed. Compound 2 showed neither anti-parasitic nor anti-inflammatory properties. In addition, no cytotoxic activities were observed against the human-derived macrophage THP-1 cells. Copyright © 2014 John Wiley & Sons, Ltd.
A Human Factors Framework for Payload Display Design
NASA Technical Reports Server (NTRS)
Dunn, Mariea C.; Hutchinson, Sonya L.
1998-01-01
During missions to space, one charge of the astronaut crew is to conduct research experiments. These experiments, referred to as payloads, typically are controlled by computers. Crewmembers interact with payload computers by using visual interfaces or displays. To enhance the safety, productivity, and efficiency of crewmember interaction with payload displays, particular attention must be paid to the usability of these displays. Enhancing display usability requires adoption of a design process that incorporates human factors engineering principles at each stage. This paper presents a proposed framework for incorporating human factors engineering principles into the payload display design process.
Co-residence patterns in hunter-gatherer societies show unique human social structure.
Hill, Kim R; Walker, Robert S; Bozicević, Miran; Eder, James; Headland, Thomas; Hewlett, Barry; Hurtado, A Magdalena; Marlowe, Frank; Wiessner, Polly; Wood, Brian
2011-03-11
Contemporary humans exhibit spectacular biological success derived from cumulative culture and cooperation. The origins of these traits may be related to our ancestral group structure. Because humans lived as foragers for 95% of our species' history, we analyzed co-residence patterns among 32 present-day foraging societies (total n = 5067 individuals, mean experienced band size = 28.2 adults). We found that hunter-gatherers display a unique social structure where (i) either sex may disperse or remain in their natal group, (ii) adult brothers and sisters often co-reside, and (iii) most individuals in residential groups are genetically unrelated. These patterns produce large interaction networks of unrelated adults and suggest that inclusive fitness cannot explain extensive cooperation in hunter-gatherer bands. However, large social networks may help to explain why humans evolved capacities for social learning that resulted in cumulative culture.
Infants Perceive Human Point-Light Displays as Solid Forms
ERIC Educational Resources Information Center
Moore, Derek G.; Goodwin, Julia E.; George, Rachel; Axelsson, Emma L.; Braddick, Fleur M. B.
2007-01-01
While five-month-old infants show orientation-specific sensitivity to changes in the motion and occlusion patterns of human point-light displays, it is not known whether infants are capable of binding a human representation to these displays. Furthermore, it has been suggested that infants do not encode the same physical properties for humans and…
Wu, Tao; Shu, Tao; Kang, Le; Wu, Jinhui; Xing, Jianzhou; Lu, Zhiqin; Chen, Shuxiang; Lv, Jun
2017-04-01
For the treatment of diseases affecting bones using bone regenerative medicine, there is an urgent need to develop safe, inexpensive drugs that can strongly induce bone formation. In the present study, we systematically investigated the effects of icaritin, a metabolic product of icariin, on the osteogenic differentiation of human bone marrow‑derived mesenchymal stem cells (hBMSCs) and human adipose tissue‑derived stem cells (hADSCs) in vitro. After treatment with icaritin at concentrations of 10‑8-10‑5 M, hBMSCs and hADSCs were examined for alkaline phosphatase activity, osteocalcin (OC) secretion, matrix mineralization and expression levels of bone‑related mRNA and proteins. Data showed that icaritin at concentrations 10‑7-10‑5 M significantly increased alkaline phosphatase activity, OC secretion at different time points, and calcium deposition at day 21. In addition, icaritin upregulated the mRNA expression of genes for bone morphogenetic proteins (BMP‑2, ‑4 and ‑7), bone transcription factors (Runx2 and Dlx5) and bone matrix proteins (ALP, OC and Col‑1). Moreover, icaritin increased the protein levels of BMPs, Runx2 and OC, as detected by western blot analysis. These findings suggest that icaritin enhances the osteogenic differentiation of hBMSCS and hADSCs. Icaritin exerts its potent osteogenic effect possibly by directly stimulating the production of BMPs. Although the osteogenic activity of icaritin in vitro was inferior to that of rhBMP‑2, icaritin displayed better results than icariin. Moreover, the low cost, simple extraction procedure, and an abundance of icaritin make it appealing as a bone regenerative medicine.
Hargrove, Tatiana Y.; Friggeri, Laura; Wawrzak, Zdzislaw; Sivakumaran, Suneethi; Yazlovitskaya, Eugenia M.; Hiebert, Scott W.; Guengerich, F. Peter; Waterman, Michael R.; Lepesheva, Galina I.
2016-01-01
Rapidly multiplying cancer cells synthesize greater amounts of cholesterol to build their membranes. Cholesterol-lowering drugs (statins) are currently in clinical trials for anticancer chemotherapy. However, given at higher doses, statins cause serious side effects by inhibiting the formation of other biologically important molecules derived from mevalonate. Sterol 14α-demethylase (CYP51), which acts 10 steps downstream, is potentially a more specific drug target because this portion of the pathway is fully committed to cholesterol production. However, screening a variety of commercial and experimental inhibitors of microbial CYP51 orthologs revealed that most of them (including all clinical antifungals) weakly inhibit human CYP51 activity, even if they display high apparent spectral binding affinity. Only one relatively potent compound, (R)-N-(1-(3,4′-difluorobiphenyl-4-yl)-2-(1H-imidazol-1-yl)ethyl)-4-(5-phenyl-1,3,4-oxadiazol-2-yl)benzamide (VFV), was identified. VFV has been further tested in cellular experiments and found to decrease proliferation of different cancer cell types. The crystal structures of human CYP51-VFV complexes (2.0 and 2.5 Å) both display a 2:1 inhibitor/enzyme stoichiometry, provide molecular insights regarding a broader substrate profile, faster catalysis, and weaker susceptibility of human CYP51 to inhibition, and outline directions for the development of more potent inhibitors. PMID:27313059
Williams, Joshua D.; Cabello, Christopher M.; Qiao, Shuxi; Wondrak, Georg T.
2014-01-01
Endogenous UVA-chromophores may act as sensitizers of oxidative stress underlying cutaneous photoaging and photocarcinogenesis, but the molecular identity of non-DNA key chromophores displaying UVA-driven photodyamic activity in human skin remains largely undefined. Here we report that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan photoproduct and endogenous high affinity aryl hydrocarbon receptor (AhR) agonist, acts as a nanomolar photosensitizer potentiating UVA-induced oxidative stress irrespective of AhR ligand activity. In human HaCaT and primary epidermal keratinocytes, photodynamic induction of apoptosis was elicited by the combined action of solar simulated UVA and FICZ, whereas exposure to the isolated action of UVA or FICZ did not impair viability. In a human epidermal tissue reconstruct, FICZ/UVA-cotreatment caused pronounced phototoxicity inducing keratinocyte cell death, and FICZ photodynamic activity was also substantiated in a murine skin exposure model. Array analysis revealed pronounced potentiation of cellular heat shock, ER stress, and oxidative stress response gene expression observed only upon FICZ/UVA-cotreatment. FICZ photosensitization caused intracellular oxidative stress, and comet analysis revealed introduction of formamidopyrimidine-DNA glycosylase (FPG)-sensitive oxidative DNA lesions suppressible by antioxidant cotreatment. Taken together, our data demonstrate that the endogenous AhR ligand FICZ displays nanomolar photodynamic activity representing a molecular mechanism of UVA-induced photooxidative stress potentially operative in human skin. PMID:25431849
Human performance evaluation of a pathway HMD
NASA Astrophysics Data System (ADS)
Lorenz, Bernd; Tobben, Helmut; Schmerwitz, Sven
2005-05-01
Head-up displays (HUD) and helmet (or head)-mounted displays (HMD) aim at reducing the pilot's visual scanning cost in support of concurrent monitoring of both instrument information (near domain) and the outside environment (far domain). An HMD used in combination with a head tracker enables the assessment of the pilot"s head direction in real time allowing symbologies to remain spatially linked to elements of the outside environment. The paper examines the potential added benefits of improved flight path tracking to be expected by displaying symbologies of a virtual 3D perspective pathway plus predictor information on an HMD. Results of a high-fidelity flight-simulation experiment are reported that involved a series of curved approaches supported with such a pathway HMD. The study used a monocular retinal-scanning HMD and involved 18 pilots. Dependent human performance data were derived from flight path tracking measures, subjective measures of mental workload and situation awareness and pilot reactions in response to an unexpected rare event in the outside scene (intruding aircraft on the active runway for the intended landing). Comparison with a standard head-down ILS baseline condition revealed a mix of performance costs and benefits, which is consistent with most of the human factors literature on the general use of HUDs and of HUDs used in combination with pathway guidance: The pathway HMD promoted substantially better flight path tracking but caused also a delayed response to the unexpected event. This effect points to some disadvantages of HUDs referred to as 'attention capture', which may become exaggerated by the additional use of pathway guidance symbology.
The window of visibility: A psychological theory of fidelity in time-sampled visual motion displays
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.; Farrell, J. E.
1983-01-01
Many visual displays, such as movies and television, rely upon sampling in the time domain. The spatiotemporal frequency spectra for some simple moving images are derived and illustrations of how these spectra are altered by sampling in the time domain are provided. A simple model of the human perceiver which predicts the critical sample rate required to render sampled and continuous moving images indistinguishable is constructed. The rate is shown to depend upon the spatial and temporal acuity of the observer, and upon the velocity and spatial frequency content of the image. Several predictions of this model are tested and confirmed. The model is offered as an explanation of many of the phenomena known as apparent motion. Finally, the implications of the model for computer-generated imagery are discussed.
Wang, Tao; Yin, Zhiwei; Zhang, Zhongxing; Bender, John A; Yang, Zhong; Johnson, Graham; Yang, Zheng; Zadjura, Lisa M; D'Arienzo, Celia J; DiGiugno Parker, Dawn; Gesenberg, Christophe; Yamanaka, Gregory A; Gong, Yi-Fei; Ho, Hsu-Tso; Fang, Hua; Zhou, Nannan; McAuliffe, Brian V; Eggers, Betsy J; Fan, Li; Nowicka-Sans, Beata; Dicker, Ira B; Gao, Qi; Colonno, Richard J; Lin, Pin-Fang; Meanwell, Nicholas A; Kadow, John F
2009-12-10
Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.
Cabello, Christopher M.; Bair, Warner B.; Ley, Stephanie; Lamore, Sarah D.; Azimian, Sara; Wondrak, Georg T.
2008-01-01
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N6-furfuryladenosine (FAdo, kinetin-riboside) displays antiproliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo-exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N6-furfuryladenine, displayed potent antiproliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60 to 180 minutes of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase suppressed FAdo cytotoxicity and also prevented ATP-depletion and p21-upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity. PMID:19186174
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Liu, Yanfeng; Wang, Ying; Gao, Yongxing; Forbes, Jessica A; Qayyum, Rehan; Becker, Lewis; Cheng, Linzhao; Wang, Zack Z
2015-04-01
Megakaryocytes (MKs) are rare hematopoietic cells in the adult bone marrow and produce platelets that are critical to vascular hemostasis and wound healing. Ex vivo generation of MKs from human induced pluripotent stem cells (hiPSCs) provides a renewable cell source of platelets for treating thrombocytopenic patients and allows a better understanding of MK/platelet biology. The key requirements in this approach include developing a robust and consistent method to produce functional progeny cells, such as MKs from hiPSCs, and minimizing the risk and variation from the animal-derived products in cell cultures. In this study, we developed an efficient system to generate MKs from hiPSCs under a feeder-free and xeno-free condition, in which all animal-derived products were eliminated. Several crucial reagents were evaluated and replaced with Food and Drug Administration-approved pharmacological reagents, including romiplostim (Nplate, a thrombopoietin analog), oprelvekin (recombinant interleukin-11), and Plasbumin (human albumin). We used this method to induce MK generation from hiPSCs derived from 23 individuals in two steps: generation of CD34(+)CD45(+) hematopoietic progenitor cells (HPCs) for 14 days; and generation and expansion of CD41(+)CD42a(+) MKs from HPCs for an additional 5 days. After 19 days, we observed abundant CD41(+)CD42a(+) MKs that also expressed the MK markers CD42b and CD61 and displayed polyploidy (≥16% of derived cells with DNA contents >4N). Transcriptome analysis by RNA sequencing revealed that megakaryocytic-related genes were highly expressed. Additional maturation and investigation of hiPSC-derived MKs should provide insights into MK biology and lead to the generation of large numbers of platelets ex vivo. ©AlphaMed Press.
Tracking natural and anthropogenic Pb exposure to its geological source.
Evans, Jane; Pashley, Vanessa; Madgwick, Richard; Neil, Samantha; Chenery, Carolyn
2018-01-31
Human Pb exposure comes from two sources: (i) natural uptake through ingestion of soils and typified by populations that predate mining activity and (ii) anthropogenic exposure caused by the exposure to Pb derived from ore deposits. Currently, the measured concentration of Pb within a sample is used to discriminate between these two exposure routes, with the upper limit for natural exposure in skeletal studies given as 0.5 or 0.7 mg/kg in enamel and 0.5/0.7 μg/dL in blood. This threshold approach to categorising Pb exposure does not distinguish between the geological origins of the exposure types. However, Pb isotopes potentially provide a more definitive means of discriminating between sources. Whereas Pb from soil displays a crustal average 238 U/ 204 Pb (μ) value of c 9.7, Pb from ore displays a much wider range of evolution pathways. These characteristics are transferred into tooth enamel, making it possible to characterize human Pb exposure in terms of the primary source of ingested Pb and to relate mining activity to geotectonic domains. We surmise that this ability to discriminate between silicate and sulphide Pb exposure will lead to a better understanding of the evolution of early human mining activity and development of exposure models through the Anthropocene.
Pillaiyar, Thanigaimalai; Köse, Meryem; Sylvester, Katharina; Weighardt, Heike; Thimm, Dominik; Borges, Gleice; Förster, Irmgard; von Kügelgen, Ivar; Müller, Christa E
2017-05-11
The G i protein-coupled receptor GPR84, which is activated by (hydroxy)fatty acids, is highly expressed on immune cells. Recently, 3,3'-diindolylmethane was identified as a heterocyclic, nonlipid-like GPR84 agonist. We synthesized a broad range of diindolylmethane derivatives by condensation of indoles with formaldehyde in water under microwave irradiation. The products were evaluated at the human GPR84 in cAMP and β-arrestin assays. Structure-activity relationships (SARs) were steep. 3,3'-Diindolylmethanes bearing small lipophilic residues at the 5- and/or 7-position of the indole rings displayed the highest activity in cAMP assays, the most potent agonists being di(5-fluoro-1H-indole-3-yl)methane (38, PSB-15160, EC 50 80.0 nM) and di(5,7-difluoro-1H-indole-3-yl)methane (57, PSB-16671, EC 50 41.3 nM). In β-arrestin assays, SARs were different, indicating biased agonism. The new compounds were selective versus related fatty acid receptors and the arylhydrocarbon receptor. Selected compounds were further investigated and found to display an ago-allosteric mechanism of action and increased stability in comparison to the lead structure.
Liu, Taoyan; Huang, Chengwu; Li, Hongxia; Wu, Fujian; Luo, Jianwen; Lu, Wenjing
2018-01-01
The use of human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) is limited in drug discovery and cardiac disease mechanism studies due to cell immaturity. Although many approaches have been reported to improve the maturation of hiPSC-CMs, the elucidation of the process of maturation is crucial. We applied a small-molecule-based differentiation method to generate cardiomyocytes (CMs) with multiple aggregation forms. The motion analysis revealed significant physical differences in the differently shaped CMs, and the net-shaped CMs had larger motion amplitudes and faster velocities than the sheet-shaped CMs. The net-shaped CMs displayed accelerated maturation at the transcriptional level and were more similar to CMs with a prolonged culture time (30 days) than to sheet-d15. Ion channel genes and gap junction proteins were up-regulated in net-shaped CMs, indicating that robust contraction was coupled with enhanced ion channel and connexin expression. The net-shaped CMs also displayed improved myofibril ultrastructure under transmission electron microscopy. In conclusion, different multicellular hPSC-CM structures, such as the net-shaped pattern, are formed using the conditioned induction method, providing a useful tool to improve cardiac maturation. PMID:29661985
Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21.
Fu, Shuna; Wang, Fan; Li, Hongyu; Bao, Yixuan; Yang, Yu; Shen, Huifang; Lin, Birun; Zhou, Guangxiong
2016-11-01
A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 μg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 μg/mL.
Longet, Stéphanie; Miled, Sarah; Lötscher, Marius; Miescher, Sylvia M.; Zuercher, Adrian W.; Corthésy, Blaise
2013-01-01
Immunotherapy with monoclonal and polyclonal immunoglobulin is successfully applied to improve many clinical conditions, including infection, autoimmune diseases, or immunodeficiency. Most immunoglobulin products, recombinant or plasma-derived, are based on IgG antibodies, whereas to date, the use of IgA for therapeutic application has remained anecdotal. In particular, purification or production of large quantities of secretory IgA (SIgA) for potential mucosal application has not been achieved. In this work, we sought to investigate whether polymeric IgA (pIgA) recovered from human plasma is able to associate with secretory component (SC) to generate SIgA-like molecules. We found that ∼15% of plasma pIgA carried J chain and displayed selective SC binding capacity either in a mixture with monomeric IgA (mIgA) or after purification. The recombinant SC associated covalently in a 1:1 stoichiometry with pIgA and with similar efficacy as colostrum-derived SC. In comparison with pIgA, the association with SC delayed degradation of SIgA by intestinal proteases. Similar results were obtained with plasma-derived IgM. In vitro, plasma-derived IgA and SIgA neutralized Shigella flexneri used as a model pathogen, resulting in a delay of bacteria-induced damage targeted to polarized Caco-2 cell monolayers. The sum of these novel data demonstrates that association of plasma-derived IgA or IgM with recombinant/colostrum-derived SC is feasible and yields SIgA- and SIgM-like molecules with similar biochemical and functional characteristics as mucosa-derived immunoglobulins. PMID:23250751
Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome.
Burnett, Lisa C; LeDuc, Charles A; Sulsona, Carlos R; Paull, Daniel; Rausch, Richard; Eddiry, Sanaa; Carli, Jayne F Martin; Morabito, Michael V; Skowronski, Alicja A; Hubner, Gabriela; Zimmer, Matthew; Wang, Liheng; Day, Robert; Levy, Brynn; Fennoy, Ilene; Dubern, Beatrice; Poitou, Christine; Clement, Karine; Butler, Merlin G; Rosenbaum, Michael; Salles, Jean Pierre; Tauber, Maithe; Driscoll, Daniel J; Egli, Dieter; Leibel, Rudolph L
2017-01-03
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell-derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p-/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p-/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p-/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH-releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency.
Deficiency in prohormone convertase PC1 impairs prohormone processing in Prader-Willi syndrome
Burnett, Lisa C.; LeDuc, Charles A.; Sulsona, Carlos R.; Paull, Daniel; Rausch, Richard; Eddiry, Sanaa; Carli, Jayne F. Martin; Morabito, Michael V.; Skowronski, Alicja A.; Hubner, Gabriela; Zimmer, Matthew; Wang, Liheng; Day, Robert; Levy, Brynn; Dubern, Beatrice; Poitou, Christine; Clement, Karine; Rosenbaum, Michael; Salles, Jean Pierre; Tauber, Maithe; Egli, Dieter
2016-01-01
Prader-Willi syndrome (PWS) is caused by a loss of paternally expressed genes in an imprinted region of chromosome 15q. Among the canonical PWS phenotypes are hyperphagic obesity, central hypogonadism, and low growth hormone (GH). Rare microdeletions in PWS patients define a 91-kb minimum critical deletion region encompassing 3 genes, including the noncoding RNA gene SNORD116. Here, we found that protein and transcript levels of nescient helix loop helix 2 (NHLH2) and the prohormone convertase PC1 (encoded by PCSK1) were reduced in PWS patient induced pluripotent stem cell–derived (iPSC-derived) neurons. Moreover, Nhlh2 and Pcsk1 expression were reduced in hypothalami of fasted Snord116 paternal knockout (Snord116p–/m+) mice. Hypothalamic Agrp and Npy remained elevated following refeeding in association with relative hyperphagia in Snord116p–/m+ mice. Nhlh2-deficient mice display growth deficiencies as adolescents and hypogonadism, hyperphagia, and obesity as adults. Nhlh2 has also been shown to promote Pcsk1 expression. Humans and mice deficient in PC1 display hyperphagic obesity, hypogonadism, decreased GH, and hypoinsulinemic diabetes due to impaired prohormone processing. Here, we found that Snord116p–/m+ mice displayed in vivo functional defects in prohormone processing of proinsulin, pro-GH–releasing hormone, and proghrelin in association with reductions in islet, hypothalamic, and stomach PC1 content. Our findings suggest that the major neuroendocrine features of PWS are due to PC1 deficiency. PMID:27941249
Chin, Stacey E; Ferraro, Franco; Groves, Maria; Liang, Meina; Vaughan, Tristan J; Dobson, Claire L
2015-01-01
Anti-idiotype antibodies against a therapeutic antibody are key reagents for the development of immunogenicity and pharmacokinetic (PK) assays during pre-clinical and clinical development. Here we have used a combination of phage and ribosome display to isolate a panel of monoclonal anti-idiotype antibodies with sub-nanomolar affinity and high specificity to a human anti-IgE monoclonal antibody. Anti-idiotype antibodies were enriched from scFv libraries using phage display, and a biochemical epitope competition assay was used to identify anti-idiotypes which neutralized IgE binding, which was essential for the intended use of the anti-idiotypes as positive controls in neutralizing anti-drug antibody (Nab) assays. The phage display-derived anti-idiotype antibodies were rapidly affinity-matured using a random point mutagenesis approach in ribosome display. Ten anti-idiotype antibodies with improved neutralizing activity relative to the parent antibodies displayed sub-nanomolar affinity for the anti-IgE antibody, representing up to 20-fold improvements in affinity from just two rounds of affinity-based selection. The optimized anti-idiotype antibodies retained the specificity of the parent antibodies, and importantly, were fit for purpose for use in PK and anti-drug antibody (ADA) assays. The approach we describe here for generation of anti-idiotype antibodies to an anti-IgE antibody is generically applicable for the rapid isolation and affinity maturation of anti-idiotype antibodies to any antibody-based drug candidate. Copyright © 2014 Elsevier B.V. All rights reserved.
Shaw, Colin N; Stock, Jay T
2013-04-01
Descriptions of Pleistocene activity patterns often derive from comparisons of long bone diaphyseal robusticity across contemporaneous fossilized hominins. The purpose of this study is to augment existing understanding of Pleistocene hominin mobility patterns by interpreting fossil variation through comparisons with a) living human athletes with known activity patterns, and b) Holocene foragers where descriptions of group-level activity patterns are available. Relative tibial rigidity (midshaft tibial rigidity (J)/midshaft humeral rigidity (J)) was compared amongst Levantine and European Neandertals, Levantine and Upper Palaeolithic Homo sapiens, Holocene foragers and living human athletes and controls. Cross-country runners exhibit significantly (p<0.05) greater relative tibial rigidity compared with swimmers, and higher values compared with controls. In contrast, swimmers displayed significantly (p<0.05) lower relative tibial rigidity than both runners and controls. While variation exists among all Holocene H. sapiens, highly terrestrially mobile Later Stone Age (LSA) southern Africans and cross-country runners display the highest relative tibial rigidity, while maritime Andaman Islanders and swimmers display the lowest, with controls falling between. All fossil hominins displayed relative tibial rigidity that exceeded, or was similar to, the highly terrestrially mobile Later Stone Age southern Africans and modern human cross-country runners. The more extreme skeletal structure of most Neandertals and Levantine H. sapiens, as well as the odd Upper Palaeolithic individual, appears to reflect adaptation to intense and/or highly repetitive lower limb (relative to upper limb) loading. This loading may have been associated with bipedal travel, and appears to have been more strenuous than that encountered by even university varsity runners, and Holocene foragers with hunting grounds 2000-3000 square miles in size. Skeletal variation among the athletes and foraging groups is consistent with known or inferred activity profiles, which support the position that the Pleistocene remains reflect adaptation to extremely active and mobile lives. Copyright © 2013 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2004-03-20
A means of quantifying the cluttering effects of symbols is needed to evaluate the impact of displaying an increasing volume of information on aviation displays such as head-up displays. Human visual perception has been successfully modeled by algori...
Zhu, Yanxia; Liang, Yuhong; Zhu, Hongxia; Lian, Cuihong; Wang, Liang; Wang, Yiwei; Gu, Hongsheng; Zhou, Guangqian; Yu, Xiaoping
2017-06-27
Disc degenerative disease (DDD) is believed to originate in the nucleus pulposus (NP) region therefore, it is important to obtain a greater number of active NP cells for the study and therapy of DDD. Human induced pluripotent stem cells (iPSCs) are a powerful tool for modeling the development of DDD in humans, and have the potential to be applied in regenerative medicine. NP cells were isolated from DDD patients following our improved method, and then the primary NP cells were reprogramed into iPSCs with Sendai virus vectors encoding 4 factors. Successful reprogramming of iPSCs was verified by the expression of surface markers and presence of teratoma. Differentiation of iPSCs into NP-like cells was performed in a culture plate or in hydrogel, whereby skin fibroblast derived-iPSCs were used as a control. Results demonstrated that iPSCs derived from NP cells displayed a normal karyotype, expressed pluripotency markers, and formed teratoma in nude mice. NP induction of iPSCs resulted in the expression of NP cell specific matrix proteins and related genes. Non-induced NP derived-iPSCs also showed some NP-like phenotype. Furthermore, NP-derived iPSCs differentiate much better in hydrogel than that in a culture plate. This is a novel method for the generation of iPSCs from NP cells of DDD patients, and we have successfully differentiated these iPSCs into NP-like cells in hydrogel. This method provides a novel treatment of DDD by using patient-specific NP cells in a relatively simple and straightforward manner.
Design and synthesis of N-(4-aminopyridin-2-yl)amides as B-Raf(V600E) inhibitors.
Li, Xiaokai; Shen, Jiayi; Tan, Li; Zhang, Zhang; Gao, Donglin; Luo, Jinfeng; Cheng, Huimin; Zhou, Xiaoping; Ma, Jie; Ding, Ke; Lu, Xiaoyun
2016-06-15
B-Raf(V600E) was an effective target for the treatment of human cancers. Based on a pan-Raf inhibitor TAK-632, a series of N-(4-aminopyridin-2-yl)amide derivatives were designed as novel B-Raf(V600E) inhibitors. Detailed structure-activity studies of the compounds revealed that most of the compounds displayed potent enzymatic activity against B-Raf(V600E), and good selectivity over B-Raf(WT). One of the most promising compound 4l exhibited potent inhibitory activity with an IC50 value of 38nM for B-raf(V600E), and displayed antiproliferative activities against colo205 and HT29 cells with IC50 values of 0.136 and 0.094μM, respectively. It also displayed good selectivity on both enzymatic and cellular assays over B-Raf(WT). These inhibitors may serve as lead compounds for further developing novel B-Raf(V600E) inhibitors as anticancer drugs. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pet Imaging Of The Chemistry Of The Brain
NASA Astrophysics Data System (ADS)
Wagner, Henry N., Jr.
1986-06-01
Advances in neurobiology today are as important as the advances in atomic physics at the turn of the century and molecular genetics in the 1950's. Positron-emission tomography is participating in these advances by making it possible for the first time to measure the chemistry of the living human brain in health and disease and to relate the changes at the molecular level to the functioning of the human mind. The amount of data generated requires modern data processing, display, and archiving capabilities. To achieve maximum benefit from the PET imaging and the derived quantitative measurements, the data must be combined with information, usually of a structural nature, from other imaging modalities, chiefly computed tomography and magnetic resonance imaging.
Minguell, José J; Fierro, Fernando A; Epuñan, María J; Erices, Alejandro A; Sierralta, Walter D
2005-08-01
Ex vivo cultures of human bone marrow-derived mesenchymal stem cells (MSCs) contain subsets of progenitors exhibiting dissimilar properties. One of these subsets comprises uncommitted progenitors displaying distinctive features, such as morphology, a quiescent condition, growth factor production, and restricted tissue biodistribution after transplantation. In this study, we assessed the competence of these cells to express, in the absence of differentiation stimuli, markers of mesoderm and ectodermic (neural) cell lineages. Fluorescence microscopy analysis showed a unique pattern of expression of osteogenic, chondrogenic, muscle, and neural markers. The depicted "molecular signature" of these early uncommitted progenitors, in the absence of differentiation stimuli, is consistent with their multipotentiality and plasticity as suggested by several in vitro and in vivo studies.
Neural Stem Cells Derived Directly from Adipose Tissue.
Petersen, Eric D; Zenchak, Jessica R; Lossia, Olivia V; Hochgeschwender, Ute
2018-05-01
Neural stem cells (NSCs) are characterized as self-renewing cell populations with the ability to differentiate into the multiple tissue types of the central nervous system. These cells can differentiate into mature neurons, astrocytes, and oligodendrocytes. This category of stem cells has been shown to be a promisingly effective treatment for neurodegenerative diseases and neuronal injury. Most treatment studies with NSCs in animal models use embryonic brain-derived NSCs. This approach presents both ethical and feasibility issues for translation to human patients. Adult tissue is a more practical source of stem cells for transplantation therapies in humans. Some adult tissues such as adipose tissue and bone marrow contain a wide variety of stem cell populations, some of which have been shown to be similar to embryonic stem cells, possessing many pluripotent properties. Of these stem cell populations, some are able to respond to neuronal growth factors and can be expanded in vitro, forming neurospheres analogous to cells harvested from embryonic brain tissue. In this study, we describe a method for the collection and culture of cells from adipose tissue that directly, without going through intermediates such as mesenchymal stem cells, results in a population of NSCs that are able to be expanded in vitro and be differentiated into functional neuronal cells. These adipose-derived NSCs display a similar phenotype to those directly derived from embryonic brain. When differentiated into neurons, cells derived from adipose tissue have spontaneous spiking activity with network characteristics similar to that of neuronal cultures.
Amakali, Klaudia T; Legoabe, Lesetja Jan; Petzer, Anel; Petzer, Jacobus P
2018-05-01
Chalcone has been identified as a promising lead for the design of monoamine oxidase (MAO) inhibitors. This study attempted to discover potent and selective chalcone-derived MAO inhibitors by synthesising a series consisting of various cyclic chalcone derivatives. The cyclic chalcones were selected based on the possibility that their restricted structures would confer a higher degree of MAO isoform selectivity, and included the following chemical classes: 1-indanone, 1-tetralone, 1-benzosuberone, chromone, thiochromone, 4-chromanone and 4-thiochromanone. The results showed that the cyclic chalcones are in general good potency, and in most instances specific inhibitors of the human MAO-B isoform. Among these compounds, the 4-chromanone derivative was the most potent MAO-B inhibitor with an IC50 value of 0.156 µM. To further investigate the MAO inhibition of cyclic chalcones, a series of twenty-three 2-benzylidene-1-tetralone derivatives were synthesised and evaluated as MAO inhibitors. Most 2-benzylidene-1-tetralones possess good inhibitory activity and specificity for MAO-B with the most potent inhibitor displaying an IC50 value of 0.0064 µM, while the most potent MAO-A inhibitor possessed an IC50 value of 0.754 µM. This study thus shows that certain cyclic chalcones are human MAO-B inhibitors, compounds that could be suitable for the treatment of neurodegenerative disorders such as Parkinson's disease. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Augmenting digital displays with computation
NASA Astrophysics Data System (ADS)
Liu, Jing
As we inevitably step deeper and deeper into a world connected via the Internet, more and more information will be exchanged digitally. Displays are the interface between digital information and each individual. Naturally, one fundamental goal of displays is to reproduce information as realistically as possible since humans still care a lot about what happens in the real world. Human eyes are the receiving end of such information exchange; therefore it is impossible to study displays without studying the human visual system. In fact, the design of displays is rather closely coupled with what human eyes are capable of perceiving. For example, we are less interested in building displays that emit light in the invisible spectrum. This dissertation explores how we can augment displays with computation, which takes both display hardware and the human visual system into consideration. Four novel projects on display technologies are included in this dissertation: First, we propose a software-based approach to driving multiview autostereoscopic displays. Our display algorithm can dynamically assign views to hardware display zones based on multiple observers' current head positions, substantially reducing crosstalk and stereo inversion. Second, we present a dense projector array that creates a seamless 3D viewing experience for multiple viewers. We smoothly interpolate the set of viewer heights and distances on a per-vertex basis across the arrays field of view, reducing image distortion, crosstalk, and artifacts from tracking errors. Third, we propose a method for high dynamic range display calibration that takes into account the variation of the chrominance error over luminance. We propose a data structure for enabling efficient representation and querying of the calibration function, which also allows user-guided balancing between memory consumption and the amount of computation. Fourth, we present user studies that demonstrate that the ˜ 60 Hz critical flicker fusion rate for traditional displays is not enough for some computational displays that show complex image patterns. The study focuses on displays with hidden channels, and their application to 3D+2D TV. By taking advantage of the fast growing power of computation and sensors, these four novel display setups - in combination with display algorithms - advance the frontier of computational display research.
Silva, Ellen C C; Cavalcanti, Bruno C; Amorim, Rodrigo C N; Lucena, Jorcilene F; Quadros, Dulcimar S; Tadei, Wanderli P; Montenegro, Raquel C; Costa-Lotufo, Letícia V; Pessoa, Cláudia; Moraes, Manoel O; Nunomura, Rita C S; Nunomura, Sergio M; Melo, Marcia R S; Andrade-Neto, Valter F de; Silva, Luiz Francisco R; Vieira, Pedro Paulo R; Pohlit, Adrian M
2009-02-01
In the present study, in vitro techniques were used to investigate a range of biological activities of known natural quassinoids isobrucein B (1) and neosergeolide (2), known semi-synthetic derivative 1,12-diacetylisobrucein B (3), and a new semi-synthetic derivative, 12-acetylneosergeolide (4). These compounds were evaluated for general toxicity toward the brine shrimp species Artemia franciscana, cytotoxicity toward human tumour cells, larvicidal activity toward the dengue fever mosquito vector Aedes aegypti, haemolytic activity in mouse erythrocytes and antimalarial activity against the human malaria parasite Plasmodium falciparum. Compounds 1 and 2 exhibited the greatest cytotoxicity against all the tumor cells tested (IC50 = 5-27 microg/L) and against multidrug-resistant P. falciparum K1 strain (IC50 = 1.0-4.0 g/L) and 3 was only cytotoxic toward the leukaemia HL-60 strain (IC50 = 11.8 microg/L). Quassinoids 1 and 2 (LC50 = 3.2-4.4 mg/L) displayed greater lethality than derivative 4 (LC50 = 75.0 mg/L) toward A. aegypti larvae, while derivative 3 was inactive. These results suggest a novel application for these natural quassinoids as larvicides. The toxicity toward A. franciscana could be correlated with the activity in several biological models, a finding that is in agreement with the literature. Importantly, none of the studied compounds exhibited in vitro haemolytic activity, suggesting specificity of the observed cytotoxic effects. This study reveals the biological potential of quassinoids 1 and 2 and to a lesser extent their semi-synthetic derivatives for their in vitro antimalarial and cytotoxic activities.
Denton, Kyle R.; Lei, Ling; Grenier, Jeremy; Rodionov, Vladimir; Blackstone, Craig; Li, Xue-Jun
2013-01-01
Human neuronal models of hereditary spastic paraplegias (HSP) that recapitulate disease-specific axonal pathology hold the key to understanding why certain axons degenerate in patients and to developing therapies. SPG4, the most common form of HSP, is caused by autosomal dominant mutations in the SPAST gene, which encodes the microtubule-severing ATPase spastin. Here, we have generated a human neuronal model of SPG4 by establishing induced pluripotent stem cells (iPSCs) from an SPG4 patient and differentiating these cells into telencephalic glutamatergic neurons. The SPG4 neurons displayed a significant increase in axonal swellings, which stained strongly for mitochondria and tau, indicating the accumulation of axonal transport cargoes. In addition, mitochondrial transport was decreased in SPG4 neurons, revealing that these patient iPSC-derived neurons recapitulate disease-specific axonal phenotypes. Interestingly, spastin protein levels were significantly decreased in SPG4 neurons, supporting a haploinsufficiency mechanism. Furthermore, cortical neurons derived from spastin-knockdown human embryonic stem cells (hESCs) exhibited similar axonal swellings, confirming that the axonal defects can be caused by loss of spastin function. These spastin-knockdown hESCs serve as an additional model for studying HSP. Finally, levels of stabilized acetylated-tubulin were significantly increased in SPG4 neurons. Vinblastine, a microtubule-destabilizing drug, rescued this axonal swelling phenotype in neurons derived from both SPG4 iPSCs and spastin-knockdown hESCs. Thus, this study demonstrates the successful establishment of human pluripotent stem cell-based neuronal models of SPG4, which will be valuable for dissecting the pathogenic cellular mechanisms and screening compounds to rescue the axonal degeneration in HSP. PMID:24123785
Liu, Yurong; Buckley, Conor T; Downey, Richard; Mulhall, Kevin J; Kelly, Daniel J
2012-08-01
Engineering functional cartilaginous grafts using stem cells isolated from osteoarthritic human tissue is of fundamental importance if autologous tissue engineering strategies are to be used in the treatment of diseased articular cartilage. It has previously been demonstrated that human infrapatellar fat pad (IFP)-derived stem cells undergo chondrogenesis in pellet culture; however, the ability of such cells to generate functional cartilaginous grafts has not been adequately addressed. The objective of this study was to explore how environmental conditions regulate the functional development of cartilaginous constructs engineered using diseased human IFP-derived stem cells (FPSCs). FPSCs were observed to display a diminished chondrogenic potential upon encapsulation in a three-dimensional hydrogel compared with pellet culture, synthesizing significantly lower levels of glycosaminoglycan and collagen on a per cell basis. To engineer more functional cartilaginous grafts, we next explored whether additional biochemical and biophysical stimulations would enhance chondrogenesis within the hydrogels. Serum stimulation was observed to partially recover the diminished chondrogenic potential within hydrogel culture. Over 42 days, stem cells that had first been expanded in a low-oxygen environment proliferated extensively on the outer surface of the hydrogel in response to serum stimulation, assembling a dense type II collagen-positive cartilaginous tissue resembling that formed in pellet culture. The application of hydrostatic pressure did not further enhance extracellular matrix synthesis within the hydrogels, but did appear to alter the spatial accumulation of extracellular matrix leading to the formation of a more compact tissue with superior mechanically functionality. Further work is required in order to recapitulate the environmental conditions present during pellet culture within scaffolds or hydrogels in order to engineer more functional cartilaginous grafts using human osteoarthritic FPSCs.
Nguyen, Hanh H.; Lavrenov, Sergey N.; Sundar, Shyam N.; Nguyen, David H.H.; Tseng, Min; Marconett, Crystal N.; Kung, Jenny; Staub, Richard E.; Preobrazhenskaya, Maria N.; Bjeldanes, Leonard F.; Firestone, Gary L.
2012-01-01
Indole-3-carbinol (I3C), a natural autolysis product of a gluccosinolate present in Brassica vegetables such as broccoli and cabbage, has anti-proliferative and anti-estrogenic activities in human breast cancer cells. A new and significantly more potent I3C analogue, 1-benzyl-I3C was synthesized, and in comparison to I3C, this novel derivative displayed an approximate 1000-fold enhanced potency in suppressing the growth of both estrogen responsive (MCF-7) and estrogen independent (MDA-MB-231) human breast cancer cells (I3C IC50 of 52 μM, and 1-benzyl-I3C IC50 of 0.05 μM). At significantly lower concentrations, 1-benzyl-I3C induced a robust G1 cell cycle arrest and elicited the key I3C-specific effects on expression and activity of G1 acting cell cycle genes including the disruption of endogenous interactions of the Sp1 transcription factor with the CDK6 promoter. Furthermore, in estrogen responsive MCF-7 cells, with enhanced potency 1-benzyl-I3C down regulated production of estrogen receptor-alpha protein, acts with tamoxifen to arrest breast cancer cell growth more effectively than either compound alone, and inhibited the in vivo growth of human breast cancer cell-derived tumor xenografts in athymic mice. Our results implicate 1-benzyl-I3C as a novel, potent inhibitor of human breast cancer proliferation and estrogen responsiveness that could potentially be developed into a promising therapeutic agent for the treatment of indole-sensitive cancers. PMID:20570586
Variability of human pluripotent stem cell lines.
Ortmann, Daniel; Vallier, Ludovic
2017-10-01
Human pluripotent stem cells derived from embryos (human Embryonic Stem Cells or hESCs) or generated by direct reprogramming of somatic cells (human Induced Pluripotent Stem Cells or hiPSCs) can proliferate almost indefinitely in vitro while maintaining the capacity to differentiate into a broad diversity of cell types. These two properties (self-renewal and pluripotency) confers human pluripotent stem cells a unique interest for clinical applications since they could allow the production of infinite quantities of cells for disease modelling, drug screening and cell based therapy. However, recent studies have clearly established that human pluripotent stem cell lines can display variable capacity to differentiate into specific lineages. Consequently, the development of universal protocols of differentiation which could work efficiently with any human pluripotent cell line is complicated substantially. As a consequence, each protocol needs to be adapted to every cell line thereby limiting large scale applications and precluding personalised therapies. Here, we summarise our knowledge concerning the origin of this variability and describe potential solutions currently available to bypass this major challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herron, Todd J; Rocha, Andre Monteiro Da; Campbell, Katherine F; Ponce-Balbuena, Daniela; Willis, B Cicero; Guerrero-Serna, Guadalupe; Liu, Qinghua; Klos, Matt; Musa, Hassan; Zarzoso, Manuel; Bizy, Alexandra; Furness, Jamie; Anumonwo, Justus; Mironov, Sergey; Jalife, José
2016-04-01
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) monolayers generated to date display an immature embryonic-like functional and structural phenotype that limits their utility for research and cardiac regeneration. In particular, the electrophysiological function of hPSC-CM monolayers and bioengineered constructs used to date are characterized by slow electric impulse propagation velocity and immature action potential profiles. Here, we have identified an optimal extracellular matrix for significant electrophysiological and structural maturation of hPSC-CM monolayers. hPSC-CM plated in the optimal extracellular matrix combination have impulse propagation velocities ≈2× faster than previously reported (43.6±7.0 cm/s; n=9) and have mature cardiomyocyte action potential profiles, including hyperpolarized diastolic potential and rapid action potential upstroke velocity (146.5±17.7 V/s; n=5 monolayers). In addition, the optimal extracellular matrix promoted hypertrophic growth of cardiomyocytes and the expression of key mature sarcolemmal (SCN5A, Kir2.1, and connexin43) and myofilament markers (cardiac troponin I). The maturation process reported here relies on activation of integrin signaling pathways: neutralization of β1 integrin receptors via blocking antibodies and pharmacological blockade of focal adhesion kinase activation prevented structural maturation. Maturation of human stem cell-derived cardiomyocyte monolayers is achieved in a 1-week period by plating cardiomyocytes on PDMS (polydimethylsiloxane) coverslips rather than on conventional 2-dimensional cell culture formats, such as glass coverslips or plastic dishes. Activation of integrin signaling and focal adhesion kinase is essential for significant maturation of human cardiac monolayers. © 2016 American Heart Association, Inc.
Borgogna, Cinzia; Olivero, Carlotta; Lanfredini, Simone; Calati, Federica; De Andrea, Marco; Zavattaro, Elisa; Savoia, Paola; Trisolini, Elena; Boldorini, Renzo; Patel, Girish K; Gariglio, Marisa
2018-01-01
Many malignancies that occur in high excess in kidney transplant recipients (KTRs) are due to viruses that thrive in the setting of immunosuppression. Keratinocyte carcinoma (KC), the most frequently occurring cancer type in KTR, has been associated with skin infection by human papillomavirus (HPV) from the beta genus. In this report, we extend our previous investigation aimed at identifying the presence of active β-HPV infection in skin tumors from KTRs through detection of viral protein expression. Using a combination of antibodies raised against the E4 and L1 proteins of the β-genotypes, we were able to visualize infection in five tumors [one keratoacanthoma (KA), three actinic keratoses (AKs), and one seborrheic keratoses (SKs)] that were all removed from two patients who had been both transplanted twice, had developed multiple KCs, and presented with a long history of immunosuppression (>30 years). These infected tissues displayed intraepidermal hyperplasia and increased expression of the ΔNp63 protein, which extended into the upper epithelial layers. In addition, using a xenograft model system in nude mice displaying a humanized stromal bed in the site of grafting, we successfully engrafted three AKs, two of which were derived from the aforementioned KTRs and displayed β-HPV infection in the original tumor. Of note, one AK-derived xenograft, along with its ensuing lymph node metastasis, was diagnosed as squamous cell carcinoma (SCC). In the latter, both β-HPV infection and ΔNp63 expression were no longer detectable. Although the overall success rate of engrafting was very low, the results of this study show for the first time that β-HPV + and ΔNp63 + intraepidermal hyperplasia can indeed progress to an aggressive SCC able to metastasize. Consistent with a series of reports attributing a causative role of β-HPV at early stages of skin carcinogenesis through ΔNp63 induction and increased keratinocytes stemness, here we provide in vivo evidence that these events are also occurring in the affected skin of KTRs. Due to these β-HPV-driven molecular pathways, the nascent tumor cell is able to acquire a high enough number of carcinogenic insults that its proliferation and survival will eventually become independent of viral gene expression.
Borgogna, Cinzia; Olivero, Carlotta; Lanfredini, Simone; Calati, Federica; De Andrea, Marco; Zavattaro, Elisa; Savoia, Paola; Trisolini, Elena; Boldorini, Renzo; Patel, Girish K.; Gariglio, Marisa
2018-01-01
Many malignancies that occur in high excess in kidney transplant recipients (KTRs) are due to viruses that thrive in the setting of immunosuppression. Keratinocyte carcinoma (KC), the most frequently occurring cancer type in KTR, has been associated with skin infection by human papillomavirus (HPV) from the beta genus. In this report, we extend our previous investigation aimed at identifying the presence of active β-HPV infection in skin tumors from KTRs through detection of viral protein expression. Using a combination of antibodies raised against the E4 and L1 proteins of the β-genotypes, we were able to visualize infection in five tumors [one keratoacanthoma (KA), three actinic keratoses (AKs), and one seborrheic keratoses (SKs)] that were all removed from two patients who had been both transplanted twice, had developed multiple KCs, and presented with a long history of immunosuppression (>30 years). These infected tissues displayed intraepidermal hyperplasia and increased expression of the ΔNp63 protein, which extended into the upper epithelial layers. In addition, using a xenograft model system in nude mice displaying a humanized stromal bed in the site of grafting, we successfully engrafted three AKs, two of which were derived from the aforementioned KTRs and displayed β-HPV infection in the original tumor. Of note, one AK-derived xenograft, along with its ensuing lymph node metastasis, was diagnosed as squamous cell carcinoma (SCC). In the latter, both β-HPV infection and ΔNp63 expression were no longer detectable. Although the overall success rate of engrafting was very low, the results of this study show for the first time that β-HPV+ and ΔNp63+ intraepidermal hyperplasia can indeed progress to an aggressive SCC able to metastasize. Consistent with a series of reports attributing a causative role of β-HPV at early stages of skin carcinogenesis through ΔNp63 induction and increased keratinocytes stemness, here we provide in vivo evidence that these events are also occurring in the affected skin of KTRs. Due to these β-HPV-driven molecular pathways, the nascent tumor cell is able to acquire a high enough number of carcinogenic insults that its proliferation and survival will eventually become independent of viral gene expression. PMID:29459852
The fear gasping face as a threat display in a Melanesian society
Crivelli, Carlos; Jarillo, Sergio; Fernández-Dols, José-Miguel
2016-01-01
Theory and research show that humans attribute both emotions and intentions to others on the basis of facial behavior: A gasping face can be seen as showing “fear” and intent to submit. The assumption that such interpretations are pancultural derives largely from Western societies. Here, we report two studies conducted in an indigenous, small-scale Melanesian society with considerable cultural and visual isolation from the West: the Trobrianders of Papua New Guinea. Our multidisciplinary research team spoke the vernacular and had extensive prior fieldwork experience. In study 1, Trobriand adolescents were asked to attribute emotions, social motives, or both to a set of facial displays. Trobrianders showed a mixed and variable attribution pattern, although with much lower agreement than studies of Western samples. Remarkably, the gasping face (traditionally considered a display of fear and submission in the West) was consistently matched to two unpredicted categories: anger and threat. In study 2, adolescents were asked to select the face that was threatening; Trobrianders chose the “fear” gasping face whereas Spaniards chose an “angry” scowling face. Our findings, consistent with functional approaches to animal communication and observations made on threat displays in small-scale societies, challenge the Western assumption that “fear” gasping faces uniformly express fear or signal submission across cultures. PMID:27791137
Sarnoff JND Vision Model for Flat-Panel Design
NASA Technical Reports Server (NTRS)
Brill, Michael H.; Lubin, Jeffrey
1998-01-01
This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,
NASA Astrophysics Data System (ADS)
Takei, Satoshi; Murakami, Gaku; Mori, Yuto; Ichikawa, Takumi; Sekiguchi, Atsushi; Obata, Tsutomu; Yokoyama, Yoshiyuki; Mizuno, Wataru; Sumioka, Junji; Horita, Yuji
2013-07-01
Nanopatterning of an ecofriendly antiglare film derived from biomass using an ultraviolet curing nanoimprint lithography is reported. Developed sugar-related organic compounds with liquid glucose and trehalose derivatives derived from biomass produced high-quality imprint images of pillar patterns with a 230-nm diameter. Ecofriendly antiglare film with liquid glucose and trehalose derivatives derived from biomass was indicated to achieve the real refraction index of 1.45 to 1.53 at 350 to 800 nm, low imaginary refractive index of <0.005 and low volumetric shrinkage of 4.8% during ultraviolet irradiation. A distinctive bulky glucose structure in glucose and trehalose derivatives was considered to be effective for minimizing the volumetric shrinkage of resist film during ultraviolet irradiation, in addition to suitable optical properties for high-definition display.
1985-07-18
Element Predictions 28 2.1.1.2-9 CIELUV Color Difference Derivation Graphically Described In a Three-Dimensional Rectangular Coordinate System 31...in CIE 1976 Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Color...Difference Estimates 145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes
Meneghini, Vasco; Sala, Davide; De Cicco, Silvia; Luciani, Marco; Cavazzin, Chiara; Paulis, Marianna; Mentzen, Wieslawa; Morena, Francesco; Giannelli, Serena; Sanvito, Francesca; Villa, Anna; Bulfone, Alessandro; Broccoli, Vania; Martino, Sabata
2016-01-01
Abstract Allogeneic fetal‐derived human neural stem cells (hfNSCs) that are under clinical evaluation for several neurodegenerative diseases display a favorable safety profile, but require immunosuppression upon transplantation in patients. Neural progenitors derived from patient‐specific induced pluripotent stem cells (iPSCs) may be relevant for autologous ex vivo gene‐therapy applications to treat genetic diseases with unmet medical need. In this scenario, obtaining iPSC‐derived neural stem cells (NSCs) showing a reliable “NSC signature” is mandatory. Here, we generated human iPSC (hiPSC) clones via reprogramming of skin fibroblasts derived from normal donors and patients affected by metachromatic leukodystrophy (MLD), a fatal neurodegenerative lysosomal storage disease caused by genetic defects of the arylsulfatase A (ARSA) enzyme. We differentiated hiPSCs into NSCs (hiPS‐NSCs) sharing molecular, phenotypic, and functional identity with hfNSCs, which we used as a “gold standard” in a side‐by‐side comparison when validating the phenotype of hiPS‐NSCs and predicting their performance after intracerebral transplantation. Using lentiviral vectors, we efficiently transduced MLD hiPSCs, achieving supraphysiological ARSA activity that further increased upon neural differentiation. Intracerebral transplantation of hiPS‐NSCs into neonatal and adult immunodeficient MLD mice stably restored ARSA activity in the whole central nervous system. Importantly, we observed a significant decrease of sulfatide storage when ARSA‐overexpressing cells were used, with a clear advantage in those mice receiving neonatal as compared with adult intervention. Thus, we generated a renewable source of ARSA‐overexpressing iPSC‐derived bona fide hNSCs with improved features compared with clinically approved hfNSCs. Patient‐specific ARSA‐overexpressing hiPS‐NSCs may be used in autologous ex vivo gene therapy protocols to provide long‐lasting enzymatic supply in MLD‐affected brains. Stem Cells Translational Medicine 2017;6:352–368 PMID:28191778
Thymic stromal lymphopoietin fosters human breast tumor growth by promoting type 2 inflammation
Pedroza-Gonzalez, Alexander; Xu, Kangling; Wu, Te-Chia; Aspord, Caroline; Tindle, Sasha; Marches, Florentina; Gallegos, Michael; Burton, Elizabeth C.; Savino, Daniel; Hori, Toshiyuki; Tanaka, Yuetsu; Zurawski, Sandra; Zurawski, Gerard; Bover, Laura; Liu, Yong-Jun; Banchereau, Jacques
2011-01-01
The human breast tumor microenvironment can display features of T helper type 2 (Th2) inflammation, and Th2 inflammation can promote tumor development. However, the molecular and cellular mechanisms contributing to Th2 inflammation in breast tumors remain unclear. Here, we show that human breast cancer cells produce thymic stromal lymphopoietin (TSLP). Breast tumor supernatants, in a TSLP-dependent manner, induce expression of OX40L on dendritic cells (DCs). OX40L+ DCs are found in primary breast tumor infiltrates. OX40L+ DCs drive development of inflammatory Th2 cells producing interleukin-13 and tumor necrosis factor in vitro. Antibodies neutralizing TSLP or OX40L inhibit breast tumor growth and interleukin-13 production in a xenograft model. Thus, breast cancer cell–derived TSLP contributes to the inflammatory Th2 microenvironment conducive to breast tumor development by inducing OX40L expression on DCs. PMID:21339324
Mauney, Joshua R; Nguyen, Trang; Gillen, Kelly; Kirker-Head, Carl; Gimble, Jeffrey M.; Kaplan, David L.
2009-01-01
Biomaterials derived from silk fibrion prepared by aqueous (AB) and organic (HFIP) solvent based processes, along with collagen (COL) and poly-lactic acid (PLA) based scaffolds were studied in vitro and in vivo for their utility in adipose tissue engineering strategies. For in vitro studies, human bone marrow and adipose-derived mesenchymal stem cells (hMSCs and hASCs) were seeded on the various biomaterials and cultured for 21 days in the presence of adipogenic stimulants (AD) or maintained as noninduced controls. Alamar Blue analysis revealed each biomaterial supported initial attachment of hMSCs and hASCs to similar levels for all matrices except COL in which higher levels were observed. hASCs and hMSCs cultured on all biomaterials in the presence of AD showed significant upregulation of adipogenic mRNA transcript levels (LPL, GLUT4, FABP4, PPARγ, adipsin, ACS) to similar extents when compared to noninduced controls. Similarly Oil-Red O analysis of hASC or hMSC-seeded scaffolds displayed substantial amounts of lipid accumulating adipocytes following cultivation with AD. The data revealed AB and HFIP scaffolds supported similar extents of lipid accumulating cells while PLA and COL scaffolds qualitatively displayed lower and higher extents by comparison, respectively. Following a 4 week implantation period in a rat muscle pouch defect model, both AB and HFIP scaffolds supported in vivo adipogenesis either alone or seeded with hASCs or hMSCs as assessed by Oil-Red O analysis, however the presence of exogenous cell sources substantially increased the extent and frequency of adipogenesis observed. In contrast, COL and PLA scaffolds underwent rapid scaffold degradation and were irretrievable following the implantation period. The results suggest that macroporous 3D AB and HFIP silk fibroin scaffolds offer an important platform for cell-based adipose tissue engineering applications, and in particular, provide longer-term structural integrity to promote the maintenance of soft tissue in vivo. PMID:17765303
Pedron, Julien; Boudot, Clotilde; Hutter, Sébastien; Bourgeade-Delmas, Sandra; Stigliani, Jean-Luc; Sournia-Saquet, Alix; Moreau, Alain; Boutet-Robinet, Elisa; Paloque, Lucie; Mothes, Emmanuelle; Laget, Michèle; Vendier, Laure; Pratviel, Geneviève; Wyllie, Susan; Fairlamb, Alan; Azas, Nadine; Courtioux, Bertrand; Valentin, Alexis; Verhaeghe, Pierre
2018-06-05
To study the antiparasitic 8-nitroquinolin-2(1H)-one pharmacophore, a series of 31 derivatives was synthesized in 1-5 steps and evaluated in vitro against both Leishmania infantum and Trypanosoma brucei brucei. In parallel, the reduction potential of all molecules was measured by cyclic voltammetry. Structure-activity relationships first indicated that antileishmanial activity depends on an intramolecular hydrogen bond (described by X-ray diffraction) between the lactam function and the nitro group, which is responsible for an important shift of the redox potential (+0.3 V in comparison with 8-nitroquinoline). With the assistance of computational chemistry, a set of derivatives presenting a large range of redox potentials (from -1.1 to -0.45 V) was designed and provided a list of suitable molecules to be synthesized and tested. This approach highlighted that, in this series, only substrates with a redox potential above -0.6 V display activity toward L. infantum. Nevertheless, such relation between redox potentials and in vitro antiparasitic activities was not observed in T. b. brucei. Compound 22 is a new hit compound in the series, displaying both antileishmanial and antitrypanosomal activity along with a low cytotoxicity on the human HepG2 cell line. Compound 22 is selectively bioactivated by the type 1 nitroreductases (NTR1) of L. donovani and T. brucei brucei. Moreover, despite being mutagenic in the Ames test, as most of nitroaromatic derivatives, compound 22 was not genotoxic in the comet assay. Preliminary in vitro pharmacokinetic parameters were finally determined and pointed out a good in vitro microsomal stability (half-life > 40 min) and a 92% binding to human albumin. Crown Copyright © 2018. Published by Elsevier Masson SAS. All rights reserved.
Lipopolysaccharide interactions of C-terminal peptides from human thrombin.
Singh, Shalini; Kalle, Martina; Papareddy, Praveen; Schmidtchen, Artur; Malmsten, Martin
2013-05-13
Interactions with bacterial lipopolysaccharide (LPS), both in aqueous solution and in lipid membranes, were investigated for a series of amphiphilic peptides derived from the C-terminal region of human thrombin, using ellipsometry, dual polarization interferometry, fluorescence spectroscopy, circular dichroism (CD), dynamic light scattering, and z-potential measurements. The ability of these peptides to block endotoxic effects caused by LPS, monitored through NO production in macrophages, was compared to peptide binding to LPS and its endotoxic component lipid A, and to size, charge, and secondary structure of peptide/LPS complexes. While the antiendotoxic peptide GKY25 (GKYGFYTHVFRLKKWIQKVIDQFGE) displayed significant binding to both LPS and lipid A, so did two control peptides with either selected D-amino acid substitutions or with maintained composition but scrambled sequence, both displaying strongly attenuated antiendotoxic effects. Hence, the extent of LPS or lipid A binding is not the sole discriminant for the antiendotoxic effect of these peptides. In contrast, helix formation in peptide/LPS complexes correlates to the antiendotoxic effect of these peptides and is potentially linked to this functionality. Preferential binding to LPS over lipid membrane was furthermore demonstrated for these peptides and preferential binding to the lipid A moiety within LPS inferred.
Helix-Grafted Pleckstrin Homology Domains Suppress HIV-1 Infection of CD4-Positive Cells.
Tennyson, Rachel L; Walker, Susanne N; Ikeda, Terumasa; Harris, Reuben S; Kennan, Alan J; McNaughton, Brian R
2016-10-17
The size, functional group diversity and three-dimensional structure of proteins often allow these biomolecules to bind disease-relevant structures that challenge or evade small-molecule discovery. Additionally, folded proteins are often much more stable in biologically relevant environments compared to their peptide counterparts. We recently showed that helix-grafted display-extensive resurfacing and elongation of an existing solvent-exposed helix in a pleckstrin homology (PH) domain-led to a new protein that binds a surrogate of HIV-1 gp41, a validated target for inhibition of HIV-1 entry. Expanding on this work, we prepared a number of human-derived helix-grafted-display PH domains of varied helix length and measured properties relevant to therapeutic and basic research applications. In particular, we showed that some of these new reagents expressed well as recombinant proteins in Escherichia coli, were relatively stable in human serum, bound a mimic of pre-fusogenic HIV-1 gp41 in vitro and in complex biological environments, and significantly lowered the incidence of HIV-1 infection of CD4-positive cells. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Schlam, E.
1983-01-01
Human factors in visible displays are discussed, taking into account an introduction to color vision, a laser optometric assessment of visual display viewability, the quantification of color contrast, human performance evaluations of digital image quality, visual problems of office video display terminals, and contemporary problems in airborne displays. Other topics considered are related to electroluminescent technology, liquid crystal and related technologies, plasma technology, and display terminal and systems. Attention is given to the application of electroluminescent technology to personal computers, electroluminescent driving techniques, thin film electroluminescent devices with memory, the fabrication of very large electroluminescent displays, the operating properties of thermally addressed dye switching liquid crystal display, light field dichroic liquid crystal displays for very large area displays, and hardening military plasma displays for a nuclear environment.
Tetraspanins displayed in retrovirus-derived virus-like particles and their immunogenicity.
Soares, H R; Castro, R; Tomás, H A; Rodrigues, A F; Gomes-Alves, P; Bellier, B; Klatzmann, D; Carrondo, M J T; Alves, P M; Coroadinha, A S
2016-03-18
Virus-like particles (VLPs) are a particular subset of subunit vaccines which are currently explored as safer alternatives to live attenuated or inactivated vaccines. VLPs derived from retrovirus (retroVLPs) are commonly used as scaffolds for vaccine candidates due to their ability to incorporate heterologous envelope proteins. Pseudotyping retroVLPs is however not a selective process therefore, host cellular proteins such as tetraspanins are also included in the membrane. The contribution of these host-proteins to retrovirus immunogenicity remains unclear. In this work, human cells silenced and not silenced for tetraspanin CD81 were used to produce CD81(-) or CD81(+) retroVLPs. We first analyzed mice immune response against human CD81. Despite effective silencing of CD81 in retroVLP producing cells, both humoral and cellular immune responses showed persistent anti-CD81 immunogenicity, suggesting cross reactivity to related antigens. We thus compared the incorporation of related tetraspanins in retroVLPs and showed that decreased CD81 incorporation in CD81(-) retro-VLPs is compensated by an increased incorporation of CD9 and CD63 tetraspanins. These results highlight the dynamic nature of host-derived proteins incorporation in retroVLPs membrane, which should be considered when retrovirus-based biopharmaceuticals are produced in xenogeneic cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
Gruenloh, William; Kambal, Amal; Sondergaard, Claus; McGee, Jeannine; Nacey, Catherine; Kalomoiris, Stefanos; Pepper, Karen; Olson, Scott; Fierro, Fernando
2011-01-01
Mesenchymal stem cells (MSCs) have been shown to contribute to the recovery of tissues through homing to injured areas, especially to hypoxic, apoptotic, or inflamed areas and releasing factors that hasten endogenous repair. In some cases genetic engineering of the MSC is desired, since they are excellent delivery vehicles. We have derived MSCs from the human embryonic stem cell (hESC) line H9 (H9-MSCs). They expressed CD105, CD90, CD73, and CD146, and lacked expression of CD45, CD34, CD14, CD31, and HLA-DR, the hESC pluripotency markers SSEA-4 and Tra-1-81, and the hESC early differentiation marker SSEA-1. Marrow-derived MSCs showed a similar phenotype. H9-MSCs did not form teratoma in our initial studies, whereas the parent H9 line did so robustly. H9-MSCs differentiated into bone, cartilage, and adipocytes in vitro, and displayed increased migration under hypoxic conditions. Finally, using a hindlimb ischemia model, H9-MSCs were shown to home to the hypoxic muscle, but not the contralateral limb, by 48 h after IV injection. In summary, we have defined methods for differentiation of hESCs into MSCs and have defined their characteristics and in vivo migratory properties. PMID:21275830
Allison, Thomas F; Smith, Andrew J H; Anastassiadis, Konstantinos; Sloane-Stanley, Jackie; Biga, Veronica; Stavish, Dylan; Hackland, James; Sabri, Shan; Langerman, Justin; Jones, Mark; Plath, Kathrin; Coca, Daniel; Barbaric, Ivana; Gokhale, Paul; Andrews, Peter W
2018-05-09
Human embryonic stem cells (hESCs) display substantial heterogeneity in gene expression, implying the existence of discrete substates within the stem cell compartment. To determine whether these substates impact fate decisions of hESCs we used a GFP reporter line to investigate the properties of fractions of putative undifferentiated cells defined by their differential expression of the endoderm transcription factor, GATA6, together with the hESC surface marker, SSEA3. By single-cell cloning, we confirmed that substates characterized by expression of GATA6 and SSEA3 include pluripotent stem cells capable of long-term self-renewal. When clonal stem cell colonies were formed from GATA6-positive and GATA6-negative cells, more of those derived from GATA6-positive cells contained spontaneously differentiated endoderm cells than similar colonies derived from the GATA6-negative cells. We characterized these discrete cellular states using single-cell transcriptomic analysis, identifying a potential role for SOX17 in the establishment of the endoderm-biased stem cell state. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Sernissi, Lorenzo; Trabocchi, Andrea; Scarpi, Dina; Bianchini, Francesca; Occhiato, Ernesto G
2016-02-15
4-Amino- and 5-amino-cyclopropane pipecolic acids (CPAs) with cis relative stereochemistry between the carboxylic and amino groups were used as templates to prepare cyclic peptidomimetics containing the RGD sequence as possible integrin binders. The peptidomimetic c(RGD8) built on the 5-amino-CPA displayed an inhibition activity (IC50=2.4nM) toward the αvβ3 integrin receptor (expressed in M21 human melanoma cell line) comparable to that of the most potent antagonists reported so far and it was ten times more active than the corresponding antagonist c(RGD7) derived from the isomeric 4-amino-CPA. Both compounds were also nanomolar ligands of the α5β1 integrin (expressed in human erythroleukemia cell line K562). These results suggest that the CPA-derived templates are suitable for the preparation of dual αvβ3 and α5β1 ligands to suppress integrin-mediated events as well as for targeted drug delivery in cancer therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Infante Lara, Lorena; Sledge, Alexis; Laradji, Amine; Okoro, Cosmas O; Osheroff, Neil
2017-02-01
A number of topoisomerase II-targeted anticancer drugs, including amsacrine, utilize an acridine or related aromatic core as a scaffold. Therefore, to further explore the potential of acridine-related compounds to act as topoisomerase II poisons, we synthesized a series of novel trifluoromethylated 9-amino-3,4-dihydroacridin-1(2H)-one derivatives and examined their ability to enhance DNA cleavage mediated by human topoisomerase IIα. Derivatives containing a H, Cl, F, and Br at C7 enhanced enzyme-mediated double-stranded DNA cleavage ∼5.5- to 8.5-fold over baseline, but were less potent than amsacrine. The inclusion of an amino group at C9 was critical for activity. The compounds lost their activity against topoisomerase IIα in the presence of a reducing agent, displayed no activity against the catalytic core of topoisomerase IIα, and inhibited DNA cleavage when incubated with the enzyme prior to the addition of DNA. These findings strongly suggest that the compounds act as covalent, rather than interfacial, topoisomerase II poisons. Published by Elsevier Ltd.
Bolander, Johanna; Ji, Wei; Leijten, Jeroen; Teixeira, Liliana Moreira; Bloemen, Veerle; Lambrechts, Dennis; Chaklader, Malay; Luyten, Frank P
2017-03-14
Clinical translation of cell-based strategies for regenerative medicine demands predictable in vivo performance where the use of sera during in vitro preparation inherently limits the efficacy and reproducibility. Here, we present a bioinspired approach by serum-free pre-conditioning of human periosteum-derived cells, followed by their assembly into microaggregates simultaneously primed with bone morphogenetic protein 2 (BMP-2). Pre-conditioning resulted in a more potent progenitor cell population, while aggregation induced osteochondrogenic differentiation, further enhanced by BMP-2 stimulation. Ectopic implantation displayed a cascade of events that closely resembled the natural endochondral process resulting in bone ossicle formation. Assessment in a critical size long-bone defect in immunodeficient mice demonstrated successful bridging of the defect within 4 weeks, with active contribution of the implanted cells. In short, the presented serum-free process represents a biomimetic strategy, resulting in a cartilage tissue intermediate that, upon implantation, robustly leads to the healing of a large long-bone defect. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Swioklo, Stephen; Constantinescu, Andrei; Connon, Che J
2016-03-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C-23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 10(6) cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. ©AlphaMed Press.
HOX and TALE signatures specify human stromal stem cell populations from different sources.
Picchi, Jacopo; Trombi, Luisa; Spugnesi, Laura; Barachini, Serena; Maroni, Giorgia; Brodano, Giovanni Barbanti; Boriani, Stefano; Valtieri, Mauro; Petrini, Mario; Magli, Maria Cristina
2013-04-01
Human stromal stem cell populations reside in different tissues and anatomical sites, however a critical question related to their efficient use in regenerative medicine is whether they exhibit equivalent biological properties. Here, we compared cellular and molecular characteristics of stromal stem cells derived from the bone marrow, at different body sites (iliac crest, sternum, and vertebrae) and other tissues (dental pulp and colon). In particular, we investigated whether homeobox genes of the HOX and TALE subfamilies might provide suitable markers to identify distinct stromal cell populations, as HOX proteins control cell positional identity and, together with their co-factors TALE, are involved in orchestrating differentiation of adult tissues. Our results show that stromal populations from different sources, although immunophenotypically similar, display distinct HOX and TALE signatures, as well as different growth and differentiation abilities. Stromal stem cells from different tissues are characterized by specific HOX profiles, differing in the number and type of active genes, as well as in their level of expression. Conversely, bone marrow-derived cell populations can be essentially distinguished for the expression levels of specific HOX members, strongly suggesting that quantitative differences in HOX activity may be crucial. Taken together, our data indicate that the HOX and TALE profiles provide positional, embryological and hierarchical identity of human stromal stem cells. Furthermore, our data suggest that cell populations derived from different body sites may not represent equivalent cell sources for cell-based therapeutical strategies for regeneration and repair of specific tissues. Copyright © 2012 Wiley Periodicals, Inc.
Designer human tissue: coming to a lab near you.
Hay, David C; O'Farrelly, Cliona
2018-07-05
Human pluripotent stem cells (PSCs) offer a scalable alternative to primary and transformed human tissue. PSCs include human embryonic stem cells, derived from the inner cell mass of blastocysts unsuitable for human implantation; and induced PSCs, generated by the reprogramming of somatic cells. Both cell types display the ability to self-renew and retain pluripotency, promising an unlimited supply of human somatic cells for biomedical application. A distinct advantage of using PSCs is the ability to select for genetic background, promising personalized modelling of human biology 'in a dish' or immune-matched cell-based therapies for the clinic. This special issue will guide the reader through stem cell self-renewal, pluripotency and differentiation. The first articles focus on improving cell fidelity, understanding the innate immune system and the importance of materials chemistry, biofabrication and bioengineering. These are followed by articles that focus on industrial application, commercialization and label-free assessment of tissue formation. The special issue concludes with an article discussing human liver cell-based therapies past, present and future.This article is part of the theme issue 'Designer human tissue: coming to a lab near you'. © 2018 The Authors.
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1977-01-01
Application of the optimal control model of the human operator to problems in display analysis is discussed. Those aspects of the model pertaining to the operator-display interface and to operator information processing are reviewed and discussed. The techniques are then applied to the analysis of advanced display/control systems for a Terminal Configured Vehicle. Model results are compared with those obtained in a large, fixed-base simulation.
Enge, Martin; Arda, H Efsun; Mignardi, Marco; Beausang, John; Bottino, Rita; Kim, Seung K; Quake, Stephen R
2017-10-05
As organisms age, cells accumulate genetic and epigenetic errors that eventually lead to impaired organ function or catastrophic transformation such as cancer. Because aging reflects a stochastic process of increasing disorder, cells in an organ will be individually affected in different ways, thus rendering bulk analyses of postmitotic adult cells difficult to interpret. Here, we directly measure the effects of aging in human tissue by performing single-cell transcriptome analysis of 2,544 human pancreas cells from eight donors spanning six decades of life. We find that islet endocrine cells from older donors display increased levels of transcriptional noise and potential fate drift. By determining the mutational history of individual cells, we uncover a novel mutational signature in healthy aging endocrine cells. Our results demonstrate the feasibility of using single-cell RNA sequencing (RNA-seq) data from primary cells to derive insights into genetic and transcriptional processes that operate on aging human tissue. Copyright © 2017 Elsevier Inc. All rights reserved.
Dual-loop model of the human controller
NASA Technical Reports Server (NTRS)
Hess, R. A.
1978-01-01
A dual-loop model of the human controller in single-axis compensatory tracking tasks is introduced. This model possesses an inner-loop closure that involves feeding back that portion of controlled element output rate that is due to control activity. A novel feature of the model is the explicit appearance of the human's internal representation of the manipulator-controlled element dynamics in the inner loop. The sensor inputs to the human controller are assumed to be system error and control force. The former can be sensed via visual, aural, or tactile displays, whereas the latter is assumed to be sensed in kinesthetic fashion. A set of general adaptive characteristics for the model is hypothesized, including a method for selecting simplified internal models of the manipulator-controlled element dynamics. It is demonstrated that the model can produce controller describing functions that closely approximate those measured in four laboratory tracking tasks in which the controlled element dynamics vary considerably in terms of ease of control. An empirically derived expression for the normalized injected error remnant spectrum is introduced.
Shi, Chung-Sheng; Li, Jhy-Ming; Chin, Chih-Chien; Kuo, Yi-Hung; Lee, Ying-Ray; Huang, Yun-Ching
2017-03-01
Evodiamine, an indole alkaloid derived from Evodia rutaecarpa, exhibits pharmacological activities including vasodilatation, analgesia, anti-cardiovascular disease, anti-Alzheimer's disease, anti-inflammation, and anti-tumor activity. This study analyzes the anti-tumor effects of evodiamine on cellular growth, tumorigenesis, cell cycle and apoptosis induction of human urothelial cell carcinoma (UCC) cells. The present study showed that evodiamine significantly inhibited the proliferation of UCC cells in a dose- and time-dependent manner. Also, evodiamine suppressed the tumorigenesis of UCC cells in vitro. Moreover, evodiamine caused G 2 /M cell-cycle arrest and induced caspase-dependent apoptosis in UCC cells. Finally, we demonstrated that evodiamine exhibits better cytotoxic than 5-fluorouracil, a clinical chemotherapeutic drug, for UCC cells. Evodiamine induces growth inhibition, tumorigenesis suppression, cell-cycle arrest, and apoptosis induction in human UCC cells. Therefore, this agent displays a therapeutic potential for treating human UCC cells and is worthy for further investigation. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Structure-activity studies and therapeutic potential of host defense peptides of human thrombin.
Kasetty, Gopinath; Papareddy, Praveen; Kalle, Martina; Rydengård, Victoria; Mörgelin, Matthias; Albiger, Barbara; Malmsten, Martin; Schmidtchen, Artur
2011-06-01
Peptides of the C-terminal region of human thrombin are released upon proteolysis and identified in human wounds. In this study, we wanted to investigate minimal determinants, as well as structural features, governing the antimicrobial and immunomodulating activity of this peptide region. Sequential amino acid deletions of the peptide GKYGFYTHVFRLKKWIQKVIDQFGE (GKY25), as well as substitutions at strategic and structurally relevant positions, were followed by analyses of antimicrobial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive bacterium Staphylococcus aureus, and the fungus Candida albicans. Furthermore, peptide effects on lipopolysaccharide (LPS)-, lipoteichoic acid-, or zymosan-induced macrophage activation were studied. The thrombin-derived peptides displayed length- and sequence-dependent antimicrobial as well as immunomodulating effects. A peptide length of at least 20 amino acids was required for effective anti-inflammatory effects in macrophage models, as well as optimal antimicrobial activity as judged by MIC assays. However, shorter (>12 amino acids) variants also displayed significant antimicrobial effects. A central K14 residue was important for optimal antimicrobial activity. Finally, one peptide variant, GKYGFYTHVFRLKKWIQKVI (GKY20) exhibiting improved selectivity, i.e., low toxicity and a preserved antimicrobial as well as anti-inflammatory effect, showed efficiency in mouse models of LPS shock and P. aeruginosa sepsis. The work defines structure-activity relationships of C-terminal host defense peptides of thrombin and delineates a strategy for selecting peptide epitopes of therapeutic interest.
Vitelli-Avelar, Danielle Marquete; Sathler-Avelar, Renato; Mattoso-Barbosa, Armanda Moreira; Gouin, Nicolas; Perdigão-de-Oliveira, Marcelo; Valério-Dos-Reis, Leydiane; Costa, Ronaldo Peres; Elói-Santos, Silvana Maria; Gomes, Matheus de Souza; Amaral, Laurence Rodrigues do; Teixeira-Carvalho, Andréa; Martins-Filho, Olindo Assis; Dick, Edward J; Hubbard, Gene B; VandeBerg, Jane F; VandeBerg, John L
2017-02-01
Non-human primates have been shown to be useful models for Chagas disease. We previously reported that natural T. cruzi infection of cynomolgus macaques triggers clinical features and immunophenotypic changes of peripheral blood leukocytes resembling those observed in human Chagas disease. In the present study, we further characterize the cytokine-mediated microenvironment to provide supportive evidence of the utility of cynomolgus macaques as a model for drug development for human Chagas disease. In this cross-sectional study design, flow cytometry and systems biology approaches were used to characterize the ex vivo and in vitro T. cruzi-specific functional cytokine signature of circulating leukocytes from TcI-T. cruzi naturally infected cynomolgus macaques (CH). Results showed that CH presented an overall CD4+-derived IFN-γ pattern regulated by IL-10-derived from CD4+ T-cells and B-cells, contrasting with the baseline profile observed in non-infected hosts (NI). Homologous TcI-T. cruzi-antigen recall in vitro induced a broad pro-inflammatory cytokine response in CH, mediated by TNF from innate/adaptive cells, counterbalanced by monocyte/B-cell-derived IL-10. TcIV-antigen triggered a more selective cytokine signature mediated by NK and T-cell-derived IFN-γ with modest regulation by IL-10 from T-cells. While NI presented a cytokine network comprised of small number of neighborhood connections, CH displayed a complex cross-talk amongst network elements. Noteworthy, was the ability of TcI-antigen to drive a complex global pro-inflammatory network mediated by TNF and IFN-γ from NK-cells, CD4+ and CD8+ T-cells, regulated by IL-10+CD8+ T-cells, in contrast to the TcIV-antigens that trigger a modest network, with moderate connecting edges. Altogether, our findings demonstrated that CH present a pro-inflammatory/regulatory cytokine signature similar to that observed in human Chagas disease. These data bring additional insights that further validate these non-human primates as experimental models for Chagas disease.
Are New Image Quality Figures of Merit Needed for Flat Panel Displays?
1998-06-01
American National Standard for Human Factors Engineering of Visual Display Terminal Workstations in 1988 have adopted the MTFA as the standard...References American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI/HFS 100-1988). 1988. Santa Monica
Hedvat, Michael; Emdad, Luni; Das, Swadesh K; Kim, Keetae; Dasgupta, Santanu; Thomas, Shibu; Hu, Bin; Zhu, Shan; Dash, Rupesh; Quinn, Bridget A; Oyesanya, Regina A; Kegelman, Timothy P; Sokhi, Upneet K; Sarkar, Siddik; Erdogan, Eda; Menezes, Mitchell E; Bhoopathi, Praveen; Wang, Xiang-Yang; Pomper, Martin G; Wei, Jun; Wu, Bainan; Stebbins, John L; Diaz, Paul W; Reed, John C; Pellecchia, Maurizio; Sarkar, Devanand; Fisher, Paul B
2012-11-01
Structure-based modeling combined with rational drug design, and high throughput screening approaches offer significant potential for identifying and developing lead compounds with therapeutic potential. The present review focuses on these two approaches using explicit examples based on specific derivatives of Gossypol generated through rational design and applications of a cancer-specificpromoter derived from Progression Elevated Gene-3. The Gossypol derivative Sabutoclax (BI-97C1) displays potent anti-tumor activity against a diverse spectrum of human tumors. The model of the docked structure of Gossypol bound to Bcl-XL provided a virtual structure-activity-relationship where appropriate modifications were predicted on a rational basis. These structure-based studies led to the isolation of Sabutoclax, an optically pure isomer of Apogossypol displaying superior efficacy and reduced toxicity. These studies illustrate the power of combining structure-based modeling with rational design to predict appropriate derivatives of lead compounds to be empirically tested and evaluated for bioactivity. Another approach to cancer drug discovery utilizes a cancer-specific promoter as readouts of the transformed state. The promoter region of Progression Elevated Gene-3 is such a promoter with cancer-specific activity. The specificity of this promoter has been exploited as a means of constructing cancer terminator viruses that selectively kill cancer cells and as a systemic imaging modality that specifically visualizes in vivo cancer growth with no background from normal tissues. Screening of small molecule inhibitors that suppress the Progression Elevated Gene-3-promoter may provide relevant lead compounds for cancer therapy that can be combined with further structure-based approaches leading to the development of novel compounds for cancer therapy.
Fas-L promotes the stem cell potency of adipose-derived mesenchymal cells.
Solodeev, Inna; Meilik, Benjamin; Volovitz, Ilan; Sela, Meirav; Manheim, Sharon; Yarkoni, Shai; Zipori, Dov; Gur, Eyal; Shani, Nir
2018-06-11
Fas-L is a TNF family member known to trigger cell death. It has recently become evident that Fas-L can transduce also non-apoptotic signals. Mesenchymal stem cells (MSCs) are multipotent cells that are derived from various adult tissues. Although MSCs from different tissues display common properties they also display tissue-specific characteristics. Previous works have demonstrated massive apoptosis following Fas-L treatment of bone marrow-derived MSCs both in vitro and following their administration in vivo. We therefore set to examine Fas-L-induced responses in adipose-derived stem cells (ASCs). Human ASCs were isolated from lipoaspirates and their reactivity to Fas-L treatment was examined. ASCs responded to Fas-L by simultaneous apoptosis and proliferation, which yielded a net doubling of cell quantities and a phenotypic shift, including reduced expression of CD105 and increased expression of CD73, in association with increased bone differentiation potential. Treatment of freshly isolated ASCs led to an increase in large colony forming unit fibroblasts, likely produced by early stem cell progenitor cells. Fas-L-induced apoptosis and proliferation signaling were found to be independent as caspase inhibition attenuated Fas-L-induced apoptosis without impacting proliferation, whereas inhibition of PI3K and MEK, but not of JNK, attenuated Fas-L-dependent proliferation, but not apoptosis. Thus, Fas-L signaling in ASCs leads to their expansion and phenotypic shift toward a more potent stem cell state. We speculate that these reactions ensure the survival of ASC progenitor cells encountering Fas-L-enriched environments during tissue damage and inflammation and may also enhance ASC survival following their administration in vivo.
Kang, Lin; Voskinarian-Berse, Vanessa; Law, Eric; Reddin, Tiffany; Bhatia, Mohit; Hariri, Alexandra; Ning, Yuhong; Dong, David; Maguire, Timothy; Yarmush, Martin; Hofgartner, Wolfgang; Abbot, Stewart; Zhang, Xiaokui; Hariri, Robert
2013-01-01
Recent clinical studies suggest that adoptive transfer of donor-derived natural killer (NK) cells may improve clinical outcome in hematological malignancies and some solid tumors by direct anti-tumor effects as well as by reduction of graft versus host disease (GVHD). NK cells have also been shown to enhance transplant engraftment during allogeneic hematopoietic stem cell transplantation (HSCT) for hematological malignancies. The limited ex vivo expansion potential of NK cells from peripheral blood (PB) or umbilical cord blood (UCB) has however restricted their therapeutic potential. Here we define methods to efficiently generate NK cells from donor-matched, full-term human placenta perfusate (termed Human Placenta-Derived Stem Cell, HPDSC) and UCB. Following isolation from cryopreserved donor-matched HPDSC and UCB units, CD56+CD3- placenta-derived NK cells, termed pNK cells, were expanded in culture for up to 3 weeks to yield an average of 1.2 billion cells per donor that were >80% CD56+CD3-, comparable to doses previously utilized in clinical applications. Ex vivo-expanded pNK cells exhibited a marked increase in anti-tumor cytolytic activity coinciding with the significantly increased expression of NKG2D, NKp46, and NKp44 (p < 0.001, p < 0.001, and p < 0.05, respectively). Strong cytolytic activity was observed against a wide range of tumor cell lines in vitro. pNK cells display a distinct microRNA (miRNA) expression profile, immunophenotype, and greater anti-tumor capacity in vitro compared to PB NK cells used in recent clinical trials. With further development, pNK may represent a novel and effective cellular immunotherapy for patients with high clinical needs and few other therapeutic options.
Lai, Ruenn Chai; Arslan, Fatih; Tan, Soon Sim; Tan, Betty; Choo, Andre; Lee, May May; Chen, Tian Sheng; Teh, Bao Ju; Eng, John Kun Long; Sidik, Harwin; Tanavde, Vivek; Hwang, Wei Sek; Lee, Chuen Neng; El Oakley, Reida Menshawe; Pasterkamp, Gerard; de Kleijn, Dominique P V; Tan, Kok Hian; Lim, Sai Kiang
2010-06-01
The therapeutic effects of mesenchymal stem cells (MSCs) transplantation are increasingly thought to be mediated by MSC secretion. We have previously demonstrated that human ESC-derived MSCs (hESC-MSCs) produce cardioprotective microparticles in pig model of myocardial ischemia/reperfusion (MI/R) injury. As the safety and availability of clinical grade human ESCs remain a concern, MSCs from fetal tissue sources were evaluated as alternatives. Here we derived five MSC cultures from limb, kidney and liver tissues of three first trimester aborted fetuses and like our previously described hESC-derived MSCs; they were highly expandable and had similar telomerase activities. Each line has the potential to generate at least 10(16-19) cells or 10(7-10) doses of cardioprotective secretion for a pig model of MI/R injury. Unlike previously described fetal MSCs, they did not express pluripotency-associated markers such as Oct4, Nanog or Tra1-60. They displayed a typical MSC surface antigen profile and differentiated into adipocytes, osteocytes and chondrocytes in vitro. Global gene expression analysis by microarray and qRT-PCR revealed a typical MSC gene expression profile that was highly correlated among the five fetal MSC cultures and with that of hESC-MSCs (r(2)>0.90). Like hESC-MSCs, they produced secretion that was cardioprotective in a mouse model of MI/R injury. HPLC analysis of the secretion revealed the presence of a population of microparticles with a hydrodynamic radius of 50-65 nm. This purified population of microparticles was cardioprotective at approximately 1/10 dosage of the crude secretion. (c) 2009 Elsevier Ltd. All rights reserved.
Romao, Ema; Morales-Yanez, Francisco; Hu, Yaozhong; Crauwels, Maxine; De Pauw, Pieter; Hassanzadeh, Gholamreza Ghassanzadeh; Devoogdt, Nick; Ackaert, Chloe; Vincke, Cecile; Muyldermans, Serge
2016-01-01
The discovery of functional heavy chain-only antibodies devoid of light chains in sera of camelids and sharks in the early nineties provided access to the generation of minimal-sized, single-domain, in vivo affinity-matured, recombinant antigenbinding fragments, also known as Nanobodies. Recombinant DNA technology and adaptation of phage display vectors form the basis to construct large naïve, synthetic or medium sized immune libraries from where multiple Nanobodies have been retrieved. Alternative selection methods (i.e. bacterial display, bacterial two-hybrid, Cis-display and ribosome display) have also been developed to identify Nanobodies. The antigen affinity, stability, expression yields and structural details of the Nanobodies have been determined by standard technology. Nanobodies were subsequently engineered for higher stability and affinity, to have a sequence closer to that of human immunoglobulin domains, or to add designed effector functions. Antigen specific Nanobodies recognizing with high affinity their cognate antigen were retrieved from various libraries. High expression yields are obtained from microorganisms, even when expressed in the cytoplasm. The purified Nanobodies are shown to possess beneficial biochemical and biophysical properties. The crystal structure of Nanobody::antigen complexes reveal the preference of Nanobodies for cavities on the antigen surface. Thanks to the properties described above, Nanobodies became a highly valued and versatile tool for biomolecular research. Moreover, numerous diagnostic and therapeutic Nanobody-based applications have been developed in the past decade. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Human operator tracking performance with a vibrotactile display
NASA Technical Reports Server (NTRS)
Inbar, Gideon F.
1991-01-01
Vibrotactile displays have been designed and used as a sensory aid for the blind. In the present work the same 6 x 24 'Optacon' type vibrotactile display (VTD) was used to characterize human operator (HO) tracking performance in pursuit and compensatory tasks. The VTD was connected via a microprocessor to a one-dimensional joy stick manipulator. Various display schemes were tested on the VDT, and were also compared to visual tracking performance using a specially constructed photo diode matrix display comparable to the VTD.
Advanced Information Systems Design: Technical Basis and Human Factors Review Guidance
2000-03-01
D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter Display Systems," Proceedings of the Human Factors Society 25th...Reactor (PWR) (Source: Reprinted with permission from Woods, D ., Wise, J ., and Hanes, L., "An Evaluation of Nuclear Power Plant Safety Parameter...Dials display rpCJni?3 (b) Fluid-Tanks display B (c) Seesaw display I 72 CF \\^- J B ’ V ’II ’ ( d ) Mimic display B E * • \\ ^r 7
NASA Technical Reports Server (NTRS)
Wilckens, V.
1972-01-01
Present information display concepts for pilot landing guidance are outlined considering manual control as well as substitution of man by fully competent automatics. Display improvements are achieved by compressing the distributed indicators into an accumulative display and thus reducing information scanning. Complete integration of quantitative indications, outer loop information, and real world display in a pictorial information channel geometry constitutes an interface with human ability to differentiate and integrate for optimal manual control of the aircraft.
NASA Astrophysics Data System (ADS)
Yang, Qingxiu; Wei, Lin; Zheng, Xuanfang; Xiao, Lehui
2015-12-01
In this work, we demonstrated a convenient and green strategy for the synthesis of highly luminescent and water-soluble carbon dots (Cdots) by carbonizing carbon precursors, i.e., Bovine serum albumin (BSA) nanoparticles, in water solution. Without post surface modification, the as-synthesized Cdots exhibit fluorescence quantum yield (Q.Y.) as high as 34.8% and display superior colloidal stability not only in concentrated salt solutions (e.g. 2 M KCl) but also in a wide range of pH solutions. According to the FT-IR measurements, the Cdots contain many carboxyl groups, providing a versatile route for further chemical and biological functionalization. Through conjugation of Cdots with the transacting activator of transcription (TAT) peptide (a kind of cell penetration peptide (CPP)) derived from human immunodeficiency virus (HIV), it is possible to directly monitor the dynamic interactions of CPP with living cell membrane at single particle level. Furthermore, these Cdots also exhibit a dosage-dependent selectivity toward Fe3+ among other metal ions, including K+, Na+, Mg2+, Hg2+, Co2+, Cu2+, Pb2+ and Al3+. We believed that the Cdots prepared by this strategy would display promising applications in various areas, including analytical chemistry, nanomedicine, biochemistry and so on.
Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus.
Langeveld, J P; Brennan, F R; Martínez-Torrecuadrada, J L; Jones, T D; Boshuizen, R S; Vela, C; Casal, J I; Kamstrup, S; Dalsgaard, K; Meloen, R H; Bendig, M M; Hamilton, W D
2001-06-14
A vaccine based upon a recombinant plant virus (CPMV-PARVO1), displaying a peptide derived from the VP2 capsid protein of canine parvovirus (CPV), has previously been described. To date, studies with the vaccine have utilized viable plant chimaeric particles (CVPs). In this study, CPMV-PARVO1 was inactivated by UV treatment to remove the possibility of replication of the recombinant plant virus in a plant host after manufacture of the vaccine. We show that the inactivated CVP is able to protect dogs from a lethal challenge with CPV following parenteral immunization with the vaccine. Dogs immunized with the inactivated CPMV-PARVO1 in adjuvant displayed no clinical signs of disease and shedding of CPV in faeces was limited following CPV challenge. All immunized dogs elicited high titres of peptide-specific antibody, which neutralized CPV in vitro. Levels of protection, virus shedding and VP2-specific antibody were comparable to those seen in dogs immunized with the same VP2- peptide coupled to keyhole limpet hemocyanin (KLH). Since plant virus-derived vaccines have the potential for cost-effective manufacture and are not known to replicate in mammalian cells, they represent a viable alternative to current replicating vaccine vectors for development of both human and veterinary vaccines.
1986-02-01
Ellipses Derived from Both MacAdam’s Empirically Derived Color Matching Standard Deviation and Stiles’ Line Element Predictions 28 2.1.1.2-9 CIELUV Color...Coordinates 141 2.2.2-3 Derivation of CIE (L*, U*, V*) Coordinates 145 2.2.2-4 Three-Dimensional Representation of CIELUV Colcr Difference Estimates...145 2.2.2-5 Application of CIELUV for Estimating Color Difference on an Electronic Color Display 146 2.2.2-6 Color Performance Envelopes and Optimized
Honda, Arata; Kawano, Yoshihiro; Izu, Haruna; Choijookhuu, Narantsog; Honsho, Kimiko; Nakamura, Tomonori; Yabuta, Yukihiro; Yamamoto, Takuya; Takashima, Yasuhiro; Hirose, Michiko; Sankai, Tadashi; Hishikawa, Yoshitaka; Ogura, Atsuo; Saitou, Mitinori
2017-01-01
Experimental animal models have played an indispensable role in the development of human induced pluripotent stem cell (iPSC) research. The derivation of high-quality (so-called “true naïve state”) iPSCs of non-human primates enhances their application and safety for human regenerative medicine. Although several attempts have been made to convert human and non-human primate PSCs into a truly naïve state, it is unclear which evaluation methods can discriminate them as being truly naïve. Here we attempted to derive naïve cynomolgus monkey (Cm) (Macaca fascicularis) embryonic stem cells (ESCs) and iPSCs. Several characteristics of naïve Cm ESCs including colony morphology, appearance of naïve-related mRNAs and proteins, leukaemia inhibitory factor dependency, and mitochondrial respiration were confirmed. Next, we generated Cm iPSCs and converted them to a naïve state. Transcriptomic comparison of PSCs with early Cm embryos elucidated the partial achievement (termed naïve-like) of their conversion. When these were subjected to in vitro neural differentiation, enhanced differentiating capacities were observed after naïve-like conversion, but some lines exhibited heterogeneity. The difficulty of achieving contribution to chimeric mouse embryos was also demonstrated. These results suggest that Cm PSCs could ameliorate their in vitro neural differentiation potential even though they could not display true naïve characteristics. PMID:28349944
Multi-function displays : a guide for human factors evaluation.
DOT National Transportation Integrated Search
2013-11-01
This guide is designed to assist aircraft certification personnel and avionics : manufacturers in evaluating the human factors aspects of Multi-function Displays : (MFDs) for FAA certification. The guide focuses specifically on human factors and : do...
Human Factors Engineering Program Review Model
2004-02-01
Institute, 1993). ANSI HFS-100: American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (American National... American National Standard for Human Factors Engineering of Visual Display Terminal Workstations (ANSI HFS-100-1988). Santa Monica, California
Smith, T J; Sciaky, D; Phipps, R P; Jennings, T A
1999-08-01
CD40, a member of the tumor necrosis factor-alpha (TNF-alpha) receptor family of surface molecules, is expressed by a variety of cell types. It is a crucial activational molecule displayed by lymphocytes and other bone marrow-derived cells and recently has also been found on nonlymphoid cells such as fibroblasts, endothelia, and epithelial cells in culture. While its role in lymphocyte signaling and activation has been examined in great detail, the function of CD40 expression on nonlymphoid cells, especially in vivo, is not yet understood. Most of the studies thus far have been conducted in cell culture. In this article, we report that several cell types resident in thyroid tissue in vivo can display CD40 under pathological conditions. Sections from a total of 46 different cases were examined immunohistochemically and included nodular hyperplasia, chronic lymphocytic thyroiditis, diffuse hyperplasia, follicular neoplasia, papillary carcinoma, and medullary carcinoma. Thyroid epithelial cells, lymphocytes, macrophages, endothelial cells, and spindle-shape fibroblast-like cells were found to stain positively in the context of inflammation. The staining pattern observed in all cell types was entirely membranous. In general, epithelial staining was limited to that adjacent to lymphocytic infiltration except in 5 of 17 cases of neoplasia and in diffuse hyperplasia. Moreover, we were able to detect CD40 mRNA by reverse transcriptase-polymerase chain reaction (RT-PCR) in human thyroid tissue. These results constitute convincing evidence for expression of CD40 in nonlymphocytic elements of the human thyroid gland. Our findings suggest a potentially important pathway that might be of relevance to the pathogenesis of thyroid diseases. They imply the potential participation of the CD40/CD40 ligand bridge in the cross-talk between resident thyroid cells and bone marrow-derived cells recruited to the thyroid.
Directed Differentiation of Human-Induced Pluripotent Stem Cells to Mesenchymal Stem Cells.
Lian, Qizhou; Zhang, Yuelin; Liang, Xiaoting; Gao, Fei; Tse, Hung-Fat
2016-01-01
Multipotent stromal cells, also known as mesenchymal stem cells (MSCs), possess great potential to generate a wide range of cell types including endothelial cells, smooth muscle cells, bone, cartilage, and lipid cells. This protocol describes in detail how to perform highly efficient, lineage-specific differentiation of human-induced pluripotent stem cells (iPSCs) with an MSCs fate. The approach uses a clinically compliant protocol with chemically defined media, feeder-free conditions, and a CD105 positive and CD24 negative selection to achieve a single cell-based MSCs derivation from differentiating human pluripotent cells in approximately 20 days. Cells generated with this protocol express typical MSCs surface markers and undergo adipogenesis, osteogenesis, and chondrogenesis similar to adult bone marrow-derived MSCs (BM-MSCs). Nonetheless, compared with adult BM-MSCs, iPSC-MSCs display a higher proliferative capacity, up to 120 passages, without obvious loss of self-renewal potential and constitutively express MSCs surface antigens. MSCs generated with this protocol have numerous applications, including expansion to large scale cell numbers for tissue engineering and the development of cellular therapeutics. This approach has been used to rescue limb ischemia, allergic disorders, and cigarette smoke-induced lung damage and to model mesenchymal and vascular disorders of Hutchinson-Gilford progeria syndrome (HGPS).
Gholizadeh-Ghaleh Aziz, Shiva; Fathi, Ezzatollah; Rahmati-Yamchi, Mohammad; Akbarzadeh, Abolfazl; Fardyazar, Zahra; Pashaiasl, Maryam
2017-06-01
Recent studies have elucidated that cell-based therapies are promising for cancer treatments. The human amniotic fluid stem (AFS) cells are advantageous cells for such therapeutic schemes that can be innately changed to express therapeutic proteins. HAFSCs display a natural tropism to cancer cells in vivo. They can be useful in cancer cells targeting. Moreover, they are easily available from surplus diagnostic samples during pregnancy and less ethical and legal concern are associated with the collection and application than other putative cells are subjected. This review will designate representatives of amniotic fluid and stem cell derived from amniotic fluid. For this propose, we collect state of human AFS cells data applicable in cancer therapy by dividing this approach into two main classes (nonengineered and engineered based approaches). Our study shows the advantage of AFS cells over other putative cells types in terms differentiation ability to a wide range of cells by potential and effective use in preclinical studies for a variety of diseases. This study has shown the elasticity of human AFS cells and their favorable potential as a multipotent cell source for regenerative stem cell therapy and capable of giving rise to multiple lineages including such as osteoblasts and adipocyte.
Yu, Yang; Chang, Liang; Zhao, Hongcui; Li, Rong; Fan, Yong; Qiao, Jie
2015-05-12
Human pluripotent stem cells, including cloned embryonic and induced pluripotent stem cells, offer a limitless cellular source for regenerative medicine. However, their derivation efficiency is limited, and a large proportion of cells are arrested during reprogramming. In the current study, we explored chromosome microdeletion/duplication in arrested and established reprogrammed cells. Our results show that aneuploidy induced by somatic cell nuclear transfer technology is a key factor in the developmental failure of cloned human embryos and primary colonies from implanted cloned blastocysts and that expression patterns of apoptosis-related genes are dynamically altered. Overall, ~20%-53% of arrested primary colonies in induced plurpotent stem cells displayed aneuploidy, and upregulation of P53 and Bax occurred in all arrested primary colonies. Interestingly, when somatic cells with pre-existing chromosomal mutations were used as donor cells, no cloned blastocysts were obtained, and additional chromosomal mutations were detected in the resulting iPS cells following long-term culture, which was not observed in the two iPS cell lines with normal karyotypes. In conclusion, aneuploidy induced by the reprogramming process restricts the derivation of pluripotent stem cells, and, more importantly, pre-existing chromosomal mutations enhance the risk of genome instability, which limits the clinical utility of these cells.
Yu, Hui; Wang, Dong-Dong; Wang, Yue; Liu, Ting; Lee, Francis S.; Chen, Zhe-Yu
2012-01-01
Brain-derived neurotrophic factor (BDNF) plays important roles in cell survival, neural plasticity, learning, and stress regulation. However, whether the recently found human BDNF Val66Met (BDNFMet) polymorphism could alter stress vulnerability remains controversial. More importantly, the molecular and structural mechanisms underlying the interaction between the BDNFMet polymorphism and stress are unclear. We found that heterozygous BDNF+/Met mice displayed hypothalamic-pituitary-adrenal axis hyperreactivity, increased depressive-like and anxiety-like behaviors, and impaired working memory compared with WT mice after 7 d restraint stress. Moreover, BDNF+/Met miceexhibited more prominent changes in BDNF levels and apical dendritic spine density in the prefrontal cortex and amygdala after stress, which correlated with the impaired working memory and elevated anxiety-like behaviors. Finally, the depressive-like behaviors in BDNF+/Met mice could be selectively rescued by acute administration of desipramine but not fluoxetine. These data indicate selective behavioral, molecular, and structural deficits resulting from the interaction between stress and the human genetic BDNFMet polymorphism. Importantly, desipramine but not fluoxetine has antidepressant effects on BDNF+/Met mice, suggesting that specific classes of antidepressant may be a more effective treatment option for depressive symptoms in humans with this genetic variant BDNF. PMID:22442074
Metzele, Roxana; Alt, Christopher; Bai, Xiaowen; Yan, Yasheng; Zhang, Zhi; Pan, Zhizhong; Coleman, Michael; Vykoukal, Jody; Song, Yao-Hua; Alt, Eckhard
2011-03-01
Various types of stem cells have been shown to have beneficial effects on cardiac function. It is still debated whether fusion of injected stem cells with local resident cardiomyocytes is one of the mechanisms. To better understand the role of fusion in stem cell-based myocardial regeneration, the present study was designed to investigate the fate of human adipose tissue-derived stem cells (hASCs) fused with neonatal rat cardiomyocytes in vitro. hASCs labeled with the green fluorescent probe Vybrant DiO were cocultured with neonatal rat cardiomyocytes labeled with the red fluorescent probe Vybrant DiI and then treated with fusion-inducing hemagglutinating virus of Japan (HVJ). Cells that incorporated both red and green fluorescent signals were considered to be hASCs that had fused with rat cardiomyocytes. Fusion efficiency was 19.86 ± 4.84% at 5 d after treatment with HVJ. Most fused cells displayed cardiomyocyte-like morphology and exhibited spontaneous rhythmic contraction. Both immunofluorescence staining and lentiviral vector labeling showed that fused cells contained separate rat cardiomyocyte and hASC nuclei. Immunofluorescence staining assays demonstrated that human nuclei in fused cells still expressed the proliferation marker Ki67. In addition, hASCs fused with rat cardiomyocytes were positive for troponin I. Whole-cell voltage-clamp analysis demonstrated action potentials in beating fused cells. RT-PCR analysis using rat- or human-specific myosin heavy chain primers revealed that the myosin heavy-chain expression in fused cells was derived from rat cardiomyocytes. Real-time PCR identified expression of human troponin T in fused cells and the presence of rat cardiomyocytes induced a cardiomyogenic protein expression of troponin T in human ASCs. This study illustrates that hASCs exhibit both stem cell (proliferation) and cardiomyocyte properties (action potential and spontaneous rhythmic beating) after fusion with rat cardiomyocytes, supporting the theory that fusion, even if artificially induced in our study, could indeed be a mechanism for cardiomyocyte renewal in the heart.
Sheehan, Jared; Marasco, Wayne A
2015-02-01
Despite the availability of antimicrobial drugs, the continued development of microbial resistance--established through escape mutations and the emergence of resistant strains--limits their clinical utility. The discovery of novel, therapeutic, monoclonal antibodies (mAbs) offers viable clinical alternatives in the treatment and prophylaxis of infectious diseases. Human mAb-based therapies are typically nontoxic in patients and demonstrate high specificity for the intended microbial target. This specificity prevents negative impacts on the patient microbiome and avoids driving the resistance of nontarget species. The in vitro selection of human antibody fragment libraries displayed on phage or yeast surfaces represents a group of well-established technologies capable of generating human mAbs. The advantage of these forms of microbial display is the large repertoire of human antibody fragments present during a single selection campaign. Furthermore, the in vitro selection environments of microbial surface display allow for the rapid isolation of antibodies--and their encoding genes--against infectious pathogens and their toxins that are impractical within in vivo systems, such as murine hybridomas. This article focuses on the technologies of phage display and yeast display, as these strategies relate to the discovery of human mAbs for the treatment and vaccine development of infectious diseases.
Reading sadness beyond human faces.
Chammat, Mariam; Foucher, Aurélie; Nadel, Jacqueline; Dubal, Stéphanie
2010-08-12
Human faces are the main emotion displayers. Knowing that emotional compared to neutral stimuli elicit enlarged ERPs components at the perceptual level, one may wonder whether this has led to an emotional facilitation bias toward human faces. To contribute to this question, we measured the P1 and N170 components of the ERPs elicited by human facial compared to artificial stimuli, namely non-humanoid robots. Fifteen healthy young adults were shown sad and neutral, upright and inverted expressions of human versus robotic displays. An increase in P1 amplitude in response to sad displays compared to neutral ones evidenced an early perceptual amplification for sadness information. P1 and N170 latencies were delayed in response to robotic stimuli compared to human ones, while N170 amplitude was not affected by media. Inverted human stimuli elicited a longer latency of P1 and a larger N170 amplitude while inverted robotic stimuli did not. As a whole, our results show that emotion facilitation is not biased to human faces but rather extend to non-human displays, thus suggesting our capacity to read emotion beyond faces. Copyright 2010 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James
2004-12-23
We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor bymore » expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.« less
Křížová, Lucie; Kuchař, Milan; Petroková, Hana; Osička, Radim; Hlavničková, Marie; Pelák, Ondřej; Černý, Jiří; Kalina, Tomáš; Malý, Petr
2017-03-01
Interleukin-23 (IL-23), a heterodimeric cytokine of covalently bound p19 and p40 proteins, has recently been closely associated with development of several chronic autoimmune diseases such as psoriasis, psoriatic arthritis or inflammatory bowel disease. Released by activated dendritic cells, IL-23 interacts with IL-23 receptor (IL-23R) on Th17 cells, thus promoting intracellular signaling, a pivotal step in Th17-driven pro-inflammatory axis. Here, we aimed to block the binding of IL-23 cytokine to its cell-surface receptor by novel inhibitory protein binders targeted to the p19 subunit of human IL-23. To this goal, we used a combinatorial library derived from a scaffold of albumin-binding domain (ABD) of streptococcal protein G, and ribosome display selection, to yield a collection of ABD-derived p19-targeted variants, called ILP binders. From 214 clones analyzed by ELISA, Western blot and DNA sequencing, 53 provided 35 different sequence variants that were further characterized. Using in silico docking in combination with cell-surface competition binding assay, we identified a group of inhibitory candidates that substantially diminished binding of recombinant p19 to the IL-23R on human monocytic THP-1 cells. Of these best p19-blockers, ILP030, ILP317 and ILP323 inhibited IL-23-driven expansion of IL-17-producing primary human CD4 + T-cells. Thus, these novel binders represent unique IL-23-targeted probes useful for IL-23/IL-23R epitope mapping studies and could be used for designing novel p19/IL-23-targeted anti-inflammatory biologics.
Szabo, Attila; Kovacs, Attila; Riba, Jordi; Djurovic, Srdjan; Rajnavolgyi, Eva; Frecska, Ede
2016-01-01
N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain.
Szabo, Attila; Kovacs, Attila; Riba, Jordi; Djurovic, Srdjan; Rajnavolgyi, Eva; Frecska, Ede
2016-01-01
N,N-dimethyltryptamine (DMT) is a potent endogenous hallucinogen present in the brain of humans and other mammals. Despite extensive research, its physiological role remains largely unknown. Recently, DMT has been found to activate the sigma-1 receptor (Sig-1R), an intracellular chaperone fulfilling an interface role between the endoplasmic reticulum (ER) and mitochondria. It ensures the correct transmission of ER stress into the nucleus resulting in the enhanced production of antistress and antioxidant proteins. Due to this function, the activation of Sig-1R can mitigate the outcome of hypoxia or oxidative stress. In this paper, we aimed to test the hypothesis that DMT plays a neuroprotective role in the brain by activating the Sig-1R. We tested whether DMT can mitigate hypoxic stress in in vitro cultured human cortical neurons (derived from induced pluripotent stem cells, iPSCs), monocyte-derived macrophages (moMACs), and dendritic cells (moDCs). Results showed that DMT robustly increases the survival of these cell types in severe hypoxia (0.5% O2) through the Sig-1R. Furthermore, this phenomenon is associated with the decreased expression and function of the alpha subunit of the hypoxia-inducible factor 1 (HIF-1) suggesting that DMT-mediated Sig-1R activation may alleviate hypoxia-induced cellular stress and increase survival in a HIF-1-independent manner. Our results reveal a novel and important role of DMT in human cellular physiology. We postulate that this compound may be endogenously generated in situations of stress, ameliorating the adverse effects of hypoxic/ischemic insult to the brain. PMID:27683542
Sala-Vila, Aleix; Castellote, Ana I; López-Sabater, M Carmen
2008-03-01
Docosahexaenoic acid (DHA) plays an important role in normal development of the brain and retina in the human. In utero, DHA is incorporated in the fetus, and its accretion continues throughout early postnatal life. Although human breast milk contains this fatty acid, several organizations recommend supplementing infant formulas with DHA for infants and premature infants. Traditionally, certain types of fish oil have been used for fortifying some infant formulas, but with the decline in world fisheries, the search for alternative sources of DHA continues. Among the viable ingredient sources of DHA is oil derived from single-cell organisms (marine microorganisms); however, these oil sources display different positional specificity of DHA in the glycerol lipids compared with that found in human breast milk lipids. In the latter, the DHA is mainly esterified in the central position of the glycerol backbone. Because of these differences in human milk and oils derived from single-cell organisms, recent research in biotechnology has focused on developing new structured triacylglycerols with an intramolecular structure resembling that found in human milk lipids. This research is justified by the potential differences in metabolism of DHA based on the hypothetical bioavailability and benefits in DHA found in human milk lipids. Presented herein is a review of the published research on the metabolism of DHA from different triacylglycerol sources including in vitro studies and animal studies. Despite small differences observed in digestion, the current data reveal a minimal effect on the parameters of development studied for the intramolecular position in which DHA is esterified.
Archaeosomes display immunoadjuvant potential for a vaccine against Chagas disease.
Higa, Leticia H; Corral, Ricardo S; Morilla, María José; Romero, Eder L; Petray, Patricia B
2013-02-01
Archaeosomes (ARC), vesicles made from lipids extracted from Archaea, display strong adjuvant properties. In this study, we evaluated the ability of the highly stable ARC formulated from total polar lipids of a new Halorubrum tebenquichense strain found in Argentinean Patagonia, to act as adjuvant for soluble parasite antigens in developing prophylactic vaccine against the intracellular protozoan T. cruzi, the etiologic agent of Chagas disease. We demonstrated for the first time that C3H/HeN mice subcutaneously immunized with trypanosomal antigens entrapped in these ARC (ARC-TcAg) rapidly developed higher levels of circulating T. cruzi antibodies than those measured in the sera from animals receiving the antigen alone. Enhanced humoral responses elicited by ARC-TcAg presented a dominant IgG2a antibody isotype, usually associated with Th1-type immunity and resistance against T. cruzi. More importantly, ARC-TcAg-vaccinated mice displayed reduced parasitemia during early infection and were protected against an otherwise lethal challenge with the virulent Tulahuén strain of the parasite. Our findings suggest that, as an adjuvant, H. tebenquichense-derived ARC may hold great potential to develop a safe and helpful vaccine against this relevant human pathogen.
Parochial cooperation in nested intergroup dilemmas is reduced when it harms out-groups.
Aaldering, Hillie; Ten Velden, Femke S; van Kleef, Gerben A; De Dreu, Carsten K W
2018-06-01
In intergroup settings, humans often contribute to their in-group at a personal cost. Such parochial cooperation benefits the in-group and creates and fuels intergroup conflict when it simultaneously hurts out-groups. Here, we introduce a new game paradigm in which individuals can display universal cooperation (which benefits both in- and out-group) as well as parochial cooperation that does, versus does not hurt the out-group. Using this set-up, we test hypotheses derived from group selection theory, social identity, and bounded generalized reciprocity theory. Across three experiments we find, first, that individuals choose parochial over universal cooperation. Second, there was no evidence for a motive to maximize differences between in- and out-group, which is central to both group selection and social identity theory. However, fitting bounded generalized reciprocity theory, we find that individuals with a prosocial value orientation display parochial cooperation, provided that this does not harm the out-group; individualists, in contrast, display parochialism whether or not nut it hurts the out-group. Our findings were insensitive to cognitive taxation (Experiments 2-3), and emerged even when universal cooperation served social welfare more than parochialism (Experiment 3). (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Hart, Sandra G.
1988-01-01
The state-of-the-art helicopter and its pilot are examined using the tools of human-factors analysis. The significant role of human error in helicopter accidents is discussed; the history of human-factors research on helicopters is briefly traced; the typical flight tasks are described; and the noise, vibration, and temperature conditions typical of modern military helicopters are characterized. Also considered are helicopter controls, cockpit instruments and displays, and the impact of cockpit design on pilot workload. Particular attention is given to possible advanced-technology improvements, such as control stabilization and augmentation, FBW and fly-by-light systems, multifunction displays, night-vision goggles, pilot night-vision systems, night-vision displays with superimposed symbols, target acquisition and designation systems, and aural displays. Diagrams, drawings, and photographs are provided.
Novel prodrugs of tegafur that display improved anticancer activity and antiangiogenic properties.
Engel, Dikla; Nudelman, Abraham; Tarasenko, Nataly; Levovich, Inesa; Makarovsky, Igor; Sochotnikov, Segev; Tarasenko, Igor; Rephaeli, Ada
2008-01-24
New and more potent prodrugs of the 5-fluorouracyl family derived by hydroxymethylation or acyloxymethylation of 5-fluoro-1-(tetrahydro-2-furanyl)-2,4(1H,3H)-pyrimidinedione (tegafur, 1) are described. The anticancer activity of the butyroyloxymethyl-tegafur derivative 3 and not that of tegafur was attenuated by the antioxidant N-acetylcysteine, suggesting that the increased activity of the prodrug is in part mediated by an increase of reactive oxygen species. Compound 3 in an in vitro matrigel assay was found to be a more potent antiangiogenic agent than tegafur. In vivo 3 was significantly more potent than tegafur in inhibiting 4T1 breast carcinoma lung metastases and growth of HT-29 human colon carcinoma tumors in a mouse xenograft. In summary, the multifunctional prodrugs of tegafur display selectivity toward cancer cells, antiangiogenic activity, and anticancer activities in vitro and in vivo, superior to those of tegafur. 5-fluoro-1-(tetrahydro-2-furanyl)-2,4(1 H,3 H)-pyrimidinedione (tegafur, 1), the oral prodrug of 5-FU, has been widely used for treatment of gastrointestinal malignancies with modest efficacy. The aim of this study was to develop and characterize new and more potent prodrugs of the 5-FU family derived by hydroxymethylation or acyloxymethylation of tegafur. Comparison between the effect of tegafur and the new prodrugs on the viability of a variety of cancer cell lines showed that the IC50 and IC90 values of the novel prodrugs were 5-10-fold lower than those of tegafur. While significant differences between the IC50 values of tegafur were observed between the sensitive HT-29 and the resistant LS-1034 colon cancer cell lines, the prodrugs affected them to a similar degree, suggesting that they overcame drug resistance. The increased potency of the prodrugs could be attributed to the antiproliferative contribution imparted by formaldehyde and butyric acid, released upon metabolic degradation. The anticancer activity of the butyroyloxymethyl-tegafur derivative 3 and not that of tegafur was attenuated by the antioxidant N-acetylcysteine, suggesting that the increased activity of the prodrug is in part mediated by an increase of reactive oxygen species. Compound 3 in an in vitro matrigel assay was found to be a more potent antiangiogenic agent than tegafur. In vivo 3 was significantly more potent than tegafur in inhibiting 4T1 breast carcinoma lung metastases and growth of HT-29 human colon carcinoma tumors in a mouse xenograft. In summary, the multifunctional prodrugs of tegafur display selectivity toward cancer cells, antiangiogenic activity and anticancer activities in vitro and in vivo, superior to those of tegafur.
Lipskind, Shane; Lindsey, Jennifer S; Gerami-Naini, Behzad; Eaton, Jennifer L; O'Connell, Daniel; Kiezun, Adam; Ho, Joshua W K; Ng, Nicholas; Parasar, Parveen; Ng, Michelle; Nickerson, Michael; Demirci, Utkan; Maas, Richard; Anchan, Raymond M
2018-05-01
Embryoid bodies (EBs) can serve as a system for evaluating pluripotency, cellular differentiation, and tissue morphogenesis. In this study, we use EBs derived from mouse embryonic stem cells (mESCs) and human amniocyte-derived induced pluripotent stem cells (hAdiPSCs) as a model for ovarian granulosa cell (GC) development and steroidogenic cell commitment. We demonstrated that spontaneously differentiated murine EBs (mEBs) and human EBs (hEBs) displayed ovarian GC markers, such as aromatase (CYP19A1), FOXL2, AMHR2, FSHR, and GJA1. Comparative microarray analysis identified both shared and unique gene expression between mEBs and the maturing mouse ovary. Gene sets related to gonadogenesis, lipid metabolism, and ovarian development were significantly overrepresented in EBs. Of the 29 genes, 15 that were differentially regulated in steroidogenic mEBs displayed temporal expression changes between embryonic, postnatal, and mature ovarian tissues by polymerase chain reaction. Importantly, both mEBs and hEBs were capable of gonadotropin-responsive estradiol (E2) synthesis in vitro (217-759 pg/mL). Live fluorescence-activated cell sorting-sorted AMHR2 + granulosa-like cells from mEBs continued to produce E2 after purification (15.3 pg/mL) and secreted significantly more E2 than AMHR2 - cells (8.6 pg/mL, P < .05). We conclude that spontaneously differentiated EBs of both mESC and hAdiPSC origin can serve as a biologically relevant model for ovarian GC differentiation and steroidogenic cell commitment. These cells should be further investigated for therapeutic uses, such as stem cell-based hormone replacement therapy and in vitro maturation of oocytes.
Zeng, Qi; Fu, Juan; Korrer, Michael; Gorbounov, Mikhail; Murray, Peter J; Pardoll, Drew; Masica, David L; Kim, Young J
2018-05-01
Immunosuppressive myeloid-derived suppressive cells (MDSCs) are characterized by their phenotypic and functional heterogeneity. To better define their T cell-independent functions within the tumor, sorted monocytic CD14 + CD11b + HLA-DR low/- MDSCs (mMDSC) from squamous cell carcinoma patients showed upregulated caspase-1 activity, which was associated with increased IL1β and IL18 expression. In vitro studies demonstrated that mMDSCs promoted caspase-1-dependent proliferation of multiple squamous carcinoma cell lines in both human and murine systems. In vivo , growth rates of B16, MOC1, and Panc02 were significantly blunted in chimeric mice adoptively transferred with caspase-1 null bone marrow cells under T cell-depleted conditions. Adoptive transfer of wild-type Gr-1 + CD11b + MDSCs from tumor-bearing mice reversed this antitumor response, whereas caspase-1 inhibiting thalidomide-treated MDSCs phenocopied the antitumor response found in caspase-1 null mice. We further hypothesized that MDSC caspase-1 activity could promote tumor-intrinsic MyD88-dependent carcinogenesis. In mice with wild-type caspase-1, MyD88-silenced tumors displayed reduced growth rate, but in chimeric mice with caspase-1 null bone marrow cells, MyD88-silenced tumors did not display differential tumor growth rate. When we queried the TCGA database, we found that caspase-1 expression is correlated with overall survival in squamous cell carcinoma patients. Taken together, our findings demonstrated that caspase-1 in MDSCs is a direct T cell-independent mediator of tumor proliferation. Cancer Immunol Res; 6(5); 566-77. ©2018 AACR . ©2018 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
Hopper, Darrel G.
2000-08-01
Displays were invented just in the last century. The human visual system evolved over millions of years. The disparity between the natural world 'display' and that 'sampled' by year 2000 technology is more than a factor of one million. Over 1000X of this disparity between the fidelity of current electronic displays and human visual capacity is in 2D resolution alone. Then there is true 3D, which adds an additional factor of over 1000X. The present paper focuses just on the 2D portion of this grand technology challenge. Should a significant portion of this gap be closed, say just 10X by 2010, display technology can help drive a revolution in military affairs. Warfighter productivity must grow dramatically, and improved display technology systems can create a critical opportunity to increase defense capability while decreasing crew sizes.
An intelligent control and virtual display system for evolutionary space station workstation design
NASA Technical Reports Server (NTRS)
Feng, Xin; Niederjohn, Russell J.; Mcgreevy, Michael W.
1992-01-01
Research and development of the Advanced Display and Computer Augmented Control System (ADCACS) for the space station Body-Ported Cupola Virtual Workstation (BP/VCWS) were pursued. The potential applications were explored of body ported virtual display and intelligent control technology for the human-system interfacing applications is space station environment. The new system is designed to enable crew members to control and monitor a variety of space operations with greater flexibility and efficiency than existing fixed consoles. The technologies being studied include helmet mounted virtual displays, voice and special command input devices, and microprocessor based intelligent controllers. Several research topics, such as human factors, decision support expert systems, and wide field of view, color displays are being addressed. The study showed the significant advantages of this uniquely integrated display and control system, and its feasibility for human-system interfacing applications in the space station command and control environment.
Kim, Hyojin; Prasain, Nutan; Vemula, Sasidhar; Ferkowicz, Michael J.; Yoshimoto, Momoko; Voytik-Harbin, Sherry L.; Yoder, Mervin C.
2015-01-01
Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFC) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post- matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31+ vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC. PMID:26122935
Kim, Hyojin; Prasain, Nutan; Vemula, Sasidhar; Ferkowicz, Michael J; Yoshimoto, Momoko; Voytik-Harbin, Sherry L; Yoder, Mervin C
2015-09-01
Human cord blood (CB) is enriched in circulating endothelial colony forming cells (ECFCs) that display high proliferative potential and in vivo vessel forming ability. Since diminished ECFC survival is known to dampen the vasculogenic response in vivo, we tested how long implanted ECFC survive and generate vessels in three-dimensional (3D) type I collagen matrices in vitro and in vivo. We hypothesized that human platelet lysate (HPL) would promote cell survival and enhance vasculogenesis in the 3D collagen matrices. We report that the percentage of ECFC co-cultured with HPL that were alive was significantly enhanced on days 1 and 3 post-matrix formation, compared to ECFC alone containing matrices. Also, co-culture of ECFC with HPL displayed significantly more vasculogenic activity compared to ECFC alone and expressed significantly more pro-survival molecules (pAkt, p-Bad and Bcl-xL) in the 3D collagen matrices in vitro. Treatment with Akt1 inhibitor (A-674563), Akt2 inhibitor (CCT128930) and Bcl-xL inhibitor (ABT-263/Navitoclax) significantly decreased the cell survival and vasculogenesis of ECFC co-cultured with or without HPL and implicated activation of the Akt1 pathway as the critical mediator of the HPL effect on ECFC in vitro. A significantly greater average vessel number and total vascular area of human CD31(+) vessels were present in implants containing ECFC and HPL, compared to the ECFC alone implants in vivo. We conclude that implantation of ECFC with HPL in vivo promotes vasculogenesis and augments blood vessel formation via diminishing apoptosis of the implanted ECFC. Copyright © 2015 Elsevier Inc. All rights reserved.
Flat panel displays in the helmet-mounted display
NASA Astrophysics Data System (ADS)
Bartlett, Christopher T.; Freeman, Jonathan P.
2002-08-01
The Helmet Mounted Display has been in development for over 25 years and with few exceptions those systems in service have incorporated a miniature Cathode Ray Tube as the display source. The exceptions have been the use of Light Emitting Diodes in Helmet Sighting displays. The argument for Flat Panel Displays has been well rehearsed and this paper provides a summary of the available technologies but with a rationale for a decision to use Reflective Liquid Crystal devices. The Paper then describes sources of illumination and derives the luminance required from that source.
The molecular architecture of human N-acetylgalactosamine kinase.
Thoden, James B; Holden, Hazel M
2005-09-23
Galactokinase plays a key role in normal galactose metabolism by catalyzing the conversion of alpha-d-galactose to galactose 1-phosphate. Within recent years, the three-dimensional structures of human galactokinase and two bacterial forms of the enzyme have been determined. Originally, the gene encoding galactokinase in humans was mapped to chromosome 17. An additional gene, encoding a protein with sequence similarity to galactokinase, was subsequently mapped to chromosome 15. Recent reports have shown that this second gene (GALK2) encodes an enzyme with greater activity against GalNAc than galactose. This enzyme, GalNAc kinase, has been implicated in a salvage pathway for the reutilization of free GalNAc derived from the degradation of complex carbohydrates. Here we report the first structural analysis of a GalNAc kinase. The structure of the human enzyme was solved in the presence of MnAMPPNP and GalNAc or MgATP and GalNAc (which resulted in bound products in the active site). The enzyme displays a distinctly bilobal appearance with its active site wedged between the two domains. The N-terminal region is dominated by a seven-stranded mixed beta-sheet, whereas the C-terminal motif contains two layers of anti-parallel beta-sheet. The overall topology displayed by GalNAc kinase places it into the GHMP superfamily of enzymes, which generally function as small molecule kinases. From this investigation, the geometry of the GalNAc kinase active site before and after catalysis has been revealed, and the determinants of substrate specificity have been defined on a molecular level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atsmon, Jacob; Sackler Faculty of Medicine, Tel Aviv University; Brill-Almon, Einat
PRX-105 is a plant-derived recombinant version of the human ‘read-through’ acetylcholinesterase splice variant (AChE-R). Its active site structure is similar to that of the synaptic variant, and it displays the same affinity towards organophosphorus (OP) compounds. As such, PRX-105 may serve as a bio-scavenger for OP pesticides and chemical warfare agents. To assess its potential use in prophylaxis and treatment of OP poisoning we conducted several preliminary tests, reported in this paper. Intravenous (IV) PRX-105 was administered to mice either before or after exposure to an OP toxin. All mice who received an IV dose of 50 nmol/kg PRX-105, 2more » min before being exposed to 1.33 × LD{sub 50} and 1.5 × LD{sub 50} of toxin and 10 min after exposure to 1.5 × LD{sub 50} survived. The pharmacokinetic and toxicity profiles of PRX-105 were evaluated in mice and mini-pigs. Following single and multiple IV doses (50 to 200 mg/kg) no deaths occurred and no significant laboratory and histopathological changes were observed. The overall elimination half-life (t{sub ½}) in mice was 994 (± 173) min. Additionally, a first-in-human study, to assess the safety, tolerability and pharmacokinetics of the compound, was conducted in healthy volunteers. The t{sub ½} in humans was substantially longer than in mice (average 26.7 h). Despite the small number of animals and human subjects who were assessed, the fact that PRX-105 exerts a protective and therapeutic effect following exposure to lethal doses of OP, its favorable safety profile and its relatively long half-life, renders it a promising candidate for treatment and prophylaxis against OP poisoning and warrants further investigation. - Highlights: • PRX-105 is a PEGylated plant-derived recombinant human acetylcholinesterase-R. • PRX-105 is a promising bio-scavenger for organophosphorous toxins at lethal doses. • PRX-105 was shown to protect animals both prophylactically and post-poisoning. • First-in-human study exhibited its safety, tolerability and pharmacokinetics. • Toxicokinetic animal studies have shown a favorable safety profile.« less
Fagète, Séverine; Botas-Perez, Ledicia; Rossito-Borlat, Irène; Adea, Kenneth; Gueneau, Franck; Ravn, Ulla; Rousseau, François; Kosco-Vilbois, Marie; Fischer, Nicolas; Hartley, Oliver
2017-09-01
Antibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity. Phagemids encoding a first antibody fragment (scFv) fused to phage coat protein via the first leucine zipper are rescued in bacteria expressing a second scFv fused to the second leucine zipper as a soluble periplasmic protein, so that it is acquired by phage during assembly. Using a soluble scFv specific for a human CD3-derived peptide, we show that its acquisition by phage displaying an irrelevant antibody is sufficiently robust to drive selection of rare phage (1 in 105) over three rounds of panning. We then set up a model selection experiment using a cell line expressing the chemokine receptor CCR5 fused to the CD3 peptide together with a panel of phage clones capable displaying either an anti-CCR5 scFv or an irrelevant antibody, with or without the capacity to acquire the soluble anti-CD3 scFv. In this experiment we showed that rare phage (1 in 105) capable of displaying the two different scFvs can be specifically enriched over four rounds of panning. This approach has the potential to be applied to the identification of pairs of ligands capable of co-engaging two different user-defined targets, which would facilitate the discovery of novel bispecific antibodies. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Human factors considerations in the design and evaluation of flight deck displays and controls
DOT National Transportation Integrated Search
2013-11-01
The objective of this effort is to have a single source document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on human factor...
Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro.
Beattie, Karren D; Ulrich, Rahel; Grice, I Darren; Uddin, Shaikh J; Blake, Tony B; Wood, Kyle A; Steele, Jules; Iu, Fontaine; May, Tom W; Tiralongo, Evelin
2011-01-01
Fifteen Australian macrofungi were investigated for cytotoxic activity. Ethanol, cold and hot water extracts of each species were screened for cytotoxic activity against normal mouse fibroblast cells (NIH/3T3), healthy human epithelial kidney cells (HEK-293), four cancer cell lines, gastric adenocarcinoma cells (AGS), two mammary gland adenocarcinoma cells (MDA-MB-231, MCF7) and colorectal adenocarcinoma cells (HT-29) with a validated MTT assay. Most extracts derived from Omphalotus nidiformis, Cordyceps cranstounii and Cordyceps gunnii demonstrated significant cytotoxic activity toward a variety of cancer cell lines. In contrast only some extracts from Coprinus comatus, Cordyceps hawkesii, Hypholoma fasciculare, Lepista nuda, Leratiomyces ceres and Ophiocordyceps robertsii displayed significant cytotoxic activity, which was usually selective for only one or two cancer cell lines tested. The least cytotoxic species evaluated in this study were Agaricus bitorquis, Coprinopsis atrametaria, Psathyrella asperospora, Russula clelandii, Tricholoma sp. AU2 and Xerula mundroola.
Bioactive chemical constituents from the brown alga Homoeostrichus formosana.
Fang, Hui-Yu; Chokkalingam, Uvarani; Chiou, Shu-Fen; Hwang, Tsong-Long; Chen, Shu-Li; Wang, Wei-Lung; Sheu, Jyh-Horng
2014-12-30
A new chromene derivative, 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-hydroxy-2,6-dimethyl-2H-chromene (1) together with four known natural products, methylfarnesylquinone (2), isololiolide (3), pheophytin a (4), and β-carotene (5) were isolated from the brown alga Homoeostrichus formosana. The structure of 1 was determined by extensive 1D and 2D spectroscopic analyses. Acetylation of 1 yielded the monoacetylated derivative 2-(4',8'-dimethylnona-3'E,7'-dienyl)-8-acetyl-2,6-dimethyl-2H-chromene (6). Compounds 1-6 exhibited various levels of cytotoxic, antibacterial, and anti-inflammatory activities. Compound 2 was found to display potent in vitro anti-inflammatory activity by inhibiting the generation of superoxide anion (IC50 0.22 ± 0.03 μg/mL) and elastase release (IC50 0.48 ± 0.11 μg/mL) in FMLP/CB-induced human neutrophils.
Synthesis and cytogenetic effects of aminoquinone derivatives with a di- and a tripeptide.
Pachatouridis, C; Iakovidou, Z; Myoglou, E; Mourelatos, D; Pantazaki, A A; Papageorgiou, V P; Kotsis, A; Liakopoulou-Kyriakides, M
2002-04-01
Quinones are of significant interest due to their important role in specific cellular functions. Quinoproteins are a big class of oxyreductive agents occurring in bacteria and other organisms. In this investigation derivatives of 2-amino-1,4-benzoquinone, 2-amino-1,4-naphthoquinone and 2-amino-5,8-dihydroxy-1,4-naphthoquinone with a di- and a tripeptide were prepared for first time. The effect of the synthesized compounds on sister chomatid exchange (SCE) rates and human lymphocyte proliferation kinetics on a molar basis was studied. Among these coupled products the most effective in inducing SCEs and depressing proliferation rate indices is the coupling product of 2-amino-1,4-naphthoquinone with the tripeptide GHK (10). Next in order of magnitude in inducing cytogenetic effects is 2-amino-1,4-naphthoquinone (2) and its coupling products with glycine and serine (4 and 5), while the rest displayed marginal activity.
Muffat, Julien; Li, Yun; Omer, Attya; Durbin, Ann; Bosch, Irene; Bakiasi, Grisilda; Richards, Edward; Meyer, Aaron; Gehrke, Lee; Jaenisch, Rudolf
2018-06-18
Maternal Zika virus (ZIKV) infection during pregnancy is recognized as the cause of an epidemic of microcephaly and other neurological anomalies in human fetuses. It remains unclear how ZIKV accesses the highly vulnerable population of neural progenitors of the fetal central nervous system (CNS), and which cell types of the CNS may be viral reservoirs. In contrast, the related dengue virus (DENV) does not elicit teratogenicity. To model viral interaction with cells of the fetal CNS in vitro, we investigated the tropism of ZIKV and DENV for different induced pluripotent stem cell-derived human cells, with a particular focus on microglia-like cells. We show that ZIKV infected isogenic neural progenitors, astrocytes, and microglia-like cells (pMGLs), but was only cytotoxic to neural progenitors. Infected glial cells propagated ZIKV and maintained ZIKV load over time, leading to viral spread to susceptible cells. DENV triggered stronger immune responses and could be cleared by neural and glial cells more efficiently. pMGLs, when cocultured with neural spheroids, invaded the tissue and, when infected with ZIKV, initiated neural infection. Since microglia derive from primitive macrophages originating in proximity to the maternal vasculature, they may act as a viral reservoir for ZIKV and establish infection of the fetal brain. Infection of immature neural stem cells by invading microglia may occur in the early stages of pregnancy, before angiogenesis in the brain rudiments. Our data are also consistent with ZIKV and DENV affecting the integrity of the blood-brain barrier, thus allowing infection of the brain later in life.
Progress and prospects for L2-based human papillomavirus vaccines
Jiang, Rosie T; Schellenbacher, Christina; Chackerian, Bryce; Roden, Richard B.S.
2016-01-01
Summary Human papillomavirus (HPV) is a worldwide public health problem, particularly in resource-limited countries. Fifteen high-risk genital HPV types are sexually transmitted and cause 5% of all cancers worldwide, primarily cervical, anogenital and oropharyngeal carcinomas. Skin HPV types are generally associated with benign disease, but a subset is linked to non-melanoma skin cancer. Licensed HPV vaccines based on virus-like particles (VLPs) derived from L1 major capsid antigen of key high risk HPVs are effective at preventing these infections but do not cover cutaneous types and are not therapeutic. Vaccines targeting L2 minor capsid antigen, some using capsid display, adjuvant and fusions with early HPV antigens or Toll-like receptor agonists, are in development to fill these gaps. Progress and challenges with L2-based vaccines are summarized. PMID:26901354
Reversion of the P-glycoprotein-mediated multidrug resistance of cancer cells by FK-506 derivatives.
Jachez, B; Boesch, D; Grassberger, M A; Loor, F
1993-04-01
FK-506 is a resistance-modulating agent (RMA) for tumor cells whose multidrug resistance (MDR) involves a P-glycoprotein (Pgp)-mediated anti-cancer drug efflux. The family of FK-506 relatives and derivatives includes analogs which display a whole range of chemosensitizing strengths, from no detectable RMA activity to a complete reversion of the MDR phenotype. Similarly, FK-506 analogs display a whole range of immunosuppressive activities, including inactive ones. FK-506 was compared for RMA activity with 11 FK-506 analogs which were at least 20-fold less active than FK-506 for the inhibition of the bi-directional mixed lymphocyte reaction displayed the whole range of RMA activity. One such strong RMA derivative of FK-506 (SDZ 280-629) was further shown able to restore completely daunomycin retention by highly resistant MDR P388 tumor cells.
21 CFR 101.1 - Principal display panel of package form food.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Principal display panel of package form food. 101.1 Section 101.1 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION FOOD LABELING General Provisions § 101.1 Principal display panel of...
Display technology - Human factors concepts
NASA Astrophysics Data System (ADS)
Stokes, Alan; Wickens, Christopher; Kite, Kirsten
1990-03-01
Recent advances in the design of aircraft cockpit displays are reviewed, with an emphasis on their applicability to automobiles. The fundamental principles of display technology are introduced, and individual chapters are devoted to selective visual attention, command and status displays, foveal and peripheral displays, navigational displays, auditory displays, color and pictorial displays, head-up displays, automated systems, and dual-task performance and pilot workload. Diagrams, drawings, and photographs of typical displays are provided.
Enhanced activity of human serotonin transporter variants associated with autism.
Prasad, Harish C; Steiner, Jennifer A; Sutcliffe, James S; Blakely, Randy D
2009-01-27
Rare, functional, non-synonymous variants in the human serotonin (5-hydroxytryptamine, 5-HT) transporter (hSERT) gene (SLC6A4) have been identified in both autism and obsessive-compulsive disorder (OCD). Within autism, rare hSERT coding variants associate with rigid-compulsive traits, suggesting both phenotypic overlap with OCD and a shared relationship with disrupted 5-HT signalling. Here, we document functional perturbations of three of these variants: Ile425Leu; Phe465Leu; and Leu550Val. In transiently transfected HeLa cells, the three variants confer a gain of 5-HT transport phenotype. Specifically, enhanced SERT activity was also observed in lymphoblastoid lines derived from mutation carriers. In contrast to previously characterized Gly56Ala, where increased transport activity derives from catalytic activation, the three novel variants exhibit elevated surface density as revealed through both surface antagonist-binding and biotinylation studies. Unlike Gly56Ala, mutants Ile425Leu, Phe465Leu and Leu550Val retain a capacity for acute PKG and p38 MAPK regulation. However, both Gly56Ala and Ile425Leu demonstrate markedly reduced sensitivity to PP2A antagonists, suggesting that deficits in trafficking and catalytic modulation may derive from a common basis in perturbed phosphatase regulation. When expressed stably from the same genomic locus in CHO cells, both Gly56Ala and Ile425Leu display catalytic activation, accompanied by a striking loss of SERT protein.
Varano, Flavia; Catarzi, Daniela; Falsini, Matteo; Vincenzi, Fabrizio; Pasquini, Silvia; Varani, Katia; Colotta, Vittoria
2018-07-23
In this study a new set of thiazolo[5,4-d]pyrimidine derivatives was synthesized. These derivatives bear different substituents at positions 2 and 5 of the thiazolopyrimidine core while maintaining a free amino group at position-7. The new compounds were tested for their affinity and potency at human (h) A 1 , A 2A , A 2B and A 3 adenosine receptors expressed in CHO cells. The results reveal that the higher affinity of these new set of thiazolopyrimidines is toward the hA 1 and hA 2A adenosine receptors subtypes and is tuned by the substitution pattern at both the 2 and 5 positions of the thiazolopyrimidine nucleus. Functional studies evidenced that the compounds behaved as dual A 1 /A 2A antagonists/inverse agonists. Compound 3, bearing a 5-((2-methoxyphenyl) methylamino) group and a phenyl moiety at position 2, displayed the highest affinity (hA 1 K i = 10.2 nM; hA 2A K i = 4.72 nM) and behaved as a potent A 1 /A 2A antagonist/inverse agonist (hA 1 IC 50 = 13.4 nM; hA 2A IC 50 = 5.34 nM). Copyright © 2018 Elsevier Ltd. All rights reserved.
Strong, Amy L.; Bowles, Annie C.; MacCrimmon, Connor P.; Lee, Stephen J.; Frazier, Trivia P.; Katz, Adam J.; Gawronska-Kozak, Barbara; Bunnell, Bruce A.
2015-01-01
Background: As the world’s population lives longer, the number of individuals at risk for pressure ulcers will increase considerably in the coming decades. In developed countries, up to 18% of nursing home residents suffer from pressure ulcers and the resulting hospital costs can account for up to 4% of a nation’s health care budget. Although full-thickness surgical skin wounds have been used as a model, preclinical rodent studies have demonstrated that repeated cycles of ischemia and reperfusion created by exposure to magnets most closely mimic the human pressure ulcer condition. Methods: This study uses in vivo and in vitro quantitative parameters to characterize the temporal kinetics and histology of pressure ulcers in young, female C57BL/6 mice exposed to 2 or 3 ischemia-reperfusion cycles. This pressure ulcer model was validated further in studies examining the efficacy of adipose-derived stromal/stem cell administration. Results: Optimal results were obtained with the 2-cycle model based on the wound size, histology, and gene expression profile of representative angiogenic and reparative messenger RNAs. When treated with adipose-derived stromal/stem cells, pressure ulcer wounds displayed a dose-dependent and significant acceleration in wound closure rates and improved tissue histology. Conclusion: These findings document the utility of this simplified preclinical model for the evaluation of novel tissue engineering and medical approaches to treat pressure ulcers in humans. PMID:25878945
Weidmann, Alyson G.; Barton, Jacqueline K.
2015-01-01
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh—O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA non-classically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors. PMID:26397309
Molek, Peter; Vodnik, Miha; Strukelj, Borut; Bratkovič, Tomaž
2014-09-26
Initially considered the main endogenous anorexigenic factor, fat-derived leptin turned out to be a markedly pleiotropic hormone, influencing diverse physiological processes. Moreover, hyperleptinemia in obese individuals has been linked to the onset or progression of serious disorders, such as cancer, autoimmune diseases, and atherosclerosis, and antagonizing peripheral leptin's signalization has been shown to improve these conditions. To develop an antibody-based leptin antagonist we have devised a tailored panning procedure and screened two phage display libraries of single chain variable antibody fragments (scFvs) against recombinant leptin receptor. One of the scFvs was expressed in Escherichia coli and its interaction with leptin receptor was characterized in more detail. It was found to recognize a discontinuous epitope and to compete with leptin for receptor binding with IC50 and Kd values in the nanomolar range. The reported scFv represents a lead for development of leptin antagonists that may ultimately find use in therapy of various hyperleptinemia-related disorders. Copyright © 2014 Elsevier Inc. All rights reserved.
Lockyer, Anne E; Noble, Leslie R; Rollinson, David; Jones, Catherine S
2004-01-01
The freshwater tropical snail Biomphalaria glabrata is an intermediate host for Schistosoma mansoni, the causative agent of human intestinal schistosomiasis, and strains differ in their susceptibility to parasite infection. Changes in gene expression in response to parasite infection have been simultaneously examined in a susceptible strain (NHM1742) and a resistant strain (NHM1981) using a newly developed fluorescent-based differential display method. Such RNA profiling techniques allow the examination of changes in gene expression in response to parasite infection, without requiring previous sequence knowledge, or selecting candidate genes that may be involved in the complex neuroendocrine or defence systems of the snail. Thus, novel genes may be identified. Ten transcripts were initially identified, present only in the profiles derived from snails of the resistant strain when exposed to infection. The differential expression of five of these genes, including HSP70 and several novel transcripts with one containing at least two globin-like domains, has been confirmed by semi-quantitative RT-PCR.
Weidmann, Alyson G; Barton, Jacqueline K
2015-10-05
We report the synthesis and characterization of a bimetallic complex derived from a new family of potent and selective metalloinsertors containing an unusual Rh-O axial coordination. This complex incorporates a monofunctional platinum center containing only one labile site for coordination to DNA, rather than two, and coordinates DNA nonclassically through adduct formation in the minor groove. This conjugate displays bifunctional, interdependent binding of mismatched DNA via metalloinsertion at a mismatch as well as covalent platinum binding. DNA sequencing experiments revealed that the preferred site of platinum coordination is not the traditional N7-guanine site in the major groove, but rather N3-adenine in the minor groove. The complex also displays enhanced cytotoxicity in mismatch repair-deficient and mismatch repair-proficient human colorectal carcinoma cell lines compared to the chemotherapeutic cisplatin, and it triggers cell death via an apoptotic pathway, rather than the necrotic pathway induced by rhodium metalloinsertors.
Human factors considerations for the use of color in display systems
NASA Technical Reports Server (NTRS)
Demars, S. A.
1975-01-01
Identified and assessed are those human factor considerations impacting an operator's ability to perform when information is displayed in color as contrasted to monochrome (black and white only). The findings provide valuable guidelines for the assessment of the advantages (and disadvantages) of using a color display system. The use of color provides an additional sensory channel (color perception) which is not available with black and white. The degree to which one can exploit the use of this channel is highly dependent on available display technology, mission information display requirements, and acceptable operational modes.
Guanidinium-based derivatives: searching for new kinase inhibitors.
Diez-Cecilia, Elena; Kelly, Brendan; Perez, Concepcion; Zisterer, Daniela M; Nevin, Daniel K; Lloyd, David G; Rozas, Isabel
2014-06-23
Considering the structural similarities between the kinase inhibitor sorafenib and 4,4'-bis-guanidinium derivatives previously prepared by Rozas and co., which display interesting cytotoxicity in cancer cells, we have studied whether this activity could result from kinase inhibition. Five new families have been prepared consisting of unsubstituted and aryl-substituted 3,4'-bis-guanidiniums, 3,4'-bis-2-aminoimidazolinium and 3-acetamide-4'-(4-chloro-3-trifluoromethylphenyl)guanidinium derivatives. Cytotoxicity (measuring the IC50 values) and apoptosis studies in human HL-60 promyelocytic leukemia cells were carried out for these compounds. Additionally, their potential inhibitory effect was explored on a panel of kinases known to be involved in apoptotic pathways. The previously prepared cytotoxic 4,4'-bis-guanidiniums did not inhibit any of these kinases; however, some of the novel 3,4'-substituted derivatives showed a high percentage inhibition of RAF-1/MEK-1, for which the potential mode of binding was evaluated by docking studies. The interesting antitumour properties showed by these compounds open up new exciting lines of investigation for kinase inhibitors as anticancer agents and also highlights the relevance of the guanidinium moiety for protein kinase inhibitors chemical design. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Defining the Genomic Signature of Totipotency and Pluripotency during Early Human Development
Galan, Amparo; Diaz-Gimeno, Patricia; Poo, Maria Eugenia; Valbuena, Diana; Sanchez, Eva; Ruiz, Veronica; Dopazo, Joaquin; Montaner, David; Conesa, Ana; Simon, Carlos
2013-01-01
The genetic mechanisms governing human pre-implantation embryo development and the in vitro counterparts, human embryonic stem cells (hESCs), still remain incomplete. Previous global genome studies demonstrated that totipotent blastomeres from day-3 human embryos and pluripotent inner cell masses (ICMs) from blastocysts, display unique and differing transcriptomes. Nevertheless, comparative gene expression analysis has revealed that no significant differences exist between hESCs derived from blastomeres versus those obtained from ICMs, suggesting that pluripotent hESCs involve a new developmental progression. To understand early human stages evolution, we developed an undifferentiation network signature (UNS) and applied it to a differential gene expression profile between single blastomeres from day-3 embryos, ICMs and hESCs. This allowed us to establish a unique signature composed of highly interconnected genes characteristic of totipotency (61 genes), in vivo pluripotency (20 genes), and in vitro pluripotency (107 genes), and which are also proprietary according to functional analysis. This systems biology approach has led to an improved understanding of the molecular and signaling processes governing human pre-implantation embryo development, as well as enabling us to comprehend how hESCs might adapt to in vitro culture conditions. PMID:23614026
A cellular star atlas: using astrocytes from human pluripotent stem cells for disease studies
Krencik, Robert; Ullian, Erik M.
2013-01-01
What roles do astrocytes play in human disease?This question remains unanswered for nearly every human neurological disorder. Yet, because of their abundance and complexity astrocytes can impact neurological function in many ways. The differentiation of human pluripotent stem cells (hPSCs) into neuronal and glial subtypes, including astrocytes, is becoming routine, thus their use as tools for modeling neurodevelopment and disease will provide one important approach to answer this question. When designing experiments, careful consideration must be given to choosing paradigms for differentiation, maturation, and functional analysis of these temporally asynchronous cellular populations in culture. In the case of astrocytes, they display heterogeneous characteristics depending upon species of origin, brain region, developmental stage, environmental factors, and disease states, all of which may render experimental results highly variable. In this review, challenges and future directions are discussed for using hPSC-derived astroglial progenitors and mature astrocytes for neurodevelopmental studies with a focus on exploring human astrocyte effects upon neuronal function. As new technologies emerge to measure the functions of astrocytes in vitro and in vivo, there is also a need for a standardized source of human astrocytes that are most relevant to the diseases of interest. PMID:23503583
Synthesis and antitumor activity of quinonoid derivatives of cannabinoids.
Kogan, Natalya M; Rabinowitz, Ruth; Levi, Paloma; Gibson, Dan; Sandor, Peter; Schlesinger, Michael; Mechoulam, Raphael
2004-07-15
Three cannabis constituents, cannabidiol (1), Delta(8)-tetrahydrocannabinol (3), and cannabinol (5), were oxidized to their respective para-quinones 2, 4, and 6. In the 1960s, the oxidized product 4 had been assigned a para-quinone structure, which was later modified to an ortho-quinone. To distinguish between the two possible quinone structures, a detailed NMR investigation was undertaken. The original para-quinone structure was confirmed. X-ray crystallography elucidated the structures of the crystalline 2 and 6. All three compounds displayed antiproliferative activity in several human cancer cell lines in vitro, and quinone 2 significantly reduced cancer growth of HT-29 cancer in nude mice.
Ghorab, Mostafa M; Ragab, Fatma A; Heiba, Helmy I; Agha, Hebaallah M; Nissan, Yassin M
2012-01-01
A series of novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl) benzene-sulfonamides were synthesized and screened for their cytotoxic activity against human breast cancer cell line (MCF-7). Compounds 6, 7, 9, 10, 11, and 14 displayed significant activity against MCF-7 when compared to doxorubicin, which was used as a reference drug. The synergistic effect of Gamma radiation for the most active derivatives 7, 9, and 11 was also studied and their IC(50) values markedly decreased to 11.9 μM, 11.7 μM, and 11.6 μM, respectively.
2-Heteroarylidene-1-indanone derivatives as inhibitors of monoamine oxidase.
Nel, Magdalena S; Petzer, Anél; Petzer, Jacobus P; Legoabe, Lesetja J
2016-12-01
In the present study a series of fifteen 2-heteroarylidene-1-indanone derivatives were synthesised and evaluated as inhibitors of recombinant human monoamine oxidase (MAO) A and B. These compounds are structurally related to series of heterocyclic chalcone derivatives which have previously been shown to act as MAO-B specific inhibitors. The results document that the 2-heteroarylidene-1-indanones are in vitro inhibitors of MAO-B, displaying IC 50 values of 0.0044-1.53μM. Although with lower potencies, the derivatives also inhibit the MAO-A isoform with IC 50 values as low as 0.061μM. An analysis of the structure-activity relationships for MAO-B inhibition indicates that substitution with the methoxy group on the A-ring leads to a significant enhancement in MAO-B inhibition compared to the unsubstituted homologues while the effect of the heteroaromatic substituent on activity, in decreasing order is: 5-bromo-2-furan>5-methyl-2-furan>2-pyridine≈2-thiophene>cyclohexyl>3-pyridine≈2-furan. It may therefore be concluded that 2-heteroarylidene-1-indanone derivatives are promising leads for the design of MAO inhibitors for the treatment of Parkinson's disease and possibly other neurodegenerative disorders. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhao, Dong-Lin; Wang, Dan; Tian, Xue-Ying; Cao, Fei; Li, Yi-Qiang; Zhang, Cheng-Sheng
2018-01-01
Thirty-one isolates belonging to eight genera in seven orders were identified from 141 strains that were isolated from several marine plants. Alternaria sp. and Fusarium sp. were found to be the predominant fungi. Evaluation of the anti-phytopathogenic bacterial and fungal activities, as well as the cytotoxicity of these 31 extracts, revealed that most of them displayed different levels of bioactivities. Due to their interesting bioactivities, two fungal strains—Fusarium equiseti (P18) and Alternaria sp. (P8)—were selected for chemical investigation and compounds 1–4 were obtained. The structure of 1 was elucidated by 1D and 2D NMR analysis, as well as high-resolution electrospray ionization mass spectroscopy (HRESIMS), and the absolute configuration of its stereogenic carbon (C-11) was established by comparison of the experimental and calculated electronic circular-dichroism (ECD) spectra. Moreover, alterperylenol (4) exhibited antibacterial activity against Clavibacter michiganensis with a minimum inhibitory concentration (MIC) of 1.95 μg/mL, which was 2-fold stronger than that of streptomycin sulfate. Additionally, an antibacterial mechanism study revealed that 4 caused membrane hyperpolarization without evidence of destruction of cell membrane integrity. Furthermore, stemphyperylenol (3) displayed potent antifungal activity against Pestallozzia theae and Alternaria brassicicola with MIC values equal to those of carbendazim. The cytotoxicity of 1 and 2 against human lung carcinoma (A-549), human cervical carcinoma (HeLa), and human hepatoma (HepG2) cell lines were also evaluated. PMID:29346329
Waltari, Eric; Jia, Manxue; Jiang, Caroline S; Lu, Hong; Huang, Jing; Fernandez, Cristina; Finzi, Andrés; Kaufmann, Daniel E; Markowitz, Martin; Tsuji, Moriya; Wu, Xueling
2018-01-01
Using 5' rapid amplification of cDNA ends, Illumina MiSeq, and basic flow cytometry, we systematically analyzed the expressed B cell receptor (BCR) repertoire in 14 healthy adult PBMCs, 5 HIV-1+ adult PBMCs, 5 cord blood samples, and 3 HIS-CD4/B mice, examining the full-length variable region of μ, γ, α, κ, and λ chains for V-gene usage, somatic hypermutation (SHM), and CDR3 length. Adding to the known repertoire of healthy adults, Illumina MiSeq consistently detected small fractions of reads with high mutation frequencies including hypermutated μ reads, and reads with long CDR3s. Additionally, the less studied IgA repertoire displayed similar characteristics to that of IgG. Compared to healthy adults, the five HIV-1 chronically infected adults displayed elevated mutation frequencies for all μ, γ, α, κ, and λ chains examined and slightly longer CDR3 lengths for γ, α, and λ. To evaluate the reconstituted human BCR sequences in a humanized mouse model, we analyzed cord blood and HIS-CD4/B mice, which all lacked the typical SHM seen in the adult reference. Furthermore, MiSeq revealed identical unmutated IgM sequences derived from separate cell aliquots, thus for the first time demonstrating rare clonal members of unmutated IgM B cells by sequencing.
Human neural crest cells display molecular and phenotypic hallmarks of stem cells
Thomas, Sophie; Thomas, Marie; Wincker, Patrick; Babarit, Candice; Xu, Puting; Speer, Marcy C.; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Etchevers, Heather C.
2008-01-01
The fields of both developmental and stem cell biology explore how functionally distinct cell types arise from a self-renewing founder population. Multipotent, proliferative human neural crest cells (hNCC) develop toward the end of the first month of pregnancy. It is assumed that most differentiate after migrating throughout the organism, although in animal models neural crest stem cells reportedly persist in postnatal tissues. Molecular pathways leading over time from an invasive mesenchyme to differentiated progeny such as the dorsal root ganglion, the maxillary bone or the adrenal medulla are altered in many congenital diseases. To identify additional components of such pathways, we derived and maintained self-renewing hNCC lines from pharyngulas. We show that, unlike their animal counterparts, hNCC are able to self-renew ex vivo under feeder-free conditions. While cross species comparisons showed extensive overlap between human, mouse and avian NCC transcriptomes, some molecular cascades are only active in the human cells, correlating with phenotypic differences. Furthermore, we found that the global hNCC molecular profile is highly similar to that of pluripotent embryonic stem cells when compared with other stem cell populations or hNCC derivatives. The pluripotency markers NANOG, POU5F1 and SOX2 are also expressed by hNCC, and a small subset of transcripts can unambiguously identify hNCC among other cell types. The hNCC molecular profile is thus both unique and globally characteristic of uncommitted stem cells. PMID:18689800
Smith, Eric L; Staehr, Mette; Masakayan, Reed; Tatake, Ishan J; Purdon, Terence J; Wang, Xiuyan; Wang, Pei; Liu, Hong; Xu, Yiyang; Garrett-Thomson, Sarah C; Almo, Steven C; Riviere, Isabelle; Liu, Cheng; Brentjens, Renier J
2018-06-06
B cell maturation antigen (BCMA) has recently been identified as an important multiple myeloma (MM)-specific target for chimeric antigen receptor (CAR) T cell therapy. In CAR T cell therapy targeting CD19 for lymphoma, host immune anti-murine CAR responses limited the efficacy of repeat dosing and possibly long-term persistence. This clinically relevant concern can be addressed by generating a CAR incorporating a human single-chain variable fragment (scFv). We screened a human B cell-derived scFv phage display library and identified a panel of BCMA-specific clones from which human CARs were engineered. Despite a narrow range of affinity for BCMA, dramatic differences in CAR T cell expansion were observed between unique scFvs in a repeat antigen stimulation assay. These results were confirmed by screening in a MM xenograft model, where only the top preforming CARs from the repeat antigen stimulation assay eradicated disease and prolonged survival. The results of this screening identified a highly effective CAR T cell therapy with properties, including rapid in vivo expansion (>10,000-fold, day 6), eradication of large tumor burden, and durable protection to tumor re-challenge. We generated a bicistronic construct including a second-generation CAR and a truncated-epithelial growth factor receptor marker. CAR T cell vectors stemming from this work are under clinical investigation. Copyright © 2018 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
de Peppo, Giuseppe Maria; Sladkova, Martina; Sjövall, Peter; Palmquist, Anders; Oudina, Karim; Hyllner, Johan; Thomsen, Peter; Petite, Hervé; Karlsson, Camilla
2013-01-01
Bone tissue engineering represents a promising strategy to obviate bone deficiencies, allowing the ex vivo construction of bone substitutes with unprecedented potential in the clinical practice. Considering that in the human body cells are constantly stimulated by chemical and mechanical stimuli, the use of bioreactor is emerging as an essential factor for providing the proper environment for the reproducible and large-scale production of the engineered substitutes. Human mesenchymal stem cells (hMSCs) are experimentally relevant cells but, regardless the encouraging results reported after culture under dynamic conditions in bioreactors, show important limitations for tissue engineering applications, especially considering their limited proliferative potential, loss of functionality following protracted expansion, and decline in cellular fitness associated with aging. On the other hand, we previously demonstrated that human embryonic stem cell-derived mesodermal progenitors (hES-MPs) hold great potential to provide a homogenous and unlimited source of cells for bone engineering applications. Based on prior scientific evidence using different types of stem cells, in the present study we hypothesized that dynamic culture of hES-MPs in a packed bed/column bioreactor had the potential to affect proliferation, expression of genes involved in osteogenic differentiation, and matrix mineralization, therefore resulting in increased bone-like tissue formation. The reported findings suggest that hES-MPs constitute a suitable alternative cell source to hMSCs and hold great potential for the construction of bone substitutes for tissue engineering applications in clinical settings.
Deng, Jun-peng; Jiang, Ling-zhi; Xiong, Ping; Yang, Bin-jie; Liu, Shan-shan
2015-01-01
A series of novel anthracene L-rhamnopyranosides compounds were designed and synthesized and their anti-proliferative activities on cancer cell lines were investigated. We found that one derivative S-8 (EM-d-Rha) strongly inhibited cell proliferation of a panel of different human cancer cell lines including A549, HepG2, OVCAR-3, HeLa and K562 and SGC-790 cell lines, and displayed IC50 values in low micro-molar ranges, which are ten folds more effective than emodin. In addition, we found EM-d-Rha (3-(2”,3”-Di-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2’,3’-di-O-acetyl-α-L-rhamnopyranosyl)-emodin) substantially induced cellular apoptosis of HepG2 and OVCAR-3 cells in the early growth stage. Furthermore, EM-d-Rha led to the decrease of mitochondrial transmembrane potential, and up-regulated the express of cells apoptosis factors in a concentration- and time-dependent manner. The results indicated the EM-d-Rha may inhibit the growth and proliferation of HepG2 cells through the pathway of apoptosis induction, and the possible molecular mechanism may due to the activation of intrinsic apoptotic signal pathway. PMID:26682731
Lee, Hee Doo; Koo, Bon-Hun; Kim, Yeon Hyang; Jeon, Ok-Hee; Kim, Doo-Sik
2012-07-01
A disintegrin and metalloproteinase 15 (ADAM15), the only ADAM protein containing an Arg-Gly-Asp (RGD) motif in its disintegrin-like domain, is a widely expressed membrane protein that is involved in tumor progression and suppression. However, the underlying mechanism of ADAM15-mediated tumor suppression is not clearly understood. This study demonstrates that ADAM15 is released as an exosomal component, and ADAM15 exosomes exert tumor suppressive activities. We found that exosomal ADAM15 release is stimulated by phorbol 12-myristate 13-acetate, a typical protein kinase C activator, in various tumor cell types, and this results in a corresponding decrease in plasma membrane-associated ADAM15. Exosomes rich in ADAM15 display enhanced binding affinity for integrin αvβ3 in an RGD-dependent manner and suppress vitronectin- and fibronectin-induced cell adhesion, growth, and migration, as well as in vivo tumor growth. Exosomal ADAM15 is released from human macrophages, and macrophage-derived ADAM15 exosomes have tumor inhibitory effects. This work suggests a primary role of ADAM15 for exosome-mediated tumor suppression, as well as functional significance of exosomal ADAM protein in antitumor immunity.
Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
2018-08-01
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.
Wei, Jun; Kitada, Shinichi; Rega, Michele F.; Stebbins, John L.; Zhai, Dayong; Cellitti, Jason; Yuan, Hongbin; Emdadi, Aras; Dahl, Russell; Zhang, Ziming; Yang, Li; Reed, John C.; Pellecchia, Maurizio
2009-01-01
Guided by nuclear magnetic resonance (NMR) binding assays and computational docking studies, a series of 5, 5′ substituted Apogossypol derivatives was synthesized that resulted in potent pan-active inhibitors of anti-apoptotic Bcl-2 family proteins. Compound 8r inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl-1 with IC50 values of 0.76, 0.32, 0.28 and 0.73 μM, respectively. The compound also potently inhibits cell growth of human lung cancer and BP3 human B-cell lymphoma cell lines with EC50 values of 0.33 and 0.66 μM, respectively. Compound 8r shows little cytotoxicity against bax−/−bak−/− cells, indicating that it kills cancers cells via the intented mechanism. The compound also displays in vivo efficacy in transgenic mice in which Bcl-2 is overexpressed in splenic B-cells. Together with its improved chemical, plasma and microsomal stability relative to compound 2 (Apogossypol), compound 8r represents a promising drug lead for the development of novel apoptosis-based therapies for cancer. PMID:19555126
Variations in the formation of the human caudal spinal cord.
Saraga-Babić, M; Sapunar, D; Wartiovaara, J
1995-01-01
Collection of 15 human embryos between 4-8 developmental weeks was used to histologically investigate variations in the development of the caudal part of the spinal cord and the neighboring axial organs (notochord and vertebral column). In the 4-week embryo, two types of neurulation were parallelly observed along the anteroposterior body axis: primary in the areas cranial to the neuroporus caudalis and secondary in the more caudal tail regions. In the 5-week embryos, both parts of the neural tube fused, forming only one continuous lumen in the developing spinal cord. In the three examined embryos we found anomalous pattern of spinal cord formation. Caudal parts of these spinal cords displayed division of their central canal into two or three separate lumina, each surrounded by neuroepithelial layer. In the caudal area of the spinal cord, derived by secondary neurulation, formation of separate lumina was neither connected to any anomalous notochord or vertebral column formation, nor the appearance of any major axial disturbances. We suggest that development of the caudal part of the spinal cord differs from its cranial region not only in the type of neurulation, but also in the destiny of its derivatives and possible modes of abnormality formation.
Electroporation and use of hepatitis B virus envelope L proteins as bionanocapsules.
Yamada, Tadanori; Jung, Joohee; Seno, Masaharu; Kondo, Akihiko; Ueda, Masakazu; Tanizawa, Katsuyuki; Kuroda, Shun'ichi
2012-06-01
Hepatitis B virus (HBV) envelope L proteins, when synthesized in yeast cells, form a hollow bionanocapsule (BNC) in which genes (including large plasmids up to 40 kbp), small interfering RNA (siRNA), drugs, and proteins can be enclosed by electroporation. BNCs made from L proteins have several advantages as a delivery system: Because they display a human liver-specific receptor (the pre-S region of the L protein) on their surface, BNCs can efficiently and specifically deliver their contents to human liver-derived cells and tissues ex vivo (in cell culture) and in vivo (in a mouse xenograft model). Retargeting can be achieved simply by substituting other biorecognition molecules such as antibodies, ligands, receptors, and homing peptides for the pre-S region. In addition, BNCs have already been proven to be safe for use in humans during their development as an immunogen of hepatitis B vaccine. This protocol describes the loading of BNCs and their use in cell culture and in vivo.
Ida, Hirofumi; Fukuhara, Kazunobu; Kusubori, Seiji; Ishii, Motonobu
2011-09-01
Computer graphics of digital human models can be used to display human motions as visual stimuli. This study presents our technique for manipulating human motion with a forward kinematics calculation without violating anatomical constraints. A motion modulation of the upper extremity was conducted by proportionally modulating the anatomical joint angular velocity calculated by motion analysis. The effect of this manipulation was examined in a tennis situation--that is, the receiver's performance of predicting ball direction when viewing a digital model of the server's motion derived by modulating the angular velocities of the forearm or that of the elbow during the forward swing. The results showed that the faster the server's forearm pronated, the more the receiver's anticipation of the ball direction tended to the left side of the serve box. In contrast, the faster the server's elbow extended, the more the receiver's anticipation of the ball direction tended to the right. This suggests that tennis players are sensitive to the motion modulation of their opponent's racket-arm.
Generation of kisspeptin-responsive GnRH neurons from human pluripotent stem cells.
Poliandri, Ariel; Miller, Duncan; Howard, Sasha; Nobles, Muriel; Ruiz-Babot, Gerard; Harmer, Stephen; Tinker, Andrew; McKay, Tristan; Guasti, Leonardo; Dunkel, Leo
2017-05-15
GnRH neurons are fundamental for reproduction in all vertebrates, integrating all reproductive inputs. The inaccessibility of human GnRH-neurons has been a major impediment to studying the central control of reproduction and its disorders. Here, we report the efficient generation of kisspeptin responsive GnRH-secreting neurons by directed differentiation of human Embryonic Stem Cells and induced-Pluripotent Stem Cells derived from a Kallman Syndrome patient and a healthy family member. The protocol involves the generation of intermediate Neural Progenitor Cells (NPCs) through long-term Bone morphogenetic protein 4 inhibition, followed by terminal specification of these NPCs in media containing Fibroblast Growth Factor 8 and a NOTCH inhibitor. The resulting GnRH-expressing and -secreting neurons display a neuroendocrine gene expression pattern and present spontaneous calcium transients that can be stimulated by kisspeptin. These in vitro generated GnRH expressing cells provide a new resource for studying the molecular mechanisms underlying the development and function of GnRH neurons. Copyright © 2017 Elsevier B.V. All rights reserved.
An Efficient Platform for Astrocyte Differentiation from Human Induced Pluripotent Stem Cells.
Tcw, Julia; Wang, Minghui; Pimenova, Anna A; Bowles, Kathryn R; Hartley, Brigham J; Lacin, Emre; Machlovi, Saima I; Abdelaal, Rawan; Karch, Celeste M; Phatnani, Hemali; Slesinger, Paul A; Zhang, Bin; Goate, Alison M; Brennand, Kristen J
2017-08-08
Growing evidence implicates the importance of glia, particularly astrocytes, in neurological and psychiatric diseases. Here, we describe a rapid and robust method for the differentiation of highly pure populations of replicative astrocytes from human induced pluripotent stem cells (hiPSCs), via a neural progenitor cell (NPC) intermediate. We evaluated this protocol across 42 NPC lines (derived from 30 individuals). Transcriptomic analysis demonstrated that hiPSC-astrocytes from four individuals are highly similar to primary human fetal astrocytes and characteristic of a non-reactive state. hiPSC-astrocytes respond to inflammatory stimulants, display phagocytic capacity, and enhance microglial phagocytosis. hiPSC-astrocytes also possess spontaneous calcium transient activity. Our protocol is a reproducible, straightforward (single medium), and rapid (<30 days) method to generate populations of hiPSC-astrocytes that can be used for neuron-astrocyte and microglia-astrocyte co-cultures for the study of neuropsychiatric disorders. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Multi-Function Displays: A Guide for Human Factors Evaluation
2013-11-01
mental workload in rotary wing aircraft . Ergonomics , 36, 1121 - 40. Smith, S., & Mosier, J. (1984). Design guidelines for the user interface for...Monterey Technologies, Inc., except one designated by (*), who is from CAMI. 16. Abstract This guide is designed to assist aircraft ...section. 17. Key Words 18. Distribution Statement Multi-Function Displays, Display Design , Avionics, Human Factors Criteria, Aircraft
Dance choreography is coordinated with song repertoire in a complex avian display.
Dalziell, Anastasia H; Peters, Richard A; Cockburn, Andrew; Dorland, Alexandra D; Maisey, Alex C; Magrath, Robert D
2013-06-17
All human cultures have music and dance, and the two activities are so closely integrated that many languages use just one word to describe both. Recent research points to a deep cognitive connection between music and dance-like movements in humans, fueling speculation that music and dance have coevolved and prompting the need for studies of audiovisual displays in other animals. However, little is known about how nonhuman animals integrate acoustic and movement display components. One striking property of human displays is that performers coordinate dance with music by matching types of dance movements with types of music, as when dancers waltz to waltz music. Here, we show that a bird also temporally coordinates a repertoire of song types with a repertoire of dance-like movements. During displays, male superb lyrebirds (Menura novaehollandiae) sing four different song types, matching each with a unique set of movements and delivering song and dance types in a predictable sequence. Crucially, display movements are both unnecessary for the production of sound and voluntary, because males sometimes sing without dancing. Thus, the coordination of independently produced repertoires of acoustic and movement signals is not a uniquely human trait. Copyright © 2013 Elsevier Ltd. All rights reserved.
Nieto, Concha; Bragado, Rafael; Municio, Cristina; Sierra-Filardi, Elena; Alonso, Bárbara; Escribese, María M; Domínguez-Andrés, Jorge; Ardavín, Carlos; Castrillo, Antonio; Vega, Miguel A; Puig-Kröger, Amaya; Corbí, Angel L
2018-01-01
GM-CSF promotes the functional maturation of lung alveolar macrophages (A-MØ), whose differentiation is dependent on the peroxisome proliferator-activated receptor gamma (PPARγ) transcription factor. In fact, blockade of GM-CSF-initiated signaling or deletion of the PPARγ-encoding gene PPARG leads to functionally defective A-MØ and the onset of pulmonary alveolar proteinosis. In vitro , macrophages generated in the presence of GM-CSF display potent proinflammatory, immunogenic and tumor growth-limiting activities. Since GM-CSF upregulates PPARγ expression, we hypothesized that PPARγ might contribute to the gene signature and functional profile of human GM-CSF-conditioned macrophages. To verify this hypothesis, PPARγ expression and activity was assessed in human monocyte-derived macrophages generated in the presence of GM-CSF [proinflammatory GM-CSF-conditioned human monocyte-derived macrophages (GM-MØ)] or M-CSF (anti-inflammatory M-MØ), as well as in ex vivo isolated human A-MØ. GM-MØ showed higher PPARγ expression than M-MØ, and the expression of PPARγ in GM-MØ was found to largely depend on activin A. Ligand-induced activation of PPARγ also resulted in distinct transcriptional and functional outcomes in GM-MØ and M-MØ. Moreover, and in the absence of exogenous activating ligands, PPARγ knockdown significantly altered the GM-MØ transcriptome, causing a global upregulation of proinflammatory genes and significantly modulating the expression of genes involved in cell proliferation and migration. Similar effects were observed in ex vivo isolated human A-MØ, where PPARγ silencing led to enhanced expression of genes coding for growth factors and chemokines and downregulation of cell surface pathogen receptors. Therefore, PPARγ shapes the transcriptome of GM-CSF-dependent human macrophages ( in vitro derived GM-MØ and ex vivo isolated A-MØ) in the absence of exogenous activating ligands, and its expression is primarily regulated by activin A. These results suggest that activin A, through enhancement of PPARγ expression, help macrophages to switch from a proinflammatory to an anti-inflammatory polarization state, thus contributing to limit tissue damage and restore homeostasis.
Three-dimensional virtual acoustic displays
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.
1991-01-01
The development of an alternative medium for displaying information in complex human-machine interfaces is described. The 3-D virtual acoustic display is a means for accurately transferring information to a human operator using the auditory modality; it combines directional and semantic characteristics to form naturalistic representations of dynamic objects and events in remotely sensed or simulated environments. Although the technology can stand alone, it is envisioned as a component of a larger multisensory environment and will no doubt find its greatest utility in that context. The general philosophy in the design of the display has been that the development of advanced computer interfaces should be driven first by an understanding of human perceptual requirements, and later by technological capabilities or constraints. In expanding on this view, current and potential uses are addressed of virtual acoustic displays, such displays are characterized, and recent approaches to their implementation and application are reviewed, the research project at NASA-Ames is described in detail, and finally some critical research issues for the future are outlined.
Upgrading the Space Shuttle Caution and Warning System
NASA Technical Reports Server (NTRS)
McCandless, Jeffrey W.; McCann, Robert S.; Hilty, Bruce T.
2005-01-01
A report describes the history and the continuing evolution of an avionic system aboard the space shuttle, denoted the caution and warning system, that generates visual and auditory displays to alert astronauts to malfunctions. The report focuses mainly on planned human-factors-oriented upgrades of an alphanumeric fault-summary display generated by the system. Such upgrades are needed because the display often becomes cluttered with extraneous messages that contribute to the difficulty of diagnosing malfunctions. In the first of two planned upgrades, the fault-summary display will be rebuilt with a more logical task-oriented graphical layout and multiple text fields for malfunction messages. In the second upgrade, information displayed will be changed, such that text fields will indicate only the sources (that is, root causes) of malfunctions; messages that are not operationally useful will no longer appear on the displays. These and other aspects of the upgrades are based on extensive collaboration among astronauts, engineers, and human-factors scientists. The report describes the human-factors principles applied in the upgrades.
A mathematical model of the human metabolic system and metabolic flexibility.
Pearson, T; Wattis, J A D; King, J R; MacDonald, I A; Mazzatti, D J
2014-09-01
In healthy subjects some tissues in the human body display metabolic flexibility, by this we mean the ability for the tissue to switch its fuel source between predominantly carbohydrates in the postprandial state and predominantly fats in the fasted state. Many of the pathways involved with human metabolism are controlled by insulin and insulin-resistant states such as obesity and type-2 diabetes are characterised by a loss or impairment of metabolic flexibility. In this paper we derive a system of 12 first-order coupled differential equations that describe the transport between and storage in different tissues of the human body. We find steady state solutions to these equations and use these results to nondimensionalise the model. We then solve the model numerically to simulate a healthy balanced meal and a high fat meal and we discuss and compare these results. Our numerical results show good agreement with experimental data where we have data available to us and the results show behaviour that agrees with intuition where we currently have no data with which to compare.
NASA Astrophysics Data System (ADS)
Huang, Weiwei; Wang, Shijie; Yao, Yufeng; Xia, Ye; Yang, Xu; Li, Kui; Sun, Pengyan; Liu, Cunbao; Sun, Wenjia; Bai, Hongmei; Chu, Xiaojie; Li, Yang; Ma, Yanbing
2016-11-01
Outer membrane vesicles (OMVs) have proven to be highly immunogenic and induced an immune response against bacterial infection in human clinics and animal models. We sought to investigate whether engineered OMVs can be a feasible antigen-delivery platform for efficiently inducing specific antibody responses. In this study, Omp22 (an outer membrane protein of A. baumannii) was displayed on E. coli DH5α-derived OMVs (Omp22-OMVs) using recombinant gene technology. The morphological features of Omp22-OMVs were similar to those of wild-type OMVs (wtOMVs). Immunization with Omp22-OMVs induced high titers of Omp22-specific antibodies. In a murine sepsis model, Omp22-OMV immunization significantly protected mice from lethal challenge with a clinically isolated A. baumannii strain, which was evidenced by the increased survival rate of the mice, the reduced bacterial burdens in the lung, spleen, liver, kidney, and blood, and the suppressed serum levels of inflammatory cytokines. In vitro opsonophagocytosis assays showed that antiserum collected from Omp22-OMV-immunized mice had bactericidal activity against clinical isolates, which was partly specific antibody-dependent. These results strongly indicated that engineered OMVs could display a whole heterologous protein (~22 kDa) on the surface and effectively induce specific antibody responses, and thus OMVs have the potential to be a feasible vaccine platform.
Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu
2017-01-27
The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
Spatial Analysis of “Crazy Quilts”, a Class of Potentially Random Aesthetic Artefacts
Westphal-Fitch, Gesche; Fitch, W. Tecumseh
2013-01-01
Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. “Crazy quilts” represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures. PMID:24066095
Spatial analysis of "crazy quilts", a class of potentially random aesthetic artefacts.
Westphal-Fitch, Gesche; Fitch, W Tecumseh
2013-01-01
Human artefacts in general are highly structured and often display ordering principles such as translational, reflectional or rotational symmetry. In contrast, human artefacts that are intended to appear random and non symmetrical are very rare. Furthermore, many studies show that humans find it extremely difficult to recognize or reproduce truly random patterns or sequences. Here, we attempt to model two-dimensional decorative spatial patterns produced by humans that show no obvious order. "Crazy quilts" represent a historically important style of quilt making that became popular in the 1870s, and lasted about 50 years. Crazy quilts are unusual because unlike most human artefacts, they are specifically intended to appear haphazard and unstructured. We evaluate the degree to which this intention was achieved by using statistical techniques of spatial point pattern analysis to compare crazy quilts with regular quilts from the same region and era and to evaluate the fit of various random distributions to these two quilt classes. We found that the two quilt categories exhibit fundamentally different spatial characteristics: The patch areas of crazy quilts derive from a continuous random distribution, while area distributions of regular quilts consist of Gaussian mixtures. These Gaussian mixtures derive from regular pattern motifs that are repeated and we suggest that such a mixture is a distinctive signature of human-made visual patterns. In contrast, the distribution found in crazy quilts is shared with many other naturally occurring spatial patterns. Centroids of patches in the two quilt classes are spaced differently and in general, crazy quilts but not regular quilts are well-fitted by a random Strauss process. These results indicate that, within the constraints of the quilt format, Victorian quilters indeed achieved their goal of generating random structures.
Plant-derived virus-like particles as vaccines
Chen, Qiang; Lai, Huafang
2013-01-01
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of “humanized” glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future. PMID:22995837
Hui, Chang-Ye; Guo, Yan; Yang, Xue-Qin; Zhang, Wen; Huang, Xian-Qing
2018-05-01
To improve the Pb 2+ biosorption capacity of the potential E. coli biosorbent, a putative Pb 2+ binding domain (PbBD) derived from PbrR was efficiently displayed on to the E. coli cell surface. The PbBD was obtained by truncating the N-terminal DNA-binding domain and C-terminal redundant amino acid residues of the Pb 2+ -sensing transcriptional factor PbrR. Whole-cell sorbents were constructed with the full-length PbrR and PbBD of PbrR genetically engineered onto the surface of E. coli cells using Lpp-OmpA as the anchor. Followed by a 1.71-fold higher display of PbBD than PbrR, the presence of PbBD on the surface of E. coli cells enabled a 1.92-fold higher Pb 2+ biosorption than that found in PbrR-displayed cells. Specific Pb 2+ binding via PbBD was the same as Pb 2+ binding via the full-length PbrR, with no observable decline even in the presence of Zn 2+ and Cd 2+ . Since surface-engineered E. coli cells with PbBD increased the Pb 2+ binding capacity and did not affect the adsorption selectivity, this suggests that surface display of the metal binding domain derived from MerR-like proteins may be used for the bioremediation of specific toxic heavy metals.
Palm, Thomas; Bolognin, Silvia; Meiser, Johannes; Nickels, Sarah; Träger, Claudia; Meilenbrock, Ralf-Leslie; Brockhaus, Johannes; Schreitmüller, Miriam; Missler, Markus; Schwamborn, Jens Christian
2015-11-06
Induced pluripotent stem cell bear the potential to differentiate into any desired cell type and hold large promise for disease-in-a-dish cell-modeling approaches. With the latest advances in the field of reprogramming technology, the generation of patient-specific cells has become a standard technology. However, directed and homogenous differentiation of human pluripotent stem cells into desired specific cell types remains an experimental challenge. Here, we report the development of a novel hiPSCs-based protocol enabling the generation of expandable homogenous human neural stem cells (hNSCs) that can be maintained under self-renewing conditions over high passage numbers. Our newly generated hNSCs retained differentiation potential as evidenced by the reliable generation of mature astrocytes that display typical properties as glutamate up-take and expression of aquaporin-4. The hNSC-derived astrocytes showed high activity of pyruvate carboxylase as assessed by stable isotope assisted metabolic profiling. Moreover, using a cell transplantation approach, we showed that grafted hNSCs were not only able to survive but also to differentiate into astroglial in vivo. Engraftments of pluripotent stem cells derived from somatic cells carry an inherent tumor formation potential. Our results demonstrate that hNSCs with self-renewing and differentiation potential may provide a safer alternative strategy, with promising applications especially for neurodegenerative disorders.
Paul, Mithun; Sarkar, Koushik; Deb, Jolly; Dastidar, Parthasarathi
2017-04-27
Increased levels of intracellular prostaglandin E 2 (PGE 2 ) have been linked with the unregulated cancer cell migration that often leads to metastasis. Non-steroidal anti-inflammatory drugs (NSAIDs) are known inhibitors of cyclooxygenase (COX) enzymes, which are responsible for the increased PGE 2 concentration in inflamed as well as cancer cells. Here, we demonstrate that NSAID-derived Zn II -based coordination polymers are able to inhibit cell migration of human breast cancer cells. Various NSAIDs were anchored to a series of 1D Zn II coordination polymers through carboxylate-Zn coordination, and these structures were fully characterized by single-crystal X-ray diffraction. Hand grinding in a pestle and mortar resulted in the first reported example of nanoscale coordination polymers that were suitable for biological studies. Two such hand-ground nanoscale coordination polymers NCP1 a and NCP2 a, which contained naproxen (a well-studied NSAID), were successfully internalized by the human breast cancer cells MDA-MB-231, as was evident from cellular imaging by using a fluorescence microscope. They were able to kill the cancer cells (MTT assay) more efficiently than the corresponding mother drug naproxen, and most importantly, they significantly inhibited cancer cell migration thereby displaying anticancer activity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loss of the Na+/H+ exchanger NHE8 causes male infertility in mice by disrupting acrosome formation.
Oberheide, Karina; Puchkov, Dmytro; Jentsch, Thomas J
2017-06-30
Mammalian sperm feature a specialized secretory organelle on the anterior part of the sperm nucleus, the acrosome, which is essential for male fertility. It is formed by a fusion of Golgi-derived vesicles. We show here that the predominantly Golgi-resident Na + /H + exchanger NHE8 localizes to the developing acrosome of spermatids. Similar to wild-type mice, Nhe8 -/- mice generated Golgi-derived vesicles positive for acrosomal markers and attached to nuclei, but these vesicles failed to form large acrosomal granules and the acrosomal cap. Spermatozoa from Nhe8 -/- mice completely lacked acrosomes, were round-headed, exhibited abnormal mitochondrial distribution, and displayed decreased motility, resulting in selective male infertility. Of note, similar features are also found in globozoospermia, one of the causes of male infertility in humans. Germ cell-specific, but not Sertoli cell-specific Nhe8 disruption recapitulated the globozoospermia phenotype, demonstrating that NHE8's role in spermiogenesis is germ cell-intrinsic. Our work has uncovered a crucial role of NHE8 in acrosome biogenesis and suggests that some forms of human globozoospermia might be caused by a loss of function of this Na + /H + exchanger. It points to NHE8 as a candidate gene for human globozoospermia and a possible drug target for male contraception. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
NASA Technical Reports Server (NTRS)
Kim, Won S.; Tendick, Frank; Stark, Lawrence
1989-01-01
A teleoperation simulator was constructed with vector display system, joysticks, and a simulated cylindrical manipulator, in order to quantitatively evaluate various display conditions. The first of two experiments conducted investigated the effects of perspective parameter variations on human operators' pick-and-place performance, using a monoscopic perspective display. The second experiment involved visual enhancements of the monoscopic perspective display, by adding a grid and reference lines, by comparison with visual enhancements of a stereoscopic display; results indicate that stereoscopy generally permits superior pick-and-place performance, but that monoscopy nevertheless allows equivalent performance when defined with appropriate perspective parameter values and adequate visual enhancements.
Human factors of intelligent computer aided display design
NASA Technical Reports Server (NTRS)
Hunt, R. M.
1985-01-01
Design concepts for a decision support system being studied at NASA Langley as an aid to visual display unit (VDU) designers are described. Ideally, human factors should be taken into account by VDU designers. In reality, although the human factors database on VDUs is small, such systems must be constantly developed. Human factors are therefore a secondary consideration. An expert system will thus serve mainly in an advisory capacity. Functions can include facilitating the design process by shortening the time to generate and alter drawings, enhancing the capability of breaking design requirements down into simpler functions, and providing visual displays equivalent to the final product. The VDU system could also discriminate, and display the difference, between designer decisions and machine inferences. The system could also aid in analyzing the effects of designer choices on future options and in ennunciating when there are data available on a design selections.
Brune, Karl D; Buldun, Can M; Li, Yuanyuan; Taylor, Iona J; Brod, Florian; Biswas, Sumi; Howarth, Mark
2017-05-17
Engineering modular platforms to control biomolecular architecture can advance both the understanding and the manipulation of biological systems. Icosahedral particles uniformly displaying single antigens stimulate potent immune activation and have been successful in various licensed vaccines. However, it remains challenging to display multiple antigens on a single particle and to induce broader immunity protective across strains or even against distinct diseases. Here, we design a dually addressable synthetic nanoparticle by engineering the multimerizing coiled-coil IMX313 and two orthogonally reactive split proteins. SpyCatcher protein forms an isopeptide bond with SpyTag peptide through spontaneous amidation. SnoopCatcher forms an isopeptide bond with SnoopTag peptide through transamidation. SpyCatcher-IMX-SnoopCatcher provides a modular platform, whereby SpyTag-antigen and SnoopTag-antigen can be multimerized on opposite faces of the particle simply upon mixing. We demonstrate efficient derivatization of the platform with model proteins and complex pathogen-derived antigens. SpyCatcher-IMX-SnoopCatcher was expressed in Escherichia coli and was resilient to lyophilization or extreme temperatures. For the next generation of malaria vaccines, blocking the transmission of the parasite from human to mosquito is an important goal. SpyCatcher-IMX-SnoopCatcher multimerization of the leading transmission-blocking antigens Pfs25 and Pfs28 greatly enhanced the antibody response to both antigens in comparison to the monomeric proteins. This dual plug-and-display architecture should help to accelerate vaccine development for malaria and other diseases.
Early dissemination seeds metastasis in breast cancer
Hosseini, Hedayatollah; Obradović, Milan M.S.; Hoffmann, Martin; Harper, Kathryn; Sosa, Maria Soledad; Werner-Klein, Melanie; Nanduri, Lahiri Kanth; Werno, Christian; Ehrl, Carolin; Maneck, Matthias; Patwary, Nina; Haunschild, Gundula; Gužvić, Miodrag; Reimelt, Christian; Grauvogl, Michael; Eichner, Norbert; Weber, Florian; Hartkopf, Andreas; Taran, Florin-Andrei; Brucker, Sara Y.; Fehm, Tanja; Rack, Brigitte; Buchholz, Stefan; Spang, Rainer; Meister, Gunter; Aguirre-Ghiso, Julio A.; Klein, Christoph A.
2016-01-01
Accumulating data suggest that metastatic dissemination often occurs early during tumour formation but the mechanisms of early metastatic spread have not yet been addressed. Here, we studied metastasis in a HER2-driven mouse breast cancer model and found that progesterone-induced signalling triggered migration of cancer cells from early lesions shortly after HER2 activation, but promoted proliferation in advanced primary tumour cells. The switch from migration to proliferation was regulated by elevated HER2 expression and increased tumour cell density involving miRNA-mediated progesterone receptor (PGR) down-regulation and was reversible. Cells from early, low-density lesions displayed more stemness features than cells from dense, advanced tumours, migrated more and founded more metastases. Strikingly, we found that at least 80% of metastases were derived from early disseminated cancer cells (DCC). Karyotypic and phenotypic analysis of human disseminated cancer cells and primary tumours corroborated the relevance of these findings for human metastatic dissemination. PMID:27974799
Isolation of human simple repeat loci by hybridization selection.
Armour, J A; Neumann, R; Gobert, S; Jeffreys, A J
1994-04-01
We have isolated short tandem repeat arrays from the human genome, using a rapid method involving filter hybridization to enrich for tri- or tetranucleotide tandem repeats. About 30% of clones from the enriched library cross-hybridize with probes containing trimeric or tetrameric tandem arrays, facilitating the rapid isolation of large numbers of clones. In an initial analysis of 54 clones, 46 different tandem arrays were identified. Analysis of these tandem repeat loci by PCR showed that 24 were polymorphic in length; substantially higher levels of polymorphism were displayed by the tetrameric repeat loci isolated than by the trimeric repeats. Primary mapping of these loci by linkage analysis showed that they derive from 17 chromosomes, including the X chromosome. We anticipate the use of this strategy for the efficient isolation of tandem repeats from other sources of genomic DNA, including DNA from flow-sorted chromosomes, and from other species.
Role of adipose tissue-derived stem cells in the progression of renal disease.
Donizetti-Oliveira, Cassiano; Semedo, Patricia; Burgos-Silva, Marina; Cenedeze, Marco Antonio; Malheiros, Denise Maria Avancini Costa; Reis, Marlene Antônia Dos; Pacheco-Silva, Alvaro; Câmara, Niels Olsen Saraiva
2011-03-01
To analyze the role of adipose tissue-derived stem cells in reducing the progression of renal fibrosis. adipose tissue-derived stem cells were isolated from C57Bl/6 mice and characterized by cytometry and differentiation. Renal fibrosis was established after unilateral clamping of the renal pedicle for 1 hour. Four hours after reperfusion, 2.105 adipose tissue-derived stem cells were administered intraperitoneally and the animals were followed for 24 hours during 6 weeks. In another experimental group, 2.105adipose tissue-derived stem cells were administered only after 6 weeks of reperfusion, and they were euthanized and studied 4 weeks later. Twenty-four hours after reperfusion, the animals treated with adipose tissue-derived stem cells displayed reduced renal and tubular dysfunction and an increase of the regenerative process. Renal expression of IL-6 and TNF mRNA were decreased in the animals treated with adipose tissue-derived stem cells, while the levels of IL-4, IL-10, and HO-1 were increased, despite the fact that adipose tissue-derived stem cells were not observed in the kidneys via SRY analysis. In 6 weeks, the kidneys of non-treated animals decreased in size, and the kidneys of the animals treated with adipose tissue-derived stem cells remained at normal size and display less deposition of type 1 collagen and FSP-1. The renal protection observed in animals treated with adipose tissue-derived stem cells was followed by a drop in serum levels of TNF-α, KC, RANTES, and IL-1a. Treatment with adipose tissue-derived stem cells after 6 weeks, when the animals already displayed established fibrosis, demonstrated an improvement in functional parameters and less fibrosis analyzed by Picrosirius stain, as well as a reduction of the expression of type 1 collagen and vimentin mRNA. Treatment with adipose tissue-derived stem cells may deter the progression of renal fibrosis by modulation of the early inflammatory response, likely via reduction of the epithelial-mesenchymal transition.
Diverging biological roles among human monocyte subsets in the context of tuberculosis infection.
Balboa, Luciana; Barrios-Payan, Jorge; González-Domínguez, Erika; Lastrucci, Claire; Lugo-Villarino, Geanncarlo; Mata-Espinoza, Dulce; Schierloh, Pablo; Kviatcovsky, Denise; Neyrolles, Olivier; Maridonneau-Parini, Isabelle; Sánchez-Torres, Carmen; Sasiain, María del Carmen; Hernández-Pando, Rogelio
2015-08-01
Circulating monocytes (Mo) play an essential role in the host immune response to chronic infections. We previously demonstrated that CD16(pos) Mo were expanded in TB (tuberculosis) patients, correlated with disease severity and were refractory to dendritic cell differentiation. In the present study, we investigated whether human Mo subsets (CD16(neg) and CD16(pos)) differed in their ability to influence the early inflammatory response against Mycobacterium tuberculosis. We first evaluated the capacity of the Mo subsets to migrate and engage a microbicidal response in vitro. Accordingly, CD16(neg) Mo were more prone to migrate in response to different mycobacteria-derived gradients, were more resistant to M. tuberculosis intracellular growth and produced higher reactive oxygen species than their CD16(pos) counterpart. To assess further the functional dichotomy among the human Mo subsets, we carried out an in vivo analysis by adapting a hybrid mouse model (SCID/Beige, where SCID is severe combined immunodeficient) to transfer each Mo subset, track their migratory fate during M. tuberculosis infection, and determine their impact on the host immune response. In M. tuberculosis-infected mice, the adoptively transferred CD16(neg) Mo displayed a higher lung migration index, induced a stronger pulmonary infiltration of murine leucocytes expressing pro- and anti-inflammatory cytokines, and significantly decreased the bacterial burden, in comparison with CD16(pos) Mo. Collectively, our results indicate that human Mo subsets display divergent biological roles in the context of M. tuberculosis infection, a scenario in which CD16(neg) Mo may contribute to the anti-mycobacterial immune response, whereas CD16(pos) Mo might promote microbial resilience, shedding light on a key aspect of the physiopathology of TB disease.
Grimm, Dirk; Lee, Joyce S.; Wang, Lora; Desai, Tushar; Akache, Bassel; Storm, Theresa A.; Kay, Mark A.
2008-01-01
Adeno-associated virus (AAV) serotypes differ broadly in transduction efficacies and tissue tropisms and thus hold enormous potential as vectors for human gene therapy. In reality, however, their use in patients is restricted by prevalent anti-AAV immunity or by their inadequate performance in specific targets, exemplified by the AAV type 2 (AAV-2) prototype in the liver. Here, we attempted to merge desirable qualities of multiple natural AAV isolates by an adapted DNA family shuffling technology to create a complex library of hybrid capsids from eight different wild-type viruses. Selection on primary or transformed human hepatocytes yielded pools of hybrids from five of the starting serotypes: 2, 4, 5, 8, and 9. More stringent selection with pooled human antisera (intravenous immunoglobulin [IVIG]) then led to the selection of a single type 2/type 8/type 9 chimera, AAV-DJ, distinguished from its closest natural relative (AAV-2) by 60 capsid amino acids. Recombinant AAV-DJ vectors outperformed eight standard AAV serotypes in culture and greatly surpassed AAV-2 in livers of naïve and IVIG-immunized mice. A heparin binding domain in AAV-DJ was found to limit biodistribution to the liver (and a few other tissues) and to affect vector dose response and antibody neutralization. Moreover, we report the first successful in vivo biopanning of AAV capsids by using a new AAV-DJ-derived viral peptide display library. Two peptides enriched after serial passaging in mouse lungs mediated the retargeting of AAV-DJ vectors to distinct alveolar cells. Our study validates DNA family shuffling and viral peptide display as two powerful and compatible approaches to the molecular evolution of novel AAV vectors for human gene therapy applications. PMID:18400866
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu
2012-03-23
Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less
Improving solubility and refolding efficiency of human V(H)s by a novel mutational approach.
Tanha, Jamshid; Nguyen, Thanh-Dung; Ng, Andy; Ryan, Shannon; Ni, Feng; Mackenzie, Roger
2006-11-01
The antibody V(H) domains of camelids tend to be soluble and to resist aggregation, in contrast to human V(H) domains. For immunotherapy, attempts have therefore been made to improve the properties of human V(H)s by camelization of a small set of framework residues. Here, we have identified through sequence comparison of well-folded llama V(H) domains an alternative set of residues (not typically camelid) for mutation. Thus, the solubility and thermal refolding efficiency of a typical human V(H), derived from the human antibody BT32/A6, were improved by introduction of two mutations in framework region (FR) 1 and 4 to generate BT32/A6.L1. Three more mutations in FR3 of BT32/A6.L1 further improved the thermal refolding efficiency while retaining solubility and cooperative melting profiles. To demonstrate practical utility, BT32/A6.L1 was used to construct a phage display library from which were isolated human V(H)s with good antigen binding activity and solubility. The engineered human V(H) domains described here may be useful for immunotherapy, due to their expected low immunogenicity, and in applications involving transient high temperatures, due to their efficient refolding after thermal denaturation.
NASA Astrophysics Data System (ADS)
Mulligan, B. E.; Goodman, L. S.; McBride, D. K.; Mitchell, T. M.; Crosby, T. N.
1984-08-01
This work reviews the areas of auditory attention, recognition, memory and auditory perception of patterns, pitch, and loudness. The review was written from the perspective of human engineering and focuses primarily on auditory processing of information contained in acoustic signals. The impetus for this effort was to establish a data base to be utilized in the design and evaluation of acoustic displays.
Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany
2018-04-01
In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat
2015-08-13
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.
Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan
2017-01-01
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548
Egas, Verónica; Millán, Estrella; Collado, Juan A; Ramírez-Apan, Teresa; Méndez-Cuesta, Carlos A; Muñoz, Eduardo; Delgado, Guillermo
2017-06-15
The effects of ten natural cadinane sesquiterpenoids isolated from Heterotheca inuloides on the pathways of the NF-κB, Nrf2 and STAT3 transcription factors were studied for the first time. The main constituent in this species, 7-hydroxy-3,4-dihydrocadalene (1), showed anti-NF-κB activity and activated the antioxidant Nrf2 pathway, which may explain the properties reported for the traditional use of the plant. In addition to the main metabolite, a structurally similar compound, 7-hydroxy-cadalene (2), also displayed anti-NF-κB activity. Thus, both natural compounds were used as templates for the preparation of a novel semi-synthetic derivative set, including esters and carbamates, which were evaluated for their potential in vitro antiproliferative activities against six human cancer cell lines. Carbamate derivatives 32 and 33 were found to exhibit potent activity against human colorectal adenocarcinoma and showed important selectivity in cancer cells. Among ester derivatives, compound 13 was determined to be a more potent NF-κB inhibitor and Nrf2 activator than its parent, 7-hydroxy-3,4-dihydrocadalene (1). Furthermore, this compound decreases levels of phospho-IκBα, a protein complex involved in the NF-κB activation pathway. Molecular simulations suggest that all active compounds interact with the activation loop of the IKKβ subunit in the IKK complex, which is the responsible of IκBα phosphorylation. Thus, we identified two natural, and one semi-synthetic, NF-κB and Nrf2 modulators and two new promising cytotoxic compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanism-based facilitated maturation of human pluripotent stem cell-derived cardiomyocytes
Lieu, Deborah K.; Fu, Ji-Dong; Chiamvimonvat, Nipavan; Chan Tung, Kelvin W.; McNerney, Gregory P.; Huser, Thomas; Keller, Gordon; Kong, Chi-Wing
2013-01-01
Background Human embryonic stem cells (hESCs) can be efficiently and reproducibly directed into cardiomyocytes (CMs) using stage-specific induction protocols. However, their functional properties and suitability for clinical and other applications have not been evaluated. Methods and Results Here we showed that CMs derived from multiple pluripotent human stem cell lines (hESC: H1, HES2) and types (induced pluripotent stem cell or iPSC) using different in vitro differentiation protocols (embryoid body formation, endodermal induction, directed differentiation) commonly displayed immature, pro-arrhythmic action potential (AP) properties such as high-degree of automaticity, depolarized resting membrane potential (RMP), Phase 4- depolarization and delayed after-depolarization (DAD). Among the panoply of sarcolemmal ionic currents investigated (INa+/ICaL2+/IKr+/INCX+/If+/Ito+/IK1-/IKs-), we pinpointed the lack of the Kir2.1-encoded inwardly rectifying K+ current (IK1) as the single mechanistic contributor to the observed immature electrophysiological properties in hESC-CMs. Forced expression of Kir2.1 in hESC-CMs led to robust expression of Ba2+-sensitive IK1 and more importantly, completely ablated all the pro-arrhythmic AP traits, rendering the electrophysiological phenotype indistinguishable from the adult counterparts. These results provided the first link of a complex developmentally arrested phenotype to a major effector gene, and importantly, further led us to develop a biomimetic culturing strategy for enhancing maturation. Conclusions By providing the environmental cues that are missing in conventional culturing method, this approach did not require any genetic or pharmacological interventions. Our findings can facilitate clinical applications, drug discovery and cardiotoxicity screening by improving the yield, safety and efficacy of derived CMs. PMID:23392582
A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.
Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P
2018-06-01
Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Mendes, L F; Katagiri, H; Tam, W L; Chai, Y C; Geris, L; Roberts, S J; Luyten, F P
2018-02-21
Chondrogenic mesenchymal stem cells (MSCs) have not yet been used to address the clinical demands of large osteochondral joint surface defects. In this study, self-assembling tissue intermediates (TIs) derived from human periosteum-derived stem/progenitor cells (hPDCs) were generated and validated for stable cartilage formation in vivo using two different animal models. hPDCs were aggregated and cultured in the presence of a novel growth factor (GF) cocktail comprising of transforming growth factor (TGF)-β1, bone morphogenetic protein (BMP)2, growth differentiation factor (GDF)5, BMP6, and fibroblast growth factor (FGF)2. Quantitative polymerase chain reaction (PCR) and immunohistochemistry were used to study in vitro differentiation. Aggregates were then implanted ectopically in nude mice and orthotopically in critical-size osteochondral defects in nude rats and evaluated by microcomputed tomography (µCT) and immunohistochemistry. Gene expression analysis after 28 days of in vitro culture revealed the expression of early and late chondrogenic markers and a significant upregulation of NOGGIN as compared to human articular chondrocytes (hACs). Histological examination revealed a bilayered structure comprising of chondrocytes at different stages of maturity. Ectopically, TIs generated both bone and mineralized cartilage at 8 weeks after implantation. Osteochondral defects treated with TIs displayed glycosaminoglycan (GAG) production, type-II collagen, and lubricin expression. Immunostaining for human nuclei protein suggested that hPDCs contributed to both subchondral bone and articular cartilage repair. Our data indicate that in vitro derived osteochondral-like tissues can be generated from hPDCs, which are capable of producing bone and cartilage ectopically and behave orthotopically as osteochondral units.
Schmidt, Philipp; Ritscher, Lars; Dong, Elizabeth N.; Hermsdorf, Thomas; Cöster, Maxi; Wittkopf, Doreen; Meiler, Jens
2013-01-01
The ADP receptor P2Y12 belongs to the superfamily of G protein–coupled receptors (GPCRs), and its activation triggers platelet aggregation. Therefore, potent antagonists, such as clopidogrel, are of high clinical relevance in prophylaxis and treatment of thromboembolic events. P2Y12 displays an elevated basal activity in vitro, and as such, inverse agonists may be therapeutically beneficial compared with antagonists. Only a few inverse agonists of P2Y12 have been described. To expand this limited chemical space and improve understanding of structural determinants of inverse agonist-receptor interaction, this study screened a purine compound library for lead structures using wild-type (WT) human P2Y12 and 28 constitutively active mutants. Results showed that ATP and ATP derivatives are agonists at P2Y12. The potency at P2Y12 was 2-(methylthio)-ADP > 2-(methylthio)-ATP > ADP > ATP. Determinants required for agonistic ligand activity were identified. Molecular docking studies revealed a binding pocket for the ATP derivatives that is bordered by transmembrane helices 3, 5, 6, and 7 in human P2Y12, with Y105, E188, R256, Y259, and K280 playing a particularly important role in ligand interaction. N-Methyl-anthraniloyl modification at the 3′-OH of the 2′-deoxyribose leads to ligands (mant-deoxy-ATP [dATP], mant-deoxy-ADP) with inverse agonist activity. Inverse agonist activity of mant-dATP was found at the WT human P2Y12 and half of the constitutive active P2Y12 mutants. This study showed that, in addition to ADP and ATP, other ATP derivatives are not only ligands of P2Y12 but also agonists. Modification of the ribose within ATP can result in inverse activity of ATP-derived ligands. PMID:23093496
Švajger, Urban
2017-04-01
Clinical protocols for dendritic cell (DC) generation from monocytes require the use of animal serum-free supplements. Serum-free media can also require up to 1% of serum supplementation. In addition, recommendations based on the 3Rs (Refinement, Reduction, Replacement) principle also recommend the use of non-animal sera in in vitro studies. The aim of this study was to explore the potential use of platelet lysate (PL) for generation of optimally differentiated DCs from monocytes. Cells were isolated from buffy coats from healthy volunteers using immunomagnetic selection. DCs were differentiated in RPMI1640 supplemented with either 10% fetal bovine serum (FBS), 10% AB serum or 10% PL with the addition of granulocyte monocyte colony stimulating factor and interleukin-4. Generated DCs were assessed for their morphology, viability, endocytotic capacity, surface phenotype (immature, mature and tolerogenic DCs) and activation of important signaling pathways. DC function was evaluated on the basis of their allostimulatory capacity, cytokine profile and ability to induce different T-helper subsets. DCs generated with PL displayed normal viability, morphology and endocytotic capacity. Their differentiation and maturation phenotype was comparable to FBS-cultured DCs. They showed functional plasticity and up-regulated tolerogenic markers in response to their environment. PL-cultured mature DCs displayed unhindered allostimulatory potential and the capacity to induce Th1 responses. The use of PL allowed for activation of crucial signaling proteins associated with DC differentiation and maturation. This study demonstrates for the first time that human PL represents a successful alternative to FBS in differentiation of DCs from monocytes. DCs display the major phenotypic and functional characteristics compared with existing culture protocols. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Weidner, Thomas; Lucantoni, Leonardo; Nasereddin, Abed; Preu, Lutz; Jones, Peter G; Dzikowski, Ron; Avery, Vicky M; Kunick, Conrad
2017-05-15
Malaria is a widespread infectious disease that threatens a large proportion of the population in tropical and subtropical areas. Given the emerging resistance against the current standard anti-malaria chemotherapeutics, the development of alternative drugs is urgently needed. New anti-malarials representing chemotypes unrelated to currently used drugs have an increased potential for displaying novel mechanisms of action and thus exhibit low risk of cross-resistance against established drugs. Phenotypic screening of a small library (32 kinase-inhibitor analogs) against Plasmodium falciparum NF54-luc asexual erythrocytic stage parasites identified a diarylthioether structurally unrelated to registered drugs. Hit expansion led to a series in which the most potent congener displayed nanomolar antiparasitic activity (IC 50 = 39 nM, 3D7 strain). Structure-activity relationship analysis revealed a thieno[2,3-d]pyrimidine on one side of the thioether linkage as a prerequisite for antiplasmodial activity. Within the series, the oxazole derivative KuWei173 showed high potency (IC 50 = 75 nM; 3D7 strain), good solubility in aqueous solvents (1.33 mM), and >100-fold selectivity toward human cell lines. Rescue experiments identified inhibition of the plasmodial coenzyme A synthesis as a possible mode of action for this compound class. The class of antiplasmodial bishetarylthioethers reported here has been shown to interfere with plasmodial coenzyme A synthesis, a mechanism of action not yet exploited for registered anti-malarial drugs. The oxazole congener KuWei173 displays double-digit nanomolar antiplasmodial activity, selectivity against human cell lines, high drug likeness, and thus represents a promising chemical starting point for further drug development.
Hare, Nathan J; Lee, Ling Y; Loke, Ian; Britton, Warwick J; Saunders, Bernadette M; Thaysen-Andersen, Morten
2017-01-06
Tuberculosis (TB) remains a prevalent and lethal infectious disease. The glycobiology associated with Mycobacterium tuberculosis infection of frontline alveolar macrophages is still unresolved. Herein, we investigated the regulation of protein N-glycosylation in human macrophages and their secreted microparticles (MPs) used for intercellular communication upon M. tb infection. LC-MS/MS-based proteomics and glycomics were performed to monitor the regulation of glycosylation enzymes and receptors and the N-glycome in in vitro-differentiated macrophages and in isolated MPs upon M. tb infection. Infection promoted a dramatic regulation of the macrophage proteome. Most notably, significant infection-dependent down-regulation (4-26 fold) of 11 lysosomal exoglycosidases, e.g., β-galactosidase, β-hexosaminidases and α-/β-mannosidases, was observed. Relative weak infection-driven transcriptional regulation of these exoglycosidases and a stronger augmentation of the extracellular hexosaminidase activity demonstrated that the lysosome-centric changes may originate predominantly from infection-induced secretion of the lysosomal content. The macrophages showed heterogeneous N-glycan profiles and displayed significant up-regulation of complex-type glycosylation and concomitant down-regulation of paucimannosylation upon infection. Complementary intact N-glycopeptide analysis supported a subcellular-specific manipulation of the glycosylation machinery and altered glycosylation patterns of lysosomal N-glycoproteins within infected macrophages. Interestingly, the corresponding macrophage-derived MPs displayed unique N-glycome and proteome signatures supporting a preferential packaging from plasma membranes. The MPs were devoid of infection-dependent N-glycosylation signatures, but interestingly displayed increased levels of the glyco-initiating oligosaccharyltransferase complex and associated α-glucosidases that correlated with increased formation, N-glycan precursor levels and N-glycan density of infected MPs. In conclusion, this system-wide study provides new insight into the host- and pathogen-driven N-glycoproteome manipulation of macrophages in TB.
Shukla, Girja S; Krag, David N; Peletskaya, Elena N; Pero, Stephanie C; Sun, Yu-Jing; Carman, Chelsea L; McCahill, Laurence E; Roland, Thomas A
2013-08-01
Phage display is a powerful method for target discovery and selection of ligands for cancer treatment and diagnosis. Our goal was to select tumor-binding antibodies in cancer patients. Eligibility criteria included absence of preexisting anti-phage-antibodies and a Stage IV cancer status. All patients were intravenously administered 1 × 10(11) TUs/kg of an scFv library 1 to 4 h before surgical resection of their tumors. No significant adverse events related to the phage library infusion were observed. Phage were successfully recovered from all tumors. Individual clones from each patient were assessed for binding to the tumor from which clones were recovered. Multiple tumor-binding phage-antibodies were identified. Soluble scFv antibodies were produced from the phage clones showing higher tumor binding. The tumor-homing phage-antibodies and derived soluble scFvs were found to bind varying numbers (0-5) of 8 tested normal human tissues (breast, cervix, colon, kidney, liver, spleen, skin, and uterus). The clones that showed high tumor-specificity were found to bind corresponding tumors from other patients also. Clone enrichment was observed based on tumor binding and DNA sequence data. Clone sequences of multiple variable regions showed significant matches to certain cancer-related antibodies. One of the clones (07-2,355) that was found to share a 12-amino-acid-long motif with a reported IL-17A antibody was further studied for competitive binding for possible antigen target identification. We conclude that these outcomes support the safety and utility of phage display library panning in cancer patients for ligand selection and target discovery for cancer treatment and diagnosis.
Alginate-Encapsulation for the Improved Hypothermic Preservation of Human Adipose-Derived Stem Cells
Swioklo, Stephen; Constantinescu, Andrei
2016-01-01
Despite considerable progress within the cell therapy industry, unmet bioprocessing and logistical challenges associated with the storage and distribution of cells between sites of manufacture and the clinic exist. We examined whether hypothermic (4°C–23°C) preservation of human adipose-derived stem cells could be improved through their encapsulation in 1.2% calcium alginate. Alginate encapsulation improved the recovery of viable cells after 72 hours of storage. Viable cell recovery was highly temperature-dependent, with an optimum temperature of 15°C. At this temperature, alginate encapsulation preserved the ability for recovered cells to attach to tissue culture plastic on rewarming, further increasing its effect on total cell recovery. On attachment, the cells were phenotypically normal, displayed normal growth kinetics, and maintained their capacity for trilineage differentiation. The number of cells encapsulated (up to 2 × 106 cells per milliliter) did not affect viable cell recovery nor did storage of encapsulated cells in a xeno-free, serum-free,current Good Manufacturing Practice-grade medium. We present a simple, low-cost system capable of enhancing the preservation of human adipose-derived stem cells stored at hypothermic temperatures, while maintaining their normal function. The storage of cells in this manner has great potential for extending the time windows for quality assurance and efficacy testing, distribution between the sites of manufacture and the clinic, and reducing the wastage associated with the limited shelf life of cells stored in their liquid state. Significance Despite considerable advancement in the clinical application of cell-based therapies, major logistical challenges exist throughout the cell therapy supply chain associated with the storage and distribution of cells between the sites of manufacture and the clinic. A simple, low-cost system capable of preserving the viability and functionality of human adipose-derived stem cells (a cell with substantial clinical interest) at hypothermic temperatures (0°C–32°C) is presented. Such a system has considerable potential for extending the shelf life of cell therapy products at multiple stages throughout the cell therapy supply chain. PMID:26826163
Gong, Chao-Jun; Gao, An-Hui; Zhang, Yang-Ming; Su, Ming-Bo; Chen, Fei; Sheng, Li; Zhou, Yu-Bo; Li, Jing-Ya; Li, Jia; Nan, Fa-Jun
2016-04-13
Histone deacetylases (HDACs) are a class of epigenetic modulators with complex functions in histone post-translational modifications and are well known targets for antineoplastic drugs. We have previously developed a series of bisthiazole-based hydroxamic acids as novel potent HDAC inhibitors. In the present work, a new series of bisthiazole-based compounds with different zinc binding groups (ZBGs) have been designed and synthesized. Among them is compound 7, containing a trifluoromethyl ketone as the ZBG, which displays potent inhibitory activity towards human HDACs and improved antiproliferative activity in several cancer cell lines. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
NASA Technical Reports Server (NTRS)
Hess, R. A.; Wheat, L. W.
1975-01-01
A control theoretic model of the human pilot was used to analyze a baseline electronic cockpit display in a helicopter landing approach task. The head down display was created on a stroke written cathode ray tube and the vehicle was a UH-1H helicopter. The landing approach task consisted of maintaining prescribed groundspeed and glideslope in the presence of random vertical and horizontal turbulence. The pilot model was also used to generate and evaluate display quickening laws designed to improve pilot vehicle performance. A simple fixed base simulation provided comparative tracking data.
The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.
Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning
2016-05-01
In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Yaling; Chen, Li; Xu, Hongjiang; Li, Xiabing; Zhao, Lijun; Wang, Wei; Li, Baolin; Zhang, Xiquan
2018-03-10
A series of novel 6,7-dimorpholinoalkoxy quinazoline derivatives was designed, synthesized and evaluated as potent EGFR inhibitors. Most of synthesized derivatives exhibited moderate to excellent antiproliferative activities against five human tumor cell lines. Compound 8d displayed the most remarkable inhibitory activities against tumor cells expressing wild type (A431, A549 and SW480 cells) or mutant (HCC827 and NCI-H1975 cells) epidermal growth factor receptor (EGFR) (with IC 50 values in the range of 0.37-4.87 μM), as well as more potent inhibitory effects against recombinant EGFR tyrosine kinase (EGFR-TK, wt or T790M) (with the IC 50 values of 7.0 and 9.3 nM, respectively). Molecular docking showed that 8d can form four hydrogen bonds with EGFR, and two of them were located in the Asp855-Phe856-Gly857 (DFG) motif of EGFR. Meanwhile, 8d can significantly block EGF-induced EGFR activation and the phosphorylation of its downstream proteins such as Akt and Erk1/2 in human NSCLC cells. Also, 8d mediated cell apoptosis and the prolongation of cell cycle progression in G0/G1-phase in A549 cells. The work would have remarkable implications for further design and development of more potent EGFR tyrosine kinase inhibitors (TKIs). Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Johann, Laure; Belorgey, Didier; Huang, Hsin-Hung; Day, Latasha; Chessé, Matthieu; Becker, Katja; Williams, David L.; Davioud-Charvet, Elisabeth
2016-01-01
Investigations on the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives, revealed 3-phenoxymethyl menadiones as a novel antischistosomal series. These newly synthesized compounds 1–7 and their difluoromethylmenadione counterparts 8–9 were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR) identified as a potential target. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. the glutathione reductase (hGR) and the selenium-dependent human thioredoxin reductase (hTrxR) to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively versus hGR and hTrxR enzymes, in particular those bearing α-fluorophenol methyl ether moieties to improve antischistosomal action. In particular, the (substituted phenoxy)methyl menadione derivative 7 displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox-cycling of SmTGR, and potent antischistosomal action in ex vivo worms. In contrast, the difluoromethylmenadione analogue 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in cultured ex vivo worms. Because none of the compounds tested in vivo was active, a limited bioavailability might compromise compound activity and future studies will be directed toward improving pharmacokinetics properties. PMID:26111549
Use of traffic displays for general aviation approach spacing : a human factors study
DOT National Transportation Integrated Search
2007-12-01
A flight experiment was conducted to assess human factors issues associated with pilot use of traffic displays for approach : spacing. Sixteen multi-engine rated pilots participated. Eight flew approaches in a twin-engine Piper Aztec originating in :...
Production of biologically active recombinant human factor H in Physcomitrella.
Büttner-Mainik, Annette; Parsons, Juliana; Jérôme, Hanna; Hartmann, Andrea; Lamer, Stephanie; Schaaf, Andreas; Schlosser, Andreas; Zipfel, Peter F; Reski, Ralf; Decker, Eva L
2011-04-01
The human complement regulatory serum protein factor H (FH) is a promising future biopharmaceutical. Defects in the gene encoding FH are associated with human diseases like severe kidney and retinal disorders in the form of atypical haemolytic uremic syndrome (aHUS), membranoproliferative glomerulonephritis II (MPGN II) or age-related macular degeneration (AMD). There is a current need to apply intact full-length FH for the therapy of patients with congenital or acquired defects of this protein. Application of purified or recombinant FH (rFH) to these patients is an important and promising approach for the treatment of these diseases. However, neither protein purified from plasma of healthy individuals nor recombinant protein is currently available on the market. Here, we report the first stable expression of the full-length human FH cDNA and the subsequent production of this glycoprotein in a plant system. The moss Physcomitrella patens perfectly suits the requirements for the production of complex biopharmaceuticals as this eukaryotic system not only offers an outstanding genetical accessibility, but moreover, proteins can be produced safely in scalable photobioreactors without the need for animal-derived medium compounds. Transgenic moss lines were created, which express the human FH cDNA and target the recombinant protein to the culture supernatant via a moss-derived secretion signal. Correct processing of the signal peptide and integrity of the moss-produced rFH were verified via peptide mapping by mass spectrometry. Ultimately, we show that the rFH displays complement regulatory activity comparable to FH purified from plasma. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Pybus, Marc; Andrews, Glen K.; Lalueza-Fox, Carles; Comas, David; Sekler, Israel; de la Rasilla, Marco; Rosas, Antonio; Stoneking, Mark; Valverde, Miguel A.; Vicente, Rubén; Bosch, Elena
2014-01-01
Extreme differences in allele frequency between West Africans and Eurasians were observed for a leucine-to-valine substitution (Leu372Val) in the human intestinal zinc uptake transporter, ZIP4, yet no further evidence was found for a selective sweep around the ZIP4 gene (SLC39A4). By interrogating allele frequencies in more than 100 diverse human populations and resequencing Neanderthal DNA, we confirmed the ancestral state of this locus and found a strong geographical gradient for the derived allele (Val372), with near fixation in West Africa. In extensive coalescent simulations, we show that the extreme differences in allele frequency, yet absence of a classical sweep signature, can be explained by the effect of a local recombination hotspot, together with directional selection favoring the Val372 allele in Sub-Saharan Africans. The possible functional effect of the Leu372Val substitution, together with two pathological mutations at the same codon (Leu372Pro and Leu372Arg) that cause acrodermatitis enteropathica (a disease phenotype characterized by extreme zinc deficiency), was investigated by transient overexpression of human ZIP4 protein in HeLa cells. Both acrodermatitis mutations cause absence of the ZIP4 transporter cell surface expression and nearly absent zinc uptake, while the Val372 variant displayed significantly reduced surface protein expression, reduced basal levels of intracellular zinc, and reduced zinc uptake in comparison with the Leu372 variant. We speculate that reduced zinc uptake by the ZIP4-derived Val372 isoform may act by starving certain pathogens of zinc, and hence may have been advantageous in Sub-Saharan Africa. Moreover, these functional results may indicate differences in zinc homeostasis among modern human populations with possible relevance for disease risk. PMID:24586184
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole
2013-12-15
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less
Biased selection of propagation-related TUPs from phage display peptide libraries.
Zade, Hesam Motaleb; Keshavarz, Reihaneh; Shekarabi, Hosna Sadat Zahed; Bakhshinejad, Babak
2017-08-01
Phage display is rapidly advancing as a screening strategy in drug discovery and drug delivery. Phage-encoded combinatorial peptide libraries can be screened through the affinity selection procedure of biopanning to find pharmaceutically relevant cell-specific ligands. However, the unwanted enrichment of target-unrelated peptides (TUPs) with no true affinity for the target presents an important barrier to the successful screening of phage display libraries. Propagation-related TUPs (Pr-TUPs) are an emerging but less-studied category of phage display-derived false-positive hits that are displayed on the surface of clones with faster propagation rates. Despite long regarded as an unbiased selection system, accumulating evidence suggests that biopanning may create biological bias toward selection of phage clones with certain displayed peptides. This bias can be dependent on or independent of the displayed sequence and may act as a major driving force for the isolation of fast-growing clones. Sequence-dependent bias is reflected by censorship or over-representation of some amino acids in the displayed peptide and sequence-independent bias is derived from either point mutations or rare recombination events occurring in the phage genome. It is of utmost interest to clean biopanning data by identifying and removing Pr-TUPs. Experimental and bioinformatic approaches can be exploited for Pr-TUP discovery. With no doubt, obtaining deeper insight into how Pr-TUPs emerge during biopanning and how they could be detected provides a basis for using cell-targeting peptides isolated from phage display screening in the development of disease-specific diagnostic and therapeutic platforms.
Biotin deficiency enhances the inflammatory response of human dendritic cells.
Agrawal, Sudhanshu; Agrawal, Anshu; Said, Hamid M
2016-09-01
The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency.
Biotin deficiency enhances the inflammatory response of human dendritic cells
Agrawal, Sudhanshu; Said, Hamid M.
2016-01-01
The water-soluble biotin (vitamin B7) is indispensable for normal human health. The vitamin acts as a cofactor for five carboxylases that are critical for fatty acid, glucose, and amino acid metabolism. Biotin deficiency is associated with various diseases, and mice deficient in this vitamin display enhanced inflammation. Previous studies have shown that biotin affects the functions of adaptive immune T and NK cells, but its effect(s) on innate immune cells is not known. Because of that and because vitamins such as vitamins A and D have a profound effect on dendritic cell (DC) function, we investigated the effect of biotin levels on the functions of human monocyte-derived DCs. Culture of DCs in a biotin-deficient medium (BDM) and subsequent activation with LPS resulted in enhanced secretion of the proinflammatory cytokines TNF-α, IL-12p40, IL-23, and IL-1β compared with LPS-activated DCs cultured in biotin-sufficient (control) and biotin-oversupplemented media. Furthermore, LPS-activated DCs cultured in BDM displayed a significantly higher induction of IFN-γ and IL-17 indicating Th1/Th17 bias in T cells compared with cells maintained in biotin control or biotin-oversupplemented media. Investigations into the mechanisms suggested that impaired activation of AMP kinase in DCs cultured in BDM may be responsible for the observed increase in inflammatory responses. In summary, these results demonstrate for the first time that biotin deficiency enhances the inflammatory responses of DCs. This may therefore be one of the mechanism(s) that mediates the observed inflammation that occurs in biotin deficiency. PMID:27413170
Chen, Xuemei; Liu, Xiaodong; Ren, Xiuhua; Li, Xuewu; Wang, Li; Zang, Weidong
2016-03-01
The key goals of immunocontraception research are to obtain full contraceptive effects using vaccines administered to both males and females. Current research concerning human anti-sperm contraceptive vaccines is focused on delineating infertility-related epitopes to avoid autoimmune disease. We constructed phage-display peptide libraries to select epitope peptides derived from human posterior head 20 (hPH20) and homo sapiens sperm acrosome associated 1 (hSPACA1) using sera collected from infertile women harbouring anti-sperm antibodies. Following five rounds of selection, positive colonies were reconfirmed for reactivity with the immunoinfertile sera. We biopanned and analysed the chemical properties of four epitope peptides, named P82, Sa6, Sa37 and Sa76. Synthetic peptides were made and coupled to either bovine serum albumin (BSA) or ovalbumin. We used the BSA-conjugated peptides to immunise BALB/c mice and examined the effects on fertility in female and male mice. The synthetic peptides generated a sperm-specific antibody response in female and male mice that caused a contraceptive state. The immunocontraceptive effect was reversible and, with the disappearance of peptide-specific antibodies, there was complete restoration of fertility. Vaccinations using P82, Sa6 and Sa76 peptides resulted in no apparent side effects. Thus, it is efficient and practical to identify epitope peptide candidates by phage display. These peptides may find clinical application in the specific diagnosis and treatment of male and female infertility and contraceptive vaccine development.
WNT/β-catenin signaling mediates human neural crest induction via a pre-neural border intermediate.
Leung, Alan W; Murdoch, Barbara; Salem, Ahmed F; Prasad, Maneeshi S; Gomez, Gustavo A; García-Castro, Martín I
2016-02-01
Neural crest (NC) cells arise early in vertebrate development, migrate extensively and contribute to a diverse array of ectodermal and mesenchymal derivatives. Previous models of NC formation suggested derivation from neuralized ectoderm, via meso-ectodermal, or neural-non-neural ectoderm interactions. Recent studies using bird and amphibian embryos suggest an earlier origin of NC, independent of neural and mesodermal tissues. Here, we set out to generate a model in which to decipher signaling and tissue interactions involved in human NC induction. Our novel human embryonic stem cell (ESC)-based model yields high proportions of multipotent NC cells (expressing SOX10, PAX7 and TFAP2A) in 5 days. We demonstrate a crucial role for WNT/β-catenin signaling in launching NC development, while blocking placodal and surface ectoderm fates. We provide evidence of the delicate temporal effects of BMP and FGF signaling, and find that NC development is separable from neural and/or mesodermal contributions. We further substantiate the notion of a neural-independent origin of NC through PAX6 expression and knockdown studies. Finally, we identify a novel pre-neural border state characterized by early WNT/β-catenin signaling targets that displays distinct responses to BMP and FGF signaling from the traditional neural border genes. In summary, our work provides a fast and efficient protocol for human NC differentiation under signaling constraints similar to those identified in vivo in model organisms, and strengthens a framework for neural crest ontogeny that is separable from neural and mesodermal fates. © 2016. Published by The Company of Biologists Ltd.
Lai, Xiulan; Liu, Sizheng; Chen, Yezeng; Zheng, Zexin; Xie, Qingdong; Maldonado, Martin; Cai, Zhiwei; Qin, Shan; Ho, Guyu; Ma, Lian
2013-01-01
Human umbilical cord mesenchymal stem cells (HUMSCs) are highly proliferative and can be induced to differentiate into advanced derivatives of all three germ layers. Thus, HUMSCs are considered to be a promising source for cell-targeted therapies and tissue engineering. However there are reports on spontaneous transformation of mesenchymal stem cells (MSCs) derived from human bone marrows. The capacity for HUMSCs to undergo malignant transform spontaneously or via induction by chemical carcinogens is presently unknown. Therefore, we isolated HUMSCs from 10 donors and assessed their transformation potential either spontaneously or by treating them with 3-methycholanthrene (3-MCA), a DNA-damaging carcinogen. The malignant transformation of HUMSCs in vitro was evaluated by morphological changes, proliferation rates, ability to enter cell senescence, the telomerase activity, chromosomal abnormality, and the ability to form tumors in vivo. Our studies showed that HUMSCs from all 10 donors ultimately entered senescence and did not undergo spontaneous malignant transformation. However, HUMSCs from two of the 10 donors treated with 3-MCA displayed an increased proliferation rate, failed to enter senescence, and exhibited an altered cell morphology. When these cells (tHUMSCs) were injected into immunodeficient mice, they gave rise to sarcoma-like or poorly differentiated tumors. Moreover, in contrast to HUMSCs, tHUMSCs showed a positive expression of human telomerase reverse transcriptase (hTERT) and did not exhibit a shortening of the relative telomere length during the long-term culture in vitro. Our studies demonstrate that HUMSCs are not susceptible to spontaneous malignant transformation. However, the malignant transformation could be induced by chemical carcinogen 3-MCA. PMID:24339974
Gu, Wenduo; Hong, Xuechong; Le Bras, Alexandra; Nowak, Witold N; Issa Bhaloo, Shirin; Deng, Jiacheng; Xie, Yao; Hu, Yanhua; Ruan, Xiong Z; Xu, Qingbo
2018-05-25
Tissue-engineered vascular grafts with long-term patency are greatly needed in the clinical settings, and smooth muscle cells (SMCs) are a critical graft component. Human mesenchymal stem cells (MSCs) are used for generating SMCs, and understanding the underlying regulatory mechanisms of the MSC-to-SMC differentiation process could improve SMC generation in the clinic. Here, we found that in response to stimulation of transforming growth factor-β1 (TGFβ1), human umbilical cord-derived MSCs abundantly express the SMC markers α-smooth muscle actin (αSMA), smooth muscle protein 22 (SM22), calponin, and smooth muscle myosin heavy chain (SMMHC) at both gene and protein levels. Functionally, MSC-derived SMCs displayed contracting capacity in vitro and supported vascular structure formation in the Matrigel plug assay in vivo More importantly, SMCs differentiated from human MSCs could migrate into decellularized mouse aorta and give rise to the smooth muscle layer of vascular grafts, indicating the potential of utilizing human MSC-derived SMCs to generate vascular grafts. Of note, microRNA (miR) array analysis and TaqMan microRNA assays identified miR-503 and miR-222-5p as potential regulators of MSC differentiation into SMCs at early time points. Mechanistically, miR-503 promoted SMC differentiation by directly targeting SMAD7, a suppressor of SMAD-related, TGFβ1-mediated signaling pathways. Moreover, miR-503 expression was SMAD4-dependent. SMAD4 was enriched at the miR-503 promoter. Furthermore, miR-222-5p inhibited SMC differentiation by targeting and down-regulating ROCK2 and αSMA. In conclusion, MSC differentiation into SMCs is regulated by miR-503 and miR-222-5p and yields functional SMCs for use in vascular grafts. © 2018 Gu et al.
Patrulea, V; Hirt-Burri, N; Jeannerat, A; Applegate, L A; Ostafe, V; Jordan, O; Borchard, G
2016-05-20
RGD peptide sequences are known to regulate cellular activities by interacting with α5β1, αvβ5 and αvβ3 integrin, which contributes to the wound healing process. In this study, RGDC peptide was immobilized onto chitosan derivative 1,6-diaminohexane-O-carboxymethyl-N,N,N-trimethyl chitosan (DAH-CMTMC) to display RGDC-promoting adhesion for enhanced wound healing. The efficiency of N-methylation, O-carboxymethylation and spacer grafting was quantitatively and qualitatively analyzed by (1)H NMR and FTIR, yielding 0.38 degree of substitution for N-methylation and >0.85 for O-carboxymethylation. The glass transition temperatures for chitosan derivatives were also studied. Peptide immobilization was achieved through sulfhydryl groups using sulfosuccinimidyl (4-iodoacetyl)amino-benzoate (sulfo-SIAB method). RGDC immobilized peptide onto DAH-CMTMC was found to be about 15.3 μg/mg of chitosan derivative by amino acid analysis (AAA). The significant increase of human dermal fibroblast (HDF) viability in vitro over 7 days suggests that RGDC-functionalized chitosan may lead to enhanced wound healing (viability >140%). Moreover, bio-adhesion and proliferation assays confirmed that coatings of RGDC-functionalized chitosan derivatives exhibit in vitro wound healing properties by enhancing fibroblast proliferation and adhesion. These results showed that RGDC peptide-functionalized chitosan provides an optimal environment for fibroblast adhesion and proliferation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Adhikary, Gautam; Grun, Dan; Kerr, Candace; Balasubramanian, Sivaprakasam; Rorke, Ellen A.; Vemuri, Mohan; Boucher, Shayne; Bickenbach, Jackie R.; Hornyak, Thomas; Xu, Wen; Fisher, Matthew L.; Eckert, Richard L.
2013-01-01
Epidermal squamous cell carcinoma is among the most common cancers in humans. These tumors are comprised of phenotypically diverse populations of cells that display varying potential for proliferation and differentiation. An important goal is identifying cells from this population that drive tumor formation. To enrich for tumor-forming cells, cancer cells were grown as spheroids in non-attached conditions. We show that spheroid-selected cells form faster growing and larger tumors in immune-compromised mice as compared to non-selected cells. Moreover, spheroid-selected cells gave rise to tumors following injection of as few as one hundred cells, suggesting these cells have enhanced tumor-forming potential. Cells isolated from spheroid-selected tumors retain an enhanced ability to grow as spheroids when grown in non-attached culture conditions. Thus, these tumor-forming cells retain their phenotype following in vivo passage as tumors. Detailed analysis reveals that spheroid-selected cultures are highly enriched for expression of epidermal stem cell and embryonic stem cell markers, including aldehyde dehydrogenase 1, keratin 15, CD200, keratin 19, Oct4, Bmi-1, Ezh2 and trimethylated histone H3. These studies indicate that a subpopulation of cells that possess stem cell-like properties and express stem cell markers can be derived from human epidermal cancer cells and that these cells display enhanced ability to drive tumor formation. PMID:24376802
Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G. M.; Rodrigues, Pedro N.; Bastos, Margarida
2014-01-01
Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. PMID:24709266
Liebertz, Daniel J; Lechner, Melissa G; Masood, Rizwan; Sinha, Uttam K; Han, Jing; Puri, Raj K; Correa, Adrian J; Epstein, Alan L
2010-02-22
Head and neck squamous cell carcinoma (HNSCC) is an aggressive and lethal malignancy. Publically available cell lines are mostly of lingual origin, or have not been carefully characterized. Detailed characterization of novel HNSCC cell lines is needed in order to provide researchers a concrete keystone on which to build their investigations. The USC-HN1 cell line was established from a primary maxillary HNSCC biopsy explant in tissue culture. The immortalized cells were then further characterized by heterotransplantation in Nude mice; immunohistochemical staining for relevant HNSCC biomarkers; flow cytometry for surface markers; cytogenetic karyotypic analysis; human papillomavirus and Epstein-Barr virus screening; qRT-PCR for oncogene and cytokine analysis; investigation of activated, cleaved Notch1 levels; and detailed 35,000 gene microarray analysis. Characterization experiments confirmed the human HNSCC origin of USC-HN1, including a phenotype similar to the original tumor. Viral screening revealed no HPV or EBV infection, while western blotting displayed significant upregulation of activated, cleaved Notch1. USC-HN1, a novel immortalized cell line has been derived from a maxillary HNSCC. Characterization studies have shown that the cell line is of HNSCC origin and displays many of the same markers previously reported in the literature. USC-HN1 is available for public research and will further the investigation of HNSCC and the development of new therapeutic modalities.
Reprogramming of Melanoma Tumor-Infiltrating Lymphocytes to Induced Pluripotent Stem Cells
Saito, Hidehito; Okita, Keisuke; Fusaki, Noemi; Sabel, Michael S.; Chang, Alfred E.; Ito, Fumito
2016-01-01
Induced pluripotent stem cells (iPSCs) derived from somatic cells of patients hold great promise for autologous cell therapies. One of the possible applications of iPSCs is to use them as a cell source for producing autologous lymphocytes for cell-based therapy against cancer. Tumor-infiltrating lymphocytes (TILs) that express programmed cell death protein-1 (PD-1) are tumor-reactive T cells, and adoptive cell therapy with autologous TILs has been found to achieve durable complete response in selected patients with metastatic melanoma. Here, we describe the derivation of human iPSCs from melanoma TILs expressing high level of PD-1 by Sendai virus-mediated transduction of the four transcription factors, OCT3/4, SOX2, KLF4, and c-MYC. TIL-derived iPSCs display embryonic stem cell-like morphology, have normal karyotype, express stem cell-specific surface antigens and pluripotency-associated transcription factors, and have the capacity to differentiate in vitro and in vivo. A wide variety of T cell receptor gene rearrangement patterns in TIL-derived iPSCs confirmed the heterogeneity of T cells infiltrating melanomas. The ability to reprogram TILs containing patient-specific tumor-reactive repertoire might allow the generation of patient- and tumor-specific polyclonal T cells for cancer immunotherapy. PMID:27057178
Zhou, Jian; Rogers, Jason H; Lee, Scott H; Sun, DongMing; Yao, Hai; Mao, Jeremy J; Kong, Kimi Y
2017-01-15
Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration.
Zhou, Jian; Rogers, Jason H.; Lee, Scott H.; Sun, DongMing; Yao, Hai; Mao, Jeremy J.
2017-01-01
Endothelial progenitor cells/endothelial cells (EPCs/ECs) have great potential to treat pathological conditions such as cardiac infarction, muscle ischemia, and bone fractures, but isolation of EPC/ECs from existing cell sources is challenging due to their low EC frequency. We have isolated endothelial progenitor (EP)-like cells from rat oral mucosa and characterized their yield, immunophenotype, growth, and in vivo angiogenic potential. The frequency of EP-like cells derived from oral mucosa is thousands of folds higher than EPCs derived from donor-match bone marrow samples. EP-like cells from oral mucosa were positive for EC markers CD31, VE-Cadherin, and VEGFR2. Oral mucosa-derived EP-like cells displayed robust uptake of acetylated low-density lipoprotein and formed stable capillary networks in Matrigel. Subcutaneously implanted oral mucosa-derived EP-like cells anastomosed with host blood vessels, implicating their ability to elicit angiogenesis. Similar to endothelial colony-forming cells, EP-like cells from oral mucosa have a significantly higher proliferative rate than human umbilical vein endothelial cells. These findings identify a putative EPC source that is easily accessible in the oral cavity, potentially from discarded tissue specimens, and yet with robust yield and potency for angiogenesis in tissue and organ regeneration. PMID:27832737
Rane, Rajesh A; Napahde, Shital; Bangalore, Pavan Kumar; Sahu, Niteshkumar U; Shah, Nishant; Kulkarni, Yogesh A; Barve, Kalyani; Lokare, Leena; Karpoormath, Rajshekhar
2014-11-01
Herein, we report synthesis and screening of a series of twenty derivatives of bromopyrrole alkaloids with aroyl hydrazone feature for antidepressant activity by forced swim test (FST), tail suspension test (TST), and actophotometer method. The molecules were further evaluated for in vitro human MAO's inhibitory activities. The tested compounds exhibited moderate to good antidepressant activity compared with standard fluoxetine. Among these, most promising antidepressant derivatives 5b (%DID = 60.48), 5e (%DID = 59), and 5j (%DID = 74.86) reduced immobility duration of 50-70% at 30 mg/kg dose levels in FST. Further, derivative 5b, 5e, and 5j displayed good antidepressant activity with %DID value of 47.50, 46.62, and 52.49, respectively, in TST compared with standard fluoxetine (66.56% DID). Compound 5b showed high in vitro MAO-A potency and selectivity (Ki MAO-A (μM) = 2.4 ± 0.99, SI = 0.06) with promising pharmacological activity recognizing its potential as antidepressant lead candidate for further drug development. Study revealed that the presence of halogen atoms such as chlorine and fluorine at ortho- and/or para-position of phenyl ring and N-alkylation of pyrrole core is favored features for antidepressant activity. © 2014 John Wiley & Sons A/S.
Gao, Feng; Sihver, Wiebke; Bergmann, Ralf; Belter, Birgit; Bolzati, Cristina; Salvarese, Nicola; Steinbach, Jörg; Pietzsch, Jens; Pietzsch, Hans-Jürgen
2018-06-06
α-Melanocyte stimulating hormone (α-MSH) derivatives target the melanocortin-1 receptor (MC1R) specifically and selectively. In this study, the α-MSH-derived peptide NAP-NS1 (Nle-Asp-His-d-Phe-Arg-Trp-Gly-NH 2 ) with and without linkers was conjugated with 5-(bis(pyridin-2-ylmethyl)amino)pentanoic acid (DPA-COOH) and labeled with [ 99m Tc]Tc-tricarbonyl by two methods. With the one-pot method the labeling was faster than with the two-pot method, while obtaining similarly high yields. Negligible trans-chelation and high stability in physiological solutions was determined for the [ 99m Tc]Tc-tricarbonyl-peptide conjugates. Coupling an ethylene glycol (EG)-based linker increased the hydrophilicity. The peptide derivatives displayed high binding affinity in murine B16F10 melanoma cells as well as in human MeWo and TXM13 melanoma cell homogenates. Preliminary in vivo studies with one of the [ 99m Tc]Tc-tricarbonyl-peptide conjugates showed good stability in blood and both renal and hepatobiliary excretion. Biodistribution was performed on healthy rats to gain initial insight into the potential relevance of the 99m Tc-labeled peptides for in vivo imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Autophagy in Human Embryonic Stem Cells
Tra, Thien; Gong, Lan; Kao, Lin-Pin; Li, Xue-Lei; Grandela, Catarina; Devenish, Rodney J.; Wolvetang, Ernst; Prescott, Mark
2011-01-01
Autophagy (macroautophagy) is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC. PMID:22110659
Head-Mounted Display Technology for Low Vision Rehabilitation and Vision Enhancement
Ehrlich, Joshua R.; Ojeda, Lauro V.; Wicker, Donna; Day, Sherry; Howson, Ashley; Lakshminarayanan, Vasudevan; Moroi, Sayoko E.
2017-01-01
Purpose To describe the various types of head-mounted display technology, their optical and human factors considerations, and their potential for use in low vision rehabilitation and vision enhancement. Design Expert perspective. Methods An overview of head-mounted display technology by an interdisciplinary team of experts drawing on key literature in the field. Results Head-mounted display technologies can be classified based on their display type and optical design. See-through displays such as retinal projection devices have the greatest potential for use as low vision aids. Devices vary by their relationship to the user’s eyes, field of view, illumination, resolution, color, stereopsis, effect on head motion and user interface. These optical and human factors considerations are important when selecting head-mounted displays for specific applications and patient groups. Conclusions Head-mounted display technologies may offer advantages over conventional low vision aids. Future research should compare head-mounted displays to commonly prescribed low vision aids in order to compare their effectiveness in addressing the impairments and rehabilitation goals of diverse patient populations. PMID:28048975
Staniszewska, Monika; Gizińska, Małgorzata; Mikulak, Ewa; Adamus, Klaudia; Koronkiewicz, Mirosława; Łukowska-Chojnacka, Edyta
2018-02-10
A series of novel tetrazole derivatives was synthetized using N-alkylation or Michael-type addition reactions, and screened for their fungistatic potential against Candida albicans (the lack of endpoint = 100%). Among them, the selected compounds 2d, 4b, and 6a differing in substituents at the tetrazole ring were non-toxic to Galleria mellonella larvae in vivo and exerted slight toxicity against Caco-2 in vitro (CC 50 at 256 μg/mL). An antagonistic effect of tetrazole derivatives 2d, 4b, and 6a respectively in combination with Fluconazole was shown using the checker board and colorimetric methods (fractional inhibitory concentration indexes FICIs >1). The most active 2d and 6a displayed an inverse relation between MICs in the presence of exogenous ergosterol, the effect was opposite to Itraconazole and Amphotericin B. The differences between 6a's and 2d's action mode were noted. Combining both flow cytometry and fluorescence image analyses respectively showed the complexity of planktonic and biofilm cell demise mode under the tetrazole derivatives tested. The following evidences for 6a's interaction with fungal membrane were noted: necrosis-like programmed cell death (97.03 ± 0.88), DNA denaturation (no laddering), mitochondrial damage (XTT assay), reduced adhesion to human epithelium (>50% at 0.0313 μg/mL, p ≤ .05), irregular deposit of chitin, and attenuated morphogenesis in mature biofilm. The treatment with 6a reduced pathogenicity of C. albicans during infection in G. mellonella. Contrariwise, 2d enhancing fungal adhesion displayed mechanism targeted to the cell wall (due to the presence of 3-chloropropyl clubbed with aryltetrazole) in the presence of osmotic protector. Under 2d, the accidental cell death (88.60% ± 4.81) was observed. In conclusion, all tetrazole derivatives were obtained in satisfactory yields (60-95%) using efficient, simple and not expensive methods. Fungistatic and slightly anticancer tetrazole derivatives with the novel action mode can circumvent an appearance of antifungal-resistant strains. These results indicate that they are worthy of further studies. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Bi, Yuhai; Xie, Qing; Zhang, Shuang; Li, Yun; Xiao, Haixia; Jin, Tao; Zheng, Weinan; Li, Jing; Jia, Xiaojuan; Sun, Lei; Liu, Jinhua; Qin, Chuan
2014-01-01
ABSTRACT The recently identified H7N9 influenza A virus has caused severe economic losses and worldwide public concern. Genetic analysis indicates that its six internal genes all originated from H9N2 viruses. However, the H7N9 virus is more highly pathogenic in humans than H9N2, which suggests that the internal genes of H7N9 have mutated. To analyze which H7N9 virus internal genes contribute to its high pathogenicity, a series of reassortants was generated by reverse genetics, with each virus containing a single internal gene of the typical A/Anhui/1/2013 (H7N9) (AH-H7N9) virus in the genetic background of the A/chicken/Shandong/lx1023/2007 (H9N2) virus. The replication ability, polymerase activity, and pathogenicity of these viruses were then evaluated in vitro and in vivo. These recombinants displayed high genetic compatibility, and the H7N9-derived PB2, M, and NP genes were identified as the virulence genes for the reassortants in mice. Further investigation confirmed that the PB2 K627 residue is critical for the high pathogenicity of the H7N9 virus and the reassortant containing the H7N9-derived PB2 segment (H9N2-AH/PB2). Notably, the H7N9-derived PB2 gene displayed greater compatibility with the H9N2 genome than that of H7N9, endowing the H9N2-AH/PB2 reassortant with greater viability and virulence than the parental H7N9 virus. In addition, the H7N9 virus, with the exception of the H9N2 reassortants, could effectively replicate in human A549 cells. Our results indicate that PB2, M, and NP are the key virulence genes, together with the surface hemagglutinin (HA) and neuraminidase (NA) proteins, contributing to the high infectivity of the H7N9 virus in humans. IMPORTANCE To date, the novel H7N9 influenza A virus has caused 437 human infections, with approximately 30% mortality. Previous work has primarily focused on the two viral surface proteins, HA and NA, but the contribution of the six internal genes to the high pathogenicity of H7N9 has not been systematically studied. Here, the H9N2 virus was used as a genetic backbone to evaluate the virulence genes of H7N9 virus in vitro and in vivo. Our data indicate that the PB2, M, and NP genes play important roles in viral infection in mice and, together with HA and NA, contribute to the high infectivity of the H7N9 virus in humans. PMID:25320305
Development of exosome surface display technology in living human cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stickney, Zachary, E-mail: zstickney@scu.edu; Losacco, Joseph, E-mail: jlosacco@scu.edu; McDevitt, Sophie, E-mail: smmcdevitt@scu.edu
Surface display technology is an emerging key player in presenting functional proteins for targeted drug delivery and therapy. Although a number of technologies exist, a desirable mammalian surface display system is lacking. Exosomes are extracellular vesicles that facilitate cell–cell communication and can be engineered as nano-shuttles for cell-specific delivery. In this study, we report the development of a novel exosome surface display technology by exploiting mammalian cell secreted nano-vesicles and their trans-membrane protein tetraspanins. By constructing a set of fluorescent reporters for both the inner and outer surface display on exosomes at two selected sites of tetraspanins, we demonstrated themore » successful exosomal display via gene transfection and monitoring fluorescence in vivo. We subsequently validated our system by demonstrating the expected intracellular partitioning of reporter protein into sub-cellular compartments and secretion of exosomes from human HEK293 cells. Lastly, we established the stable engineered cells to harness the ability of this robust system for continuous production, secretion, and uptake of displayed exosomes with minimal impact on human cell biology. In sum, our work paved the way for potential applications of exosome, including exosome tracking and imaging, targeted drug delivery, as well as exosome-mediated vaccine and therapy.« less
The potential use of stem cells derived from human amniotic fluid in renal diseases.
Noronha, Irene L; Cavaglieri, Rita C; Janz, Felipe L; Duarte, Sergio A; Lopes, Marco A B; Zugaib, Marcelo; Bydlowski, Sergio P
2011-09-01
Amniotic fluid (AF) contains a variety of cell types derived from fetal tissues that can easily grow in culture. These cells can be obtained during amniocentesis for prenatal screening of fetal genetic diseases, usually performed during the second trimester of pregnancy. Of particular interest, some expanded sub-populations derived from AF cells are capable of extensive self-renewal and maintain prolonged undifferentiated proliferation, which are defining properties of stem cells. These human AF stem cells (hAFSCs) exhibit multilineage potential and can differentiate into the three germ layers. They have high proliferation rates and express mesenchymal and embryonic markers, but do not induce tumor formation. In this study, hAFSCs derived from amniocentesis performed at 16-20 weeks of pregnancy were isolated, grown in culture, and characterized by flow cytometry and by their potential ability to differentiate into osteogenic, adipogenic, and chondrogenic lineages. After 4-7 passages, 5 × 10 5 hAFSCs were inoculated under the kidney capsule of Wistar rats that were subjected to an experimental model of chronic renal disease, the 5/6 nephrectomy model (Nx). After 30 days, Nx rats treated with hAFSCs displayed significant reductions in blood pressure, proteinuria, macrophages, and α-smooth muscle actin expression compared with Nx animals. These preliminary results suggest that hAFSCs isolated and expanded from AF obtained by routine amniocentesis can promote renoprotection in the Nx model. Considering that the AF cells not used for fetal karyotyping are usually discarded, and that their use does not raise ethical issues, they may represent an alternative source of stem cells for cell therapy and regenerative medicine.
Saller, Maximilian M; Huettl, Rosa-Eva; Mayer, Julius M; Feuchtinger, Annette; Krug, Christian; Holzbach, Thomas; Volkmer, Elias
2018-05-01
Despite the regenerative capabilities of peripheral nerves, severe injuries or neuronal trauma of critical size impose immense hurdles for proper restoration of neuro-muscular circuitry. Autologous nerve grafts improve re-establishment of connectivity, but also comprise substantial donor site morbidity. We developed a rat model which allows the testing of different cell applications, i.e., mesenchymal stem cells, to improve nerve regeneration in vivo. To mimic inaccurate alignment of autologous nerve grafts with the injured nerve, a 20 mm portion of the sciatic nerve was excised, and sutured back in place in reversed direction. To validate the feasibility of our novel model, a fibrin gel conduit containing autologous undifferentiated adipose-derived stem cells was applied around the coaptation sites and compared to autologous nerve grafts. After evaluating sciatic nerve function for 16 weeks postoperatively, animals were sacrificed, and gastrocnemius muscle weight was determined along with morphological parameters (g-ratio, axon density & diameter) of regenerating axons. Interestingly, the addition of undifferentiated adipose-derived stem cells resulted in a significantly improved re-myelination, axon ingrowth and functional outcome, when compared to animals without a cell seeded conduit. The presented model thus displays several intriguing features: it imitates a certain mismatch in size, distribution and orientation of axons within the nerve coaptation site. The fibrin conduit itself allows for an easy application of cells and, as a true critical-size defect model, any observed improvement relates directly to the performed intervention. Since fibrin and adipose-derived stem cells have been approved for human applications, the technique can theoretically be performed on humans. Thus, we suggest that the model is a powerful tool to investigate cell mediated assistance of peripheral nerve regeneration.
NASA Technical Reports Server (NTRS)
Granaas, Michael M.; Rhea, Donald C.
1989-01-01
The requirements for the development of real-time displays are reviewed. Of particular interest are the psychological aspects of design such as the layout, color selection, real-time response rate, and the interactivity of displays. Some existing Western Aeronautical Test Range displays are analyzed.
Construction of human antibody gene libraries and selection of antibodies by phage display.
Frenzel, André; Kügler, Jonas; Wilke, Sonja; Schirrmann, Thomas; Hust, Michael
2014-01-01
Antibody phage display is the most commonly used in vitro selection technology and has yielded thousands of useful antibodies for research, diagnostics, and therapy.The prerequisite for successful generation and development of human recombinant antibodies using phage display is the construction of a high-quality antibody gene library. Here, we describe the methods for the construction of human immune and naive scFv gene libraries.The success also depends on the panning strategy for the selection of binders from these libraries. In this article, we describe a panning strategy that is high-throughput compatible and allows parallel selection in microtiter plates.
Gago-Lopez, Nuria; Awaji, Obinna; Zhang, Yiqiang; Ko, Christopher; Nsair, Ali; Liem, David; Stempien-Otero, April; MacLellan, W. Robb
2014-01-01
Summary Despite over a decade of intense research, the identity and differentiation potential of human adult cardiac progenitor cells (aCPC) remains controversial. Cardiospheres have been proposed as a means to expand aCPCs in vitro, but the identity of the progenitor cell within these 3D structures is unknown. We show that clones derived from cardiospheres could be subdivided based on expression of thymocyte differentiation antigen 1 (THY-1/CD90) into two distinct populations that exhibit divergent cardiac differentiation potential. One population, which is CD90+, expressed markers consistent with a mesenchymal/myofibroblast cell. The second clone type was CD90− and could form mature, functional myocytes with sarcomeres albeit at a very low rate. These two populations of cardiogenic clones displayed distinct cell surface markers and unique transcriptomes. Our study suggests that a rare aCPC exists in cardiospheres along with a mesenchymal/myofibroblast cell, which demonstrates incomplete cardiac myocyte differentiation. PMID:24936447
Glyco-functionalized dinuclear rhenium(i) complexes for cell imaging.
Palmioli, Alessandro; Aliprandi, Alessandro; Septiadi, Dedy; Mauro, Matteo; Bernardi, Anna; De Cola, Luisa; Panigati, Monica
2017-02-21
The design, synthesis and photophysical characterization of four new luminescent glycosylated luminophores based on dinuclear rhenium complexes, namely Glyco-Re, are described. The derivatives have the general formula [Re 2 (μ-Cl) 2 (CO) 6 (μ-pydz-R)] (R-pydz = functionalized 1,2-pyridazine), where a sugar residue (R) is covalently bound to the pyridazine ligand in the β position. Different synthetic pathways have been investigated including the so-called neo-glycorandomization procedure, affording stereoselectively glyco-conjugates containing glucose and maltose in a β anomeric configuration. A multivalent dinuclear rhenium glycodendron bearing three glucose units is also synthesized. All the Glyco-Re conjugates are comprehensively characterized and their photophysical properties and cellular internalization experiments on human cervical adenocarcinoma (HeLa) cells are reported. The results show that such Glyco-Re complexes display interesting bio-imaging properties, i.e. high cell permeability, organelle selectivity, low cytotoxicity and fast internalization. These findings make the presented Glyco-Re derivatives efficient phosphorescent probes suitable for cell imaging application.
Phenotypic Profiling of Scedosporium aurantiacum, an Opportunistic Pathogen Colonizing Human Lungs
Kaur, Jashanpreet; Duan, Shu Yao; Vaas, Lea A. I.; Penesyan, Anahit; Meyer, Wieland; Paulsen, Ian T.; Nevalainen, Helena
2015-01-01
Genotyping studies of Australian Scedosporium isolates have revealed the strong prevalence of a recently described species: Scedosporium aurantiacum. In addition to occurring in the environment, this fungus is also known to colonise the respiratory tracts of cystic fibrosis (CF) patients. A high throughput Phenotype Microarray (PM) analysis using 94 assorted substrates (sugars, amino acids, hexose-acids and carboxylic acids) was carried out for four isolates exhibiting different levels of virulence, determined using a Galleria mellonella infection model. A significant difference was observed in the substrate utilisation patterns of strains displaying differential virulence. For example, certain sugars such as sucrose (saccharose) were utilised only by low virulence strains whereas some sugar derivatives such as D-turanose promoted respiration only in the more virulent strains. Strains with a higher level of virulence also displayed flexibility and metabolic adaptability at two different temperature conditions tested (28 and 37°C). Phenotype microarray data were integrated with the whole-genome sequence data of S. aurantiacum to reconstruct a pathway map for the metabolism of selected substrates to further elucidate differences between the strains. PMID:25811884
Phenotypic profiling of Scedosporium aurantiacum, an opportunistic pathogen colonizing human lungs.
Kaur, Jashanpreet; Duan, Shu Yao; Vaas, Lea A I; Penesyan, Anahit; Meyer, Wieland; Paulsen, Ian T; Nevalainen, Helena
2015-01-01
Genotyping studies of Australian Scedosporium isolates have revealed the strong prevalence of a recently described species: Scedosporium aurantiacum. In addition to occurring in the environment, this fungus is also known to colonise the respiratory tracts of cystic fibrosis (CF) patients. A high throughput Phenotype Microarray (PM) analysis using 94 assorted substrates (sugars, amino acids, hexose-acids and carboxylic acids) was carried out for four isolates exhibiting different levels of virulence, determined using a Galleria mellonella infection model. A significant difference was observed in the substrate utilisation patterns of strains displaying differential virulence. For example, certain sugars such as sucrose (saccharose) were utilised only by low virulence strains whereas some sugar derivatives such as D-turanose promoted respiration only in the more virulent strains. Strains with a higher level of virulence also displayed flexibility and metabolic adaptability at two different temperature conditions tested (28 and 37°C). Phenotype microarray data were integrated with the whole-genome sequence data of S. aurantiacum to reconstruct a pathway map for the metabolism of selected substrates to further elucidate differences between the strains.
Ching, Kuan-Chieh; Tran, Thi Ngoc Quy; Amrun, Siti Naqiah; Kam, Yiu-Wing; Ng, Lisa F P; Chai, Christina L L
2017-04-13
Chikungunya virus (CHIKV) is a re-emerging vector-borne alphavirus, and there is no approved effective antiviral treatment currently available for CHIKV. We previously reported the discovery of thieno[3,2-b]pyrrole 1b that displayed good antiviral activity against CHIKV infection in vitro. However, it has a short half-life in the presence of human liver microsomes (HLMs) (T 1/2 = 2.91 min). Herein, we report further optimization studies in which potential metabolically labile sites on compound 1b were removed or modified, resulting in the identification of thieno[3,2-b]pyrrole 20 and pyrrolo[2,3-d]thiazole 23c possessing up to 17-fold increase in metabolic half-lives in HLMs and good in vivo pharmacokinetic properties. Compound 20 not only attenuated viral RNA production and displayed broad-spectrum antiviral activity against other alphaviruses and CHIKV isolates but also exhibited limited cytotoxic liability (CC 50 > 100 μM). These studies have identified two compounds that have the potential for further development as antiviral drugs against CHIKV infection.
Segrelles, Carmen; Moral, Marta; Lorz, Corina; Santos, Mirentxu; Lu, Jerry; Cascallana, José Luis; Lara, M. Fernanda; Carbajal, Steve; Martínez-Cruz, Ana Belén; García-Escudero, Ramón; Beltran, Linda; Segovia, José C.; Bravo, Ana
2008-01-01
Aberrant activation of the Akt pathway has been implicated in several human pathologies including cancer. However, current knowledge on the involvement of Akt signaling in development is limited. Previous data have suggested that Akt-mediated signaling may be an essential mediator of epidermal homeostasis through cell autonomous and noncell autonomous mechanisms. Here we report the developmental consequences of deregulated Akt activity in the basal layer of stratified epithelia, mediated by the expression of a constitutively active Akt1 (myrAkt) in transgenic mice. Contrary to mice overexpressing wild-type Akt1 (Aktwt), these myrAkt mice display, in a dose-dependent manner, altered development of ectodermally derived organs such as hair, teeth, nails, and epidermal glands. To identify the possible molecular mechanisms underlying these alterations, gene profiling approaches were used. We demonstrate that constitutive Akt activity disturbs the bone morphogenetic protein-dependent signaling pathway. In addition, these mice also display alterations in adult epidermal stem cells. Collectively, we show that epithelial tissue development and homeostasis is dependent on proper regulation of Akt expression and activity. PMID:17959825
Benchabane, Yohann; Di Giorgio, Carole; Boyer, Gérard; Sabatier, Anne-Sophie; Allegro, Diane; Peyrot, Vincent; De Méo, Michel
2009-06-01
The cytotoxicity and photo-enhanced cytotoxicity of a series of 18 3,6-di-substituted acridines were evaluated on both tumour CHO cells and human normal keratinocytes, and compared to their corresponding clastogenicity as assessed by the micronucleus assay. Compounds 2f tert-butyl N-[(6-tert-butoxycarbonylamino)acridin-3-yl]carbamate and 2d N-[6-(pivalamino)acridin-3-yl]pivalamide displayed a specific cytotoxicity on CHO cells. These results suggested that the two derivatives could be considered as interesting candidates for anticancer chemotherapy and hypothesized that the presence of 1,1-dimethylethyl substituents was responsible for a strong nonclastogenic cytotoxicity. Compounds 2b and 2c, on the contrary, displayed a strong clastogenicity. They indicated that the presence of nonbranched aliphatic chains on positions 3 and 6 of the acridine rings tended to induce a significant clastogenic effect. Finally, they established that most of the acridine compounds could be photo-activated by UVA-visible rays and focussed on the significant role of light irradiation on their biological properties.
The marine cytotoxin portimine is a potent and selective inducer of apoptosis.
Cuddihy, Sarah L; Drake, Sarah; Harwood, D Tim; Selwood, Andrew I; McNabb, Paul S; Hampton, Mark B
2016-12-01
Portimine is a recently discovered member of a class of marine micro-algal toxins called cyclic imines. In dramatic contrast to related compounds in this toxin class, portimine has very low acute toxicity to mice but is highly cytotoxic to cultured cells. In this study we show that portimine kills human Jurkat T-lymphoma cells and mouse embryonic fibroblasts (MEFs), with LC 50 values of 6 and 2.5 nM respectively. Treated cells displayed rapid caspase activation and phosphatidylserine exposure, indicative of apoptotic cell death. Jurkat cells overexpressing the anti-apoptotic protein Bcl-2 or Bax/Bak knockout MEFs were completely protected from portimine. This protection was apparent even at high concentrations of portimine, with no evidence of necrotic cell death, indicating that portimine is a selective chemical inducer of apoptosis. Treatment of the Bcl-2-overexpressing cells with both portimine and the Bcl-2 inhibitor ABT-737 proved a powerful combination, causing >90 % death. We conclude that portimine is one of the most potent naturally derived inducers of apoptosis to be discovered, and it displays strong selectivity for the induction of apoptotic pathways.
Novel phage display-derived H5N1-specific scFvs with potential use in rapid avian flu diagnosis.
Wu, Jie; Zeng, Xian-Qiao; Zhang, Hong-Bin; Ni, Han-Zhong; Pei, Lei; Zou, Li-Rong; Liang, Li-Jun; Zhang, Xin; Lin, Jin-Yan; Ke, Chang-Wen
2014-05-01
The highly pathogenic avian influenza A (HPAI) viruses of the H5N1 subtype infect poultry and have also been spreading to humans. Although new antiviral drugs and vaccinations can be effective, rapid detection would be more efficient to control the outbreak of infections. In this study, a phage-display library was applied to select antibody fragments for HPAI strain A/Hubei/1/2010. As a result, three clones were selected and sequenced. A hemagglutinin inhibition assay of the three scFvs revealed that none exhibited hemagglutination inhibition activity towards the H5N1 virus, yet they showed a higher binding affinity for several HPAI H5N1 strains compared with other influenza viruses. An ELISA confirmed that the HA protein was the target of the scFvs, and the results of a protein structure simulation showed that all the selected scFvs bound to the HA2 subunit of the HA protein. In conclusion, the three selected scFVs could be useful for developing a specific detection tool for the surveillance of HPAI epidemic strains.
NASA Technical Reports Server (NTRS)
Granaas, Michael M.; Rhea, Donald C.
1989-01-01
In recent years the needs of ground-based researcher-analysts to access real-time engineering data in the form of processed information has expanded rapidly. Fortunately, the capacity to deliver that information has also expanded. The development of advanced display systems is essential to the success of a research test activity. Those developed at the National Aeronautics and Space Administration (NASA), Western Aeronautical Test Range (WATR), range from simple alphanumerics to interactive mapping and graphics. These unique display systems are designed not only to meet basic information display requirements of the user, but also to take advantage of techniques for optimizing information display. Future ground-based display systems will rely heavily not only on new technologies, but also on interaction with the human user and the associated productivity with that interaction. The psychological abilities and limitations of the user will become even more important in defining the difference between a usable and a useful display system. This paper reviews the requirements for development of real-time displays; the psychological aspects of design such as the layout, color selection, real-time response rate, and interactivity of displays; and an analysis of some existing WATR displays.
A system for tracking braille readers using a Wii Remote and a refreshable braille display.
Aranyanak, Inthraporn; Reilly, Ronan G
2013-03-01
This article describes a cheap and easy-to-use finger-tracking system for studying braille reading. It provides improved spatial and temporal resolution over the current available solutions and can be used with either a refreshable braille display or braille-embossed paper. In conjunction with a refreshable braille display, the tracking system has the unique capacity to implement display-change paradigms derived from sighted reading research. This will allow researchers to probe skilled braille reading in significantly more depth than has heretofore been possible.
Inhibitory effects of magnolol and honokiol on human calcitonin aggregation
Guo, Caiao; Ma, Liang; Zhao, Yudan; Peng, Anlin; Cheng, Biao; Zhou, Qiaoqiao; Zheng, Ling; Huang, Kun
2015-01-01
Amyloid formation is associated with multiple amyloidosis diseases. Human calcitonin (hCT) is a typical amyloidogenic peptide, its aggregation is associated with medullary carcinoma of the thyroid (MTC), and also limits its clinical application. Magnolia officinalis is a traditional Chinese herbal medicine; its two major polyphenol components, magnolol (Mag) and honokiol (Hon), have displayed multiple functions. Polyphenols like flavonoids and their derivatives have been extensively studied as amyloid inhibitors. However, the anti-amyloidogenic property of a biphenyl backbone containing polyphenols such as Mag and Hon has not been reported. In this study, these two compounds were tested for their effects on hCT aggregation. We found that Mag and Hon both inhibited the amyloid formation of hCT, whereas Mag showed a stronger inhibitory effect; moreover, they both dose-dependently disassembled preformed hCT aggregates. Further immuno-dot blot and dynamic light scattering studies suggested Mag and Hon suppressed the aggregation of hCT both at the oligomerization and the fibrillation stages, while MTT-based and dye-leakage assays demonstrated that Mag and Hon effectively reduced cytotoxicity caused by hCT aggregates. Furthermore, isothermal titration calorimetry indicated Mag and Hon both interact with hCT. Together, our study suggested a potential anti-amyloidogenic property of these two compounds and their structure related derivatives. PMID:26324190
Neuner, Philippe; Peier, Andrea M; Talamo, Fabio; Ingallinella, Paolo; Lahm, Armin; Barbato, Gaetano; Di Marco, Annalise; Desai, Kunal; Zytko, Karolina; Qian, Ying; Du, Xiaobing; Ricci, Davide; Monteagudo, Edith; Laufer, Ralph; Pocai, Alessandro; Bianchi, Elisabetta; Marsh, Donald J; Pessi, Antonello
2014-01-01
Neuromedin U (NMU) is an endogenous peptide implicated in the regulation of feeding, energy homeostasis, and glycemic control, which is being considered for the therapy of obesity and diabetes. A key liability of NMU as a therapeutic is its very short half-life in vivo. We show here that conjugation of NMU to human serum albumin (HSA) yields a compound with long circulatory half-life, which maintains full potency at both the peripheral and central NMU receptors. Initial attempts to conjugate NMU via the prevalent strategy of reacting a maleimide derivative of the peptide with the free thiol of Cys34 of HSA met with limited success, because the resulting conjugate was unstable in vivo. Use of a haloacetyl derivative of the peptide led instead to the formation of a metabolically stable conjugate. HSA-NMU displayed long-lasting, potent anorectic, and glucose-normalizing activity. When compared side by side with a previously described PEG conjugate, HSA-NMU proved superior on a molar basis. Collectively, our results reinforce the notion that NMU-based therapeutics are promising candidates for the treatment of obesity and diabetes. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.
Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D
2014-01-01
The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.
A virtual display system for conveying three-dimensional acoustic information
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.; Wightman, Frederic L.; Foster, Scott H.
1988-01-01
The development of a three-dimensional auditory display system is discussed. Theories of human sound localization and techniques for synthesizing various features of auditory spatial perceptions are examined. Psychophysical data validating the system are presented. The human factors applications of the system are considered.
Human machine interface display design document.
DOT National Transportation Integrated Search
2008-01-01
The purpose of this document is to describe the design for the human machine interface : (HMI) display for the Next Generation 9-1-1 (NG9-1-1) System (or system of systems) : based on the initial Tier 1 requirements identified for the NG9-1-1 S...
DOT National Transportation Integrated Search
2004-09-01
The Federal Aviation Administration (FAA) has requested human factors guidance to support the new moving map Technical Standard Order (TSO)-C165, Electronic Map Display Equipment for Graphical Depiction of Aircraft Position. This document was develop...
NASA Astrophysics Data System (ADS)
Marshak, William P.; Darkow, David J.; Wesler, Mary M.; Fix, Edward L.
2000-08-01
Computer-based display designers have more sensory modes and more dimensions within sensory modality with which to encode information in a user interface than ever before. This elaboration of information presentation has made measurement of display/format effectiveness and predicting display/format performance extremely difficult. A multivariate method has been devised which isolates critical information, physically measures its signal strength, and compares it with other elements of the display, which act like background noise. This common Metric relates signal-to-noise ratios (SNRs) within each stimulus dimension, then combines SNRs among display modes, dimensions and cognitive factors can predict display format effectiveness. Examples with their Common Metric assessment and validation in performance will be presented along with the derivation of the metric. Implications of the Common Metric in display design and evaluation will be discussed.
NASA Astrophysics Data System (ADS)
Yang, Bing; Yang, Yu-Shun; Yang, Na; Li, Guigen; Zhu, Hai-Liang
2016-06-01
A series of novel dioxin-containing pyrazoline derivatives with thiourea skeleton have been designed, synthesized and evaluated for their EGFR/HER-2 inhibitory and anti-proliferation activities. A majority of them displayed selective HER-2 inhibitory activity against EGFR inhibitory activity. Compound C20 displayed the most potent activity against HER-2 and MDA-MB-453 human breast cancer cell line (IC50 = 0.03 μM and GI50 = 0.15 μM), being slightly more potent than the positive control Erlotinib (IC50 = 0.16 μM and GI50 = 1.56 μM) and comparable with Lapatinib (IC50 = 0.01 μM and GI50 = 0.03 μM). It is a more exciting result that C20 was over 900 times more potent against HER-2 than against EGFR while this value was 0.19 for Erlotinib and 1.00 for Lapatinib, indicating high selectivity. The results of docking simulation indicate that the dioxin moiety occupied the exit of the active pocket and pushed the carbothioamide deep into the active site. QSAR models have been built with activity data and binding conformations to begin our work in this paper as well as to provide a reliable tool for reasonable design of EGFR/HER-2 inhibitors in future.
Synthesis, characterization and antimicrobial activity of some novel benzimidazole derivatives
Krishnanjaneyulu, Immadisetty Sri; Saravanan, Govindaraj; Vamsi, Janga; Supriya, Pamidipamula; Bhavana, Jarugula Udaya; Sunil Kumar, Mittineni Venkata
2014-01-01
A series of novel N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-substituted-4, 5-dihydro-1H-pyrazol-3-yl) benzenamine were synthesized by treating various 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one with phenyl hydrazine in the presence of sodium acetate through a simple ring closure reaction. The starting material, 1-(4-((1H-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one,-benzoimidazol-1-yl) methylamino) phenyl)-3-substitutedprop-2-en-1-one, was synthesized from o-phenylenediamine by a multistep synthesis. All the synthesized compounds were characterized by spectroscopic means and elemental analyses. The title compounds were investigated for in vitro antibacterial and antifungal properties against some human pathogenic microorganisms by employing the agar streak dilution method using Ciprofloxacin and Ketoconazole as standard drugs. All title compounds showed activity against the entire strains of microorganism. Structural activity relationship studies reveal that compounds possessing an electron-withdrawing group display better activity than the compounds containing electron-donating groups, whereas the unsubstituted derivatives display moderate activity. Based on the results obtained, N-((1H-benzoimidazol-1-yl) methyl)-4-(1-phenyl-5-(4-(trifluoromethyl) phenyl)-4,5-dihydro-1H-pyrazol-3-yl) benzenamine 5i was found to be very active compared with the rest of the compounds and standard drugs that were subjected to antimicrobial assay. PMID:24696814
Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A
1999-01-01
The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974
Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K; Paranjape, Shruti M; Montelaro, Ronald C; Mietzner, Timothy A
2005-08-01
Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg(2+) and Ca(2+) ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg(2+) and Ca(2+). WLBU2 is able to kill P. aeruginosa (10(6) CFU/ml) in human serum, with a minimum bactericidal concentration of <9 microM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 microM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis.
Deslouches, Berthony; Islam, Kazi; Craigo, Jodi K.; Paranjape, Shruti M.; Montelaro, Ronald C.; Mietzner, Timothy A.
2005-01-01
Cationic amphipathic peptides have been extensively investigated as a potential source of new antimicrobials that can complement current antibiotic regimens in the face of emerging drug-resistant bacteria. However, the suppression of antimicrobial activity under certain biologically relevant conditions (e.g., serum and physiological salt concentrations) has hampered efforts to develop safe and effective antimicrobial peptides for clinical use. We have analyzed the activity and selectivity of the human peptide LL37 and the de novo engineered antimicrobial peptide WLBU2 in several biologically relevant conditions. The host-derived synthetic peptide LL37 displayed high activity against Pseudomonas aeruginosa but demonstrated staphylococcus-specific sensitivity to NaCl concentrations varying from 50 to 300 mM. Moreover, LL37 potency was variably suppressed in the presence of 1 to 6 mM Mg2+ and Ca2+ ions. In contrast, WLBU2 maintained its activity in NaCl and physiologic serum concentrations of Mg2+ and Ca2+. WLBU2 is able to kill P. aeruginosa (106 CFU/ml) in human serum, with a minimum bactericidal concentration of <9 μM. Conversely, LL37 is inactive in the presence of human serum. Bacterial killing kinetic assays in serum revealed that WLBU2 achieved complete bacterial killing in 20 min. Consistent with these results was the ability of WLBU2 (15 to 20 μM) to eradicate bacteria from ex vivo samples of whole blood. The selectivity of WLBU2 was further demonstrated by its ability to specifically eliminate P. aeruginosa in coculture with human monocytes or skin fibroblasts without detectable adverse effects to the host cells. Finally, WLBU2 displayed potent efficacy against P. aeruginosa in an intraperitoneal infection model using female Swiss Webster mice. These results establish a potential application of WLBU2 in the treatment of bacterial sepsis. PMID:16048927
Molecular Design, Structural Analysis and Antifungal Activity of Derivatives of Peptide CGA-N46.
Li, Rui-Fang; Lu, Zhi-Fang; Sun, Ya-Nan; Chen, Shi-Hua; Yi, Yan-Jie; Zhang, Hui-Ru; Yang, Shuo-Ye; Yu, Guang-Hai; Huang, Liang; Li, Chao-Nan
2016-09-01
Chromogranin A (CGA)-N46, a derived peptide of human chromogranin A, has antifungal activity. To further research the active domain of CGA-N46, a series of derivatives were designed by successively deleting amino acid from both terminus of CGA-N46, and the amino acid sequence of each derivative was analyzed by bioinformatic software. Based on the predicted physicochemical properties of the peptides, including half-life time in mammalian reticulocytes (in vitro), yeast (in vivo) and E. coli (in vivo), instability index, aliphatic index and grand average of hydropathicity (GRAVY), the secondary structure, net charge, the distribution of hydrophobic residues and hydrophilic residues, the final derivatives CGA-N15, CGA-N16, CGA-N12 and CGA-N8 were synthesized by solid-phase peptide synthesis. The results of bioinformatic analysis showed that CGA-N46 and its derivatives were α-helix, neutral or weak positive charge, hydrophilic, and CGA-N12 and CGA-N8 were more stable than the other derivatives. The results of circular dichroism confirmed that CGA-N46 and its derived peptides displayed α-helical structure in an aqueous solution and 30 mM sodium dodecylsulfate, but α-helical contents decreased in hydrophobic lipid vesicles. CGA-N15, CGA-N16, CGA-N12 and CGA-N8 had higher antifungal activities than their mother peptide CGA-N46. Among of the derived peptides, CGA-N12 showed the least hemolytic activity. In conclusion, we have successfully identified the active domain of CGA-N46 with strong antifungal activity and weak hemolytic activity, which provides the possibility to develop a new class of antibiotics.
Evaluation of stereoscopic display with visual function and interview
NASA Astrophysics Data System (ADS)
Okuyama, Fumio
1999-05-01
The influence of binocular stereoscopic (3D) television display on the human eye were compared with one of a 2D display, using human visual function testing and interviews. A 40- inch double lenticular display was used for 2D/3D comparison experiments. Subjects observed the display for 30 minutes at a distance 1.0 m, with a combination of 2D material and one of 3D material. The participants were twelve young adults. Main optometric test with visual function measured were visual acuity, refraction, phoria, near vision point, accommodation etc. The interview consisted of 17 questions. Testing procedures were performed just before watching, just after watching, and forty-five minutes after watching. Changes in visual function are characterized as prolongation of near vision point, decrease of accommodation and increase in phoria. 3D viewing interview results show much more visual fatigue in comparison with 2D results. The conclusions are: 1) change in visual function is larger and visual fatigue is more intense when viewing 3D images. 2) The evaluation method with visual function and interview proved to be very satisfactory for analyzing the influence of stereoscopic display on human eye.
The Pre-History of Urban Scaling
Ortman, Scott G.; Cabaniss, Andrew H. F.; Sturm, Jennie O.; Bettencourt, Luís M. A.
2014-01-01
Cities are increasingly the fundamental socio-economic units of human societies worldwide, but we still lack a unified characterization of urbanization that captures the social processes realized by cities across time and space. This is especially important for understanding the role of cities in the history of human civilization and for determining whether studies of ancient cities are relevant for contemporary science and policy. As a step in this direction, we develop a theory of settlement scaling in archaeology, deriving the relationship between population and settled area from a consideration of the interplay between social and infrastructural networks. We then test these models on settlement data from the Pre-Hispanic Basin of Mexico to show that this ancient settlement system displays spatial scaling properties analogous to those observed in modern cities. Our data derive from over 1,500 settlements occupied over two millennia and spanning four major cultural periods characterized by different levels of agricultural productivity, political centralization and market development. We show that, in agreement with theory, total settlement area increases with population size, on average, according to a scale invariant relation with an exponent in the range . As a consequence, we are able to infer aggregate socio-economic properties of ancient societies from archaeological measures of settlement organization. Our findings, from an urban settlement system that evolved independently from its old-world counterparts, suggest that principles of settlement organization are very general and may apply to the entire range of human history. PMID:24533062
Patel, Jatin; Seppanen, Elke; Chong, Mark S.K.; Yeo, Julie S.L.; Teo, Erin Y.L.; Chan, Jerry K.Y.; Fisk, Nicholas M.
2013-01-01
The term placenta is a highly vascularized tissue and is usually discarded upon birth. Our objective was to isolate clinically relevant quantities of fetal endothelial colony-forming cells (ECFCs) from human term placenta and to compare them to the well-established donor-matched umbilical cord blood (UCB)-derived ECFCs. A sorting strategy was devised to enrich for CD45−CD34+CD31Lo cells prior to primary plating to obtain pure placental ECFCs (PL-ECFCs) upon culture. UCB-ECFCs were derived using a well-described assay. PL-ECFCs were fetal in origin and expressed the same cell surface markers as UCB-ECFCs. Most importantly, a single term placenta could yield as many ECFCs as 27 UCB donors. PL-ECFCs and UCB-ECFCs had similar in vitro and in vivo vessel forming capacities and restored mouse hind limb ischemia in similar proportions. Gene expression profiles were only minimally divergent between PL-ECFCs and UCB-ECFCs, probably reflecting a vascular source versus a circulating source. Finally, PL-ECFCs and UCB-ECFCs displayed similar hierarchies between high and low proliferative colonies. We report a robust strategy to isolate ECFCs from human term placentas based on their cell surface expression. This yielded much larger quantities of ECFCs than UCB, but the cells were comparable in immunophenotype, gene expression, and in vivo functional ability. We conclude that PL-ECFCs have significant bio-banking and clinical translatability potential. PMID:24106336
Jeziorowska, Dorota; Fontaine, Vincent; Jouve, Charlène; Villard, Eric; Dussaud, Sébastien; Akbar, David; Letang, Valérie; Cervello, Pauline; Itier, Jean-Michiel; Pruniaux, Marie-Pierre; Hulot, Jean-Sébastien
2017-01-01
Human induced pluripotent stem cells (iPSCs) represent a powerful human model to study cardiac disease in vitro, notably channelopathies and sarcomeric cardiomyopathies. Different protocols for cardiac differentiation of iPSCs have been proposed either based on embroid body formation (3D) or, more recently, on monolayer culture (2D). We performed a direct comparison of the characteristics of the derived cardiomyocytes (iPSC-CMs) on day 27 ± 2 of differentiation between 3D and 2D differentiation protocols with two different Wnt-inhibitors were compared: IWR1 (inhibitor of Wnt response) or IWP2 (inhibitor of Wnt production). We firstly found that the level of Troponin T (TNNT2) expression measured by FACS was significantly higher for both 2D protocols as compared to the 3D protocol. In the three methods, iPSC-CM show sarcomeric structures. However, iPSC-CM generated in 2D protocols constantly displayed larger sarcomere lengths as compared to the 3D protocol. In addition, mRNA and protein analyses reveal higher cTNi to ssTNi ratios in the 2D protocol using IWP2 as compared to both other protocols, indicating a higher sarcomeric maturation. Differentiation of cardiac myocytes with 2D monolayer-based protocols and the use of IWP2 allows the production of higher yield of cardiac myocytes that have more suitable characteristics to study sarcomeric cardiomyopathies. PMID:28587156
Burastero, Samuele E.; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo
2011-01-01
To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1. PMID:21818294
Burastero, Samuele E; Frigerio, Barbara; Lopalco, Lucia; Sironi, Francesca; Breda, Daniela; Longhi, Renato; Scarlatti, Gabriella; Canevari, Silvana; Figini, Mariangela; Lusso, Paolo
2011-01-01
To penetrate susceptible cells, HIV-1 sequentially interacts with two highly conserved cellular receptors, CD4 and a chemokine receptor like CCR5 or CXCR4. Monoclonal antibodies (MAbs) directed against such receptors are currently under clinical investigation as potential preventive or therapeutic agents. We immunized Balb/c mice with molecular complexes of the native, trimeric HIV-1 envelope (Env) bound to a soluble form of the human CD4 receptor. Sera from immunized mice were found to contain gp120-CD4 complex-enhanced antibodies and showed broad-spectrum HIV-1-inhibitory activity. A proportion of MAbs derived from these mice preferentially recognized complex-enhanced epitopes. In particular, a CD4-specific MAb designated DB81 (IgG1Κ) was found to preferentially bind to a complex-enhanced epitope on the D2 domain of human CD4. MAb DB81 also recognized chimpanzee CD4, but not baboon or macaque CD4, which exhibit sequence divergence in the D2 domain. Functionally, MAb DB81 displayed broad HIV-1-inhibitory activity, but it did not exert suppressive effects on T-cell activation in vitro. The variable regions of the heavy and light chains of MAb DB81 were sequenced. Due to its broad-spectrum anti-HIV-1 activity and lack of immunosuppressive effects, a humanized derivative of MAb DB81 could provide a useful complement to current preventive or therapeutic strategies against HIV-1.
The pre-history of urban scaling.
Ortman, Scott G; Cabaniss, Andrew H F; Sturm, Jennie O; Bettencourt, Luís M A
2014-01-01
Cities are increasingly the fundamental socio-economic units of human societies worldwide, but we still lack a unified characterization of urbanization that captures the social processes realized by cities across time and space. This is especially important for understanding the role of cities in the history of human civilization and for determining whether studies of ancient cities are relevant for contemporary science and policy. As a step in this direction, we develop a theory of settlement scaling in archaeology, deriving the relationship between population and settled area from a consideration of the interplay between social and infrastructural networks. We then test these models on settlement data from the Pre-Hispanic Basin of Mexico to show that this ancient settlement system displays spatial scaling properties analogous to those observed in modern cities. Our data derive from over 1,500 settlements occupied over two millennia and spanning four major cultural periods characterized by different levels of agricultural productivity, political centralization and market development. We show that, in agreement with theory, total settlement area increases with population size, on average, according to a scale invariant relation with an exponent in the range [Formula: see text]. As a consequence, we are able to infer aggregate socio-economic properties of ancient societies from archaeological measures of settlement organization. Our findings, from an urban settlement system that evolved independently from its old-world counterparts, suggest that principles of settlement organization are very general and may apply to the entire range of human history.
Pathan, A A; Wilkinson, K A; Wilkinson, R J; Latif, M; McShane, H; Pasvol, G; Hill, A V; Lalvani, A
2000-09-01
MHC class I-restricted CD8 cytotoxic T lymphocytes (CTL) are essential for protective immunity to Mycobacterium tuberculosis in animal models but their role in humans remains unclear. We therefore studied subjects who had successfully contained M. tuberculosis infection in vivo, i.e. exposed healthy household contacts and individuals with inactive self-healed pulmonary tuberculosis. Using the ELISPOT assay for IFN-gamma, we screened peptides from ESAT-6, a secreted antigen that is highly specific for M. tuberculosis. We identified a novel nonamer epitope: unstimulated peripheral blood-derived CD8 T cells displayed peptide-specific IFN-gamma release ex vivo while CD8 T cell lines and clones exhibited HLA-A68.02-restricted cytolytic activity and recognized endogenously processed antigen. The frequency of CD8 CTL specific for this single M. tuberculosis epitope, 1/2500 peripheral blood lymphocytes, was equivalent to the combined frequency of all IFN-gamma-secreting purified protein derivative-reactive T cells ex vivo. This highly focused CTL response was maintained in an asymptomatic contact over 2 years and is the most potent antigen-specific antimycobacterial CD8 CTL response hitherto described. Thus, human M. tuberculosis-specific CD8 CTL are not necessarily associated with active disease per se. Rather, our results are consistent with a protective role for these ESAT-6-specific CD8 T cells in the long-term control of M. tuberculosis in vivo in humans.
Comparative Study of the MTFA, ICS, and SQRI Image Quality Metrics for Visual Display Systems
1991-09-01
reasonable image quality predictions across select display and viewing condition parameters. 101 6.0 REFERENCES American National Standard for Human Factors Engineering of ’ Visual Display Terminal Workstations . ANSI
Three-dimensional display technologies
Geng, Jason
2014-01-01
The physical world around us is three-dimensional (3D), yet traditional display devices can show only two-dimensional (2D) flat images that lack depth (i.e., the third dimension) information. This fundamental restriction greatly limits our ability to perceive and to understand the complexity of real-world objects. Nearly 50% of the capability of the human brain is devoted to processing visual information [Human Anatomy & Physiology (Pearson, 2012)]. Flat images and 2D displays do not harness the brain’s power effectively. With rapid advances in the electronics, optics, laser, and photonics fields, true 3D display technologies are making their way into the marketplace. 3D movies, 3D TV, 3D mobile devices, and 3D games have increasingly demanded true 3D display with no eyeglasses (autostereoscopic). Therefore, it would be very beneficial to readers of this journal to have a systematic review of state-of-the-art 3D display technologies. PMID:25530827
A look at motion in the frequency domain
NASA Technical Reports Server (NTRS)
Watson, A. B.; Ahumada, A. J., Jr.
1983-01-01
A moving image can be specified by a contrast distribution, c(x,y,t), over the dimensions of space x,y, and time t. Alternatively, it can be specified by the distribution C(u,v,w) over spatial frequency u,v and temporal frequency w. The frequency representation of a moving image is shown to have a characteristic form. This permits two useful observations. The first is that the apparent smoothness of time-sampled moving images (apparent motion) can be explained by the filtering action of the human visual system. This leads to the following formula for the required update rate for time-sampled displays. W(c)=W(l)+ru(l) where w(c) is the required update rate in Hz, W(l) is the limit of human temporal resolution in Hz, r is the velocity of the moving image in degrees/sec, and u(l) is the limit of human spatial resolution in cycles/deg. The second observation is that it is possible to construct a linear sensor that responds to images moving in a particular direction. The sensor is derived and its properties are discussed.
Li, Tiehai; Li, Zhonghua; Li, Jing; Wang, Jiajia; Guo, Lina; Wang, Peng George; Zhao, Wei
2012-11-15
Protein O-GlcNAc glycosylation is a ubiquitous post-translational modification in metazoans. O-GlcNAcase (OGA), which is responsible for removing O-GlcNAc from serine or threonine residues, plays a key role in O-GlcNAc metabolism. Potent and selective O-GlcNAcase (OGA) inhibitors are useful tools for investigating the role of this modification in a broad range of cellular processes, and may also serve as drug candidates for treatment of neurodegenerative diseases. Biological screening of the gluco-configured tetrahydroimidazopyridine derivatives identified a compound as a potent and competitive inhibitor of human O-GlcNAcase (OGA) with a K(i) of 5.9 μM, and it also displayed 28-fold selectivity for human OGA over human lysosomal β-hexosaminidase A (Hex A, K(i)=163 μM). In addition, cell-based assay revealed that this compound was cell-permeant and effectively induced cellular hyper-O-GlcNAcylation at 10 μM concentration. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Olivos-García, Alfonso; Saavedra, Emma; Nequiz, Mario; Santos, Fabiola; Luis-García, Erika Rubí; Gudiño, Marco; Pérez-Tamayo, Ruy
2016-05-01
Several species belonging to the genus Entamoeba can colonize the mouth or the human gut; however, only Entamoeba histolytica is pathogenic to the host, causing the disease amoebiasis. This illness is responsible for one hundred thousand human deaths per year worldwide, affecting mainly underdeveloped countries. Throughout its entire life cycle and invasion of human tissues, the parasite is constantly subjected to stress conditions. Under in vitro culture, this microaerophilic parasite can tolerate up to 5 % oxygen concentrations; however, during tissue invasion the parasite has to cope with the higher oxygen content found in well-perfused tissues (4-14 %) and with reactive oxygen and nitrogen species derived from both host and parasite. In this work, the role of the amoebic oxygen reduction pathway (ORP) and heat shock response (HSP) are analyzed in relation to E. histolytica pathogenicity. The data suggest that in contrast with non-pathogenic E. dispar, the higher level of ORP and HSPs displayed by E. histolytica enables its survival in tissues by diminishing and detoxifying intracellular oxidants and repairing damaged proteins to allow metabolic fluxes, replication and immune evasion.
Dębowski, Dawid; Łukajtis, Rafał; Łęgowska, Anna; Karna, Natalia; Pikuła, Michał; Wysocka, Magdalena; Maliszewska, Irena; Sieńczyk, Marcin; Lesner, Adam; Rolka, Krzysztof
2012-06-01
A series of linear and cyclic fragments and analogs of two peptides (OGTI and HV-BBI) isolated from skin secretions of frogs were synthesized by the solid-phase method. Their inhibitory activity against several serine proteinases: bovine β-trypsin, bovine α-chymotypsin, human leukocyte elastase and cathepsin G from human neutrophils, was investigated together with evaluation of their antimicrobial activities against Gram-negative bacteria (Escherichia coli) and Gram-positive species isolated from patients (Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus sp., Streptococcus sp.). The cytotoxicity of the selected peptides toward an immortal human skin fibroblast cell line was also determined. Three peptides: HV-BBI, its truncated fragment HV-BBI(3-18) and its analog [Phe(8)]HV-BBI can be considered as bifunctional compounds with inhibitory as well as antibacterial properties. OGTI, although it did not display trypsin inhibitory activity as previously reported in the literature, exerted antimicrobial activity toward S. epidermidis. In addition, under our experimental conditions, this peptide did not show cytotoxicity. Copyright © 2012 Elsevier Inc. All rights reserved.
A Perspective on Computational Human Performance Models as Design Tools
NASA Technical Reports Server (NTRS)
Jones, Patricia M.
2010-01-01
The design of interactive systems, including levels of automation, displays, and controls, is usually based on design guidelines and iterative empirical prototyping. A complementary approach is to use computational human performance models to evaluate designs. An integrated strategy of model-based and empirical test and evaluation activities is particularly attractive as a methodology for verification and validation of human-rated systems for commercial space. This talk will review several computational human performance modeling approaches and their applicability to design of display and control requirements.
Abrupt Holocene climate change as an important factor for human migration in West Greenland
D’Andrea, William J.; Huang, Yongsong; Fritz, Sherilyn C.; Anderson, N. John
2011-01-01
West Greenland has had multiple episodes of human colonization and cultural transitions over the past 4,500 y. However, the explanations for these large-scale human migrations are varied, including climatic factors, resistance to adaptation, economic marginalization, mercantile exploration, and hostile neighborhood interactions. Evaluating the potential role of climate change is complicated by the lack of quantitative paleoclimate reconstructions near settlement areas and by the relative stability of Holocene temperature derived from ice cores atop the Greenland ice sheet. Here we present high-resolution records of temperature over the past 5,600 y based on alkenone unsaturation in sediments of two lakes in West Greenland. We find that major temperature changes in the past 4,500 y occurred abruptly (within decades), and were coeval in timing with the archaeological records of settlement and abandonment of the Saqqaq, Dorset, and Norse cultures, which suggests that abrupt temperature changes profoundly impacted human civilization in the region. Temperature variations in West Greenland display an antiphased relationship to temperature changes in Ireland over centennial to millennial timescales, resembling the interannual to multidecadal temperature seesaw associated with the North Atlantic Oscillation. PMID:21628586
Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin.
McLaughlin, Heather P; Motherway, Mary O'Connell; Lakshminarayanan, Bhuvaneswari; Stanton, Catherine; Paul Ross, R; Brulc, Jennifer; Menon, Ravi; O'Toole, Paul W; van Sinderen, Douwe
2015-06-16
Because increased proportions of particular commensal bacteria such as bifidobacteria and lactobacilli have been linked to human health through a variety of mechanisms, there is corresponding interest in identifying carbohydrates that promote growth and metabolic activity of these bacteria. We evaluated the ability of 20 carbohydrates, including several commercially available carbohydrates that are sold as prebiotic ingredients, to support growth of 32 human-derived isolates belonging to the genera Bifidobacterium and Lactobacillus, including those isolated from healthy elderly subjects. In general, bifidobacterial strains were shown to display more diverse carbohydrate utilization profiles compared to the tested Lactobacillus species, with several bifidobacterial strains capable of metabolizing xylo-oligosaccharide (XOS), arabinoxylan, maltodextrin, galactan and carbohydrates containing fructo-oligosaccharide (FOS) components. In contrast, maltodextrin, galactan, arabinogalactan and galactomannan did not support robust growth (≥0.8 OD600 nm) of any of the Lactobacillus strains assessed. Carbohydrate fermentation was variable among strains tested of the same species for both genera. This study advances our knowledge of polysaccharide utilization by human gut commensals, and provides information for the rational design of selective prebiotic food ingredients. Copyright © 2015 Elsevier B.V. All rights reserved.
1984-08-01
90de It noce..etrv wnd identify by block numberl .’-- This work reviews the areas of monaural and binaural signal detection, auditory discrimination And...AUDITORY DISPLAYS This work reviews the areas of monaural and binaural signal detection, auditory discrimination and localization, and reaction times to...pertaining to the major areas of auditory processing in humans. The areas covered in the reviews presented here are monaural and binaural siqnal detection
DOT National Transportation Integrated Search
2016-12-01
The objective of this effort is to have a single source reference document for human factors regulatory and guidance material for flight deck displays and controls, in the interest of improving aviation safety. This document identifies guidance on hu...
Clinically Normal Stereopsis Does Not Ensure Performance Benefit from Stereoscopic 3D Depth Cues
2014-10-28
Stereopsis, Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 16...Binocular Vision, Optometry , Depth Perception, 3D vision, 3D human factors, Stereoscopic displays, S3D, Virtual environment 1 Distribution A: Approved
Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage
Sattar, Sadia; Bennett, Nicholas J.; Wen, Wesley X.; Guthrie, Jenness M.; Blackwell, Len F.; Conway, James F.; Rakonjac, Jasna
2015-01-01
F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70∘C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative “dipstick” lateral flow diagnostic assay for human plasma fibronectin. PMID:25941520
Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives.
Xu, Cang-Cang; Deng, Ting; Fan, Meng-Lin; Lv, Wen-Bo; Liu, Ji-Hua; Yu, Bo-Yang
2016-01-01
To explore novel high efficiency and low toxicity antitumor agents, a series of dihydroartemisinin-cinnamic acid ester derivatives modified on C-12 and/or C-9 position (s) were synthesized and the in vitro antitumor activities against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines were assessed. The hybrids (3-36) were prepared by esterification of 9α-hydroxyl-dihydroartemisinin (9α-OH DHA), the biotransformation product of dihydroartemisinin (DHA), and cinnamic acid derivatives. Compound 17 (IC50 = 0.20 μM) was the most potent anti-proliferative agent against the human lung carcinoma A549 cells, although it displayed low cytotoxicity on normal hepatic L-02 cells. The mechanism of action of compound 17 was further investigated by analysis of cell apoptosis and intracellular ROS generation. The results indicated that both ROS and ferrous ion contributed to the compound 17-induced cell death. Meanwhile, high intracellular ferrous ion and endogenous oxidative stress in A549 cells made them easier to suffer to compound 17-induced apoptosis. Our promising findings indicated the compound 17 could stand as drug candidate against lung cancer for further investigation. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Li, Baoli; Ni, Shuaishuai; Chen, Feifei; Mao, Fei; Wei, Hanwen; Liu, Yifu; Zhu, Jin; Lan, Lefu; Li, Jian
2018-03-09
Blocking the biosynthesis process of staphyloxanthin has emerged as a promising antivirulence strategy. Our previous research revealed that diapophytoene desaturase was an attractive and druggable target against infections caused by pigmented Staphylococcus aureus. Benzocycloalkane-derived compounds were effective inhibitors of diapophytoene desaturase but limited by high hERG (human Ether-a-go-go Related Gene) inhibition activity. Here, we identified a new type of benzo-hepta-containing cycloalkane derivative as diapophytoene desaturase inhibitors. Among the fifty-eight analogues, 48 (hERG inhibition activity, half maximal inhibitory concentration, IC 50 , of 16.1 μM) and 51 (hERG inhibition activity, IC 50 > 40 μM) were distinguished for effectively inhibiting the pigment production of Staphylococcus aureus Newman and three methicillin-resistant Staphylococcus aureus strains, and the four strains were highly sensitize to hydrogen peroxide killing without a bactericidal growth effect. In an in vivo assay, 48 and 51 displayed a comparable effect with linezolid and vancomycin in livers and hearts in mice against Staphylococcus aureus Newman and a more considerable effect against Mu50 and NRS271 with normal administration.
Borowiecki, Paweł; Wińska, Patrycja; Bretner, Maria; Gizińska, Małgorzata; Koronkiewicz, Mirosława; Staniszewska, Monika
2018-04-25
Three out of 16 newly synthesized 1,3-dimethylxanthine derivatives (proxyphylline analogues) exhibited consistencies between antifungal and anticancer properties. Proxyphylline possessing 1-(10H-phenothiazin-10-yl)propan-2-yl (6) and polybrominated benzimidazole (41) or benzotriazole moiety (42) remained selectively cidal against Candida albicans (lg R ≥ 3 at conc. of 31, 36 and 20 μM, respectively) however not against normal mammalian Vero cell line in vitro (IC 50 ≥ 280 μM) and Galleria mellonella in vivo. These compounds also displayed moderate antineoplastic activity against human breast adenocarcinoma (MCF-7) cell line (EC 50 = 80 μM) and high against peripheral blood T lymphoblast (CCRF-CEM) (EC 50 = 6.3-6.5 μM). In addition, 6 and 42 exerted: (1) dual activity against fungal adhesion and damage mature biofilm; (2) necrosis of planktonic cells due to loss of membrane function and of structural integrity; (3) biochemical (inhibition of sessile cell respiration) and morphological changes in cell wall polysaccharide contents. Therefore, leading proxyphylline derivatives can be employed to prevent cancer-associated biofilm Candida infections. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Wang, Hao-Meng; Zhang, Li; Liu, Jiang; Yang, Zhao-Liang; Zhao, Hong-Ye; Yang, Yao; Shen, Di; Lu, Kui; Fan, Zhen-Chuan; Yao, Qing-Wei; Zhang, Yong-Min; Teng, Yu-Ou; Peng, Yu
2015-03-06
Four natural chalcones bearing prenyl or geranyl groups, i.e., bavachalcone (1a), xanthoangelol (1b), isobavachalcone (1c), and isoxanthoangelol (1d) were synthesized by using a regio-selective iodination and the Suzuki coupling reaction as key steps. The first total synthesis of isoxanthoangelol (1d) was achieved in 36% overall yield. A series of diprenylated and digeranylated chalcone analogs were also synthesized by alkylation, regio-selective iodination, aldol condensation, Suzuki coupling and [1,3]-sigmatropic rearrangement. The structures of the 11 new derivatives were confirmed by (1)H NMR, (13)C NMR and HRMS. The anticancer activity of these new chalcone derivatives against human tumor cell line K562 were evaluated by MTT assay in vitro. SAR studies suggested that the 5'-prenylation/geranylation of the chalcones significantly enhance their cytotoxic activity. Among them, Bavachalcone (1a) displayed the most potent cytotoxic activity against K562 with IC50 value of 2.7 μM. The morphology changes and annexin-V/PI staining studies suggested that those chalcone derivatives inhibited the proliferation of K562 cells by inducing apoptosis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Ff-nano, short functionalized nanorods derived from Ff (f1, fd, or M13) filamentous bacteriophage.
Sattar, Sadia; Bennett, Nicholas J; Wen, Wesley X; Guthrie, Jenness M; Blackwell, Len F; Conway, James F; Rakonjac, Jasna
2015-01-01
F-specific filamentous phage of Escherichia coli (Ff: f1, M13, or fd) are long thin filaments (860 nm × 6 nm). They have been a major workhorse in display technologies and bionanotechnology; however, some applications are limited by the high length-to-diameter ratio of Ff. Furthermore, use of functionalized Ff outside of laboratory containment is in part hampered by the fact that they are genetically modified viruses. We have now developed a system for production and purification of very short functionalized Ff-phage-derived nanorods, named Ff-nano, that are only 50 nm in length. In contrast to standard Ff-derived vectors that replicate in E. coli and contain antibiotic-resistance genes, Ff-nano are protein-DNA complexes that cannot replicate on their own and do not contain any coding sequences. These nanorods show an increased resistance to heating at 70(∘)C in 1% SDS in comparison to the full-length Ff phage of the same coat composition. We demonstrate that functionalized Ff-nano particles are suitable for application as detection particles in sensitive and quantitative "dipstick" lateral flow diagnostic assay for human plasma fibronectin.
Rocha, Rafael E O; Lima, Leonardo H F
2018-05-17
Galantamine (Gnt) is a natural alkaloid inhibitor of acetylcholinesterase and is presently one of the most used drugs in the treatment against Alzheimer's disease during both the initial and intermediate stages. Among several natural Gnt derivatives, sanguinine (Sng) and lycoramine (Lyc) attract attention because of the way their subtle chemical differences from Gnt lead to drastic and opposite distinctions in inhibitory effects. However, to date, there is no solved structure for these natural derivatives. In the present study, we applied computational modeling and free energy calculation methods to better elucidate the molecular basis of the subtle distinctions between these derivatives and Gnt. The results showed that differences in the mobility of the non-aromatic ring carried by the Lyc-like sp 2 -sp 3 modification display drastic conformational, vibrational, and entropic penalties at binding compared to Gnt. Additionally, the establishment of a stronger hydrogen bond network added enthalpic advantages for the linkage of the Sng-like methoxy-hydroxy substituted ligands. These results, which suggest an affinity ranking in agreement with that found in the literature, provided insights that are helpful for future planning and development of new anti-Alzheimer's disease drugs.
Neutrophil-Derived Proteases Escalate Inflammation through Activation of IL-36 Family Cytokines.
Henry, Conor M; Sullivan, Graeme P; Clancy, Danielle M; Afonina, Inna S; Kulms, Dagmar; Martin, Seamus J
2016-02-02
Recent evidence has strongly implicated the IL-1 family cytokines IL-36α, IL-36β, and IL-36γ as key initiators of skin inflammation. Similar to the other members of the IL-1 family, IL-36 cytokines are expressed as inactive precursors and require proteolytic processing for activation; however, the responsible proteases are unknown. Here, we show that IL-36α, IL-36β, and IL-36γ are activated differentially by the neutrophil granule-derived proteases cathepsin G, elastase, and proteinase-3, increasing their biological activity ~500-fold. Active IL-36 promoted a strong pro-inflammatory signature in primary keratinocytes and was sufficient to perturb skin differentiation in a reconstituted 3D human skin model, producing features resembling psoriasis. Furthermore, skin eluates from psoriasis patients displayed significantly elevated cathepsin G-like activity that was sufficient to activate IL-36β. These data identify neutrophil granule proteases as potent IL-36-activating enzymes, adding to our understanding of how neutrophils escalate inflammatory reactions. Inhibition of neutrophil-derived proteases may therefore have therapeutic benefits in psoriasis. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Zhu, Zhen-Yuan; Cui, Di; Gao, Hui; Dong, Feng-Ying; Liu, Xiao-cui; Liu, Fei; Chen, Lu; Zhang, Yong-min
2016-05-23
Lactulose is considered as a prebiotic because it promotes the intestinal proliferation of Lactobacillus acidophilus which is added to various milk products. Moreover, lactulose is used in pharmaceuticals as a gentle laxative and to treat hyperammonemia. This study was aimed at the total synthesis of two Lactulose-derived oligosaccharides: one is 3-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,3-glycosidic bound, the other is 1-O-β-d-galactopyranosyl-d-fructose, d-fructose and β-d-galactose bounded together with β-1,1-glycosidic bound, which were accomplished in seven steps from d-fructose and β-d-galactose and every step of yield above 75%. This synthetic route provided a practical and effective synthetic strategy for galactooligosaccharides, starting from commercially available monosaccharides. Then we evaluated on their prebiotic properties in the search for potential agents of regulating and improving the intestinal flora of human. The result showed that the prebiotic properties of Lactulose-derived oligosaccharides was much better than Lactulose. Among them, 3-O-β-d-galactopyranosyl-d-fructose displayed the most potent activity of proliferation of L. acidophilus. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Dawood, Dina H; Batran, Rasha Z; Farghaly, Thoraya A; Khedr, Mohammed A; Abdulla, Mohamed M
2015-12-01
Two new series of coumarin derivatives incorporating thiazoline and thiazolidinone moieties were designed, synthesized, and investigated in vivo for their anti-inflammatory activities using the carrageenan-induced rat paw edema model and in vitro for their inhibitory activities against the human cyclooxygenase (COX)-1 and COX-2 isoforms. Most of the synthesized compounds demonstrated exceptionally high in vivo anti-inflammatory activity and displayed superior GI safety profiles (0-7% ulceration) as compared to indomethacin. All the bioactive compounds showed in vitro high affinity and selectivity toward the COX-2 isoenzyme, compared to the reference celecoxib with IC50 values ranging from 0.31 to 0.78 μM. The ethyl thiosemicarbazone 2b, thiazoline derivatives 3a, 3b, 5b, 6a, and 7f, and the thiazolidinone compounds 8b and 9a showed the highest in vivo and in vitro anti-inflammatory activities with remarkable COX-2 selectivity. Quantitative structure-activity relationship study (QSAR) was done and resulted in a highly predictive power R(2) (0.908). A molecular docking study revealed a relationship between the docking affinity and the biological results. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human Engineering of Space Vehicle Displays and Controls
NASA Technical Reports Server (NTRS)
Whitmore, Mihriban; Holden, Kritina L.; Boyer, Jennifer; Stephens, John-Paul; Ezer, Neta; Sandor, Aniko
2010-01-01
Proper attention to the integration of the human needs in the vehicle displays and controls design process creates a safe and productive environment for crew. Although this integration is critical for all phases of flight, for crew interfaces that are used during dynamic phases (e.g., ascent and entry), the integration is particularly important because of demanding environmental conditions. This panel addresses the process of how human engineering involvement ensures that human-system integration occurs early in the design and development process and continues throughout the lifecycle of a vehicle. This process includes the development of requirements and quantitative metrics to measure design success, research on fundamental design questions, human-in-the-loop evaluations, and iterative design. Processes and results from research on displays and controls; the creation and validation of usability, workload, and consistency metrics; and the design and evaluation of crew interfaces for NASA's Crew Exploration Vehicle are used as case studies.
Display integration for ground combat vehicles
NASA Astrophysics Data System (ADS)
Busse, David J.
1998-09-01
The United States Army's requirement to employ high resolution target acquisition sensors and information warfare to increase its dominance over enemy forces has led to the need to integrate advanced display devices into ground combat vehicle crew stations. The Army's force structure require the integration of advanced displays on both existing and emerging ground combat vehicle systems. The fielding of second generation target acquisition sensors, color digital terrain maps and high volume digital command and control information networks on these platforms define display performance requirements. The greatest challenge facing the system integrator is the development and integration of advanced displays that meet operational, vehicle and human computer interface performance requirements for the ground combat vehicle fleet. The subject of this paper is to address those challenges: operational and vehicle performance, non-soldier centric crew station configurations, display performance limitations related to human computer interfaces and vehicle physical environments, display technology limitations and the Department of Defense (DOD) acquisition reform initiatives. How the ground combat vehicle Program Manager and system integrator are addressing these challenges are discussed through the integration of displays on fielded, current and future close combat vehicle applications.
Virtual surface characteristics of a tactile display using magneto-rheological fluids.
Lee, Chul-Hee; Jang, Min-Gyu
2011-01-01
Virtual surface characteristics of tactile displays are investigated to characterize the feeling of human touch for a haptic interface application. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, friction, and topography of the surface. Thus, the tactile display can provide information on the surface of an organic tissue to the surgeon in virtual reality. In order to investigate the compliance feeling of a human finger's touch, normal force responses of a tactile display under various magnetic fields have been assessed. Also, shearing friction force responses of the tactile display are investigated to simulate the action of finger dragging on the surface. Moreover, different matrix arrays of magnetic poles are applied to form the virtual surface topography. From the results, different tactile feelings are observed according to the applied magnetic field strength as well as the arrays of magnetic poles combinations. This research presents a smart tactile display technology for virtual surfaces.
Facial Displays Are Tools for Social Influence.
Crivelli, Carlos; Fridlund, Alan J
2018-05-01
Based on modern theories of signal evolution and animal communication, the behavioral ecology view of facial displays (BECV) reconceives our 'facial expressions of emotion' as social tools that serve as lead signs to contingent action in social negotiation. BECV offers an externalist, functionalist view of facial displays that is not bound to Western conceptions about either expressions or emotions. It easily accommodates recent findings of diversity in facial displays, their public context-dependency, and the curious but common occurrence of solitary facial behavior. Finally, BECV restores continuity of human facial behavior research with modern functional accounts of non-human communication, and provides a non-mentalistic account of facial displays well-suited to new developments in artificial intelligence and social robotics. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ahn, Dohyun; Seo, Youngnam; Kim, Minkyung; Kwon, Joung Huem; Jung, Younbo; Ahn, Jungsun
2014-01-01
Abstract This study examined the role of display size and mode in increasing users' sense of being together with and of their psychological immersion in a virtual character. Using a high-resolution three-dimensional virtual character, this study employed a 2×2 (stereoscopic mode vs. monoscopic mode×actual human size vs. small size display) factorial design in an experiment with 144 participants randomly assigned to each condition. Findings showed that stereoscopic mode had a significant effect on both users' sense of being together and psychological immersion. However, display size affected only the sense of being together. Furthermore, display size was not found to moderate the effect of stereoscopic mode. PMID:24606057
Symmetrical choline-derived dications display strong anti-kinetoplastid activity
Ibrahim, Hasan M. S.; Al-Salabi, Mohammed I.; El Sabbagh, Nasser; Quashie, Neils B.; Alkhaldi, Abdulsalam A. M.; Escale, Roger; Smith, Terry K.; Vial, Henri J.; de Koning, Harry P.
2011-01-01
Objectives To investigate the anti-kinetoplastid activity of choline-derived analogues with previously reported antimalarial efficacy. Methods From an existing choline analogue library, seven antimalarial compounds, representative of the first-, second- and third-generation analogues previously developed, were assessed for activity against Trypanosoma and Leishmania spp. Using a variety of techniques, the effects of choline analogue exposure on the parasites were documented and a preliminary investigation of their mode of action was performed. Results The activities of choline-derived compounds against Trypanosoma brucei and Leishmania mexicana were determined. The compounds displayed promising anti-kinetoplastid activity, particularly against T. brucei, to which 4/7 displayed submicromolar EC50 values for the wild-type strain. Low micromolar concentrations of most compounds cleared trypanosome cultures within 24–48 h. The compounds inhibit a choline transporter in Leishmania, but their entry may not depend only on this carrier; T. b. brucei lacks a choline carrier and the mode of uptake remains unclear. The compounds had no effect on the overall lipid composition of the cells, cell cycle progression or cyclic adenosine monophosphate production or short-term effects on intracellular calcium levels. However, several of the compounds, displayed pronounced effects on the mitochondrial membrane potential; this action was not associated with production of reactive oxygen species but rather with a slow rise of intracellular calcium levels and DNA fragmentation. Conclusions The choline analogues displayed strong activity against kinetoplastid parasites, particularly against T. b. brucei. In contrast to their antimalarial activity, they did not act on trypanosomes by disrupting choline salvage or phospholipid metabolism, instead disrupting mitochondrial function, leading to chromosomal fragmentation. PMID:21078603
Single-Domain Antibodies: Rugged Recognition Element
2007-01-01
and spiny dogfish shark (60 million representatives), which are displayed on filamentous phage M13 . We selected the llama- derived library for binding...subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. 1. REPORT DATE
Sociability modifies dogs' sensitivity to biological motion of different social relevance.
Ishikawa, Yuko; Mills, Daniel; Willmott, Alexander; Mullineaux, David; Guo, Kun
2018-03-01
Preferential attention to living creatures is believed to be an intrinsic capacity of the visual system of several species, with perception of biological motion often studied and, in humans, it correlates with social cognitive performance. Although domestic dogs are exceptionally attentive to human social cues, it is unknown whether their sociability is associated with sensitivity to conspecific and heterospecific biological motion cues of different social relevance. We recorded video clips of point-light displays depicting a human or dog walking in either frontal or lateral view. In a preferential looking paradigm, dogs spontaneously viewed 16 paired point-light displays showing combinations of normal/inverted (control condition), human/dog and frontal/lateral views. Overall, dogs looked significantly longer at frontal human point-light display versus the inverted control, probably due to its clearer social/biological relevance. Dogs' sociability, assessed through owner-completed questionnaires, further revealed that low-sociability dogs preferred the lateral point-light display view, whereas high-sociability dogs preferred the frontal view. Clearly, dogs can recognize biological motion, but their preference is influenced by their sociability and the stimulus salience, implying biological motion perception may reflect aspects of dogs' social cognition.
Bass, Ellen J; Baumgart, Leigh A; Shepley, Kathryn Klein
2013-03-01
Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance.
Human Cells Display Reduced Apoptotic Function Relative to Chimpanzee Cells
McDonald, John F.
2012-01-01
Previously published gene expression analyses suggested that apoptotic function may be reduced in humans relative to chimpanzees and led to the hypothesis that this difference may contribute to the relatively larger size of the human brain and the increased propensity of humans to develop cancer. In this study, we sought to further test the hypothesis that humans maintain a reduced apoptotic function relative to chimpanzees by conducting a series of apoptotic function assays on human, chimpanzee and macaque primary fibroblastic cells. Human cells consistently displayed significantly reduced apoptotic function relative to the chimpanzee and macaque cells. These results are consistent with earlier findings indicating that apoptotic function is reduced in humans relative to chimpanzees. PMID:23029431
Volumetric 3D display using a DLP projection engine
NASA Astrophysics Data System (ADS)
Geng, Jason
2012-03-01
In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.
Fringe periods of color moirés in contact-type 3-D displays.
Lee, Hyoung; Kim, Sung-Kyu; Sohn, Kwanghoon; Son, Jung-Young; Chernyshov, Oleksii O
2016-06-27
A mathematical formula of calculating the fringe periods of the color moirés appearing at the contact-type 3-D displays is derived. It is typical that the color moirés are chirped and the period of the line pattern in viewing zone forming optics is more than two times of that of the pixel pattern in the display panel. These make impossible to calculate the fringe periods of the color moirés with the conventional beat frequency formula. The derived formula work very well for any combination of two line patterns having either a same line period or different line periods. This is experimentally proved. Furthermore, it is also shown that the fringe period can be expressed in terms of the viewing distance and focal length of the viewing zone forming optics.
Human Machine Interface Programming and Testing
NASA Technical Reports Server (NTRS)
Foster, Thomas Garrison
2013-01-01
Human Machine Interface (HMI) Programming and Testing is about creating graphical displays to mimic mission critical ground control systems in order to provide NASA engineers with the ability to monitor the health management of these systems in real time. The Health Management System (HMS) is an online interactive human machine interface system that monitors all Kennedy Ground Control Subsystem (KGCS) hardware in the field. The Health Management System is essential to NASA engineers because it allows remote control and monitoring of the health management systems of all the Programmable Logic Controllers (PLC) and associated field devices. KGCS will have equipment installed at the launch pad, Vehicle Assembly Building, Mobile Launcher, as well as the Multi-Purpose Processing Facility. I am designing graphical displays to monitor and control new modules that will be integrated into the HMS. The design of the display screen will closely mimic the appearance and functionality of the actual modules. There are many different field devices used to monitor health management and each device has its own unique set of health management related data, therefore each display must also have its own unique way to display this data. Once the displays are created, the RSLogix5000 application is used to write software that maps all the required data read from the hardware to the graphical display. Once this data is mapped to its corresponding display item, the graphical display and hardware device will be connected through the same network in order to test all possible scenarios and types of data the graphical display was designed to receive. Test Procedures will be written to thoroughly test out the displays and ensure that they are working correctly before being deployed to the field. Additionally, the Kennedy Ground Controls Subsystem's user manual will be updated to explain to the NASA engineers how to use the new module displays.
Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos
2016-01-01
The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843
NASA Technical Reports Server (NTRS)
Kyle, R. G.
1972-01-01
Information transfer between the operator and computer-generated display systems is an area where the human factors engineer discovers little useful design data relating human performance to system effectiveness. This study utilized a computer-driven, cathode-ray-tube graphic display to quantify human response speed in a sequential information processing task. The performance criteria was response time to sixteen cell elements of a square matrix display. A stimulus signal instruction specified selected cell locations by both row and column identification. An equal probable number code, from one to four, was assigned at random to the sixteen cells of the matrix and correspondingly required one of four, matched keyed-response alternatives. The display format corresponded to a sequence of diagnostic system maintenance events, that enable the operator to verify prime system status, engage backup redundancy for failed subsystem components, and exercise alternate decision-making judgements. The experimental task bypassed the skilled decision-making element and computer processing time, in order to determine a lower bound on the basic response speed for given stimulus/response hardware arrangement.
Recombinant human antibody fragment against tetanus toxoid produced by phage display.
Neelakantam, B; Sridevi, N V; Shukra, A M; Sugumar, P; Samuel, S; Rajendra, L
2014-03-01
Phage display technology is a powerful in vitro method for the identification of specific monoclonal antibodies (antibody fragments) to an antigenic target and allows the rapid generation and selection of high affinity, fully human antibodies directed toward any disease target appropriate for antibody therapy. In the present study, we exploited the phage display technology for the selection of an antigen binding fragment (Fabs) toward tetanus toxoid using human naïve phage antibody library constructed from peripheral blood lymphocytes of naïve human donors. The phages displaying Fab were subjected to three rounds of bio-panning with tetanus toxoid as antigen on a solid phase. The high affinity antibody fragments were expressed in HB2151 strain of Escherichia coli and purified by immobilized metal affinity chromatography. The binding activity and specificity of the antibody fragment was established by its reactivity toward tetanus toxoid and non-reactivity toward other related toxins as determined by enzyme-linked immunosorbent assay and immunoblot analysis. The selected Fab fragment forming the antigen-binding complexes with the toxoid in flocculation assay indicates that the Fab may have a potential neutralizing ability toward antigen.
Human-scale interaction for virtual model displays: a clear case for real tools
NASA Astrophysics Data System (ADS)
Williams, George C.; McDowall, Ian E.; Bolas, Mark T.
1998-04-01
We describe a hand-held user interface for interacting with virtual environments displayed on a Virtual Model Display. The tool, constructed entirely of transparent materials, is see-through. We render a graphical counterpart of the tool on the display and map it one-to-one with the real tool. This feature, combined with a capability for touch- sensitive, discrete input, results in a useful spatial input device that is visually versatile. We discuss the tool's design and interaction techniques it supports. Briefly, we look at the human factors issues and engineering challenges presented by this tool and, in general, by the class of hand-held user interfaces that are see-through.
NASA Technical Reports Server (NTRS)
1997-01-01
I-FORCE, a computer peripheral from Immersion Corporation, was derived from virtual environment and human factors research at the Advanced Displays and Spatial Perception Laboratory at Ames Research Center in collaboration with Stanford University Center for Design Research. Entrepreneur Louis Rosenberg, a former Stanford researcher, now president of Immersion, collaborated with Dr. Bernard Adelstein at Ames on studies of perception in virtual reality. The result was an inexpensive way to incorporate motors and a sophisticated microprocessor into joysticks and other game controllers. These devices can emulate the feel of a car on the skid, a crashing plane, the bounce of a ball, compressed springs, or other physical phenomenon. The first products incorporating I-FORCE technology include CH- Products' line of FlightStick and CombatStick controllers.
Organometallic Rhenium Complexes Divert Doxorubicin to the Mitochondria.
Imstepf, Sebastian; Pierroz, Vanessa; Rubbiani, Riccardo; Felber, Michael; Fox, Thomas; Gasser, Gilles; Alberto, Roger
2016-02-18
Doxorubicin, a well-established chemotherapeutic agent, is known to accumulate in the cell nucleus. By using ICP-MS, we show that the conjugation of two small organometallic rhenium complexes to this structural motif results in a significant redirection of the conjugates from the nucleus to the mitochondria. Despite this relocation, the two bioconjugates display excellent toxicity toward HeLa cells. In addition, we carried out a preliminarily investigation of aspects of cytotoxicity and present evidence that the conjugates disrupt the mitochondrial membrane potential, are strong inhibitors of human Topoisomerase II, and induce apoptosis. Such derivatives may enhance the therapeutic index of the aggressive parent drug and overcome drug resistance by influencing nuclear and mitochondrial homeostasis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Bidet-Ildei, Christel; Kitromilides, Elenitsa; Orliaguet, Jean-Pierre; Pavlova, Marina; Gentaz, Edouard
2014-01-01
In human newborns, spontaneous visual preference for biological motion is reported to occur at birth, but the factors underpinning this preference are still in debate. Using a standard visual preferential looking paradigm, 4 experiments were carried out in 3-day-old human newborns to assess the influence of translational displacement on perception of human locomotion. Experiment 1 shows that human newborns prefer a point-light walker display representing human locomotion as if on a treadmill over random motion. However, no preference for biological movement is observed in Experiment 2 when both biological and random motion displays are presented with translational displacement. Experiments 3 and 4 show that newborns exhibit preference for translated biological motion (Experiment 3) and random motion (Experiment 4) displays over the same configurations moving without translation. These findings reveal that human newborns have a preference for the translational component of movement independently of the presence of biological kinematics. The outcome suggests that translation constitutes the first step in development of visual preference for biological motion. PsycINFO Database Record (c) 2014 APA, all rights reserved.
Kelly, Debbie M; Cook, Robert G
2003-06-01
Three experiment examined the role of contextual information during line orientation and line position discriminations by pigeons (Columba livia) and humans (Homo sapiens). Experiment 1 tested pigeons' performance with these stimuli in a target localization task using texture displays. Experiments 2 and 3 tested pigeons and humans, respectively, with small and large variations of these stimuli in a same-different task. Humans showed a configural superiority effect when tested with displays constructed from large elements but not when tested with the smaller, more densely packed texture displays. The pigeons, in contrast, exhibited a configural inferiority effect when required to discriminate line orientation, regardless of stimulus size. These contrasting results suggest a species difference in the perceptionand use of features and contextual information in the discrimination of line information.
Leiss, Lina; Mutlu, Ercan; Øyan, Anne; Yan, Tao; Tsinkalovsky, Oleg; Sleire, Linda; Petersen, Kjell; Rahman, Mohummad Aminur; Johannessen, Mireille; Mitra, Sidhartha S; Jacobsen, Hege K; Talasila, Krishna M; Miletic, Hrvoje; Jonassen, Inge; Li, Xingang; Brons, Nicolaas H; Kalland, Karl-Henning; Wang, Jian; Enger, Per Øyvind
2017-02-07
Little is known about the role of glial host cells in brain tumours. However, supporting stromal cells have been shown to foster tumour growth in other cancers. We isolated stromal cells from patient-derived glioblastoma (GBM) xenografts established in GFP-NOD/scid mice. With simultaneous removal of CD11b + immune and CD31 + endothelial cells by fluorescence activated cell sorting (FACS), we obtained a population of tumour-associated glial cells, TAGs, expressing markers of terminally differentiaed glial cell types or glial progenitors. This cell population was subsequently characterised using gene expression analyses and immunocytochemistry. Furthermore, sphere formation was assessed in vitro and their glioma growth-promoting ability was examined in vivo. Finally, the expression of TAG related markers was validated in human GBMs. TAGs were highly enriched for the expression of glial cell proteins including GFAP and myelin basic protein (MBP), and immature markers such as Nestin and O4. A fraction of TAGs displayed sphere formation in stem cell medium. Moreover, TAGs promoted brain tumour growth in vivo when co-implanted with glioma cells, compared to implanting only glioma cells, or glioma cells and unconditioned glial cells from mice without tumours. Genome-wide microarray analysis of TAGs showed an expression profile distinct from glial cells from healthy mice brains. Notably, TAGs upregulated genes associated with immature cell types and self-renewal, including Pou3f2 and Sox2. In addition, TAGs from highly angiogenic tumours showed upregulation of angiogenic factors, including Vegf and Angiopoietin 2. Immunohistochemistry of three GBMs, two patient biopsies and one GBM xenograft, confirmed that the expression of these genes was mainly confined to TAGs in the tumour bed. Furthermore, their expression profiles displayed a significant overlap with gene clusters defining prognostic subclasses of human GBMs. Our data demonstrate that glial host cells in brain tumours are functionally distinct from glial cells of healthy mice brains. Furthermore, TAGs display a gene expression profile with enrichment for genes related to stem cells, immature cell types and developmental processes. Future studies are needed to delineate the biological mechanisms regulating the brain tumour-host interplay.
Tommasino, Paolo; Campolo, Domenico
2017-02-03
In this work, we address human-like motor planning in redundant manipulators. Specifically, we want to capture postural synergies such as Donders' law, experimentally observed in humans during kinematically redundant tasks, and infer a minimal set of parameters to implement similar postural synergies in a kinematic model. For the model itself, although the focus of this paper is to solve redundancy by implementing postural strategies derived from experimental data, we also want to ensure that such postural control strategies do not interfere with other possible forms of motion control (in the task-space), i.e. solving the posture/movement problem. The redundancy problem is framed as a constrained optimization problem, traditionally solved via the method of Lagrange multipliers. The posture/movement problem can be tackled via the separation principle which, derived from experimental evidence, posits that the brain processes static torques (i.e. posture-dependent, such as gravitational torques) separately from dynamic torques (i.e. velocity-dependent). The separation principle has traditionally been applied at a joint torque level. Our main contribution is to apply the separation principle to Lagrange multipliers, which act as task-space force fields, leading to a task-space separation principle. In this way, we can separate postural control (implementing Donders' law) from various types of tasks-space movement planners. As an example, the proposed framework is applied to the (redundant) task of pointing with the human wrist. Nonlinear inverse optimization (NIO) is used to fit the model parameters and to capture motor strategies displayed by six human subjects during pointing tasks. The novelty of our NIO approach is that (i) the fitted motor strategy, rather than raw data, is used to filter and down-sample human behaviours; (ii) our framework is used to efficiently simulate model behaviour iteratively, until it converges towards the experimental human strategies.
Johann, Laure; Belorgey, Didier; Huang, Hsin-Hung; Day, Latasha; Chessé, Matthieu; Becker, Katja; Williams, David L; Davioud-Charvet, Elisabeth
2015-08-01
Investigations regarding the chemistry and mechanism of action of 2-methyl-1,4-naphthoquinone (or menadione) derivatives revealed 3-phenoxymethyl menadiones as a novel anti-schistosomal chemical series. These newly synthesized compounds (1-7) and their difluoromethylmenadione counterparts (8, 9) were found to be potent and specific inhibitors of Schistosoma mansoni thioredoxin-glutathione reductase (SmTGR), which has been identified as a potential target for anti-schistosomal drugs. The compounds were also tested in enzymic assays using both human flavoenzymes, i.e. glutathione reductase (hGR) and selenium-dependent human thioredoxin reductase (hTrxR), to evaluate the specificity of the inhibition. Structure-activity relationships as well as physico- and electro-chemical studies showed a high potential for the 3-phenoxymethyl menadiones to inhibit SmTGR selectively compared to hGR and hTrxR enzymes, in particular those bearing an α-fluorophenol methyl ether moiety, which improves anti-schistosomal action. Furthermore, the (substituted phenoxy)methyl menadione derivative (7) displayed time-dependent SmTGR inactivation, correlating with unproductive NADPH-dependent redox cycling of SmTGR, and potent anti-schistosomal action in worms cultured ex vivo. In contrast, the difluoromethylmenadione analog 9, which inactivates SmTGR through an irreversible non-consuming NADPH-dependent process, has little killing effect in worms cultured ex vivo. Despite ex vivo activity, none of the compounds tested was active in vivo, suggesting that the limited bioavailability may compromise compound activity. Therefore, future studies will be directed toward improving pharmacokinetic properties and bioavailability. © 2015 FEBS.
de Breij, Anna; Chan, Heelam; van Dissel, Jaap T.; Drijfhout, Jan W.; Hiemstra, Pieter S.; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H.
2014-01-01
Burn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S. aureus, including mupirocin-resistant MRSA strains. The peptides were derived from P60.4Ac, a peptide based on the human cathelicidin LL-37. The results showed that peptide 10 (P10) was the only peptide more efficient than P60.4Ac, which is better than LL-37, in killing MRSA strain LUH14616. All three peptides displayed good antibiofilm activities. However, both P10 and P60.4Ac were more efficient than LL-37 in eliminating biofilm-associated bacteria. No toxic effects of these three peptides on human epidermal models were detected, as observed morphologically and by staining for mitochondrial activity. In addition, P60.4Ac and P10, but not LL-37, eradicated MRSA LUH14616 and the mupirocin-resistant MRSA strain LUH15051 from thermally wounded human skin equivalents (HSE). Interestingly, P60.4Ac and P10, but not mupirocin, eradicated LUH15051 from the HSEs. None of the peptides affected the excretion of interleukin 8 (IL-8) by thermally wounded HSEs upon MRSA exposure. In conclusion, the synthetic peptides P60.4Ac and P10 appear to be attractive candidates for the development of novel local therapies to treat patients with burn wounds infected with multidrug-resistant bacteria. PMID:24841266
Zhou, Hong; Cox, Nancy J.; Donis, Ruben O.
2008-01-01
The segmented structure of the influenza virus genome plays a pivotal role in its adaptation to new hosts and the emergence of pandemics. Despite concerns about the pandemic threat posed by highly pathogenic avian influenza H5N1 viruses, little is known about the biological properties of H5N1 viruses that may emerge following reassortment with contemporary human influenza viruses. In this study, we used reverse genetics to generate the 63 possible virus reassortants derived from H5N1 and H3N2 viruses, containing the H5N1 surface protein genes, and analyzed their viability, replication efficiency, and mouse virulence. Specific constellations of avian–human viral genes proved deleterious for viral replication in cell culture, possibly due to disruption of molecular interaction networks. In particular, striking phenotypes were noted with heterologous polymerase subunits, as well as NP and M, or NS. However, nearly one-half of the reassortants replicated with high efficiency in vitro, revealing a high degree of compatibility between avian and human virus genes. Thirteen reassortants displayed virulent phenotypes in mice and may pose the greatest threat for mammalian hosts. Interestingly, one of the most pathogenic reassortants contained avian PB1, resembling the 1957 and 1968 pandemic viruses. Our results reveal the broad spectrum of phenotypes associated with H5N1/H3N2 reassortment and a possible role for the avian PB1 in the emergence of pandemic influenza. These observations have important implications for risk assessment of H5N1 reassortant viruses detected in surveillance programs. PMID:18497857
Kang, Nam-Hee; Yi, Bo-Rim; Lim, So Yoon; Hwang, Kyung-A; Baek, Young Seok; Kang, Kyung-Sun; Choi, Kyung-Chul
2012-06-01
Breast cancer is one of the most common malignant tumors and the leading cause of mortality among women. In this study, we propose a human stem cell transplantation strategy, an important method for treating various cancers, as a potential breast cancer therapy. To this end, we used human amniotic membrane-derived epithelial stem cells (hAECs) as a cell source for performing human stem cell transplantation. hAECs have multipotent differentiation abilities and possess high proliferative potential. We transplanted hAECs into female BALB/c nude mice bearing tumors originating from MDA-MB-231 breast cancer cells. Co-culturred hAECs and MDA-MB-231 cells at a ratio of 1:4 or 1:8 (tumor cells to stem cells) inhibited breast cancer cell growth by 67.29 and 67.33%, respectively. In the xenograft mouse model, tumor volumes were significantly decreased by 5-flurouracil (5-FU) treatment and two different ratios of hAECs (1:4 and 1:8) by 84.33, 73.88 and 56.89%, respectively. Treatment of nude mice with hAECs (1:4) produced remarkable antitumor effects without any side-effects (e.g., weight loss, death and bruising) compared to the mice that received only 5-FU treatment. Tumor progression was significantly reduced by hAEC treatment compared to the xenograft model. On the other hand, breast tissues (e.g., the epidermis, dermis and reticular layer) appeared to be well-maintained following treatment with hAECs. Taken together, these results provide strong evidence that hAECs can be used as a safe and effective cancer-targeting cytotherapy for treating breast cancer.
Lee, Judy T. Y.; Wang, Guangshun; Tam, Yu Tong; Tam, Connie
2016-01-01
Antibiotic resistance is a pressing global health problem that threatens millions of lives each year. Natural antimicrobial peptides and their synthetic derivatives, including peptoids and peptidomimetics, are promising candidates as novel antibiotics. Recently, the C-terminal glycine-rich fragments of human epithelial keratin 6A were found to have bactericidal and cytoprotective activities. Here, we used an improved 2-dimensional NMR method coupled with a new protocol for structural refinement by low temperature simulated annealing to characterize the solution structure of these kerain-derived antimicrobial peptides (KAMPs). Two specific KAMPs in complex with membrane mimicking sodium dodecyl sulfate (SDS) micelles displayed amphipathic conformations with only local bends and turns, and a central 10-residue glycine-rich hydrophobic strip that is central to bactericidal activity. To our knowledge, this is the first report of non-αβ structure for human antimicrobial peptides. Direct observation of Staphylococcus aureus and Pseudomonas aeruginosa by scanning and transmission electron microscopy showed that KAMPs deformed bacterial cell envelopes and induced pore formation. Notably, in competitive binding experiments, KAMPs demonstrated binding affinities to LPS and LTA that did not correlate with their bactericidal activities, suggesting peptide-LPS and peptide-LTA interactions are less important in their mechanisms of action. Moreover, immunoprecipitation of KAMPs-bacterial factor complexes indicated that membrane surface lipoprotein SlyB and intracellular machineries NQR sodium pump and ribosomes are potential molecular targets for the peptides. Results of this study improve our understanding of the bactericidal function of epithelial cytokeratin fragments, and highlight an unexplored class of human antimicrobial peptides, which may serve as non-αβ peptide scaffolds for the design of novel peptide-based antibiotics. PMID:27891122
Autoantibodies to αS1-casein are induced by breast-feeding.
Petermann, Klaudia; Vordenbäumen, Stefan; Maas, Ruth; Braukmann, Achim; Bleck, Ellen; Saenger, Thorsten; Schneider, Matthias; Jose, Joachim
2012-01-01
The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human αS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SD-ELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breast-feeding, and sustained into adulthood.
Autoantibodies to αS1-Casein Are Induced by Breast-Feeding
Petermann, Klaudia; Vordenbäumen, Stefan; Maas, Ruth; Braukmann, Achim; Bleck, Ellen; Saenger, Thorsten; Schneider, Matthias; Jose, Joachim
2012-01-01
Background The generation of antibodies is impaired in newborns due to an immature immune system and reduced exposure to pathogens due to maternally derived antibodies and placental functions. During nursing, the immune system of newborns is challenged with multiple milk-derived proteins. Amongst them, caseins are the main constituent. In particular, human αS1-casein (CSN1S1) was recently shown to possess immunomodulatory properties. We were thus interested to determine if auto-antibodies to CSN1S1 are induced by breast-feeding and may be sustained into adulthood. Methods 62 sera of healthy adult individuals who were (n = 37) or were not (n = 25) breast-fed against human CSN1S1 were investigated by a new SD (surface display)-ELISA. For cross-checking, these sera were tested for anti Epstein-Barr virus (EBV) antibodies by a commercial ELISA. Results IgG-antibodies were predominantly detected in individuals who had been nursed. At a cut-off value of 0.4, the SD-ELISA identified individuals with a history of having been breast-fed with a sensitivity of 80% and a specificity of 92%. Under these conditions, 35 out of 37 sera from healthy donors, who where breast-fed, reacted positively but only 5 sera of the 25 donors who were not breast-fed. The duration of breast-feeding was of no consequence to the antibody reaction as some healthy donors were only short term breast-fed (5 days minimum until 6 weeks maximum), but exhibited significant serum reaction against human CSN1S1 nonetheless. Conclusion We postulate that human CSN1S1 is an autoantigen. The antigenicity is orally determined, caused by breast-feeding, and sustained into adulthood. PMID:22496735
Pfister, Christina; Ritz, Rainer; Pfrommer, Heike; Bornemann, Antje; Tatagiba, Marcos S; Roser, Florian
2007-01-01
The current treatment for recurrent or malignant meningiomas with adjuvant therapies has not been satisfactory, and there is an intense interest in evaluating new molecular markers to act as therapeutic targets. Enzymes of the arachidonic acid (AA) cascade such as cyclooxygenase (COX)-2 or 5-lipoxygenase (5-LO) are upregulated in a number of epithelial tumors, but to date there are hardly any data about the expression of these markers in meningiomas. To find possible targets for chemotherapeutic intervention, the authors evaluated the expression of AA derivatives at different molecular levels in meningiomas. One hundred and twenty-four meningioma surgical specimens and normal human cortical tissue samples were immunohistochemically and cytochemically stained for COX-2, COX-1, 5-LO, and prostaglandin E receptor 4 (PTGER4). In addition, Western blot and polymerase chain reaction (PCR) analyses were performed to detect the presence of eicosanoids in vivo and in vitro. Sixty (63%) of 95 benign meningiomas, 21 (88%) of 24 atypical meningiomas, all five malignant meningiomas, and all normal human cortex samples displayed high COX-2 immunoreactivity. All cultured specimens and IOMM-Lee cells stained positive for COX-2, COX-1, 5-LO, and PTGER4. The PCR analysis demonstrated no changes in eicosanoid expression among meningiomas of different World Health Organization grades and in normal human cortical and dura mater tissue. Eicosanoid derivatives COX-1, COX-2, 5-LO, and PTGER4 enzymes show a high universal expression in meningiomas but are not upregulated in normal human cortex and dura tissue. This finding of the ubiquitous presence of these enzymes in meningiomas offers an excellent baseline for testing upcoming chemotherapeutic treatments.
Adaptive displays and controllers using alternative feedback.
Repperger, D W
2004-12-01
Investigations on the design of haptic (force reflecting joystick or force display) controllers were conducted by viewing the display of force information within the context of several different paradigms. First, using analogies from electrical and mechanical systems, certain schemes of the haptic interface were hypothesized which may improve the human-machine interaction with respect to various criteria. A discussion is given on how this interaction benefits the electrical and mechanical system. To generalize this concept to the design of human-machine interfaces, three studies with haptic mechanisms were then synthesized and analyzed.
Vegetable Oil-based Diesel Fuels From 1900 to the Present
USDA-ARS?s Scientific Manuscript database
The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...
Hernández-Acosta, N Carolina; Cabrera-Socorro, Alfredo; Morlans, Mercedes Pueyo; Delgado, Francisco J González; Suárez-Solá, M Luisa; Sottocornola, Roberta; Lu, Xin; González-Gómez, Miriam; Meyer, Gundela
2011-02-04
p63 and p73, family members of the tumor suppressor p53, are critically involved in the life and death of mammalian cells. They display high homology and may act in concert. The p73 gene is relevant for brain development, and p73-deficient mice display important malformations of the telencephalon. In turn, p63 is essential for the development of stratified epithelia and may also play a part in neuronal survival and aging. We show here that p63 and p73 are dynamically expressed in the embryonic and adult mouse and human telencephalon. During embryonic stages, Cajal-Retzius cells derived from the cortical hem co-express p73 and p63. Comparison of the brain phenotypes of p63- and p73- deficient mice shows that only the loss of p73 function leads to the loss of Cajal-Retzius cells, whereas p63 is apparently not essential for brain development and Cajal-Retzius cell formation. In postnatal mice, p53, p63, and p73 are present in cells of the subventricular zone (SVZ) of the lateral ventricle, a site of continued neurogenesis. The neurogenetic niche is reduced in size in p73-deficient mice, and the numbers of young neurons near the ventricular wall, marked with doublecortin, Tbr1 and calretinin, are dramatically decreased, suggesting that p73 is important for SVZ proliferation. In contrast to their restricted expression during brain development, p73 and p63 are widely detected in pyramidal neurons of the adult human cortex and hippocampus at protein and mRNA levels, pointing to a role of both genes in neuronal maintenance in adulthood. Copyright © 2010 Elsevier B.V. All rights reserved.
Dutra, Walderez O; Correa-Oliveira, Rodrigo; Dunne, David; Cecchini, Luiza Fosenca; Fraga, Lúcia; Roberts, Morven; Soares-Silveira, Alda Maria; Webster, Michelle; Yssel, Hans; Gollob, Kenneth J
2002-07-06
Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP) IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-gamma or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-gamma.
Dutra, Walderez O; Correa-Oliveira, Rodrigo; Dunne, David; Cecchini, Luiza Fosenca; Fraga, Lúcia; Roberts, Morven; Soares-Silveira, Alda Maria; Webster, Michelle; Yssel, Hans; Gollob, Kenneth J
2002-01-01
Background Human resistance to re-infection with S. mansoni is correlated with high levels of anti-soluble adult worm antigens (SWAP) IgE. Although it has been shown that IL-4 and IL-5 are crucial in establishing IgE responses in vitro, the active in vivo production of these cytokines by T cells, and the degree of polarization of Th2 vs. Th0 in human schistosomiasis is not known. To address this question, we determined the frequency of IL-4 and IFN-γ or IL-5 and IL-2 producing lymphocytes from schistosomiasis patients with high or low levels of IgE anti-SWAP. Results Our analysis showed that high and low IgE-producers responded equally to schistosomiasis antigens as determined by proliferation. Moreover, patients from both groups displayed similar percentages of circulating lymphocytes. However, high IgE-producers had an increased percentage of activated CD4+ T cells as compared to the low IgE-producers. Moreover, intracellular cytokine analysis, after short-term stimulation with anti-CD3/CD28 mAbs, showed that IgE high-producers display an increase in the percentage of T lymphocytes expressing IL-4 and IL-5 as compared to IgE low-responders. A coordinate control of the frequency of IL-4 and IL-5 producing lymphocytes in IgE high, but not IgE low-responders, was observed. Conclusions High IgE phenotype human schistosomiasis patients exhibit a coordinate regulation of IL-4 and IL-5 producing cells and the lymphocyte derived IL-4 comes from true polarized Th2 like cells, in the absence of measurable Th0 cells as measured by co-production of IL-4 and IFN-γ. PMID:12100735
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yanyan; The First Affiliated Hospital, China Medical University, Shenyang 110001; Xue, Peng
2013-12-15
Transcriptional signaling through the antioxidant response element (ARE), orchestrated by the Nuclear factor E2-related factor 2 (Nrf2), is a major cellular defense mechanism against oxidative or electrophilic stress. Here, we reported that isoniazid (INH), a widely used antitubercular drug, displays a substantial inhibitory property against ARE activities in diverse mouse and human cells. In 3T3-L1 preadipocytes, INH concentration-dependently suppressed the ARE-luciferase reporter activity and mRNA expression of various ARE-dependent antioxidant genes under basal and oxidative stressed conditions. In keeping with our previous findings that Nrf2-ARE plays a critical role in adipogenesis by regulating expression of CCAAT/enhancer-binding protein β (C/EBPβ) andmore » peroxisome proliferator-activated receptor γ (PPARγ), suppression of ARE signaling by INH hampered adipogenic differentiation of 3T3-L1 cells and human adipose-derived stem cells (ADSCs). Following adipogenesis induced by hormonal cocktails, INH-treated 3T3-L1 cells and ADSCs displayed significantly reduced levels of lipid accumulation and attenuated expression of C/EBPα and PPARγ. Time-course studies in 3T3-L1 cells revealed that inhibition of adipogenesis by INH occurred in the early stage of terminal adipogenic differentiation, where reduced expression of C/EBPβ and C/EBPδ was observed. To our knowledge, the present study is the first to demonstrate that INH suppresses ARE signaling and interrupts with the transcriptional network of adipogenesis, leading to impaired adipogenic differentiation. The inhibition of ARE signaling may be a potential underlying mechanism by which INH attenuates cellular antioxidant response contributing to various complications. - Highlights: • Isoniazid suppresses ARE-mediated transcriptional activity. • Isoniazid inhibits adipogenesis in preadipocytes. • Isoniazid suppresses adipogenic gene expression during adipogenesis.« less
Zheng, Xiangdong; Gooi, Li Ming; Wason, Arpit; Gabriel, Elke; Mehrjardi, Narges Zare; Yang, Qian; Zhang, Xingrun; Debec, Alain; Basiri, Marcus L.; Avidor-Reiss, Tomer; Pozniakovsky, Andrei; Poser, Ina; Šarić, Tomo; Hyman, Anthony A.; Li, Haitao; Gopalakrishnan, Jay
2014-01-01
Pericentriolar material (PCM) recruitment to centrioles forms a key step in centrosome biogenesis. Deregulation of this process leads to centrosome aberrations causing disorders, one of which is autosomal recessive primary microcephaly (MCPH), a neurodevelopmental disorder where brain size is reduced. During PCM recruitment, the conserved centrosomal protein Sas-4/CPAP/MCPH6, known to play a role in centriole formation, acts as a scaffold for cytoplasmic PCM complexes to bind and then tethers them to centrioles to form functional centrosomes. To understand Sas-4’s tethering role, we determined the crystal structure of its T complex protein 10 (TCP) domain displaying a solvent-exposed single-layer of β-sheets fold. This unique feature of the TCP domain suggests that it could provide an “extended surface-like” platform to tether the Sas-4–PCM scaffold to a centriole. Functional studies in Drosophila, human cells, and human induced pluripotent stem cell-derived neural progenitor cells were used to test this hypothesis, where point mutations within the 9–10th β-strands (β9–10 mutants including a MCPH-associated mutation) perturbed PCM tethering while allowing Sas-4/CPAP to scaffold cytoplasmic PCM complexes. Specifically, the Sas-4 β9–10 mutants displayed perturbed interactions with Ana2, a centrosome duplication factor, and Bld-10, a centriole microtubule-binding protein, suggesting a role for the β9–10 surface in mediating protein–protein interactions for efficient Sas-4–PCM scaffold centriole tethering. Hence, we provide possible insights into how centrosomal protein defects result in human MCPH and how Sas-4 proteins act as a vehicle to tether PCM complexes to centrioles independent of its well-known role in centriole duplication. PMID:24385583
Chang, Chih-Chao; Chang, Chih-Hsien; Shen, Chih-Chieh; Chen, Chuan-Lin; Liu, Ren-Shyan; Lin, Ming-Hsien; Wang, Hsin-Ell
2015-05-01
Malignant melanoma expresses a highly aggressive metastasis. Early diagnosis of malignant melanoma is important for patient survival. Radiolabeled benzamides and nicotinamides have been reported to be attractive candidates for malignant melanoma diagnosis as they bind to melanin, a characteristic substance that displays in malignant melanoma, and show high tumor accumulation and retention. Herein, we designed and synthesized a novel (123/131)I-labeled nicotinamide derivative that specifically binds to melanin. (123/131)I-Iochlonicotinamide was prepared with good radiochemical yield (50-70%, decay corrected) and high specific radioactivity (50-80 GBq/μmol). (131)I-Iochlonicotinamide exhibited good in vitro stability (radiochemical purity >95% after a 24-h incubation) in human serum. High uptake of (123/131)I-Iochlonicotinamide in B16F0 melanoma cells compared to that in A375 amelanotic cells demonstrated its selective binding to melanin. Intravenous administration of (123/131)I-Iochlonicotinamide in a melanoma-bearing mouse model revealed high uptake in melanotic melanoma and high tumor-to-muscle ratio. MicroSPECT scan of (123/131)I-Iochlonicotinamide injected mice also displayed high contrast tumor imaging as compared with normal organs. The radiation-absorbed dose projection for the administration of (131)I-Iochlonicotinamide to human was based on the results of biodistribution study. The effective dose appears to be approximately 0.44 mSv/MBq(-1). The specific binding of (123/131)I-Iochlonicotinamide to melanin along with a prolonged tumor retention and acceptable projected human dosimetry suggest that it may be a promising theranostic agent for treating malignant melanoma. Copyright © 2015 Elsevier Ltd. All rights reserved.
1990-01-01
The nature of the intracellular pH-regulatory mechanism after imposition of an alkaline load was investigated in isolated human peripheral blood neutrophils. Cells were alkalinized by removal of a DMO prepulse. The major part of the recovery could be ascribed to a Cl- /HCO3- counter-transport system: specifically, a one-for-one exchange of external Cl- for internal HCO3-. This exchange mechanism was sensitive to competitive inhibition by the cinnamate derivative UK-5099 (Ki approximately 1 microM). The half-saturation constants for binding of HCO3- and Cl- to the external translocation site of the carrier were approximately 2.5 and approximately 5.0 mM. In addition, other halides and lyotropic anions could substitute for external Cl-. These ions interacted with the exchanger in a sequence of decreasing affinities: HCO3- greater than Cl approximately NO3- approximately Br greater than I- approximately SCN- greater than PAH-. Glucuronate and SO4(2-) lacked any appreciable affinity. This rank order is reminiscent of the selectivity sequence for the principal anion exchanger in resting cells. Cl- and HCO3- displayed competition kinetics at both the internal and external binding sites of the carrier. Finally, evidence compatible with the existence of an approximately fourfold asymmetry (Michaelis constants inside greater than outside) between inward- and outward-facing states is presented. These results imply that a Cl-/HCO3- exchange mechanism, which displays several properties in common with the classical inorganic anion exchanger of erythrocytes, is primarily responsible for restoring the pHi of human neutrophils to its normal resting value after alkalinization. PMID:2280252
Sailer, Manuela; Dahlhoff, Christoph; Giesbertz, Pieter; Eidens, Mena K; de Wit, Nicole; Rubio-Aliaga, Isabel; Boekschoten, Mark V; Müller, Michael; Daniel, Hannelore
2013-01-01
In humans, plasma amino acid concentrations of branched-chain amino acids (BCAA) and aromatic amino acids (AAA) increase in states of obesity, insulin resistance and diabetes. We here assessed whether these putative biomarkers can also be identified in two different obesity and diabetic mouse models. C57BL/6 mice with diet-induced obesity (DIO) mimic the metabolic impairments of obesity in humans characterized by hyperglycemia, hyperinsulinemia and hepatic triglyceride accumulation. Mice treated with streptozotocin (STZ) to induce insulin deficiency were used as a type 1 diabetes model. Plasma amino acid profiling of two high fat (HF) feeding trials revealed that citrulline and ornithine concentrations are elevated in obese mice, while systemic arginine bioavailability (ratio of plasma arginine to ornithine + citrulline) is reduced. In skeletal muscle, HF feeding induced a reduction of arginine levels while citrulline levels were elevated. However, arginine or citrulline remained unchanged in their key metabolic organs, intestine and kidney. Moreover, the intestinal conversion of labeled arginine to ornithine and citrulline in vitro remained unaffected by HF feeding excluding the intestine as prime site of these alterations. In liver, citrulline is mainly derived from ornithine in the urea cycle and DIO mice displayed reduced hepatic ornithine levels. Since both amino acids share an antiport mechanism for mitochondrial import and export, elevated plasma citrulline may indicate impaired hepatic amino acid handling in DIO mice. In the insulin deficient mice, plasma citrulline and ornithine levels also increased and additionally these animals displayed elevated BCAA and AAA levels like insulin resistant and diabetic patients. Therefore, type 1 diabetic mice but not DIO mice show the "diabetic fingerprint" of plasma amino acid changes observed in humans. Additionally, citrulline may serve as an early indicator of the obesity-dependent metabolic impairments.
2013-01-01
Introduction Huntington’s disease (HD) is an autosomal dominant disorder caused by an expanded CAG repeat on the short arm of chromosome 4 resulting in cognitive decline, motor dysfunction, and death, typically occurring 15 to 20 years after the onset of motor symptoms. Neuropathologically, HD is characterized by a specific loss of medium spiny neurons in the caudate and the putamen, as well as subsequent neuronal loss in the cerebral cortex. The transgenic R6/2 mouse model of HD carries the N-terminal fragment of the human HD gene (145 to 155 repeats) and rapidly develops some of the behavioral characteristics that are analogous to the human form of the disease. Mesenchymal stem cells (MSCs) have shown the ability to slow the onset of behavioral and neuropathological deficits following intrastriatal transplantation in rodent models of HD. Use of MSCs derived from umbilical cord (UC) offers an attractive strategy for transplantation as these cells are isolated from a noncontroversial and inexhaustible source and can be harvested at a low cost. Because UC MSCs represent an intermediate link between adult and embryonic tissue, they may hold more pluripotent properties than adult stem cells derived from other sources. Methods Mesenchymal stem cells, isolated from the UC of day 15 gestation pups, were transplanted intrastriatally into 5-week-old R6/2 mice at either a low-passage (3 to 8) or high-passage (40 to 50). Mice were tested behaviorally for 6 weeks using the rotarod task, the Morris water maze, and the limb-clasping response. Following behavioral testing, tissue sections were analyzed for UC MSC survival, the immune response to the transplanted cells, and neuropathological changes. Results Following transplantation of UC MSCs, R6/2 mice did not display a reduction in motor deficits but there appeared to be transient sparing in a spatial memory task when compared to untreated R6/2 mice. However, R6/2 mice receiving either low- or high-passage UC MSCs displayed significantly less neuropathological deficits, relative to untreated R6/2 mice. Conclusions The results from this study demonstrate that UC MSCs hold promise for reducing the neuropathological deficits observed in the R6/2 rodent model of HD. PMID:24456799
Mesomorphic properties of multi-arm chenodeoxycholic acid-derived liquid crystals
NASA Astrophysics Data System (ADS)
Dong, Liang; Yao, Miao; Wu, Shuang-jie; Yao, Dan-Shu; Hu, Jian-She; He, Xiao-zhi; Tian, Mei
2017-12-01
Four multi-arm liquid crystals (LCs) based on chenodeoxycholic acid, termed as 2G-PD, 2G-IB, 2G-BD and 5G-GC, respectively, have been synthesised by convergent method, which nematic LC, 6-(4-((4-ethoxybenzoyl)oxy)phenoxy)-6-oxohexanoic acid, was used as side arm, and chenodeoxycholic acid (CDCA) was used as the first core, 1,2-propanediol (PD), isosorbide (IB), 4,4‧-biphenyldiol (BD) and glucose (GC) were used as the second core, respectively. The first generation product, CDCA2EA, displayed cholesteric phase. The second generation products 2G-BD and 5G-GC displayed cholesteric phase, while 2G-PD and 2G-IB exhibited nematic phase. The multi-arm LC, 2G-IB, did not display cholesteric phase although the two cores were all chiral ones. The result indicated that chirality of the second core sometimes made the multi-arm LCs display nematic phase when cholesteric CDCA-derivative were introduced into the second core. Some attention should be paid on molecular conformation besides the introduction of chiral cores for multi-chiral-core LCs to obtain cholesteric phase.
Pedras, M Soledade C; Hossain, Sajjad
2011-12-01
Glucosinolates represent a large group of plant natural products long known for diverse and fascinating physiological functions and activities. Despite the relevance and huge interest on the roles of indole glucosinolates in plant defense, little is known about their direct interaction with microbial plant pathogens. Toward this end, the metabolism of indolyl glucosinolates, their corresponding desulfo-derivatives, and derived metabolites, by three fungal species pathogenic on crucifers was investigated. While glucobrassicin, 1-methoxyglucobrassicin, 4-methoxyglucobrassicin were not metabolized by the pathogenic fungi Alternaria brassicicola, Rhizoctonia solani and Sclerotinia sclerotiorum, the corresponding desulfo-derivatives were metabolized to indolyl-3-acetonitrile, caulilexin C (1-methoxyindolyl-3-acetonitrile) and arvelexin (4-methoxyindolyl-3-acetonitrile) by R. solani and S. sclerotiorum, but not by A. brassicicola. That is, desulfo-glucosinolates were metabolized by two non-host-selective pathogens, but not by a host-selective. Indolyl-3-acetonitrile, caulilexin C and arvelexin were metabolized to the corresponding indole-3-carboxylic acids. Indolyl-3-acetonitriles displayed higher inhibitory activity than indole desulfo-glucosinolates. Indolyl-3-methanol displayed antifungal activity and was metabolized by A. brassicicola and R. solani to the less antifungal compounds indole-3-carboxaldehyde and indole-3-carboxylic acid. Diindolyl-3-methane was strongly antifungal and stable in fungal cultures, but ascorbigen was not stable in solution and displayed low antifungal activity; neither compound appeared to be metabolized by any of the three fungal species. The cell-free extracts of mycelia of A. brassicicola displayed low myrosinase activity using glucobrassicin as substrate, but myrosinase activity was not detectable in mycelia of either R. solani or S. sclerotiorum. Copyright © 2011 Elsevier Ltd. All rights reserved.
Luci, Diane K.; Jameson, J. Brian; Yasgar, Adam; Diaz, Giovanni; Joshi, Netra; Kantz, Auric; Markham, Kate; Perry, Steve; Kuhn, Norine; Yeung, Jennifer; Kerns, Edward H.; Schultz, Lena; Holinstat, Michael; Nadler, Jerry L.; Taylor-Fishwick, David A.; Jadhav, Ajit; Simeonov, Anton; Holman, Theodore R.; Maloney, David J.
2014-01-01
Human lipoxygenases (LOXs) are a family of iron-containing enzymes which catalyze the oxidation of polyunsaturated fatty acids to provide the corresponding bioactive hydroxyeicosatetraenoic acid (HETE) metabolites. These eicosanoid signaling molecules are involved in a number of physiologic responses such as platelet aggregation, inflammation, and cell proliferation. Our group has taken a particular interest in platelet-type 12-(S)-LOX (12-LOX) because of its demonstrated role in skin diseases, diabetes, platelet hemostasis, thrombosis, and cancer. Herein, we report the identification and medicinal chemistry optimization of a 4-((2-hydroxy-3-methoxybenzyl)amino)benzenesulfonamide-based scaffold. Top compounds, exemplified by 35 and 36, display nM potency against 12-LOX, excellent selectivity over related lipoxygenases and cyclooxygenases, and possess favorable ADME properties. In addition, both compounds inhibit PAR-4 induced aggregation and calcium mobilization in human platelets and reduce 12-HETE in β-cells. PMID:24393039
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael W.
1990-01-01
An advanced human-system interface is being developed for evolutionary Space Station Freedom as part of the NASA Office of Space Station (OSS) Advanced Development Program. The human-system interface is based on body-pointed display and control devices. The project will identify and document the design accommodations ('hooks and scars') required to support virtual workstations and telepresence interfaces, and prototype interface systems will be built, evaluated, and refined. The project is a joint enterprise of Marquette University, Astronautics Corporation of America (ACA), and NASA's ARC. The project team is working with NASA's JSC and McDonnell Douglas Astronautics Company (the Work Package contractor) to ensure that the project is consistent with space station user requirements and program constraints. Documentation describing design accommodations and tradeoffs will be provided to OSS, JSC, and McDonnell Douglas, and prototype interface devices will be delivered to ARC and JSC. ACA intends to commercialize derivatives of the interface for use with computer systems developed for scientific visualization and system simulation.
Computational model of lightness perception in high dynamic range imaging
NASA Astrophysics Data System (ADS)
Krawczyk, Grzegorz; Myszkowski, Karol; Seidel, Hans-Peter
2006-02-01
An anchoring theory of lightness perception by Gilchrist et al. [1999] explains many characteristics of human visual system such as lightness constancy and its spectacular failures which are important in the perception of images. The principal concept of this theory is the perception of complex scenes in terms of groups of consistent areas (frameworks). Such areas, following the gestalt theorists, are defined by the regions of common illumination. The key aspect of the image perception is the estimation of lightness within each framework through the anchoring to the luminance perceived as white, followed by the computation of the global lightness. In this paper we provide a computational model for automatic decomposition of HDR images into frameworks. We derive a tone mapping operator which predicts lightness perception of the real world scenes and aims at its accurate reproduction on low dynamic range displays. Furthermore, such a decomposition into frameworks opens new grounds for local image analysis in view of human perception.
Bahekar, Sandeep P; Hande, Sneha V; Agrawal, Nikita R; Chandak, Hemant S; Bhoj, Priyanka S; Goswami, Kalyan; Reddy, M V R
2016-11-29
Keeping in mind the immense biological potential of chalcones and sulfonamide scaffolds, a library of sulfonamide chalcones has been synthesized and evaluated for in vitro antifilarial assay against human lymphatic filarial parasite Brugia malayi. Experimental evidence showcased for the first time the potential of some sulfonamide chalcones as effective and safe antifilarial lead molecules against human lymphatic filarial parasite B. malayi. Sulfonamide chalcones 4d, 4p, 4q, 4t and 4aa displayed the significantly wide therapeutic window. Particularly chalcones with halogen substitution in aromatic ring proved to be potent antifilarial agents against Brugia malayi. Sulphonamide chalcones with lipophilic methyl moiety (4q and 4aa) at para position of terminal phenyl rings of compounds were found to have remarkable antifilarial activities with therapeutic efficacy. Observed preliminary evidence of apoptosis by effective chalcone derivatives envisaged its fair possibility to inhibit folate pathway with consequent defect in DNA synthesis. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Nishiyama, Shoko; Ikegami, Tetsuro
2015-01-01
Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF. PMID:26322023
López-Abarrategui, Carlos; Alba, Annia; Silva, Osmar N; Reyes-Acosta, Osvaldo; Vasconcelos, Ilka M; Oliveira, Jose T A; Migliolo, Ludovico; Costa, Maysa P; Costa, Carolina R; Silva, Maria R R; Garay, Hilda E; Dias, Simoni C; Franco, Octávio L; Otero-González, Anselmo J
2012-04-01
Antimicrobial peptides have been found in mollusks and other sea animals. In this report, a crude extract of the marine snail Cenchritis muricatus was evaluated against human pathogens responsible for multiple deleterious effects and diseases. A peptide of 1485.26 Da was purified by reversed-phase HPLC and functionally characterized. This trypsinized peptide was sequenced by MS/MS technology, and a sequence (SRSELIVHQR), named Cm-p1 was recovered, chemically synthesized and functionally characterized. This peptide demonstrated the capacity to prevent the development of yeasts and filamentous fungi. Otherwise, Cm-p1 displayed no toxic effects against mammalian cells. Molecular modeling analyses showed that this peptide possible forms a single hydrophilic α-helix and the probable cationic residue involved in antifungal activity action is proposed. The data reported here demonstrate the importance of sea animals peptide discovery for biotechnological tools development that could be useful in solving human health and agribusiness problems. Copyright © 2011 Elsevier Masson SAS. All rights reserved.
Higashiyama, Atsuki; Imoto, Hisato; Tsuinashi, Seiichi
2005-12-01
Forty participants viewed and interpreted videotapes that were composed of displays representing different human actions (e.g., running and washing hands) and emotions (pleasant, neutral, and unpleasant). Half the videotapes were usual movies of real persons and the other videotapes were biological motions as produced by 22 light points on a human body in otherwise total darkness. In each display, an expert or a novice played a series of large or small body actions under each emotion. We found that (1) pleasant-unpleasant feeling was well discriminated in the real-person displays and in the biological motion display of large body actions, but it was less discriminated in the biological-motion displays of small body actions, (2) actions by experts were rated to be pleasant, and (3) actions were successfully identified for the real displays of large actions by experts, but they were poorly identified for the biological-motion displays of small body actions by novices. These results suggested that the observers correctly judged the emotion of players that was represented through suitable actions.
What is 3D good for? A review of human performance on stereoscopic 3D displays
NASA Astrophysics Data System (ADS)
McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.
2012-06-01
This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.
Correction techniques for depth errors with stereo three-dimensional graphic displays
NASA Technical Reports Server (NTRS)
Parrish, Russell V.; Holden, Anthony; Williams, Steven P.
1992-01-01
Three-dimensional (3-D), 'real-world' pictorial displays that incorporate 'true' depth cues via stereopsis techniques have proved effective for displaying complex information in a natural way to enhance situational awareness and to improve pilot/vehicle performance. In such displays, the display designer must map the depths in the real world to the depths available with the stereo display system. However, empirical data have shown that the human subject does not perceive the information at exactly the depth at which it is mathematically placed. Head movements can also seriously distort the depth information that is embedded in stereo 3-D displays because the transformations used in mapping the visual scene to the depth-viewing volume (DVV) depend intrinsically on the viewer location. The goal of this research was to provide two correction techniques; the first technique corrects the original visual scene to the DVV mapping based on human perception errors, and the second (which is based on head-positioning sensor input data) corrects for errors induced by head movements. Empirical data are presented to validate both correction techniques. A combination of the two correction techniques effectively eliminates the distortions of depth information embedded in stereo 3-D displays.
FGF21 and the late adaptive response to starvation in humans.
Fazeli, Pouneh K; Lun, Mingyue; Kim, Soo M; Bredella, Miriam A; Wright, Spenser; Zhang, Yang; Lee, Hang; Catana, Ciprian; Klibanski, Anne; Patwari, Parth; Steinhauser, Matthew L
2015-11-03
In mice, FGF21 is rapidly induced by fasting, mediates critical aspects of the adaptive starvation response, and displays a number of positive metabolic properties when administered pharmacologically. In humans, however, fasting does not consistently increase FGF21, suggesting a possible evolutionary divergence in FGF21 function. Moreover, many key aspects of FGF21 function in mice have been identified in the context of transgenic overexpression or administration of supraphysiologic doses, rather than in a physiologic setting. Here, we explored the dynamics and function of FGF21 in human volunteers during a 10-day fast. Unlike mice, which show an increase in circulating FGF21 after only 6 hours, human subjects did not have a notable surge in FGF21 until 7 to 10 days of fasting. Moreover, we determined that FGF21 induction was associated with decreased thermogenesis and adiponectin, an observation that directly contrasts with previous reports based on supraphysiologic dosing. Additionally, FGF21 levels increased after ketone induction, demonstrating that endogenous FGF21 does not drive starvation-mediated ketogenesis in humans. Instead, a longitudinal analysis of biologically relevant variables identified serum transaminases--markers of tissue breakdown--as predictors of FGF21. These data establish FGF21 as a fasting-induced hormone in humans and indicate that FGF21 contributes to the late stages of adaptive starvation, when it may regulate the utilization of fuel derived from tissue breakdown.
Park, Seung-Hwan; Zheng, Jin Hai; Nguyen, Vu Hong; Jiang, Sheng-Nan; Kim, Dong-Yeon; Szardenings, Michael; Min, Jung Hyun; Hong, Yeongjin; Choy, Hyon E; Min, Jung-Joon
2016-01-01
Bacteria-based anticancer therapies aim to overcome the limitations of current cancer therapy by actively targeting and efficiently removing cancer. To achieve this goal, new approaches that target and maintain bacterial drugs at sufficient concentrations during the therapeutic window are essential. Here, we examined the tumor tropism of attenuated Salmonella typhimurium displaying the RGD peptide sequence (ACDCRGDCFCG) on the external loop of outer membrane protein A (OmpA). RGD-displaying Salmonella strongly bound to cancer cells overexpressing αvβ3, but weakly bound to αvβ3-negative cancer cells, suggesting the feasibility of displaying a preferential homing peptide on the bacterial surface. In vivo studies revealed that RGD-displaying Salmonellae showed strong targeting efficiency, resulting in the regression in αvβ3-overexpressing cancer xenografts, and prolonged survival of mouse models of human breast cancer (MDA-MB-231) and human melanoma (MDA-MB-435). Thus, surface engineering of Salmonellae to display RGD peptides increases both their targeting efficiency and therapeutic effect.
Phage as a template to grow bone mineral nanocrystals.
Cao, Binrui; Xu, Hong; Mao, Chuanbin
2014-01-01
Phage display is a biotechnique that fuses functional peptides on the outer surface of filamentous phage by inserting DNA encoding the peptides into the genes of its coat proteins. The resultant peptide-displayed phage particles have been widely used as biotemplates for the synthesis of functional hybrid nanomaterials. Here, we describe the bioengineering of M13 filamentous phage to surface-display bone mineral (hydroxyapatite (HAP))-nucleating peptides derived from dentin matrix protein-1 and using the engineered phage as a biotemplate to grow HAP nanocrystals.
Control/display trade-off study for single-pilot instrument flight rule operations
NASA Technical Reports Server (NTRS)
Hoh, R.
1983-01-01
The objectives were to determine minimum autopilot functions and displays required to keep pilot workload at an acceptable level; to determine what constitutes an acceptable level of workload; to identify critical tasks; and to suggest specific experiments required to refine conclusions. It was determined that workload relief is derived from basic stability augmentation; that complex autopilots can lead to serious blunders; and that displays need to enhance positional awareness and minimize the likelihood of false hypothesis.
Metabolism of captopril carboxyl ester derivatives for percutaneous absorption.
Gullick, Darren R; Ingram, Matthew J; Pugh, W John; Cox, Paul A; Gard, Paul; Smart, John D; Moss, Gary P
2009-02-01
To determine the metabolism of captopril n-carboxyl derivatives and how this may impact on their use as transdermal prodrugs. The pharmacological activity of the ester derivatives was also characterised in order to compare the angiotensin converting enzyme inhibitory potency of the derivatives compared with the parent drug, captopril. The metabolism rates of the ester derivatives were determined in vitro (using porcine liver esterase and porcine ear skin) and in silico (using molecular modelling to investigate the potential to predict metabolism). Relatively slow pseudo first-order metabolism of the prodrugs was observed, with the ethyl ester displaying the highest rate of metabolism. A strong relationship was established between in-vitro methods, while in-silico methods support the use of in-vitro methods and highlight the potential of in-silico techniques to predict metabolism. All the prodrugs behaved as angiotensin converting enzyme inhibitors, with the methyl ester displaying optimum inhibition. In-vitro porcine liver esterase metabolism rates inform in-vitro skin rates well, and in-silico interaction energies relate well to both. Thus, in-silico methods may be developed that include interaction energies to predict metabolism rates.
Interoception drives increased rational decision-making in meditators playing the ultimatum game.
Kirk, Ulrich; Downar, Jonathan; Montague, P Read
2011-01-01
Human decision-making is often conceptualized as a competition between cognitive and emotional processes in the brain. Deviations from rational processes are believed to derive from inclusion of emotional factors in decision-making. Here, we investigate whether experienced Buddhist meditators are better equipped to regulate emotional processes compared with controls during economic decision-making in the Ultimatum Game. We show that meditators accept unfair offers on more than half of the trials, whereas controls only accept unfair offers on one-quarter of the trials. By applying fMRI we show that controls recruit the anterior insula during unfair offers. Such responses are powerful predictors of rejecting offers in social interaction. By contrast, meditators display attenuated activity in high-level emotional representations of the anterior insula and increased activity in the low-level interoceptive representations of the posterior insula. In addition we show that a subset of control participants who play rationally (i.e., accepts >85% unfair offers) recruits the dorsolateral prefrontal cortex presumably reflecting increased cognitive demands, whereas rational meditators by contrast display elevated activity in the somatosensory cortex and posterior superior temporal cortex. In summary, when assessing unfairness in the Ultimatum Game, meditators activate a different network of brain areas compared with controls enabling them to uncouple negative emotional reactions from their behavior. These findings highlight the clinically and socially important possibility that sustained training in mindfulness meditation may impact distinct domains of human decision-making.
Fickova, Maria; Macho, Ladislav; Brtko, Julius
2015-06-01
In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Silva, Tânia; Magalhães, Bárbara; Maia, Sílvia; Gomes, Paula; Nazmi, Kamran; Bolscher, Jan G M; Rodrigues, Pedro N; Bastos, Margarida; Gomes, Maria Salomé
2014-06-01
Mycobacterium avium causes respiratory disease in susceptible individuals, as well as disseminated infections in immunocompromised hosts, being an important cause of morbidity and mortality among these populations. Current therapies consist of a combination of antibiotics taken for at least 6 months, with no more than 60% overall clinical success. Furthermore, mycobacterial antibiotic resistance is increasing worldwide, urging the need to develop novel classes of antimicrobial drugs. One potential and interesting alternative strategy is the use of antimicrobial peptides (AMP). These are present in almost all living organisms as part of their immune system, acting as a first barrier against invading pathogens. In this context, we investigated the effect of several lactoferrin-derived AMP against M. avium. Short peptide sequences from both human and bovine lactoferricins, namely, hLFcin1-11 and LFcin17-30, as well as variants obtained by specific amino acid substitutions, were evaluated. All tested peptides significantly inhibited the axenic growth of M. avium, the bovine peptides being more active than the human. Arginine residues were found to be crucial for the display of antimycobacterial activity, whereas the all-d-amino-acid analogue of the bovine sequence displayed the highest mycobactericidal activity. These findings reveal the promising potential of lactoferricins against mycobacteria, thus opening the way for further research on their development and use as a new weapon against mycobacterial infections. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Design, synthesis and antibacterial evaluation of honokiol derivatives.
Wu, Bo; Fu, Su-Hong; Tang, Huan; Chen, Kai; Zhang, Qiang; Peng, Ai-Hua; Ye, Hao-Yu; Cheng, Xing-Jun; Lian, Mao; Wang, Zhen-Ling; Chen, Li-Juan
2018-02-15
Staphylococcus aureus is a major and dangerous human pathogen that causes a range of clinical manifestations of varying severity, and is the most commonly isolated pathogen in the setting of skin and soft tissue infections, pneumonia, suppurative arthritis, endovascular infections, foreign-body associated infections, septicemia, osteomyelitis, and toxic shocksyndrome. Honokiol, a pharmacologically active natural compound derived from the bark of Magnolia officinalis, has antibacterial activity against Staphylococcus aureus which provides a great inspiration for the discovery of potential antibacterial agents. Herein, honokiol derivatives were designed, synthesized and evaluated for their antibacterial activity by determining the minimum inhibitory concentration (MIC) against S. aureus ATCC25923 and Escherichia coli ATCC25922 in vitro. 7c exhibited better antibacterial activity than other derivatives and honokiol. The structure-activity relationships indicated piperidine ring with amino group is helpful to improve antibacterial activity. Further more, 7c showed broad spectrum antibacterial efficiency against various bacterial strains including eleven gram-positive and seven gram-negative species. Time-kill kinetics against S. aureus ATCC25923 in vitro revealed that 7c displayed a concentration-dependent effect and more rapid bactericidal kinetics better than linezolid and vancomycin with the same concentration. Gram staining assays of S. aureus ATCC25923 suggested that 7c could destroy the cell walls of bacteria at 1×MIC and 4×MIC. Copyright © 2017. Published by Elsevier Ltd.
Letsiou, Eleftheria; Sammani, Saad; Zhang, Wei; Zhou, Tong; Quijada, Hector; Moreno-Vinasco, Liliana; Dudek, Steven M.
2015-01-01
Acute lung injury (ALI) results from infectious challenges and from pathologic lung distention produced by excessive tidal volume delivered during mechanical ventilation (ventilator-induced lung injury [VILI]) and is characterized by extensive alveolar and vascular dysfunction. Identification of novel ALI therapies is hampered by the lack of effective ALI/VILI biomarkers. We explored endothelial cell (EC)-derived microparticles (EMPs) (0.1–1 μm) as potentially important markers and potential mediators of lung vascular injury in preclinical models of ALI and VILI. We characterized EMPs (annexin V and CD31 immunoreactivity) produced from human lung ECs exposed to physiologic or pathologic mechanical stress (5 or 18% cyclic stretch [CS]) or to endotoxin (LPS). EC exposure to 18% CS or to LPS resulted in increased EMP shedding compared with static cells (∼ 4-fold and ∼ 2.5-fold increases, respectively). Proteomic analysis revealed unique 18% CS–derived (n = 10) and LPS-derived EMP proteins (n = 43). VILI-challenged mice (40 ml/kg, 4 h) exhibited increased plasma and bronchoalveolar lavage CD62E (E-selectin)-positive MPs compared with control mice. Finally, mice receiving intratracheal instillation of 18% CS–derived EMPs displayed significant lung inflammation and injury. These findings indicate that ALI/VILI-producing stimuli induce significant shedding of distinct EMP populations that may serve as potential ALI biomarkers and contribute to the severity of lung injury. PMID:25029266
Bass, Ellen J.; Baumgart, Leigh A.; Shepley, Kathryn Klein
2014-01-01
Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance. PMID:24847184
NASA Astrophysics Data System (ADS)
Metcalfe, Jason S.; Mikulski, Thomas; Dittman, Scott
2011-06-01
The current state and trajectory of development for display technologies supporting information acquisition, analysis and dissemination lends a broad informational infrastructure to operators of complex systems. The amount of information available threatens to outstrip the perceptual-cognitive capacities of operators, thus limiting their ability to effectively interact with targeted technologies. Therefore, a critical step in designing complex display systems is to find an appropriate match between capabilities, operational needs, and human ability to utilize complex information. The present work examines a set of evaluation parameters that were developed to facilitate the design of systems to support a specific military need; that is, the capacity to support the achievement and maintenance of real-time 360° situational awareness (SA) across a range of complex military environments. The focal point of this evaluation is on the reciprocity native to advanced engineering and human factors practices, with a specific emphasis on aligning the operator-systemenvironment fit. That is, the objective is to assess parameters for evaluation of 360° SA display systems that are suitable for military operations in tactical platforms across a broad range of current and potential operational environments. The approach is centered on five "families" of parameters, including vehicle sensors, data transmission, in-vehicle displays, intelligent automation, and neuroergonomic considerations. Parameters are examined under the assumption that displays designed to conform to natural neurocognitive processing will enhance and stabilize Soldier-system performance and, ultimately, unleash the human's potential to actively achieve and maintain the awareness necessary to enhance lethality and survivability within modern and future operational contexts.
Colford, Nicholas
2002-04-01
This chapter describes the human and environmental factors that dictate the way that displays must be designed for, and used in space. A brief history of the evolution of such display systems covers developments from the Mercury rockets to the International Space Station. c2002 Published by Elsevier Science B.V.
Phage display creates innovative applications to combat hepatitis B virus
Tan, Wen Siang; Ho, Kok Lian
2014-01-01
Hepatitis B virus (HBV) has killed countless lives in human history. The invention of HBV vaccines in the 20th century has reduced significantly the rate of the viral infection. However, currently there is no effective treatment for chronic HBV carriers. Newly emerging vaccine escape mutants and drug resistant strains have complicated the viral eradication program. The entire world is now facing a new threat of HBV and human immunodeficiency virus co-infection. Could phage display provide solutions to these life-threatening problems? This article reviews critically and comprehensively the innovative and potential applications of phage display in the development of vaccines, therapeutic agents, diagnostic reagents, as well as gene and drug delivery systems to combat HBV. The application of phage display in epitope mapping of HBV antigens is also discussed in detail. Although this review mainly focuses on HBV, the innovative applications of phage display could also be extended to other infectious diseases. PMID:25206271