NASA Astrophysics Data System (ADS)
Kay, Paul A.; Robb, Richard A.; King, Bernard F.; Myers, R. P.; Camp, Jon J.
1995-04-01
Thousands of radical prostatectomies for prostate cancer are performed each year. Radical prostatectomy is a challenging procedure due to anatomical variability and the adjacency of critical structures, including the external urinary sphincter and neurovascular bundles that subserve erectile function. Because of this, there are significant risks of urinary incontinence and impotence following this procedure. Preoperative interaction with three-dimensional visualization of the important anatomical structures might allow the surgeon to understand important individual anatomical relationships of patients. Such understanding might decrease the rate of morbidities, especially for surgeons in training. Patient specific anatomic data can be obtained from preoperative 3D MRI diagnostic imaging examinations of the prostate gland utilizing endorectal coils and phased array multicoils. The volumes of the important structures can then be segmented using interactive image editing tools and then displayed using 3-D surface rendering algorithms on standard work stations. Anatomic relationships can be visualized using surface displays and 3-D colorwash and transparency to allow internal visualization of hidden structures. Preoperatively a surgeon and radiologist can interactively manipulate the 3-D visualizations. Important anatomical relationships can better be visualized and used to plan the surgery. Postoperatively the 3-D displays can be compared to actual surgical experience and pathologic data. Patients can then be followed to assess the incidence of morbidities. More advanced approaches to visualize these anatomical structures in support of surgical planning will be implemented on virtual reality (VR) display systems. Such realistic displays are `immersive,' and allow surgeons to simultaneously see and manipulate the anatomy, to plan the procedure and to rehearse it in a realistic way. Ultimately the VR systems will be implemented in the operating room (OR) to assist the surgeon in conducting the surgery. Such an implementation will bring to the OR all of the pre-surgical planning data and rehearsal experience in synchrony with the actual patient and operation to optimize the effectiveness and outcome of the procedure.
NASA Astrophysics Data System (ADS)
Hacker, Silke; Handels, Heinz
2006-03-01
Computer-based 3D atlases allow an interactive exploration of the human body. However, in most cases such 3D atlases are derived from one single individual, and therefore do not regard the variability of anatomical structures concerning their shape and size. Since the geometric variability across humans plays an important role in many medical applications, our goal is to develop a framework of an anatomical atlas for representation and visualization of the variability of selected anatomical structures. The basis of the project presented is the VOXEL-MAN atlas of inner organs that was created from the Visible Human data set. For modeling anatomical shapes and their variability we utilize "m-reps" which allow a compact representation of anatomical objects on the basis of their skeletons. As an example we used a statistical model of the kidney that is based on 48 different variants. With the integration of a shape description into the VOXEL-MAN atlas it is now possible to query and visualize different shape variations of an organ, e.g. by specifying a person's age or gender. In addition to the representation of individual shape variants, the average shape of a population can be displayed. Besides a surface representation, a volume-based representation of the kidney's shape variants is also possible. It results from the deformation of the reference kidney of the volume-based model using the m-rep shape description. In this way a realistic visualization of the shape variants becomes possible, as well as the visualization of the organ's internal structures.
Three-Dimensional Display Technologies for Anatomical Education: A Literature Review
NASA Astrophysics Data System (ADS)
Hackett, Matthew; Proctor, Michael
2016-08-01
Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display technologies and their associated assessments for anatomical education. In the first segment, the review covers the general function of displays employing 3D techniques. The second segment of the review highlights the use and assessment of 3D technology in anatomical education, focusing on factors such as knowledge gains, student perceptions, and cognitive load. The review found 32 articles on the use of 3D displays in anatomical education and another 38 articles on the assessment of 3D displays. The review shows that the majority (74 %) of studies indicate that the use of 3D is beneficial for many tasks in anatomical education, and that student perceptions are positive toward the technology.
Pastor, Zlatko
2010-05-01
The purpose of this review is to give an overview of anatomical and physiological assumptions of female sexual response. To notify on new models of female sexual behavior. To clarify and discuss some of the hypothesis concerning the theory of forms, nature and possibilities of female sexual response in particular relating to the area known as the G spot. Systematic review. GONA, Private Sexological Centre, Prague. Current literature review. Female sexual responses are very variable in their display. The female sexual response is modified by anatomical and physiological capabilities of each individual. Emotional and psychogenic factors have an important role. Interpretation of by science unsubstantiated hypothesis or marginal facts in sexual life as standard facts may lead to female sexual dysfunctions and relationship issues. Existence of a specific anatomical structure known as the G spot has not been proven by any relevant scientific studies.
Visualizing the anatomical-functional correlation of the human brain
NASA Astrophysics Data System (ADS)
Chang, YuKuang; Rockwood, Alyn P.; Reiman, Eric M.
1995-04-01
Three-dimensional tomographic images obtained from different modalities or from the same modality at different times provide complementary information. For example, while PET shows brain function, images from MRI identify anatomical structures. In this paper, we investigate the problem of displaying available information about structures and function together. Several steps are described to achieve our goal. These include segmentation of the data, registration, resampling, and display. Segmentation is used to identify brain tissue from surrounding tissues, especially in the MRI data. Registration aligns the different modalities as closely as possible. Resampling arises from the registration since two data sets do not usually correspond and the rendering method is most easily achieved if the data correspond to the same grid used in display. We combine several techniques to display the data. MRI data is reconstructed from 2D slices into 3D structures from which isosurfaces are extracted and represented by approximating polygonalizations. These are then displayed using standard graphics pipelines including shaded and transparent images. PET data measures the qualitative rates of cerebral glucose utilization or oxygen consumption. PET image is best displayed as a volume of luminous particles. The combination of both display methods allows the viewer to compare the functional information contained in the PET data with the anatomically more precise MRI data.
Contextual cueing of tactile search is coded in an anatomical reference frame.
Assumpção, Leonardo; Shi, Zhuanghua; Zang, Xuelian; Müller, Hermann J; Geyer, Thomas
2018-04-01
This work investigates the reference frame(s) underlying tactile context memory, a form of statistical learning in a tactile (finger) search task. In this task, if a searched-for target object is repeatedly encountered within a stable spatial arrangement of task-irrelevant distractors, detecting the target becomes more efficient over time (relative to nonrepeated arrangements), as learned target-distractor spatial associations come to guide tactile search, thus cueing attention to the target location. Since tactile search displays can be represented in several reference frames, including multiple external and an anatomical frame, in Experiment 1 we asked whether repeated search displays are represented in tactile memory with reference to an environment-centered or anatomical reference frame. In Experiment 2, we went on examining a hand-centered versus anatomical reference frame of tactile context memory. Observers performed a tactile search task, divided into a learning and test session. At the transition between the two sessions, we introduced postural manipulations of the hands (crossed ↔ uncrossed in Expt. 1; palm-up ↔ palm-down in Expt. 2) to determine the reference frame of tactile contextual cueing. In both experiments, target-distractor associations acquired during learning transferred to the test session when the placement of the target and distractors was held constant in anatomical, but not external, coordinates. In the latter, RTs were even slower for repeated displays. We conclude that tactile contextual learning is coded in an anatomical reference frame. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Automated selection of computed tomography display parameters using neural networks
NASA Astrophysics Data System (ADS)
Zhang, Di; Neu, Scott; Valentino, Daniel J.
2001-07-01
A collection of artificial neural networks (ANN's) was trained to identify simple anatomical structures in a set of x-ray computed tomography (CT) images. These neural networks learned to associate a point in an image with the anatomical structure containing the point by using the image pixels located on the horizontal and vertical lines that ran through the point. The neural networks were integrated into a computer software tool whose function is to select an index into a list of CT window/level values from the location of the user's mouse cursor. Based upon the anatomical structure selected by the user, the software tool automatically adjusts the image display to optimally view the structure.
The simulation of 3D structure of groundwater system based on Java/Java3D
NASA Astrophysics Data System (ADS)
Yang, Xiaodong; Cui, Weihong; Wang, Peifa; Huang, Yongqi
2007-06-01
With the singular development of Internet technique and 3DGIS as well as VR and the imminence demand of 3D visualization from Groundwater information management field, how to display, roam, anatomize and analyze of 3D structure of Groundwater system on Internet have become a research hotspot in hydrogeology field. We simulated the 3D Groundwater resource structure of Taiyuan basin and implemented displaying, roaming, anatomizing and analyzing functions on Internet by Java 3D.
Motion representation of the long fingers: a proposal for the definitions of new anatomical frames.
Coupier, Jérôme; Moiseev, Fédor; Feipel, Véronique; Rooze, Marcel; Van Sint Jan, Serge
2014-04-11
Despite the availability of the International Society of Biomechanics (ISB) recommendations for the orientation of anatomical frames, no consensus exists about motion representations related to finger kinematics. This paper proposes novel anatomical frames for motion representation of the phalangeal segments of the long fingers. A three-dimensional model of a human forefinger was acquired from a non-pathological fresh-frozen hand. Medical imaging was used to collect phalangeal discrete positions. Data processing was performed using a customized software interface ("lhpFusionBox") to create a specimen-specific model and to reconstruct the discrete motion path. Five examiners virtually palpated two sets of landmarks. These markers were then used to build anatomical frames following two methods: a reference method following ISB recommendations and a newly-developed method based on the mean helical axis (HA). Motion representations were obtained and compared between examiners. Virtual palpation precision was around 1mm, which is comparable to results from the literature. The comparison of the two methods showed that the helical axis method seemed more reproducible between examiners especially for secondary, or accessory, motions. Computed Root Mean Square distances comparing methods showed that the ISB method displayed a variability 10 times higher than the HA method. The HA method seems to be suitable for finger motion representation using discrete positions from medical imaging. Further investigations are required before being able to use the methodology with continuous tracking of markers set on the subject's hand. Copyright © 2014 Elsevier Ltd. All rights reserved.
Social variables exert selective pressures in the evolution and form of primate mimetic musculature.
Burrows, Anne M; Li, Ly; Waller, Bridget M; Micheletta, Jerome
2016-04-01
Mammals use their faces in social interactions more so than any other vertebrates. Primates are an extreme among most mammals in their complex, direct, lifelong social interactions and their frequent use of facial displays is a means of proximate visual communication with conspecifics. The available repertoire of facial displays is primarily controlled by mimetic musculature, the muscles that move the face. The form of these muscles is, in turn, limited by and influenced by phylogenetic inertia but here we use examples, both morphological and physiological, to illustrate the influence that social variables may exert on the evolution and form of mimetic musculature among primates. Ecomorphology is concerned with the adaptive responses of morphology to various ecological variables such as diet, foliage density, predation pressures, and time of day activity. We present evidence that social variables also exert selective pressures on morphology, specifically using mimetic muscles among primates as an example. Social variables include group size, dominance 'style', and mating systems. We present two case studies to illustrate the potential influence of social behavior on adaptive morphology of mimetic musculature in primates: (1) gross morphology of the mimetic muscles around the external ear in closely related species of macaque (Macaca mulatta and Macaca nigra) characterized by varying dominance styles and (2) comparative physiology of the orbicularis oris muscle among select ape species. This muscle is used in both facial displays/expressions and in vocalizations/human speech. We present qualitative observations of myosin fiber-type distribution in this muscle of siamang (Symphalangus syndactylus), chimpanzee (Pan troglodytes), and human to demonstrate the potential influence of visual and auditory communication on muscle physiology. In sum, ecomorphologists should be aware of social selective pressures as well as ecological ones, and that observed morphology might reflect a compromise between the demands of the physical and the social environments. © 2016 Anatomical Society.
Sauer, Igor M; Queisner, Moritz; Tang, Peter; Moosburner, Simon; Hoepfner, Ole; Horner, Rosa; Lohmann, Rudiger; Pratschke, Johann
2017-11-01
The paper evaluates the application of a mixed reality (MR) headmounted display (HMD) for the visualization of anatomical structures in complex visceral-surgical interventions. A workflow was developed and technical feasibility was evaluated. Medical images are still not seamlessly integrated into surgical interventions and, thus, remain separated from the surgical procedure.Surgeons need to cognitively relate 2-dimensional sectional images to the 3-dimensional (3D) during the actual intervention. MR applications simulate 3D images and reduce the offset between working space and visualization allowing for improved spatial-visual approximation of patient and image. The surgeon's field of vision was superimposed with a 3D-model of the patient's relevant liver structures displayed on a MR-HMD. This set-up was evaluated during open hepatic surgery. A suitable workflow for segmenting image masks and texture mapping of tumors, hepatic artery, portal vein, and the hepatic veins was developed. The 3D model was positioned above the surgical site. Anatomical reassurance was possible simply by looking up. Positioning in the room was stable without drift and minimal jittering. Users reported satisfactory comfort wearing the device without significant impairment of movement. MR technology has a high potential to improve the surgeon's action and perception in open visceral surgery by displaying 3D anatomical models close to the surgical site. Superimposing anatomical structures directly onto the organs within the surgical site remains challenging, as the abdominal organs undergo major deformations due to manipulation, respiratory motion, and the interaction with the surgical instruments during the intervention. A further application scenario would be intraoperative ultrasound examination displaying the image directly next to the transducer. Displays and sensor-technologies as well as biomechanical modeling and object-recognition algorithms will facilitate the application of MR-HMD in surgery in the near future.
Liu, Kaijun; Fang, Binji; Wu, Yi; Li, Ying; Jin, Jun; Tan, Liwen; Zhang, Shaoxiang
2013-09-01
Anatomical knowledge of the larynx region is critical for understanding laryngeal disease and performing required interventions. Virtual reality is a useful method for surgical education and simulation. Here, we assembled segmented cross-section slices of the larynx region from the Chinese Visible Human dataset. The laryngeal structures were precisely segmented manually as 2D images, then reconstructed and displayed as 3D images in the virtual reality Dextrobeam system. Using visualization and interaction with the virtual reality modeling language model, a digital laryngeal anatomy instruction was constructed using HTML and JavaScript languages. The volume larynx models can thus display an arbitrary section of the model and provide a virtual dissection function. This networked teaching system of the digital laryngeal anatomy can be read remotely, displayed locally, and manipulated interactively.
Quantitative Wood Anatomy-Practical Guidelines.
von Arx, Georg; Crivellaro, Alan; Prendin, Angela L; Čufar, Katarina; Carrer, Marco
2016-01-01
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Quantitative Wood Anatomy—Practical Guidelines
von Arx, Georg; Crivellaro, Alan; Prendin, Angela L.; Čufar, Katarina; Carrer, Marco
2016-01-01
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors—if not avoided or corrected—may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics. PMID:27375641
ERIC Educational Resources Information Center
Yeom, Soonja; Choi-Lundberg, Derek L.; Fluck, Andrew Edward; Sale, Arthur
2017-01-01
Purpose: This study aims to evaluate factors influencing undergraduate students' acceptance of a computer-aided learning resource using the Phantom Omni haptic stylus to enable rotation, touch and kinaesthetic feedback and display of names of three-dimensional (3D) human anatomical structures on a visual display. Design/methodology/approach: The…
2015-09-01
OAT) and laser-induced ultrasound tomography (LUT) to obtain coregistered maps of tissue optical absorption and speed of sound , displayed within the...computed tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound ...tomography (UST) can provide high-resolution anatomical images of breast lesions based on three complementary acoustic properties (speed-of- sound
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-01-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518
Hoogeveen, R C; van der Stelt, P F; Berkhout, W E R
2014-01-01
Lateral cephalograms in orthodontic practice display an area cranial of the base of the skull that is not required for diagnostic evaluation. Attempts have been made to reduce the radiation dose to the patient using collimators combining the shielding of the areas above the base of the skull and below the mandible. These so-called "wedge-shaped" collimators have not become standard equipment in orthodontic offices, possibly because these collimators were not designed for today's combination panoramic-cephalometric imaging systems. It also may be that the anatomical variability of the area below the mandible makes this area unsuitable for standardized collimation. In addition, a wedge-shaped collimator shields the cervical vertebrae; therefore, assessment of skeletal maturation, which is based on the stage of development of the cervical vertebrae, cannot be performed. In this report, we describe our investigations into constructing a collimator to be attached to the cephalostat and shield the cranial area of the skull, while allowing the visualization of diagnostically relevant structures and markedly reducing the size of the irradiated area. The shape of the area shielded by this "anatomically shaped cranial collimator" (ACC) was based on mean measurements of cephalometric landmarks of 100 orthodontic patients. It appeared that this collimator reduced the area of irradiation by almost one-third without interfering with the imaging system or affecting the quality of the image. Further research is needed to validate the clinical efficacy of the collimator.
Dunlap, Samuel S; Aziz, M Ashraf; Ziermann, Janine M
2017-01-01
Cruveilhier described in 1834 the human flexor pollicis brevis (FPB), a muscle of the thenar compartment, as having a superficial and a deep head, respectively, inserted onto the radial and ulnar sesamoids of the thumb. Since then, Cruveilhier's deep head has been controversially discussed. Often this deep head is confused with Henle's "interosseous palmaris volaris" or said to be a slip of the oblique adductor pollicis. In the 1960s, Day and Napier described anatomical variations of the insertions of Cruveilhier's deep head, including its absence, and hypothesized, that the shift of the deep head's insertion from ulnar to radial facilitated "true opposability" in anthropoids. Their general thesis for muscular arrangements underlying the power and precision grip is sound, but they did not delineate their deep head from Henle's muscle or the adductor pollicis, and their description of the attachments of Cruveilhier's deep head were too vague and not supported by a significant portion of the anatomical literature. Here, we reinvestigated Cruveilhier's deep head to resolve the controversy about it and because many newer anatomy textbooks do not describe this muscle, while it is often an obvious functionally (writing, texting, precision grip) and clinically significant thenar muscle. For the first time, we empirically delineated Cruveilhier's deep head from neighboring muscles with which it was previously confused. We observed 100% occurrence of the uncontested deep head in 80 human hands, displaying a similar variability of insertions as Day and Napier, but in significantly different numbers. Furthermore, we found variability in the origin and included as important landmarks the trapezoid and the ligamentum carpi radiatum. We tested the assertion regarding the evolutionary morphology and its role in the improvements in thumb movements during various precision grips. Our overall conclusions differ with respect to the developmental and evolutionary origin of the FPB heads.
NASA Astrophysics Data System (ADS)
Decoster, Robin; Toomey, Rachel; Smits, Dirk; Mol, Harrie; Verhelle, Filip; Butler, Marie-Louise
2016-03-01
Introduction: Radiographers evaluate anatomical structures to judge clinical acceptability of a radiograph. Whether a radiograph is deemed acceptable for diagnosis or not depends on the individual decision of the radiographer. Individual decisions cause variation in the accepted image quality. To minimise these variations definitions of acceptability, such as in RadLex, were developed. On which criteria radiographers attribute a RadLex categories to radiographs is unknown. Insight into these criteria helps to further optimise definitions and reduce variability in acceptance between radiographers. Therefore, this work aims the evaluation of the correlation between the RadLex classification and the evaluation of anatomical structures, using a Visual Grading Analysis (VGA) Methods: Four radiographers evaluated the visibility of five anatomical structures of 25 lateral cervical spine radiographs on a secondary class display with a VGA. They judged clinical acceptability of each radiograph using RadLex. Relations between VGAS and RadLex category were analysed with Kendall's Tau correlation and Nagelkerke pseudo-R². Results: The overall VGA score (VGAS) and the RadLex score correlate (rτ= 0.62, p<0.01, R2=0.72) strongly. The observers' evaluation of contrast between bone, air (trachea) and soft tissue has low value in predicting (rτ=0.55, p<0.01, R2=0.03) the RadLex score. The reproduction of spinous processes (rτ=0.67, p<0.01, R2=0.31) and the evaluation of the exposure (rτ=0.65, p<0.01, R2=0.56) have a strong correlation with high predictive value for the RadLex score. Conclusion: RadLex scores and VGAS correlate positively, strongly and significantly. The predictive value of bony structures may support the use of these in the judgement of clinical acceptability. Considerable inter-observer variations in the VGAS within a certain RadLex category, suggest that observers use of observer specific cut-off values.
Aziz, M. Ashraf
2017-01-01
Cruveilhier described in 1834 the human flexor pollicis brevis (FPB), a muscle of the thenar compartment, as having a superficial and a deep head, respectively, inserted onto the radial and ulnar sesamoids of the thumb. Since then, Cruveilhier’s deep head has been controversially discussed. Often this deep head is confused with Henle’s “interosseous palmaris volaris” or said to be a slip of the oblique adductor pollicis. In the 1960s, Day and Napier described anatomical variations of the insertions of Cruveilhier’s deep head, including its absence, and hypothesized, that the shift of the deep head’s insertion from ulnar to radial facilitated “true opposability” in anthropoids. Their general thesis for muscular arrangements underlying the power and precision grip is sound, but they did not delineate their deep head from Henle’s muscle or the adductor pollicis, and their description of the attachments of Cruveilhier’s deep head were too vague and not supported by a significant portion of the anatomical literature. Here, we reinvestigated Cruveilhier’s deep head to resolve the controversy about it and because many newer anatomy textbooks do not describe this muscle, while it is often an obvious functionally (writing, texting, precision grip) and clinically significant thenar muscle. For the first time, we empirically delineated Cruveilhier’s deep head from neighboring muscles with which it was previously confused. We observed 100% occurrence of the uncontested deep head in 80 human hands, displaying a similar variability of insertions as Day and Napier, but in significantly different numbers. Furthermore, we found variability in the origin and included as important landmarks the trapezoid and the ligamentum carpi radiatum. We tested the assertion regarding the evolutionary morphology and its role in the improvements in thumb movements during various precision grips. Our overall conclusions differ with respect to the developmental and evolutionary origin of the FPB heads. PMID:29121048
Zebeib, Ameen M; Naini, Farhad B
2014-12-01
The purpose of this study was to assess the reliability of the Frankfort horizontal (FH), sella-nasion horizontal, and optic planes in terms of their variabilities in relation to a true horizontal line in orthognathic surgery patients. Thirty-six consecutive presurgical orthognathic patients (13 male, 23 female; age range, 16-35 years; 30 white, 6 African Caribbean) had lateral cephalometric radiographs taken in natural head position, with a plumb line orientating the true vertical line, and the true horizontal line perpendicular to the true vertical. The inclinations of the anatomic reference planes were compared with the true horizontal. The FH plane was found to be on average closest to the true horizontal, with a mean of -1.6° (SD, 3.4°), whereas the sella-nasion horizontal and the optic plane had means of 2.1° (SD, 5.1°) and 3.2° (SD, 4.7°), respectively. The FH showed the least variability of the 3 anatomic planes. The ranges of variability were high for all anatomic planes: -8° to 8° for the FH, -8° to 15° for the sella-nasion horizontal, and -6° to 13° for the optic plane. No significant differences were found in relation to patients' sex, skeletal patterns, or ethnic backgrounds. The clinically significant variability in the inclinations of anatomic reference planes in relation to the true horizontal plane makes their use unreliable in orthognathic patients. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Feigl, Guenther C; Hiergeist, Wolfgang; Fellner, Claudia; Schebesch, Karl-Michael M; Doenitz, Christian; Finkenzeller, Thomas; Brawanski, Alexander; Schlaier, Juergen
2014-01-01
Diffusion tensor imaging (DTI)-based tractography has become an integral part of preoperative diagnostic imaging in many neurosurgical centers, and other nonsurgical specialties depend increasingly on DTI tractography as a diagnostic tool. The aim of this study was to analyze the anatomic accuracy of visualized white matter fiber pathways using different, readily available DTI tractography software programs. Magnetic resonance imaging scans of the head of 20 healthy volunteers were acquired using a Siemens Symphony TIM 1.5T scanner and a 12-channel head array coil. The standard settings of the scans in this study were 12 diffusion directions and 5-mm slices. The fornices were chosen as an anatomic structure for the comparative fiber tracking. Identical data sets were loaded into nine different fiber tracking packages that used different algorithms. The nine software packages and algorithms used were NeuroQLab (modified tensor deflection [TEND] algorithm), Sörensen DTI task card (modified streamline tracking technique algorithm), Siemens DTI module (modified fourth-order Runge-Kutta algorithm), six different software packages from Trackvis (interpolated streamline algorithm, modified FACT algorithm, second-order Runge-Kutta algorithm, Q-ball [FACT algorithm], tensorline algorithm, Q-ball [second-order Runge-Kutta algorithm]), DTI Query (modified streamline tracking technique algorithm), Medinria (modified TEND algorithm), Brainvoyager (modified TEND algorithm), DTI Studio modified FACT algorithm, and the BrainLab DTI module based on the modified Runge-Kutta algorithm. Three examiners (a neuroradiologist, a magnetic resonance imaging physicist, and a neurosurgeon) served as examiners. They were double-blinded with respect to the test subject and the fiber tracking software used in the presented images. Each examiner evaluated 301 images. The examiners were instructed to evaluate screenshots from the different programs based on two main criteria: (i) anatomic accuracy of the course of the displayed fibers and (ii) number of fibers displayed outside the anatomic boundaries. The mean overall grade for anatomic accuracy was 2.2 (range, 1.1-3.6) with a standard deviation (SD) of 0.9. The mean overall grade for incorrectly displayed fibers was 2.5 (range, 1.6-3.5) with a SD of 0.6. The mean grade of the overall program ranking was 2.3 with a SD of 0.6. The overall mean grade of the program ranked number one (NeuroQLab) was 1.7 (range, 1.5-2.8). The mean overall grade of the program ranked last (BrainLab iPlan Cranial 2.6 DTI Module) was 3.3 (range, 1.7-4). The difference between the mean grades of these two programs was statistically highly significant (P < 0.0001). There was no statistically significant difference between the programs ranked 1-3: NeuroQLab, Sörensen DTI Task Card, and Siemens DTI module. The results of this study show that there is a statistically significant difference in the anatomic accuracy of the tested DTI fiber tracking programs. Although incorrectly displayed fibers could lead to wrong conclusions in the neurosciences field, which relies heavily on this noninvasive imaging technique, incorrectly displayed fibers in neurosurgery could lead to surgical decisions potentially harmful for the patient if used without intraoperative cortical stimulation. DTI fiber tracking presents a valuable noninvasive preoperative imaging tool, which requires further validation after important standardization of the acquisition and processing techniques currently available. Copyright © 2014 Elsevier Inc. All rights reserved.
Magnetic electroanatomical mapping for ablation of focal atrial tachycardias.
Marchlinski, F; Callans, D; Gottlieb, C; Rodriguez, E; Coyne, R; Kleinman, D
1998-08-01
Uniform success for ablation of focal atrial tachycardias has been difficult to achieve using standard catheter mapping and ablation techniques. In addition, our understanding of the complex relationship between atrial anatomy, electrophysiology, and surface ECG P wave morphology remains primitive. The magnetic electroanatomical mapping and display system (CARTO) offers an on-line display of electrical activation and/or signal amplitude related to the anatomical location of the recorded sites in the mapped chamber. A window of electrical interest is established based on signals timed from an electrical reference that usually represents a fixed electrogram recording from the coronary sinus or the atrial appendage. This window of electrical interest is established to include atrial activation prior to the onset of the P wave activity associated with the site of origin of a focal atrial tachycardia. Anatomical and electrical landmarks are defined with limited fluoroscopic imaging support and more detailed global chamber and more focal atrial mapping can be performed with minimal fluoroscopic guidance. A three-dimensional color map representing atrial activation or voltage amplitude at the magnetically defined anatomical sites is displayed with on-line data acquisition. This display can be manipulated to facilitate viewing from any angle. Altering the zoom control, triangle fill threshold, clipping plane, or color range can all enhance the display of a more focal area of interest. We documented the feasibility of using this single mapping catheter technique for localizing and ablating focal atrial tachycardias. In a consecutive series of 8 patients with 9 focal atrial tachycardias, the use of the single catheter CARTO mapping system was associated with ablation success in all but one patient who had a left atrial tachycardia localized to the medial aspect of the orifice of the left atrial appendage. Only low power energy delivery was used in this patient because of the unavailability of temperature monitoring in the early version of the Navistar catheter, the location of the arrhythmia, and the history of arrhythmia control with flecainide. No attempt was made to limit fluoroscopy time in our study population. Nevertheless, despite data acquisition from 120-320 anatomically distinct sites during global and more detailed focal atrial mapping, total fluoroscopy exposure was typically < 30 minutes and was as little as 12 minutes. The detailed display capabilities of the CARTO system appear to offer the potential of enhancing our understanding of atrial anatomy, atrial activation, and their relationship to surface ECG P wave morphology during focal atrial tachycardias.
THE EFFECT OF SELECTED SPATIAL DESIGN FACTORS IN EDUCATIONAL DISPLAYS ON LEARNING AND RETENTION.
ERIC Educational Resources Information Center
ROCKETT, AGNES M.; SAUL, EZRA V.
CRITERIA WERE DEVELOPED FOR THE DESIGN OF LABELS IN VERBAL-PICTORIAL EDUCATIONAL DISPLAYS. THE INFLUENCE OF SPATIAL DISTRIBUTION OF LABELS ON EASE OF LEARNING AND DEGREE OF RETENTION WAS INVESTIGATED. THIRTY ANATOMICAL PARTS OF THE HUMAN DIGESTIVE TRACT WERE LABELED ON 10 CHARTS SHOWING THE SAME DIAGRAM OF THE HUMAN BODY, BUT WITH DIFFERENT…
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
3D brain MR angiography displayed by a multi-autostereoscopic screen
NASA Astrophysics Data System (ADS)
Magalhães, Daniel S. F.; Ribeiro, Fádua H.; Lima, Fabrício O.; Serra, Rolando L.; Moreno, Alfredo B.; Li, Li M.
2012-02-01
The magnetic resonance angiography (MRA) can be used to examine blood vessels in key areas of the body, including the brain. In the MRA, a powerful magnetic field, radio waves and a computer produce the detailed images. Physicians use the procedure in brain images mainly to detect atherosclerosis disease in the carotid artery of the neck, which may limit blood flow to the brain and cause a stroke and identify a small aneurysm or arteriovenous malformation inside the brain. Multi-autostereoscopic displays provide multiple views of the same scene, rather than just two, as in autostereoscopic systems. Each view is visible from a different range of positions in front of the display. This allows the viewer to move left-right in front of the display and see the correct view from any position. The use of 3D imaging in the medical field has proven to be a benefit to doctors when diagnosing patients. For different medical domains a stereoscopic display could be advantageous in terms of a better spatial understanding of anatomical structures, better perception of ambiguous anatomical structures, better performance of tasks that require high level of dexterity, increased learning performance, and improved communication with patients or between doctors. In this work we describe a multi-autostereoscopic system and how to produce 3D MRA images to be displayed with it. We show results of brain MR angiography images discussing, how a 3D visualization can help physicians to a better diagnosis.
Anatomy of Hepatic Resectional Surgery.
Lowe, Michael C; D'Angelica, Michael I
2016-04-01
Liver anatomy can be variable, and understanding of anatomic variations is crucial to performing hepatic resections, particularly parenchymal-sparing resections. Anatomic knowledge is a critical prerequisite for effective hepatic resection with minimal blood loss, parenchymal preservation, and optimal oncologic outcome. Each anatomic resection has pitfalls, about which the operating surgeon should be aware and comfortable managing intraoperatively. Copyright © 2016 Elsevier Inc. All rights reserved.
Borgarelli, Michele; Tursi, Massimiliano; La Rosa, Giuseppe; Savarino, Paolo; Galloni, Marco
2011-09-01
To compare echocardiographic variables of dogs with postmortem anatomic measurements and histologic characteristics of the mitral valve (MV). 21 cardiologically normal dogs. The MV was measured echocardiographically by use of the right parasternal 5-chamber long-axis view. Dogs were euthanized, and anatomic measurements of the MV annulus (MVa) were performed at the level of the left circumflex coronary artery. Mitral valve leaflets (MVLs) and chordae tendineae were measured. Structure of the MVLs was histologically evaluated in 3 segments (proximal, middle, and distal). Echocardiographic measurements of MVL length did not differ significantly from anatomic measurements. A positive correlation was detected between body weight and MVa area. There was a negative correlation between MVa area and the percentage by which the MVL area exceeded the MVa area. Anterior MVLs had a significantly higher number of chordae tendineae than did posterior MVLs. Histologically, layering of MVLs was less preserved in the distal segment, whereas the muscular component and adipose tissue were significantly more diffuse in the proximal and middle segments. The MV in cardiologically normal dogs had wide anatomic variability. Anatomic measurements of MVL length were correlated with echocardiographic measurements.
The importance of being Florentine: a journey around the world for wax anatomical Venuses.
de Ceglia, Francesco Paolo
2011-01-01
This article reconstructs the 19th century history of events regarding a few female wax anatomical models made in Florence. More or less faithful copies of those housed in Florence's Museum of Physics and Natural History, these models were destined for display in temporary exhibitions. In their travels through Europe and the United States, they transformed the expression "Florentine Venus" into a sort of brand name used to label and offer respectability to pieces of widely varying quality.
An anatomically comprehensive atlas of the adult human brain transcriptome
Guillozet-Bongaarts, Angela L.; Shen, Elaine H.; Ng, Lydia; Miller, Jeremy A.; van de Lagemaat, Louie N.; Smith, Kimberly A.; Ebbert, Amanda; Riley, Zackery L.; Abajian, Chris; Beckmann, Christian F.; Bernard, Amy; Bertagnolli, Darren; Boe, Andrew F.; Cartagena, Preston M.; Chakravarty, M. Mallar; Chapin, Mike; Chong, Jimmy; Dalley, Rachel A.; David Daly, Barry; Dang, Chinh; Datta, Suvro; Dee, Nick; Dolbeare, Tim A.; Faber, Vance; Feng, David; Fowler, David R.; Goldy, Jeff; Gregor, Benjamin W.; Haradon, Zeb; Haynor, David R.; Hohmann, John G.; Horvath, Steve; Howard, Robert E.; Jeromin, Andreas; Jochim, Jayson M.; Kinnunen, Marty; Lau, Christopher; Lazarz, Evan T.; Lee, Changkyu; Lemon, Tracy A.; Li, Ling; Li, Yang; Morris, John A.; Overly, Caroline C.; Parker, Patrick D.; Parry, Sheana E.; Reding, Melissa; Royall, Joshua J.; Schulkin, Jay; Sequeira, Pedro Adolfo; Slaughterbeck, Clifford R.; Smith, Simon C.; Sodt, Andy J.; Sunkin, Susan M.; Swanson, Beryl E.; Vawter, Marquis P.; Williams, Derric; Wohnoutka, Paul; Zielke, H. Ronald; Geschwind, Daniel H.; Hof, Patrick R.; Smith, Stephen M.; Koch, Christof; Grant, Seth G. N.; Jones, Allan R.
2014-01-01
Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ~900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography— the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. PMID:22996553
Capacity of dental equipment to interfere with cardiac implantable electrical devices.
Lahor-Soler, Eduard; Miranda-Rius, Jaume; Brunet-Llobet, Lluís; Sabaté de la Cruz, Xavier
2015-06-01
Patients with cardiac implantable electrical devices should take precautions when exposed to electromagnetic fields. Possible interference as a result of proximity to electromagnets or electricity flow from electronic tools employed in clinical odontology remains controversial. The objective of this study was to examine in vitro the capacity of dental equipment to provoke electromagnetic interference in pacemakers and implantable cardioverter defibrillators. Six electronic dental instruments were tested on three implantable cardioverter defibrillators and three pacemakers from different manufacturers. A simulator model, submerged in physiological saline, with elements that reproduced life-size anatomic structures was used. The instruments were analyzed at differing distances and for different time periods of application. The dental instruments studied displayed significant differences in their capacity to trigger electromagnetic interference. Significant differences in the quantity of registered interference were observed with respect to the variables manufacturer, type of cardiac implant, and application distance but not with the variable time of application. The electronic dental equipment tested at a clinical application distance (20 cm) provoked only slight interference in the pacemakers and implantable cardioverter defibrillators employed, irrespective of manufacturer. © 2015 Eur J Oral Sci.
NASA Astrophysics Data System (ADS)
Platisa, Ljiljana; Vansteenkiste, Ewout; Goossens, Bart; Marchessoux, Cédric; Kimpe, Tom; Philips, Wilfried
2009-02-01
Medical-imaging systems are designed to aid medical specialists in a specific task. Therefore, the physical parameters of a system need to optimize the task performance of a human observer. This requires measurements of human performance in a given task during the system optimization. Typically, psychophysical studies are conducted for this purpose. Numerical observer models have been successfully used to predict human performance in several detection tasks. Especially, the task of signal detection using a channelized Hotelling observer (CHO) in simulated images has been widely explored. However, there are few studies done for clinically acquired images that also contain anatomic noise. In this paper, we investigate the performance of a CHO in the task of detecting lung nodules in real radiographic images of the chest. To evaluate variability introduced by the limited available data, we employ a commonly used study of a multi-reader multi-case (MRMC) scenario. It accounts for both case and reader variability. Finally, we use the "oneshot" methods to estimate the MRMC variance of the area under the ROC curve (AUC). The obtained AUC compares well to those reported for human observer study on a similar data set. Furthermore, the "one-shot" analysis implies a fairly consistent performance of the CHO with the variance of AUC below 0.002. This indicates promising potential for numerical observers in optimization of medical imaging displays and encourages further investigation on the subject.
Gao, Jun-Xue; Pei, Qiu-Yan; Li, Yun-Tao; Yang, Zhen-Juan
2015-06-01
The aim of this study was to create a database of anatomical ultrathin cross-sectional images of fetal hearts with different congenital heart diseases (CHDs) and preliminarily to investigate its clinical application. Forty Chinese fetal heart samples from induced labor due to different CHDs were cut transversely at 60-μm thickness. All thoracic organs were removed from the thoracic cavity after formalin fixation, embedded in optimum cutting temperature compound, and then frozen at -25°C for 2 hours. Subsequently, macro shots of the frozen serial sections were obtained using a digital camera in order to build a database of anatomical ultrathin cross-sectional images. Images in the database clearly displayed the fetal heart structures. After importing the images into three-dimensional software, the following functions could be realized: (1) based on the original database of transverse sections, databases of sagittal and coronal sections could be constructed; and (2) the original and constructed databases could be displayed continuously and dynamically, and rotated in arbitrary angles. They could also be displayed synchronically. The aforementioned functions of the database allowed for the retrieval of images and three-dimensional anatomy characteristics of the different fetal CHDs, and virtualization of fetal echocardiography findings. A database of 40 different cross-sectional fetal CHDs was established. An extensive database library of fetal CHDs, from which sonographers and students can study the anatomical features of fetal CHDs and virtualize fetal echocardiography findings via either centralized training or distance education, can be established in the future by accumulating further cases. Copyright © 2015. Published by Elsevier B.V.
Augmented microscopy with near-infrared fluorescence detection
NASA Astrophysics Data System (ADS)
Watson, Jeffrey R.; Martirosyan, Nikolay; Skoch, Jesse; Lemole, G. Michael; Anton, Rein; Romanowski, Marek
2015-03-01
Near-infrared (NIR) fluorescence has become a frequently used intraoperative technique for image-guided surgical interventions. In procedures such as cerebral angiography, surgeons use the optical surgical microscope for the color view of the surgical field, and then switch to an electronic display for the NIR fluorescence images. However, the lack of stereoscopic, real-time, and on-site coregistration adds time and uncertainty to image-guided surgical procedures. To address these limitations, we developed the augmented microscope, whereby the electronically processed NIR fluorescence image is overlaid with the anatomical optical image in real-time within the optical path of the microscope. In vitro, the augmented microscope can detect and display indocyanine green (ICG) concentrations down to 94.5 nM, overlaid with the anatomical color image. We prepared polyacrylamide tissue phantoms with embedded polystyrene beads, yielding scattering properties similar to brain matter. In this model, 194 μM solution of ICG was detectable up to depths of 5 mm. ICG angiography was then performed in anesthetized rats. A dynamic process of ICG distribution in the vascular system overlaid with anatomical color images was observed and recorded. In summary, the augmented microscope demonstrates NIR fluorescence detection with superior real-time coregistration displayed within the ocular of the stereomicroscope. In comparison to other techniques, the augmented microscope retains full stereoscopic vision and optical controls including magnification and focus, camera capture, and multiuser access. Augmented microscopy may find application in surgeries where the use of traditional microscopes can be enhanced by contrast agents and image guided delivery of therapeutics, including oncology, neurosurgery, and ophthalmology.
Realistic simulated MRI and SPECT databases. Application to SPECT/MRI registration evaluation.
Aubert-Broche, Berengere; Grova, Christophe; Reilhac, Anthonin; Evans, Alan C; Collins, D Louis
2006-01-01
This paper describes the construction of simulated SPECT and MRI databases that account for realistic anatomical and functional variability. The data is used as a gold-standard to evaluate four SPECT/MRI similarity-based registration methods. Simulation realism was accounted for using accurate physical models of data generation and acquisition. MRI and SPECT simulations were generated from three subjects to take into account inter-subject anatomical variability. Functional SPECT data were computed from six functional models of brain perfusion. Previous models of normal perfusion and ictal perfusion observed in Mesial Temporal Lobe Epilepsy (MTLE) were considered to generate functional variability. We studied the impact noise and intensity non-uniformity in MRI simulations and SPECT scatter correction may have on registration accuracy. We quantified the amount of registration error caused by anatomical and functional variability. Registration involving ictal data was less accurate than registration involving normal data. MR intensity nonuniformity was the main factor decreasing registration accuracy. The proposed simulated database is promising to evaluate many functional neuroimaging methods, involving MRI and SPECT data.
Davidoff-Dyke-Masson Syndrome Presenting as Childhood Schizophrenia.
ERIC Educational Resources Information Center
White, James H.; Rust, John B.
1979-01-01
The article presents a case history of a child displaying symptoms of schizophrenia, seizures, and retardation without neurological abnormalities, which were eventually diagnosed as being due to Davidoff-Dyke-Masson syndrome, a condition involving gross anatomical brain pathology. (DLS)
Characterization of Capsicum species using anatomical and molecular data.
Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M
2013-02-28
Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.
Oliveira, Marciel T; Souza, Gustavo M; Pereira, Silvia; Oliveira, Deborah A S; Figueiredo-Lima, Karla V; Arruda, Emília; Santos, Mauro G
2017-03-01
We investigated whether there were consistent differences in the physiological and anatomical traits and phenotypic variability of an invasive (Prosopis juliflora (Sw.) DC.) and native species (Anadenanthera colubrina (Vell.) Brenan) in response to seasonality in a tropical dry forest. The water potential, organic solutes, gas exchange, enzymes of the antioxidant system, products of oxidative stress and anatomical parameters were evaluated in both species in response to seasonality. An analysis of physiological responses indicated that the invasive P. juliflora exhibited higher response in net photosynthetic rate to that of the native species between seasons. Higher values of water potential of the invasive species than those of the native species in the dry season indicate a more efficient mechanism for water regulation in the invasive species. The invasive species exhibits a thicker cuticle and trichomes, which can reduce transpiration. In combination, the increased epidermal thickness and the decreased thickness of the parenchyma in the dry season may contribute to water saving. Our data suggest a higher variability in anatomical traits in the invasive species as a response to seasonality, whereas physiological traits did not present a clear pattern of response. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function
Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.
2015-01-01
Purpose This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy adults. The model components included the levator veli palatini (LVP), the velum, and the posterior pharyngeal wall, and the simulations were based on material parameters from the literature. The outcome metrics were the VP closure force and LVP muscle activation required to achieve VP closure. Results Our average model compared favorably with experimental data from the literature. Simulations of 1,000 random anatomies reflected the large variability in closure forces observed experimentally. VP distance had the greatest effect on both outcome metrics when considering the observed anatomic variability. Other anatomical parameters were ranked by their predicted influences on the outcome metrics. Conclusions Our results support the implication that interventions for VP dysfunction that decrease anterior to posterior VP portal distance, increase velar length, and/or increase LVP cross-sectional area may be very effective. Future modeling studies will help to further our understanding of speech mechanics and optimize treatment of speech disorders. PMID:26049120
Recent advances in standards for collaborative Digital Anatomic Pathology
2011-01-01
Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured reports that are interoperable at an international level. The use of machine-readable format of APSR supports the development of decision support as well as secondary use of Anatomic Pathology information for epidemiology or clinical research. PMID:21489187
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
29 CFR 1615.103 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... system or subsystem of equipment that is used in the creation, conversion, or duplication of data or..., display, switching, interchange, transmission, or reception of data or information. For example, HVAC... condition, cosmetic disfigurement, or anatomical loss affecting one or more of the following body systems...
[Sonographically detectable splenic disorders in dogs with malignant lymphoma].
Eberhardt, F; Köhler, C; Krastel, D; Winter, K; Alef, M; Kiefer, I
2015-01-01
To evaluate the frequency of different sonographic splenic disorders in dogs with different anatomic forms of malignant lymphoma. Additionally, the occurrence of the moth-eaten pattern in the parenchyma of the spleen in patients with diseases other than lymphoma should be investigated. Retrospective analysis of patient data collected from dogs histologically or cytologically diagnosed with malignant lymphoma and for which ultrasonographic images were available before the initiation of therapy. Patient data from dogs with a moth-eaten pattern within the splenic parenchyma were evaluated separately. Exclusion criterion was the administration of cytostatic agents prior to diagnosis. In 84% of 164 dogs with malignant lymphoma, an altered pattern of the spleen was diagnosed ultrasonographically. Ninety-four of these 137 patients had a moth-eaten pattern of the splenic parenchyma and 43 dogs displayed abnormalities in the form of splenomegaly, coarse echotexture or other changes of the parenchyma. When a moth-eaten pattern was diagnosed, the affected dogs suffered significantly more often from a multicentric lymphoma (95%) than from any other anatomical lymphoma form. Only one dog displayed a moth-eaten pattern of the splenic parenchyma without diagnosis of a malignant lymphoma. The positive predictive value of the moth-eaten pattern for malignant lymphoma was 99% and, in particular, for the multicentric lymphoma this was 95%. In total, 84% of the 164 dogs displayed a multicentric lymphoma, 5% a mediastinal or a cutaneous lymphoma, respectively, 4% a gastrointestinal lymphoma, and one animal had an ocular or renal lymphoma, respectively. Sonographic changes of the spleen are often diagnosed in dogs with malignant lymphoma, independent of the anatomical lymphoma form. When the moth-eaten pattern is observed, it is very likely that the affected dog suffers from a malignant lymphoma, most probably a multicentric lymphoma.
Silverstein, Jonathan C; Dech, Fred; Kouchoukos, Philip L
2004-01-01
Radiological volumes are typically reviewed by surgeons using cross-sections and iso-surface reconstructions. Applications that combine collaborative stereo volume visualization with symbolic anatomic information and data fusions would expand surgeons' capabilities in interpretation of data and in planning treatment. Such an application has not been seen clinically. We are developing methods to systematically combine symbolic anatomy (term hierarchies and iso-surface atlases) with patient data using data fusion. We describe our progress toward integrating these methods into our collaborative virtual reality application. The fully combined application will be a feature-rich stereo collaborative volume visualization environment for use by surgeons in which DICOM datasets will self-report underlying anatomy with visual feedback. Using hierarchical navigation of SNOMED-CT anatomic terms integrated with our existing Tele-immersive DICOM-based volumetric rendering application, we will display polygonal representations of anatomic systems on the fly from menus that query a database. The methods and tools involved in this application development are SNOMED-CT, DICOM, VISIBLE HUMAN, volumetric fusion and C++ on a Tele-immersive platform. This application will allow us to identify structures and display polygonal representations from atlas data overlaid with the volume rendering. First, atlas data is automatically translated, rotated, and scaled to the patient data during loading using a public domain volumetric fusion algorithm. This generates a modified symbolic representation of the underlying canonical anatomy. Then, through the use of collision detection or intersection testing of various transparent polygonal representations, the polygonal structures are highlighted into the volumetric representation while the SNOMED names are displayed. Thus, structural names and polygonal models are associated with the visualized DICOM data. This novel juxtaposition of information promises to expand surgeons' abilities to interpret images and plan treatment.
Gao, Shun-Yu; Zhang, Xiao-Peng; Cui, Yong; Sun, Ying-Shi; Tang, Lei; Li, Xiao-Ting; Zhang, Xiao-Yan; Shan, Jun
2014-08-01
To explore whether single and fused monochromatic images can improve liver tumor detection and delineation by single source dual energy CT (ssDECT) in patients with hepatocellular carcinoma (HCC) during arterial phase. Fifty-seven patients with HCC who underwent ssDECT scanning at Beijing Cancer Hospital were enrolled retrospectively. Twenty-one sets of monochromatic images from 40 to 140 keV were reconstructed at 5 keV intervals in arterial phase. The optimal contrast-noise ratio (CNR) monochromatic images of the liver tumor and the lowest-noise monochromatic images were selected for image fusion. We evaluated the image quality of the optimal-CNR monochromatic images, the lowest-noise monochromatic images and the fused monochromatic images, respectively. The evaluation indicators included the spatial resolution of the anatomical structure, the noise level, the contrast and CNR of the tumor. In arterial phase, the anatomical structure of the liver can be displayed most clearly in the 65-keV monochromatic images, with the lowest image noise. The optimal-CNR monochromatic images of HCC tumor were 50-keV monochromatic images in which the internal structural features of the liver tumors were displayed most clearly and meticulously. For tumor detection, the fused monochromatic images and the 50-keV monochromatic images had similar performances, and were more sensitive than 65-keV monochromatic images. We achieved good arterial phase images by fusing the optimal-CNR monochromatic images of the HCC tumor and the lowest-noise monochromatic images. The fused images displayed liver tumors and anatomical structures more clearly, which is potentially helpful for identifying more and smaller HCC tumors.
Information system to manage anatomical knowledge and image data about brain
NASA Astrophysics Data System (ADS)
Barillot, Christian; Gibaud, Bernard; Montabord, E.; Garlatti, S.; Gauthier, N.; Kanellos, I.
1994-09-01
This paper reports about first results obtained in a project aiming at developing a computerized system to manage knowledge about brain anatomy. The emphasis is put on the design of a knowledge base which includes a symbolic model of cerebral anatomical structures (grey nuclei, cortical structures such as gyri and sulci, verntricles, vessels, etc.) and of hypermedia facilities allowing to retrieve and display information associated with the objects (texts, drawings, images). Atlas plates digitized from a stereotactic atlas are also used to provide natural and effective communication means between the user and the system.
Pataky, Todd C; Slota, Gregory P; Latash, Mark L; Zatsiorsky, Vladimir M
2012-01-10
Radial force (F(r)) distributions describe grip force coordination about a cylindrical object. Recent studies have employed only explicit F(r) tasks, and have not normalized for anatomical variance when considering F(r) distributions. The goals of the present study were (i) to explore F(r) during tangential force production tasks, and (ii) to examine the extent to which anatomical registration (i.e. spatial normalization of anatomically analogous structures) could improve signal detectability in F(r) data. Twelve subjects grasped a vertically oriented cylindrical handle (diameter=6 cm) and matched target upward tangential forces of 10, 20, and 30 N. F(r) data were measured using a flexible pressure mat with an angular resolution of 4.8°, and were registered using piecewise-linear interpolation between five manually identified points-of-interest. Results indicate that F(r) was primarily limited to three contact regions: the distal thumb, the distal fingers, and the fingers' metatacarpal heads, and that, while increases in tangential force caused significant increases in F(r) for these regions, they did not significantly affect the F(r) distribution across the hand. Registration was found to substantially reduce between-subject variability, as indicated by both accentuated F(r) trends, and amplification of the test statistic. These results imply that, while subjects focus F(r) primarily on three anatomical regions during cylindrical grasp, inter-subject anatomical differences introduce a variability that, if not corrected for via registration, may compromise one's ability to draw anatomically relevant conclusions from grasping force data. Copyright © 2011 Elsevier Ltd. All rights reserved.
Betts, Aislinn M; McGoldrick, Matthew T; Dethlefs, Christopher R; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W M
2017-04-25
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings.
Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects.
Cury, Claire; Toro, Roberto; Cohen, Fanny; Fischer, Clara; Mhaya, Amel; Samper-González, Jorge; Hasboun, Dominique; Mangin, Jean-François; Banaschewski, Tobias; Bokde, Arun L W; Bromberg, Uli; Buechel, Christian; Cattrell, Anna; Conrod, Patricia; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lemaitre, Hervé; Martinot, Jean-Luc; Nees, Frauke; Paillère Martinot, Marie-Laure; Orfanos, Dimitri P; Paus, Tomas; Poustka, Luise; Smolka, Michael N; Walter, Henrik; Whelan, Robert; Frouin, Vincent; Schumann, Gunter; Glaunès, Joan A; Colliot, Olivier
2015-01-01
The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ(2)-test, p < 10(-28)). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe.
Incomplete Hippocampal Inversion: A Comprehensive MRI Study of Over 2000 Subjects
Cury, Claire; Toro, Roberto; Cohen, Fanny; Fischer, Clara; Mhaya, Amel; Samper-González, Jorge; Hasboun, Dominique; Mangin, Jean-François; Banaschewski, Tobias; Bokde, Arun L. W.; Bromberg, Uli; Buechel, Christian; Cattrell, Anna; Conrod, Patricia; Flor, Herta; Gallinat, Juergen; Garavan, Hugh; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Lemaitre, Hervé; Martinot, Jean-Luc; Nees, Frauke; Paillère Martinot, Marie-Laure; Orfanos, Dimitri P.; Paus, Tomas; Poustka, Luise; Smolka, Michael N.; Walter, Henrik; Whelan, Robert; Frouin, Vincent; Schumann, Gunter; Glaunès, Joan A.; Colliot, Olivier
2015-01-01
The incomplete-hippocampal-inversion (IHI), also known as malrotation, is an atypical anatomical pattern of the hippocampus, which has been reported in healthy subjects in different studies. However, extensive characterization of IHI in a large sample has not yet been performed. Furthermore, it is unclear whether IHI are restricted to the medial-temporal lobe or are associated with more extensive anatomical changes. Here, we studied the characteristics of IHI in a community-based sample of 2008 subjects of the IMAGEN database and their association with extra-hippocampal anatomical variations. The presence of IHI was assessed on T1-weighted anatomical magnetic resonance imaging (MRI) using visual criteria. We assessed the association of IHI with other anatomical changes throughout the brain using automatic morphometry of cortical sulci. We found that IHI were much more frequent in the left hippocampus (left: 17%, right: 6%, χ2−test, p < 10−28). Compared to subjects without IHI, subjects with IHI displayed morphological changes in several sulci located mainly in the limbic lobe. Our results demonstrate that IHI are a common left-sided phenomenon in normal subjects and that they are associated with morphological changes outside the medial temporal lobe. PMID:26733822
21 CFR 892.1100 - Scintillation (gamma) camera.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1100 - Scintillation (gamma) camera.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1100 - Scintillation (gamma) camera.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Scintillation (gamma) camera. 892.1100 Section 892.1100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
Alikhanov, A A; Sinitsyn, V E; Perepelova, E M; Mukhin, K Iu; Demushkina, A A; Omarova, M O; Piliia, S V
2001-01-01
Small dysplastic lesions of the cerebral cortex are often missed by conventional MRI methods. The identification of subtle structural abnormalities by traditional multiplanar rectilinear slices is often limited by the complex convolutional pattern of the brain. We used a method of FSPGR (fast spoiled gradient-echo) of three-dimensional MRI data that improves the anatomical display of the sulcal structure of the hemispheric convexities. It also reduces the asymmetric sampling of gray-white matter that may lead to false-positive results. We present 5 from 12 patients with dysplastic cortical lesions in whom conventional two-dimensional and three-dimensional MRI with multiplanar reformatting was initially considered normal. Subsequent studies using 3D FSPGR identified various types of focal cortical dysplasia in all. These results indicate that an increase in the detection of subtle focal dysplastic lesions may be accomplished when one improves the anatomical display of the brain sulcal structure by performing 3D FSPGR.
2013-01-01
Abstract Echinorhynchus truttae and the Echinorhynchus bothniensis species complex are common parasites of salmoniform and other fishes in northern Europe. Echinorhynchus bothniensis and its sibling species Echinorhynchus 'bothniensis' are thought to be closely related to the Nearctic Echinorhynchus leidyi Van Cleave, 1924 based on morphological similarity and common usage of a mysid intermediate host. This study provides the first analysis of morphological and meristic variation in Echinorhynchus truttae and expands our knowledge of anatomical variability in the Echinorhynchus bothniensis group. Morphological variability in Echinorhynchus truttae was found to be far greater than previously reported, with part of the variance attributable to sexual dimorphism. Echinorhynchus truttae, the two species of the Echinorhynchus bothniensis group and Echinorhynchus leidyi displayed considerable interspecific overlap in the ranges of all conventional morphological characters. However, Proboscis profiler, a tool for detecting acanthocephalan morphotypes using multivariate analysis of hook morphometrics, successfully separated Echinorhynchus truttae from the other taxa. The Echinorhynchus bothniensis species group could not be reliably distinguished from Echinorhynchus leidyi (or each other), providing further evidence of the affinity of these taxa. Observations on the distribution of Echinorhynchus truttae in its definitive host population are also reported. PMID:24723769
Dissociating sensory from decision processes in human perceptual decision making.
Mostert, Pim; Kok, Peter; de Lange, Floris P
2015-12-15
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions.
Dissociating sensory from decision processes in human perceptual decision making
Mostert, Pim; Kok, Peter; de Lange, Floris P.
2015-01-01
A key question within systems neuroscience is how the brain translates physical stimulation into a behavioral response: perceptual decision making. To answer this question, it is important to dissociate the neural activity underlying the encoding of sensory information from the activity underlying the subsequent temporal integration into a decision variable. Here, we adopted a decoding approach to empirically assess this dissociation in human magnetoencephalography recordings. We used a functional localizer to identify the neural signature that reflects sensory-specific processes, and subsequently traced this signature while subjects were engaged in a perceptual decision making task. Our results revealed a temporal dissociation in which sensory processing was limited to an early time window and consistent with occipital areas, whereas decision-related processing became increasingly pronounced over time, and involved parietal and frontal areas. We found that the sensory processing accurately reflected the physical stimulus, irrespective of the eventual decision. Moreover, the sensory representation was stable and maintained over time when it was required for a subsequent decision, but unstable and variable over time when it was task-irrelevant. In contrast, decision-related activity displayed long-lasting sustained components. Together, our approach dissects neuro-anatomically and functionally distinct contributions to perceptual decisions. PMID:26666393
Statistical Analyses of Femur Parameters for Designing Anatomical Plates.
Wang, Lin; He, Kunjin; Chen, Zhengming
2016-01-01
Femur parameters are key prerequisites for scientifically designing anatomical plates. Meanwhile, individual differences in femurs present a challenge to design well-fitting anatomical plates. Therefore, to design anatomical plates more scientifically, analyses of femur parameters with statistical methods were performed in this study. The specific steps were as follows. First, taking eight anatomical femur parameters as variables, 100 femur samples were classified into three classes with factor analysis and Q-type cluster analysis. Second, based on the mean parameter values of the three classes of femurs, three sizes of average anatomical plates corresponding to the three classes of femurs were designed. Finally, based on Bayes discriminant analysis, a new femur could be assigned to the proper class. Thereafter, the average anatomical plate suitable for that new femur was selected from the three available sizes of plates. Experimental results showed that the classification of femurs was quite reasonable based on the anatomical aspects of the femurs. For instance, three sizes of condylar buttress plates were designed. Meanwhile, 20 new femurs are judged to which classes the femurs belong. Thereafter, suitable condylar buttress plates were determined and selected.
A Computational Model Quantifies the Effect of Anatomical Variability on Velopharyngeal Function
ERIC Educational Resources Information Center
Inouye, Joshua M.; Perry, Jamie L.; Lin, Kant Y.; Blemker, Silvia S.
2015-01-01
Purpose: This study predicted the effects of velopharyngeal (VP) anatomical parameters on VP function to provide a greater understanding of speech mechanics and aid in the treatment of speech disorders. Method: We created a computational model of the VP mechanism using dimensions obtained from magnetic resonance imaging measurements of 10 healthy…
Carrasco, Alejandro; Jalali, Elnaz; Dhingra, Ajay; Lurie, Alan; Yadav, Sumit; Tadinada, Aditya
2017-06-01
The aim of this study was to compare a medical-grade PACS (picture archiving and communication system) monitor, a consumer-grade monitor, a laptop computer, and a tablet computer for linear measurements of height and width for specific implant sites in the posterior maxilla and mandible, along with visualization of the associated anatomical structures. Cone beam computed tomography (CBCT) scans were evaluated. The images were reviewed using PACS-LCD monitor, consumer-grade LCD monitor using CB-Works software, a 13″ MacBook Pro, and an iPad 4 using OsiriX DICOM reader software. The operators had to identify anatomical structures in each display using a 2-point scale. User experience between PACS and iPad was also evaluated by means of a questionnaire. The measurements were very similar for each device. P-values were all greater than 0.05, indicating no significant difference between the monitors for each measurement. The intraoperator reliability was very high. The user experience was similar in each category with the most significant difference regarding the portability where the PACS display received the lowest score and the iPad received the highest score. The iPad with retina display was comparable with the medical-grade monitor, producing similar measurements and image visualization, and thus providing an inexpensive, portable, and reliable screen to analyze CBCT images in the operating room during the implant surgery.
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
21 CFR 892.1200 - Emission computed tomography system.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Emission computed tomography system. 892.1200 Section 892.1200 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... analysis and display equipment, patient and equipment supports, radionuclide anatomical markers, component...
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-01-01
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone. PMID:28788390
A Bone-Thickness Map as a Guide for Bone-Anchored Port Implantation Surgery in the Temporal Bone.
Guignard, Jérémie; Arnold, Andreas; Weisstanner, Christian; Caversaccio, Marco; Stieger, Christof
2013-11-19
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant's location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map ( n = 10) with conventional surgery without assistance ( n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient's safety during BAP surgery in the temporal bone.
NASA Astrophysics Data System (ADS)
Hoang, Bui Huy; Oda, Masahiro; Jiang, Zhengang; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Mori, Kensaku
2011-03-01
This paper presents an automated anatomical labeling method of arteries extracted from contrasted 3D CT images based on multi-class AdaBoost. In abdominal surgery, understanding of vasculature related to a target organ such as the colon is very important. Therefore, the anatomical structure of blood vessels needs to be understood by computers in a system supporting abdominal surgery. There are several researches on automated anatomical labeling, but there is no research on automated anatomical labeling to arteries concerning with the colon. The proposed method obtains a tree structure of arteries from the artery region and calculates features values of each branch. These feature values are thickness, curvature, direction, and running vectors of branch. Then, candidate arterial names are computed by classifiers that are trained to output artery names. Finally, a global optimization process is applied to the candidate arterial names to determine final names. Target arteries of this paper are nine lower abdominal arteries (AO, LCIA, RCIA, LEIA, REIA, SMA, IMA, LIIA, RIIA). We applied the proposed method to 14 cases of 3D abdominal contrasted CT images, and evaluated the results by leave-one-out scheme. The average precision and recall rates of the proposed method were 87.9% and 93.3%, respectively. The results of this method are applicable for anatomical name display of surgical simulation and computer aided surgery.
Rank-sparsity constrained atlas construction and phenotyping
NASA Astrophysics Data System (ADS)
Clark, D. P.; Badea, C. T.
2015-03-01
Atlas construction is of great interest in the medical imaging community as a tool to visually and quantitatively characterize anatomic variability within a population. Because such atlases generally exhibit superior data fidelity relative to the individual data sets from which they are constructed, they have also proven invaluable in numerous informatics applications such as automated segmentation and classification, regularization of individual-specific reconstructions from undersampled data, and for characterizing physiologically relevant functional metrics. Perhaps the most valuable role of an anatomic atlas is not to define what is "normal," but, in fact, to recognize what is "abnormal." Here, we propose and demonstrate a novel anatomic atlas construction strategy that simultaneously recovers the average anatomy and the deviation from average in a visually meaningful way. The proposed approach treats the problem of atlas construction within the context of robust principal component analysis (RPCA) in which the redundant portion of the data (i.e. the low rank atlas) is separated from the spatially and gradient sparse portion of the data unique to each individual (i.e. the sparse variation). In this paper, we demonstrate the application of RPCA to the Shepp-Logan phantom, including several forms of variability encountered with in vivo data: population variability, class variability, contrast variability, and individual variability. We then present preliminary results produced by applying the proposed approach to in vivo, murine cardiac micro-CT data acquired in a model of right ventricle hypertrophy induced by pulmonary arteriole hypertension.
Intelligent navigation to improve obstetrical sonography.
Yeo, Lami; Romero, Roberto
2016-04-01
'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the use of software to perform manual navigation of volume datasets. Diagnostic planes and VIS-Assistance videoclips can be transmitted by telemedicine so that expert consultants can evaluate the images to provide an opinion. The end result is a user-friendly, simple, fast and consistent method of obtaining sonographic images with decreased operator dependency. Intelligent navigation is one approach to improve obstetrical sonography. Published 2015. This article is a U.S. Government work and is in the public domain in the USA. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives.
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of +/- 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation.
Three-dimensional study of pelvic asymmetry on anatomical specimens and its clinical perspectives
Boulay, Christophe; Tardieu, Christine; Bénaim, Charles; Hecquet, Jérome; Marty, Catherine; Prat-Pradal, Dominique; Legaye, Jean; Duval-Beaupère, Ginette; Pélissier, Jacques
2006-01-01
The aim of this study was to assess pelvic asymmetry (i.e. to determine whether the right iliac bone and the right part of the sacrum are mirror images of the left), both quantitatively and qualitatively, using three-dimensional measurements. Pelvic symmetry was described osteologically using a common reference coordinate system for a large sample of pelvises. Landmarks were established on 12 anatomical specimens with an electromagnetic Fastrak system. Seventy-one paired variables were tested with a paired t-test and a non-parametric test (Wilcoxon). A Pearson correlation matrix between the right and left values of the same variable was applied exclusively to values that were significantly asymmetric in order to calculate a dimensionless asymmetry index, ABGi, for each variable. Fifteen variables were significantly asymmetric and correlated with the right vs. left sides for the following anatomical regions: sacrum, iliac blades, iliac width, acetabulum and the superior lunate surface of the acetabulum. ABGi values above a threshold of ± 4.8% were considered significantly asymmetric in seven variables of the pelvic area. Total asymmetry involving the right and the left pelvis seems to follow a spiral path in the pelvis; in the upper part, the iliac blades rotate clockwise, and in the lower part, the pubic symphysis rotates anticlockwise. Thus, pelvic asymmetry may be evaluated in clinical examinations by measuring iliac crest orientation. PMID:16420376
Round and Oval Window Anatomic Variability: Its Implication for the Vibroplasty Technique.
Mancheño, Marta; Aristegui, Miguel; Sañudo, Jose Ramon
2017-06-01
The objective of this study is to evaluate the anatomical variability of round and oval window regions and its relationship with their closest structures, to determine its implication on the fitting and stabilization of the middle ear implant Vibrant Soundbridge. Variations of the anatomy of round and oval window regions were assessed in a total of 85 human dissected temporal bones. Afterward, we evaluated the adaptation and subsequent stabilization of the floating mass transducer (FMT) of the Vibrant Soundbridge in 67 cases in round window (RW) and in 22 cases in oval window (OW), and the influence that the variability of the different anatomical features examined had on this stabilization. We also assessed access and surgeon's view of the RW niche through the facial recess approach. Stabilization of the FMT in the RW was achieved in 53 (79%) of the 67 cases; we found that the less favorable anatomical conditions for stabilization were: membrane smaller than 1.5 mm, presence of a high jugular bulb and a narrow or very narrow RW niche. Frequently, two or more of these conditions happened simultaneously. In seven cases (22%) access to the RW through facial recess approach did not allow positioning the FMT in place. OW stabilization succeeded in 18 (82%) of the 22 cases. Round and oval window vibroplasty are difficult surgical techniques. To place the FMT directly on the OW may be easier as we do not have to drill the niche. In both regions there are some anatomical conditions that hinder fitting the FMT and even make it impossible. Once fitted, the main problem is to achieve good stabilization of the device.
Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Segars, W. P.; Bond, Jason; Frush, Jack
2013-04-15
Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantommore » were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve as a jumping point from which to create an unlimited number of 3D and 4D variations for imaging research. Conclusions: A population of phantoms that includes a range of anatomical variations representative of the public at large is needed to more closely mimic a clinical study or trial. The series of anatomically variable phantoms developed in this work provide a valuable resource for investigating 3D and 4D imaging devices and the effects of anatomy and motion in imaging. Combined with Monte Carlo simulation programs, the phantoms also provide a valuable tool to investigate patient-specific dose and image quality, and optimization for adults undergoing imaging procedures.« less
Interactive displays in medical art
NASA Technical Reports Server (NTRS)
Mcconathy, Deirdre Alla; Doyle, Michael
1989-01-01
Medical illustration is a field of visual communication with a long history. Traditional medical illustrations are static, 2-D, printed images; highly realistic depictions of the gross morphology of anatomical structures. Today medicine requires the visualization of structures and processes that have never before been seen. Complex 3-D spatial relationships require interpretation from 2-D diagnostic imagery. Pictures that move in real time have become clinical and research tools for physicians. Medical illustrators are involved with the development of interactive visual displays for three different, but not discrete, functions: as educational materials, as clinical and research tools, and as data bases of standard imagery used to produce visuals. The production of interactive displays in the medical arts is examined.
Three-Dimensional Display Technologies for Anatomical Education: A Literature Review
ERIC Educational Resources Information Center
Hackett, Matthew; Proctor, Michael
2016-01-01
Anatomy is a foundational component of biological sciences and medical education and is important for a variety of clinical tasks. To augment current curriculum and improve students' spatial knowledge of anatomy, many educators, anatomists, and researchers use three-dimensional (3D) visualization technologies. This article reviews 3D display…
"Scientific peep show": the human body in contemporary science museums.
Canadelli, Elena
2011-01-01
The essay focuses on the discourse about the human body developed by contemporary science museums with educational and instructive purposes directed at the general public. These museums aim mostly at mediating concepts such as health and prevention. The current scenario is linked with two examples of past museums: the popular anatomical museums which emerged during the 19th century and the health museums thrived between 1910 and 1940. On the museological path about the human body self-care we went from the emotionally involving anatomical Venuses to the inexpressive Transparent Man, from anatomical specimens of ill organs and deformed subjects to the mechanical and electronic models of the healthy body. Today the body is made transparent by the new medical diagnostics and by the latest discoveries of endoscopy. The way museums and science centers presently display the human body involves computers, 3D animation, digital technologies, hands-on models of large size human parts.
Augmented reality environment for temporomandibular joint motion analysis.
Wagner, A; Ploder, O; Zuniga, J; Undt, G; Ewers, R
1996-01-01
The principles of interventional video tomography were applied for the real-time visualization of temporomandibular joint movements in an augmented reality environment. Anatomic structures were extracted in three dimensions from planar cephalometric radiographic images. The live-image fusion of these graphic anatomic structures with real-time position data of the mandible and the articular fossa was performed with a see-through, head-mounted display and an electromagnetic tracking system. The dynamic fusion of radiographic images of the temporomandibular joint to anatomic temporomandibular joint structures in motion created a new modality for temporomandibular joint motion analysis. The advantages of the method are its ability to accurately examine the motion of the temporomandibular joint in three dimensions without restraining the subject and its ability to simultaneously determine the relationship of the bony temporomandibular joint and supporting structures (ie, occlusion, muscle function, etc) during movement before and after treatment.
Using high-resolution displays for high-resolution cardiac data.
Goodyer, Christopher; Hodrien, John; Wood, Jason; Kohl, Peter; Brodlie, Ken
2009-07-13
The ability to perform fast, accurate, high-resolution visualization is fundamental to improving our understanding of anatomical data. As the volumes of data increase from improvements in scanning technology, the methods applied to visualization must evolve. In this paper, we address the interactive display of data from high-resolution magnetic resonance imaging scanning of a rabbit heart and subsequent histological imaging. We describe a visualization environment involving a tiled liquid crystal display panel display wall and associated software, which provides an interactive and intuitive user interface. The oView software is an OpenGL application that is written for the VR Juggler environment. This environment abstracts displays and devices away from the application itself, aiding portability between different systems, from desktop PCs to multi-tiled display walls. Portability between display walls has been demonstrated through its use on walls at the universities of both Leeds and Oxford. We discuss important factors to be considered for interactive two-dimensional display of large three-dimensional datasets, including the use of intuitive input devices and level of detail aspects.
Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B
2012-04-01
Several multi-segment foot models to measure the motion of intrinsic joints of the foot have been reported. Use of these models in clinical decision making is limited due to lack of rigorous validation including inter-clinician, and inter-lab variability measures. A model with thoroughly quantified variability may significantly improve the confidence in the results of such foot models. This study proposes a new clinical foot model with the underlying strategy of using separate anatomic and technical marker configurations and coordinate systems. Anatomical landmark and coordinate system identification is determined during a static subject calibration. Technical markers are located at optimal sites for dynamic motion tracking. The model is comprised of the tibia and three foot segments (hindfoot, forefoot and hallux) and inter-segmental joint angles are computed in three planes. Data collection was carried out on pediatric subjects at two sites (Site 1: n=10 subjects by two clinicians and Site 2: five subjects by one clinician). A plaster mold method was used to quantify static intra-clinician and inter-clinician marker placement variability by allowing direct comparisons of marker data between sessions for each subject. Intra-clinician and inter-clinician joint angle variability were less than 4°. For dynamic walking kinematics, intra-clinician, inter-clinician and inter-laboratory variability were less than 6° for the ankle and forefoot, but slightly higher for the hallux. Inter-trial variability accounted for 2-4° of the total dynamic variability. Results indicate the proposed foot model reduces the effects of marker placement variability on computed foot kinematics during walking compared to similar measures in previous models. Copyright © 2011 Elsevier B.V. All rights reserved.
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
NASA Astrophysics Data System (ADS)
Cooperstock, Jeremy R.; Wang, Guangyu
2009-02-01
We conducted a comparative study of different stereoscopic display modalities (head-mounted display, polarized projection, and multiview lenticular display) to evaluate their efficacy in supporting manipulation and understanding of 3D content, specifically, in the context of neurosurgical visualization. Our study was intended to quantify the differences in resulting task performance between these choices of display technology. The experimental configuration involved a segmented brain vasculature and a simulated tumor. Subjects were asked to manipulate the vasculature and a pen-like virtual probe in order to define a vessel-free path from cortical surface to the targeted tumor. Because of the anatomical complexity, defining such a path can be a challenging task. To evaluate the system, we quantified performance differences under three different stereoscopic viewing conditions. Our results indicate that, on average, participants achieved best performance using polarized projection, and worst with the multiview lenticular display. These quantitative measurements were further reinforced by the subjects' responses to our post-test questionnaire regarding personal preferences.
Dethlefs, Christopher R.; Piotrowicz, Justin; Van Avermaete, Tony; Maki, Jeff; Gerstler, Steve; Leevy, W. M.
2017-01-01
Biomedical imaging modalities like computed tomography (CT) and magnetic resonance (MR) provide excellent platforms for collecting three-dimensional data sets of patient or specimen anatomy in clinical or preclinical settings. However, the use of a virtual, on-screen display limits the ability of these tomographic images to fully convey the anatomical information embedded within. One solution is to interface a biomedical imaging data set with 3D printing technology to generate a physical replica. Here we detail a complementary method to visualize tomographic imaging data with a hand-held model: Sub Surface Laser Engraving (SSLE) of crystal glass. SSLE offers several unique benefits including: the facile ability to include anatomical labels, as well as a scale bar; streamlined multipart assembly of complex structures in one medium; high resolution in the X, Y, and Z planes; and semi-transparent shells for visualization of internal anatomical substructures. Here we demonstrate the process of SSLE with CT data sets derived from pre-clinical and clinical sources. This protocol will serve as a powerful and inexpensive new tool with which to visualize complex anatomical structures for scientists and students in a number of educational and research settings. PMID:28518066
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies
2017-01-01
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages “maps” and “maptools” to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data. PMID:29083911
COMICS: Cartoon Visualization of Omics Data in Spatial Context Using Anatomical Ontologies.
Travin, Dmitrii; Popov, Iaroslav; Guler, Arzu Tugce; Medvedev, Dmitry; van der Plas-Duivesteijn, Suzanne; Varela, Monica; Kolder, Iris C R M; Meijer, Annemarie H; Spaink, Herman P; Palmblad, Magnus
2018-01-05
COMICS is an interactive and open-access web platform for integration and visualization of molecular expression data in anatomograms of zebrafish, carp, and mouse model systems. Anatomical ontologies are used to map omics data across experiments and between an experiment and a particular visualization in a data-dependent manner. COMICS is built on top of several existing resources. Zebrafish and mouse anatomical ontologies with their controlled vocabulary (CV) and defined hierarchy are used with the ontoCAT R package to aggregate data for comparison and visualization. Libraries from the QGIS geographical information system are used with the R packages "maps" and "maptools" to visualize and interact with molecular expression data in anatomical drawings of the model systems. COMICS allows users to upload their own data from omics experiments, using any gene or protein nomenclature they wish, as long as CV terms are used to define anatomical regions or developmental stages. Common nomenclatures such as the ZFIN gene names and UniProt accessions are provided additional support. COMICS can be used to generate publication-quality visualizations of gene and protein expression across experiments. Unlike previous tools that have used anatomical ontologies to interpret imaging data in several animal models, including zebrafish, COMICS is designed to take spatially resolved data generated by dissection or fractionation and display this data in visually clear anatomical representations rather than large data tables. COMICS is optimized for ease-of-use, with a minimalistic web interface and automatic selection of the appropriate visual representation depending on the input data.
Resolving Structural Variability in Network Models and the Brain
Klimm, Florian; Bassett, Danielle S.; Carlson, Jean M.; Mucha, Peter J.
2014-01-01
Large-scale white matter pathways crisscrossing the cortex create a complex pattern of connectivity that underlies human cognitive function. Generative mechanisms for this architecture have been difficult to identify in part because little is known in general about mechanistic drivers of structured networks. Here we contrast network properties derived from diffusion spectrum imaging data of the human brain with 13 synthetic network models chosen to probe the roles of physical network embedding and temporal network growth. We characterize both the empirical and synthetic networks using familiar graph metrics, but presented here in a more complete statistical form, as scatter plots and distributions, to reveal the full range of variability of each measure across scales in the network. We focus specifically on the degree distribution, degree assortativity, hierarchy, topological Rentian scaling, and topological fractal scaling—in addition to several summary statistics, including the mean clustering coefficient, the shortest path-length, and the network diameter. The models are investigated in a progressive, branching sequence, aimed at capturing different elements thought to be important in the brain, and range from simple random and regular networks, to models that incorporate specific growth rules and constraints. We find that synthetic models that constrain the network nodes to be physically embedded in anatomical brain regions tend to produce distributions that are most similar to the corresponding measurements for the brain. We also find that network models hardcoded to display one network property (e.g., assortativity) do not in general simultaneously display a second (e.g., hierarchy). This relative independence of network properties suggests that multiple neurobiological mechanisms might be at play in the development of human brain network architecture. Together, the network models that we develop and employ provide a potentially useful starting point for the statistical inference of brain network structure from neuroimaging data. PMID:24675546
Predictive factors of difficulty in lower third molar extraction: A prospective cohort study.
Alvira-González, J; Figueiredo, R; Valmaseda-Castellón, E; Quesada-Gómez, C; Gay-Escoda, C
2017-01-01
Several publications have measured the difficulty of third molar removal, trying to establish the main risk factors, however several important preoperative and intraoperative variables are overlooked. A prospective cohort study comprising a total of 130 consecutive lower third molar extractions was performed. The outcome variables used to measure the difficulty of the extraction were operation time and a 100mm visual analogue scale filled by the surgeon at the end of the surgical procedure. The predictors were divided into 4 different groups (demographic, anatomic, radiographic and operative variables). A descriptive, bivariate and multivariate analysis of the data was performed. Patients' weight, the presence of bulbous roots, the need to perform crown and root sectioning of the lower third molar and Pell and Gregory 123 classification significantly influenced both outcome variables (p< 0.05). Certain anatomical, radiological and operative variables appear to be important factors in the assessment of surgical difficulty in the extraction of lower third molars.
Low-contrast lesion detection in tomosynthetic breast imaging using a realistic breast phantom
NASA Astrophysics Data System (ADS)
Zhou, Lili; Oldan, Jorge; Fisher, Paul; Gindi, Gene
2006-03-01
Tomosynthesis mammography is a potentially valuable technique for detection of breast cancer. In this simulation study, we investigate the efficacy of three different tomographic reconstruction methods, EM, SART and Backprojection, in the context of an especially difficult mammographic detection task. The task is the detection of a very low-contrast mass embedded in very dense fibro-glandular tissue - a clinically useful task for which tomosynthesis may be well suited. The project uses an anatomically realistic 3D digital breast phantom whose normal anatomic variability limits lesion conspicuity. In order to capture anatomical object variability, we generate an ensemble of phantoms, each of which comprises random instances of various breast structures. We construct medium-sized 3D breast phantoms which model random instances of ductal structures, fibrous connective tissue, Cooper's ligaments and power law structural noise for small scale object variability. Random instances of 7-8 mm irregular masses are generated by a 3D random walk algorithm and placed in very dense fibro-glandular tissue. Several other components of the breast phantom are held fixed, i.e. not randomly generated. These include the fixed breast shape and size, nipple structure, fixed lesion location, and a pectoralis muscle. We collect low-dose data using an isocentric tomosynthetic geometry at 11 angles over 50 degrees and add Poisson noise. The data is reconstructed using the three algorithms. Reconstructed slices through the center of the lesion are presented to human observers in a 2AFC (two-alternative-forced-choice) test that measures detectability by computing AUC (area under the ROC curve). The data collected in each simulation includes two sources of variability, that due to the anatomical variability of the phantom and that due to the Poisson data noise. We found that for this difficult task that the AUC value for EM (0.89) was greater than that for SART (0.83) and Backprojection (0.66).
Contribution to the anatomical nomenclature concerning upper limb anatomy.
Kachlik, David; Musil, Vladimir; Baca, Vaclav
2017-04-01
The aim of this article is to revise and extend the existing sections of Terminologia Anatomica dealing with the upper limb structures, which nomenclature belongs to its most neglected and not developing parts, and to justify the use of the proposed anatomical terms in the clinical practice, research, and education. A sample collected from own educational and research experience was matched in the main anatomical textbooks as well as old and recent anatomical journals and compared with four versions of the official Latin anatomical nomenclatures. The authors summarize here 145 terms, completed with their definitions or explanations, concerning both constant and variable (inconstant) morphological structures (bones, joints, muscles, vessels, and nerves) of the pectoral girdle, arm, cubital region, forearm, wrist, and hand, completed with some grammar remarks and several general terms. After a broad discussion on this topic, the Terminologia Anatomica should be revised and extend with the listed terms (or their equivalents).
NASA Technical Reports Server (NTRS)
Wood, E. H.
1976-01-01
The paper discusses the development of computer-controlled three-dimensional reconstruction techniques designed to determine the dynamic changes in the true shape and dimensions of the epi- and endocardial surfaces of the heart, along with variable time base (stop-action to real-time) displays of the transmural distribution of the coronary microcirculation and the three-dimensional anatomy of the macrovasculature in all regions of the body throughout individual cardiac and/or respiratory cycles. A technique for reconstructing a cross section of the heart from multiplanar videoroentgenograms is outlined. The capability of high spatial and high temporal resolution scanning videodensitometry makes possible measurement of the appearance, mean transit and clearance of roentgen opaque substances in three-dimensional space through the myocardium with a degree of simultaneous anatomic and temporal resolution not obtainable by current isotope techniques. The distribution of a variety of selected chemical elements or biologic materials within a body portion can also be determined.
How the Ventral Pathway Got Lost--And What Its Recovery Might Mean
ERIC Educational Resources Information Center
Weiller, Cornelius; Bormann, Tobias; Saur, Dorothee; Musso, Mariachristina; Rijntjes, Michel
2011-01-01
Textbooks dealing with the anatomical representation of language in the human brain display two language-related zones, Broca's area and Wernicke's area, connected by a single dorsal fiber tract, the arcuate fascicle. This classical model is incomplete. Modern imaging techniques have identified a second long association tract between the temporal…
Employing WebGL to develop interactive stereoscopic 3D content for use in biomedical visualization
NASA Astrophysics Data System (ADS)
Johnston, Semay; Renambot, Luc; Sauter, Daniel
2013-03-01
Web Graphics Library (WebGL), the forthcoming web standard for rendering native 3D graphics in a browser, represents an important addition to the biomedical visualization toolset. It is projected to become a mainstream method of delivering 3D online content due to shrinking support for third-party plug-ins. Additionally, it provides a virtual reality (VR) experience to web users accommodated by the growing availability of stereoscopic displays (3D TV, desktop, and mobile). WebGL's value in biomedical visualization has been demonstrated by applications for interactive anatomical models, chemical and molecular visualization, and web-based volume rendering. However, a lack of instructional literature specific to the field prevents many from utilizing this technology. This project defines a WebGL design methodology for a target audience of biomedical artists with a basic understanding of web languages and 3D graphics. The methodology was informed by the development of an interactive web application depicting the anatomy and various pathologies of the human eye. The application supports several modes of stereoscopic displays for a better understanding of 3D anatomical structures.
Aberrant hepatic arterial anatomy and the whipple procedure: lessons learned.
Chamberlain, Ronald S; El-Sedfy, Abraham; Rajkumar, Dhiraj
2011-05-01
Appreciation and study of hepatic arterial anatomical variability is essential to the performance of a pancreaticoduodenectomy to avoid surgical complications such as bleeding, hepatic ischemia/failure, and anastomotic leak/stricture. Awareness of this variability permits the surgeon to adapt the surgical technique to deal with anomalies identified preoperatively or intraoperatively thereby preventing unnecessary surgical morbidity and mortality. The objective of our study is to provide a comprehensive review of the anatomic arterial anomalies and discuss surgical strategies that will equip the surgeon to deal with all anomalies that may be encountered a priori or en passant during the course of a Whipple procedure.
Aharon, S; Robb, R A
1997-01-01
Virtual reality environments provide highly interactive, natural control of the visualization process, significantly enhancing the scientific value of the data produced by medical imaging systems. Due to the computational and real time display update requirements of virtual reality interfaces, however, the complexity of organ and tissue surfaces which can be displayed is limited. In this paper, we present a new algorithm for the production of a polygonal surface containing a pre-specified number of polygons from patient or subject specific volumetric image data. The advantage of this new algorithm is that it effectively tiles complex structures with a specified number of polygons selected to optimize the trade-off between surface detail and real-time display rates.
Chen, Xiaojun; Xu, Lu; Wang, Yiping; Wang, Huixiang; Wang, Fang; Zeng, Xiangsen; Wang, Qiugen; Egger, Jan
2015-06-01
The surgical navigation system has experienced tremendous development over the past decades for minimizing the risks and improving the precision of the surgery. Nowadays, Augmented Reality (AR)-based surgical navigation is a promising technology for clinical applications. In the AR system, virtual and actual reality are mixed, offering real-time, high-quality visualization of an extensive variety of information to the users (Moussa et al., 2012) [1]. For example, virtual anatomical structures such as soft tissues, blood vessels and nerves can be integrated with the real-world scenario in real time. In this study, an AR-based surgical navigation system (AR-SNS) is developed using an optical see-through HMD (head-mounted display), aiming at improving the safety and reliability of the surgery. With the use of this system, including the calibration of instruments, registration, and the calibration of HMD, the 3D virtual critical anatomical structures in the head-mounted display are aligned with the actual structures of patient in real-world scenario during the intra-operative motion tracking process. The accuracy verification experiment demonstrated that the mean distance and angular errors were respectively 0.809±0.05mm and 1.038°±0.05°, which was sufficient to meet the clinical requirements. Copyright © 2015 Elsevier Inc. All rights reserved.
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0–14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ13C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ13C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability. PMID:27379112
Hajek, Peter; Kurjak, Daniel; von Wühlisch, Georg; Delzon, Sylvain; Schuldt, Bernhard
2016-01-01
In angiosperms, many studies have described the inter-specific variability of hydraulic-related traits and little is known at the intra-specific level. This information is however mandatory to assess the adaptive capacities of tree populations in the context of increasing drought frequency and severity. Ten 20-year old European beech (Fagus sylvatica L.) provenances representing the entire distribution range throughout Europe and differing significantly in aboveground biomass increment (ABI) by a factor of up to four were investigated for branch wood anatomical, hydraulic, and foliar traits in a provenance trial located in Northern Europe. We quantified to which extend xylem hydraulic and leaf traits are under genetic control and tested whether the xylem hydraulic properties (hydraulic efficiency and safety) trades off with yield and wood anatomical and leaf traits. Our results showed that only three out of 22 investigated ecophysiological traits showed significant genetic differentiations between provenances, namely vessel density (VD), the xylem pressure causing 88% loss of hydraulic conductance and mean leaf size. Depending of the ecophysiological traits measured, genetic differentiation between populations explained 0-14% of total phenotypic variation, while intra-population variability was higher than inter-population variability. Most wood anatomical traits and some foliar traits were additionally related to the climate of provenance origin. The lumen to sapwood area ratio, vessel diameter, theoretical specific conductivity and theoretical leaf-specific conductivity as well as the C:N-ratio increased with climatic aridity at the place of origin while the carbon isotope signature (δ(13)C) decreased. Contrary to our assumption, none of the wood anatomical traits were related to embolism resistance but were strong determinants of hydraulic efficiency. Although ABI was associated with both VD and δ(13)C, both hydraulic efficiency and embolism resistance were unrelated, disproving the assumed trade-off between hydraulic efficiency and safety. European beech seems to compensate increasing water stress with growing size mainly by adjusting vessel number and not vessel diameter. In conclusion, European beech has a high potential capacity to cope with climate change due to the high degree of intra-population genetic variability.
Animals, Pictures, and Skeletons: Andreas Vesalius's Reinvention of the Public Anatomy Lesson.
Shotwell, R Allen
2016-01-01
In this paper, I examine the procedures used by Andreas Vesalius for conducting public dissections in the early sixteenth century. I point out that in order to overcome the limitations of public anatomical demonstration noted by his predecessors, Vesalius employed several innovative strategies, including the use of animals as dissection subjects, the preparation and display of articulated skeletons, and the use of printed and hand-drawn illustrations. I suggest that the examination of these three strategies for resolving the challenges of public anatomical demonstration helps us to reinterpret Vesalius's contributions to sixteenth-century anatomy. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Xie, Long; Pluta, John B.; Das, Sandhitsu R.; Wisse, Laura E.M.; Wang, Hongzhi; Mancuso, Lauren; Kliot, Dasha; Avants, Brian B.; Ding, Song-Lin; Manjón, José V.; Wolk, David A.; Yushkevich, Paul A.
2016-01-01
Rational The human perirhinal cortex (PRC) plays critical roles in episodic and semantic memory and visual perception. The PRC consists of Brodmann areas 35 and 36 (BA35, BA36). In Alzheimer's disease (AD), BA35 is the first cortical site affected by neurofibrillary tangle pathology, which is closely linked to neural injury in AD. Large anatomical variability, manifested in the form of different cortical folding and branching patterns, makes it difficult to segment the PRC in MRI scans. Pathology studies have found that in ~97% of specimens, the PRC falls into one of three discrete anatomical variants. However, current methods for PRC segmentation and morphometry in MRI are based on single-template approaches, which may not be able to accurately model these discrete variants Methods A multi-template analysis pipeline that explicitly accounts for anatomical variability is used to automatically label the PRC and measure its thickness in T2-weighted MRI scans. The pipeline uses multi-atlas segmentation to automatically label medial temporal lobe cortices including entorhinal cortex, PRC and the parahippocampal cortex. Pairwise registration between label maps and clustering based on residual dissimilarity after registration are used to construct separate templates for the anatomical variants of the PRC. An optimal path of deformations linking these templates is used to establish correspondences between all the subjects. Experimental evaluation focuses on the ability of single-template and multi-template analyses to detect differences in the thickness of medial temporal lobe cortices between patients with amnestic mild cognitive impairment (aMCI, n=41) and age-matched controls (n=44). Results The proposed technique is able to generate templates that recover the three dominant discrete variants of PRC and establish more meaningful correspondences between subjects than a single-template approach. The largest reduction in thickness associated with aMCI, in absolute terms, was found in left BA35 using both regional and summary thickness measures. Further, statistical maps of regional thickness difference between aMCI and controls revealed different patterns for the three anatomical variants. PMID:27702610
Jiang, Taoran; Zhu, Ming; Zan, Tao; Gu, Bin; Li, Qingfeng
2017-08-01
In perforator flap transplantation, dissection of the perforator is an important but difficult procedure because of the high variability in vascular anatomy. Preoperative imaging techniques could provide substantial information about vascular anatomy; however, it cannot provide direct guidance for surgeons during the operation. In this study, a navigation system (NS) was established to overlie a vascular map on surgical sites to further provide a direct guide for perforator flap transplantation. The NS was established based on computed tomographic angiography and augmented reality techniques. A virtual vascular map was reconstructed according to computed tomographic angiography data and projected onto real patient images using ARToolKit software. Additionally, a screw-fixation marker holder was created to facilitate registration. With the use of a tracking and display system, we conducted the NS on an animal model and measured the system error on a rapid prototyping model. The NS assistance allowed for correct identification, as well as a safe and precise dissection of the perforator. The mean value of the system error was determined to be 3.474 ± 1.546 mm. Augmented reality-based NS can provide precise navigation information by directly displaying a 3-dimensional individual anatomical virtual model onto the operative field in real time. It will allow rapid identification and safe dissection of a perforator in free flap transplantation surgery.
Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH.
Tortora, Domenico; Severino, Mariasavina; Malova, Mariya; Parodi, Alessandro; Morana, Giovanni; Sedlacik, Jan; Govaert, Paul; Volpe, Joseph J; Rossi, Andrea; Ramenghi, Luca Antonio
2018-01-01
The anatomy of the deep venous system plays an important role in the pathogenesis of brain lesions in the preterm brain as shown by different histological studies. The aims of this study were to compare the subependymal vein anatomy of preterm neonates with germinal matrix haemorrhage-intraventricular haemorrhage (GMH-IVH), as evaluated by susceptibility-weighted imaging (SWI) venography, with a group of age-matched controls with normal brain MRI, and to explore the relationship between the anatomical features of subependymal veins and clinical risk factors for GMH-IVH. SWI venographies of 48 neonates with GMH-IVH and 130 neonates with normal brain MRI were retrospectively evaluated. Subependymal vein anatomy was classified into six different patterns: type 1 represented the classic pattern and types 2-6 were considered anatomic variants. A quantitative analysis of the venous curvature index was performed. Variables were analysed by using Mann-Whitney U and χ 2 tests, and a multiple logistic regression analysis was performed to evaluate the association between anatomical features, clinical factors and GMH-IVH. A significant difference was noticed among the six anatomical patterns according to the presence of GMH-IVH (χ 2 =14.242, p=0.014). Anatomic variants were observed with higher frequency in neonates with GMH-IVH than in controls (62.2% and 49.6%, respectively). Neonates with GMH-IVH presented a narrower curvature of the terminal portion of subependymal veins (p<0.05). These anatomical features were significantly associated with GMH-IVH (p<0.05). Preterm neonates with GMH-IVH show higher variability of subependymal veins anatomy confirming a potential role as predisposing factor for GMH-IVH. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Variations in Velopharyngeal Structure in Adults With Repaired Cleft Palate.
Perry, Jamie L; Kotlarek, Katelyn J; Sutton, Bradley P; Kuehn, David P; Jaskolka, Michael S; Fang, Xiangming; Point, Stuart W; Rauccio, Frank
2018-01-01
The purpose of this study was to examine differences in velopharyngeal structures between adults with repaired cleft palate and normal resonance and adults without cleft palate. Thirty-six English-speaking adults, including 6 adults (2 males and 4 females) with repaired cleft palate (M = 32.5 years of age, SD = 17.4 years) and 30 adults (15 males and 15 females) without cleft palate (M = 23.3 years of age, SD = 4.1 years), participated in the study. Fourteen velopharyngeal measures were obtained on magnetic resonance images and compared between groups (cleft and noncleft). After adjusting for body size and sex effects, there was a statistically significant difference between groups for 10 out of the 14 velopharyngeal measures. Compared to those without cleft palate, participants with repaired cleft palate had a significantly shorter hard palate height and length, shorter levator muscle length, shorter intravelar segment, more acute levator angles of origin, shorter and thinner velum, and greater pharyngeal depth. Although significant differences were evident in the cleft palate group, individuals displayed normal resonance. These findings suggest that a wide variability in velopharyngeal anatomy can occur in the presence of normal resonance, particularly for those with repaired cleft palate. Future research is needed to understand how anatomic variability impacts function, such as during speech.
The anatomic basis of lingual nerve trauma associated with inferior alveolar block injections.
Morris, Christopher D; Rasmussen, Jared; Throckmorton, Gaylord S; Finn, Richard
2010-11-01
This study describes the anatomic variability in the position of the lingual nerve in the pterygomandibular space, the location of the inferior alveolar nerve block injection. Simulated standard landmark-based inferior alveolar nerve blocks were administered to 44 fixed sagitally bisected cadaver heads. Measurements were made of the diameter of the nerves and distances between the needle and selected anatomic landmarks and the nerves. Of 44 simulated injections, 42 (95.5%) passed lateral to the lingual nerve, 7 (16%) passed within 0.1 mm of the nerve, and 2 (4.5%) penetrated the nerve. The position of the lingual nerve relative to bony landmarks within the interpterygoid fascia was highly variable. Variation in the position of the lingual nerve is an important contributor to lingual nerve trauma during inferior alveolar block injections. This factor should be an important part of preoperative informed consent. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Schlinger, Barney A.; Barske, Julia; Day, Lainy; Fusani, Leonida; Fuxjager, Matthew J.
2014-01-01
Many animals engage in spectacular courtship displays, likely recruiting specialized neural, hormonal and muscular systems to facilitate these performances. Male golden-collared manakins (Manacus vitellinus) of Panamanian rainforests perform physically elaborate courtship displays that include novel forms of visual and acoustic signaling. We study the behavioral neuroendocrinology of this male’s courtship, combining field behavioral observations with anatomical, biochemical and molecular laboratory-based studies. Seasonally, male courtship is activated by testosterone with little correspondence between testosterone levels and display intensity. Females prefer males whose displays are exceptionally frequent, fast and accurate. The activation of androgen receptors (AR) is crucial for optimal display performance, with AR expressed at elevated levels in several neuromuscular tissues. Apparently, courtship enlists an elaborate androgen-dependent network that includes spinal motoneurons, skeletal muscles and somatosensory systems. This work highlights the value of studying non-traditional species to illuminate physiological adaptations and, hopefully, stimulates future research on other species with complex behaviors. PMID:23624091
Deep residual networks for automatic segmentation of laparoscopic videos of the liver
NASA Astrophysics Data System (ADS)
Gibson, Eli; Robu, Maria R.; Thompson, Stephen; Edwards, P. Eddie; Schneider, Crispin; Gurusamy, Kurinchi; Davidson, Brian; Hawkes, David J.; Barratt, Dean C.; Clarkson, Matthew J.
2017-03-01
Motivation: For primary and metastatic liver cancer patients undergoing liver resection, a laparoscopic approach can reduce recovery times and morbidity while offering equivalent curative results; however, only about 10% of tumours reside in anatomical locations that are currently accessible for laparoscopic resection. Augmenting laparoscopic video with registered vascular anatomical models from pre-procedure imaging could support using laparoscopy in a wider population. Segmentation of liver tissue on laparoscopic video supports the robust registration of anatomical liver models by filtering out false anatomical correspondences between pre-procedure and intra-procedure images. In this paper, we present a convolutional neural network (CNN) approach to liver segmentation in laparoscopic liver procedure videos. Method: We defined a CNN architecture comprising fully-convolutional deep residual networks with multi-resolution loss functions. The CNN was trained in a leave-one-patient-out cross-validation on 2050 video frames from 6 liver resections and 7 laparoscopic staging procedures, and evaluated using the Dice score. Results: The CNN yielded segmentations with Dice scores >=0.95 for the majority of images; however, the inter-patient variability in median Dice score was substantial. Four failure modes were identified from low scoring segmentations: minimal visible liver tissue, inter-patient variability in liver appearance, automatic exposure correction, and pathological liver tissue that mimics non-liver tissue appearance. Conclusion: CNNs offer a feasible approach for accurately segmenting liver from other anatomy on laparoscopic video, but additional data or computational advances are necessary to address challenges due to the high inter-patient variability in liver appearance.
Longitudinal shapes of the tibia and femur are unrelated and variable.
Howell, Stephen M; Kuznik, Kyle; Hull, Maury L; Siston, Robert A
2010-04-01
In general practice, short films of the knee are used to assess component position and define the entry point for intramedullary femoral alignment in TKAs; however, whether it is justified to use the short film commonly used in research settings and everyday practice as a substitute for the whole leg view is controversial and needs clarification. In 138 long leg CT scanograms we measured the angle formed by the anatomic axis of the proximal fourth of the tibia and the mechanical axis of the tibia, the angle formed by the anatomic axis of the distal fourth of the femur and the mechanical axis of the femur, the "bow" of the tibia (as reflected by the offset of the anatomic axis from the center of the talus), and the "bow" of the femur (as reflected by the offset of the anatomic axis from the center of the femoral head). Because the angle formed by these axes and the bow of the tibia and femur have wide variability in females and males, a short film of the knee should not be used in place of the whole leg view when accurate assessment of component position and limb alignment is essential. A previous study of normal limbs found that only 2% of subjects have a neutral hip-knee-ankle axis, which can be explained by the wide variability of the bow in the tibia and femur and the lack of correlation between the bow of the tibia and femur in a given limb as shown in the current study.
The facial nerve: anatomy and associated disorders for oral health professionals.
Takezawa, Kojiro; Townsend, Grant; Ghabriel, Mounir
2018-04-01
The facial nerve, the seventh cranial nerve, is of great clinical significance to oral health professionals. Most published literature either addresses the central connections of the nerve or its peripheral distribution but few integrate both of these components and also highlight the main disorders affecting the nerve that have clinical implications in dentistry. The aim of the current study is to provide a comprehensive description of the facial nerve. Multiple aspects of the facial nerve are discussed and integrated, including its neuroanatomy, functional anatomy, gross anatomy, clinical problems that may involve the nerve, and the use of detailed anatomical knowledge in the diagnosis of the site of facial nerve lesion in clinical neurology. Examples are provided of disorders that can affect the facial nerve during its intra-cranial, intra-temporal and extra-cranial pathways, and key aspects of clinical management are discussed. The current study is complemented by original detailed dissections and sketches that highlight key anatomical features and emphasise the extent and nature of anatomical variations displayed by the facial nerve.
Khoueiry, Z; Albenque, J-P; Providencia, R; Combes, S; Combes, N; Jourda, F; Sousa, P A; Cardin, C; Pasquie, J-L; Cung, T T; Massin, F; Marijon, E; Boveda, S
2016-09-01
Pulmonary vein isolation is the mainstay of treatment in catheter ablation of paroxysmal atrial fibrillation (AF). Cryoballoon ablation has been introduced more recently than radiofrequency ablation, the standard technique in most centres. Pulmonary veins frequently display anatomical variants, which may compromise the results of cryoballoon ablation. We aimed to evaluate the mid-term outcomes of cryoballoon ablation in an unselected population with paroxysmal AF from an anatomical viewpoint. Consecutive patients with paroxysmal AF who underwent a first procedure of cryoballoon ablation or radiofrequency were enrolled in this single-centre study. All patients underwent systematic standardized follow-up. Comparisons between radiofrequency and cryoballoon ablation (Arctic Front™ or Arctic Front Advance™) were performed regarding safety and efficacy endpoints, according to pulmonary vein (PV) anatomical variants. A total of 687 patients were enrolled (376 radiofrequency and 311 cryoballoon ablation). Baseline characteristics and distribution of PV anatomical variants were generally similar in the groups. After a mean follow-up of 14 ± 8 months, there was no difference in the incidence of relapse (17.0% cryoballoon ablation vs. 14.1% radiofrequency, P = 0.25). We observed no interaction of PV anatomical variants on mid-term procedural success. Our findings suggest that mid-term outcomes of cryoballoon ablation for paroxysmal AF ablation are similar to those of radiofrequency, regardless of PV anatomy. The presence of anatomical variants of PVs should not discourage the referral of patients with paroxysmal AF for cryoballoon ablation. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For permissions please email: journals.permissions@oup.com.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2017-10-01
We present an efficient probabilistic model of anatomical variability in a linear space of initial velocities of diffeomorphic transformations and demonstrate its benefits in clinical studies of brain anatomy. To overcome the computational challenges of the high dimensional deformation-based descriptors, we develop a latent variable model for principal geodesic analysis (PGA) based on a low dimensional shape descriptor that effectively captures the intrinsic variability in a population. We define a novel shape prior that explicitly represents principal modes as a multivariate complex Gaussian distribution on the initial velocities in a bandlimited space. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than the state-of-the-art method such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA) that operate in the high dimensional image space. Copyright © 2017 Elsevier B.V. All rights reserved.
Predictive factors of difficulty in lower third molar extraction: A prospective cohort study
Alvira-González, Joaquín; Valmaseda-Castellón, Eduard; Quesada-Gómez, Carmen; Gay-Escoda, Cosme
2017-01-01
Background Several publications have measured the difficulty of third molar removal, trying to establish the main risk factors, however several important preoperative and intraoperative variables are overlooked. Material and Methods A prospective cohort study comprising a total of 130 consecutive lower third molar extractions was performed. The outcome variables used to measure the difficulty of the extraction were operation time and a 100mm visual analogue scale filled by the surgeon at the end of the surgical procedure. The predictors were divided into 4 different groups (demographic, anatomic, radiographic and operative variables). A descriptive, bivariate and multivariate analysis of the data was performed. Results Patients’ weight, the presence of bulbous roots, the need to perform crown and root sectioning of the lower third molar and Pell and Gregory 123 classification significantly influenced both outcome variables (p< 0.05). Conclusions Certain anatomical, radiological and operative variables appear to be important factors in the assessment of surgical difficulty in the extraction of lower third molars. Key words:Third molar, surgical extraction, surgical difficulty. PMID:27918736
NASA Astrophysics Data System (ADS)
Krueger, Evan; Messier, Erik; Linte, Cristian A.; Diaz, Gabriel
2017-03-01
Recent advances in medical image acquisition allow for the reconstruction of anatomies with 3D, 4D, and 5D renderings. Nevertheless, standard anatomical and medical data visualization still relies heavily on the use of traditional 2D didactic tools (i.e., textbooks and slides), which restrict the presentation of image data to a 2D slice format. While these approaches have their merits beyond being cost effective and easy to disseminate, anatomy is inherently three-dimensional. By using 2D visualizations to illustrate more complex morphologies, important interactions between structures can be missed. In practice, such as in the planning and execution of surgical interventions, professionals require intricate knowledge of anatomical complexities, which can be more clearly communicated and understood through intuitive interaction with 3D volumetric datasets, such as those extracted from high-resolution CT or MRI scans. Open source, high quality, 3D medical imaging datasets are freely available, and with the emerging popularity of 3D display technologies, affordable and consistent 3D anatomical visualizations can be created. In this study we describe the design, implementation, and evaluation of one such interactive, stereoscopic visualization paradigm for human anatomy extracted from 3D medical images. A stereoscopic display was created by projecting the scene onto the lab floor using sequential frame stereo projection and viewed through active shutter glasses. By incorporating a PhaseSpace motion tracking system, a single viewer can navigate an augmented reality environment and directly manipulate virtual objects in 3D. While this paradigm is sufficiently versatile to enable a wide variety of applications in need of 3D visualization, we designed our study to work as an interactive game, which allows users to explore the anatomy of various organs and systems. In this study we describe the design, implementation, and evaluation of an interactive and stereoscopic visualization platform for exploring and understanding human anatomy. This system can present medical imaging data in three dimensions and allows for direct physical interaction and manipulation by the viewer. This should provide numerous benefits over traditional, 2D display and interaction modalities, and in our analysis, we aim to quantify and qualify users' visual and motor interactions with the virtual environment when employing this interactive display as a 3D didactic tool.
Björklund, Jesper; Seftigen, Kristina; Schweingruber, Fritz; Fonti, Patrick; von Arx, Georg; Bryukhanova, Marina V; Cuny, Henri E; Carrer, Marco; Castagneri, Daniele; Frank, David C
2017-11-01
Interannual variability of wood density - an important plant functional trait and environmental proxy - in conifers is poorly understood. We therefore explored the anatomical basis of density. We hypothesized that earlywood density is determined by tracheid size and latewood density by wall dimensions, reflecting their different functional tasks. To determine general patterns of variability, density parameters from 27 species and 349 sites across the Northern Hemisphere were correlated to tree-ring width parameters and local climate. We performed the same analyses with density and width derived from anatomical data comprising two species and eight sites. The contributions of tracheid size and wall dimensions to density were disentangled with sensitivity analyses. Notably, correlations between density and width shifted from negative to positive moving from earlywood to latewood. Temperature responses of density varied intraseasonally in strength and sign. The sensitivity analyses revealed tracheid size as the main determinant of earlywood density, while wall dimensions become more influential for latewood density. Our novel approach of integrating detailed anatomical data with large-scale tree-ring data allowed us to contribute to an improved understanding of interannual variations of conifer growth and to illustrate how conifers balance investments in the competing xylem functions of hydraulics and mechanical support. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Femoral anatomical frame: assessment of various definitions.
Della Croce, U; Camomilla, V; Leardini, A; Cappozzo, A
2003-06-01
The reliability of the estimate of joint kinematic variables and the relevant functional interpretation are affected by the uncertainty with which bony anatomical landmarks and underlying bony segment anatomical frames are determined. When a stereo-photogrammetric system is used for in vivo studies, minimising and compensating for this uncertainty is crucial. This paper deals with the propagation of the errors associated with the location of both internal and palpable femoral anatomical landmarks to the estimation of the orientation of the femoral anatomical frame and to the knee joint angles during movement. Given eight anatomical landmarks, and the precision with which they can be identified experimentally, 12 different rules were defined for the construction of the anatomical frame and submitted to comparative assessment. Results showed that using more than three landmarks allows for more repeatable anatomical frame orientation and knee joint kinematics estimation. Novel rules are proposed that use optimization algorithms. On the average, the femoral frame orientation dispersion had a standard deviation of 2, 2.5 and 1.5 degrees for the frontal, transverse, and sagittal plane, respectively. However, a proper choice of the relevant construction rule allowed for a reduction of these inaccuracies in selected planes to 1 degrees rms. The dispersion of the knee adduction-abduction and internal-external rotation angles could also be limited to 1 degrees rms irrespective of the flexion angle value.
How a surgeon becomes superman by visualization of intelligently fused multi-modalities
NASA Astrophysics Data System (ADS)
Erat, Okan; Pauly, Olivier; Weidert, Simon; Thaller, Peter; Euler, Ekkehard; Mutschler, Wolf; Navab, Nassir; Fallavollita, Pascal
2013-03-01
Motivation: The existing visualization of the Camera augmented mobile C-arm (CamC) system does not have enough cues for depth information and presents the anatomical information in a confusing way to surgeons. Methods: We propose a method that segments anatomical information from X-ray and then augment it on the video images. To provide depth cues, pixels belonging to video images are classified as skin and object classes. The augmentation of anatomical information from X-ray is performed only when pixels have a larger probability of belonging to skin class. Results: We tested our algorithm by displaying the new visualization to 2 expert surgeons and 1 medical student during three surgical workflow sequences of the interlocking of intramedullary nail procedure, namely: skin incision, center punching, and drilling. Via a survey questionnaire, they were asked to assess the new visualization when compared to the current alphablending overlay image displayed by CamC. The participants all agreed (100%) that occlusion and instrument tip position detection were immediately improved with our technique. When asked if our visualization has potential to replace the existing alpha-blending overlay during interlocking procedures, all participants did not hesitate to suggest an immediate integration of the visualization for the correct navigation and guidance of the procedure. Conclusion: Current alpha blending visualizations lack proper depth cues and can be a source of confusion for the surgeons when performing surgery. Our visualization concept shows great potential in alleviating occlusion and facilitating clinician understanding during specific workflow steps of the intramedullary nailing procedure.
Zhang, Miaomiao; Wells, William M; Golland, Polina
2016-10-01
Using image-based descriptors to investigate clinical hypotheses and therapeutic implications is challenging due to the notorious "curse of dimensionality" coupled with a small sample size. In this paper, we present a low-dimensional analysis of anatomical shape variability in the space of diffeomorphisms and demonstrate its benefits for clinical studies. To combat the high dimensionality of the deformation descriptors, we develop a probabilistic model of principal geodesic analysis in a bandlimited low-dimensional space that still captures the underlying variability of image data. We demonstrate the performance of our model on a set of 3D brain MRI scans from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Our model yields a more compact representation of group variation at substantially lower computational cost than models based on the high-dimensional state-of-the-art approaches such as tangent space PCA (TPCA) and probabilistic principal geodesic analysis (PPGA).
Cha, Jaepyeong; Broch, Aline; Mudge, Scott; Kim, Kihoon; Namgoong, Jung-Man; Oh, Eugene; Kim, Peter
2018-01-01
Accurate, real-time identification and display of critical anatomic structures, such as the nerve and vasculature structures, are critical for reducing complications and improving surgical outcomes. Human vision is frequently limited in clearly distinguishing and contrasting these structures. We present a novel imaging system, which enables noninvasive visualization of critical anatomic structures during surgical dissection. Peripheral nerves are visualized by a snapshot polarimetry that calculates the anisotropic optical properties. Vascular structures, both venous and arterial, are identified and monitored in real-time using a near-infrared laser-speckle-contrast imaging. We evaluate the system by performing in vivo animal studies with qualitative comparison by contrast-agent-aided fluorescence imaging. PMID:29541506
NASA Astrophysics Data System (ADS)
Granda, Elena; Bazot, Stéphane; Fresneau, Chantal; Boura, Anaïs; Faccioni, Georgia; Damesin, Claire
2015-04-01
While many forests are experiencing strong tree declines due to climate change in temperate ecosystems, others nearby to those declining show no apparent signs of decline. This could be due to particular microsite conditions or, for instance, to a higher plasticity of given traits that allow a better performance under stressful conditions. We studied oak functional mechanisms (Quercus petraea) leading to the apparently healthy status of the forest and their relation to the observed climatic variability. This study was conducted in the Barbeau Forest (northern France), where cores from mature trees were collected. Three types of functional traits (secondary growth, physiological variables - δ13C and derived Δ13C and iWUE- and several anatomical ones -e.g. vessel area, density-) were recorded for each ring for the 1991-2011 period, distinguishing EW from LW in all measured traits. Among the three types of functional traits, those related to growth experienced the highest variability both between years and between individuals, followed by anatomical and physiological ones. Secondary growth maintained a constant trend during the study period. Instead, ring, EW and LW δ13C slightly declined from 1991 to 2011. Additional intra-ring δ13C analyses allowed for a more detailed understanding of the seasonal dynamics within each year. In particular, the year 2007 (an especially favorable climatic year during the growing season) showed the lowest δ13C values during the EW-LW transition for the whole study period. Inter-annual anatomical traits varied in their responses, but in general, no temporal trends were found. The results from structural equation modeling (SEM) showed direct relationships of seasonal climate and growth, as well as indirect relationships mediated by anatomical and physiological traits. We further discuss the implications of these results on future forest responses to ongoing climate changes.
Cerliani, Leonardo; Thomas, Rajat M; Jbabdi, Saad; Siero, Jeroen CW; Nanetti, Luca; Crippa, Alessandro; Gazzola, Valeria; D'Arceuil, Helen; Keysers, Christian
2012-01-01
The insular cortex of macaques has a wide spectrum of anatomical connections whose distribution is related to its heterogeneous cytoarchitecture. Although there is evidence of a similar cytoarchitectural arrangement in humans, the anatomical connectivity of the insula in the human brain has not yet been investigated in vivo. In the present work, we used in vivo probabilistic white-matter tractography and Laplacian eigenmaps (LE) to study the variation of connectivity patterns across insular territories in humans. In each subject and hemisphere, we recovered a rostrocaudal trajectory of connectivity variation ranging from the anterior dorsal and ventral insula to the dorsal caudal part of the long insular gyri. LE suggested that regional transitions among tractography patterns in the insula occur more gradually than in other brain regions. In particular, the change in tractography patterns was more gradual in the insula than in the medial premotor region, where a sharp transition between different tractography patterns was found. The recovered trajectory of connectivity variation in the insula suggests a relation between connectivity and cytoarchitecture in humans resembling that previously found in macaques: tractography seeds from the anterior insula were mainly found in limbic and paralimbic regions and in anterior parts of the inferior frontal gyrus, while seeds from caudal insular territories mostly reached parietal and posterior temporal cortices. Regions in the putative dysgranular insula displayed more heterogeneous connectivity patterns, with regional differences related to the proximity with either putative granular or agranular regions. Hum Brain Mapp 33:2005–2034, 2012. © 2011 Wiley Periodicals, Inc. PMID:21761507
Measurement of the thickness of the urethrovaginal space in women with or without vaginal orgasm.
Gravina, Giovanni Luca; Brandetti, Fulvia; Martini, Paolo; Carosa, Eleonora; Di Stasi, Savino M; Morano, Susanna; Lenzi, Andrea; Jannini, Emmanuele A
2008-03-01
The physiology and anatomy of female sexual function are poorly understood. The differences in sexual function among women may be partly attributed to anatomical factors. The purpose of this study was to use ultrasonography to evaluate the anatomical variability of the urethrovaginal space in women with and without vaginal orgasm. Twenty healthy, neurologically intact volunteers were recruited from a population of women who were a part of a previous published study. All women underwent a complete urodynamic evaluation and those with clinical and urodynamic urinary incontinence, idiopathic detrusor overactivity, or micturition disorders, as well as postmenopausal women and those with sexual dysfunction were excluded. The reported experience of vaginal orgasm was investigated. The urethrovaginal space thickness as measured by ultrasound was chosen as the indicator of urogenital anatomical variability. Designated evaluators carried out the measurements in a blinded fashion. The urethrovaginal space and distal, middle, and proximal urethrovaginal segments were thinner in women without vaginal orgasm. A direct correlation between the presence of vaginal orgasm and the thickness of urethrovaginal space was found. Women with a thicker urethrovaginal space were more likely to experience vaginal orgasm (r = 0.884; P = 0.015). A direct and significant correlation between the thickness of each urethrovaginal segment and the presence of vaginal orgasm was found, with the best correlation observed for the distal segment (r = 0.863; P < 0.0001). Interobserver agreement between the designated evaluators was excellent (r = 0.87; P < 0.001). The measurement of the space within the anterior vaginal wall by ultrasonography is a simple tool to explore anatomical variability of the human clitoris-urethrovaginal complex, also known as the G-spot, which can be correlated to the ability to experience the vaginally activated orgasm.
Emmert, Maximilian Y; Weber, Benedikt; Behr, Luc; Sammut, Sebastien; Frauenfelder, Thomas; Wolint, Petra; Scherman, Jacques; Bettex, Dominique; Grünenfelder, Jürg; Falk, Volkmar; Hoerstrup, Simon P
2014-01-01
While transcatheter aortic valve implantation (TAVI) has rapidly evolved for the treatment of aortic valve disease, the currently used bioprostheses are prone to continuous calcific degeneration. Thus, autologous, cell-based, living, tissue-engineered heart valves (TEHVs) with regeneration potential have been suggested to overcome these limitations. We investigate the technical feasibility of combining the concept of TEHV with transapical implantation technology using a state-of-the-art transcatheter delivery system facilitating the exact anatomical position in the systemic circulation. Trileaflet TEHVs fabricated from biodegradable synthetic scaffolds were sewn onto self-expanding Nitinol stents seeded with autologous marrow stromal cells, crimped and transapically delivered into the orthotopic aortic valve position of adult sheep (n = 4) using the JenaValve transapical TAVI System (JenaValve, Munich, Germany). Delivery, positioning and functionality were assessed by angiography and echocardiography before the TEHV underwent post-mortem gross examination. For three-dimensional reconstruction of the stent position of the anatomically oriented system, a computed tomography analysis was performed post-mortem. Anatomically oriented, transapical delivery of marrow stromal cell-based TEHV into the orthotopic aortic valve position was successful in all animals (n = 4), with a duration from cell harvest to TEHV implantation of 101 ± 6 min. Fluoroscopy and echocardiography displayed sufficient positioning, thereby entirely excluding the native leaflets. There were no signs of coronary obstruction. All TEHV tolerated the loading pressure of the systemic circulation and no acute ruptures occurred. Animals displayed intact and mobile leaflets with an adequate functionality. The mean transvalvular gradient was 7.8 ± 0.9 mmHg, and the mean effective orifice area was 1.73 ± 0.02 cm(2). Paravalvular leakage was present in two animals, and central aortic regurgitation due to a single-leaflet prolapse was detected in two, which was primarily related to the leaflet design. No stent dislocation, migration or affection of the mitral valve was observed. For the first time, we demonstrate the technical feasibility of a transapical TEHV delivery into the aortic valve position using a commercially available and clinically applied transapical implantation system that allows for exact anatomical positioning. Our data indicate that the combination of TEHV and a state-of-the-art transapical delivery system is feasible, representing an important step towards translational, transcatheter-based TEHV concepts.
Executions and scientific anatomy.
Dolezal, Antonín; Jelen, Karel; Stajnrtova, Olga
2015-12-01
The very word "anatomy" tells us about this branch's connection with dissection. Studies of anatomy have taken place for approximately 2.300 years already. Anatomy's birthplace lies in Greece and Egypt. Knowledge in this specific field of science was necessary during surgical procedures in ophthalmology and obstetrics. Embalming took place without public disapproval just like autopsies and manipulation with relics. Thus, anatomical dissection became part of later forensic sciences. Anatomical studies on humans themselves, which needed to be compared with the knowledge gained through studying procedures performed on animals, elicited public disapprobation and prohibition. When faced with a shortage of cadavers, anatomists resorted to obtaining bodies of the executed and suicide victims - since torture, public display of the mutilated body, (including anatomical autopsy), were perceived as an intensification of the death penalty. Decapitation and hanging were the main execution methods meted out for death sentences. Anatomists preferred intact bodies for dissection; hence, convicts could thus avoid torture. This paper lists examples of how this process was resolved. It concerns the manners of killing, vivisection on people in the antiquity and middle-ages, experiments before the execution and after, vivifying from seeming death, experiments with galvanizing electricity on fresh cadavers, evaluating of sensibility after guillotine execution, and making perfect anatomical preparations and publications during Nazism from fresh bodies of the executed.
Wang, Yu; Cao, Hai-yan; Xie, Ming-xing; He, Lin; Han, Wei; Hong, Liu; Peng, Yuan; Hu, Yun-fei; Song, Ben-cai; Wang, Jing; Wang, Bin; Deng, Cheng
2016-04-01
To investigate the application and effectiveness of vascular corrosion technique in preparing fetal cardiovascular cast models, 10 normal fetal heart specimens with other congenital disease (control group) and 18 specimens with severe congenital heart disease (case group) from induced abortions were enrolled in this study from March 2013 to June 2015 in our hospital. Cast models were prepared by injecting casting material into vascular lumen to demonstrate real geometries of fetal cardiovascular system. Casting effectiveness was analyzed in terms of local anatomic structures and different anatomical levels (including overall level, atrioventricular and great vascular system, left-sided and right-sided heart), as well as different trimesters of pregnancy. In our study, all specimens were successfully casted. Casting effectiveness analysis of local anatomic structures showed a mean score from 1.90±1.45 to 3.60±0.52, without significant differences between case and control groups in most local anatomic structures except left ventricle, which had a higher score in control group (P=0.027). Inter-group comparison of casting effectiveness in different anatomical levels showed no significant differences between the two groups. Intra-group comparison also revealed undifferentiated casting effectiveness between atrioventricular and great vascular system, or left-sided and right-sided heart in corresponding group. Third-trimester group had a significantly higher perfusion score in great vascular system than second-trimester group (P=0.046), while the other anatomical levels displayed no such difference. Vascular corrosion technique can be successfully used in fabrication of fetal cardiovascular cast model. It is also a reliable method to demonstrate three-dimensional anatomy of severe congenital heart disease and normal heart in fetus.
Açar, Halil İbrahim; Cömert, Ayhan; Avşar, Abdullah; Çelik, Safa; Kuzu, Mehmet Ayhan
2014-10-01
Lower local recurrence rates and better overall survival are associated with complete mesocolic excision with central vascular ligation for treatment of colon cancer. To accomplish this, surgeons need to pay special attention to the surgical anatomical planes and vascular anatomy of the colon. However, surgical education in this area has been neglected. The aim of this study is to define the correct surgical anatomical planes for complete mesocolic excision with central vascular ligation and to demonstrate the correct dissection technique for protecting anatomical structures. Macroscopic and microscopic surgical dissections were performed on 12 cadavers in the anatomy laboratory and on autopsy specimens. The dissections were recorded as video clips. Dissections were performed in accordance with the complete mesocolic excision technique on 10 male and 2 female cadavers. Vascular structures, autonomic nerves, and related fascias were shown. Within each step of the surgical procedure, important anatomical structures were displayed on still images captured from videos by animations. Three crucial steps for complete mesocolic excision with central vascular ligation are demonstrated on the cadavers: 1) full mobilization of the superior mesenteric root following the embryological planes between the visceral and the parietal fascias; 2) mobilization of the mesocolon from the duodenum and the pancreas and identification of vascular structures, especially the veins around the pancreas; and 3) central vascular ligation of the colonic vessels at their origin, taking into account the vascular variations within the mesocolonic vessels and the autonomic nerves around the superior mesenteric artery. The limitation of this study was the number of the cadavers used. Successful complete mesocolic excision with central vascular ligation depends on an accurate knowledge of the surgical anatomical planes and the vascular anatomy of the colon.
Pilot Preferences on Displayed Aircraft Control Variables
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Gregory, Irene M.
2013-01-01
The experiments described here explored how pilots want available maneuver authority information transmitted and how this information affects pilots before and after an aircraft failure. The aircraft dynamic variables relative to flight performance were narrowed to energy management variables. A survey was conducted to determine what these variables should be. Survey results indicated that bank angle, vertical velocity, and airspeed were the preferred variables. Based on this, two displays were designed to inform the pilot of available maneuver envelope expressed as bank angle, vertical velocity, and airspeed. These displays were used in an experiment involving control surface failures. Results indicate the displayed limitations in bank angle, vertical velocity, and airspeed were helpful to the pilots during aircraft surface failures. However, the additional information did lead to a slight increase in workload, a small decrease in perceived aircraft flying qualities, and no effect on aircraft situation awareness.
Breast imaging with ultrasound tomography: update on a comparative study with MR
NASA Astrophysics Data System (ADS)
Ranger, Bryan; Littrup, Peter; Duric, Neb; Li, Cuiping; Schmidt, Steven; Rama, Olsi; Bey-Knight, Lisa
2011-03-01
The objective of this study is to present imaging parameters and display thresholds of an ultrasound tomography (UST) prototype in order to demonstrate analogous visualization of overall breast anatomy and lesions relative to magnetic resonance (MR). Thirty-six women were imaged with MR and our UST prototype. The UST scan generated sound speed, attenuation, and reflection images and were subjected to variable thresholds then fused together into a single UST image. Qualitative and quantitative comparisons of MR and UST images were utilized to identify anatomical similarities and mass characteristics. Overall, UST demonstrated the ability to visualize and characterize breast tissues in a manner comparable to MR without the use of IV contrast. For optimal visualization, fused images utilized thresholds of 1.46+/-0.1 km/s for sound speed to represent architectural features of the breast including parenchyma. An arithmetic combination of images using the logical .AND. and .OR. operators, along with thresholds of 1.52+/-0.03 km/s for sound speed and 0.16+/-0.04 dB/cm for attenuation, allowed for mass detection and characterization similar to MR.
Midsagittal brain variation and MRI shape analysis of the precuneus in adult individuals.
Bruner, Emiliano; Rangel de Lázaro, Gizéh; de la Cuétara, José Manuel; Martín-Loeches, Manuel; Colom, Roberto; Jacobs, Heidi I L
2014-04-01
Recent analyses indicate that the precuneus is one of the main centres of integration in terms of functional and structural processes within the human brain. This neuroanatomical element is formed by different subregions, involved in visuo-spatial integration, memory and self-awareness. We analysed the midsagittal brain shape in a sample of adult humans (n = 90) to evidence the patterns of variability and geometrical organization of this area. Interestingly, the major brain covariance pattern within adult humans is strictly associated with the relative proportions of the precuneus. Its morphology displays a marked individual variation, both in terms of geometry (mostly in its longitudinal dimensions) and anatomy (patterns of convolution). No patent differences are evident between males and females, and the allometric effect of size is minimal. However, in terms of morphology, the precuneus does not represent an individual module, being influenced by different neighbouring structures. Taking into consideration the apparent involvement of the precuneus in higher-order human brain functions and evolution, its wide variation further stresses the important role of these deep parietal areas in modern neuroanatomical organization. © 2014 Anatomical Society.
González-Gómez, Paulina L.; Madrid-Lopez, Natalia; Salazar, Juan E.; Suárez, Rodrigo; Razeto-Barry, Pablo; Mpodozis, Jorge; Bozinovic, Francisco; Vásquez, Rodrigo A.
2014-01-01
In scatter-hoarding species, several behavioral and neuroanatomical adaptations allow them to store and retrieve thousands of food items per year. Nectarivorous animals face a similar scenario having to remember quality, location and replenishment schedules of several nectar sources. In the green-backed firecrown hummingbird (Sephanoides sephanoides), males are territorial and have the ability to accurately keep track of nectar characteristics of their defended food sources. In contrast, females display an opportunistic strategy, performing rapid intrusions into males territories. In response, males behave aggressively during the non-reproductive season. In addition, females have higher energetic demands due to higher thermoregulatory costs and travel times. The natural scenario of this species led us to compared cognitive abilities and hippocampal size between males and females. Males were able to remember nectar location and renewal rates significantly better than females. However, the hippocampal formation was significantly larger in females than males. We discuss these findings in terms of sexually dimorphic use of spatial resources and variable patterns of brain dimorphisms in birds. PMID:24599049
Márquez, Samuel; Tessema, Belachew; Clement, Peter Ar; Schaefer, Steven D
2008-11-01
Frontal and/or maxillary sinusitis frequently originates with pathologic processes of the ethmoid sinuses. This clinical association is explained by the close anatomical relationship between the frontal and maxillary sinuses and the ethmoid sinus, since developmental trajectories place the ethmoid in a strategic central position within the nasal complex. The advent of optical endoscopes has permitted improved visualization of these spaces, leading to a renaissance in intranasal sinus surgery. Advancing patient care has consequently driven the need for the proper and accurate anatomical description of the paranasal sinuses, regrettably the continuing subject of persistent confusion and ambiguity in nomenclature and terminology. Developmental tracking of the pneumatization of the ethmoid and adjacent bones, and particularly of the extramural cells of the ethmoid, helps to explain the highly variable adult morphology of the ethmoid air sinus system. To fully understand the nature and underlying biology of this sinus system, multiple approaches were employed here. These include CT imaging of living humans (n = 100), examination of dry cranial material (n = 220), fresh tissue and cadaveric anatomical dissections (n = 168), and three-dimensional volume rendering methods that allow digitizing of the spaces of the ethmoid sinus for graphical examination. Results show the ethmoid sinus to be highly variable in form and structure as well as in the quantity of air cells. The endochondral bony origin of the ethmoid sinuses leads to remarkably thin bony contours of their irregular and morphologically unique borders, making them substantially different from the other paranasal sinuses. These investigations allow development of a detailed anatomical template of this region based on observed patterns of morphological diversity, which can initially mask the underlying anatomy. For example, the frontal recess, ethmoid infundibulum, and hiatus semilunaris are key anatomical components of the ethmoid structural complex that are fully documented and explained here on the basis of the template we have developed, as well as being comprehensively illustrated. In addition, an exhaustive 2000-year literature search identified original sources of nomenclature, in order to help clarify the persistent confusions found in the literature. Modified anatomical terms are suggested to permit proper description of the ethmoid region. This clarification of nomenclature will permit better communication in addition to eliminating redundant terminology. The combination of anatomical, evolutionary, and clinical perspectives provides an important strategy for gaining insight into the complexity of these sinuses. Copyright 2008 Wiley-Liss, Inc.
Application of computer graphics in the design of custom orthopedic implants.
Bechtold, J E
1986-10-01
Implementation of newly developed computer modelling techniques and computer graphics displays and software have greatly aided the orthopedic design engineer and physician in creating a custom implant with good anatomic conformity in a short turnaround time. Further advances in computerized design and manufacturing will continue to simplify the development of custom prostheses and enlarge their niche in the joint replacement market.
Multi-region statistical shape model for cochlear implantation
NASA Astrophysics Data System (ADS)
Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.
2016-03-01
Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.
The Effect of Anatomic Factors on Tongue Position Variability during Consonants
ERIC Educational Resources Information Center
Rudy, Krista; Yunusova, Yana
2013-01-01
Purpose: This study sought to investigate the effect of palate morphology and anthropometric measures of the head on positional variability of the tongue during consonants. Method: An electromagnetic tracking system was used to record tongue movements of 21 adults. Each talker produced a series of symmetrical VCV syllables containing one of the…
Xu, Haotong; Zhang, Xiaoming; Christe, Andreas; Ebner, Lukas; Zhang, Shaoxiang; Luo, Zhulin; Wu, Yi; Li, Yin; Tian, Fuzhou
2013-01-01
Background In past reports, researchers have seldom attached importance to achievements in transforming digital anatomy to radiological diagnosis. However, investigators have been able to illustrate communication relationships in the retroperitoneal space by drawing potential routes in computerized tomography (CT) images or a virtual anatomical atlas. We established a new imaging anatomy research method for comparisons of the communication relationships of the retroperitoneal space in combination with the Visible Human Project and CT images. Specifically, the anatomic pathways of peripancreatic fluid extension to the mediastinum that may potentially transform into fistulas were studied. Methods We explored potential pathways to the mediastinum based on American and Chinese Visible Human Project datasets. These drainage pathways to the mediastinum were confirmed or corrected in CT images of 51 patients with recurrent acute pancreatitis in 2011. We also investigated whether additional routes to the mediastinum were displayed in CT images that were not in Visible Human Project images. Principal Findings All hypothesized routes to the mediastinum displayed in Visible Human Project images, except for routes from the retromesenteric plane to the bilateral retrorenal plane across the bilateral fascial trifurcation and further to the retrocrural space via the aortic hiatus, were confirmed in CT images. In addition, route 13 via the narrow space between the left costal and crural diaphragm into the retrocrural space was demonstrated for the first time in CT images. Conclusion This type of exploration model related to imaging anatomy may be used to support research on the communication relationships of abdominal spaces, mediastinal spaces, cervical fascial spaces and other areas of the body. PMID:23614005
Sora, Mircea-Constantin; Jilavu, Radu; Matusz, Petru
2012-10-01
The aim of this study was to describe a method of developing a computerized model of the human female pelvis using plastinated slices. Computerized reconstruction of anatomical structures is becoming very useful for developing anatomical teaching, research modules and animations. Although databases consisting of serial sections derived from frozen cadaver material exist, plastination represents an alternative method for developing anatomical data useful for computerized reconstruction. A slice anatomy study, using plastinated transparent pelvis cross sections, was performed to obtain a 3D reconstruction. One female human pelvis used for this study, first plastinated as a block, then sliced into thin slices and in the end subjected to 3D computerized reconstruction using WinSURF modeling system (SURFdriver Software). To facilitate the understanding of the complex pelvic floor anatomy on sectional images obtained through MR imaging, and to make the representation more vivid, a female pelvis computer-aided 3D model was created. Qualitative observations revealed that the morphological features of the model were consistent with those displayed by typical cadaveric specimens. The quality of the reconstructed images appeared distinct, especially the spatial positions and complicated relationships of contiguous structures of the female pelvis. All reconstructed structures can be displayed in groups or as a whole and interactively rotated in 3D space. The utilization of plastinates for generating tissue sections is useful for 3D computerized modeling. The 3D model of the female pelvis presented in this paper provides a stereoscopic view to study the adjacent relationship and arrangement of respective pelvis sections. A better understanding of the pelvic floor anatomy is relevant to gynaecologists, radiologists, surgeons, urologists, physical therapists and all professionals who take care of women with pelvic floor dysfunction.
[Selection of occlusal scheme on masticatory function in denture wearers].
Koide, Kaoru
2004-12-01
The characteristics of full balanced occlusion (FBO) and lingualized occlusion (LO), which are occlusions that make up removable dentures, were investigated from the standpoint of masticatory function, and an attempt was made to clarify criteria for selecting and configuring occlusions to suit individual cases. Since there have been few studies that have quantitatively compared FBO and LO from the aspect of masticatory function, we decided to organize and present the characteristics of both in this paper based on our findings from studies carried out in our department. We found that LO offered a higher ability of food crushing, showed higher masticatory performance in the case of hard foods, displayed faster as well as smoother masticatory movement, and showed chewing patterns that were closer to the chopper type compared with FBO. Moreover, subjective evaluation by subjects indicated that "it was easier to eat and the food tasted better" with the LO compared with the FBO in the case of general foods. Furthermore, a comparison of anatomical form and bladed form of upper lingual cusps in the case of LO showed no difference between the anatomical form and the bladed form in terms of masticatory performance in the case of any of the test foods, but the bladed form offered a higher ability of food crushing, displayed faster and smoother masticatory movement, and showed chewing patterns that were closer to the chopper type. In addition, subjective evaluation by subjects showed that it was easier for them to eat raw carrots and pickled radish, which are hard foods generally thought to be difficult to eat with dentures, with the bladed form compared with the anatomical form.
Hammo, Mohammad
2014-01-01
Mandibular premolars are known to have numerous anatomic variations of their roots and root canals, which are a challenge to treat endodontically. The paper reviews literature to detail the various clinically relevant anatomic considerations with detailed techniques and methods to successfully manage these anomalies. An emphasis and detailed description of every step of treatment including preoperative diagnosis, intraoperative identification and management, and surgical endodontic considerations for the successful management of these complex cases have been included. PMID:24895584
Tudose, Andrei; Hogg, Florence R A; Bland, Jeremy D P; Walsh, Daniel C
2017-04-01
The anatomical surface markings for the superficial peroneal nerve have been described and it may be preferred for biopsy in cases of suspected vasculitis as biopsy of the peroneus brevis muscle increases diagnostic yield. The procedure is however unfamiliar to many surgeons and the anatomical variability of the subcutaneous part underestimated. Where the nerve has some preserved sensory nerve action potential it may be mapped pre-operatively, greatly facilitating minimally traumatic biopsy with potential logistical and wound healing advantages. We review the literature relating to the anatomical course of the nerve and present a case illustrating the advantages of pre-operative mapping, given its location in the anterior compartment of the leg 26% of the time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poppenhaeger, K.; Wolk, S. J.; Hora, J. L.
2015-10-15
We present a time-variability study of young stellar objects (YSOs) in the cluster IRAS 20050+2720, performed at 3.6 and 4.5 μm with the Spitzer Space Telescope; this study is part of the Young Stellar Object VARiability (YSOVAR) project. We have collected light curves for 181 cluster members over 60 days. We find a high variability fraction among embedded cluster members of ca. 70%, whereas young stars without a detectable disk display variability less often (in ca. 50% of the cases) and with lower amplitudes. We detect periodic variability for 33 sources with periods primarily in the range of 2–6 days.more » Practically all embedded periodic sources display additional variability on top of their periodicity. Furthermore, we analyze the slopes of the tracks that our sources span in the color–magnitude diagram (CMD). We find that sources with long variability time scales tend to display CMD slopes that are at least partially influenced by accretion processes, while sources with short variability timescales tend to display extinction-dominated slopes. We find a tentative trend of X-ray detected cluster members to vary on longer timescales than the X-ray undetected members.« less
Anatomy of the sural nerve: cadaver study and literature review.
Riedl, Otto; Frey, Manfred
2013-04-01
The sural nerve is commonly used as donor for nerve grafting. Contrary to its constant retromalleolar position, formation and course of the proximal sural nerve show great variability. The coexistence of different and deceptive terminologies contributes to the complexity, and reviewing the international literature is confusing. Because detailed anatomical knowledge is essential for efficient and safe sural nerve harvesting, this study aims to bring clarity. Previous sural nerve reports listed in the PubMed database and established anatomical textbooks were reviewed. Different terminologies were compared and adjusted. Anatomical details and variations were noted. Subtle prospective anatomical dissections and comparison with actual data followed. Two hundred twenty-one relevant reports were identified and worked up going back to the nineteenth century. Fourteen established German and English language anatomical textbooks were reviewed. Thirty lower limbs were dissected. In total, this study pools the information of more than 2500 sural nerves. This study covers all information about the sural nerve anatomy published internationally. The coexistence of different and confusing terminologies is pinpointed and adjusted to allow comparison of previous reports and to gain a coordinated data pool of more than 2500 investigated sural nerves. Detailed features are clearly described and summarized, findings from the authors' own prospective dissections complete these data, and the prior existing anatomical confusion is resolved. Finally, clinical implications are described.
Sotelo, Pablo H.; Collazo, Noberto; Zuñiga, Roberto; Gutiérrez-González, Matías; Catalán, Diego; Ribeiro, Carolina Hager; Aguillón, Juan Carlos; Molina, María Carmen
2012-01-01
Phage display library technology is a common method to produce human antibodies. In this technique, the immunoglobulin variable regions are displayed in a bacteriophage in a way that each filamentous virus displays the product of a single antibody gene on its surface. From the collection of different phages, it is possible to isolate the virus that recognizes specific targets. The most common form in which to display antibody variable regions in the phage is the single chain variable fragment format (scFv), which requires assembly of the heavy and light immunoglobulin variable regions in a single gene. In this work, we describe a simple and efficient method for the assembly of immunoglobulin heavy and light chain variable regions in a scFv format. This procedure involves a two-step reaction: (1) DNA amplification to produce the single strand form of the heavy or light chain gene required for the fusion; and (2) mixture of both single strand products followed by an assembly reaction to construct a complete scFv gene. Using this method, we produced 6-fold more scFv encoding DNA than the commonly used splicing by overlap extension PCR (SOE-PCR) approach. The scFv gene produced by this method also proved to be efficient in generating a diverse scFv phage display library. From this scFv library, we obtained phages that bound several non-related antigens, including recombinant proteins and rotavirus particles. PMID:22692130
Boser, Quinn A; Valevicius, Aïda M; Lavoie, Ewen B; Chapman, Craig S; Pilarski, Patrick M; Hebert, Jacqueline S; Vette, Albert H
2018-04-27
Quantifying angular joint kinematics of the upper body is a useful method for assessing upper limb function. Joint angles are commonly obtained via motion capture, tracking markers placed on anatomical landmarks. This method is associated with limitations including administrative burden, soft tissue artifacts, and intra- and inter-tester variability. An alternative method involves the tracking of rigid marker clusters affixed to body segments, calibrated relative to anatomical landmarks or known joint angles. The accuracy and reliability of applying this cluster method to the upper body has, however, not been comprehensively explored. Our objective was to compare three different upper body cluster models with an anatomical model, with respect to joint angles and reliability. Non-disabled participants performed two standardized functional upper limb tasks with anatomical and cluster markers applied concurrently. Joint angle curves obtained via the marker clusters with three different calibration methods were compared to those from an anatomical model, and between-session reliability was assessed for all models. The cluster models produced joint angle curves which were comparable to and highly correlated with those from the anatomical model, but exhibited notable offsets and differences in sensitivity for some degrees of freedom. Between-session reliability was comparable between all models, and good for most degrees of freedom. Overall, the cluster models produced reliable joint angles that, however, cannot be used interchangeably with anatomical model outputs to calculate kinematic metrics. Cluster models appear to be an adequate, and possibly advantageous alternative to anatomical models when the objective is to assess trends in movement behavior. Copyright © 2018 Elsevier Ltd. All rights reserved.
Coronado, Rogelio A.; Beneciuk, Jason M.; Valencia, Carolina; Werneke, Mark W.; Hart, Dennis L.
2011-01-01
Background Clinical guidelines advocate the routine identification of depressive symptoms for patients with pain in the lumbar or cervical spine, but not for other anatomical regions. Objective The purpose of this study was to investigate the prevalence and impact of depressive symptoms for patients with musculoskeletal pain across different anatomical regions. Design This was a prospective, associational study. Methods Demographic, clinical, depressive symptom (Symptom Checklist 90–Revised), and outcome data were collected by self-report from a convenience sample of 8,304 patients. Frequency of severe depressive symptoms was assessed by chi-square analysis for demographic and clinical variables. An analysis of variance examined the influence of depressive symptoms and anatomical region on intake pain intensity and functional status. Separate hierarchical multiple regression models by anatomical region examined the influence of depressive symptoms on clinical outcomes. Results Prevalence of severe depression was higher in women, in industrial and pain clinics, and in patients who reported chronic pain or prior surgery. Lower prevalence rates were found in patients older than 65 years and those who had upper- or lower-extremity pain. Depressive symptoms had a moderate to large effect on pain ratings (Cohen d=0.55–0.87) and a small to large effect on functional status (Cohen d=0.28–0.95). In multivariate analysis, depressive symptoms contributed additional variance to pain intensity and functional status for all anatomical locations, except for discharge values for the cervical region. Conclusions Rates of depressive symptoms varied slightly based on anatomical region of musculoskeletal pain. Depressive symptoms had a consistent detrimental influence on outcomes, except on discharge scores for the cervical anatomical region. Expanding screening recommendations for depressive symptoms to include more anatomical regions may be indicated in physical therapy settings. PMID:21233305
Qin, Yuan-Yuan; Hsu, Johnny T; Yoshida, Shoko; Faria, Andreia V; Oishi, Kumiko; Unschuld, Paul G; Redgrave, Graham W; Ying, Sarah H; Ross, Christopher A; van Zijl, Peter C M; Hillis, Argye E; Albert, Marilyn S; Lyketsos, Constantine G; Miller, Michael I; Mori, Susumu; Oishi, Kenichi
2013-01-01
We aimed to develop a new method to convert T1-weighted brain MRIs to feature vectors, which could be used for content-based image retrieval (CBIR). To overcome the wide range of anatomical variability in clinical cases and the inconsistency of imaging protocols, we introduced the Gross feature recognition of Anatomical Images based on Atlas grid (GAIA), in which the local intensity alteration, caused by pathological (e.g., ischemia) or physiological (development and aging) intensity changes, as well as by atlas-image misregistration, is used to capture the anatomical features of target images. As a proof-of-concept, the GAIA was applied for pattern recognition of the neuroanatomical features of multiple stages of Alzheimer's disease, Huntington's disease, spinocerebellar ataxia type 6, and four subtypes of primary progressive aphasia. For each of these diseases, feature vectors based on a training dataset were applied to a test dataset to evaluate the accuracy of pattern recognition. The feature vectors extracted from the training dataset agreed well with the known pathological hallmarks of the selected neurodegenerative diseases. Overall, discriminant scores of the test images accurately categorized these test images to the correct disease categories. Images without typical disease-related anatomical features were misclassified. The proposed method is a promising method for image feature extraction based on disease-related anatomical features, which should enable users to submit a patient image and search past clinical cases with similar anatomical phenotypes.
Lithio, Andrew
2016-01-01
The adaptability of root system architecture to unevenly distributed mineral nutrients in soil is a key determinant of plant performance. The molecular mechanisms underlying nitrate dependent plasticity of lateral root branching across the different root types of maize are only poorly understood. In this study, detailed morphological and anatomical analyses together with cell type-specific transcriptome profiling experiments combining laser capture microdissection with RNA-seq were performed to unravel the molecular signatures of lateral root formation in primary, seminal, crown, and brace roots of maize (Zea mays) upon local high nitrate stimulation. The four maize root types displayed divergent branching patterns of lateral roots upon local high nitrate stimulation. In particular, brace roots displayed an exceptional architectural plasticity compared to other root types. Transcriptome profiling revealed root type-specific transcriptomic reprogramming of pericycle cells upon local high nitrate stimulation. The alteration of the transcriptomic landscape of brace root pericycle cells in response to local high nitrate stimulation was most significant. Root type-specific transcriptome diversity in response to local high nitrate highlighted differences in the functional adaptability and systemic shoot nitrogen starvation response during development. Integration of morphological, anatomical, and transcriptomic data resulted in a framework underscoring similarity and diversity among root types grown in heterogeneous nitrate environments. PMID:26811190
A comprehensive tractography study of patients with bipolar disorder and their unaffected siblings.
Sprooten, Emma; Barrett, Jennifer; McKay, D Reese; Knowles, Emma E; Mathias, Samuel R; Winkler, Anderson M; Brumbaugh, Margaret S; Landau, Stefanie; Cyr, Lindsay; Kochunov, Peter; Glahn, David C
2016-10-01
Diffusion tensor imaging studies show reductions in fractional anisotropy (FA) in individuals with bipolar disorder and their unaffected siblings. However, the use of various analysis methods is an important source of between-study heterogeneity. Using tract-based spatial statistics, we previously demonstrated widespread FA reductions in patients and unaffected relatives. To better interpret the neuroanatomical pattern of this previous finding and to assess the influence of methodological heterogeneity, we here applied tractography to the same sample. Diffusion-weighted images were acquired for 96 patients, 69 unaffected siblings and 56 controls. We applied TRACULA, an extension of a global probabilistic tractography algorithm, to automatically segment 18 major fiber tracts. Average FA within each tract and at each cross-section along each tract was compared between groups. Patients had reduced FA compared to healthy controls and their unaffected siblings in general, and in particular in the parietal part of the superior longitudinal fasciculus. In unaffected siblings, FA was nominally reduced compared to controls in the corpus callosum. Point-wise analyses indicated that similar effects were present along extended sections, but with variable effect sizes. Current symptom severity negatively correlated with FA in several fronto-limbic association tracts. The differential sensitivity of analysis techniques likely explains between-study heterogeneity in anatomical localization of FA reductions. The present tractography analysis confirms the presence of overall FA reductions in patients with bipolar disorder, which are most pronounced in the superior longitudinal fasciculus. Unaffected siblings may display similar, albeit more subtle and anatomically restricted FA reductions. Hum Brain Mapp 37:3474-3485, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Aziz, Aamer; Hu, Qingmao; Nowinski, Wieslaw L.
2004-04-01
The human cerebral ventricular system is a complex structure that is essential for the well being and changes in which reflect disease. It is clinically imperative that the ventricular system be studied in details. For this reason computer assisted algorithms are essential to be developed. We have developed a novel (patent pending) and robust anatomical knowledge-driven algorithm for automatic extraction of the cerebral ventricular system from MRI. The algorithm is not only unique in its image processing aspect but also incorporates knowledge of neuroanatomy, radiological properties, and variability of the ventricular system. The ventricular system is divided into six 3D regions based on the anatomy and its variability. Within each ventricular region a 2D region of interest (ROI) is defined and is then further subdivided into sub-regions. Various strict conditions that detect and prevent leakage into the extra-ventricular space are specified for each sub-region based on anatomical knowledge. Each ROI is processed to calculate its local statistics, local intensity ranges of cerebrospinal fluid and grey and white matters, set a seed point within the ROI, grow region directionally in 3D, check anti-leakage conditions and correct growing if leakage occurs and connects all unconnected regions grown by relaxing growing conditions. The algorithm was tested qualitatively and quantitatively on normal and pathological MRI cases and worked well. In this paper we discuss in more detail inclusion of anatomical knowledge in the algorithm and usefulness of our approach from clinical perspective.
Evaluation of an integrated graphical display to promote acute change detection in ICU patients
Anders, Shilo; Albert, Robert; Miller, Anne; Weinger, Matthew B.; Doig, Alexa K.; Behrens, Michael; Agutter, Jim
2012-01-01
Objective The purpose of this study was to evaluate ICU nurses’ ability to detect patient change using an integrated graphical information display (IGID) versus a conventional tabular ICU patient information display (i.e. electronic chart). Design Using participants from two different sites, we conducted a repeated measures simulator-based experiment to assess ICU nurses’ ability to detect abnormal patient variables using a novel IGID versus a conventional tabular information display. Patient scenarios and display presentations were fully counterbalanced. Measurements We measured percent correct detection of abnormal patient variables, nurses’ perceived workload (NASA-TLX), and display usability ratings. Results 32 ICU nurses (87% female, median age of 29 years, and median ICU experience of 2.5 years) using the IGID detected more abnormal variables compared to the tabular display [F (1,119)=13.0, p < 0.05]. There was a significant main effect of site [F (1, 119)=14.2], with development site participants doing better. There were no significant differences in nurses’ perceived workload. The IGID display was rated as more usable than the conventional display, [F (1, 60)=31.7]. Conclusion Overall, nurses reported more important physiological information with the novel IGID than tabular display. Moreover, the finding of site differences may reflect local influences in work practice and involvement in iterative display design methodology. Information displays developed using user-centered design should accommodate the full diversity of the intended user population across use sites. PMID:22534099
A feature-based developmental model of the infant brain in structural MRI.
Toews, Matthew; Wells, William M; Zöllei, Lilla
2012-01-01
In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days.
Lateral Patellofemoral Ligament: An Anatomic Study.
Shah, Kalpit N; DeFroda, Steven F; Ware, James Kristopher; Koruprolu, Sarath C; Owens, Brett D
2017-12-01
Medial instability of the patellofemoral joint is a rare but known phenomenon that may result from an incompetent lateral patellofemoral ligament (LPFL). Surgical reconstruction of the LPFL has been described. However, anatomic details of the ligament have not been the subject of scrutiny. To describe the anatomic origin and insertion of the LPFL. Descriptive laboratory study. Ten fresh-frozen, unpaired human cadaveric knees (mean age, 57 years) were dissected to identify the LPFL. The dissection was carried out by elevating the iliotibial band to expose the deep capsular layer of the knee joint, followed by a medial parapatellar approach to the knee. Then the quadriceps and patellar tendons were sectioned, and the LPFL was isolated by visualization and palpation. The LPFL was dissected to reveal its origin and insertion; these were measured with respect to the lateral epicondyle and the superior-inferior axis of the lateral patella, respectively. On average, the LPFL had a variable point of origin in location as well as width about the lateral epicondyle. The LPFL originated, on average, 2.6 mm distal (range, 13.1 mm proximal to 11.4 mm distal) and 10.8 mm anterior (range, 7.3 mm posterior to 14.9 mm anterior) to the lateral epicondyle. The LPFL insertion on the patella was more reliably found to be about 45% (range, 23.7%-58.4%) of its lateral articular surface. The insertion on the patella was found to be in the middle third of the lateral patella. The LPFL has an origin that is variable but, on average, was found to be distal and anterior to the lateral epicondyle. The patella insertion was more reliably found to be in the middle third of the lateral patella. These anatomic relationships can help the surgeon reconstruct the LPFL in a more anatomic fashion. Surgeons who are tasked with reconstruction of the LPFL of a patient with idiopathic medial instability or a previous aggressive lateral release of the knee may reference this article to perform an anatomic reconstruction of the LPFL. We hope that having anatomic landmarks for the reconstruction of this ligament permits the surgeon to operate in an efficient manner that allows for the optimal outcome. This is a rare surgical issue, and no studies are available that provide this information. The little information present in the literature does not provide measurements for anatomic reconstruction; rather, it is limited to descriptions of reconstruction techniques that indirectly provide stability on the lateral aspect of the knee.
Four years with FALCON - an ESTRO educational project: achievements and perspectives.
Eriksen, Jesper Grau; Salembier, Carl; Rivera, Sofia; De Bari, Berardino; Berger, Daniel; Mantello, Giovanna; Müller, Arndt-Christian; Martin, Arturo Navarro; Pasini, Danilo; Tanderup, Kari; Palmu, Miika; Verfaillie, Christine; Pötter, Richard; Valentini, Vincenzo
2014-07-01
Variability in anatomical contouring is one of the important uncertainties in radiotherapy. FALCON (Fellowship in Anatomic deLineation and CONtouring) is an educational ESTRO (European SocieTy for Radiation and Oncology) project devoted to improve interactive teaching, the homogeneity in contouring and to compare individual contours with endorsed guidelines or expert opinions. This report summarizes the experience from the first 4 years using FALCON for educational activities within ESTRO School and presents the perspectives for the future. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Genetic determinism of anatomical and hydraulic traits within an apple progeny.
Lauri, Pierre-Éric; Gorza, Olivier; Cochard, Hervé; Martinez, Sébastien; Celton, Jean-Marc; Ripetti, Véronique; Lartaud, Marc; Bry, Xavier; Trottier, Catherine; Costes, Evelyne
2011-08-01
The apple tree is known to have an isohydric behaviour, maintaining rather constant leaf water potential in soil with low water status and/or under high evaporative demand. However, little is known on the xylem water transport from roots to leaves from the two perspectives of efficiency and safety, and on its genetic variability. We analysed 16 traits related to hydraulic efficiency and safety, and anatomical traits in apple stems, and the relationships between them. Most variables were found heritable, and we investigated the determinism underlying their genetic control through a quantitative trait loci (QTL) analysis on 90 genotypes from the same progeny. Principal component analysis (PCA) revealed that all traits related to efficiency, whether hydraulic conductivity, vessel number and area or wood area, were included in the first PC, whereas the second PC included the safety variables, thus confirming the absence of trade-off between these two sets of traits. Our results demonstrated that clustered variables were characterized by common genomic regions. Together with previous results on the same progeny, our study substantiated that hydraulic efficiency traits co-localized with traits identified for tree growth and fruit production. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.
2012-05-01
The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.
Enhanced anatomical calibration in human movement analysis.
Donati, Marco; Camomilla, Valentina; Vannozzi, Giuseppe; Cappozzo, Aurelio
2007-07-01
The representation of human movement requires knowledge of both movement and morphology of bony segments. The determination of subject-specific morphology data and their registration with movement data is accomplished through an anatomical calibration procedure (calibrated anatomical systems technique: CAST). This paper describes a novel approach to this calibration (UP-CAST) which, as compared with normally used techniques, achieves better repeatability, a shorter application time, and can be effectively performed by non-skilled examiners. Instead of the manual location of prominent bony anatomical landmarks, the description of which is affected by subjective interpretation, a large number of unlabelled points is acquired over prominent parts of the subject's bone, using a wand fitted with markers. A digital model of a template-bone is then submitted to isomorphic deformation and re-orientation to optimally match the above-mentioned points. The locations of anatomical landmarks are automatically made available. The UP-CAST was validated considering the femur as a paradigmatic case. Intra- and inter-examiner repeatability of the identification of anatomical landmarks was assessed both in vivo, using average weight subjects, and on bare bones. Accuracy of the identification was assessed using the anatomical landmark locations manually located on bare bones as reference. The repeatability of this method was markedly higher than that reported in the literature and obtained using the conventional palpation (ranges: 0.9-7.6 mm and 13.4-17.9, respectively). Accuracy resulted, on average, in a maximal error of 11 mm. Results suggest that the principal source of variability resides in the discrepancy between subject's and template bone morphology and not in the inter-examiner differences. The UP-CAST anatomical calibration could be considered a promising alternative to conventional calibration contributing to a more repeatable 3D human movement analysis.
Wagner, A; Ploder, O; Enislidis, G; Truppe, M; Ewers, R
1996-04-01
Interventional video tomography (IVT), a new imaging modality, achieves virtual visualization of anatomic structures in three dimensions for intraoperative stereotactic navigation. Partial immersion into a virtual data space, which is orthotopically coregistered to the surgical field, enhances, by means of a see-through head-mounted display (HMD), the surgeon's visual perception and technique by providing visual access to nonvisual data of anatomy, physiology, and function. The presented cases document the potential of augmented reality environments in maxillofacial surgery.
Wang, Mingwu; Lu, Ake Tzu-Hui; Varma, Rohit; Schuman, Joel S; Greenfield, David S; Huang, David
2014-03-01
To improve the diagnosis of glaucoma by combining time-domain optical coherence tomography (TD-OCT) measurements of the optic disc, circumpapillary retinal nerve fiber layer (RNFL), and macular retinal thickness. Ninety-six age-matched normal and 96 perimetric glaucoma participants were included in this observational, cross-sectional study. Or-logic, support vector machine, relevance vector machine, and linear discrimination function were used to analyze the performances of combined TD-OCT diagnostic variables. The area under the receiver-operating curve (AROC) was used to evaluate the diagnostic accuracy and to compare the diagnostic performance of single and combined anatomic variables. The best RNFL thickness variables were the inferior (AROC=0.900), overall (AROC=0.892), and superior quadrants (AROC=0.850). The best optic disc variables were horizontal integrated rim width (AROC=0.909), vertical integrated rim area (AROC=0.908), and cup/disc vertical ratio (AROC=0.890). All macular retinal thickness variables had AROCs of 0.829 or less. Combining the top 3 RNFL and optic disc variables in optimizing glaucoma diagnosis, support vector machine had the highest AROC, 0.954, followed by or-logic (AROC=0.946), linear discrimination function (AROC=0.946), and relevance vector machine (AROC=0.943). All combination diagnostic variables had significantly larger AROCs than any single diagnostic variable. There are no significant differences among the combination diagnostic indices. With TD-OCT, RNFL and optic disc variables had better diagnostic accuracy than macular retinal variables. Combining top RNFL and optic disc variables significantly improved diagnostic performance. Clinically, or-logic classification was the most practical analytical tool with sufficient accuracy to diagnose early glaucoma.
Carrer, Marco; Brunetti, Michele; Castagneri, Daniele
2016-01-01
Extreme climate events are of key importance for forest ecosystems. However, both the inherent infrequency, stochasticity and multiplicity of extreme climate events, and the array of biological responses, challenges investigations. To cope with the long life cycle of trees and the paucity of the extreme events themselves, our inferences should be based on long-term observations. In this context, tree rings and the related xylem anatomical traits represent promising sources of information, due to the wide time perspective and quality of the information they can provide. Here we test, on two high-elevation conifers (Larix decidua and Picea abies sampled at 2100 m a.s.l. in the Eastern Alps), the associations among temperature extremes during the growing season and xylem anatomical traits, specifically the number of cells per ring (CN), cell wall thickness (CWT), and cell diameter (CD). To better track the effect of extreme events over the growing season, tree rings were partitioned in 10 sectors. Climate variability has been reconstructed, for 1800–2011 at monthly resolution and for 1926–2011 at daily resolution, by exploiting the excellent availability of very long and high quality instrumental records available for the surrounding area, and taking into account the relationship between meteorological variables and site topographical settings. Summer temperature influenced anatomical traits of both species, and tree-ring anatomical profiles resulted as being associated to temperature extremes. Most of the extreme values in anatomical traits occurred with warm (positive extremes) or cold (negative) conditions. However, 0–34% of occurrences did not match a temperature extreme event. Specifically, CWT and CN extremes were more clearly associated to climate than CD, which presented a bias to track cold extremes. Dendroanatomical analysis, coupled to high-quality daily-resolved climate records, seems a promising approach to study the effects of extreme events on trees, but further investigations are needed to improve our comprehension of the critical role of such elusive events in forest ecosystems. PMID:27242880
The departmental chair in Western medicine: tale of the first and foremost. Historical vignette.
Manjila, Sunil; Rengachary, Setti; Xavier, Andrew R; Guthikonda, Murali
2009-11-01
The use of the term "chair" in medical literature probably started in the Late Middle Ages with the Italian anatomist Mondino de Liuzzi. History reveals the term's origin at Bologna, one of the oldest degree-granting universities in Europe. Nobody has been shown in documented literature before Mondino to have reached the level of chair, the zenith of hierarchy in Western scholastic medicine. Mondino is remembered for his preparation of the Anathomia, a compendium for medical scholars, and his description of several anatomical structures and their functions, especially from a forensic perspective. Starting out as a demonstrator displaying various anatomical structures to medical students, Mondino worked his way up to becoming the first documented chair in medical history, and indeed physically occupying the chair. Marking an epoch in academia with his revised method of medical teaching and creative interaction with surgical colleagues, he carved a niche for himself and his department with his illustrious chairmanship. The authors revisit the history of the "chair" as a title and position in the medieval anatomical period and discuss the career of the first and foremost in the documented medical literature.
Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H
2010-12-01
Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.
Can forest dieback and tree death be predicted by prior changes in wood anatomy?
NASA Astrophysics Data System (ADS)
Colangelo, Michele; Julio Camarero, Jesus; De Micco, Veronica; Borghetti, Marco; Gentilesca, Tiziana; Sanchez-Salguero, Raul; Ripullone, Francesco
2017-04-01
Climate warming is expected to amplify drought stress resulting in more intense and widespread dieback episodes and increasing mortality rates. Studies on quantitative wood anatomy and dendrochronology have demonstrated their potential to supply useful information on the causes of tree decline, although this approach is basically observational and retrospective. Moreover, the long-term reconstruction of wood anatomical features, strictly linked to the evolution of xylem anatomy plasticity through time, allow investigating hydraulic adjustments of trees. In this study, we analyzed wood-anatomical variables in two Italian oak forests where recent episodes of dieback and mortality have been reported. We analyzed in coexisting now-dead and living trees the following wood-anatomical variables: annual tree-ring area, earlywood (EW) and latewood (LW) areas, absolute and relative (%) areas occupied by vessels in the EW and LW, EW and LW vessel areas, EW and LW vessel density and vessel diameter classification. We also calculated the hydraulic diameter (Dh) for all vessels measured within each ring by weighting individual conduit diameters to correspond to the average Hagen-Poiseuille lumen theoretical hydraulic conductivity for a vessel size. Wood-anatomical analyses showed that declining and dead trees were more sensitive to drought stress compared to non declining trees, indicating different susceptibility to water shortage between trees. Dead trees did not form earlywood vessels with smaller lumen diameter than surviving trees but tended to form wider latewood vessels with a higher percentage of vessel area. We discuss the results and implications focusing on those proved more sensitive to the phenomena of decline and mortality.
Performance, physiological, and oculometer evaluation of VTOL landing displays
NASA Technical Reports Server (NTRS)
North, R. A.; Stackhouse, S. P.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Physiological, visual response, and conventional flight performance measures were recorded for landing approaches performed in the NASA Visual Motion Simulator (VMS). Three displays (two computer graphic and a conventional flight director), three crosswind amplitudes, and two motion base conditions (fixed vs. moving base) were tested in a factorial design. Multivariate discriminant functions were formed from flight performance and/or visual response variables. The flight performance variable discriminant showed maximum differentation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus represent higher workload levels.
A Feature-based Developmental Model of the Infant Brain in Structural MRI
Toews, Matthew; Wells, William M.; Zöllei, Lilla
2014-01-01
In this paper, anatomical development is modeled as a collection of distinctive image patterns localized in space and time. A Bayesian posterior probability is defined over a random variable of subject age, conditioned on data in the form of scale-invariant image features. The model is automatically learned from a large set of images exhibiting significant variation, used to discover anatomical structure related to age and development, and fit to new images to predict age. The model is applied to a set of 230 infant structural MRIs of 92 subjects acquired at multiple sites over an age range of 8-590 days. Experiments demonstrate that the model can be used to identify age-related anatomical structure, and to predict the age of new subjects with an average error of 72 days. PMID:23286050
Functional Strain-Line Pattern in the Human Left Ventricle
NASA Astrophysics Data System (ADS)
Pedrizzetti, Gianni; Kraigher-Krainer, Elisabeth; De Luca, Alessio; Caracciolo, Giuseppe; Mangual, Jan O.; Shah, Amil; Toncelli, Loira; Domenichini, Federico; Tonti, Giovanni; Galanti, Giorgio; Sengupta, Partho P.; Narula, Jagat; Solomon, Scott
2012-07-01
Analysis of deformations in terms of principal directions appears well suited for biological tissues that present an underlying anatomical structure of fiber arrangement. We applied this concept here to study deformation of the beating heart in vivo analyzing 30 subjects that underwent accurate three-dimensional echocardiographic recording of the left ventricle. Results show that strain develops predominantly along the principal direction with a much smaller transversal strain, indicating an underlying anisotropic, one-dimensional contractile activity. The strain-line pattern closely resembles the helical anatomical structure of the heart muscle. These findings demonstrate that cardiac contraction occurs along spatially variable paths and suggest a potential clinical significance of the principal strain concept for the assessment of mechanical cardiac function. The same concept can help in characterizing the relation between functional and anatomical properties of biological tissues, as well as fiber-reinforced engineered materials.
Congruency of scapula locking plates: implications for implant design.
Park, Andrew Y; DiStefano, James G; Nguyen, Thuc-Quyen; Buckley, Jenni M; Montgomery, William H; Grimsrud, Chris D
2012-04-01
We conducted a study to evaluate the congruency of fit of current scapular plate designs. Three-dimensional image-processing and -analysis software, and computed tomography scans of 12 cadaveric scapulae were used to generate 3 measurements: mean distance from plate to bone, maximum distance, and percentage of plate surface within 2 mm of bone. These measurements were used to quantify congruency. The scapular spine plate had the most congruent fit in all 3 measured variables. The lateral border and glenoid plates performed statistically as well as the scapular spine plate in at least 1 of the measured variables. The medial border plate had the least optimal measurements in all 3 variables. With locking-plate technology used in a wide variety of anatomical locations, the locking scapula plate system can allow for a fixed-angle construct in this region. Our study results showed that the scapular spine, glenoid, and lateral border plates are adequate in terms of congruency. However, design improvements may be necessary for the medial border plate. In addition, we describe a novel method for quantifying hardware congruency, a method that can be applied to any anatomical location.
CT imaging-based determination and classification of anatomic variations of left gastric vein.
Wu, Yongyou; Chen, Guangqiang; Wu, Pengfei; Zhu, Jianbin; Peng, Wei; Xing, Chungen
2017-03-01
Precise determination and classification of left gastric vein (LGV) anatomy are helpful in planning for gastric surgery, in particular, for resection of gastric cancer. However, the anatomy of LGV is highly variable. A systematic classification of its variations is still to be proposed. We aimed to investigate the anatomical variations in LGV using CT imaging and develop a new nomenclature system. We reviewed CT images and tracked the course of LGV in 825 adults. The frequencies of common and variable LGV anatomical courses were recorded. Anatomic variations of LGV were proposed and classified into different types mainly based on its courses. The inflow sites of LGV into the portal system were also considered if common hepatic artery (CHA) or splenic artery (SA) could not be used as a frame of reference due to variations. Detailed anatomy and courses of LGV were depicted on CT images. Using CHA and SA as the frames of reference, the routes of LGV were divided into six types (i.e., PreS, RetroS, Mid, PreCH, RetroCH, and Supra). The inflow sites were classified into four types (i.e., PV, SV, PSV, and LPV). The new classification was mainly based on the courses of LGV, which was validated with MDCT in the 805 cases with an identifiable LGV, namely type I, RetroCH, 49.8 % (401/805); type II, PreS, 20.6 % (166/805); type III, Mid, 20.0 % (161/805); type IV, RetroS, 7.3 % (59/805); type V, Supra, 1.5 % (12/805); and type VI, PreCH, 0.7 % (6/805). Type VII, designated to the cases in which SA and CHA could not be used as frames of reference, was not observed in this series. Detailed depiction of the anatomy and courses of LGV on CT images allowed us to evaluate and develop a new classification and nomenclature system for the anatomical variations of LGV.
Functional-anatomic correlates of individual differences in memory.
Kirchhoff, Brenda A; Buckner, Randy L
2006-07-20
Memory abilities differ greatly across individuals. To explore a source of these differences, we characterized the varied strategies people adopt during unconstrained encoding. Participants intentionally encoded object pairs during functional MRI. Principal components analysis applied to a strategy questionnaire revealed that participants variably used four main strategies to aid learning. Individuals' use of verbal elaboration and visual inspection strategies independently correlated with their memory performance. Verbal elaboration correlated with activity in a network of regions that included prefrontal regions associated with controlled verbal processing, while visual inspection correlated with activity in a network of regions that included an extrastriate region associated with object processing. Activity in regions associated with use of these strategies was also correlated with memory performance. This study reveals functional-anatomic correlates of verbal and perceptual strategies that are variably used by individuals during encoding. These strategies engage distinct brain regions and may separately influence memory performance.
Hamilton, Liberty S; Chang, David L; Lee, Morgan B; Chang, Edward F
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users.
An atlas of B-cell clonal distribution in the human body.
Meng, Wenzhao; Zhang, Bochao; Schwartz, Gregory W; Rosenfeld, Aaron M; Ren, Daqiu; Thome, Joseph J C; Carpenter, Dustin J; Matsuoka, Nobuhide; Lerner, Harvey; Friedman, Amy L; Granot, Tomer; Farber, Donna L; Shlomchik, Mark J; Hershberg, Uri; Luning Prak, Eline T
2017-09-01
B-cell responses result in clonal expansion, and can occur in a variety of tissues. To define how B-cell clones are distributed in the body, we sequenced 933,427 B-cell clonal lineages and mapped them to eight different anatomic compartments in six human organ donors. We show that large B-cell clones partition into two broad networks-one spans the blood, bone marrow, spleen and lung, while the other is restricted to tissues within the gastrointestinal (GI) tract (jejunum, ileum and colon). Notably, GI tract clones display extensive sharing of sequence variants among different portions of the tract and have higher frequencies of somatic hypermutation, suggesting extensive and serial rounds of clonal expansion and selection. Our findings provide an anatomic atlas of B-cell clonal lineages, their properties and tissue connections. This resource serves as a foundation for studies of tissue-based immunity, including vaccine responses, infections, autoimmunity and cancer.
NASA Astrophysics Data System (ADS)
Li, Wei; Matcher, Stephen J.
2017-02-01
A novel nanoparticle, magnetic graphene quantum dot (MGQD), was synthesized by hydrothermally cutting graphene oxide-iron oxide sheet for contrast agent in magnetomotive optical coherence tomography (MMOCT) and confocal fluorescence microscopy (CFM). The MGQD has superparamagnetism, which allows the MGQD to be tracked and imaged using MMOCT. The MMOCT can display paramagnetic nanoparticle in vivo and provide an anatomical information with micron scale resolution and long imaging depth in clinic application. Moreover, the MGQD has excitation-depend fluorescence and emits visible fluorescence under the excitation of 360nm light, which allows the MGQD to be used as tracer in CFM. CFM can offer intracellular details due to higher resolution, while CFM is unsuitable for imaging anatomical structure because of the limited view of field. The use of MGQD for cell or tissue tracking realizes the combination of MMOCT and CFM, and gives a more comprehensive diagnosis.
Lemons, Michele L.
2017-01-01
A fictitious patient, Mr. Challenge, is admitted to the emergency room and displays symptoms consistent with damage to the central nervous system. In this problem-based learning case, students are challenged to determine the location of a lesion that is consistent with Mr. Challenge’s symptoms. Students discover details about Mr. Challenge’s symptoms while exploring three anatomical pathways: corticospinal tract, spinothalamic tract and medial lemniscal pathway. Students make predictions as to which of these pathways may be damaged in Mr. Challenge and defend their predictions based on their research of the function and anatomical location of these tracts. This ultimately leads the student to identifying a single lesion site that can account for Mr. Challenge’s symptoms. This case is executed in an undergraduate neuroscience course and would be useful in anatomy and physiology course, as well as other courses that serve students interested in health science related careers. PMID:28690440
Lemons, Michele L
2017-01-01
A fictitious patient, Mr. Challenge, is admitted to the emergency room and displays symptoms consistent with damage to the central nervous system. In this problem-based learning case, students are challenged to determine the location of a lesion that is consistent with Mr. Challenge's symptoms. Students discover details about Mr. Challenge's symptoms while exploring three anatomical pathways: corticospinal tract, spinothalamic tract and medial lemniscal pathway. Students make predictions as to which of these pathways may be damaged in Mr. Challenge and defend their predictions based on their research of the function and anatomical location of these tracts. This ultimately leads the student to identifying a single lesion site that can account for Mr. Challenge's symptoms. This case is executed in an undergraduate neuroscience course and would be useful in anatomy and physiology course, as well as other courses that serve students interested in health science related careers.
Hamilton, Liberty S.; Chang, David L.; Lee, Morgan B.; Chang, Edward F.
2017-01-01
In this article, we introduce img_pipe, our open source python package for preprocessing of imaging data for use in intracranial electrocorticography (ECoG) and intracranial stereo-EEG analyses. The process of electrode localization, labeling, and warping for use in ECoG currently varies widely across laboratories, and it is usually performed with custom, lab-specific code. This python package aims to provide a standardized interface for these procedures, as well as code to plot and display results on 3D cortical surface meshes. It gives the user an easy interface to create anatomically labeled electrodes that can also be warped to an atlas brain, starting with only a preoperative T1 MRI scan and a postoperative CT scan. We describe the full capabilities of our imaging pipeline and present a step-by-step protocol for users. PMID:29163118
Getting in touch--3D printing in forensic imaging.
Ebert, Lars Chr; Thali, Michael J; Ross, Steffen
2011-09-10
With the increasing use of medical imaging in forensics, as well as the technological advances in rapid prototyping, we suggest combining these techniques to generate displays of forensic findings. We used computed tomography (CT), CT angiography, magnetic resonance imaging (MRI) and surface scanning with photogrammetry in conjunction with segmentation techniques to generate 3D polygon meshes. Based on these data sets, a 3D printer created colored models of the anatomical structures. Using this technique, we could create models of bone fractures, vessels, cardiac infarctions, ruptured organs as well as bitemark wounds. The final models are anatomically accurate, fully colored representations of bones, vessels and soft tissue, and they demonstrate radiologically visible pathologies. The models are more easily understood by laypersons than volume rendering or 2D reconstructions. Therefore, they are suitable for presentations in courtrooms and for educational purposes. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Samosky, Joseph T; Baillargeon, Emma; Bregman, Russell; Brown, Andrew; Chaya, Amy; Enders, Leah; Nelson, Douglas A; Robinson, Evan; Sukits, Alison L; Weaver, Robert A
2011-01-01
We have developed a prototype of a real-time, interactive projective overlay (IPO) system that creates augmented reality display of a medical procedure directly on the surface of a full-body mannequin human simulator. These images approximate the appearance of both anatomic structures and instrument activity occurring within the body. The key innovation of the current work is sensing the position and motion of an actual device (such as an endotracheal tube) inserted into the mannequin and using the sensed position to control projected video images portraying the internal appearance of the same devices and relevant anatomic structures. The images are projected in correct registration onto the surface of the simulated body. As an initial practical prototype to test this technique we have developed a system permitting real-time visualization of the intra-airway position of an endotracheal tube during simulated intubation training.
Karimi, Alireza; Navidbakhsh, Mahdi; Haghighatnama, Maedeh; Haghi, Afsaneh Motevalli
2015-01-01
The skin, being a multi-layered material, is responsible for protecting the human body from the mechanical, bacterial, and viral insults. The skin tissue may display different mechanical properties according to the anatomical locations of a body. However, these mechanical properties in different anatomical regions and at different loading directions (axial and circumferential) of the mice body to date have not been determined. In this study, the axial and circumferential loads were imposed on the mice skin samples. The elastic modulus and maximum stress of the skin tissues were measured before the failure occurred. The nonlinear mechanical behavior of the skin tissues was also computationally investigated through a suitable constitutive equation. Hyperelastic material model was calibrated using the experimental data. Regardless of the anatomic locations of the mice body, the results revealed significantly different mechanical properties in the axial and circumferential directions and, consequently, the mice skin tissue behaves like a pure anisotropic material. The highest elastic modulus was observed in the back skin under the circumferential direction (6.67 MPa), while the lowest one was seen in the abdomen skin under circumferential loading (0.80 MPa). The Ogden material model was narrowly captured the nonlinear mechanical response of the skin at different loading directions. The results help to understand the isotropic/anisotropic mechanical behavior of the skin tissue at different anatomical locations. They also have implications for a diversity of disciplines, i.e., dermatology, cosmetics industry, clinical decision making, and clinical intervention.
Lee, Nam-Kyung; Bidlingmaier, Scott; Su, Yang; Liu, Bin
2018-01-01
Monoclonal antibodies and antibody-derived therapeutics have emerged as a rapidly growing class of biological drugs for the treatment of cancer, autoimmunity, infection, and neurological diseases. To support the development of human antibodies, various display techniques based on antibody gene repertoires have been constructed over the last two decades. In particular, scFv-antibody phage display has been extensively utilized to select lead antibodies against a variety of target antigens. To construct a scFv phage display that enables efficient antibody discovery, and optimization, it is desirable to develop a system that allows modular assembly of highly diverse variable heavy chain and light chain (Vκ and Vλ) repertoires. Here, we describe modular construction of large non-immune human antibody phage-display libraries built on variable gene cassettes from heavy chain and light chain repertoires (Vκ- and Vλ-light can be made into independent cassettes). We describe utility of such libraries in antibody discovery and optimization through chain shuffling.
Naturally occurring melanomas in dogs as models for non-UV pathways of human melanomas.
Gillard, Marc; Cadieu, Edouard; De Brito, Clotilde; Abadie, Jérôme; Vergier, Béatrice; Devauchelle, Patrick; Degorce, Frédérique; Dréano, Stephane; Primot, Aline; Dorso, Laetitia; Lagadic, Marie; Galibert, Francis; Hédan, Benoit; Galibert, Marie-Dominique; André, Catherine
2014-01-01
Spontaneously occurring melanomas are frequent in dogs. They appear at the same localizations as in humans, i.e. skin, mucosal sites, nail matrix and eyes. They display variable behaviors: tumors at oral localizations are more frequent and aggressive than at other anatomical sites. Interestingly, dog melanomas are associated with strong breed predispositions and overrepresentation of black-coated dogs. Epidemiological analysis of 2350 affected dogs showed that poodles are at high risk of developing oral melanoma, while schnauzers or Beauce shepherds mostly developped cutaneous melanoma. Clinical and histopathological analyses were performed on a cohort of 153 cases with a 4-yr follow-up. Histopathological characterization showed that most canine tumors are intradermal and homologous to human rare morphological melanomas types - 'nevocytoid type' and 'animal type'-. Tumor cDNA sequencing data, obtained from 95 dogs for six genes, relevant to human melanoma classification, detected somatic mutations in oral melanoma, in NRAS and PTEN genes, at human hotspot sites, but not in BRAF. Altogether, these findings support the relevance of the dog model for comparative oncology of melanomas, especially for the elucidation of non-UV induced pathways. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Desai, Neel; Andernord, Daniel; Sundemo, David; Alentorn-Geli, Eduard; Musahl, Volker; Fu, Freddie; Forssblad, Magnus; Samuelsson, Kristian
2017-05-01
To investigate the association between surgical variables and the risk of revision surgery after ACL reconstruction in the Swedish National Knee Ligament Register. This cohort study was based on data from the Swedish National Knee Ligament Register. Patients who underwent primary single-bundle ACL reconstruction with hamstring tendon were included. Follow-up started with primary ACL reconstruction and ended with ACL revision surgery or on 31 December, 2014, whichever occurred first. Details on surgical technique were collected using an online questionnaire. All group comparisons were made in relation to an "anatomic" reference group, comprised of essential AARSC items, defined as utilization of accessory medial portal drilling, anatomic tunnel placement, visualization of insertion sites and pertinent landmarks. Study end-point was revision surgery. A total of 108 surgeons (61.7%) replied to the questionnaire. A total of 17,682 patients were included [n = 10,013 males (56.6%) and 7669 females (43.4%)]. The overall revision rate was 3.1%. Older age as well as cartilage injury evident at index surgery was associated with a decreased risk of revision surgery. The group using transtibial drilling and non-anatomic bone tunnel placement was associated with a lower risk of revision surgery [HR 0.694 (95% CI 0.490-0.984); P = 0.041] compared with the anatomic reference group. The anatomic reference group showed no difference in risk of revision surgery compared with the transtibial drilling groups with partial anatomic [HR 0.759 (95% CI 0.548-1.051), n.s.] and anatomic tunnel placement [HR 0.944 (95% CI 0.718-1.241), n.s.]. The anatomic reference group showed a decreased risk of revision surgery compared with the transportal drilling group with anatomic placement [HR 1.310 (95% CI 1.047-1.640); P = 0.018]. Non-anatomic bone tunnel placement via transtibial drilling resulted in the lowest risk of revision surgery after ACL reconstruction. The risk of revision surgery increased when using transportal drilling. Performing anatomic ACL reconstruction utilizing eight selected essential items from the AARSC lowered the risk of revision surgery associated with transportal drilling and anatomic bone tunnel placement. Detailed knowledge of surgical technique using the AARSC predicts the risk of ACL revision surgery. III.
Sale, Martin V.; Rogasch, Nigel C.; Nordstrom, Michael A.
2016-01-01
The amplitude of motor-evoked potentials (MEPs) elicited with transcranial magnetic stimulation (TMS) varies from trial-to-trial. Synchronous oscillations in cortical neuronal excitability contribute to this variability, however it is not known how different frequencies of stimulation influence MEP variability, and whether these oscillations are rhythmic or aperiodic. We stimulated the motor cortex with TMS at different regular (i.e., rhythmic) rates, and compared this with pseudo-random (aperiodic) timing. In 18 subjects, TMS was applied at three regular frequencies (0.05 Hz, 0.2 Hz, 1 Hz) and one aperiodic frequency (mean 0.2 Hz). MEPs (n = 50) were recorded from three intrinsic hand muscles of the left hand with different functional and anatomical relations. MEP amplitude correlation was highest for the functionally related muscle pair, less for the anatomically related muscle pair and least for the functionally- and anatomically-unrelated muscle pair. MEP correlations were greatest with 1 Hz, and least for stimulation at 0.05 Hz. Corticospinal neuron synchrony is higher with shorter TMS intervals. Further, corticospinal neuron synchrony is similar irrespective of whether the stimulation is periodic or aperiodic. These findings suggest TMS frequency is a crucial consideration for studies using TMS to probe correlated activity between muscle pairs. PMID:27014031
Dargaud, Jacques; Chalvet, Laurane; Del Corso, Marco; Cerboni, Elsa; Feugier, Patrick; Mertens, Patrick; Simon, Emile
2016-04-01
There are numerous injection materials for the study of vasculature in anatomical specimens, each having its own advantages and disadvantages. Latex and resins are the most widely used injection materials but need several days to set. The development of new materials taking shorter time to polymerize might be very useful to improve anatomic specimen study conditions. The aim of the present study was to evaluate vinyl polysiloxane (VPS), a silicon material widely used for dental impressions with the advantage to set very rapidly, as an injection material. We assessed the preparation, use, diffusion and setting time of the product in different anatomical regions (central nervous system, external carotid/jugular, lower limb) to observe its behavior in variably sized vessels. Our results suggest that VPS might be of interest for the study of vessels in anatomical specimens. The main strengths of the product are represented by (1) simplicity of use, as it is a ready-to-use material, (2) very rapid polymerization, (3) availability in a range of viscosities making easier the exploration of small vessels, (4) its better elasticity compared to resins, (5) and finally its availability in a range of colors making it a material of choice for vascular system dissections including those with very small caliber vessels.
ANATOMICAL RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT OF THE KNEE: DOUBLE BAND OR SINGLE BAND?
Zanella, Luiz Antonio Zanotelli; Junior, Adair Bervig; Badotti, Augusto Alves; Michelin, Alexandre Froes; Algarve, Rodrigo Ilha; de Quadros Martins, Cesar Antonio
2012-01-01
To evaluate the double-band and single-band techniques for anatomical reconstruction of the anterior cruciate ligament of the knee and demonstrate that the double-band technique not only provides greater anterior stability but also causes less pain and a better subjective patient response. We selected 42 patients who underwent anterior cruciate ligament reconstruction, by means of either the single-band anatomical reconstruction technique, using flexor tendon grafts with two tunnels, or the double-band anatomical reconstruction technique, using four tunnels and grafts from the semitendinosus and gracilis tendons. All fixations were performed using interference screws. There was no variation in the sample. Before the operation, the objective and subjective IKDC scores, Lysholm score and length of time with the injury were evaluated. All these variables were reassessed six months later, and the KT-1000 correlation with the contralateral knee was also evaluated. There was no significant difference between the two groups in subjective evaluations, but the single-band group showed better results in relation to range of motion and objective evaluations including KT-1000 (with statistical significance). Our study demonstrated that there was no difference between the two groups in subjective evaluations, but better results were found using the single-band anatomical technique, in relation to objective evaluations.
ANATOMICAL RECONSTRUCTION OF ANTERIOR CRUCIATE LIGAMENT OF THE KNEE: DOUBLE BAND OR SINGLE BAND?
Zanella, Luiz Antonio Zanotelli; Junior, Adair Bervig; Badotti, Augusto Alves; Michelin, Alexandre Froes; Algarve, Rodrigo Ilha; de Quadros Martins, Cesar Antonio
2015-01-01
Objective: To evaluate the double-band and single-band techniques for anatomical reconstruction of the anterior cruciate ligament of the knee and demonstrate that the double-band technique not only provides greater anterior stability but also causes less pain and a better subjective patient response. Methods: We selected 42 patients who underwent anterior cruciate ligament reconstruction, by means of either the single-band anatomical reconstruction technique, using flexor tendon grafts with two tunnels, or the double-band anatomical reconstruction technique, using four tunnels and grafts from the semitendinosus and gracilis tendons. All fixations were performed using interference screws. There was no variation in the sample. Before the operation, the objective and subjective IKDC scores, Lysholm score and length of time with the injury were evaluated. All these variables were reassessed six months later, and the KT-1000 correlation with the contralateral knee was also evaluated. Results: There was no significant difference between the two groups in subjective evaluations, but the single-band group showed better results in relation to range of motion and objective evaluations including KT-1000 (with statistical significance). Conclusion: Our study demonstrated that there was no difference between the two groups in subjective evaluations, but better results were found using the single-band anatomical technique, in relation to objective evaluations. PMID:27042621
An anatomical and functional topography of human auditory cortical areas
Moerel, Michelle; De Martino, Federico; Formisano, Elia
2014-01-01
While advances in magnetic resonance imaging (MRI) throughout the last decades have enabled the detailed anatomical and functional inspection of the human brain non-invasively, to date there is no consensus regarding the precise subdivision and topography of the areas forming the human auditory cortex. Here, we propose a topography of the human auditory areas based on insights on the anatomical and functional properties of human auditory areas as revealed by studies of cyto- and myelo-architecture and fMRI investigations at ultra-high magnetic field (7 Tesla). Importantly, we illustrate that—whereas a group-based approach to analyze functional (tonotopic) maps is appropriate to highlight the main tonotopic axis—the examination of tonotopic maps at single subject level is required to detail the topography of primary and non-primary areas that may be more variable across subjects. Furthermore, we show that considering multiple maps indicative of anatomical (i.e., myelination) as well as of functional properties (e.g., broadness of frequency tuning) is helpful in identifying auditory cortical areas in individual human brains. We propose and discuss a topography of areas that is consistent with old and recent anatomical post-mortem characterizations of the human auditory cortex and that may serve as a working model for neuroscience studies of auditory functions. PMID:25120426
Common Cold - an Umbrella Term for Acute Infections of Nose, Throat, Larynx and Bronchi.
Kardos, P; Malek, F A
2017-04-01
Acute respiratory tract infections, i. e. rhinitis, sinusitis, pharyngitis, laryngitis, bronchitis, belong to the most common medical conditions with a high economic burden. Nonetheless, there is little agreement concerning their differential diagnosis.This paper will discuss to what extent different anatomical sites of acute respiratory tract infections can be uniquely identified or whether the overlap and consecutive development in signs and symptoms renders these distinctions meaningless.Acute respiratory tract infections are variable but definition of diagnostic categories based on the anatomical sites of the dominant complaints shows that signs and symptoms both overlap to a great extent and/or emerge successively. Thus, in common cold distinguishing between acute symptom-based diagnoses arising from different anatomical sites of the aerodigestive system remains elusive. Therefore, preferred symptomatic treatments should foster a resolution of all possible symptoms as opposed to an isolated treatment of a single symptom (e. g. mucus hypersecretion) according to the presumed anatomical site (i. e. acute bronchitis). © Georg Thieme Verlag KG Stuttgart · New York.
Saraswat, Prabhav; MacWilliams, Bruce A; Davis, Roy B; D'Astous, Jacques L
2013-01-01
Several multisegment foot models have been proposed and some have been used to study foot pathologies. These models have been tested and validated on typically developed populations; however application of such models to feet with significant deformities presents an additional set of challenges. For the first time, in this study, a multisegment foot model is tested for repeatability in a population of children with symptomatic abnormal feet. The results from this population are compared to the same metrics collected from an age matched (8-14 years) typically developing population. The modified Shriners Hospitals for Children, Greenville (mSHCG) foot model was applied to ten typically developing children and eleven children with planovalgus feet by two clinicians. Five subjects in each group were retested by both clinicians after 4-6 weeks. Both intra-clinician and inter-clinician repeatability were evaluated using static and dynamic measures. A plaster mold method was used to quantify variability arising from marker placement error. Dynamic variability was measured by examining trial differences from the same subjects when multiple clinicians carried out the data collection multiple times. For hindfoot and forefoot angles, static and dynamic variability in both groups was found to be less than 4° and 6° respectively. The mSHCG model strategy of minimal reliance on anatomical markers for dynamic measures and inherent flexibility enabled by separate anatomical and technical coordinate systems resulted in a model equally repeatable in typically developing and planovalgus populations. Copyright © 2012 Elsevier B.V. All rights reserved.
Measuring quality in anatomic pathology.
Raab, Stephen S; Grzybicki, Dana Marie
2008-06-01
This article focuses mainly on diagnostic accuracy in measuring quality in anatomic pathology, noting that measuring any quality metric is complex and demanding. The authors discuss standardization and its variability within and across areas of care delivery and efforts involving defining and measuring error to achieve pathology quality and patient safety. They propose that data linking error to patient outcome are critical for developing quality improvement initiatives targeting errors that cause patient harm in addition to using methods of root cause analysis, beyond those traditionally used in cytologic-histologic correlation, to assist in the development of error reduction and quality improvement plans.
3D facial landmarks: Inter-operator variability of manual annotation
2014-01-01
Background Manual annotation of landmarks is a known source of variance, which exist in all fields of medical imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks, in effort to reduce operator time and minimize the variance. Method Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence map of the 3D scans with a minimum point variance. Results The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point mean variance was reduced from 1.92 to 0.54 mm. Conclusion The inter-operator variability was primarily associated with particular landmarks, where more leniently landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to reduced the variability and create a dense correspondences mesh to capture all facial features. PMID:25306436
Toward standardized mapping for left atrial analysis and cardiac ablation guidance
NASA Astrophysics Data System (ADS)
Rettmann, M. E.; Holmes, D. R.; Linte, C. A.; Packer, D. L.; Robb, R. A.
2014-03-01
In catheter-based cardiac ablation, the pulmonary vein ostia are important landmarks for guiding the ablation procedure, and for this reason, have been the focus of many studies quantifying their size, structure, and variability. Analysis of pulmonary vein structure, however, has been limited by the lack of a standardized reference space for population based studies. Standardized maps are important tools for characterizing anatomic variability across subjects with the goal of separating normal inter-subject variability from abnormal variability associated with disease. In this work, we describe a novel technique for computing flat maps of left atrial anatomy in a standardized space. A flat map of left atrial anatomy is created by casting a single ray through the volume and systematically rotating the camera viewpoint to obtain the entire field of view. The technique is validated by assessing preservation of relative surface areas and distances between the original 3D geometry and the flat map geometry. The proposed methodology is demonstrated on 10 subjects which are subsequently combined to form a probabilistic map of anatomic location for each of the pulmonary vein ostia and the boundary of the left atrial appendage. The probabilistic map demonstrates that the location of the inferior ostia have higher variability than the superior ostia and the variability of the left atrial appendage is similar to the superior pulmonary veins. This technique could also have potential application in mapping electrophysiology data, radio-frequency ablation burns, or treatment planning in cardiac ablation therapy.
Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum.
Tukker, John J; Tang, Qiusong; Burgalossi, Andrea; Brecht, Michael
2015-11-18
The presubiculum provides a major input to the medial entorhinal cortex (MEC) and contains cells that encode for the animal's head direction (HD), as well as other cells likely to be important for navigation and memory, including grid cells. To understand the mechanisms underlying HD cell firing and its effects on other parts of the circuit, it is important to determine the anatomical identity of these functionally defined cells. Therefore, we juxtacellularly recorded single cells in the presubiculum in freely moving rats, finding two classes of cells based on firing patterns and juxtacellular labeling (of a subset). Regular-firing cells had the anatomical characteristics of pyramidal cells and included most recorded HD cells. Therefore, HD cells are likely to be excitatory pyramidal cells. For one HD cell, we could follow an axon projecting directly to the MEC. Fast-spiking (FS) cells had the anatomical characteristics of interneurons and displayed weak HD tuning. Furthermore, FS cells displayed a surprising lack of theta-rhythmic firing, in strong contrast to the FS cells that we recorded in the MEC. Overall, we show that HD cells in the presubiculum are pyramidal cells, with FS interneurons only showing weak HD tuning; therefore, MEC may receive an excitatory HD input, as previously assumed by many models. The lack of theta rhythmicity in FS interneurons suggests that different mechanisms may underlie theta in different parts of the hippocampal formation. In freely moving rats, we recorded and labeled single neurons in the presubiculum, an area providing one of the major inputs to the medial entorhinal cortex and part of a network involved in spatial navigation and memory. Post hoc identification of labeled cells showed that (fast-spiking, FS) interneurons and pyramidal cells in the presubiculum can be distinguished based on physiological criteria. We found that both moderately and strongly tuned head-direction (HD) cells are pyramidal cells and therefore likely to provide an excitatory HD input to the entorhinal cortex. FS interneurons were weakly head directional and, surprisingly, showed no theta-rhythmic firing. Therefore, the presubiculum appears to encode HD information via excitatory pyramidal cells, possibly also involving FS interneurons, without using a theta-rhythmic temporal code. Copyright © 2015 the authors 0270-6474/15/3515391-05$15.00/0.
Anatomical Parameters of tDCS to Modulate the Motor System after Stroke: A Review
Lefebvre, Stephanie; Liew, Sook-Lei
2017-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation method to modulate the local field potential in neural tissue and consequently, cortical excitability. As tDCS is relatively portable, affordable, and accessible, the applications of tDCS to probe brain–behavior connections have rapidly increased in the last 10 years. One of the most promising applications is the use of tDCS to modulate excitability in the motor cortex after stroke and promote motor recovery. However, the results of clinical studies implementing tDCS to modulate motor excitability have been highly variable, with some studies demonstrating that as many as 50% or more of patients fail to show a response to stimulation. Much effort has therefore been dedicated to understand the sources of variability affecting tDCS efficacy. Possible suspects include the placement of the electrodes, task parameters during stimulation, dosing (current amplitude, duration of stimulation, frequency of stimulation), individual states (e.g., anxiety, motivation, attention), and more. In this review, we first briefly review potential sources of variability specific to stroke motor recovery following tDCS. We then examine how the anatomical variability in tDCS placement [e.g., neural target(s) and montages employed] may alter the neuromodulatory effects that tDCS exerts on the post-stroke motor system. PMID:28232816
Analysis of anatomic variability in children with low mathematical skills
NASA Astrophysics Data System (ADS)
Han, Zhaoying; Fuchs, Lynn; Davis, Nikki; Cannistraci, Christopher J.; Anderson, Adam W.; Gore, John C.; Dawant, Benoit M.
2008-03-01
Mathematical difficulty affects approximately 5-9% of the population. Studies on individuals with dyscalculia, a neurologically based math disorder, provide important insight into the neural correlates of mathematical ability. For example, cognitive theories, neuropsychological studies, and functional neuroimaging studies in individuals with dyscalculia suggest that the bilateral parietal lobes and intraparietal sulcus are central to mathematical performance. The purpose of the present study was to investigate morphological differences in a group of third grade children with poor math skills. We compare population averages of children with low math skill (MD) to gender and age matched controls with average math ability. Anatomical data were gathered with high resolution MRI and four different population averaging methods were used to study the effect of the normalization technique on the results. Statistical results based on the deformation fields between the two groups show anatomical differences in the bilateral parietal lobes, right frontal lobe, and left occipital/parietal lobe.
NASA Astrophysics Data System (ADS)
Park, Young-Ju; Seok, Su-Jeong; Park, Sang-Ho; Kim, Ohyun
2011-03-01
We propose and simulate an embedded touch sensing circuit for active-matrix organic light-emitting diode (AMOLED) displays. The circuit consists of three thin-film transistors (TFTs), one fixed capacitor, and one variable capacitor. AMOLED displays do not have a variable capacitance characteristic, so we realized a variable capacitor to detect touches in the sensing pixel by exploiting the change in the mutual capacitance between two electrodes that is caused by touch. When a dielectric substance approaches two electrodes, the electric field is shunted so that the mutual capacitance decreases. We use the existing TFT process to form the variable capacitor, so no additional process is needed. We use advanced solid-phase-crystallization TFTs because of their stability and uniformity. The proposed circuit detects multi-touch points by a scanning process.
Effect of display type, DICOM calibration and room illuminance in bitewing radiographs.
Kallio-Pulkkinen, Soili; Huumonen, Sisko; Haapea, Marianne; Liukkonen, Esa; Sipola, Annina; Tervonen, Osmo; Nieminen, Miika T
2016-01-01
To compare observer performance in the detection of both anatomical structures and caries in bitewing radiographs using consumer grade displays with and without digital imaging and communications in medicine (DICOM) calibration, tablets (third generation iPad; Apple, Cupertino, CA) and 6-megapixel (MP) displays under different lighting. 30 bitewing radiographs were blindly evaluated on four displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers. The dentinoenamel junction, enamel and dentinal caries, and the cortical border of the alveolar crests were evaluated. Consensus was considered as reference. Intraobserver agreement was determined. The proportion of equivalent ratings and weighted kappa were used to assess reliability. The proportion of equivalent ratings with consensus differed significantly between uncalibrated and DICOM-calibrated consumer grade display in enamel caries in upper and lower molars in bright (p = 0.013 and p = 0.003) lighting, and in dentinal caries in lower molars in both bright (p = 0.022) and dim (p = 0.004) lighting. The proportion also differed significantly between DICOM-calibrated consumer grade and 6-MP display in dentinal caries in lower molars in bright lighting (p = 0.039), tablet and consumer grade display in enamel caries in upper molars (p = 0.017) in bright lighting, tablet and 6-MP display in dentinal caries in lower molars (p = 0.003) in bright lighting and in enamel caries in lower molars (p = 0.012) in dim lighting. DICOM calibration improves the detection of enamel and dentinal caries in bitewing radiographs, particularly in bright lighting. Therefore, a calibrated consumer grade display can be recommended as a diagnostic tool for viewing bitewing radiographs.
Shkarubo, A N; Koval', K V; Dobrovol'skiy, G F; Shkarubo, M A; Karnaukhov, V V; Kadashev, B A; Andreev, D N; Chernov, I V; Gadzhieva, O A; Aleshkina, O Yu; Anisimova, E A; Kalinin, P L; Kutin, M A; Fomichev, D V; Sharipov, O I; Ismailov, D B; Selivanov, E S
to describe the main topographic and anatomical features of the clival region and its adjacent structures for improvement and optimization of the extended endoscopic endonasal posterior (transclival) approach for resection of tumors of the clival region and ventral posterior cranial fossa. We performed a craniometric study of 125 human skulls and a topographic anatomical study of heads of 25 cadavers, the arterial and venous bed of which was stained with colored silicone (the staining technique was developed by the authors) to visualize bed features and individual variability. Currently, we have clinical material from more than 120 surgical patients with various skull base tumors of the clival region and ventral posterior cranial fossa (chordomas, pituitary adenomas, meningiomas, cholesteatomas, etc.) who were operated on using the endoscopic transclival approach. We present the main anatomical landmarks and parameters of some anatomical structures that are required for performing the endoscopic endonasal posterior approach. The anatomical landmarks, such as the intradural openings of the abducens and glossopharyngeal nerves, may be used to arbitrarily divide the clival region into the superior, middle, and inferior thirds. The anatomical landmarks important for the surgeon, which are detected during a topographic anatomical study of the skull base, facilitate identification of the boundaries between the different clival portions and the C1 segments of the internal carotid arteries. The superior, middle, and inferior transclival approaches provide an access to the ventral surface of the upper, middle, and lower neurovascular complexes in the posterior cranial fossa. The endoscopic transclival approach may be used to access midline tumors of the posterior cranial fossa. The approach is an alternative to transcranial approaches in surgical treatment of clival region lesions. This approach provides results comparable (and sometimes better) to those of the transcranial and transfacial approaches.
Barotto, Antonio José; Monteoliva, Silvia; Gyenge, Javier; Martinez-Meier, Alejandro; Fernandez, María Elena
2018-02-01
Wood density can be considered as a measure of the internal wood structure, and it is usually used as a proxy measure of other mechanical and functional traits. Eucalyptus is one of the most important commercial forestry genera worldwide, but the relationship between wood density and vulnerability to cavitation in this genus has been little studied. The analysis is hampered by, among other things, its anatomical complexity, so it becomes necessary to address more complex techniques and analyses to elucidate the way in which the different anatomical elements are functionally integrated. In this study, vulnerability to cavitation in two races of Eucalyptus globulus Labill. with different wood density was evaluated through Path analysis, a multivariate method that allows evaluation of descriptive models of causal relationship between variables. A model relating anatomical variables with wood properties and functional parameters was proposed and tested. We found significant differences in wood basic density and vulnerability to cavitation between races. The main exogenous variables predicting vulnerability to cavitation were vessel hydraulic diameter and fibre wall fraction. Fibre wall fraction showed a direct impact on wood basic density and the slope of vulnerability curve, and an indirect and negative effect over the pressure imposing 50% of conductivity loss (P50) through them. Hydraulic diameter showed a direct negative effect on P50, but an indirect and positive influence over this variable through wood density on one hand, and through maximum hydraulic conductivity (ks max) and slope on the other. Our results highlight the complexity of the relationship between xylem efficiency and safety in species with solitary vessels such as Eucalyptus spp., with no evident compromise at the intraspecific level. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Mcconville, J. T.; Laubach, L. L.
1978-01-01
Data on body-size measurement are presented to aid in spacecraft design. Tabulated dimensional anthropometric data on 59 variables for 12 selected populations are given. The variables chosen were those judged most relevant to the manned space program. A glossary of anatomical and anthropometric terms is included. Selected body dimensions of males and females from the potential astronaut population projected to the 1980-1990 time frame are given. Illustrations of drawing-board manikins based on those anticipated body sizes are included.
Galizia, Gennaro; Lieto, Eva; Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele
2017-01-01
In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system.
Kassam, A M; Tillotson, L; Schranz, P J; Mandalia, V I
2015-01-01
The aim of the study is to show, on an MRI scan, that the posterior border of the anterior horn of the lateral meniscus (AHLM) could guide tibial tunnel position in the sagittal plane and provide anatomical graft position. One hundred MRI scans were analysed with normal cruciate ligaments and no evidence of meniscal injury. We measured the distance between the posterior border of the AHLM and the midpoint of the ACL by superimposing sagittal images. The mean distance between the posterior border of the AHLM and the ACL midpoint was -0.1mm (i.e. 0.1mm posterior to the ACL midpoint). The range was 5mm to -4.6mm. The median value was 0.0mm. 95% confidence interval was from -0.5 to 0.3mm. A normal, parametric distribution was observed and Intra- and inter-observer variability showed significant correlation (p<0.05) using Pearsons Correlation test (intra-observer) and Interclass correlation (inter-observer). Using the posterior border of the AHLM is a reproducible and anatomical marker for the midpoint of the ACL footprint in the majority of cases. It can be used intra-operatively as a guide for tibial tunnel insertion and graft placement allowing anatomical reconstruction. There will inevitably be some anatomical variation. Pre-operative MRI assessment of the relationship between AHLM and ACL footprint is advised to improve surgical planning. Level 4.
Improving patient safety through quality assurance.
Raab, Stephen S
2006-05-01
Anatomic pathology laboratories use several quality assurance tools to detect errors and to improve patient safety. To review some of the anatomic pathology laboratory patient safety quality assurance practices. Different standards and measures in anatomic pathology quality assurance and patient safety were reviewed. Frequency of anatomic pathology laboratory error, variability in the use of specific quality assurance practices, and use of data for error reduction initiatives. Anatomic pathology error frequencies vary according to the detection method used. Based on secondary review, a College of American Pathologists Q-Probes study showed that the mean laboratory error frequency was 6.7%. A College of American Pathologists Q-Tracks study measuring frozen section discrepancy found that laboratories improved the longer they monitored and shared data. There is a lack of standardization across laboratories even for governmentally mandated quality assurance practices, such as cytologic-histologic correlation. The National Institutes of Health funded a consortium of laboratories to benchmark laboratory error frequencies, perform root cause analysis, and design error reduction initiatives, using quality assurance data. Based on the cytologic-histologic correlation process, these laboratories found an aggregate nongynecologic error frequency of 10.8%. Based on gynecologic error data, the laboratory at my institution used Toyota production system processes to lower gynecologic error frequencies and to improve Papanicolaou test metrics. Laboratory quality assurance practices have been used to track error rates, and laboratories are starting to use these data for error reduction initiatives.
Kwon, Hyunwook; Lee, Do Yun; Choi, Soo Jin Na; Park, Ki Hyuk; Min, Seung-Kee; Chang, Jeong-Hwan; Huh, Seung; Jeon, Yong Sun; Won, Jehwan; Byun, Seung Jae; Park, Sang Jun; Jang, Lee Chan; Kwon, Tae-Won
2015-09-01
To introduce a nation-based endovascular aneurysm repair (EVAR) registry in South Korea and to analyze the anatomical features and early clinical outcomes of abdominal aortic aneurysms (AAA) in patients who underwent EVAR. The Korean EVAR registry (KER) was a template-based online registry developed and established in 2009. The KER recruited 389 patients who underwent EVAR from 13 medical centers in South Korea from January 2010 to June 2010. We retrospectively reviewed the anatomic features and 30-day clinical outcomes. Initial deployment without open conversion was achieved in all cases and procedure-related 30-day mortality rate was 1.9%. Anatomic features showed the following variables: proximal aortic neck angle 48.8±25.7° (mean±standard deviation), vertical neck length 35.0±17.2 mm, aneurysmal sac diameter 57.2±14.2 mm, common iliac artery (CIA) involvement in 218 (56.3%) patients, and median right CIA length 34.9 mm. Two hundred and nineteen (56.3%) patients showed neck calcification, 98 patients (25.2%) had neck thrombus, and the inferior mesenteric arteries of 91 patients (23.4%) were occluded. Anatomical features of AAA in patients from the KER were characterized as having angulated proximal neck, tortuous iliac artery, and a higher rate of CIA involvement. Long-term follow-up and ongoing studies are required.
Real-time Data Display System of the Korean Neonatal Network
Lee, Byong Sop; Moon, Wi Hwan
2015-01-01
Real-time data reporting in clinical research networks can provide network members through interim analyses of the registered data, which can facilitate further studies and quality improvement activities. The aim of this report was to describe the building process of the data display system (DDS) of the Korean Neonatal Network (KNN) and its basic structure. After member verification at the KNN member's site, users can choose a variable of interest that is listed in the in-hospital data statistics (for 90 variables) or in the follow-up data statistics (for 54 variables). The statistical results of the outcome variables are displayed on the HyperText Markup Language 5-based chart graphs and tables. Participating hospitals can compare their performance to those of KNN as a whole and identify the trends over time. Ranking of each participating hospital is also displayed in terms of key outcome variables such as mortality and major neonatal morbidities with the names of other centers blinded. The most powerful function of the DDS is the ability to perform 'conditional filtering' which allows users to exclusively review the records of interest. Further collaboration is needed to upgrade the DDS to a more sophisticated analytical system and to provide a more user-friendly interface. PMID:26566352
Adaptive Variability in Skilled Human Movements
NASA Astrophysics Data System (ADS)
Kudo, Kazutoshi; Ohtsuki, Tatsuyuki
Human movements are produced in variable external/internal environments. Because of this variability, the same motor command can result in quite different movement patterns. Therefore, to produce skilled movements humans must coordinate the variability, not try to exclude it. In addition, because human movements are produced in redundant and complex systems, a combination of variability should be observed in different anatomical/physiological levels. In this paper, we introduce our research about human movement variability that shows remarkable coordination among components, and between organism and environment. We also introduce nonlinear dynamical models that can describe a variety of movements as a self-organization of a dynamical system, because the dynamical systems approach is a major candidate to understand the principle underlying organization of varying systems with huge degrees-of-freedom.
Feature-Based Morphometry: Discovering Group-related Anatomical Patterns
Toews, Matthew; Wells, William; Collins, D. Louis; Arbel, Tal
2015-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). PMID:19853047
Natsis, Konstantinos; Totlis, Trifon; Konstantinidis, George A; Paraskevas, George; Piagkou, Maria; Koebke, Juergen
2014-04-01
To detect the variable relationship between sciatic nerve and piriformis muscle and make surgeons aware of certain anatomical features of each variation that may be useful for the surgical treatment of the piriformis syndrome. The gluteal region of 147 Caucasian cadavers (294 limbs) was dissected. The anatomical relationship between the sciatic nerve and the piriformis muscle was recorded and classified according to the Beaton and Anson classification. The literature was reviewed to summarize the incidence of each variation. The sciatic nerve and piriformis muscle relationship followed the typical anatomical pattern in 275 limbs (93.6 %). In 12 limbs (4.1 %) the common peroneal nerve passed through and the tibial nerve below a double piriformis. In one limb (0.3 %) the common peroneal nerve coursed superior and the tibial nerve below the piriformis. In one limb (0.3 %) both nerves penetrated the piriformis. In one limb (0.3 %) both nerves passed above the piriformis. Four limbs (1.4 %) presented non-classified anatomical variations. When a double piriformis muscle was present, two different arrangements of the two heads were observed. Anatomical variations of the sciatic nerve around the piriformis muscle were present in 6.4 % of the limbs examined. When dissection of the entire piriformis is necessary for adequate sciatic nerve decompression, the surgeon should explore for the possible existence of a second tendon, which may be found either inferior or deep to the first one. Some rare, unclassified variations of the sciatic nerve should be expected during surgical intervention of the region.
Gyration of the feline brain: localization, terminology and variability.
Pakozdy, A; Angerer, C; Klang, A; König, E H; Probst, A
2015-12-01
The terminology of feline brain gyration is not consistent and individual variability has not been systematically examined. The aim of the study was to identify the gyri and sulci of cat brains and describe them using the current terminology. The brains of 15 cats including 10 European shorthairs, 2 Siamese, 2 Maine coons and one Norvegian forest cat without clinical evidence of brain disease were examined post-mortem and photographed for documentation. For description, the terms of the most recent Nomina Anatomica Veterinaria (NAV, 2012) were used, and comparisons with previous anatomical texts were also performed. In addition to the lack of comparative morphology in the NAV, veterinary and human nomenclature are used interchangeably and inconsistently in the literature. This presents a challenge for neurologists and anatomists in localizing gyri and sulci. A comparative analysis of brain gyration showed only minor individual variability among the cats. High-quality labelled figures are provided to facilitate the identification of cat brain gyration. Our work consolidates the current and more consistent gyration terminology for reporting the localization of a cortical lesion based on magnetic resonance imaging or histopathology. This will facilitate not only morphological but also functional research using accurate anatomical reporting. © 2014 Blackwell Verlag GmbH.
Synthetic aperture radar operator tactical target acquisition research
NASA Technical Reports Server (NTRS)
Hershberger, M. L.; Craig, D. W.
1978-01-01
A radar target acquisition research study was conducted to access the effects of two levels of 13 radar sensor, display, and mission parameters on operator tactical target acquisition. A saturated fractional-factorial screening design was employed to examine these parameters. Data analysis computed ETA squared values for main and second-order effects for the variables tested. Ranking of the research parameters in terms of importance to system design revealed four variables (radar coverage, radar resolution/multiple looks, display resolution, and display size) accounted for 50 percent of the target acquisition probability variance.
Byron, C D; Granatosky, M C; Covert, H H
2017-12-01
Pygathrix is an understudied Asian colobine unusual among the Old World monkeys for its use of arm-swinging. Little data exists on the anatomy and mechanics of brachiation in this genus. Here, we consider this colobine to gain insight into the parallel evolution of suspensory behavior in primates. This study compares axial and appendicular morphological variables of Pygathrix with other Asian colobines. Additionally, to assess the functional consequences of Pygathrix limb anatomy, kinematic and kinetic data during arm-swinging are included to compare the douc monkey to other suspensory primates (Ateles and Hylobates). Compared to more pronograde species, Pygathrix and Nasalis share morphology consistent with suspensory locomotion such as its narrower scapulae and elongated clavicles. More distally, Pygathrix displays a gracile humerus, radius, and ulna, and shorter olecranon process. During suspensory locomotion, Pygathrix, Ateles, and Hylobates all display mechanical convergence in limb loading and movements of the shoulder and elbow, but Pygathrix uses pronated wrist postures that include substantial radial deviation during arm-swinging. The adoption of arm-swinging represents a major shift within at least three anthropoid clades and little data exist about its transition. Across species, few mechanical differences are observed during arm-swinging. Apparently, there are limited functional solutions to the challenges associated with moving bimanually below branches, especially in more proximal forelimb regions. Morphological data support this idea that the Pygathrix distal forelimb differs from apes more than its proximal end. These results can inform other studies of ape evolution, the pronograde to orthograde transition, and the convergent ways in which suspensory locomotion evolved in primates. © 2017 Wiley Periodicals, Inc.
The importance of obstructive sleep apnoea and hypopnea pathophysiology for customized therapy.
Bosi, Marcello; De Vito, Andrea; Gobbi, Riccardo; Poletti, Venerino; Vicini, Claudio
2017-03-01
The objective of this study is to highlight the importance of anatomical and not-anatomical factors' identification for customized therapy in OSAHS patients. The data sources are: MEDLINE, The Cochrane Library and EMBASE. A systematic review was performed to identify studies that analyze the role of multiple interacting factors involved in the OSAHS pathophysiology. 85 out of 1242 abstracts were selected for full-text review. A variable combinations pathophysiological factors contribute to realize differentiated OSAHS phenotypes: a small pharyngeal airway with a low resistance to collapse (increased critical closing pressure), an inadequate responses of pharyngeal dilator muscles (wakefulness drive to breathe), an unstable ventilator responsiveness to hypercapnia (high loop gain), and an increased propensity to wake related to upper airway obstruction (low arousal threshold). Identifying if the anatomical or not-anatomical factors are predominant in each OSAHS patient represents the current challenge in clinical practice, moreover for the treatment decision-making. In the future, if a reliable and accurate pathophysiological pattern for each OSAHS patient can be identified, a customized therapy will be feasible, with a significant improvement of surgical success in sleep surgery and a better understanding of surgical failure.
Evaluating Washington State's immunization information system as a research tool.
Jackson, Michael L; Henrikson, Nora B; Grossman, David C
2014-01-01
Immunization information systems (IISs) are powerful public health tools for vaccination activities. To date, however, their use for public health research has been limited, in part as a result of insufficient understanding on accuracy and quality of IIS data. We evaluated the completeness and accuracy of Washington State IIS (WAIIS) data, with particular attention to data elements of research interest. We analyzed all WAIIS records on all children born between 2006 and 2010 with at least 1 vaccination recorded in WAIIS between 2006 and 2010. We assessed all variables for completeness and tested selected variables for internal validity. To assess external validity, we matched WAIIS data to records from Group Health, a large integrated health care organization in Washington State. On these children, we compared vaccination data in WAIIS with vaccination data from Group Health's immunization registry. The WAIIS data included 486,265 children and 8,670,234 unique vaccinations. Variables required by WAIIS (such as date of vaccination) were highly complete, but optional variables were often missing. For example, most records were missing data on route (80.7%) and anatomic site (81.7%) of vaccination. WAIIS data, when complete, were highly accurate relative to the Group Health immunization registry, with 96% to 99% agreement between fields such as vaccination code and anatomic site. Required data elements in WAIIS are highly complete and have both internal and external validity, suggesting that these variables are useful for research. Research requiring nonrequired variables should use additional validity checks before proceeding. Copyright © 2014 Academic Pediatric Association. Published by Elsevier Inc. All rights reserved.
Fraysse, François; Thewlis, Dominic
2014-11-07
Numerous methods exist to estimate the pose of the axes of rotation of the forearm. These include anatomical definitions, such as the conventions proposed by the ISB, and functional methods based on instantaneous helical axes, which are commonly accepted as the modelling gold standard for non-invasive, in-vivo studies. We investigated the validity of a third method, based on regression equations, to estimate the rotation axes of the forearm. We also assessed the accuracy of both ISB methods. Axes obtained from a functional method were considered as the reference. Results indicate a large inter-subject variability in the axes positions, in accordance with previous studies. Both ISB methods gave the same level of accuracy in axes position estimations. Regression equations seem to improve estimation of the flexion-extension axis but not the pronation-supination axis. Overall, given the large inter-subject variability, the use of regression equations cannot be recommended. Copyright © 2014 Elsevier Ltd. All rights reserved.
Oral and maxillofacial surgery with computer-assisted navigation system.
Kawachi, Homare; Kawachi, Yasuyuki; Ikeda, Chihaya; Takagi, Ryo; Katakura, Akira; Shibahara, Takahiko
2010-01-01
Intraoperative computer-assisted navigation has gained acceptance in maxillofacial surgery with applications in an increasing number of indications. We adapted a commercially available wireless passive marker system which allows calibration and tracking of virtually every instrument in maxillofacial surgery. Virtual computer-generated anatomical structures are displayed intraoperatively in a semi-immersive head-up display. Continuous observation of the operating field facilitated by computer assistance enables surgical navigation in accordance with the physician's preoperative plans. This case report documents the potential for augmented visualization concepts in surgical resection of tumors in the oral and maxillofacial region. We report a case of T3N2bM0 carcinoma of the maxillary gingival which was surgically resected with the assistance of the Stryker Navigation Cart System. This system was found to be useful in assisting preoperative planning and intraoperative monitoring.
New developments in flexible cholesteric liquid crystal displays
NASA Astrophysics Data System (ADS)
Schneider, Tod; Davis, Donald J.; Franklin, Sean; Venkataraman, Nithya; McDaniel, Diaz; Nicholson, Forrest; Montbach, Erica; Khan, Asad; Doane, J. William
2007-02-01
Flexible Cholesteric liquid crystal displays have been rapidly maturing into a strong contender in the flexible display market. Encapsulation of the Cholesteric liquid crystal permits the use of flexible plastic substrates and roll-to-roll production. Recent advances include ultra-thin displays, laser-cut segmented displays of variable geometry, and smart card applications. Exciting technologies such as simultaneous laser-edge sealing and singulation enable high volume production, excellent quality control and non-traditional display geometries and formats.
Outcome-based anatomic criteria for defining the hostile aortic neck.
Jordan, William D; Ouriel, Kenneth; Mehta, Manish; Varnagy, David; Moore, William M; Arko, Frank R; Joye, James; de Vries, Jean-Paul P M
2015-06-01
There is abundant evidence linking hostile proximal aortic neck anatomy to poor outcome after endovascular aortic aneurysm repair (EVAR), yet the definition of hostile anatomy varies from study to study. This current analysis was undertaken to identify anatomic criteria that are most predictive of success or failure at the aortic neck after EVAR. The study group comprised 221 patients in the Aneurysm Treatment using the Heli-FX Aortic Securement System Global Registry (ANCHOR) clinical trial, a population enriched with patients with challenging aortic neck anatomy and failure of sealing. Imaging protocols were not protocol specified but were performed according to the institution's standard of care. Core laboratory analysis assessed the three-dimensional centerline-reformatted computed tomography scans. Failure at the aortic neck was defined by type Ia endoleak occurring at the time of the initial endograft implantation or during follow-up. Receiver operating characteristic curve analysis was used to assess the value of each anatomic measure in the classification of aortic neck success and failure and to identify optimal thresholds of discrimination. Binary logistic regression was performed after excluding highly intercorrelated variables, creating a final model with significant predictors of outcome after EVAR. Among the 221 patients, 121 (54.8%) remained free of type Ia endoleak and 100 (45.2%) did not. Type Ia endoleaks presented immediately after endograft deployment in 58 (58.0%) or during follow-up in 42 (42.0%). Receiver operating characteristic curve analysis identified 12 variables where the classification of patients with type Ia endoleak was significantly more accurate than chance alone. Increased aortic neck diameter at the lowest renal artery (P = .013) and at 5 mm (P = .008), 10 mm (P = .008), and 15 mm (P = .010) distally; aneurysm sac diameter (P = .001), common iliac artery diameters (right, P = .012; left, P = .032), and a conical (P = .049) neck configuration were predictive of endoleak. By contrast, increased aortic neck length (P = .050), a funnel-shaped aortic neck (P = .036), and neck mural thrombus content, as measured by average thickness (P = .044) or degrees of circumferential coverage (P = .029), were protective against endoleak. Binary logistic regression identified three variables independently predictive of type Ia endoleak. Neck diameter at the lowest renal artery (P = .002, cutpoint 26 mm) and neck length (P = .017, cutpoint 17 mm) were associated with endoleak, whereas some mural neck thrombus content was protective (P = .001, cutpoint 11° of circumferential coverage). A limited number of independent anatomic variables are predictive of type Ia endoleak after EVAR, including aortic neck diameter and aortic neck length, whereas mural thrombus in the neck is protective. This study suggests that anatomic measures with identifiable threshold cutpoints should be considered when defining the hostile aortic neck and assessing the risk of complications after EVAR. Copyright © 2015 Society for Vascular Surgery. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gros, S; Roeske, J; Surucu, M
Purpose: To develop a novel method to monitor external anatomical changes in head and neck cancer patients in order to help guide adaptive radiotherapy decisions. Methods: The method, developed in MATLAB, reveals internal anatomical changes based on variations observed in external anatomy. Weekly kV-CBCT scans from 11 Head and neck patients were retrospectively analyzed. The pre-processing step first corrects each CBCT for artifacts and removes pixels from the immobilization mask to produce an accurate external contour of the patient’s skin. After registering the CBCTs to the initial planning CT, the external contours from each CBCT (CBCTn) are transferred to themore » first week — reference — CBCT{sub 1}. Contour radii, defined as the distances between an external contour and the central pixel of each CBCT slice, are calculated for each scan at angular increments of 1 degree. The changes in external anatomy are then quantified by the difference in radial distance between the external contours of CBCT1 and CBCTn. The radial difference is finally displayed on a 2D intensity map (angle vs radial distance difference) in order to highlight regions of interests with significant changes. Results: The 2D radial difference maps provided qualitative and quantitative information, such as the location and the magnitude of external contour divergences and the rate at which these deviations occur. With this method, anatomical changes due to tumor volume shrinkage and patient weight loss were clearly identified and could be correlated with the under-dosage of targets or over-dosage of OARs. Conclusion: This novel method provides an efficient tool to visualize 3D external anatomical modification on a single 2D map. It quickly pinpoints the location of differences in anatomy during the course of radiotherapy, which can help determine if a treatment plan needs to be adapted.« less
The effects of display variables and secondary loading on the dual axis critical task performance
NASA Technical Reports Server (NTRS)
Swisher, G. M.; Nataraj, S.
1973-01-01
The effects of scanning displays for separated instruments, separated versus combined displays, and the effects of secondary loading are investigated. An operator rating scale for handling qualities is established analogous to the Cooper Harper Scale.
A Mechanistic Link from GABA to Cortical Architecture and Perception.
Kolasinski, James; Logan, John P; Hinson, Emily L; Manners, Daniel; Divanbeighi Zand, Amir P; Makin, Tamar R; Emir, Uzay E; Stagg, Charlotte J
2017-06-05
Understanding both the organization of the human cortex and its relation to the performance of distinct functions is fundamental in neuroscience. The primary sensory cortices display topographic organization, whereby receptive fields follow a characteristic pattern, from tonotopy to retinotopy to somatotopy [1]. GABAergic signaling is vital to the maintenance of cortical receptive fields [2]; however, it is unclear how this fine-grain inhibition relates to measurable patterns of perception [3, 4]. Based on perceptual changes following perturbation of the GABAergic system, it is conceivable that the resting level of cortical GABAergic tone directly relates to the spatial specificity of activation in response to a given input [5-7]. The specificity of cortical activation can be considered in terms of cortical tuning: greater cortical tuning yields more localized recruitment of cortical territory in response to a given input. We applied a combination of fMRI, MR spectroscopy, and psychophysics to substantiate the link between the cortical neurochemical milieu, the tuning of cortical activity, and variability in perceptual acuity, using human somatosensory cortex as a model. We provide data that explain human perceptual acuity in terms of both the underlying cellular and metabolic processes. Specifically, higher concentrations of sensorimotor GABA are associated with more selective cortical tuning, which in turn is associated with enhanced perception. These results show anatomical and neurochemical specificity and are replicated in an independent cohort. The mechanistic link from neurochemistry to perception provides a vital step in understanding population variability in sensory behavior, informing metabolic therapeutic interventions to restore perceptual abilities clinically. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Femoral curvature variability in modern humans using three-dimensional quadric surface fitting.
Chapman, Tara; Sholukha, Victor; Semal, Patrick; Louryan, Stéphane; Rooze, Marcel; Van Sint Jan, Serge
2015-12-01
This study analysed femoral curvature in a population from Belgium in conjunction with other morphological characteristics by the use of three-dimensional (3D) quadric surfaces (QS) modelled from the bone surface. 3D models were created from computed tomography data of 75 femoral modern human bones. Anatomical landmarks (ALs) were palpated in specific bony areas of the femur (shaft, condyles, neck and head). QS were then created from the surface vertices which enclose these ALs. The diaphyseal shaft was divided into five QS shapes to analyse curvature in different parts of the shaft. Femoral bending differs in different parts of the diaphyseal shaft. The greatest degree of curvature was found in the distal shaft (mean 4.5° range 0.2°-10°) followed by the proximal (mean 4.4° range 1.5°-10.2°), proximal intermediate (mean 3.7° range 0.9°-7.9°) and distal intermediate (mean 1.8° range 0.2°-5.6°) shaft sections. The proximal and distal angles were significantly more bowed than the intermediate proximal and the intermediate distal angle. There was no significant difference between the proximal and distal angle. No significant correlations were found between morphological characteristics and femoral curvature. An extremely large variability of femoral curvature with several bones displaying very high or low degrees of femoral curvature was also found. 3D QS fitting enables the creation of accurate models which can discriminate between different patterns in similar curvatures and demonstrates there is a clear difference between curvature in different parts of the shaft.
Haapea, M; Liukkonen, E; Huumonen, S; Tervonen, O; Nieminen, M T
2015-01-01
Objectives: To compare observer performance in the detection of anatomical structures and pathology in panoramic radiographs using consumer grade with and without digital imaging and communication in medicine (DICOM)-calibration and 6-megapixel (6-MP) displays under different lighting conditions. Methods: 30 panoramic radiographs were randomly evaluated on three displays under bright (510 lx) and dim (16 lx) ambient lighting by two observers with different years of experience. Dentinoenamel junction, dentinal caries and periapical inflammatory lesions, visibility of cortical border of the floor and pathological lesions in maxillary sinus were evaluated. Consensus between the observers was considered as reference. Intraobserver agreement was determined. Proportion of equivalent ratings and weighted kappa were used to assess reliability. The level of significance was set to p < 0.05. Results: The proportion of equivalent ratings with consensus differed between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in the lower molar in dim lighting (p = 0.021) and between DICOM-calibrated consumer grade and 6-MP display in bright lighting (p = 0.038) for an experienced observer. Significant differences were found between uncalibrated and DICOM-calibrated consumer grade displays in dentinal caries in bright lighting (p = 0.044) and periapical lesions in the upper molar in dim lighting (p = 0.008) for a less experienced observer. Intraobserver reliability was better at detecting dentinal caries than at detecting periapical and maxillary sinus pathology. Conclusions: DICOM calibration may improve observer performance in panoramic radiography in different lighting conditions. Therefore, a DICOM-calibrated consumer grade display can be used instead of a medical display in dental practice without compromising the diagnostic quality. PMID:25564888
Exploring High-D Spaces with Multiform Matrices and Small Multiples
MacEachren, Alan; Dai, Xiping; Hardisty, Frank; Guo, Diansheng; Lengerich, Gene
2011-01-01
We introduce an approach to visual analysis of multivariate data that integrates several methods from information visualization, exploratory data analysis (EDA), and geovisualization. The approach leverages the component-based architecture implemented in GeoVISTA Studio to construct a flexible, multiview, tightly (but generically) coordinated, EDA toolkit. This toolkit builds upon traditional ideas behind both small multiples and scatterplot matrices in three fundamental ways. First, we develop a general, MultiForm, Bivariate Matrix and a complementary MultiForm, Bivariate Small Multiple plot in which different bivariate representation forms can be used in combination. We demonstrate the flexibility of this approach with matrices and small multiples that depict multivariate data through combinations of: scatterplots, bivariate maps, and space-filling displays. Second, we apply a measure of conditional entropy to (a) identify variables from a high-dimensional data set that are likely to display interesting relationships and (b) generate a default order of these variables in the matrix or small multiple display. Third, we add conditioning, a kind of dynamic query/filtering in which supplementary (undisplayed) variables are used to constrain the view onto variables that are displayed. Conditioning allows the effects of one or more well understood variables to be removed from the analysis, making relationships among remaining variables easier to explore. We illustrate the individual and combined functionality enabled by this approach through application to analysis of cancer diagnosis and mortality data and their associated covariates and risk factors. PMID:21947129
Evaluation of graphic cardiovascular display in a high-fidelity simulator.
Agutter, James; Drews, Frank; Syroid, Noah; Westneskow, Dwayne; Albert, Rob; Strayer, David; Bermudez, Julio; Weinger, Matthew B
2003-11-01
"Human error" in anesthesia can be attributed to misleading information from patient monitors or to the physician's failure to recognize a pattern. A graphic representation of monitored data may provide better support for detection, diagnosis, and treatment. We designed a graphic display to show hemodynamic variables. Twenty anesthesiologists were asked to assume care of a simulated patient. Half the participants used the graphic cardiovascular display; the other half used a Datex As/3 monitor. One scenario was a total hip replacement with a transfusion reaction to mismatched blood. The second scenario was a radical prostatectomy with 1.5 L of blood loss and myocardial ischemia. Subjects who used the graphic display detected myocardial ischemia 2 min sooner than those who did not use the display. Treatment was initiated sooner (2.5 versus 4.9 min). There were no significant differences between groups in the hip replacement scenario. Systolic blood pressure deviated less from baseline, central venous pressure was closer to its baseline, and arterial oxygen saturation was higher at the end of the case when the graphic display was used. The study lends some support for the hypothesis that providing clinical information graphically in a display designed with emergent features and functional relationships can improve clinicians' ability to detect, diagnose, manage, and treat critical cardiovascular events in a simulated environment. A graphic representation of monitored data may provide better support for detection, diagnosis, and treatment. A user-centered design process led to a novel object-oriented graphic display of hemodynamic variables containing emergent features and functional relationships. In a simulated environment, this display appeared to support clinicians' ability to diagnose, manage, and treat a critical cardiovascular event in a simulated environment. We designed a graphic display to show hemodynamic variables. The study provides some support for the hypothesis that providing clinical information graphically in a display designed with emergent features and functional relationships can improve clinicians' ability to detect, diagnosis, mange, and treat critical cardiovascular events in a simulated environment.
Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M.; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H.; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice
2016-01-01
Abstract: Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle. PMID:27446660
Ida, Hirofumi; Fukuhara, Kazunobu; Kusubori, Seiji; Ishii, Motonobu
2011-09-01
Computer graphics of digital human models can be used to display human motions as visual stimuli. This study presents our technique for manipulating human motion with a forward kinematics calculation without violating anatomical constraints. A motion modulation of the upper extremity was conducted by proportionally modulating the anatomical joint angular velocity calculated by motion analysis. The effect of this manipulation was examined in a tennis situation--that is, the receiver's performance of predicting ball direction when viewing a digital model of the server's motion derived by modulating the angular velocities of the forearm or that of the elbow during the forward swing. The results showed that the faster the server's forearm pronated, the more the receiver's anticipation of the ball direction tended to the left side of the serve box. In contrast, the faster the server's elbow extended, the more the receiver's anticipation of the ball direction tended to the right. This suggests that tennis players are sensitive to the motion modulation of their opponent's racket-arm.
Ruggeri, Marco; de Freitas, Carolina; Williams, Siobhan; Hernandez, Victor M; Cabot, Florence; Yesilirmak, Nilufer; Alawa, Karam; Chang, Yu-Cherng; Yoo, Sonia H; Gregori, Giovanni; Parel, Jean-Marie; Manns, Fabrice
2016-04-01
Two SD-OCT systems and a dual channel accommodation target were combined and precisely synchronized to simultaneously image the anterior segment and the ciliary muscle during dynamic accommodation. The imaging system simultaneously generates two synchronized OCT image sequences of the anterior segment and ciliary muscle with an imaging speed of 13 frames per second. The system was used to acquire OCT image sequences of a non-presbyopic and a pre-presbyopic subject accommodating in response to step changes in vergence. The image sequences were processed to extract dynamic morphological data from the crystalline lens and the ciliary muscle. The synchronization between the OCT systems allowed the precise correlation of anatomical changes occurring in the crystalline lens and ciliary muscle at identical time points during accommodation. To describe the dynamic interaction between the crystalline lens and ciliary muscle, we introduce accommodation state diagrams that display the relation between anatomical changes occurring in the accommodating crystalline lens and ciliary muscle.
Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity
Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.; ...
2016-05-09
Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less
The Brainomics/Localizer database.
Papadopoulos Orfanos, Dimitri; Michel, Vincent; Schwartz, Yannick; Pinel, Philippe; Moreno, Antonio; Le Bihan, Denis; Frouin, Vincent
2017-01-01
The Brainomics/Localizer database exposes part of the data collected by the in-house Localizer project, which planned to acquire four types of data from volunteer research subjects: anatomical MRI scans, functional MRI data, behavioral and demographic data, and DNA sampling. Over the years, this local project has been collecting such data from hundreds of subjects. We had selected 94 of these subjects for their complete datasets, including all four types of data, as the basis for a prior publication; the Brainomics/Localizer database publishes the data associated with these 94 subjects. Since regulatory rules prevent us from making genetic data available for download, the database serves only anatomical MRI scans, functional MRI data, behavioral and demographic data. To publish this set of heterogeneous data, we use dedicated software based on the open-source CubicWeb semantic web framework. Through genericity in the data model and flexibility in the display of data (web pages, CSV, JSON, XML), CubicWeb helps us expose these complex datasets in original and efficient ways. Copyright © 2015 Elsevier Inc. All rights reserved.
Scapular thickness--implications for fracture fixation.
Burke, Charity S; Roberts, Craig S; Nyland, John A; Radmacher, Paula G; Acland, Robert D; Voor, Michael J
2006-01-01
The purpose of this study was to measure and map scapula osseous thickness to identify the optimal areas for internal fixation. Eighteen (9 pairs) scapulae from 2 female and 7 male cadavers were used. After harvest and removal of all soft tissues, standardized measurement lines were made based on anatomic landmarks. For consistency among scapulae, measurements were taken at standard percentage intervals along each line approximating the distance between two consecutive reconstruction plate screw holes. Two-mm-diameter drill holes were made at each point, and a standard depth gauge was used to measure thickness. The glenoid fossa (25 mm) displayed the greatest mean osseous thickness, followed by the lateral scapular border (9.7 mm), the scapula spine (8.3 mm), and the central portion of the body of the scapula (3.0 mm). To optimize screw purchase and internal fixation strength, the lateral border, the lateral aspect of the base of the scapula spine, and the scapula spine itself should be used for anatomic sites of internal fixation of scapula fractures.
Brain Modulyzer: Interactive Visual Analysis of Functional Brain Connectivity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murugesan, Sugeerth; Bouchard, Kristopher; Brown, Jesse A.
Here, we present Brain Modulyzer, an interactive visual exploration tool for functional magnetic resonance imaging (fMRI) brain scans, aimed at analyzing the correlation between different brain regions when resting or when performing mental tasks. Brain Modulyzer combines multiple coordinated views—such as heat maps, node link diagrams, and anatomical views—using brushing and linking to provide an anatomical context for brain connectivity data. Integrating methods from graph theory and analysis, e.g., community detection and derived graph measures, makes it possible to explore the modular and hierarchical organization of functional brain networks. Providing immediate feedback by displaying analysis results instantaneously while changing parametersmore » gives neuroscientists a powerful means to comprehend complex brain structure more effectively and efficiently and supports forming hypotheses that can then be validated via statistical analysis. In order to demonstrate the utility of our tool, we also present two case studies—exploring progressive supranuclear palsy, as well as memory encoding and retrieval« less
Kenny, Stephen C
2013-01-01
Prior to the American Civil War, museums were enthusiastically promoted in the annual circulars of southern medical colleges as valuable aids to medical education. Using case history narratives, medical college circulars, and announcements, this article examines the social origins of the region's collections of anatomical and pathological specimens and explores the professional agents and organizations responsible for their maintenance and development. The article is also concerned with exploring the racial framework in which these bodies and specimens were sourced and displayed. The social relations embodied in natural history and medical museum collections, and the emerging specialism of "negro medicine," were all elements of a context that subordinated and objectified blackness, as well as permitting and legitimizing the exploitation of black bodies. Medical museums function as a key case study for examining power relations among physicians, slaves, and slave owners, as well as underscoring southern medicine's dependence on slavery for its development.
Armstrong, Ryan; de Ribaupierre, Sandrine; Eagleson, Roy
2014-04-01
This paper describes the design and development of a software tool for the evaluation and training of surgical residents using an interactive, immersive, virtual environment. Our objective was to develop a tool to evaluate user spatial reasoning skills and knowledge in a neuroanatomical context, as well as to augment their performance through interactivity. In the visualization, manually segmented anatomical surface images of MRI scans of the brain were rendered using a stereo display to improve depth cues. A magnetically tracked wand was used as a 3D input device for localization tasks within the brain. The movement of the wand was made to correspond to movement of a spherical cursor within the rendered scene, providing a reference for localization. Users can be tested on their ability to localize structures within the 3D scene, and their ability to place anatomical features at the appropriate locations within the rendering. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Physiological control of elaborate male courtship: Female choice for neuromuscular systems
Fusani, Leonida; Barske, Julia; Day, Lainy D.; Fuxjager, Matthew J.; Schlinger, Barney A.
2015-01-01
Males of many animal species perform specialized courtship behaviours to gain copulations with females. Identifying physiological and anatomical specializations underlying performance of these behaviours helps clarify mechanisms through which sexual selection promotes the evolution of elaborate courtship. Our knowledge about neuromuscular specializations that support elaborate displays is limited to a few model species. In this review, we focus on the physiological control of the courtship of a tropical bird, the golden-collared manakin, which has been the focus of our research for nearly 20 years. Male manakins perform physically elaborate courtship displays that are quick, accurate and powerful. Females seem to choose males based on their motor skills suggesting that neuromuscular specializations possessed by these males are driven by female choice. Male courtship is activated by androgens and androgen receptors are expressed in qualitatively and quantitatively unconventional ways in manakin brain, spinal cord and skeletal muscles. We propose that in some species, females select males based on their neuromuscular capabilities and acquired skills and that elaborate steroid-dependent courtship displays evolve to signal these traits. PMID:25086380
Data recording and trend display during anaesthesia using 'MacLab'.
Kennedy, R R
1991-08-01
A single screen display of variables monitored during anaesthesia may be ergonomically superior to the 'stack' of monitors seen in many anaesthetising locations. A system based on a MacLab (Analogue Digital Instruments) analogue-to-digital convertor used in conjunction with a Macintosh computer was evaluated. The system was configured to provide trend displays of up to eight variables on a single screen. It was found to be a useful adjunct to monitoring during anaesthesia. Advantages of this system are low cost, flexibility, and the quality of the software and support provided. Limitations of this and other similar systems are discussed.
The inter-rater reliability of estimating the size of burns from various burn area chart drawings.
Wachtel, T L; Berry, C C; Wachtel, E E; Frank, H A
2000-03-01
The accuracy and variability of burn size calculations using four Lund and Browder charts currently in clinical use and two Rule of Nine's diagrams were evaluated. The study showed that variability in estimation increased with burn size initially, plateaued in large burns and then decreased slightly in extensive burns. The Rule of Nine's technique often overestimates the burn size and is more variable, but can be performed somewhat faster than the Lund and Browder method. More burn experience leads to less variability in burn area chart drawing estimates. Irregularly shaped burns and burns on the trunk and thighs had greater variability than less irregularly shaped burns or burns on more defined anatomical parts of the body.
NASA Astrophysics Data System (ADS)
Tropp, James; Lupo, Janine M.; Chen, Albert; Calderon, Paul; McCune, Don; Grafendorfer, Thomas; Ozturk-Isik, Esin; Larson, Peder E. Z.; Hu, Simon; Yen, Yi-Fen; Robb, Fraser; Bok, Robert; Schulte, Rolf; Xu, Duan; Hurd, Ralph; Vigneron, Daniel; Nelson, Sarah
2011-01-01
We report metabolic images of 13C, following injection of a bolus of hyperpolarized [1-13C] pyruvate in a live rat. The data were acquired on a clinical scanner, using custom coils for volume transmission and array reception. Proton blocking of all carbon resonators enabled proton anatomic imaging with the system body coil, to allow for registration of anatomic and metabolic images, for which good correlation was achieved, with some anatomic features (kidney and heart) clearly visible in a carbon image, without reference to the corresponding proton image. Parallel imaging with sensitivity encoding was used to increase the spatial resolution in the SI direction of the rat. The signal to noise ratio in was in some instances unexpectedly high in the parallel images; variability of the polarization among different trials, plus partial volume effects, are noted as a possible cause of this.
Clavicles, scapulae and humeri from the Sima de los Huesos site (Sierra de Atapuerca, Spain).
Carretero, J M; Arsuaga, J L; Lorenzo, C
1997-01-01
The scapulae, clavicles and humeri recovered from the Sima de los Huesos (SH) site between 1976 and 1994 are studied. All elements are briefly described anatomically with metrics and compared with other fossil hominids in order to establish the morphological pattern of the SH hominids. A minimum of 13 individuals are represented by the humeri in the SH sample. Almost all of them can be classified as adolescents and young adults. The morphology of the SH hominid shoulder girdle and humeri indicates that much of the shoulder morphology recognized in the later true Neandertal was present in Europe long before they appeared. Thus, this morphological pattern is not exclusive to Neandertals alone. The SH clavicles, scapulae and humeri share with the Neandertals many traits usually considered to be Neandertal specializations. The comparative analysis of the SH evidence suggests that most of the SH and Neandertal shared traits are either primitive features within the genus Homo or even for all hominids, or display high variability within different hominid samples. These traits must be used with caution, or not used at all, in phylogenetic analysis. There are, however, traits that to date have only been detected in the SH hominids and the Neanderials, which could be exclusive to the European phyletic lineage (clade) of Homo.
Function and structure of the deep cervical extensor muscles in patients with neck pain.
Schomacher, Jochen; Falla, Deborah
2013-10-01
The deep cervical extensors are anatomically able to control segmental movements of the cervical spine in concert with the deep cervical flexors. Several investigations have confirmed changes in cervical flexor muscle control in patients with neck pain and as a result, effective evidence-based therapeutic exercises have been developed to address such dysfunctions. However, knowledge on how the deep extensor muscles behave in patients with neck pain disorders is scare. Structural changes such as higher concentration of fat within the muscle, variable cross-sectional area and higher proportions of type II fibres have been observed in the deep cervical extensors of patients with neck pain compared to healthy controls. These findings suggest that the behaviour of the deep extensors may be altered in patients with neck pain. Consistent with this hypothesis, a recent series of studies confirm that patients display reduced activation of the deep cervical extensors as well as less defined activation patterns. This article provides an overview of the various different structural and functional changes in the deep neck extensor muscles documented in patients with neck pain. Relevant recommendations for the management of muscle dysfunction in patients with neck pain are presented. Copyright © 2013 Elsevier Ltd. All rights reserved.
de Freitas, Ricardo Miguel Costa; Andrade, Celi Santos; Caldas, José Guilherme Mendes Pereira; Kanas, Alexandre Fligelman; Cabral, Richard Halti; Tsunemi, Miriam Harumi; Rodríguez, Hernán Joel Cervantes; Rabbani, Said Rahnamaye
2015-05-01
New spinal interventions or implants have been tested on ex vivo or in vivo porcine spines, as they are readily available and have been accepted as a comparable model to human cadaver spines. Imaging-guided interventional procedures of the spine are mostly based on fluoroscopy or, still, on multidetector computed tomography (MDCT). Cone-beam computed tomography (CBCT) and magnetic resonance imaging (MRI) are also available methods to guide interventional procedures. Although some MDCT data from porcine spines are available in the literature, validation of the measurements on CBCT and MRI is lacking. To describe and compare the anatomical measurements accomplished with MDCT, CBCT, and MRI of lumbar porcine spines to determine if CBCT and MRI are also useful methods for experimental studies. An experimental descriptive-comparative study. Sixteen anatomical measurements of an individual vertebra from six lumbar porcine spines (n=36 vertebrae) were compared with their MDCT, CBCT, and MRI equivalents. Comparisons were made for the absolute values of the parameters. Similarities were found in all imaging methods. Significant correlation (p<.05) was observed with all variables except those that included cartilaginous tissue from the end plates when the anatomical study was compared with the imaging methods. The CBCT and MRI provided imaging measurements of the lumbar porcine spines that were similar to the anatomical and MDCT data, and they can be useful for specific experimental research studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Developmental effects of antiepileptic drugs and the need for improved regulations
Loring, David W.
2016-01-01
Antiepileptic drugs (AEDs) are among the most common teratogenic drugs prescribed to women of childbearing age. AEDs can induce both anatomical (malformations) and behavioral (cognitive/behavioral deficits) teratogenicity. Only in the last decade have we begun to truly discriminate differential AED developmental effects. Fetal valproate exposure carries a special risk for both anatomical and behavioral teratogenic abnormalities, but the mechanisms and reasons for individual variability are unknown. Intermediate anatomical risks exist for phenobarbital and topiramate. Several AEDs (e.g., lamotrigine and levetiracetam) appear to possess low risks for both anatomical and behavioral teratogenesis. Despite advances in the past decade, our knowledge of the teratogenic risks for most AEDs and the underlying mechanisms remain inadequate. Further, the long-term effects of AEDs in neonates and older children remain uncertain. The pace of progress is slow given the lifelong consequences of diminished developmental outcomes, exposing children unnecessarily to potential adverse effects. It is imperative that new approaches be employed to determine risks more expediently. Our recommendations include a national reporting system for congenital malformations, federal funding of the North American AED Pregnancy Registry, routine meta-analyses of cohort studies to detect teratogenic signals, monitoring of AED prescription practices for women, routine preclinical testing of all new AEDs for neurodevelopmental effects, more specific Food and Drug Administration requirements to establish differential AED cognitive effects in children, and improved funding of basic and clinical research to fully delineate risks and underlying mechanisms for AED-induced anatomical and behavioral teratogenesis. PMID:26519545
Fedele, L; Motta, F; Frontino, G; Restelli, E; Bianchi, S
2013-06-01
What are the anatomic variants (and their frequencies) of double uterus, obstructed hemivagina and ipsilateral renal agenesis? Most cases examined (72.4%) were of the classic anatomic variant of the Herlyn-Werner-Wunderlich syndrome (with didelphys uterus, obstructed hemivagina and ipsilateral renal agenesis) but the 27.6% of cases are of a rare variant of the syndrome (with uterus septum or cervical agenesis), showing relevant clinical and surgical implications. The extreme variability of anatomic structures involved in this syndrome (both uterus, cervico-vaginal and renal anomalies) is well known, even if a complete and uniform analysis of all its heterogeneous presentations in a large series is lacking. This is a retrospective study with 87 patients referred to our third level referral center between 1981 and 2011. We analyzed the laparoscopic and chart records of 87 women, who referred to our institute with double uterus, unilateral cervico-vaginal obstruction and ipsilateral renal anomalies. Sixty-three of 87 patients had the more classic variant of didelphys uterus with obstructed hemivagina; 10/87 patients had septate bicollis uterus with obstructed hemivagina; 9/87 patients had bicornuate bicollis uterus with obstructed hemivagina; 4/87 patients had didelphys uterus with unilateral cervical atresia; 1/87 patients had bicornuate uterus with one septate cervix and unilateral obstructed hemivagina. This is a retrospective study with a long enrolling period (30 years). New insights in the anatomic variants of this rare syndrome with their relevant surgical implications.
Gross, G W
1992-10-01
The highlight of recent articles published on pediatric chest imaging is the potential advantage of digital imaging of the infant's chest. Digital chest imaging allows accurate determination of functional residual capacity as well as manipulation of the image to highlight specific anatomic features. Reusable photostimulable phosphor imaging systems provide wide imaging latitude and lower patient dose. In addition, digital radiology permits multiple remote-site viewing on monitor displays. Several excellent reviews of the imaging features of various thoracic abnormalities and the application of newer imaging modalities, such as ultrafast CT and MR imaging to the pediatric chest, are additional highlights.
MAUDGIL, D. D.; FREE, S. L.; SISODIYA, S. M.; LEMIEUX, L.; WOERMANN, F. G.; FISH, D. R.; SHORVON, S. D.
1998-01-01
Guided by a review of the anatomical literature, 36 sulci on the human cerebral cortical surface were designated as homologous. These sulci were assessed for visibility on 3-dimensional images reconstructed from magnetic resonance imaging scans of the brains of 20 normal volunteers by 2 independent observers. Those sulci that were found to be reproducibly identifiable were used to define 24 landmarks around the cortical surface. The interobserver and intraobserver variabilities of measurement of the 24 landmarks were calculated. These reliably reproducible landmarks can be used for detailed morphometric analysis, and may prove helpful in the analysis of suspected cerebral cortical structured abnormalities in patients with such conditions as epilepsy. PMID:10029189
Hemimelic extra toes (Hx) arose spontaneously as a dominant mutation in B10.D2/nSnJ mice in 1967. It specifically affects the appendicular skeleton, causing variable foreshortening of the tibia (radius) and preaxial polydactylism. Early anatomical studies revealed anterior overgr...
Auricchio, Annamaria; Cardella, Francesca; Mabilia, Andrea; Diana, Anna; Castellano, Paolo; De Vita, Ferdinando; Orditura, Michele
2017-01-01
Background In gastric cancer, the current AJCC numeric-based lymph node staging does not provide information on the anatomical extent of the disease and lymphadenectomy. A new anatomical location-based node staging, proposed by Choi, has shown better prognostic performance, thus soliciting Western world validation. Study design Data from 284 gastric cancers undergoing radical surgery at the Second University of Naples from 2000 to 2014 were reviewed. The lymph nodes were reclassified into three groups (lesser and greater curvature, and extraperigastric nodes); presence of any metastatic lymph node in a given group was considered positive, prompting a new N and TNM stage classification. Receiver-operating-characteristic (ROC) curves for censored survival data and bootstrap methods were used to compare the capability of the two models to predict tumor recurrence. Results More than one third of node positive patients were reclassified into different N and TNM stages by the new system. Compared to the current staging system, the new classification significantly correlated with tumor recurrence rates and displayed improved indices of prognostic performance, such as the Bayesian information criterion and the Harrell C-index. Higher values at survival ROC analysis demonstrated a significantly better stratification of patients by the new system, mostly in the early phase of the follow-up, with a worse prognosis in more advanced new N stages, despite the same current N stage. Conclusions This study suggests that the anatomical location-based classification of lymph node metastasis may be an important tool for gastric cancer prognosis and should be considered for future revision of the TNM staging system. PMID:28380037
Simulating video-assisted thoracoscopic lobectomy: a virtual reality cognitive task simulation.
Solomon, Brian; Bizekis, Costas; Dellis, Sophia L; Donington, Jessica S; Oliker, Aaron; Balsam, Leora B; Zervos, Michael; Galloway, Aubrey C; Pass, Harvey; Grossi, Eugene A
2011-01-01
Current video-assisted thoracoscopic surgery training models rely on animals or mannequins to teach procedural skills. These approaches lack inherent teaching/testing capability and are limited by cost, anatomic variations, and single use. In response, we hypothesized that video-assisted thoracoscopic surgery right upper lobe resection could be simulated in a virtual reality environment with commercial software. An anatomy explorer (Maya [Autodesk Inc, San Rafael, Calif] models of the chest and hilar structures) and simulation engine were adapted. Design goals included freedom of port placement, incorporation of well-known anatomic variants, teaching and testing modes, haptic feedback for the dissection, ability to perform the anatomic divisions, and a portable platform. Preexisting commercial models did not provide sufficient surgical detail, and extensive modeling modifications were required. Video-assisted thoracoscopic surgery right upper lobe resection simulation is initiated with a random vein and artery variation. The trainee proceeds in a teaching or testing mode. A knowledge database currently includes 13 anatomic identifications and 20 high-yield lung cancer learning points. The "patient" is presented in the left lateral decubitus position. After initial camera port placement, the endoscopic view is displayed and the thoracoscope is manipulated via the haptic device. The thoracoscope port can be relocated; additional ports are placed using an external "operating room" view. Unrestricted endoscopic exploration of the thorax is allowed. An endo-dissector tool allows for hilar dissection, and a virtual stapling device divides structures. The trainee's performance is reported. A virtual reality cognitive task simulation can overcome the deficiencies of existing training models. Performance scoring is being validated as we assess this simulator for cognitive and technical surgical education. Copyright © 2011. Published by Mosby, Inc.
An Augmented Reality magic mirror as additive teaching device for gross anatomy.
Kugelmann, Daniela; Stratmann, Leonard; Nühlen, Nils; Bork, Felix; Hoffmann, Saskia; Samarbarksh, Golbarg; Pferschy, Anna; von der Heide, Anna Maria; Eimannsberger, Andreas; Fallavollita, Pascal; Navab, Nassir; Waschke, Jens
2018-01-01
When preparing young medical students for clinical activity, it is indispensable to acquaint them with anatomical section images which enable them to use the clinical application of imaging methods. A new Augmented Reality Magic Mirror (AR MM) system, which provides the advantage of a novel, interactive learning tool in addition to a regular dissection course, was therefore tested and evaluated by 880 first-year medical students as part of the macroscopic anatomy course in 2015/16 at Ludwig-Maximilians-Universität (LMU) in Munich. The system consists of an RGB-D sensor as a real-time tracking device, which enables the system to link a deposited section image to the projection of the user's body, as well as a large display mimicking a real-world physical mirror. Using gesture input, the users have the ability to interactively explore radiological images in different anatomical intersection planes. We designed a tutorial during which students worked with the system in groups of about 12 and evaluated the results. Subsequently, each participant was asked to assess the system's value by filling out a Likert-scale questionnaire. The respondents approved all statements which stressed the potential of the system to serve as an additional learning resource for anatomical education. In this case, emphasis was put on active learning, 3-dimensional understanding, and a better comprehension of the course of structures. We are convinced that such an AR MM system can be beneficially installed into anatomical education in order to prepare medical students more effectively for the clinical standards and for more interactive, student-centered learning. Copyright © 2017. Published by Elsevier GmbH.
Lydiatt, Daniel D; Bucher, Gregory S
2012-09-01
The Doctrine of Final Cause, taken from Aristotle's "causes" and modified by Claudius (Aelius) Galen (of Pergamon) stated that for an anatomical part to exist it must have a "cause," not an end point, but a purpose or goal, natural or divine. This affected the renaissance anatomist's thinking. We explore this doctrine's relationship with human head and neck anatomy from antiquity's Aristotle and Galen, and the leading renaissance anatomists from the 16th and 17th centuries. Their relevant writings were influenced by religious and political beliefs and varied from humanistic to reactionary. Tracing anatomical controversies through these works reveal the humanism of Vesalius and others as paralleling the humanists of art and literature. These controversies illustrate how the body was used to demonstrate function, uses, and causes from higher sources. Humanists advanced the social, philosophical, intellectual, literary, and medical/anatomical thoughts of this period. They stood between the Christian church of the Middle Ages and modern science. Like religion, medicine and anatomy had its own revealed sources of knowledge and had sacred texts like Galen's. Vesalius' the Fabrica and the woodcuts established suddenly the beginning of modern observational science and art as the direct and faithful representation of natural phenomena. They displayed anatomy such that others could understand, including errors of Galen, bringing Vesalius into ecclesiastical conflict. Evolutionary scientists today see mutations as favorable or unfavorable depending on the environment. Mutations are random or directed by divine plan, according to perspectives of this ancient debate. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.
Functional Connectivity Bias in the Prefrontal Cortex of Psychopaths.
Contreras-Rodríguez, Oren; Pujol, Jesus; Batalla, Iolanda; Harrison, Ben J; Soriano-Mas, Carles; Deus, Joan; López-Solà, Marina; Macià, Dídac; Pera, Vanessa; Hernández-Ribas, Rosa; Pifarré, Josep; Menchón, José M; Cardoner, Narcís
2015-11-01
Psychopathy is characterized by a distinctive interpersonal style that combines callous-unemotional traits with inflexible and antisocial behavior. Traditional emotion-based perspectives link emotional impairment mostly to alterations in amygdala-ventromedial frontal circuits. However, these models alone cannot explain why individuals with psychopathy can regularly benefit from emotional information when placed on their focus of attention and why they are more resistant to interference from nonaffective contextual cues. The present study aimed to identify abnormal or distinctive functional links between and within emotional and cognitive brain systems in the psychopathic brain to characterize further the neural bases of psychopathy. High-resolution anatomic magnetic resonance imaging with a functional sequence acquired in the resting state was used to assess 22 subjects with psychopathy and 22 control subjects. Anatomic and functional connectivity alterations were investigated first using a whole-brain analysis. Brain regions showing overlapping anatomic and functional changes were examined further using seed-based functional connectivity mapping. Subjects with psychopathy showed gray matter reduction involving prefrontal cortex, paralimbic, and limbic structures. Anatomic changes overlapped with areas showing increased degree of functional connectivity at the medial-dorsal frontal cortex. Subsequent functional seed-based connectivity mapping revealed a pattern of reduced functional connectivity of prefrontal areas with limbic-paralimbic structures and enhanced connectivity within the dorsal frontal lobe in subjects with psychopathy. Our results suggest that a weakened link between emotional and cognitive domains in the psychopathic brain may combine with enhanced functional connections within frontal executive areas. The identified functional alterations are discussed in the context of potential contributors to the inflexible behavior displayed by individuals with psychopathy. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
The Viewing Geometry of Brown Dwarfs Influences Their Observed Colors and Variability Amplitudes
NASA Astrophysics Data System (ADS)
Vos, Johanna M.; Allers, Katelyn N.; Biller, Beth A.
2017-06-01
In this paper we study the full sample of known Spitzer [3.6 μm] and J-band variable brown dwarfs. We calculate the rotational velocities, v\\sin I, of 16 variable brown dwarfs using archival Keck NIRSPEC data and compute the inclination angles of 19 variable brown dwarfs. The results obtained show that all objects in the sample with mid-IR variability detections are inclined at an angle > 20^\\circ , while all objects in the sample displaying J-band variability have an inclination angle > 35^\\circ . J-band variability appears to be more affected by inclination than Spitzer [3.6 μm] variability, and is strongly attenuated at lower inclinations. Since J-band observations probe deeper into the atmosphere than mid-IR observations, this effect may be due to the increased atmospheric path length of J-band flux at lower inclinations. We find a statistically significant correlation between the color anomaly and inclination of our sample, where field objects viewed equator-on appear redder than objects viewed at lower inclinations. Considering the full sample of known variable L, T, and Y spectral type objects in the literature, we find that the variability properties of the two bands display notably different trends that are due to both intrinsic differences between bands and the sensitivity of ground-based versus space-based searches. However, in both bands we find that variability amplitude may reach a maximum at ˜7-9 hr periods. Finally, we find a strong correlation between color anomaly and variability amplitude for both the J-band and mid-IR variability detections, where redder objects display higher variability amplitudes.
Rissler, Jenny; Gudmundsson, Anders; Nicklasson, Hanna; Swietlicki, Erik; Wollmer, Per; Löndahl, Jakob
2017-04-08
Exposure to airborne particles has a major impact on global health. The probability of these particles to deposit in the respiratory tract during breathing is essential for their toxic effects. Observations have shown that there is a substantial variability in deposition between subjects, not only due to respiratory diseases, but also among individuals with healthy lungs. The factors determining this variability are, however, not fully understood. In this study we experimentally investigate factors that determine individual differences in the respiratory tract depositions of inhaled particles for healthy subjects at relaxed breathing. The study covers particles of diameters 15-5000 nm and includes 67 subjects aged 7-70 years. A comprehensive examination of lung function was performed for all subjects. Principal component analyses and multiple regression analyses were used to explore the relationships between subject characteristics and particle deposition. A large individual variability in respiratory tract deposition efficiency was found. Individuals with high deposition of a certain particle size generally had high deposition for all particles <3500 nm. The individual variability was explained by two factors: breathing pattern, and lung structural and functional properties. The most important predictors were found to be breathing frequency and anatomical airway dead space. We also present a linear regression model describing the deposition based on four variables: tidal volume, breathing frequency, anatomical dead space and resistance of the respiratory system (the latter measured with impulse oscillometry). To understand why some individuals are more susceptible to airborne particles we must understand, and take into account, the individual variability in the probability of particles to deposit in the respiratory tract by considering not only breathing patterns but also adequate measures of relevant structural and functional properties.
Skorek, Andrzej; Tretiakow, Dmitry; Szmuda, Tomasz; Przewozny, Tomasz
2017-02-01
By means of three-dimensional display of the critical measurements, the authors suggest a novel definition of 'dangerous ethmoid'. Parallel to Keros type III, the proposed determining factors include: olfactory fossa width >6 mm, its distance to the medial nasal concha (turbinate) <20 mm and to the orbit interval of <10 mm. Clinical evaluation of these preliminary criteria based only on radiological data is required and underway. Detailed pre-operative assessment of sinus computer tomography (CT) scans reduces the frequency of severe complications in patients undergoing endoscopic sinus surgery (ESS). The authors aimed to identify a sub-set of anatomical features pre-disposing to major post-operative complications. Sinus computer tomography (CT) scans of patients of a single institution qualified for ESS were examined. Besides the Keros classification, authors focused on the anatomic measurements as follows: the olfactory fossa depth, width, and its distance from the medial nasal concha and the medial wall of the orbit (referred to as 'critical measurements'). The sample comprised 120 consecutive CT exams, without clinical validation. Keros type I, II, and III was noted in 9.2%, 75.8%, and 15.0% of cases, respectively. Despite some statistically significant correlations, it was not possible to identify the patient age, sex, and side of body clearly correlating with the critical measurements.
aGEM: an integrative system for analyzing spatial-temporal gene-expression information
Jiménez-Lozano, Natalia; Segura, Joan; Macías, José Ramón; Vega, Juanjo; Carazo, José María
2009-01-01
Motivation: The work presented here describes the ‘anatomical Gene-Expression Mapping (aGEM)’ Platform, a development conceived to integrate phenotypic information with the spatial and temporal distributions of genes expressed in the mouse. The aGEM Platform has been built by extending the Distributed Annotation System (DAS) protocol, which was originally designed to share genome annotations over the WWW. DAS is a client-server system in which a single client integrates information from multiple distributed servers. Results: The aGEM Platform provides information to answer three main questions. (i) Which genes are expressed in a given mouse anatomical component? (ii) In which mouse anatomical structures are a given gene or set of genes expressed? And (iii) is there any correlation among these findings? Currently, this Platform includes several well-known mouse resources (EMAGE, GXD and GENSAT), hosting gene-expression data mostly obtained from in situ techniques together with a broad set of image-derived annotations. Availability: The Platform is optimized for Firefox 3.0 and it is accessed through a friendly and intuitive display: http://agem.cnb.csic.es Contact: natalia@cnb.csic.es Supplementary information: Supplementary data are available at http://bioweb.cnb.csic.es/VisualOmics/aGEM/home.html and http://bioweb.cnb.csic.es/VisualOmics/index_VO.html and Bioinformatics online. PMID:19592395
NASA Astrophysics Data System (ADS)
Yang, Ying; Whiteman, Suzanne; Gey van Pittius, Daniel; He, Yonghong; Wang, Ruikang K.; Spiteri, Monica A.
2004-04-01
An ideal diagnostic system for the human airways should be able to detect and define early development of premalignant pathological lesions, to facilitate optimal curative treatment and prevent irreversible and/or invasive lung disease. There is great need for exploration of safe, repeatable imaging techniques which can run at real-time and with high spatial resolution. In this study, optical coherence tomography (OCT) was utilized to acquire cross-sectional images of upper and lower airways using fresh pig lung resections as a model system. Obtained OCT images were compared with parallel tissue characterization by conventional histological analysis. Our objective was to determine whether OCT differentiates the composite structural layers and inherent anatomical variations along different airway locations. The data show that OCT can clearly display the multilayered structure of the airways. The subtle architectural differences in three separate anatomical locations including trachea, main bronchus and tertiary bronchus were clearly delineated. Images of the appropriate anatomical profiles, with depth of up to 2 mm and 10 µm spatial resolution were obtained by our current OCT system, which was sufficient for recognition of the epithelium, subepithelial tissues and cartilage. In addition, the relative thickness of individual structural components was accurately reflected and comparable to histological sections. These data support OCT as a highly feasible, optical biopsy tool, which merits further exploration for early diagnosis of human airway epithelial pathology.
Pouso, Paula; Radmilovich, Milka; Silva, Ana
2017-04-01
Hypothalamic nonapeptides (arginin vasotocin-vasopressin, oxytocin-isotocin) are known to modulate social behaviors across vertebrates. The neuroanatomical conservation of nonapeptide systems enables the use of novel vertebrate model species to identify general strategies of their functional mechanisms. We present a detailed immunohistochemical description of vasotocin (AVT) cell populations and their projections in two species of weakly electric fish with different social structure, Gymnotus omarorum and Brachyhypopomus gauderio. Strong behavioral, pharmacological, and electrophysiological evidence support that AVT modulation of electric behavior differs between the gregarious B. gauderio and the solitary G. omarorum. This functional diversity does not necessarily depend on anatomical differences of AVT neurons. To test this, we focus on interspecific comparisons of the AVT system in basal non-breeding males along the brain. G. omarorum and B. gauderio showed similar AVT somata sizes and comparable distributions of AVT somata and fibers. Interestingly, AVT fibers project to areas related to the control of social behavior and electromotor displays in both species. We found that no gross anatomical differences in the organization of the AVT system account for functional differences between species, which rather shall depend on the pattern of activation of neurons embedded in the same basic anatomical organization of the AVT system. Copyright © 2017 Elsevier Ltd. All rights reserved.
General organization of the human intra-masseteric aponeuroses: changes with ageing.
Brunel, G; El-Haddioui, A; Bravetti, P; Zouaoui, A; Gaudy, J-F
2003-01-01
A magnetic resonance imaging (MRI) study of the layout of the aponeurotic layers of the masseter muscle was done on a series of 18 patients, aged from 6 to 79 years. The study was undertaken in parallel with a study on 169 cadavers to correlate the anatomical dissection and MRI findings. The aims were as follows. On the cadavers, the results of dissection were compared with the results of MRI: the layer-by-layer dissections and the anatomical dissections of the different spatial planes have shown that the masseter muscle displays a penniform structure typically characterized by the presence of alternating muscular/aponeurotic layers. The anatomical sections and the MRI section in the same plane allowed the appearance of the intra-muscular aponeurotic layers on MRI to be defined. The patients were then divided into four age cohorts, and the arrangement and variations of the human masseter muscle defined as a function of age. This double study has brought new elements to the understanding of the timing of the development of the intra-muscular aponeurotic structures and the modifications which they undergo with ageing. It appears that the aponeurotic structures only become individually identifiable towards the age of 17 years and that ageing is accompanied by a reduction in the transverse muscular mass accompanied by a verticalization of the aponeurotic layers.
Castagneri, Daniele; Petit, Giai; Carrer, Marco
2015-12-01
Climate change can induce substantial modifications in xylem structure and water transport capacity of trees exposed to environmental constraints. To elucidate mechanisms of xylem plasticity in response to climate, we retrospectively analysed different cell anatomical parameters over tree-ring series in Norway spruce (Picea abies L. Karst.). We sampled 24 trees along an altitudinal gradient (1200, 1600 and 2100 m above sea level, a.s.l.) and processed 2335 ± 1809 cells per ring. Time series for median cell lumen area (MCA), cell number (CN), tree-ring width (RW) and tree-ring-specific hydraulic conductivity (Kr) were crossed with daily temperature and precipitation records (1926-2011) to identify climate influence on xylem anatomical traits. Higher Kr at the low elevation site was due to higher MCA and CN. These variables were related to different aspects of intra-seasonal climatic variability under different environmental conditions, with MCA being more sensitive to summer precipitation. Winter precipitation (snow) benefited most parameters in all the sites. Descending the gradient, sensitivity of xylem features to summer climate shifted mostly from temperature to precipitation. In the context of climate change, our results indicate that higher summer temperatures at high elevations will benefit cell production and xylem hydraulic efficiency, whereas reduced water availability at lower elevations could negatively affect tracheids enlargement and thus stem capacity to transport water. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Svantesson, Eleonor; Sundemo, David; Hamrin Senorski, Eric; Alentorn-Geli, Eduard; Musahl, Volker; Fu, Freddie H; Desai, Neel; Stålman, Anders; Samuelsson, Kristian
2017-12-01
Studies comparing single- and double-bundle anterior cruciate ligament (ACL) reconstructions often include a combined analysis of anatomic and non-anatomic techniques. The purpose of this study was to compare the revision rates between single- and double-bundle ACL reconstructions in the Swedish National Knee Ligament Register with regard to surgical variables as determined by the anatomic ACL reconstruction scoring checklist (AARSC). Patients from the Swedish National Knee Ligament Register who underwent either single- or double-bundle ACL reconstruction with hamstring tendon autograft during the period 2007-2014 were included. The follow-up period started with primary ACL reconstruction, and the outcome measure was set as revision surgery. An online questionnaire based on the items of the AARSC was used to determine the surgical technique implemented in the single-bundle procedures. These were organized into subgroups based on surgical variables, and the revision rates were compared with the double-bundle ACL reconstruction. Hazard ratios (HR) with 95% confidence interval (CI) was calculated and adjusted for confounders by Cox regression. A total of 22,460 patients were included in the study, of which 21,846 were single-bundle and 614 were double-bundle ACL reconstruction. Double-bundle ACL reconstruction had a revision frequency of 2.0% (n = 12) and single-bundle 3.2% (n = 689). Single-bundle reconstruction had an increased risk of revision surgery compared with double-bundle [adjusted HR 1.98 (95% CI 1.12-3.51), p = 0.019]. The subgroup analysis showed a significantly increased risk of revision surgery in patients undergoing single-bundle with anatomic technique using transportal drilling [adjusted HR 2.51 (95% CI 1.39-4.54), p = 0.002] compared with double-bundle ACL reconstruction. Utilizing a more complete anatomic technique according to the AARSC lowered the hazard rate considerably when transportal drilling was performed but still resulted in significantly increased risk of revision surgery compared with double-bundle ACL reconstruction [adjusted HR 1.87 (95% CI 1.04-3.38), p = 0.037]. Double-bundle ACL reconstruction is associated with a lower risk of revision surgery than single-bundle ACL reconstruction. Single-bundle procedures performed using transportal femoral drilling technique had significantly higher risk of revision surgery compared with double-bundle. However, a reference reconstruction with transportal drilling defined as a more complete anatomic reconstruction reduces the risk of revision surgery considerably. III.
Sedighi, Alireza; Ulman, Sophia M.
2018-01-01
The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614
NASA Technical Reports Server (NTRS)
Dorosz, Jennifer L.; Bolson, Edward L.; Waiss, Mary S.; Sheehan, Florence H.
2003-01-01
Three-dimensional guidance programs have been shown to increase the reproducibility of 2-dimensional (2D) left ventricular volume calculations, but these systems have not been tested in 2D measurements of the right ventricle. Using magnetic fields to identify the probe location, we developed a new 3-dimensional guidance system that displays the line of intersection, the plane of intersection, and the numeric angle of intersection between the current image plane and previously saved scout views. When used by both an experienced and an inexperienced sonographer, this guidance system increases the accuracy of the 2D right ventricular volume measurements using a monoplane pyramidal model. Furthermore, a reconstruction of the right ventricle, with a computed volume similar to the calculated 2D volume, can be displayed quickly by tracing a few anatomic structures on 2D scans.
Surgery applications of virtual reality
NASA Technical Reports Server (NTRS)
Rosen, Joseph
1994-01-01
Virtual reality is a computer-generated technology which allows information to be displayed in a simulated, bus lifelike, environment. In this simulated 'world', users can move and interact as if they were actually a part of that world. This new technology will be useful in many different fields, including the field of surgery. Virtual reality systems can be used to teach surgical anatomy, diagnose surgical problems, plan operations, simulate and perform surgical procedures (telesurgery), and predict the outcomes of surgery. The authors of this paper describe the basic components of a virtual reality surgical system. These components include: the virtual world, the virtual tools, the anatomical model, the software platform, the host computer, the interface, and the head-coupled display. In the chapter they also review the progress towards using virtual reality for surgical training, planning, telesurgery, and predicting outcomes. Finally, the authors present a training system being developed for the practice of new procedures in abdominal surgery.
Co-located haptic and 3D graphic interface for medical simulations.
Berkelman, Peter; Miyasaka, Muneaki; Bozlee, Sebastian
2013-01-01
We describe a system which provides high-fidelity haptic feedback in the same physical location as a 3D graphical display, in order to enable realistic physical interaction with virtual anatomical tissue during modelled procedures such as needle driving, palpation, and other interventions performed using handheld instruments. The haptic feedback is produced by the interaction between an array of coils located behind a thin flat LCD screen, and permanent magnets embedded in the instrument held by the user. The coil and magnet configuration permits arbitrary forces and torques to be generated on the instrument in real time according to the dynamics of the simulated tissue by activating the coils in combination. A rigid-body motion tracker provides position and orientation feedback of the handheld instrument to the computer simulation, and the 3D display is produced using LCD shutter glasses and a head-tracking system for the user.
Adhi, Mohammad Idrees; Siyal, Nisar; Aziz, Sumbul
2017-01-01
To study anatomical and functional outcomes of retinectomies in rhegmatogenous retinal detachments complicated by proliferative vitreoretinopathy. This is a retrospective interventional consecutive case series of eyes with rhegmatogenous retinal detachments complicated by advanced proliferative vitreoretinopathy and managed by relaxing retinectomy over a period of seventeen years. Three-port pars plana vitrectomy included core vitrectomy and removal of all epi-retinal membranes. On failure to flatten, retina was cut and excised. Basal vitrectomy and removal of anterior flap of retina then followed. Silicone oil was used as temponade in majority of cases. The dependent variables were anatomical and functional outcomes. The statistical analysis was performed on SPSS 21. Series included 370 eyes of 337 patients. Mean follow up was 39 months. Scleral explant was used in 90(24.39%) cases. Two hundred and nine (56.49%) eyes were operated with trans conjunctival sutureless vitrectomy technique. Procedure was bilateral in 33 patients (09.79%). Retina attached in 311(84.05%) eyes after initial surgery. Final re-attachment after one or more surgeries was achieved in 344(92.97%) eyes. Two hundred and eleven (57.02%) cases achieved visual acuity of 6/60 or better. Relaxing retinectomies have good and encouraging anatomical and functional outcomes. This surgery can be effectively carried out with trans conjunctival sutureless vitrectomy technique.
User Expectations for Media Sharing Practices in Open Display Networks
Jose, Rui; Cardoso, Jorge C. S.; Hong, Jason
2015-01-01
Open Display Networks have the potential to allow many content creators to publish their media to an open-ended set of screen displays. However, this raises the issue of how to match that content to the right displays. In this study, we aim to understand how the perceived utility of particular media sharing scenarios is affected by three independent variables, more specifically: (a) the locativeness of the content being shared; (b) how personal that content is and (c) the scope in which it is being shared. To assess these effects, we composed a set of 24 media sharing scenarios embedded with different treatments of our three independent variables. We then asked 100 participants to express their perception of the relevance of those scenarios. The results suggest a clear preference for scenarios where content is both local and directly related to the person that is publishing it. This is in stark contrast to the types of content that are commonly found in public displays, and confirms the opportunity that open displays networks may represent a new media for self-expression. This novel understanding may inform the design of new publication paradigms that will enable people to share media across the display networks. PMID:26153770
USDA-ARS?s Scientific Manuscript database
Open-refrigerated display cabinets are widely used in supermarkets and grocery chains around the globe. However, the temperature conditions in these display cases are variable which may impact product quality and safety. Therefore, we investigated the quality and microbiological populations of bagge...
Liu, Lin; He, Yihua; Li, Zhian; Gu, Xiaoyan; Zhang, Ye; Zhang, Lianzhong
2014-07-01
The use of low-frequency high-definition power Doppler in assessing and defining pulmonary venous connections was investigated. Study A included 260 fetuses at gestational ages ranging from 18 to 36 weeks. Pulmonary veins were assessed by performing two-dimensional B-mode imaging, color Doppler flow imaging (CDFI), and low-frequency high-definition power Doppler. A score of 1 was assigned if one pulmonary vein was visualized, 2 if two pulmonary veins were visualized, 3 if three pulmonary veins were visualized, and 4 if four pulmonary veins were visualized. The detection rate between Exam-1 and Exam-2 (intra-observer variability) and between Exam-1 and Exam-3 (inter-observer variability) was compared. In study B, five cases with abnormal pulmonary venous connection were diagnosed and compared to their anatomical examination. In study A, there was a significant difference between CDFI and low-frequency high-definition power Doppler for the four pulmonary veins observed (P < 0.05). The detection rate of each pulmonary vein when employing low-frequency high-definition power Doppler was higher than that when employing two-dimensional B-mode imaging or CDFI. There was no significant difference between the intra- and inter-observer variabilities using low-frequency high-definition power Doppler display of pulmonary veins (P > 0.05). The coefficient correlation between Exam-1 and Exam-2 was 0.844, and the coefficient correlation between Exam-1 and Exam-3 was 0.821. In study B, one case of total anomalous pulmonary venous return and four cases of partial anomalous pulmonary venous return were diagnosed by low-frequency high-definition power Doppler and confirmed by autopsy. The assessment of pulmonary venous connections by low-frequency high-definition power Doppler is advantageous. Pulmonary venous anatomy can and should be monitored during fetal heart examination.
Volaire, Florence; Lens, Frederic; Cochard, Hervé; Xu, Hueng; Chacon-Doria, Larissa; Bristiel, Pauline; Balachowski, Jennifer; Rowe, Nick; Violle, Cyrille; Picon-Cochard, Catherine
2018-05-17
More intense droughts under climate change threaten species resilience. Hydraulic strategies determine drought survival in woody plants but have been hardly studied in herbaceous species. We explored the intraspecific variability of hydraulic and morphological traits as indicators of dehydration tolerance in a perennial grass, cocksfoot (Dactylis glomerata), which has a large biogeographical distribution in Europe. Twelve populations of cocksfoot originating from Mediterranean, Temperate and Northern European areas were grown in a controlled environment in pots. Dehydration tolerance, leaf and stem anatomical traits and xylem pressure associated with 88 or 50 % loss of xylem conductance (P88, P50) were measured. Across the 12 populations of cocksfoot, P50 ranged from -3.06 to - 6.36 MPa, while P88 ranged from -5.06 to -11.6 MPa. This large intraspecific variability of embolism thresholds corresponded with the biogeographical distribution and some key traits of the populations. In particular, P88 was correlated with dehydration tolerance (r = -0.79). The dehydration-sensitive Temperate populations exhibited the highest P88 (-6.1 MPa). The most dehydration-tolerant Mediterranean populations had the greatest leaf dry matter content and leaf fracture toughness, and the lowest P88 (-10.4 MPa). The Northern populations displayed intermediate trait values, potentially attributable to frost resistance. The thickness of metaxylem vessel walls in stems was highly correlated with P50 (r = -0.92), but no trade-off with stem lignification was observed. The relevance of the linkage between hydraulic and stomatal traits is discussed for drought survival in perennial grasses. Compared with woody species, the large intraspecific variability in dehydration tolerance and embolism resistance within cocksfoot has consequences for its sensitivity to climate change. To better understand adaptive strategies of herbaceous species to increasing drought and frost requires further exploration of the role of hydraulic and mechanical traits using a larger inter- and intraspecific range of species.
A natural history of the human mind: tracing evolutionary changes in brain and cognition
Sherwood, Chet C; Subiaul, Francys; Zawidzki, Tadeusz W
2008-01-01
Since the last common ancestor shared by modern humans, chimpanzees and bonobos, the lineage leading to Homo sapiens has undergone a substantial change in brain size and organization. As a result, modern humans display striking differences from the living apes in the realm of cognition and linguistic expression. In this article, we review the evolutionary changes that occurred in the descent of Homo sapiens by reconstructing the neural and cognitive traits that would have characterized the last common ancestor and comparing these with the modern human condition. The last common ancestor can be reconstructed to have had a brain of approximately 300–400 g that displayed several unique phylogenetic specializations of development, anatomical organization, and biochemical function. These neuroanatomical substrates contributed to the enhancement of behavioral flexibility and social cognition. With this evolutionary history as precursor, the modern human mind may be conceived as a mosaic of traits inherited from a common ancestry with our close relatives, along with the addition of evolutionary specializations within particular domains. These modern human-specific cognitive and linguistic adaptations appear to be correlated with enlargement of the neocortex and related structures. Accompanying this general neocortical expansion, certain higher-order unimodal and multimodal cortical areas have grown disproportionately relative to primary cortical areas. Anatomical and molecular changes have also been identified that might relate to the greater metabolic demand and enhanced synaptic plasticity of modern human brain's. Finally, the unique brain growth trajectory of modern humans has made a significant contribution to our species’ cognitive and linguistic abilities. PMID:18380864
Deib, Gerard; Johnson, Alex; Unberath, Mathias; Yu, Kevin; Andress, Sebastian; Qian, Long; Osgood, Gregory; Navab, Nassir; Hui, Ferdinand; Gailloud, Philippe
2018-05-30
Optical see-through head mounted displays (OST-HMDs) offer a mixed reality (MixR) experience with unhindered procedural site visualization during procedures using high resolution radiographic imaging. This technical note describes our preliminary experience with percutaneous spine procedures utilizing OST-HMD as an alternative to traditional angiography suite monitors. MixR visualization was achieved using the Microsoft HoloLens system. Various spine procedures (vertebroplasty, kyphoplasty, and percutaneous discectomy) were performed on a lumbar spine phantom with commercially available devices. The HMD created a real time MixR environment by superimposing virtual posteroanterior and lateral views onto the interventionalist's field of view. The procedures were filmed from the operator's perspective. Videos were reviewed to assess whether key anatomic landmarks and materials were reliably visualized. Dosimetry and procedural times were recorded. The operator completed a questionnaire following each procedure, detailing benefits, limitations, and visualization mode preferences. Percutaneous vertebroplasty, kyphoplasty, and discectomy procedures were successfully performed using OST-HMD image guidance on a lumbar spine phantom. Dosimetry and procedural time compared favorably with typical procedural times. Conventional and MixR visualization modes were equally effective in providing image guidance, with key anatomic landmarks and materials reliably visualized. This preliminary study demonstrates the feasibility of utilizing OST-HMDs for image guidance in interventional spine procedures. This novel visualization approach may serve as a valuable adjunct tool during minimally invasive percutaneous spine treatment. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Structure Sensor for mobile markerless augmented reality
NASA Astrophysics Data System (ADS)
Kilgus, T.; Bux, R.; Franz, A. M.; Johnen, W.; Heim, E.; Fangerau, M.; Müller, M.; Yen, K.; Maier-Hein, L.
2016-03-01
3D Visualization of anatomical data is an integral part of diagnostics and treatment in many medical disciplines, such as radiology, surgery and forensic medicine. To enable intuitive interaction with the data, we recently proposed a new concept for on-patient visualization of medical data which involves rendering of subsurface structures on a mobile display that can be moved along the human body. The data fusion is achieved with a range imaging device attached to the display. The range data is used to register static 3D medical imaging data with the patient body based on a surface matching algorithm. However, our previous prototype was based on the Microsoft Kinect camera and thus required a cable connection to acquire color and depth data. The contribution of this paper is two-fold. Firstly, we replace the Kinect with the Structure Sensor - a novel cable-free range imaging device - to improve handling and user experience and show that the resulting accuracy (target registration error: 4.8+/-1.5 mm) is comparable to that achieved with the Kinect. Secondly, a new approach to visualizing complex 3D anatomy based on this device, as well as 3D printed models of anatomical surfaces, is presented. We demonstrate that our concept can be applied to in vivo data and to a 3D printed skull of a forensic case. Our new device is the next step towards clinical integration and shows that the concept cannot only be applied during autopsy but also for presentation of forensic data to laypeople in court or medical education.
Comparison of Feature Selection Techniques in Machine Learning for Anatomical Brain MRI in Dementia.
Tohka, Jussi; Moradi, Elaheh; Huttunen, Heikki
2016-07-01
We present a comparative split-half resampling analysis of various data driven feature selection and classification methods for the whole brain voxel-based classification analysis of anatomical magnetic resonance images. We compared support vector machines (SVMs), with or without filter based feature selection, several embedded feature selection methods and stability selection. While comparisons of the accuracy of various classification methods have been reported previously, the variability of the out-of-training sample classification accuracy and the set of selected features due to independent training and test sets have not been previously addressed in a brain imaging context. We studied two classification problems: 1) Alzheimer's disease (AD) vs. normal control (NC) and 2) mild cognitive impairment (MCI) vs. NC classification. In AD vs. NC classification, the variability in the test accuracy due to the subject sample did not vary between different methods and exceeded the variability due to different classifiers. In MCI vs. NC classification, particularly with a large training set, embedded feature selection methods outperformed SVM-based ones with the difference in the test accuracy exceeding the test accuracy variability due to the subject sample. The filter and embedded methods produced divergent feature patterns for MCI vs. NC classification that suggests the utility of the embedded feature selection for this problem when linked with the good generalization performance. The stability of the feature sets was strongly correlated with the number of features selected, weakly correlated with the stability of classification accuracy, and uncorrelated with the average classification accuracy.
Anzai, Wataru; Cádiz, Antonio; Endo, Hideki
2015-10-01
In Anolis lizards, sexual dimorphism has been reported in morphological and ecological traits. Males show larger body size and longer limbs related to territorial combat and courtship display with the dewlap. Although functional-anatomical traits are closely related to locomotor behaviors, differences between sexes in musculoskeletal traits on limbs remain unclear. We explored the relationships among sexual dimorphisms in musculoskeletal morphology, habitat, and locomotor traits in Anolis lizards. Specifically, we examined appendicular musculoskeletal morphology in three species of Cuban Anolis by measuring muscle mass and lengths of moment arms. Through comparisons of crossing locomotion, we found that the runner species possessed larger extensors in hindlimbs, which are advantageous for running, whereas the masses of the humeral and femoral retractors were larger in climber species, allowing these lizards to hold up their bodies and occupy tree substrates. Comparisons between the sexes showed different trends among the three species. Males of A. porcatus, which inhabit narrow branches or leaves, had stronger elbow extensors that maintain the display posture. In contrast, males of A. sagrei, which occupy broad surfaces, did not show sexual differences that affected social display. Moreover, A. bartschi indicated sexual differences despite the absence of dewlapping behavior. Our findings suggest that both sexes show fundamentally similar relationships between muscular morphology and locomotor habits to adapt arboreal or terrestrial substrates, and yet sexual dimorphism in forelimb muscles may additionally affected by male specific display with the dewlap.
Inattentional blindness increased with augmented reality surgical navigation.
Dixon, Benjamin J; Daly, Michael J; Chan, Harley H L; Vescan, Allan; Witterick, Ian J; Irish, Jonathan C
2014-01-01
Augmented reality (AR) surgical navigation systems, designed to increase accuracy and efficiency, have been shown to negatively impact on attention. We wished to assess the effect "head-up" AR displays have on attention, efficiency, and accuracy, while performing a surgical task, compared with the same information being presented on a submonitor (SM). Fifty experienced otolaryngology surgeons (n = 42) and senior otolaryngology trainees (n = 8) performed an endoscopic surgical navigation exercise on a predissected cadaveric model. Computed tomography-generated anatomic contours were fused with the endoscopic image to provide an AR view. Subjects were randomized to perform the task with a standard endoscopic monitor with the AR navigation displayed on an SM or with AR as a single display. Accuracy, task completion time, and the recognition of unexpected findings (a foreign body and a critical complication) were recorded. Recognition of the foreign body was significantly better in the SM group (15/25 [60%]) compared with the AR alone group (8/25 [32%]; p = 0.02). There was no significant difference in task completion time (p = 0.83) or accuracy (p = 0.78) between the two groups. Providing identical surgical navigation on a SM, rather than on a single head-up display, reduced the level of inattentional blindness as measured by detection of unexpected findings. These gains were achieved without any measurable impact on efficiency or accuracy. AR displays may distract the user and we caution injudicious adoption of this technology for medical procedures.
Stroke and Episodic Memory Disorders
ERIC Educational Resources Information Center
Lim, Chun; Alexander, Michael P.
2009-01-01
Memory impairments are common after stroke, and the anatomical basis for impairments may be quite variable. To determine the range of stroke-related memory impairment, we identified all case reports and group studies through the Medline database and the Science Citation Index. There is no hypothesis about memory that is unique to stroke, but there…
Anatomic variability in the deposition of radio frequency electromagnetic energy in mammals as been well documented. ecent study [D'Andrea et al. 1985] reported specific absorption rat (SAR) hotspots in the brain, rectum, and tail of rat carcasses exposed to 360- and to 2,450-MHz...
Anatomically accurate human child and adult nasal tract models will be used in concert with computationally simulated air flow information to investigate the influence of age-related differences in anatomy on inhalation dosimetry in the upper and lower airways. The findings of t...
Learning-based stochastic object models for characterizing anatomical variations
NASA Astrophysics Data System (ADS)
Dolly, Steven R.; Lou, Yang; Anastasio, Mark A.; Li, Hua
2018-03-01
It is widely known that the optimization of imaging systems based on objective, task-based measures of image quality via computer-simulation requires the use of a stochastic object model (SOM). However, the development of computationally tractable SOMs that can accurately model the statistical variations in human anatomy within a specified ensemble of patients remains a challenging task. Previously reported numerical anatomic models lack the ability to accurately model inter-patient and inter-organ variations in human anatomy among a broad patient population, mainly because they are established on image data corresponding to a few of patients and individual anatomic organs. This may introduce phantom-specific bias into computer-simulation studies, where the study result is heavily dependent on which phantom is used. In certain applications, however, databases of high-quality volumetric images and organ contours are available that can facilitate this SOM development. In this work, a novel and tractable methodology for learning a SOM and generating numerical phantoms from a set of volumetric training images is developed. The proposed methodology learns geometric attribute distributions (GAD) of human anatomic organs from a broad patient population, which characterize both centroid relationships between neighboring organs and anatomic shape similarity of individual organs among patients. By randomly sampling the learned centroid and shape GADs with the constraints of the respective principal attribute variations learned from the training data, an ensemble of stochastic objects can be created. The randomness in organ shape and position reflects the learned variability of human anatomy. To demonstrate the methodology, a SOM of an adult male pelvis is computed and examples of corresponding numerical phantoms are created.
Nelson, Eric W
2018-05-01
Although there is frequently an element of variability found in human anatomy, we tend to think of anatomic structures as following the pattern in which we, as surgeons, most frequently encounter them. Though it is possible that a variant pattern of a commonly encountered anatomic structure has "never been seen" by us as surgeons, the constant process of learning sometimes leads us to ask ourselves whether we have truly never encountered such a structure or condition before or whether we simply did not recognize it when it "saw us." Copyright © 2018 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.
Modern morphometry: new perspectives in physical anthropology.
Mantini, Simone; Ripani, Maurizio
2009-06-01
In the past one hundred years physical anthropology has recourse to more and more efficient methods, which provide several new information regarding, human evolution and biology. Apart from the molecular approach, the introduction of new computed assisted techniques gave rise to a new concept of morphometry. Computed tomography and 3D-imaging, allowed providing anatomical description of the external and inner structures exceeding the problems encountered with the traditional morphometric methods. Furthermore, the support of geometric morphometrics, allowed creating geometric models to investigate morphological variation in terms of evolution, ontogeny and variability. The integration of these new tools gave rise to the virtual anthropology and to a new image of the anthropologist in which anatomical, biological, mathematical statistical and data processing information are fused in a multidisciplinary approach.
Kennedy, R R; Merry, A F
2011-09-01
Anaesthesia involves processing large amounts of information over time. One task of the anaesthetist is to detect substantive changes in physiological variables promptly and reliably. It has been previously demonstrated that a graphical trend display of historical data leads to more rapid detection of such changes. We examined the effect of a graphical indication of the magnitude of Trigg's Tracking Variable, a simple statistically based trend detection algorithm, on the accuracy and latency of the detection of changes in a micro-simulation. Ten anaesthetists each viewed 20 simulations with four variables displayed as the current value with a simple graphical trend display. Values for these variables were generated by a computer model, and updated every second; after a period of stability a change occurred to a new random value at least 10 units from baseline. In 50% of the simulations an indication of the rate of change was given by a five level graphical representation of the value of Trigg's Tracking Variable. Participants were asked to indicate when they thought a change was occurring. Changes were detected 10.9% faster with the trend indicator present (mean 13.1 [SD 3.1] cycles vs 14.6 [SD 3.4] cycles, 95% confidence interval 0.4 to 2.5 cycles, P = 0.013. There was no difference in accuracy of detection (median with trend detection 97% [interquartile range 95 to 100%], without trend detection 100% [98 to 100%]), P = 0.8. We conclude that simple statistical trend detection may speed detection of changes during routine anaesthesia, even when a graphical trend display is present.
Evaluation of a pilot workload metric for simulated VTOL landing tasks
NASA Technical Reports Server (NTRS)
North, R. A.; Graffunder, K.
1979-01-01
A methodological approach to measuring workload was investigated for evaluation of new concepts in VTOL aircraft displays. Multivariate discriminant functions were formed from conventional flight performance and/or visual response variables to maximize detection of experimental differences. The flight performance variable discriminant showed maximum differentiation between crosswind conditions. The visual response measure discriminant maximized differences between fixed vs. motion base conditions and experimental displays. Physiological variables were used to attempt to predict the discriminant function values for each subject/condition/trial. The weights of the physiological variables in these equations showed agreement with previous studies. High muscle tension, light but irregular breathing patterns, and higher heart rate with low amplitude all produced higher scores on this scale and thus, represented higher workload levels.
Sugarman, R.M.
1960-08-30
An oscilloscope is designed for displaying transient signal waveforms having random time and amplitude distributions. The oscilloscopc is a sampling device that selects for display a portion of only those waveforms having a particular range of amplitudes. For this purpose a pulse-height analyzer is provided to screen the pulses. A variable voltage-level shifter and a time-scale rampvoltage generator take the pulse height relative to the start of the waveform. The variable voltage shifter produces a voltage level raised one step for each sequential signal waveform to be sampled and this results in an unsmeared record of input signal waveforms. Appropriate delay devices permit each sample waveform to pass its peak amplitude before the circuit selects it for display.
Prostatome: A combined anatomical and disease based MRI atlas of the prostate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rusu, Mirabela; Madabhushi, Anant, E-mail: anant.madabhushi@case.edu; Bloch, B. Nicolas
Purpose: In this work, the authors introduce a novel framework, the anatomically constrained registration (AnCoR) scheme and apply it to create a fused anatomic-disease atlas of the prostate which the authors refer to as the prostatome. The prostatome combines a MRI based anatomic and a histology based disease atlas. Statistical imaging atlases allow for the integration of information across multiple scales and imaging modalities into a single canonical representation, in turn enabling a fused anatomical-disease representation which may facilitate the characterization of disease appearance relative to anatomic structures. While statistical atlases have been extensively developed and studied for the brain,more » approaches that have attempted to combine pathology and imaging data for study of prostate pathology are not extant. This works seeks to address this gap. Methods: The AnCoR framework optimizes a scoring function composed of two surface (prostate and central gland) misalignment measures and one intensity-based similarity term. This ensures the correct mapping of anatomic regions into the atlas, even when regional MRI intensities are inconsistent or highly variable between subjects. The framework allows for creation of an anatomic imaging and a disease atlas, while enabling their fusion into the anatomic imaging-disease atlas. The atlas presented here was constructed using 83 subjects with biopsy confirmed cancer who had pre-operative MRI (collected at two institutions) followed by radical prostatectomy. The imaging atlas results from mapping thein vivo MRI into the canonical space, while the anatomic regions serve as domain constraints. Elastic co-registration MRI and corresponding ex vivo histology provides “ground truth” mapping of cancer extent on in vivo imaging for 23 subjects. Results: AnCoR was evaluated relative to alternative construction strategies that use either MRI intensities or the prostate surface alone for registration. The AnCoR framework yielded a central gland Dice similarity coefficient (DSC) of 90%, and prostate DSC of 88%, while the misalignment of the urethra and verumontanum was found to be 3.45 mm, and 4.73 mm, respectively, which were measured to be significantly smaller compared to the alternative strategies. As might have been anticipated from our limited cohort of biopsy confirmed cancers, the disease atlas showed that most of the tumor extent was limited to the peripheral zone. Moreover, central gland tumors were typically larger in size, possibly because they are only discernible at a much later stage. Conclusions: The authors presented the AnCoR framework to explicitly model anatomic constraints for the construction of a fused anatomic imaging-disease atlas. The framework was applied to constructing a preliminary version of an anatomic-disease atlas of the prostate, the prostatome. The prostatome could facilitate the quantitative characterization of gland morphology and imaging features of prostate cancer. These techniques, may be applied on a large sample size data set to create a fully developed prostatome that could serve as a spatial prior for targeted biopsies by urologists. Additionally, the AnCoR framework could allow for incorporation of complementary imaging and molecular data, thereby enabling their careful correlation for population based radio-omics studies.« less
NASA Astrophysics Data System (ADS)
Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.
2015-03-01
Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.
Effect of anatomical variability in brain on transcranial magnetic stimulation treatment
NASA Astrophysics Data System (ADS)
Syeda, F.; Magsood, H.; Lee, E. G.; El-Gendy, A. A.; Jiles, D. C.; Hadimani, R. L.
2017-05-01
Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.
Hînganu, Marius Valeriu; Cozma, Romică Sebastian; Ciochină, Paula; Scutariu, Irina Andreea; Asimionoaiei-Simionescu, Cristina; Hînganu, Delia
2017-01-01
Speaking is one of the characteristics of the human race and the main factor that has marked our progress over time. The singing voice is the crowning of the speech act and the main component of the lyrical manifestation of personality. Doctors in various fields, but especially anatomists have been concerned about discovering how the voice and the substrate of its variability are formed, but these aspects have not yet been fully deciphered. This study is the starting point in our research on the phonation system, organized on three levels: laryngeal, oral, palatinal, pharyngeal, epiglottal and nasal. We performed the dissection of seven embalmed anatomical parts, on which, we made measurements of the anatomical elements involved in the phonation. We performed the same measurements on a batch of seven adults investigated by magnetic resonance imaging (MRI). The results were entered into the statistical calculation formulas and compared with each other and with the literature. The results of the study show that certain values resulting from the calculation formulas remain constant and others vary greatly from each individuals and gender.
Imaging polarimetry in patients with neovascular age-related macular degeneration
Elsner, Ann E.; Weber, Anke; Cheney, Michael C.; VanNasdale, Dean A.; Miura, Masahiro
2007-01-01
Imaging polarimetry was used to examine different components of neovascular membranes in age-related macular degeneration. Retinal images were acquired with a scanning laser polarimeter. An innovative pseudo-color scale, based on cardinal directions of color, displayed two types of image information: relative phases and magnitudes of birefringence. Membranes had relative phase changes that did not correspond to anatomical structures in reflectance images. Further, membrane borders in depolarized light images had significantly higher contrasts than those in reflectance images. The retinal birefringence in neovascular membranes indicates optical activity consistent with molecular changes rather than merely geometrical changes. PMID:17429494
Atlas of neuroanatomy with radiologic correlation and pathologic illustration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dublin, A.B.; Dublin, W.B.
1982-01-01
This atlas correlates gross neuroanatomic specimens with radiographs and computed tomographic scans. Pathologic specimens and radiographs are displayed in a similar manner. The first chapter, on embryology, shows the development of the telencephalon, diencephalon, mesencephalon, and metencephalon through a series of overlays. The anatomical section shows the surface of the brain, the ventricles and their adjacent structures, and the vascular system. CT anatomy is demonstrated by correlating CT scans with pathologic brain specimens cut in the axial plane. Pathologic changes associated with congenital malformations, injections, injuries, tumors, and other causes are demonstrated in the last six chapters.
Graphical user interface for intraoperative neuroimage updating
NASA Astrophysics Data System (ADS)
Rick, Kyle R.; Hartov, Alex; Roberts, David W.; Lunn, Karen E.; Sun, Hai; Paulsen, Keith D.
2003-05-01
Image-guided neurosurgery typically relies on preoperative imaging information that is subject to errors resulting from brain shift and deformation in the OR. A graphical user interface (GUI) has been developed to facilitate the flow of data from OR to image volume in order to provide the neurosurgeon with updated views concurrent with surgery. Upon acquisition of registration data for patient position in the OR (using fiducial markers), the Matlab GUI displays ultrasound image overlays on patient specific, preoperative MR images. Registration matrices are also applied to patient-specific anatomical models used for image updating. After displaying the re-oriented brain model in OR coordinates and digitizing the edge of the craniotomy, gravitational sagging of the brain is simulated using the finite element method. Based on this model, interpolation to the resolution of the preoperative images is performed and re-displayed to the surgeon during the procedure. These steps were completed within reasonable time limits and the interface was relatively easy to use after a brief training period. The techniques described have been developed and used retrospectively prior to this study. Based on the work described here, these steps can now be accomplished in the operating room and provide near real-time feedback to the surgeon.
Trezise, J; Collier, N; Blazevich, A J
2016-06-01
This study examined the relative influence of anatomical and neuromuscular variables on maximal isometric and concentric knee extensor torque and provided a comparative dataset for healthy young males. Quadriceps cross-sectional area (CSA) and fascicle length (l f) and angle (θ f) from the four quadriceps components; agonist (EMG:M) and antagonist muscle activity, and percent voluntary activation (%VA); patellar tendon moment arm distance (MA) and maximal voluntary isometric and concentric (60° s(-1)) torques, were measured in 56 men. Linear regression models predicting maximum torque were ranked using Akaike's Information Criterion (AICc), and Pearson's correlation coefficients assessed relationships between variables. The best-fit models explained up to 72 % of the variance in maximal voluntary knee extension torque. The combination of 'CSA + θ f + EMG:M + %VA' best predicted maximum isometric torque (R (2) = 72 %, AICc weight = 0.38) and 'CSA + θ f + MA' (R (2) = 65 %, AICc weight = 0.21) best predicted maximum concentric torque. Proximal quadriceps CSA was included in all models rather than the traditionally used mid-muscle CSA. Fascicle angle appeared consistently in all models despite its weak correlation with maximum torque in isolation, emphasising the importance of examining interactions among variables. While muscle activity was important for torque prediction in both contraction modes, MA only strongly influenced maximal concentric torque. These models identify the main sources of inter-individual differences strongly influencing maximal knee extension torque production in healthy men. The comparative dataset allows the identification of potential variables to target (i.e. weaknesses) in individuals.
microRNA function in left-right neuronal asymmetry: perspectives from C. elegans.
Alqadah, Amel; Hsieh, Yi-Wen; Chuang, Chiou-Fen
2013-09-23
Left-right asymmetry in anatomical structures and functions of the nervous system is present throughout the animal kingdom. For example, language centers are localized in the left side of the human brain, while spatial recognition functions are found in the right hemisphere in the majority of the population. Disruption of asymmetry in the nervous system is correlated with neurological disorders. Although anatomical and functional asymmetries are observed in mammalian nervous systems, it has been a challenge to identify the molecular basis of these asymmetries. C. elegans has emerged as a prime model organism to investigate molecular asymmetries in the nervous system, as it has been shown to display functional asymmetries clearly correlated to asymmetric distribution and regulation of biologically relevant molecules. Small non-coding RNAs have been recently implicated in various aspects of neural development. Here, we review cases in which microRNAs are crucial for establishing left-right asymmetries in the C. elegans nervous system. These studies may provide insight into how molecular and functional asymmetries are established in the human brain.
Contrasting Specializations for Facial Motion Within the Macaque Face-Processing System
Fisher, Clark; Freiwald, Winrich A.
2014-01-01
SUMMARY Facial motion transmits rich and ethologically vital information [1, 2], but how the brain interprets this complex signal is poorly understood. Facial form is analyzed by anatomically distinct face patches in the macaque brain [3, 4], and facial motion activates these patches and surrounding areas [5, 6]. Yet it is not known whether facial motion is processed by its own distinct and specialized neural machinery, and if so, what that machinery’s organization might be. To address these questions, we used functional magnetic resonance imaging (fMRI) to monitor the brain activity of macaque monkeys while they viewed low- and high-level motion and form stimuli. We found that, beyond classical motion areas and the known face patch system, moving faces recruited a heretofore-unrecognized face patch. Although all face patches displayed distinctive selectivity for face motion over object motion, only two face patches preferred naturally moving faces, while three others preferred randomized, rapidly varying sequences of facial form. This functional divide was anatomically specific, segregating dorsal from ventral face patches, thereby revealing a new organizational principle of the macaque face-processing system. PMID:25578903
Selective attention toward female secondary sexual color in male rhesus macaques.
Waitt, Corri; Gerald, Melissa S; Little, Anthony C; Kraiselburd, Edmundo
2006-07-01
Pink-to-red anogenital and facial sexual skin occurs in females of many primate species. Since female sexual skin color varies with reproductive state, it has long been assumed that color acts to stimulate male sexual interest. Although there is supportive evidence for this as regards anogenital skin, it is unclear whether this is also the case for facial sexual skin. In this study we experimentally manipulated digital facial and hindquarter images of female rhesus macaques (Macaca mulatta) for color within the natural range of variation. The images were presented to adult male conspecifics to assess whether the males exhibited visual preferences for red vs. non-red female coloration, and whether preferences varied with anatomical region. The males displayed significantly longer gaze durations in response to reddened versions of female hindquarters, but not to reddened versions of faces. This suggests that female facial coloration may serve an alternative purpose to that of attracting males, and that the signal function of sexual skin and the intended recipients may vary across anatomical regions. (c) 2005 Wiley-Liss, Inc.
McLaughlin, Patrick W; Evans, Cheryl; Feng, Mary; Narayana, Vrinda
2010-02-01
Use of highly conformal radiation for prostate cancer can lead to both overtreatment of surrounding normal tissues and undertreatment of the prostate itself. In this retrospective study we analyzed the radiographic and anatomic basis of common errors in computed tomography (CT) contouring and suggest methods to correct them. Three hundred patients with prostate cancer underwent CT and magnetic resonance imaging (MRI). The prostate was delineated independently on the data sets. CT and MRI contours were compared by use of deformable registration. Errors in target delineation were analyzed and methods to avoid such errors detailed. Contouring errors were identified at the prostatic apex, mid gland, and base on CT. At the apex, the genitourinary diaphragm, rectum, and anterior fascia contribute to overestimation. At the mid prostate, the anterior and lateral fasciae contribute to overestimation. At the base, the bladder and anterior fascia contribute to anterior overestimation. Transition zone hypertrophy and bladder neck variability contribute to errors of overestimation and underestimation at the superior base, whereas variable prostate-to-seminal vesicle relationships with prostate hypertrophy contribute to contouring errors at the posterior base. Most CT contouring errors can be detected by (1) inspection of a lateral view of prostate contours to detect projection from the expected globular form and (2) recognition of anatomic structures (genitourinary diaphragm) on the CT scans that are clearly visible on MRI. This study shows that many CT prostate contouring errors can be improved without direct incorporation of MRI data. Copyright 2010 Elsevier Inc. All rights reserved.
Deformably registering and annotating whole CLARITY brains to an atlas via masked LDDMM
NASA Astrophysics Data System (ADS)
Kutten, Kwame S.; Vogelstein, Joshua T.; Charon, Nicolas; Ye, Li; Deisseroth, Karl; Miller, Michael I.
2016-04-01
The CLARITY method renders brains optically transparent to enable high-resolution imaging in the structurally intact brain. Anatomically annotating CLARITY brains is necessary for discovering which regions contain signals of interest. Manually annotating whole-brain, terabyte CLARITY images is difficult, time-consuming, subjective, and error-prone. Automatically registering CLARITY images to a pre-annotated brain atlas offers a solution, but is difficult for several reasons. Removal of the brain from the skull and subsequent storage and processing cause variable non-rigid deformations, thus compounding inter-subject anatomical variability. Additionally, the signal in CLARITY images arises from various biochemical contrast agents which only sparsely label brain structures. This sparse labeling challenges the most commonly used registration algorithms that need to match image histogram statistics to the more densely labeled histological brain atlases. The standard method is a multiscale Mutual Information B-spline algorithm that dynamically generates an average template as an intermediate registration target. We determined that this method performs poorly when registering CLARITY brains to the Allen Institute's Mouse Reference Atlas (ARA), because the image histogram statistics are poorly matched. Therefore, we developed a method (Mask-LDDMM) for registering CLARITY images, that automatically finds the brain boundary and learns the optimal deformation between the brain and atlas masks. Using Mask-LDDMM without an average template provided better results than the standard approach when registering CLARITY brains to the ARA. The LDDMM pipelines developed here provide a fast automated way to anatomically annotate CLARITY images; our code is available as open source software at http://NeuroData.io.
Espuña-Pons, Montserrat; Fillol, Manuel; Pascual, María A; Rebollo, Pablo; Mora, Ana M
2014-06-01
The aim of the study was to estimate whether POP severity is related to lower urinary tract symptoms (LUTS) and symptoms of sexual difficulties, when evaluated with validated questionnaires. Multicentric cross-sectional study of 521 women seeking care for PFD in 35 specialized urogynecological clinics. Patients answered the EPIQ to detect symptoms of PFD. The severity of urinary incontinence and the OAB symptoms were measured by ICIQ-UI SF and BSAQ. POP anatomic severity was measured by the anatomic stage of each compartment, determined in pelvic examination in accordance with the IUGA-ICS terminology. A maximum POP stage (M-POP-S) was assigned to each patient: Group A, patients with no POP (stage 0-I); group B, M-POP-S stage II; and group C, M-POP-S stage III-IV. Pelvic examination demonstrated anatomic POP in 224 patients (stage from II to IV). 288 women (56.25%) were classified in group A (no prolapse); 102 (19.92%) group B (stage II); and 122 (28.83%) group C (stage III-IV). Several associations were found between studied variables and M-POP-S (age<55 years, menopause, number of vaginal deliveries, symptom of vaginal bulge, feeling of a bulge makes it difficult to have sexual relations, symptoms of stress urinary incontinence, nocturia and voiding difficulties), but the only variables independently associated were age, symptom of vaginal bulge and difficulty in having sexual relations due to feeling of a bulge. In patients seeking care for PFD, LUTS are not independently associated to the prolapse stage. Copyright © 2014. Published by Elsevier Ireland Ltd.
Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V
2013-12-01
Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk/benefit ratio. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment. Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current amplitudes (0-900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences. By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 15%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability. The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.
Bouldering: an alternative strategy to long-vertical climbing in root-climbing hortensias
Granados Mendoza, Carolina; Isnard, Sandrine; Charles-Dominique, Tristan; Van den Bulcke, Jan; Rowe, Nick P.; Van Acker, Joris; Goetghebeur, Paul; Samain, Marie-Stéphanie
2014-01-01
In the Neotropics, the genus Hydrangea of the popular ornamental hortensia family is represented by climbing species that strongly cling to their support surface by means of adhesive roots closely positioned along specialized anchoring stems. These root-climbing hortensia species belong to the nearly exclusive American Hydrangea section Cornidia and generally are long lianescent climbers that mostly flower and fructify high in the host tree canopy. The Mexican species Hydrangea seemannii, however, encompasses not only long lianescent climbers of large vertical rock walls and coniferous trees, but also short ‘shrub-like’ climbers on small rounded boulders. To investigate growth form plasticity in root-climbing hortensia species, we tested the hypothesis that support variability (e.g. differences in size and shape) promotes plastic responses observable at the mechanical, structural and anatomical level. Stem bending properties, architectural axis categorization, tissue organization and wood density were compared between boulder and long-vertical tree-climbers of H. seemannii. For comparison, the mechanical patterns of a closely related, strictly long-vertical tree-climbing species were investigated. Hydrangea seemannii has fine-tuned morphological, mechanical and anatomical responses to support variability suggesting the presence of two alternative root-climbing strategies that are optimized for their particular environmental conditions. Our results suggest that variation of some stem anatomical traits provides a buffering effect that regulates the mechanical and hydraulic demands of two distinct plant architectures. The adaptive value of observed plastic responses and the importance of considering growth form plasticity in evolutionary and conservation studies are discussed. PMID:25079869
Robinson, Narda G.
2012-01-01
Simple Summary “One Acupuncture”, modeled after “One Medicine”, embodies a system of translational acupuncture built upon science and hypothesis-driven research. Forging a synthesis between human and veterinary acupuncture requires consistency in point location across species so that meaningful comparisons can be made. The human acupuncture network provides a template of well-studied neurovascular sites that have changed little over the years, in comparison to their veterinary counterparts. This paper identifies disparities that remain. Reconciling inconsistencies will bolster the ability for researchers and clinicians to better understand and interpret findings from acupuncture studies on various species so that more can benefit from these insights. Abstract “One Acupuncture”, like “One Medicine”, has the potential to improve research quality and clinical outcomes. However, while human acupuncture point locations have remained largely consistent over time, the veterinary versions remain imprecise and variable. Establishing anatomical criteria for veterinary acupuncture atlases in keeping with the human template will create congruence across species, benefiting both research and practice. Anatomic criteria for points based on objectively verifiable structures will facilitate translational research. Functionally comparative innervation, in particular, should be similar between species, as the nerves initiate and mediate physiologic changes that result from point stimulation. If researchers choose points that activate different nerves in one species than in another, unpredictable outcomes may occur. Variability in point placement will impede progress and hamper the ability of researchers and clinicians to make meaningful comparisons across species. This paper reveals incongruities that remain between human and veterinary acupuncture points, illustrating the need to analyze anatomical characteristics of each point to assure accuracy in selecting transpositional acupuncture locations. PMID:26487029
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010–2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate. PMID:26305893
Carvalho, Ana; Nabais, Cristina; Vieira, Joana; Rossi, Sergio; Campelo, Filipe
2015-01-01
The formation of wood results from cambial activity and its anatomical properties reflect the variability of environmental conditions during the growing season. Recently, it was found that wood density variations in conifers growing under cold-limited environment result from the adjustment of cell wall thickness (CWT) to temperature. Additionally, it is known that intra-annual density fluctuations (IADFs) are formed in response to precipitation after the summer drought. Although IADFs are frequent in Mediterranean conifers no study has yet been conducted to determine if these structures result from the adjustment of lumen diameter (LD) or CWT to soil water availability. Our main objective is to investigate the intra-ring variation of wood anatomical features (LD and CWT) in Pinus pinaster Ait. growing under a water-limited environment. We compared the tracheidograms of LD and CWT for the years 2010-2013 in P. pinaster growing in the west coast of Portugal. Our results suggest a close association between LD and soil moisture content along the growing season, reinforcing the role of water availability in determining tracheid size. Compared with CWT, LD showed a higher intra- and inter-annual variability suggesting its strong adjustment value to variations in water availability. The formation of a latewood IADF appears to be predisposed by higher rates of cell production in spring and triggered by early autumn precipitation. Our findings reinforce the crucial role of water availability on cambial activity and wood formation in Mediterranean conifers, and emphasize the high plasticity of wood anatomical features under Mediterranean climate.
Kim, Yunhee; Choi, Heejin; Kim, Joohwan; Cho, Seong-Woo; Kim, Youngmin; Park, Gilbae; Lee, Byoungho
2007-06-20
A depth-enhanced three-dimensional integral imaging system with electrically variable image planes is proposed. For implementing the variable image planes, polymer-dispersed liquid-crystal (PDLC) films and a projector are adopted as a new display system in the integral imaging. Since the transparencies of PDLC films are electrically controllable, we can make each film diffuse the projected light successively with a different depth from the lens array. As a result, the proposed method enables control of the location of image planes electrically and enhances the depth. The principle of the proposed method is described, and experimental results are also presented.
The Speed of Serial Attention Shifts in Visual Search: Evidence from the N2pc Component.
Grubert, Anna; Eimer, Martin
2016-02-01
Finding target objects among distractors in visual search display is often assumed to be based on sequential movements of attention between different objects. However, the speed of such serial attention shifts is still under dispute. We employed a search task that encouraged the successive allocation of attention to two target objects in the same search display and measured N2pc components to determine how fast attention moved between these objects. Each display contained one digit in a known color (fixed-color target) and another digit whose color changed unpredictably across trials (variable-color target) together with two gray distractor digits. Participants' task was to find the fixed-color digit and compare its numerical value with that of the variable-color digit. N2pc components to fixed-color targets preceded N2pc components to variable-color digits, demonstrating that these two targets were indeed selected in a fixed serial order. The N2pc to variable-color digits emerged approximately 60 msec after the N2pc to fixed-color digits, which shows that attention can be reallocated very rapidly between different target objects in the visual field. When search display durations were increased, thereby relaxing the temporal demands on serial selection, the two N2pc components to fixed-color and variable-color targets were elicited within 90 msec of each other. Results demonstrate that sequential shifts of attention between different target locations can operate very rapidly at speeds that are in line with the assumptions of serial selection models of visual search.
Bass, Ellen J; Baumgart, Leigh A; Shepley, Kathryn Klein
2013-03-01
Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance.
Chapple, Will
2013-10-01
In spite of the extensive research on acupuncture mechanisms, no comprehensive and systematic peer-reviewed reference list of the stratified anatomical and the neuroanatomical features of all 361 acupuncture points exists. This study creates a reference list of the neuroanatomy and the stratified anatomy for each of the 361 acupuncture points on the 14 classical channels and for 34 extra points. Each acupuncture point was individually assessed to relate the point's location to anatomical and neuroanatomical features. The design of the catalogue is intended to be useful for any style of acupuncture or Oriental medicine treatment modality. The stratified anatomy was divided into shallow, intermediate and deep insertion. A separate stratified anatomy was presented for different needle angles and directions. The following are identified for each point: additional specifications for point location, the stratified anatomy, motor innervation, cutaneous nerve and sensory innervation, dermatomes, Langer's lines, and somatotopic organization in the primary sensory and motor cortices. Acupuncture points for each muscle, dermatome and myotome are also reported. This reference list can aid clinicians, practitioners and researchers in furthering the understanding and accurate practice of acupuncture. Additional research on the anatomical variability around acupuncture points, the frequency of needle contact with an anatomical structure in a clinical setting, and conformational imaging should be done to verify this catalogue. Copyright © 2013. Published by Elsevier B.V.
Carrer, Marco; von Arx, Georg; Castagneri, Daniele; Petit, Giai
2015-01-01
Trees are among the best natural archives of past environmental information. Xylem anatomy preserves information related to tree allometry and ecophysiological performance, which is not available from the more customary ring-width or wood-density proxy parameters. Recent technological advances make tree-ring anatomy very attractive because time frames of many centuries can now be covered. This calls for the proper treatment of time series of xylem anatomical attributes. In this article, we synthesize current knowledge on the biophysical and physiological mechanisms influencing the short- to long-term variation in the most widely used wood-anatomical feature, namely conduit size. We also clarify the strong mechanistic link between conduit-lumen size, tree hydraulic architecture and height growth. Among the key consequences of these biophysical constraints is the pervasive, increasing trend of conduit size during ontogeny. Such knowledge is required to process time series of anatomical parameters correctly in order to obtain the information of interest. An appropriate standardization procedure is fundamental when analysing long tree-ring-related chronologies. When dealing with wood-anatomical parameters, this is even more critical. Only an interdisciplinary approach involving ecophysiology, wood anatomy and dendrochronology will help to distill the valuable information about tree height growth and past environmental variability correctly. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Lu, Zhifeng; Lu, Jianwei; Pan, Yonghui; Lu, Piaopiao; Li, Xiaokun; Cong, Rihuan; Ren, Tao
2016-11-01
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (g m ) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining g m have been quantified; however, anatomical variabilities related to low g m under K starvation remain imperfectly known. A one-dimensional model was used to quantify anatomical controls of the entire CO 2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down-regulated g m . The mesophyll conductance limitation contributed to more than one-half of A decline. The decreased internal air space in K-starved leaves was associated with the increase of gas-phase resistance. Potassium deficiency reduced liquid-phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (S c /S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of g m variations, ascribing to an altered S c /S. These results emphasize the important role of K on the regulation of g m by enhancing S c /S and reducing cytoplasm resistance. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.
1992-01-01
This document describes the software created for the Sperry Microprocessor Color Display System used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global reference section includes procedures and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight cathode ray tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.
J.-C. Domec; K. Schafer; R. Oren; H. Kim; H. McCarthy
2010-01-01
Anatomical and physiological acclimation to water stress of the tree hydraulic system involves trade-offs between maintenance of stomatal conductance and loss of hydraulic conductivity, with short-term impacts on photosynthesis and long-term consequences to survival and growth.
ERIC Educational Resources Information Center
Stavness, Ian; Nazari, Mohammad Ali; Perrier, Pascal; Demolin, Didier; Payan, Yohan
2013-01-01
Purpose: The authors' general aim is to use biomechanical models of speech articulators to explore how possible variations in anatomical structure contribute to differences in articulatory strategies and phone systems across human populations. Specifically, they investigated 2 issues: (a) the link between lip muscle anatomy and variability in…
ERIC Educational Resources Information Center
Vorperian, Houri K.; Wang, Shubing; Schimek, E. Michael; Durtschi, Reid B.; Kent, Ray D.; Gentry, Lindell R.; Chung, Moo K.
2011-01-01
Purpose: The anatomic origin for prepubertal vowel acoustic differences between male and female subjects remains unknown. The purpose of this study is to examine developmental sex differences in vocal tract (VT) length and its oral and pharyngeal portions. Method: Nine VT variables were measured from 605 imaging studies (magnetic resonance imaging…
Development of a precision multimodal surgical navigation system for lung robotic segmentectomy
Soldea, Valentin; Lachkar, Samy; Rinieri, Philippe; Sarsam, Mathieu; Bottet, Benjamin; Peillon, Christophe
2018-01-01
Minimally invasive sublobar anatomical resection is becoming more and more popular to manage early lung lesions. Robotic-assisted thoracic surgery (RATS) is unique in comparison with other minimally invasive techniques. Indeed, RATS is able to better integrate multiple streams of information including advanced imaging techniques, in an immersive experience at the level of the robotic console. Our aim was to describe three-dimensional (3D) imaging throughout the surgical procedure from preoperative planning to intraoperative assistance and complementary investigations such as radial endobronchial ultrasound (R-EBUS) and virtual bronchoscopy for pleural dye marking. All cases were operated using the DaVinci SystemTM. Modelisation was provided by Visible Patient™ (Strasbourg, France). Image integration in the operative field was achieved using the Tile Pro multi display input of the DaVinci console. Our experience was based on 114 robotic segmentectomies performed between January 2012 and October 2017. The clinical value of 3D imaging integration was evaluated in 2014 in a pilot study. Progressively, we have reached the conclusion that the use of such an anatomic model improves the safety and reliability of procedures. The multimodal system including 3D imaging has been used in more than 40 patients so far and demonstrated a perfect operative anatomic accuracy. Currently, we are developing an original virtual reality experience by exploring 3D imaging models at the robotic console level. The act of operating is being transformed and the surgeon now oversees a complex system that improves decision making. PMID:29785294
Development of a precision multimodal surgical navigation system for lung robotic segmentectomy.
Baste, Jean Marc; Soldea, Valentin; Lachkar, Samy; Rinieri, Philippe; Sarsam, Mathieu; Bottet, Benjamin; Peillon, Christophe
2018-04-01
Minimally invasive sublobar anatomical resection is becoming more and more popular to manage early lung lesions. Robotic-assisted thoracic surgery (RATS) is unique in comparison with other minimally invasive techniques. Indeed, RATS is able to better integrate multiple streams of information including advanced imaging techniques, in an immersive experience at the level of the robotic console. Our aim was to describe three-dimensional (3D) imaging throughout the surgical procedure from preoperative planning to intraoperative assistance and complementary investigations such as radial endobronchial ultrasound (R-EBUS) and virtual bronchoscopy for pleural dye marking. All cases were operated using the DaVinci System TM . Modelisation was provided by Visible Patient™ (Strasbourg, France). Image integration in the operative field was achieved using the Tile Pro multi display input of the DaVinci console. Our experience was based on 114 robotic segmentectomies performed between January 2012 and October 2017. The clinical value of 3D imaging integration was evaluated in 2014 in a pilot study. Progressively, we have reached the conclusion that the use of such an anatomic model improves the safety and reliability of procedures. The multimodal system including 3D imaging has been used in more than 40 patients so far and demonstrated a perfect operative anatomic accuracy. Currently, we are developing an original virtual reality experience by exploring 3D imaging models at the robotic console level. The act of operating is being transformed and the surgeon now oversees a complex system that improves decision making.
3D Printed Models of Cleft Palate Pathology for Surgical Education.
Lioufas, Peter A; Quayle, Michelle R; Leong, James C; McMenamin, Paul G
2016-09-01
To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training.
Leonardo da Vinci's "A skull sectioned": skull and dental formula revisited.
Gerrits, Peter O; Veening, Jan G
2013-05-01
What can be learned from historical anatomical drawings and how to incorporate these drawings into anatomical teaching? The drawing "A skull sectioned" (RL 19058v) by Leonardo da Vinci (1452-1519), hides more detailed information than reported earlier. A well-chosen section cut explores sectioned paranasal sinuses and ductus nasolacrimalis. A dissected lateral wall of the maxilla is also present. Furthermore, at the level of the foramen mentale, the drawing displays compact and spongious bony components, together with a cross-section through the foramen mentale and its connection with the canalis mandibulae. Leonardo was the first to describe a correct dental formula (6424) and made efforts to place this formula above the related dental elements. However, taking into account, the morphological features of the individual elements of the maxilla, it can be suggested that Leonardo sketched a "peculiar dental element" on the position of the right maxillary premolar in the dental sketch. The fact that the author did not make any comment on that special element is remarkable. Leonardo could have had sufficient knowledge of the precise morphology of maxillary and mandibular premolars, since the author depicted these elements in the dissected skull. The fact that the author also had access to premolars in situ corroborates our suggestion that "something went wrong" in this part of the drawing. The present study shows that historical anatomical drawings are very useful for interactive learning of detailed anatomy for students in medicine and dentistry. Copyright © 2012 Wiley Periodicals, Inc.
Effective color design for displays
NASA Astrophysics Data System (ADS)
MacDonald, Lindsay W.
2002-06-01
Visual communication is a key aspect of human-computer interaction, which contributes to the satisfaction of user and application needs. For effective design of presentations on computer displays, color should be used in conjunction with the other visual variables. The general needs of graphic user interfaces are discussed, followed by five specific tasks with differing criteria for display color specification - advertising, text, information, visualization and imaging.
Comparative analysis of semantic localization accuracies between adult and pediatric DICOM CT images
NASA Astrophysics Data System (ADS)
Robertson, Duncan; Pathak, Sayan D.; Criminisi, Antonio; White, Steve; Haynor, David; Chen, Oliver; Siddiqui, Khan
2012-02-01
Existing literature describes a variety of techniques for semantic annotation of DICOM CT images, i.e. the automatic detection and localization of anatomical structures. Semantic annotation facilitates enhanced image navigation, linkage of DICOM image content and non-image clinical data, content-based image retrieval, and image registration. A key challenge for semantic annotation algorithms is inter-patient variability. However, while the algorithms described in published literature have been shown to cope adequately with the variability in test sets comprising adult CT scans, the problem presented by the even greater variability in pediatric anatomy has received very little attention. Most existing semantic annotation algorithms can only be extended to work on scans of both adult and pediatric patients by adapting parameters heuristically in light of patient size. In contrast, our approach, which uses random regression forests ('RRF'), learns an implicit model of scale variation automatically using training data. In consequence, anatomical structures can be localized accurately in both adult and pediatric CT studies without the need for parameter adaptation or additional information about patient scale. We show how the RRF algorithm is able to learn scale invariance from a combined training set containing a mixture of pediatric and adult scans. Resulting localization accuracy for both adult and pediatric data remains comparable with that obtained using RRFs trained and tested using only adult data.
Langenderfer, Joseph E; Rullkoetter, Paul J; Mell, Amy G; Laz, Peter J
2009-04-01
An accurate assessment of shoulder kinematics is useful for understanding healthy normal and pathological mechanics. Small variability in identifying and locating anatomical landmarks (ALs) has potential to affect reported shoulder kinematics. The objectives of this study were to quantify the effect of landmark location variability on scapular and humeral kinematic descriptions for multiple subjects using probabilistic analysis methods, and to evaluate the consistency in results across multiple subjects. Data from 11 healthy subjects performing humeral elevation in the scapular plane were used to calculate Euler angles describing humeral and scapular kinematics. Probabilistic analyses were performed for each subject to simulate uncertainty in the locations of 13 upper-extremity ALs. For standard deviations of 4 mm in landmark location, the analysis predicted Euler angle envelopes between the 1 and 99 percentile bounds of up to 16.6 degrees . While absolute kinematics varied with the subject, the average 1-99% kinematic ranges for the motion were consistent across subjects and sensitivity factors showed no statistically significant differences between subjects. The description of humeral kinematics was most sensitive to the location of landmarks on the thorax, while landmarks on the scapula had the greatest effect on the description of scapular elevation. The findings of this study can provide a better understanding of kinematic variability, which can aid in making accurate clinical diagnoses and refining kinematic measurement techniques.
Gómez-Urquiza, Jose L; Hueso-Montoro, César; Urquiza-Olmo, Josefa; Ibarrondo-Crespo, Rocío; González-Jiménez, Emilio; Schmidt-Riovalle, Jacqueline
2016-07-01
To determine the effectiveness of photographic display at reducing pre-operative anxiety in an ear, nose and throat surgery unit; alone and in combination with music. The waiting time prior to the surgery is often unpleasant and a time of anxiety for patients. Anxiety can affect physical recovery and psychological well-being; lengthening convalescence and hospital stay after the surgery. Improving pre-operative anxiety is a challenge with potential impacts on improving patients' satisfaction and well-being and decreasing the cost of care. A clinical trial was conducted with two intervention groups and one control group. The sample consisted of 180 subjects from the otolaryngology major ambulatory surgery unit in a tertiary hospital in the province of Granada, with 60 subjects per group. The outcome variables measured were state anxiety, heart and respiratory rate and blood pressure. The data were collected from May-December 2013. After the intervention, in the comparison between control group and photographic display group, all variables had lower means in the intervention group, although a significant P value was only obtained for respiratory rate using one-way anova test. When comparing control group and photographic display combined with music group, using one-way anova test, all mean values were lower in the intervention group and a significant P value were observed for all variables except diastolic blood pressure. Photographic display in combination with music is more effective at reducing pre-operative anxiety than the standard intervention and photographic display alone. © 2016 John Wiley & Sons Ltd.
Quantitative evaluation of brain development using anatomical MRI and diffusion tensor imaging☆
Oishi, Kenichi; Faria, Andreia V.; Yoshida, Shoko; Chang, Linda; Mori, Susumu
2013-01-01
The development of the brain is structure-specific, and the growth rate of each structure differs depending on the age of the subject. Magnetic resonance imaging (MRI) is often used to evaluate brain development because of the high spatial resolution and contrast that enable the observation of structure-specific developmental status. Currently, most clinical MRIs are evaluated qualitatively to assist in the clinical decision-making and diagnosis. The clinical MRI report usually does not provide quantitative values that can be used to monitor developmental status. Recently, the importance of image quantification to detect and evaluate mild-to-moderate anatomical abnormalities has been emphasized because these alterations are possibly related to several psychiatric disorders and learning disabilities. In the research arena, structural MRI and diffusion tensor imaging (DTI) have been widely applied to quantify brain development of the pediatric population. To interpret the values from these MR modalities, a “growth percentile chart,” which describes the mean and standard deviation of the normal developmental curve for each anatomical structure, is required. Although efforts have been made to create such a growth percentile chart based on MRI and DTI, one of the greatest challenges is to standardize the anatomical boundaries of the measured anatomical structures. To avoid inter- and intra-reader variability about the anatomical boundary definition, and hence, to increase the precision of quantitative measurements, an automated structure parcellation method, customized for the neonatal and pediatric population, has been developed. This method enables quantification of multiple MR modalities using a common analytic framework. In this paper, the attempt to create an MRI- and a DTI-based growth percentile chart, followed by an application to investigate developmental abnormalities related to cerebral palsy, Williams syndrome, and Rett syndrome, have been introduced. Future directions include multimodal image analysis and personalization for clinical application. PMID:23796902
Antiporda, Michael; Veenstra, Benjamin; Jackson, Chloe; Kandel, Pujan; Daniel Smith, C; Bowers, Steven P
2018-02-01
Repair of giant paraesophageal hernia (PEH) is associated with a favorably high rate of symptom improvement; however, rates of recurrence by objective measures remain high. Herein we analyze our experience with laparoscopic giant PEH repair to determine what factors if any can predict anatomic recurrence. We prospectively collected data on PEH characteristics, variations in operative techniques, and surgeon factors for 595 patients undergoing laparoscopic PEH repair from 2008 to 2015. Upper GI study was performed at 6 months postoperatively and selectively thereafter-any supra-diaphragmatic stomach was considered hiatal hernia recurrence. Exclusion criteria included revisional operation (22.4%), size <5 cm (17.6%), inadequate follow-up (17.8%), and confounding concurrent operations (6.9%). Inclusion criteria were met by 202 patients (31% male, median age 71 years, and median BMI 28.7). At a median follow-up of 6 months (IQR 6-12), overall anatomic recurrence rate was 34.2%. Symptom recurrence rate was 9.9% and revisional operation was required in ten patients (4.9%). Neither patient demographics nor PEH characteristics (size, presence of Cameron erosions, esophagitis, or Barrett's) correlated with anatomic recurrence. Technical factors at operation (mobilized intra-abdominal length of esophagus, Collis gastroplasty, number of anterior/posterior stitches, use of crural buttress, use of pledgeted or mattress sutures, or gastrostomy) were also not correlated with recurrence. Regarding surgeon factors, annual volume of fewer than ten cases per year was associated with increased risk of anatomic failure (54 vs 33%, P = 0.02). Multivariate analysis identified surgeon experience (<10 cases per year) as an independent factor associated with early hiatal hernia recurrence (OR 3.7, 95% CI 1.34-10.9). Laparoscopic repair of giant PEH is associated with high anatomic recurrence rate but excellent symptom control. PEH characteristics and technical operative variables do not appear to significantly affect rates of recurrence. In contrast, surgeon volume does appear to contribute significantly to durability of repair.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chetvertkov, Mikhail A., E-mail: chetvertkov@wayne
2016-10-15
Purpose: To develop standard (SPCA) and regularized (RPCA) principal component analysis models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients and assess their potential use in adaptive radiation therapy, and for extracting quantitative information for treatment response assessment. Methods: Planning CT images of ten H&N patients were artificially deformed to create “digital phantom” images, which modeled systematic anatomical changes during radiation therapy. Artificial deformations closely mirrored patients’ actual deformations and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and syntheticmore » CBCTs (i.e., digital phantoms) and between pCT and clinical CBCTs. Patient-specific SPCA and RPCA models were built from these synthetic and clinical DVF sets. EigenDVFs (EDVFs) having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Results: Principal component analysis (PCA) models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade PCA’s ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. Conclusions: Leading EDVFs from the both PCA approaches have the potential to capture systematic anatomical change during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable at capturing systematic changes, enabling dosimetric consequences to be projected once trends are established early in a treatment course, or based on population models.« less
Exploring the anatomical encoding of voice with a mathematical model of the vocal system.
Assaneo, M Florencia; Sitt, Jacobo; Varoquaux, Gael; Sigman, Mariano; Cohen, Laurent; Trevisan, Marcos A
2016-11-01
The faculty of language depends on the interplay between the production and perception of speech sounds. A relevant open question is whether the dimensions that organize voice perception in the brain are acoustical or depend on properties of the vocal system that produced it. One of the main empirical difficulties in answering this question is to generate sounds that vary along a continuum according to the anatomical properties the vocal apparatus that produced them. Here we use a mathematical model that offers the unique possibility of synthesizing vocal sounds by controlling a small set of anatomically based parameters. In a first stage the quality of the synthetic voice was evaluated. Using specific time traces for sub-glottal pressure and tension of the vocal folds, the synthetic voices generated perceptual responses, which are indistinguishable from those of real speech. The synthesizer was then used to investigate how the auditory cortex responds to the perception of voice depending on the anatomy of the vocal apparatus. Our fMRI results show that sounds are perceived as human vocalizations when produced by a vocal system that follows a simple relationship between the size of the vocal folds and the vocal tract. We found that these anatomical parameters encode the perceptual vocal identity (male, female, child) and show that the brain areas that respond to human speech also encode vocal identity. On the basis of these results, we propose that this low-dimensional model of the vocal system is capable of generating realistic voices and represents a novel tool to explore the voice perception with a precise control of the anatomical variables that generate speech. Furthermore, the model provides an explanation of how auditory cortices encode voices in terms of the anatomical parameters of the vocal system. Copyright © 2016 Elsevier Inc. All rights reserved.
3D CBCT anatomy of the pterygopalatine fossa.
Rusu, Mugurel Constantin; Didilescu, Andreea Cristiana; Jianu, Adelina Maria; Păduraru, Dumitru
2013-03-01
The anatomy of the pterygopalatine fossa keeps a traditional level and is viewed as constant, even though a series of structures neighboring the fossa are known to present individual variations. We aimed to evaluate on 3D volume renderizations the anatomical variables of the pterygopalatine fossa, as related to the variable pneumatization patterns of the bones surrounding the fossa. The study was performed retrospectively on cone beam computed tomography (CBCT) scans of 100 patients. The pterygopalatine fossa was divided into an upper (orbital) and a lower (pterygomaxillary) floor; the medial compartment of the orbital floor lodges the pterygopalatine ganglion. The pneumatization patterns of the pterygopalatine fossa orbital floor walls were variable: (a) the posterior wall pneumatization pattern was determined in 89.5 % by recesses of the sphenoidal sinus related to the maxillary nerve and pterygoid canals; (b) the upper continuation of the pterygopalatine fossa with the orbital apex was narrowed in 79.5 % by ethmoid air cells and/or a maxillary recess of the sphenoidal sinus; (c) according to its pneumatization pattern, the anterior wall of the pterygopalatine fossa was a maxillary (40.5 %), maxillo-ethmoidal (46.5 %), or maxillo-sphenoidal (13 %) wall. The logistic regression models showed that the maxillo-ethmoidal type of pterygopalatine fossa anterior wall was significantly associated with a sphenoidal sinus only expanded above the pterygoid canal and a spheno-ethmoidal upper wall. The pterygopalatine fossa viewed as an intersinus space is related to variable pneumatization patterns which can be accurately identified by CBCT and 3DVR studies, for anatomic and preoperatory purposes.
Variable acuity remote viewing system flight demonstration
NASA Technical Reports Server (NTRS)
Fisher, R. W.
1983-01-01
The Variable Acuity Remote Viewing System (VARVS), originally developed under contract to the Navy (ONR) as a laboratory brassboard, was modified for flight demonstration. The VARVS system was originally conceived as a technique which could circumvent the acuity/field of view/bandwidth tradeoffs that exists in remote viewing to provide a nearly eye limited display in both field of view (160 deg) and resolution (2 min arc) while utilizing conventional TV sensing, transmission, and display equipment. The modifications for flight demonstration consisted of modifying the sensor so it could be installed and flow in a Piper PA20 aircraft, equipped for remote control and modifying the display equipment so it could be integrated with the NASA Research RPB (RPRV) remote control cockpit.
Defects formation and spiral waves in a network of neurons in presence of electromagnetic induction.
Rostami, Zahra; Jafari, Sajad
2018-04-01
Complex anatomical and physiological structure of an excitable tissue (e.g., cardiac tissue) in the body can represent different electrical activities through normal or abnormal behavior. Abnormalities of the excitable tissue coming from different biological reasons can lead to formation of some defects. Such defects can cause some successive waves that may end up to some additional reorganizing beating behaviors like spiral waves or target waves. In this study, formation of defects and the resulting emitted waves in an excitable tissue are investigated. We have considered a square array network of neurons with nearest-neighbor connections to describe the excitable tissue. Fundamentally, electrophysiological properties of ion currents in the body are responsible for exhibition of electrical spatiotemporal patterns. More precisely, fluctuation of accumulated ions inside and outside of cell causes variable electrical and magnetic field. Considering undeniable mutual effects of electrical field and magnetic field, we have proposed the new Hindmarsh-Rose (HR) neuronal model for the local dynamics of each individual neuron in the network. In this new neuronal model, the influence of magnetic flow on membrane potential is defined. This improved model holds more bifurcation parameters. Moreover, the dynamical behavior of the tissue is investigated in different states of quiescent, spiking, bursting and even chaotic state. The resulting spatiotemporal patterns are represented and the time series of some sampled neurons are displayed, as well.
Sex estimation from the patella in an African American population.
Peckmann, Tanya R; Fisher, Brooke
2018-02-01
The skull and pelvis have been used for the estimation of sex for unknown human remains. However, in forensic cases where skeletal remains often exhibit postmortem damage and taphonomic changes the patella may be used for the estimation of sex as it is a preservationally favoured bone. The goal of the present research was to derive discriminant function equations from the patella for estimation of sex from an historic African American population. Six parameters were measured on 200 individuals (100 males and 100 females), ranging in age from 20 to 80 years old, from the Robert J. Terry Anatomical Skeleton Collection. The statistical analyses showed that all variables were sexually dimorphic. Discriminant function score equations were generated for use in sex estimation. The overall accuracy of sex classification ranged from 80.0% to 85.0% for the direct method and 80.0%-84.5% for the stepwise method. Overall, when the Spanish and Black South African discriminant functions were applied to the African American population they showed low accuracy rates for sexing the African American sample. However, when the White South African discriminant functions were applied to the African American sample they displayed high accuracy rates for sexing the African American population. The patella was shown to be accurate for sex estimation in the historic African American population. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Lohse, Christian; Bassett, Danielle S; Lim, Kelvin O; Carlson, Jean M
2014-10-01
Human brain anatomy and function display a combination of modular and hierarchical organization, suggesting the importance of both cohesive structures and variable resolutions in the facilitation of healthy cognitive processes. However, tools to simultaneously probe these features of brain architecture require further development. We propose and apply a set of methods to extract cohesive structures in network representations of brain connectivity using multi-resolution techniques. We employ a combination of soft thresholding, windowed thresholding, and resolution in community detection, that enable us to identify and isolate structures associated with different weights. One such mesoscale structure is bipartivity, which quantifies the extent to which the brain is divided into two partitions with high connectivity between partitions and low connectivity within partitions. A second, complementary mesoscale structure is modularity, which quantifies the extent to which the brain is divided into multiple communities with strong connectivity within each community and weak connectivity between communities. Our methods lead to multi-resolution curves of these network diagnostics over a range of spatial, geometric, and structural scales. For statistical comparison, we contrast our results with those obtained for several benchmark null models. Our work demonstrates that multi-resolution diagnostic curves capture complex organizational profiles in weighted graphs. We apply these methods to the identification of resolution-specific characteristics of healthy weighted graph architecture and altered connectivity profiles in psychiatric disease.
Hojjat, Seyed-Parsa; Cantrell, Charles Grady; Vitorino, Rita; Feinstein, Anthony; Shirzadi, Zahra; MacIntosh, Bradley J.; Crane, David E.; Zhang, Lying; Morrow, Sarah A; Lee, Liesly; O’Connor, Paul; Carroll, Timothy J.; Aviv, Richard I.
2015-01-01
Purpose Detection of cortical abnormalities in relapsing-remitting multiple sclerosis (RRMS) remains elusive. Structural MRI measures of cortical integrity are limited, although functional techniques such as pseudocontinuous Arterial Spin Labeling (pCASL) show promise as a surrogate marker of disease severity. We sought to determine the utility of pCASL to assess cortical cerebral blood flow (CBF) in RRMS patients with (RRMS-I) and without (RRMS-NI) cognitive impairment. Methods 19 age-matched healthy controls and 39 RRMS patients were prospectively recruited. Cognition was assessed using the MACFIMS battery. Cortical CBF was compared between groups using a mass univariate voxel-based morphometric analysis accounting for demographic and structural variable covariates. Results Cognitive impairment was present in 51.3% of patients. Significant CBF reduction was present in the RRMS-I compared to other groups in left frontal and right superior frontal cortex. Compared to healthy controls, RRMS-I displayed reduced CBF in the frontal, limbic, parietal and temporal cortex and putamen/thalamus. RRMS-I demonstrated reduced left superior frontal lobe cortical CBF compared to RRMS-NI. No significant cortical CBF differences were present between healthy controls and RRMS-NI. Conclusion Significant cortical CBF reduction occurs in RRMS-I compared to healthy controls and RRMS-NI in anatomically significant regions after controlling for structural and demographic differences. PMID:26754799
Dorsal metacarpal veins: anatomic variation and potential clinical implications.
Elmegarhi, Sara S; Amarin, Justin Z; Hadidi, Maher T; Badran, Darwish H; Massad, Islam M; Bani-Hani, Amjad M; Shatarat, Amjad T
2018-03-01
The dorsal metacarpal veins are frequently cannulated. Cannulation success is determined by several variable anatomic features. The objective of this study is to classify, for the first time, the anatomic variants of the dorsal metacarpal veins. In this cross-sectional study, 520 university students and staff were conveniently recruited. The dorsal metacarpal veins in 1040 hands were studied. Venous visibility was enhanced by either tourniquet application or near-infrared illumination. Variant patterns of the dorsal metacarpal veins were classified. The final analysis included 726 hands, for an exclusion rate of 30 %. Eight pattern types were identified. Three anatomic features informed the variation. Bilateral symmetry of the dorsal metacarpal veins was present in 352 participants (83 % of the total). The overall frequency distribution of variants in both hands was similar (P = 0.8). The frequency distribution of variants was subject to sexual dimorphism (P = 0.001), ethnic variation (P < 0.001), and technical variation (P < 0.001). The anatomic variants of the dorsal metacarpal veins were sorted into decreasingly frequent primary, secondary, and tertiary groups. The groups may signify a progressive increase in difficulty of peripheral cannulation, in the mentioned order. As such, primary patterns are the most common and likely the easiest to cannulate, while tertiary patterns are the least common and likely the most difficult to cannulate. The preceding premise, in tandem with the bilateral asymmetry of the veins, is clinically significant. With cannulation difficulty likely signifying an underlying tertiary pattern, the contralateral dorsal metacarpal veins are probabilistically characterized by a primary pattern and are, as such, the easier option for peripheral venous cannulation.
Zhuang, Lei; Wang, Xin-Fang; Xie, Ming-Xing; Chen, Li-Xin; Fei, Hong-Wen; Yang, Ying; Wang, Jing; Huang, Run-Qing; Chen, Ou-Di; Wang, Liang-Yu
2004-01-01
To evaluate the feasibility and accuracy of measurement of left ventricular mass with intravenous contrast enhanced real-time three-dimensional (RT3D) echocardiography in the experimental setting. RT3D echocardiography was performed in 13 open-chest mongrel dogs before and after intravenous infusion of a perfluorocarbon contrast agent. Left ventricular myocardium volume was measured according to the apical four-plane method provided by TomTec 4D cardio-View RT1.0 software, then the left ventricular mass was calculated as the myocardial volume multiplied by the relative density of myocardium. Correlative analysis and paired t-test were performed between left ventricular mass obtained from RT3D echocardiography and the anatomic measurements. Anatomic measurement of total left ventricular mass was 55.6 +/- 9.3 g, whereas RT3D echocardiographic calculation of left ventricular mass before and after intravenous perfluorocarbon contrast agent was 57.5 +/- 11.4 and 55.5 +/- 9.3 g, respectively. A significant correlation was observed between the RT3D echocardiographic estimates of total left ventricular mass and the corresponding anatomic measurements (r = 0.95). A strong correlation was found between RT3D echocardiographic estimates of left ventricular mass with perfluorocarbon contrast and the anatomic results (r = 0.99). Analysis of intraobserver and interobserver variability showed strong indexes of agreement in the measurement of left ventricular mass with pre and post-contrast RT3D echocardiography. Measurements of left ventricular mass derived from RT3D echocardiography with and without intravenous contrast showed a significant correlation with the anatomic results. Contrast enhanced RT3D echocardiography permitted better visualization of the endocardial border, which would provide a more accurate and reliable means of determining left ventricular myocardial mass in the experimental setting.
Pérez-Caraballo, Aixa M; Suarez, Erick; Unger, Elizabeth R; Palefsky, Joel M; Panicker, Gitika; Ortiz, Ana Patricia
2018-03-01
It is unknown if human papillomavirus (HPV) serum antibody responses vary by anatomic site of infection. We aimed to assess the seroprevalence for HPV 6, 11, 16 and 18 in association with HPV DNA detection in different anatomic sites among women. This cross sectional population-based study analyzed data from 524 women aged 16-64 years living in the San Juan metropolitan area of Puerto Rico (PR). Questionnaires were used to assess demographic and lifestyle variables, while anogenital and blood samples were collected for HPV analysis. Logistic regression models were used to estimate the adjusted prevalence odds ratio (POR) in order to determine the association between HPV DNA infection status in the cervix and anus and serum antibody status, controlling for different potential confounders. Overall, 46.9% of women had detectable antibodies to one or more types whereas 8.7% had HPV DNA for one or more of these types detected in cervix (4.0%) or anus (6.5%). Women with cervical HPV detection tended to be more HPV seropositive than women without cervical detection (adjusted POR (95%CI): 2.41 (0.90, 6.47), p=0.078); however the type-specific association between cervical DNA and serum antibodies was only significant for HPV 18 (adjusted POR (95% CI): 5.9 (1.03, 33.98)). No significant association was detected between anal HPV and seropositivity (p>0.10). Differences in the anatomic site of infection could influence seroconversion, however, longitudinal studies will be required for further evaluation. This information will be instrumental in advancing knowledge of immune mechanisms involved in anatomic site response.
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A; Karim, Naz; Merck, Derek L
2018-01-01
Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients' de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based "blind insertion" invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner's AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices.
Exploratory Application of Augmented Reality/Mixed Reality Devices for Acute Care Procedure Training
Kobayashi, Leo; Zhang, Xiao Chi; Collins, Scott A.; Karim, Naz; Merck, Derek L.
2018-01-01
Introduction Augmented reality (AR), mixed reality (MR), and virtual reality devices are enabling technologies that may facilitate effective communication in healthcare between those with information and knowledge (clinician/specialist; expert; educator) and those seeking understanding and insight (patient/family; non-expert; learner). Investigators initiated an exploratory program to enable the study of AR/MR use-cases in acute care clinical and instructional settings. Methods Academic clinician educators, computer scientists, and diagnostic imaging specialists conducted a proof-of-concept project to 1) implement a core holoimaging pipeline infrastructure and open-access repository at the study institution, and 2) use novel AR/MR techniques on off-the-shelf devices with holoimages generated by the infrastructure to demonstrate their potential role in the instructive communication of complex medical information. Results The study team successfully developed a medical holoimaging infrastructure methodology to identify, retrieve, and manipulate real patients’ de-identified computed tomography and magnetic resonance imagesets for rendering, packaging, transfer, and display of modular holoimages onto AR/MR headset devices and connected displays. Holoimages containing key segmentations of cervical and thoracic anatomic structures and pathology were overlaid and registered onto physical task trainers for simulation-based “blind insertion” invasive procedural training. During the session, learners experienced and used task-relevant anatomic holoimages for central venous catheter and tube thoracostomy insertion training with enhanced visual cues and haptic feedback. Direct instructor access into the learner’s AR/MR headset view of the task trainer was achieved for visual-axis interactive instructional guidance. Conclusion Investigators implemented a core holoimaging pipeline infrastructure and modular open-access repository to generate and enable access to modular holoimages during exploratory pilot stage applications for invasive procedure training that featured innovative AR/MR techniques on off-the-shelf headset devices. PMID:29383074
NeuroLex.org: an online framework for neuroscience knowledge
Larson, Stephen D.; Martone, Maryann E.
2013-01-01
The ability to transmit, organize, and query information digitally has brought with it the challenge of how to best use this power to facilitate scientific inquiry. Today, few information systems are able to provide detailed answers to complex questions about neuroscience that account for multiple spatial scales, and which cross the boundaries of diverse parts of the nervous system such as molecules, cellular parts, cells, circuits, systems and tissues. As a result, investigators still primarily seek answers to their questions in an increasingly densely populated collection of articles in the literature, each of which must be digested individually. If it were easier to search a knowledge base that was structured to answer neuroscience questions, such a system would enable questions to be answered in seconds that would otherwise require hours of literature review. In this article, we describe NeuroLex.org, a wiki-based website and knowledge management system. Its goal is to bring neurobiological knowledge into a framework that allows neuroscientists to review the concepts of neuroscience, with an emphasis on multiscale descriptions of the parts of nervous systems, aggregate their understanding with that of other scientists, link them to data sources and descriptions of important concepts in neuroscience, and expose parts that are still controversial or missing. To date, the site is tracking ~25,000 unique neuroanatomical parts and concepts in neurobiology spanning experimental techniques, behavioral paradigms, anatomical nomenclature, genes, proteins and molecules. Here we show how the structuring of information about these anatomical parts in the nervous system can be reused to answer multiple neuroscience questions, such as displaying all known GABAergic neurons aggregated in NeuroLex or displaying all brain regions that are known within NeuroLex to send axons into the cerebellar cortex. PMID:24009581
Contourograph display system for monitoring electrocardiograms
NASA Technical Reports Server (NTRS)
Golden, D. P., Jr.; Maudlin, D. G.; Wolthuis, R. A.
1970-01-01
Electrocardiogram is displayed as a contourogram on the cathode ray tube of a variable-persistence oscilloscope. Each cycle is stacked below its predecessors giving a three dimensional effect. A major change in the signal is apparent as a change in the contourogram pattern.
The Impact of Pictorial Display on Operator Learning and Performance. M.S. Thesis
NASA Technical Reports Server (NTRS)
Miller, R. A.; Messing, L. J.; Jagacinski, R. J.
1984-01-01
The effects of pictorially displayed information on human learning and performance of a simple control task were investigated. The controlled system was a harmonic oscillator and the system response was displayed to subjects as either an animated pendulum or a horizontally moving dot. Results indicated that the pendulum display did not effect performance scores but did significantly effect the learning processes of individual operators. The subjects with the pendulum display demonstrated more vertical internal models early in the experiment and the manner in which their internal models were tuned with practice showed increased variability between subjects.
Evaluation of control and display configurations for helicopter shipboard operations
NASA Technical Reports Server (NTRS)
Paulk, C. H., Jr.; Donley, S. T.; Hollis, M. K.
1983-01-01
A simulation evaluation of several approach and landing flight-control configurations and of two out-of-the-cockpit display devices (a head-up display and a helmet-mounted display) was performed for the task of landing a helicopter on a destroyer in adverse weather. The results indicated that the ship airwake turbulence was the most significant environmental variable affecting hover performance. In addition, to achieve adequate landing performance, attitude-command control compensation was required for the pilot regardless of the display used. For improved performance with reduced pilot effort, a velocity-command, position-hold control system was desired.
Advanced Transport Operating System (ATOPS) color displays software description: MicroVAX system
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Plyler, Valerie E.; Dickson, Richard W.
1992-01-01
This document describes the software created for the Display MicroVAX computer used for the Advanced Transport Operating Systems (ATOPS) project on the Transport Systems Research Vehicle (TSRV). The software delivery of February 27, 1991, known as the 'baseline display system', is the one described in this document. Throughout this publication, module descriptions are presented in a standardized format which contains module purpose, calling sequence, detailed description, and global references. The global references section includes subroutines, functions, and common variables referenced by a particular module. The system described supports the Research Flight Deck (RFD) of the TSRV. The RFD contains eight Cathode Ray Tubes (CRTs) which depict a Primary Flight Display, Navigation Display, System Warning Display, Takeoff Performance Monitoring System Display, and Engine Display.
NASA Astrophysics Data System (ADS)
He, Xin; Links, Jonathan M.; Frey, Eric C.
2010-09-01
Quantum noise as well as anatomic and uptake variability in patient populations limits observer performance on a defect detection task in myocardial perfusion SPECT (MPS). The goal of this study was to investigate the relative importance of these two effects by varying acquisition time, which determines the count level, and assessing the change in performance on a myocardial perfusion (MP) defect detection task using both mathematical and human observers. We generated ten sets of projections of a simulated patient population with count levels ranging from 1/128 to around 15 times a typical clinical count level to simulate different levels of quantum noise. For the simulated population we modeled variations in patient, heart and defect size, heart orientation and shape, defect location, organ uptake ratio, etc. The projection data were reconstructed using the OS-EM algorithm with no compensation or with attenuation, detector response and scatter compensation (ADS). The images were then post-filtered and reoriented to generate short-axis slices. A channelized Hotelling observer (CHO) was applied to the short-axis images, and the area under the receiver operating characteristics (ROC) curve (AUC) was computed. For each noise level and reconstruction method, we optimized the number of iterations and cutoff frequencies of the Butterworth filter to maximize the AUC. Using the images obtained with the optimal iteration and cutoff frequency and ADS compensation, we performed human observer studies for four count levels to validate the CHO results. Both CHO and human observer studies demonstrated that observer performance was dependent on the relative magnitude of the quantum noise and the patient variation. When the count level was high, the patient variation dominated, and the AUC increased very slowly with changes in the count level for the same level of anatomic variability. When the count level was low, however, quantum noise dominated, and changes in the count level resulted in large changes in the AUC. This behavior agreed with a theoretical expression for the AUC as a function of quantum and anatomical noise levels. The results of this study demonstrate the importance of the tradeoff between anatomical and quantum noise in determining observer performance. For myocardial perfusion imaging, it indicates that, at current clinical count levels, there is some room to reduce acquisition time or injected activity without substantially degrading performance on myocardial perfusion defect detection.
A manual control theory analysis of vertical situation displays for STOL aircraft
NASA Technical Reports Server (NTRS)
Baron, S.; Levison, W. H.
1973-01-01
Pilot-vehicle-display systems theory is applied to the analysis of proposed vertical situation displays for manual control in approach-to-landing of a STOL aircraft. The effects of display variables on pilot workload and on total closed-loop system performance was calculated using an optimal-control model for the human operator. The steep approach of an augmentor wing jet STOL aircraft was analyzed. Both random turbulence and mean-wind shears were considered. Linearized perturbation equations were used to describe longitudinal and lateral dynamics of the aircraft. The basic display configuration was one that abstracted the essential status information (including glide-slope and localizer errors) of an EADI display. Proposed flight director displays for both longitudinal and lateral control were also investigated.
Limb bone morphology, bone strength, and cursoriality in lagomorphs
Young, Jesse W; Danczak, Robert; Russo, Gabrielle A; Fellmann, Connie D
2014-01-01
The primary aim of this study is to broadly evaluate the relationship between cursoriality (i.e. anatomical and physiological specialization for running) and limb bone morphology in lagomorphs. Relative to most previous studies of cursoriality, our focus on a size-restricted, taxonomically narrow group of mammals permits us to evaluate the degree to which ‘cursorial specialization’ affects locomotor anatomy independently of broader allometric and phylogenetic trends that might obscure such a relationship. We collected linear morphometrics and μCT data on 737 limb bones covering three lagomorph species that differ in degree of cursoriality: pikas (Ochotona princeps, non-cursorial), jackrabbits (Lepus californicus, highly cursorial), and rabbits (Sylvilagus bachmani, level of cursoriality intermediate between pikas and jackrabbits). We evaluated two hypotheses: cursoriality should be associated with (i) lower limb joint mechanical advantage (i.e. high ‘displacement advantage’, permitting more cursorial species to cycle their limbs more quickly) and (ii) longer, more gracile limb bones, particularly at the distal segments (as a means of decreasing rotational inertia). As predicted, highly cursorial jackrabbits are typically marked by the lowest mechanical advantage and the longest distal segments, non-cursorial pikas display the highest mechanical advantage and the shortest distal segments, and rabbits generally display intermediate values for these variables. Variation in long bone robusticity followed a proximodistal gradient. Whereas proximal limb bone robusticity declined with cursoriality, distal limb bone robusticity generally remained constant across the three species. The association between long, structurally gracile limb bones and decreased maximal bending strength suggests that the more cursorial lagomorphs compromise proximal limb bone integrity to improve locomotor economy. In contrast, the integrity of distal limb bones is maintained with increasing cursoriality, suggesting that the safety factor takes priority over locomotor economy in those regions of the postcranial skeleton that experience higher loading during locomotion. Overall, these findings support the hypothesis that cursoriality is associated with a common suite of morphological adaptations across a range of body sizes and radiations. PMID:25046350
Single-Trial Analysis of V1 Responses Suggests Two Transmission States
NASA Technical Reports Server (NTRS)
Shah, A. S.; Knuth, K. H.; Truccolo, W. A.; Mehta, A. D.; McGinnis, T.; OConnell, N.; Ding, M.; Bressler, S. L.; Schroeder, C. E.
2002-01-01
Sensory processing in the visual, auditory, and somatosensory systems is often studied by recording electrical activity in response to a stimulus of interest. Typically, multiple trial responses to the stimulus are averaged to isolate the stereotypic response from noise. However, averaging ignores dynamic variability in the neuronal response, which is potentially critical to understanding stimulus-processing schemes. Thus, we developed the multiple component, Event-Related Potential (mcERP) model. This model asserts that multiple components, defined as stereotypic waveforms, comprise the stimulus-evoked response and that these components may vary in amplitude and latency from trial to trial. Application of this model to data recorded simultaneously from all six laminae of V1 in an awake, behaving monkey performing a visual discrimination yielded three components. The first component localized to granular V1, the second was located in supragranular V1, and the final component displayed a multi-laminar distribution. These modeling results, which take into account single-trial response dynamics, illustrated that the initial activation of VI occurs in the granular layer followed by activation in the supragranular layers. This finding is expected because the average response in those layers demonstrates the same progression and because anatomical evidence suggests that the feedforward input in V1 enters the granular layer and progresses to supragranular layers. In addition to these findings, the granular component of the model displayed several interesting trial-to-trial characteristics including (1) a bimodal latency distribution, (2) a latency-related variation in response amplitude, (3) a latency correlation with the supragranular component, and (4) an amplitude and latency association with the multi-laminar component. Direct analyses of the single-trial data were consistent with these model predictions. These findings suggest that V1 has at least 2 transmission states, which may be modulated by various effects such as attention, dynamics in local EEG rhythm, or variation in sensory inputs.
A possible instance of sexual dimorphism in the tails of two oviraptorosaur dinosaurs
IV, W. Scott Persons; Funston, Gregory F.; Currie, Philip J.; Norell, Mark A.
2015-01-01
The hypothesis that oviraptorosaurs used tail-feather displays in courtship behavior previously predicted that oviraptorosaurs would be found to display sexually dimorphic caudal osteology. MPC-D 100/1002 and MPC-D 100/1127 are two specimens of the oviraptorosaur Khaan mckennai. Although similar in absolute size and in virtually all other anatomical details, the anterior haemal spines of MPC-D 100/1002 exceed those of MPC-D 100/1127 in ventral depth and develop a hitherto unreported “spearhead” shape. This dissimilarity cannot be readily explained as pathologic and is too extreme to be reasonably attributed to the amount of individual variation expected among con-specifics. Instead, this discrepancy in haemal spine morphology may be attributable to sexual dimorphism. The haemal spine form of MPC-D 100/1002 offers greater surface area for caudal muscle insertions. On this basis, MPC-D 100/1002 is regarded as most probably male, and MPC-D 100/1127 is regarded as most probably female. PMID:25824625
André, E; Conquet, F; Steinmayr, M; Stratton, S C; Porciatti, V; Becker-André, M
1998-01-01
The orphan nuclear receptor RORbeta is expressed in areas of the central nervous system which are involved in the processing of sensory information, including spinal cord, thalamus and sensory cerebellar cortices. Additionally, RORbeta localizes to the three principal anatomical components of the mammalian timing system, the suprachiasmatic nuclei, the retina and the pineal gland. RORbeta mRNA levels oscillate in retina and pineal gland with a circadian rhythm that persists in constant darkness. RORbeta-/- mice display a duck-like gait, transient male incapability to sexually reproduce, and a severely disorganized retina that suffers from postnatal degeneration. Consequently, adult RORbeta-/- mice are blind, yet their circadian activity rhythm is still entrained by light-dark cycles. Interestingly, under conditions of constant darkness, RORbeta-/- mice display an extended period of free-running rhythmicity. The overall behavioral phenotype of RORbeta-/- mice, together with the chromosomal localization of the RORbeta gene, suggests a close relationship to the spontaneous mouse mutation vacillans described >40 years ago. PMID:9670004
Massot, Corentin; Chacron, Maurice J.
2011-01-01
Understanding how sensory neurons transmit information about relevant stimuli remains a major goal in neuroscience. Of particular relevance are the roles of neural variability and spike timing in neural coding. Peripheral vestibular afferents display differential variability that is correlated with the importance of spike timing; regular afferents display little variability and use a timing code to transmit information about sensory input. Irregular afferents, conversely, display greater variability and instead use a rate code. We studied how central neurons within the vestibular nuclei integrate information from both afferent classes by recording from a group of neurons termed vestibular only (VO) that are known to make contributions to vestibulospinal reflexes and project to higher-order centers. We found that, although individual central neurons had sensitivities that were greater than or equal to those of individual afferents, they transmitted less information. In addition, their velocity detection thresholds were significantly greater than those of individual afferents. This is because VO neurons display greater variability, which is detrimental to information transmission and signal detection. Combining activities from multiple VO neurons increased information transmission. However, the information rates were still much lower than those of equivalent afferent populations. Furthermore, combining responses from multiple VO neurons led to lower velocity detection threshold values approaching those measured from behavior (∼2.5 vs. 0.5–1°/s). Our results suggest that the detailed time course of vestibular stimuli encoded by afferents is not transmitted by VO neurons. Instead, they suggest that higher vestibular pathways must integrate information from central vestibular neuron populations to give rise to behaviorally observed detection thresholds. PMID:21307329
ERIC Educational Resources Information Center
Molfenter, Sonja M.; Steele, Catriona M.
2014-01-01
Purpose: Traditional methods for measuring hyoid excursion from dynamic videofluoroscopy recordings involve calculating changes in position in absolute units (mm). This method shows a high degree of variability across studies but agreement that greater hyoid excursion occurs inmen than in women. Given that men are typically taller than women, the…
A variable-collimation display system
NASA Astrophysics Data System (ADS)
Batchko, Robert; Robinson, Sam; Schmidt, Jack; Graniela, Benito
2014-03-01
Two important human depth cues are accommodation and vergence. Normally, the eyes accommodate and converge or diverge in tandem; changes in viewing distance cause the eyes to simultaneously adjust both focus and orientation. However, ambiguity between accommodation and vergence cues is a well-known limitation in many stereoscopic display technologies. This limitation also arises in state-of-the-art full-flight simulator displays. In current full-flight simulators, the out-the-window (OTW) display (i.e., the front cockpit window display) employs a fixed collimated display technology which allows the pilot and copilot to perceive the OTW training scene without angular errors or distortions; however, accommodation and vergence cues are limited to fixed ranges (e.g., ~ 20 m). While this approach works well for long-range, the ambiguity of depth cues at shorter range hinders the pilot's ability to gauge distances in critical maneuvers such as vertical take-off and landing (VTOL). This is the first in a series of papers on a novel, variable-collimation display (VCD) technology that is being developed under NAVY SBIR Topic N121-041 funding. The proposed VCD will integrate with rotary-wing and vertical take-off and landing simulators and provide accurate accommodation and vergence cues for distances ranging from approximately 3 m outside the chin window to ~ 20 m. A display that offers dynamic accommodation and vergence could improve pilot safety and training, and impact other applications presently limited by lack of these depth cues.
Surgical Approaches to First Branchial Cleft Anomaly Excision: A Case Series.
Quintanilla-Dieck, Lourdes; Virgin, Frank; Wootten, Chistopher; Goudy, Steven; Penn, Edward
2016-01-01
Objectives. First branchial cleft anomalies (BCAs) constitute a rare entity with variable clinical presentations and anatomic findings. Given the high rate of recurrence with incomplete excision, identification of the entire tract during surgical treatment is of paramount importance. The objectives of this paper were to present five anatomic variations of first BCAs and describe the presentation, evaluation, and surgical approach to each one. Methods. A retrospective case review and literature review were performed. We describe patient characteristics, presentation, evaluation, and surgical approach of five patients with first BCAs. Results. Age at definitive surgical treatment ranged from 8 months to 7 years. Various clinical presentations were encountered, some of which were atypical for first BCAs. All had preoperative imaging demonstrating the tract. Four surgical approaches required a superficial parotidectomy with identification of the facial nerve, one of which revealed an aberrant facial nerve. In one case the tract was found to travel into the angle of the mandible, terminating as a mandibular cyst. This required en bloc excision that included the lateral cortex of the mandible. Conclusions. First BCAs have variable presentations. Complete surgical excision can be challenging. Therefore, careful preoperative planning and the recognition of atypical variants during surgery are essential.
Surgical Approaches to First Branchial Cleft Anomaly Excision: A Case Series
Quintanilla-Dieck, Lourdes; Virgin, Frank; Wootten, Chistopher; Goudy, Steven; Penn, Edward
2016-01-01
Objectives. First branchial cleft anomalies (BCAs) constitute a rare entity with variable clinical presentations and anatomic findings. Given the high rate of recurrence with incomplete excision, identification of the entire tract during surgical treatment is of paramount importance. The objectives of this paper were to present five anatomic variations of first BCAs and describe the presentation, evaluation, and surgical approach to each one. Methods. A retrospective case review and literature review were performed. We describe patient characteristics, presentation, evaluation, and surgical approach of five patients with first BCAs. Results. Age at definitive surgical treatment ranged from 8 months to 7 years. Various clinical presentations were encountered, some of which were atypical for first BCAs. All had preoperative imaging demonstrating the tract. Four surgical approaches required a superficial parotidectomy with identification of the facial nerve, one of which revealed an aberrant facial nerve. In one case the tract was found to travel into the angle of the mandible, terminating as a mandibular cyst. This required en bloc excision that included the lateral cortex of the mandible. Conclusions. First BCAs have variable presentations. Complete surgical excision can be challenging. Therefore, careful preoperative planning and the recognition of atypical variants during surgery are essential. PMID:27034873
Prevalence and predictors of postoperative pain after ear, nose, and throat surgery.
Sommer, Michael; Geurts, José W J M; Stessel, Bjorn; Kessels, Alfons G H; Peters, Madelon L; Patijn, Jacob; van Kleef, Maarten; Kremer, Bernd; Marcus, Marco A E
2009-02-01
To determine postoperative pain in different types of ear, nose, and throat (ENT) surgery and their psychological preoperative predictors. Prospective cohort study. Academic hospital. A total of 217 patients undergoing ENT surgery. All ENT, neck, and salivary gland surgery. Postoperative pain and predictors for postoperative pain. Fifty percent of the patients undergoing surgery on the oral, pharyngeal, and laryngeal region and on the neck and salivary gland region had a visual analog scale score higher than 40 mm on day 1. In the patients who underwent oropharyngeal region operations the VAS score remained high on all 4 days. A VAS pain score higher than 40 mm was found in less than 30% of patients after endoscopic procedures and less than 20% after ear and nose surgery. After bivariate analysis, 6 variables--age, sex, preoperative pain, expected pain, short-term fear, and pain catastrophizing--had a predictive value. Multivariate analysis showed only preoperative pain, pain catastrophizing, and anatomical site of operation as independent predictors. Differences exist in the prevalence of unacceptable postoperative pain between ENT operations performed on different anatomical sites. A limited set of variables can be used to predict the occurrence of unacceptable postoperative pain after ENT surgery.
[Penile dimensions in type 2 diabetes].
Belousov, I I; Kogan, M I; Ibishev, H S; Vorobyev, S V; Khripun, I A; Gusova, Z R
2015-12-01
The current literature provides a wide range of publications on the anthropometry of the penis specifying the relationship between penile dimensions and sex hormones, weight, height and erectile function. But most of the studies involved healthy volunteers or young patients with erectile dysfunction. Our study was conducted in patients with type 2 diabetes. Penile measurements obtained in the present study were compared those of the average Russian man. The patients were divided into groups with preserved and impaired erectile function. Erectile function was also studied relative to the variability of penile dimensions. The effect of DM duration on erectile function was defined. Comparative analysis revealed the relationship between penile anatomical dimensions and erectile function. We studied the effect of type 2 diabetes on the anatomical dimensions and elasticity of the penis, established the relationship between penile dimensions and elasticity of the penis. The correlation between the severity of erectile dysfunction and serum testosterone levels on one side, and penile dimensions on the other was found. The effect of penile dimensions on erectile function in DM patients was also examined. Determining penile dimensions and their variability due to various pathological conditions or processes, may eventually lead to better result of ED management.
Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales.
Schwallier, Rachel; Gravendeel, Barbara; de Boer, Hugo; Nylinder, Stephan; van Heuven, Bertie Joan; Sieder, Anton; Sumail, Sukaibin; van Vugt, Rogier; Lens, Frederic
2017-05-01
Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant's iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes , while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Evolution of wood anatomical characters in Nepenthes and close relatives of Caryophyllales
Gravendeel, Barbara; de Boer, Hugo; Nylinder, Stephan; van Heuven, Bertie Joan; Sieder, Anton; Sumail, Sukaibin; van Vugt, Rogier; Lens, Frederic
2017-01-01
Abstract Background and Aims Nepenthes attracts wide attention with its spectacularly shaped carnivorous pitchers, cultural value and horticultural curiosity. Despite the plant’s iconic fascination, surprisingly little anatomical detail is known about the genus beyond its modified leaf tip traps. Here, the wood anatomical diversity of Nepenthes is explored. This diversity is further assessed with a phylogenetic framework to investigate whether the wood characters within the genus are relevant from an evolutionary or ecological perspective, or rather depend on differences in developmental stages, growth habits, substrates or precipitation. Methods Observations were performed using light microscopy and scanning electron microscopy. Ancestral states of selected wood and pith characters were reconstructed using an existing molecular phylogeny for Nepenthes and a broader Caryophyllales framework. Pairwise comparisons were assessed for possible relationships between wood anatomy and developmental stages, growth habits, substrates and ecology. Key Results Wood anatomy of Nepenthes is diffuse porous, with mainly solitary vessels showing simple, bordered perforation plates and alternate intervessel pits, fibres with distinctly bordered pits (occasionally septate), apotracheal axial parenchyma and co-occurring uni- and multiseriate rays often including silica bodies. Precipitation and growth habit (stem length) are linked with vessel density and multiseriate ray height, while soil type correlates with vessel diameter, vessel element length and maximum ray width. For Caryophyllales as a whole, silica grains, successive cambia and bordered perforation plates are the result of convergent evolution. Peculiar helical sculpturing patterns within various cell types occur uniquely within the insectivorous clade of non-core Caryophyllales. Conclusions The wood anatomical variation in Nepenthes displays variation for some characters dependent on soil type, precipitation and stem length, but is largely conservative. The helical-banded fibre-sclereids that mainly occur idioblastically in pith and cortex are synapomorphic for Nepenthes, while other typical Nepenthes characters evolved convergently in different Caryophyllales lineages. PMID:28387789
Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Li, Jianyi; Huang, Wenhua
2016-01-01
Hepatic segment anatomy is difficult for medical students to learn. Three-dimensional visualization (3DV) is a useful tool in anatomy teaching, but current models do not capture haptic qualities. However, three-dimensional printing (3DP) can produce highly accurate complex physical models. Therefore, in this study we aimed to develop a novel 3DP hepatic segment model and compare the teaching effectiveness of a 3DV model, a 3DP model, and a traditional anatomical atlas. A healthy candidate (female, 50-years old) was recruited and scanned with computed tomography. After three-dimensional (3D) reconstruction, the computed 3D images of the hepatic structures were obtained. The parenchyma model was divided into 8 hepatic segments to produce the 3DV hepatic segment model. The computed 3DP model was designed by removing the surrounding parenchyma and leaving the segmental partitions. Then, 6 experts evaluated the 3DV and 3DP models using a 5-point Likert scale. A randomized controlled trial was conducted to evaluate the educational effectiveness of these models compared with that of the traditional anatomical atlas. The 3DP model successfully displayed the hepatic segment structures with partitions. All experts agreed or strongly agreed that the 3D models provided good realism for anatomical instruction, with no significant differences between the 3DV and 3DP models in each index (p > 0.05). Additionally, the teaching effects show that the 3DV and 3DP models were significantly better than traditional anatomical atlas in the first and second examinations (p < 0.05). Between the first and second examinations, only the traditional method group had significant declines (p < 0.05). A novel 3DP hepatic segment model was successfully developed. Both the 3DV and 3DP models could improve anatomy teaching significantly. Copyright © 2015 Association of Program Directors in Surgery. Published by Elsevier Inc. All rights reserved.
Kong, Xiangxue; Nie, Lanying; Zhang, Huijian; Wang, Zhanglin; Ye, Qiang; Tang, Lei; Huang, Wenhua; Li, Jianyi
2016-08-01
It is a difficult and frustrating task for young surgeons and medical students to understand the anatomy of hepatic segments. We tried to develop an optimal 3D printing model of hepatic segments as a teaching aid to improve the teaching of hepatic segments. A fresh human cadaveric liver without hepatic disease was CT scanned. After 3D reconstruction, three types of 3D computer models of hepatic structures were designed and 3D printed as models of hepatic segments without parenchyma (type 1) and with transparent parenchyma (type 2), and hepatic ducts with segmental partitions (type 3). These models were evaluated by six experts using a five-point Likert scale. Ninety two medical freshmen were randomized into four groups to learn hepatic segments with the aid of the three types of models and traditional anatomic atlas (TAA). Their results of two quizzes were compared to evaluate the teaching effects of the four methods. Three types of models were successful produced which displayed the structures of hepatic segments. By experts' evaluation, type 3 model was better than type 1 and 2 models in anatomical condition, type 2 and 3 models were better than type 1 model in tactility, and type 3 model was better than type 1 model in overall satisfaction (P < 0.05). The first quiz revealed that type 1 model was better than type 2 model and TAA, while type 3 model was better than type 2 and TAA in teaching effects (P < 0.05). The second quiz found that type 1 model was better than TAA, while type 3 model was better than type 2 model and TAA regarding teaching effects (P < 0.05). Only TAA group had significant declines between two quizzes (P < 0.05). The model with segmental partitions proves to be optimal, because it can best improve anatomical teaching about hepatic segments.
Xu, Haotong; Li, Xiaoxiao; Zhang, Zhengzhi; Qiu, Mingguo; Mu, Qiwen; Wu, Yi; Tan, Liwen; Zhang, Shaoxiang; Zhang, Xiaoming
2011-01-01
Background The major hindrance to multidetector CT imaging of the left extraperitoneal space (LES), and the detailed spatial relationships to its related spaces, is that there is no obvious density difference between them. Traditional gross anatomy and thick-slice sectional anatomy imagery are also insufficient to show the anatomic features of this narrow space in three-dimensions (3D). To overcome these obstacles, we used a new method to visualize the anatomic features of the LES and its spatial associations with related spaces, in random sections and in 3D. Methods In conjunction with Mimics® and Amira® software, we used thin-slice cross-sectional images of the upper abdomen, retrieved from the Chinese and American Visible Human dataset and the Chinese Virtual Human dataset, to display anatomic features of the LES and spatial relationships of the LES to its related spaces, especially the gastric bare area. The anatomic location of the LES was presented on 3D sections reconstructed from CVH2 images and CT images. Principal Findings What calls for special attention of our results is the LES consists of the left sub-diaphragmatic fat space and gastric bare area. The appearance of the fat pad at the cardiac notch contributes to converting the shape of the anteroexternal surface of the LES from triangular to trapezoidal. Moreover, the LES is adjacent to the lesser omentum and the hepatic bare area in the anterointernal and right rear direction, respectively. Conclusion The LES and its related spaces were imaged in 3D using visualization technique for the first time. This technique is a promising new method for exploring detailed communication relationships among other abdominal spaces, and will promote research on the dynamic extension of abdominal diseases, such as acute pancreatitis and intra-abdominal carcinomatosis. PMID:22087259
Lawrance, R A; Dorsch, M F; Sapsford, R J; Mackintosh, A F; Greenwood, D C; Jackson, B M; Morrell, C; Robinson, M B; Hall, A S
2001-08-11
Use of cumulative mortality adjusted for case mix in patients with acute myocardial infarction for early detection of variation in clinical practice. Observational study. 20 hospitals across the former Yorkshire region. All 2153 consecutive patients with confirmed acute myocardial infarction identified during three months. Variable life-adjusted displays showing cumulative differences between observed and expected mortality of patients; expected mortality calculated from risk model based on admission characteristics of age, heart rate, and systolic blood pressure. The performance of two individual hospitals over three months was examined as an example. One, the smallest district hospital in the region, had a series of 30 consecutive patients but had five more deaths than predicted. The variable life-adjusted display showed minimal variation from that predicted for the first 15 patients followed by a run of unexpectedly high mortality. The second example was the main tertiary referral centre for the region, which admitted 188 consecutive patients. The display showed a period of apparently poor performance followed by substantial improvement, where the plot rose steadily from a cumulative net lives saved of -4 to 7. These variations in patient outcome are unlikely to have been revealed during conventional audit practice. Variable life-adjusted display has been integrated into surgical care as a graphical display of risk-adjusted survival for individual surgeons or centres. In combination with a simple risk model, it may have a role in monitoring performance and outcome in patients with acute myocardial infarction.
Barrington, John W; Sodhi, Nipun; Ali, Muzaffar; Khlopas, Anton; Sultan, Assem A; Kee, James R; Holmes, Kristopher A; Hariri, Omar; Newman, Jared M; Mont, Michael A
2017-12-01
The foveal vessels of the ligamentum teres are an anterior branch of the posterior division of the obturator artery, providing blood to the capitis of the femoral head. However, the basic anatomic description of foveal vasculature in the ligamentum teres of the hip is widely variable, with some studies reporting that the vessels are not patent in roughly one third of all adults. Therefore, the purpose of this study was to evaluate the status of foveal vessels in primary total hip arthroplasty (THA) patients. Specifically, we evaluated: (I) if the foveal vessels were intact; and we (II) correlated foveal vessel status with (i) patient demographics, including gender and age; as well as (ii) perioperative data, such as operative time and blood loss. The macroscopic status of the foveal vessels in the ligamentum teres femoris was documented in 266 patients at the time of primary unilateral THA performed between August 2015 and April 2017. The vessels were considered to be intact if active bleeding was directly visible from the acetabular stump of the severed ligamentum teres femoris. Demographics including age, gender, and preoperative diagnosis were collected. The perioperative outcome variables included estimated blood loss (EBL) and operative time. Foveal vessel status defined as intact or not intact, was also correlated with patient demographics and perioperative data. A student's t -test was used to compare the continuous variables and a chi square test was used for categorical variables. The foveal vessels were intact in 161 patients (61%) and not intact in 105 patients (39%). The mean age for patients with intact foveal vessels was found to be 64 years (range, 18 to 94 years) vs. 65 years (range, 29 to 94 years) (P>0.05) for not intact. No correlation was found between preoperative diagnosis, gender, operative time, and EBL and foveal vessel status. The results of this clinical patho-anatomic study of the foveal vessels in the ligamentum teres femoris of the hip refutes the polarized claims of prior anatomy texts that document the vessels as either "absent in adults" or "always intact." Rather, the results of this study reveal an alternate option: that foveal vessels can be present and either be intact (61%) or not intact (39%). No correlation was found between age, gender, operative time, and EBL and foveal vessel status.
A Systematic Search for Short-term Variability of EGRET Sources
NASA Technical Reports Server (NTRS)
Wallace, P. M.; Griffis, N. J.; Bertsch, D. L.; Hartman, R. C.; Thompson, D. J.; Kniffen, D. A.; Bloom, S. D.
2000-01-01
The 3rd EGRET Catalog of High-energy Gamma-ray Sources contains 170 unidentified sources, and there is great interest in the nature of these sources. One means of determining source class is the study of flux variability on time scales of days; pulsars are believed to be stable on these time scales while blazers are known to be highly variable. In addition, previous work has demonstrated that 3EG J0241-6103 and 3EG J1837-0606 are candidates for a new gamma-ray source class. These sources near the Galactic plane display transient behavior but cannot be associated with any known blazers. Although, many instances of flaring AGN have been reported, the EGRET database has not been systematically searched for occurrences of short-timescale (approximately 1 day) variability. These considerations have led us to conduct a systematic search for short-term variability in EGRET data, covering all viewing periods through proposal cycle 4. Six 3EG catalog sources are reported here to display variability on short time scales; four of them are unidentified. In addition, three non-catalog variable sources are discussed.
Barber, F Alan; Bava, Eric D; Spenciner, David B; Piccirillo, Justin
2013-06-01
The purpose of this study was to assess the mechanical performance of biocomposite knotless lateral row anchors based on both anchor design and the direction of pull. Two lateral row greater tuberosity insertion sites (anterior and posterior) were identified in matched pairs of fresh-frozen human cadaveric shoulders DEXA (dual energy X-ray absorptiometry) scanned to verify comparability. The humeri were stripped of all soft tissue and 3 different biocomposite knotless lateral row anchors: HEALIX Knotless BR (DePuy Mitek, Raynham MA), BioComposite PushLock (Arthrex, Naples, FL), and Bio-SwiveLock (Arthrex). Fifty-two anchors were distributed among the insertion locations and tested them with either an anatomic or axial pull. A fixed-gauge loop (15 mm) of 2 high-strength sutures from each anchor was created. After a 10-Nm preload, anchors were cycled from 10 to 45 Nm at 0.5 Hz for 200 cycles and tested to failure at 4.23 mm/second. The load to reach 3 mm and 5 mm displacement, ultimate failure load, displacement at ultimate failure, and failure mode were recorded. Threaded anchors (Bio-SwiveLock, P = .03; HEALIX Knotless, P = .014) showed less displacement with anatomic testing than did the nonthreaded anchor (BioComposite PushLock), and the HEALIX Knotless showed less overall displacement than did the other 2 anchors. The Bio-SwiveLock exhibited greater failure loads than did the other 2 anchors (P < .05). Comparison of axial and anatomic loading showed no maximum load differences for all anchors as a whole (P = .1084). Yet, anatomic pulling produced higher failure loads than did axial pulling for the Bio-SwiveLock but not for the BioComposite PushLock or the HEALIX Knotless. The nonthreaded anchor (BioComposite PushLock) displayed lower failure loads than did both threaded anchors with axial pulling. Threaded biocomposite anchors (HEALIX Knotless BR and Bio-SwiveLock) show less anatomic loading displacement and higher axial failure loads than do the nonthreaded (BioComposite PushLock) anchor. The HEALIX Knotless BR anchor showed less displacement than did the BioComposite PushLock and Bio-SwiveLock anchors. Neither axial nor anatomic loading had an effect on overall anchor displacement. Because of the strength profiles exhibited, this study supports the use of biocomposite anchors, which have definite advantages over polyetheretherketone (PEEK) and metal products. However, the nonthreaded BioComposite PushLock anchor cannot be recommended. Copyright © 2013 Arthroscopy Association of North America. All rights reserved.
Bass, Ellen J.; Baumgart, Leigh A.; Shepley, Kathryn Klein
2014-01-01
Displaying both the strategy that information analysis automation employs to makes its judgments and variability in the task environment may improve human judgment performance, especially in cases where this variability impacts the judgment performance of the information analysis automation. This work investigated the contribution of providing either information analysis automation strategy information, task environment information, or both, on human judgment performance in a domain where noisy sensor data are used by both the human and the information analysis automation to make judgments. In a simplified air traffic conflict prediction experiment, 32 participants made probability of horizontal conflict judgments under different display content conditions. After being exposed to the information analysis automation, judgment achievement significantly improved for all participants as compared to judgments without any of the automation's information. Participants provided with additional display content pertaining to cue variability in the task environment had significantly higher aided judgment achievement compared to those provided with only the automation's judgment of a probability of conflict. When designing information analysis automation for environments where the automation's judgment achievement is impacted by noisy environmental data, it may be beneficial to show additional task environment information to the human judge in order to improve judgment performance. PMID:24847184
Delgado-Sánchez, Pablo; Yáñez-Espinosa, Laura; Jiménez-Bremont, Juan Francisco; Chapa-Vargas, Leonardo; Flores, Joel
2013-01-01
Background Cacti establish mostly occurs under the canopy of nurse plants which provide a less stressful micro-environment, although mechanisms underlying this process are unknown. The impact of the combination of light and watering treatments on Opuntia streptacantha (Cactaceae) seedlings was examined. Methods/Principal Findings Ecophysiological [titratable acidity, osmotic potential (‘solute potential’, Ψs), relative growth rate (RGR) and their components (NAR, SLA, and LWR)], anatomical (chloroplast density, chloroplast frequency, and cell area), and environmental [photosynthetic photon flux density (PPFD) and air temperature] sets of variables were analyzed, assessing relationships between them and measuring the intensity of the relationships. Three harvests were carried out at days 15, 30, and 45. Ψs and acidity content were the most important responses for seedling establishment. The main anatomical and environmental variables were chloroplast density and water availability, respectively. Opuntia streptacantha seedlings establish better in the shade-watering treatment, due to higher Ψs and acidity, unaffected chloroplasts, and lower PPFD. In addition, the chloroplasts of cells under high-light and non-watering treatment were clumped closer to the center of the cytosol than those under shade-drought, to avoid photoinhibition and/or to better distribute or utilize the penetrating light in the green plant tissue. Conclusions Opuntia seedlings grow better under the shade, although they can tolerate drought in open spaces by increasing and moving chloroplasts and avoiding drastic decreases in their Ψs. This tolerance could have important implications for predicting the impact of climate change on natural desert regeneration, as well as for planning reforestation-afforestation practices, and rural land uses. PMID:24312310
Bauer, Ben
2015-09-01
Scientific experimentation requires specification and control of independent variables with accurate measurement of dependent variables. In Vision Sciences (here broadly including experimental psychology, cognitive neuroscience, psychophysics, and clinical vision), proper specification and control of stimulus rendering (already a thorny issue) may become more problematic as several newer display technologies replace cathode ray tubes (CRTs) in the lab. The present paper alerts researchers to spatiotemporal differences in display technologies and how these might affect various types of experiments. Parallels are drawn to similar challenges and solutions that arose during the change from cabinet-style tachistoscopes to computer driven CRT tachistoscopes. Technical papers outlining various strengths and limitations of several classes of display devices are introduced as a resource for the reader wanting to select appropriate displays for different presentation requirements. These papers emphasise the need to measure rather than assume display characteristics because manufacturers' specifications and software reports/settings may not correspond with actual performance. This is consistent with the call by several Vision Science and Psychological Science bodies to increase replications and increase detail in Method sections. Finally, several recent tachistoscope-based experiments, which focused on the same question but were implemented with different technologies, are compared for illustrative purposes. (c) 2015 APA, all rights reserved).
Visual Temporal Filtering and Intermittent Visual Displays.
1986-08-08
suport Mud Kaplan, Associate Professor, 20% time and effort Michelangelo ROssetto, Research Associate, 20% time and m4pport Margo Greene, Research...reached and are described as follows. The variable raster rate display was designed and built by Michelangelo R0ssetto and Norman Milkman, Research
The morphologic universe of melanoma.
Jaimes, Natalia; Marghoob, Ashfaq A
2013-10-01
Differentiating dysplastic nevi from melanoma remains one of the main objectives of dermoscopy. Melanomas tend not to manifest any of the benign patterns described for nevi and instead usually display chaotic dermoscopic morphologies. Melanomas located on the face, chronically sun-damaged skin, volar surfaces, nails, and mucosal surfaces have additional features that can assist in their identification. However, some melanomas lack any defined dermoscopic structures. These so-called featureless melanomas can be identified via digital surveillance. This article reviews the melanoma-specific structures as a function of anatomic location (ie, melanomas on nonglabrous skin, face, volar surfaces, mucosae, and nails). Copyright © 2013 Elsevier Inc. All rights reserved.
3D laser optoacoustic ultrasonic imaging system for preclinical research
NASA Astrophysics Data System (ADS)
Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.
2013-03-01
In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).
Lactational ectopic breast tissue of the vulva: case report and brief historical review.
Pieh-Holder, Kelly L
2013-04-01
Ectopic breast tissue is defined as glands of breast tissue located outside of the normal anatomic breasts. Historically, ectopic breast tissue has been thought to arise from a remnant of the embryonic mammary ridge along the "milk line" or the midaxillary line from the axilla to the groin, including the vulvar region. Extramammary tissue displays the same pathologic and physiologic changes as normal breast tissue and is often discovered in multiparous women as the result of swelling from lactational activity. We present a case report of a gravid patient with lactating vulvar mass and a brief historical perspective of vulvar ectopic breast tissue.
Integrating functional and anatomical information to facilitate cardiac resynchronization therapy.
Tournoux, Francois B; Manzke, Robert; Chan, Raymond C; Solis, Jorge; Chen-Tournoux, Annabel A; Gérard, Olivier; Nandigam, Veena; Allain, Pascal; Reddy, Vivek; Ruskin, Jeremy N; Weyman, Arthur E; Picard, Michael H; Singh, Jagmeet P
2007-08-01
Multiple imaging modalities are required in patients receiving cardiac resynchronization therapy. We have developed a strategy to integrate echocardiographic and angiographic information to facilitate left ventricle (LV) lead position. Full three-dimensional LV-volumes (3DLVV) and dyssynchrony maps were acquired before and after resynchronization. At the time of device implantation, 3D-rotational coronary venous angiography was performed. 3D-models of the veins were then integrated with the pre- and post-3DLVV. In the case displayed, prior to implantation, the lateral wall was delayed compared to the septum. The LV lead was positioned into the vein over the most delayed region, resulting in improved LV synchrony.
Deindl, Philipp; O'Reilly, Megan; Zoller, Katharina; Berger, Angelika; Pollak, Arnold; Schwindt, Jens; Schmölzer, Georg M
2014-01-01
Anatomical face mask with an air cushion rim might be placed accidentally in a false orientation on the newborn's face or filled with various amounts of air during neonatal resuscitation. Both false orientation as well as variable filling may reduce a tight seal and therefore hamper effective positive pressure ventilation (PPV). We aimed to measure the influence of mask type and mask position on the effectiveness of PPV. Twenty neonatal staff members delivered PPV to a modified, leak-free manikin. Resuscitation parameters were recorded using a self-inflatable bag PPV with an Intersurgical anatomical air cushion rim face mask (IS) and a size 0/1 Laerdal round face mask. Three different positions of the IS were tested: correct position, 90° and 180° rotation in reference to the midline of the face. IS masks in each correct position on the face but with different inflation of the air cushion (empty, 10, 20 and 30 mL). Mask leak was similar with mask rotation to either 90° or 180° but significantly increased from 27 (13-73) % with an adequate filled IS mask compared to 52 (16-83) % with an emptied air cushion rim. Anatomical-shaped face mask had similar mask leaks compared to round face mask. A wrongly positioned anatomical-shaped mask does not influence mask leak. Mask leak significantly increased once the air cushion rim was empty, which may cause failure in mask PPV.
Castaño-Jiménez, Paula A; Trent, Ava M; Bueno, Irene
2016-03-01
Anterior gastrointestinal tract obstruction by a foreign body has been reported in several avian species, most commonly in captive birds. It is often associated with behavioral issues that lead to compulsive consumption of bedding materials or bright moving objects. In penguins, foreign bodies are most commonly identified at necropsy and often are found in the ventriculus because of anatomic characteristics of the species. A captive African black-footed penguin ( Spheniscus demersus ) was diagnosed with a ventricular foreign body. The anatomic and physiologic differences that should be taken into account when surgically removing a ventricular foreign body in a penguin are described. These differences include the caudal location in the coelom and the large size of the ventriculus in proportion to the penguin's body size; the presence of a simple stomach, uniform in thickness and lacking muscular development; a simple gastrointestinal cycle (gastric contraction); and variability in pH of stomach contents. No complications were observed after surgery, and the bird recovered completely. Management of foreign bodies in birds should be based on the clinical signs of the individual bird, the species affected and its anatomic characteristics, the nature and location of the foreign body, available tools, and the preference and experience of the surgeon. This particular case demonstrates that the most indicated and preferred method is not always possible and that knowledge of biologic, anatomic, and physiologic differences of the species may allow the use of an alternative and more invasive approach with favorable outcomes.
Chandra, Poornima; Govindaraju, Poornima; Chowdhary, Ramesh
2016-01-01
Oral rehabilitation using implants is rapidly replacing tooth supported prostheses. The success of implants is largely dependent on the quality and quantity of alveolar bone. In this study, we assessed the location of limiting anatomical structures and the amount of alveolar bone available for implant placement. Six hundred digital panoramic radiographs (300 males and 300 females) of dentate patients aged between 15-60 years were selected from the archives. The radiographs were subdivided into 3 groups with age interval of 15 years. Then the location of mental foramen, anterior loop, mandibular canal and maxillary sinus was determined. The amount of bone available was measured in both maxilla and mandible in the premolar and molar regions. The mental foramen was most commonly located at the apex of the second premolar in both the genders. The anterior loop was more readily visible in the younger age group. The amount of bone available in the premolar and molar region of the mandible is nearly the same, while more bone is available in the premolar region of the maxilla. The location and morphology of anatomical structures of the jaws vary not only in different populations but also within the same population. The amount of bone available also showed variations in the same population and in the same individual on the right and left sides. The limiting anatomical structures govern the amount of bone available for possible implant placement.
Dilandro, Anthony C; Chappell, Todd M; Panchani, Prakash N; Kozlowski, Piotr B; Tubbs, R Shane; Khan, Khurram H; D'Antoni, Anthony V
2013-01-01
Many cadaver-based anatomy courses and surgical workshops use prosections to help podiatry students and residents learn clinically relevant anatomy. The quality of these prosections is variable and dependent upon the methods used to prepare them. These methods have not been adequately described in the literature, and few studies describe the use of chemicals to prepare prosections of the cadaveric foot and ankle. Recognizing the need for better teaching prosections in podiatric education, we developed a chemical application method with underwater dissection to better preserve anatomic structures of the cadaveric foot and ankle. We used inexpensive chemicals before, during, and after each step, which ultimately resulted in high-quality prosections that improved identification of anatomic structures relevant to the practice of podiatric medicine. Careful preservation of clinically important nerves, vessels, muscles, ligaments, and joints was achieved with these prosections. Although this method required additional preparation time, the resultant prosections have been repeatedly used for several years to facilitate learning among podiatry students and residents, and they have held up well. This method can be used by educators to teach podiatry students throughout their medical training and even into residency.
Tafti, Nahid; Karimlou, Masoud; Mardani, Mohammad Ali; Jafarpisheh, Amir Salar; Aminian, Gholam Reza; Safari, Reza
2018-04-20
The objectives of current study were to a) assess similarities and relationships between anatomical landmark-based angles and distances of lower limbs in unilateral transtibial amputees and b) develop and evaluate a new anatomically based static prosthetic alignment method. First sub-study assessed the anthropometrical differences and relationships between the lower limbs in the photographs taken from amputees. Data were analysed via paired t-test and regression analysis. Results show no significant differences in frontal and transverse planes. In the sagittal plane, the anthropometric parameters of the amputated limb were significantly correlated to the corresponding variables of the sound limb. The results served as bases for the development of a new prosthetic alignment method. The method was evaluated on a single subject study. Prosthetic alignment carried out by an experienced prosthetist was compared with such alignment adjusted by an inexperienced prosthetist but with the use of the developed method. In sagittal and frontal planes, the socket angle was tuned with respect to the shin angle, and the position of the prosthetic foot was tuned in relation to the pelvic landmarks. Further study is needed to assess the proposed method on a larger sample of amputees and prosthetists.
Toews, Matthew; Wells, William M.; Collins, Louis; Arbel, Tal
2013-01-01
This paper presents feature-based morphometry (FBM), a new, fully data-driven technique for identifying group-related differences in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between all subjects, FBM models images as a collage of distinct, localized image features which may not be present in all subjects. FBM thus explicitly accounts for the case where the same anatomical tissue cannot be reliably identified in all subjects due to disease or anatomical variability. A probabilistic model describes features in terms of their appearance, geometry, and relationship to sub-groups of a population, and is automatically learned from a set of subject images and group labels. Features identified indicate group-related anatomical structure that can potentially be used as disease biomarkers or as a basis for computer-aided diagnosis. Scale-invariant image features are used, which reflect generic, salient patterns in the image. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer’s (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and obtains an equal error classification rate of 0.78 on new subjects. PMID:20426102
Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone Analysis
Carballido-Gamio, Julio; Folkesson, Jenny; Karampinos, Dimitrios C.; Baum, Thomas; Link, Thomas M.; Majumdar, Sharmila; Krug, Roland
2013-01-01
Automatic placement of anatomically corresponding volumes of interest and comparison of parameters against a standard of reference are essential components in studies of trabecular bone. Only recently, in vivo MR images of the proximal femur, an important fracture site, could be acquired with high-spatial resolution. The purpose of this MRI trabecular bone study was two-fold: (1) to generate an atlas of the proximal femur to automatically place anatomically corresponding volumes of interest in a population study and (2) to demonstrate how mean models of geodesic topological analysis parameters can be generated to be used as potential standard of reference. Ten females were used to generate the atlas and geodesic topological analysis models, and 10 females were used to demonstrate the atlas-based trabecular bone analysis. All alignments were based on three-dimensional (3D) multiresolution affine transformations followed by 3D multiresolution free-form deformations. Mean distances less than 1 mm between aligned femora, and sharp edges in the atlas and in fused gray-level images of registered femora indicated that the anatomical variability was well accommodated and explained by the free-form deformations. PMID:21432904
Guo, Wenbin; Liu, Feng; Chen, Jindong; Wu, Renrong; Zhang, Zhikun; Yu, Miaoyu; Xue, Zhimin; Zhao, Jingping
2016-08-01
Abnormal functional connectivity has been observed in major depressive disorder. Anatomical distance may affect functional connectivity in patients with major depressive disorder. However, whether and how anatomical distance affects functional connectivity at rest remains unclear in drug-naive patients with major depressive disorder. Forty-four patients with major depressive disorder, as well as 44 age-, sex- and education-matched healthy controls, underwent resting-state functional magnetic resonance imaging scanning. Regional functional connectivity strength was calculated for each voxel in the whole brain, which was further divided into short- and long-range functional connectivity strength. The patients showed decreased long-range positive functional connectivity strength in the right inferior parietal lobule, as well as decreased short-range positive functional connectivity strength in the right insula and right superior temporal gyrus relative to those of the controls. No significant correlations existed between abnormal functional connectivity strength and the clinical variables of the patients. The findings revealed that anatomical distance decreases long- and short-range functional connectivity strength in patients with major depressive disorder, which may underlie the neurobiology of major depressive disorder. © The Royal Australian and New Zealand College of Psychiatrists 2015.
Atlas warping for brain morphometry
NASA Astrophysics Data System (ADS)
Machado, Alexei M. C.; Gee, James C.
1998-06-01
In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.
NASA Technical Reports Server (NTRS)
Jago, S.; Baty, D.; Oconnor, S.; Palmer, E.
1981-01-01
The concept of a cockpit display of traffic information (CDTI) includes the integration of air traffic, navigation, and other pertinent information in a single electronic display in the cockpit. Concise display symbology was developed for use in later full-mission simulator evaluations of the CDTI concept. Experimental variables used included the update interval motion of the aircraft, the update type, (that is, whether the two aircraft were updated at the same update interval or not), the background (grid pattern or no background), and encounter type (straight or curved). Only the type of encounter affected performance.
Solid models for CT/MR image display: accuracy and utility in surgical planning
NASA Astrophysics Data System (ADS)
Mankovich, Nicholas J.; Yue, Alvin; Ammirati, Mario; Kioumehr, Farhad; Turner, Scott
1991-05-01
Medical imaging can now take wider advantage of Computer-Aided-Manufacturing through rapid prototyping technologies (RPT) such as stereolithography, laser sintering, and laminated object manufacturing to directly produce solid models of patient anatomy from processed CT and MR images. While conventional surgical planning relies on consultation with the radiologist combined with direct reading and measurement of CT and MR studies, 3-D surface and volumetric display workstations are providing a more easily interpretable view of patient anatomy. RPT can provide the surgeon with a life size model of patient anatomy constructed layer by layer with full internal detail. Although this life-size anatomic model is more easily understandable by the surgeon, its accuracy and true surgical utility remain untested. We have developed a prototype image processing and model fabrication system based on stereolithography, which provides the neurosurgeon with models of the skull base. Parallel comparison of the model with the original thresholded CT data and with a CRT displayed surface rendering showed that both have an accuracy of 99.6 percent. Because of the ease of exact voxel localization on the model, its precision was high with the standard deviation of measurement of 0.71 percent. The measurements on the surface rendered display proved more difficult to exactly locate and yielded a standard deviation of 2.37 percent. This paper presents our accuracy study and discussed ways of assessing the quality of neurosurgical plans when 3-D models a made available as planning tools.
Biocytin-labelling and its impact on late 20th century studies of cortical circuitry
Thomson, Alex M.; Armstrong, William E.
2010-01-01
In recognition of the impact that a powerful new anatomical tool, such as the Golgi method, can have, this essay highlights the enormous influence that biocytin-filling has had on modern neuroscience. This method has allowed neurones that have been recorded intracellularly, ‘whole-cel’ or juxta-cellularly, to be identified anatomically, forming a vital link between functional and structural studies. It has been applied throughout the nervous system and has become a fundamental component of our technical armoury. A comprehensive survey of the applications to which the biocytin-filling approach has been put, would fill a large volume. This essay therefore focuses on one area, neocortical microcircuitry and the ways in which combining physiology and anatomy have revealed rules that help us the explain its previously indecipherable variability and complexity. PMID:20399808
The medial patellofemoral complex.
Loeb, Alexander E; Tanaka, Miho J
2018-06-01
The purpose of this review is to describe the current understanding of the medial patellofemoral complex, including recent anatomic advances, evaluation of indications for reconstruction with concomitant pathology, and surgical reconstruction techniques. Recent advances in our understanding of MPFC anatomy have found that there are fibers that insert onto the deep quadriceps tendon as well as the patella, thus earning the name "medial patellofemoral complex" to allow for the variability in its anatomy. In MPFC reconstruction, anatomic origin and insertion points and appropriate graft length are critical to prevent overconstraint of the patellofemoral joint. The MPFC is a crucial soft tissue checkrein to lateral patellar translation, and its repair or reconstruction results in good restoration of patellofemoral stability. As our understanding of MPFC anatomy evolves, further studies are needed to apply its relevance in kinematics and surgical applications to its role in maintaining patellar stability.
Deformable Medical Image Registration: A Survey
Sotiras, Aristeidis; Davatzikos, Christos; Paragios, Nikos
2013-01-01
Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: i) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; ii) longitudinal studies, where temporal structural or anatomical changes are investigated; and iii) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner. PMID:23739795
Huot, Philippe; Fox, Susan H; Newman-Tancredi, Adrian; Brotchie, Jonathan M
2011-10-01
L-DOPA remains the most effective treatment for Parkinson's disease (PD). However, long-term administration of L-DOPA is compromised by complications, particularly dyskinesia. Serotonergic type 1A (5-HT(1A)) receptor agonists and serotonergic type 2A (5-HT(2A)) receptor antagonists were, until recently, considered to be promising therapies against dyskinesia. However, there have been some recent high-profile failures in clinical trials, notably with sarizotan, and it seems that these classes of drugs may also impair l-DOPA antiparkinsonian efficacy. A simple explanation for the loss of antiparkinsonian benefit might be lack of good selectivity of these compounds for their respective targets, particularly with respect to off-target actions on dopaminergic receptors or poor dose selection in clinical studies. However, such explanations do not hold broadly when considering the actions of all compounds studied to date, whether in animal models or clinical trials. Here, we review 5-HT(1A) and 5-HT(2A) receptor function in PD and provide an anatomically based rationale as to why in some instances 5-HT(1A)- and 5-HT(2A)-modulating drugs might worsen parkinsonism, in addition to reducing dyskinesia. We propose that, in addition to selectivity for specific receptor subtypes, to target 5-HT(1A) and 5-HT(2A) receptors to alleviate dyskinesia, without worsening parkinsonism, it will be necessary to develop compounds that display anatomical selectivity, targeting corticostriatal transmission, while avoiding 5-HT receptors on ascending serotonergic and dopaminergic inputs from the raphe and substantia nigra, respectively.
Calretinin immunoreactivity in the claustrum of the rat
Druga, Rastislav; Salaj, Martin; Barinka, Filip; Edelstein, Lawrence; Kubová, Hana
2015-01-01
The claustrum is a telencephalic structure which consists of dorsal segment adjoining the insular cortex and a ventral segment termed also endopiriform nucleus (END). The dorsal segment (claustrum) is divided into a dorsal and ventral zone, while the END is parcellated into dorsal, ventral and intermediate END. The claustrum and the END consist of glutamatergic projection neurons and GABAergic local interneurons coexpressing calcium binding proteins. Among neurons expressing calcium binding proteins the calretinin (CR)-immunoreactive interneurons exert specific functions in neuronal circuits, including disinhibition of excitatory neurons. Previous anatomical data indicate extensive and reciprocally organized claustral projections with cerebral cortex. We asked if the distribution of cells immunoreactive for CR delineates anatomical or functional subdivisions in the claustrum and in the END. Both segments of the claustrum and all subdivisions of the END contained CR immunoreactive neurons with varying distribution. The ventral zone of the claustrum exhibited weak labeling with isolated cell bodies and thin fibers and is devoid of immunoreactive puncta. Within the medial margin of the intermediate END we noted a group of strongly positive neurons. Cells immunoreactive for CR in all subdivisions of the claustrum and END were bipolar, multipolar and oval with smooth, beaded aspiny dendrites. Small number of CR-immunoreactive neurons displayed thin dendrites which enter to adjoining structures. Penetration of dendrites was reciprocal. These results show an inhomogenity over the claustrum and the END in distribution and types of CR immunoreactive neurons. The distribution of the CR-immunoreactive neurons respects the anatomical but not functional zones of the claustral complex. PMID:25653596
de Campos, Deivis; Malysz, Tais; Bonatto-Costa, João Antonio; Jotz, Geraldo Pereira; de Oliveira Junior, Lino Pinto; da Rocha, Andrea Oxley
2015-09-01
Michelangelo Buonarroti (1475-1564) was a master anatomist as well as an artistic genius. He dissected numerous cadavers and developed a profound understanding of human anatomy. Among his best-known artworks are the frescoes painted on the ceiling of the Sistine Chapel (1508-1512), in Rome. Currently, there is some debate over whether the frescoes merely represent the teachings of the Catholic Church at the time or if there are other meanings hidden in the images. In addition, there is speculation regarding the image of the brain embedded in the fresco known as "The Creation of Adam," which contains anatomic features of the midsagittal and lateral surfaces of the brain. Within this context, we report our use of Image Pro Plus Software 6.0 to demonstrate mathematical evidence that Michelangelo painted "The Creation of Adam" using the Divine Proportion/Golden Ratio (GR) (1.6). The GR is classically associated with greater structural efficiency and is found in biological structures and works of art by renowned artists. Thus, according to the evidence shown in this article, we can suppose that the beauty and harmony recognized in all Michelangelo's works may not be based solely on his knowledge of human anatomical proportions, but that the artist also probably knew anatomical structures that conform to the GR display greater structural efficiency. It is hoped that this report will at least stimulate further scientific and scholarly contributions to this fascinating topic, as the study of these works of art is essential for the knowledge of the history of Anatomy. © 2015 Wiley Periodicals, Inc.
Haładaj, Robert; Pingot, Mariusz; Polguj, Michał; Wysiadecki, Grzegorz; Topol, Mirosław
2015-01-01
Background The aim of this study was to determine relationships between piriformis muscle (PM) and sciatic nerve (SN) with reference to sex and anatomical variations. Material/Methods Deep dissection of the gluteal region was performed on 30 randomized, formalin-fixed human lower limbs of adults of both sexes of the Polish population. Anthropometric measurements were taken and then statistically analyzed. Results The conducted research revealed that, apart from the typical structure of the piriformis muscle, the most common variation was division of the piriformis muscle into two heads, with the common peroneal nerve running between them (20%). The group with anatomical variations of the sciatic nerve course displayed greater diversity of morphometric measurement results. There was a statistically significant correlation between the lower limb length and the distance from the sciatic nerve to the greater trochanter in the male specimens. On the other hand, in the female specimens, a statistically significant correlation was observed between the lower limb length and the distance from the sciatic nerve to the ischial tuberosity. The shortest distance from the sciatic nerve to the greater trochanter measured at the level of the inferior edge of the piriformis was 21 mm, while the shortest distance to the ischial tuberosity was 63 mm. Such correlations should be taken into account during invasive medical procedures performed in the gluteal region. Conclusions It is possible to distinguish several anatomical variations of the sciatic nerve course within the deep gluteal region. The statistically significant correlations between some anthropometric measurements were only present within particular groups of male and female limbs. PMID:26629744
3D Printed Models of Cleft Palate Pathology for Surgical Education
Lioufas, Peter A.; Quayle, Michelle R.; Leong, James C.
2016-01-01
Objective: To explore the potential viability and limitations of 3D printed models of children with cleft palate deformity. Background: The advantages of 3D printed replicas of normal anatomical specimens have previously been described. The creation of 3D prints displaying patient-specific anatomical pathology for surgical planning and interventions is an emerging field. Here we explored the possibility of taking rare pediatric radiographic data sets to create 3D prints for surgical education. Methods: Magnetic resonance imaging data of 2 children (8 and 14 months) were segmented, colored, and anonymized, and stereolothographic files were prepared for 3D printing on either multicolor plastic or powder 3D printers and multimaterial 3D printers. Results: Two models were deemed of sufficient quality and anatomical accuracy to print unamended. One data set was further manipulated digitally to artificially extend the length of the cleft. Thus, 3 models were printed: 1 incomplete soft-palate deformity, 1 incomplete anterior palate deformity, and 1 complete cleft palate. All had cleft lip deformity. The single-material 3D prints are of sufficient quality to accurately identify the nature and extent of the deformities. Multimaterial prints were subsequently created, which could be valuable in surgical training. Conclusion: Improvements in the quality and resolution of radiographic imaging combined with the advent of multicolor multiproperty printer technology will make it feasible in the near future to print 3D replicas in materials that mimic the mechanical properties and color of live human tissue making them potentially suitable for surgical training. PMID:27757345
Format and basic geometry of a perspective display of air traffic for the cockpit
DOT National Transportation Integrated Search
1991-06-01
The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes all...
Musculoskeletal networks reveal topological disparity in mammalian neck evolution.
Arnold, Patrick; Esteve-Altava, Borja; Fischer, Martin S
2017-12-13
The increase in locomotor and metabolic performance during mammalian evolution was accompanied by the limitation of the number of cervical vertebrae to only seven. In turn, nuchal muscles underwent a reorganization while forelimb muscles expanded into the neck region. As variation in the cervical spine is low, the variation in the arrangement of the neck muscles and their attachment sites (i.e., the variability of the neck's musculoskeletal organization) is thus proposed to be an important source of neck disparity across mammals. Anatomical network analysis provides a novel framework to study the organization of the anatomical arrangement, or connectivity pattern, of the bones and muscles that constitute the mammalian neck in an evolutionary context. Neck organization in mammals is characterized by a combination of conserved and highly variable network properties. We uncovered a conserved regionalization of the musculoskeletal organization of the neck into upper, mid and lower cervical modules. In contrast, there is a varying degree of complexity or specialization and of the integration of the pectoral elements. The musculoskeletal organization of the monotreme neck is distinctively different from that of therian mammals. Our findings reveal that the limited number of vertebrae in the mammalian neck does not result in a low musculoskeletal disparity when examined in an evolutionary context. However, this disparity evolved late in mammalian history in parallel with the radiation of certain lineages (e.g., cetartiodactyls, xenarthrans). Disparity is further facilitated by the enhanced incorporation of forelimb muscles into the neck and their variability in attachment sites.
Berzina, Anna; Azarjana, Kristine; Cema, Ingrida; Pjanova, Dace; Rivosh, Alexander
2011-01-01
OBJECTIVE. To describe the prognostic factors and epidemiological characteristics of cutaneous and mucosal head and neck melanoma and to identify the variables associated with mortality from this disease. MATERIAL AND METHODS. Patients treated for head and neck melanoma in the Oncology Centre of Latvia, Riga during a 10-year period were identified. Records from 124 cases were analyzed in a descriptive, retrospective study. For each patient, information regarding age, sex, tumor anatomic site, as well as ulceration, histological tumor subtypes, Breslow thickness and Clark invasion level was viewed. Disease specific survival rates were calculated. The frequencies of all study variables and their 95% confidence intervals were determined. Kaplan-Meier survival curves were produced to illustrate the survival differences for each variable. RESULTS. The patients' mean age was 67.36 years. The study included 81 females (65.32%) and 43 males (34.67%). The prevalent anatomical site for cutaneous head and neck melanoma was the cheek - 49% (n=55) and the intraocular site for mucosal melanoma (61.5%). A high percentage of thick cutaneous melanoma was detected. In 53 cases (47.3%) out of 112 cutaneous melanoma the tumor ulceration was found. Nodular melanoma subtype was predominating (38%). The incidence of cutaneous melanoma has increased unequally whereas mucosal melanoma of the head and neck is an uncommon cancer and the incidence rates in Latvia during a ten year period are decreasing. CONCLUSION. Female sex, advanced age, facial skin, tumor thickness, nodular subtype and ulceration carried a relevant risk of poor prognosis.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G
2015-11-25
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species.
Favaro, Livio; Gamba, Marco; Alfieri, Chiara; Pessani, Daniela; McElligott, Alan G.
2015-01-01
The African penguin is a nesting seabird endemic to southern Africa. In penguins of the genus Spheniscus vocalisations are important for social recognition. However, it is not clear which acoustic features of calls can encode individual identity information. We recorded contact calls and ecstatic display songs of 12 adult birds from a captive colony. For each vocalisation, we measured 31 spectral and temporal acoustic parameters related to both source and filter components of calls. For each parameter, we calculated the Potential of Individual Coding (PIC). The acoustic parameters showing PIC ≥ 1.1 were used to perform a stepwise cross-validated discriminant function analysis (DFA). The DFA correctly classified 66.1% of the contact calls and 62.5% of display songs to the correct individual. The DFA also resulted in the further selection of 10 acoustic features for contact calls and 9 for display songs that were important for vocal individuality. Our results suggest that studying the anatomical constraints that influence nesting penguin vocalisations from a source-filter perspective, can lead to a much better understanding of the acoustic cues of individuality contained in their calls. This approach could be further extended to study and understand vocal communication in other bird species. PMID:26602001
Software tools for interactive instruction in radiologic anatomy.
Alvarez, Antonio; Gold, Garry E; Tobin, Brian; Desser, Terry S
2006-04-01
To promote active learning in an introductory Radiologic Anatomy course through the use of computer-based exercises. DICOM datasets from our hospital PACS system were transferred to a networked cluster of desktop computers in a medical school classroom. Medical students in the Radiologic Anatomy course were divided into four small groups and assigned to work on a clinical case for 45 minutes. The groups used iPACS viewer software, a free DICOM viewer, to view images and annotate anatomic structures. The classroom instructor monitored and displayed each group's work sequentially on the master screen by running SynchronEyes, a software tool for controlling PC desktops remotely. Students were able to execute the assigned tasks using the iPACS software with minimal oversight or instruction. Course instructors displayed each group's work on the main display screen of the classroom as the students presented the rationale for their decisions. The interactive component of the course received high ratings from the students and overall course ratings were higher than in prior years when the course was given solely in lecture format. DICOM viewing software is an excellent tool for enabling students to learn radiologic anatomy from real-life clinical datasets. Interactive exercises performed in groups can be powerful tools for stimulating students to learn radiologic anatomy.
Wood Cellular Dendroclimatology: A Pilot Study on Bristlecone Pine in the Southwest US
NASA Astrophysics Data System (ADS)
Ziaco, E.; Biondi, F.; Heinrich, I.
2015-12-01
Tree-rings provide paleoclimatic records at annual to seasonal resolution for regions or periods with no instrumental climatic data. Relationships between climatic variability and wood cellular features allow for a more complete understanding of the physiological mechanisms that control the climatic response of trees. Given the increasing importance of wood anatomy as a source of dendroecological information, such studies are now starting in the US. We analyzed 10 cores of bristlecone pine (Pinus longaeva D.K. Bailey) from a high-elevation site included in the Nevada Climate-ecohydrological Assessment Network (NevCAN). Century-long chronologies (1870-2013) of wood anatomical parameters (lumen area, cell diameter, cell wall thickness) can be developed by capturing strongly contrasted microscopic images using a Confocal Laser Scanning Microscope, and then measuring cellular parameters with task-specific software. Measures of empirical signal strength were used to test the strength of the environmental information embedded in wood anatomy. Correlation functions between ring-width, cellular features, and PRISM climatic variables were produced for the period 1926-2013. Time series of anatomical features present lower autocorrelation compared to ring widths, highlighting the role of environmental conditions occurring at the time of cell formation. Mean chronologies of radial lumen length and cell diameter carry a stronger climatic signal compared to cell wall thickness, and are significantly correlated with climatic variables (maximum temperature and total precipitation) in spring (Mar-Apr) and during the growing season (Jun-Sep), whereas ring widths show weaker or no correlation. Wood anatomy holds great potential to refine dendroclimatic reconstructions at higher temporal resolution, providing better estimates of hydroclimatic variability and plant physiological adaptations in the southwest US.
Hoffmann, Errol R; Chan, Alan H S
2017-08-01
Much research on stereotype strength relating display and control movements for displays moving in the vertical or horizontal directions has been reported. Here we report effects of display movement angle, where the display moves at angles (relative to the vertical) of between 0° and 180°. The experiment used six different controls, four display locations relative to the operator and three types of indicator. Indicator types were included because of the strong effects of the 'scale-side principle' that are variable with display angle. A directional indicator had higher stereotype strength than a neutral indicator, and showed an apparent reversal in control/display stereotype direction beyond an angle of 90°. However, with a neutral indicator this control reversal was not present. Practitioner Summary: The effects of display moving at angles other than the four cardinal directions, types of control, location of display and types of indicator are investigated. Indicator types (directional and neutral) have an effect on stereotype strength and may cause an apparent control reversal with change of display movement angle.
Evaluation of tactual displays for flight control
NASA Technical Reports Server (NTRS)
Levison, W. H.; Tanner, R. B.; Triggs, T. J.
1973-01-01
Manual tracking experiments were conducted to determine the suitability of tactual displays for presenting flight-control information in multitask situations. Although tracking error scores are considerably greater than scores obtained with a continuous visual display, preliminary results indicate that inter-task interference effects are substantially less with the tactual display in situations that impose high visual scanning workloads. The single-task performance degradation found with the tactual display appears to be a result of the coding scheme rather than the use of the tactual sensory mode per se. Analysis with the state-variable pilot/vehicle model shows that reliable predictions of tracking errors can be obtained for wide-band tracking systems once the pilot-related model parameters have been adjusted to reflect the pilot-display interaction.
Influence of weather on pollination and acorn production in two species of Missouri oaks
Robert A. Cecich
1997-01-01
The process by which oak pistillate flowers become acorns is reasonably understood from an anatomical perspective; however, the way that various factors influence this process is still unclear. This study examined acorn production in a small population of white oak and black oak trees in central Missouri, from 1990 to 1995, in relation to weather variables (maximum and...
Daniel J. Yelle; Ashley M. Stirgus
2016-01-01
Studying wood adhesive bond durability is challenging because wood is highly variable and heterogeneous at all length scales. In this study, three North American diffuse-porous hardwoods (hard maple, soft maple, and basswood) and their adhesively bonded as-semblies were exposed to wet and dry cyclic tests. Then, their den-sity differences were related to bond...
Acquisition of thin coronal sectional dataset of cadaveric liver.
Lou, Li; Liu, Shu Wei; Zhao, Zhen Mei; Tang, Yu Chun; Lin, Xiang Tao
2014-04-01
To obtain the thin coronal sectional anatomic dataset of the liver by using digital freezing milling technique. The upper abdomen of one Chinese adult cadaver was selected as the specimen. After CT and MRI examinations verification of absent liver lesions, the specimen was embedded with gelatin in stand erect position and frozen under profound hypothermia, and the specimen was then serially sectioned from anterior to posterior layer by layer with digital milling machine in the freezing chamber. The sequential images were captured by means of a digital camera and the dataset was imported to imaging workstation. The thin serial section of the liver added up to 699 layers with each layer being 0.2 mm in thickness. The shape, location, structure, intrahepatic vessels and adjacent structures of the liver was displayed clearly on each layer of the coronal sectional slice. CT and MR images through the body were obtained at 1.0 and 3.0 mm intervals, respectively. The methodology reported here is an adaptation of the milling methods previously described, which is a new data acquisition method for sectional anatomy. The thin coronal sectional anatomic dataset of the liver obtained by this technique is of high precision and good quality.
3D geometric morphometric analysis of the proximal epiphysis of the hominoid humerus
Arias-Martorell, Julia; Potau, Josep Maria; Bello-Hellegouarch, Gaëlle; Pastor, Juan Francisco; Pérez-Pérez, Alejandro
2012-01-01
In this study we perform a three-dimensional geometric morphometric (3D GM) analysis of the proximal epiphysis of the humerus in extant great apes, including humans, in order to accurately describe the functional anatomical differences between these taxa. In addition, a fossil hominin specimen of Australopithecus afarensis was included in a multivariate GM analysis in order to test the potential of this methodological approach for making locomotor inferences from fossil remains. The results obtained show significant differences in proximal humeral morphology among the taxa studied, which had thus far largely remained unnoticed. Based on morphofunctional considerations, these anatomical differences can be correlated to differences in the locomotor repertoires of the taxa, thus confirming that the proximal humerus is suitable for constructing paleobiological inferences about locomotion. Modern humans display markedly divergent features, which set them apart from both the extant great apes and the fossil hominin A. afarensis. The morphology of the proximal epiphysis of the humerus of the latter more closely resembles that of the orangutans, thus suggesting that despite hindlimb adaptations to bipedalism, the forelimb of this taxon was still functionally involved in arboreal behaviors, such as climbing or suspension. PMID:22946496
NASA Astrophysics Data System (ADS)
Piao, Daqing; Ramadan, Mohammad; Park, Aaron; Bartels, Kenneth E.; Patel, Sanjay G.
2017-10-01
Inadvertent injury to important anatomic structures is a significant risk in minimally invasive surgery (MIS) that potentially requires conversion to an open procedure, which results in increased morbidity and mortality. Surgeons operating minimal-invasively currently do not have an easy-to-use, real-time device to aid in intraoperative identification of important anatomic structures that underlie tissue planes. We demonstrate freehand diffuse optical spectroscopy (DOS) imaging for intraoperatively identifying major underlying veins and arteries. An applicator probe that can be affixed to and detached from an 8-mm laparoscopic instrument has been developed. The 10-mm DOS source-detector separation renders sampling of tissue heterogeneities a few millimeters deep. DOS spectra acquired consecutively during freehand movement of the applicator probe on the tissue surface are displayed as a temporal and spectral image to assist in spatially resolved identification of the underlying structures. Open surgery identifications of the vena cava and aorta underlying peritoneal fat of ˜4 mm in thickness using the applicator probe under room light were demonstrated repeatedly in multiple pigs in vivo.
Alvarez, George A; Gill, Jonathan; Cavanagh, Patrick
2012-01-01
Previous studies have shown independent attentional selection of targets in the left and right visual hemifields during attentional tracking (Alvarez & Cavanagh, 2005) but not during a visual search (Luck, Hillyard, Mangun, & Gazzaniga, 1989). Here we tested whether multifocal spatial attention is the critical process that operates independently in the two hemifields. It is explicitly required in tracking (attend to a subset of object locations, suppress the others) but not in the standard visual search task (where all items are potential targets). We used a modified visual search task in which observers searched for a target within a subset of display items, where the subset was selected based on location (Experiments 1 and 3A) or based on a salient feature difference (Experiments 2 and 3B). The results show hemifield independence in this subset visual search task with location-based selection but not with feature-based selection; this effect cannot be explained by general difficulty (Experiment 4). Combined, these findings suggest that hemifield independence is a signature of multifocal spatial attention and highlight the need for cognitive and neural theories of attention to account for anatomical constraints on selection mechanisms. PMID:22637710
Magnetic resonance imaging of the female pelvis: initial experience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hricak, H.; Alpers, C.; Crooks, L.E.
1983-12-01
The potential of magnetic resonance imaging (MRI) was evaluated in 21 female subjects: seven volunteers, 12 patients scanned for reasons unrelated to the lower genitourinary tract, and two patients referred with gynecologic disease. The uterus at several stages was examined; the premenarcheal uterus (one patient), the uterus of reproductive age (12 patients), the postmenopausal uterus (two patients), and in an 8 week pregnancy (one patient). The myometrium and cyclic endometrium in the reproductive age separated by a low-intensity line (probably stratum basale), which allows recognition of changes in thickness of the cyclic endometrium during the menstrual cycle. The corpus uterimore » can be distinguished from the cervix by the transitional zone of the isthmus. The anatomic relation of the uterus to bladder and rectum is easily outlined. The vagina can be distinguished from the cervix, and the anatomic display of the closely apposed bladder, vagina, and rectum is clear on axial and coronal images. The ovary is identified; the signal intensity from the ovary depends on the acquisition parameter used. Uterine leiomyoma, endometriosis, and dermoid cyst were depicted, but further experience is needed to ascertain the specificity of the findings.« less
NASA Astrophysics Data System (ADS)
Doyon-Poulin, Philippe
Flight deck of 21st century commercial aircrafts does not look like the one the Wright brothers used for their first flight. The rapid growth of civilian aviation resulted in an increase in the number of flight deck instruments and of their complexity, in order to complete a safe and ontime flight. However, presenting an abundance of visual information using visually cluttered flight instruments might reduce the pilot's flight performance. Visual clutter has received an increased interest by the aerospace community to understand the effects of visual density and information overload on pilots' performance. Aerospace regulations demand to minimize visual clutter of flight deck displays. Past studies found a mixed effect of visual clutter of the primary flight display on pilots' technical flight performance. More research is needed to better understand this subject. In this thesis, we did an experimental study in a flight simulator to test the effects of visual clutter of the primary flight display on the pilot's technical flight performance, mental workload and gaze pattern. First, we identified a gap in existing definitions of visual clutter and we proposed a new definition relevant to the aerospace community that takes into account the context of use of the display. Then, we showed that past research on the effects of visual clutter of the primary flight display on pilots' performance did not manipulate the variable of visual clutter in a similar manner. Past research changed visual clutter at the same time than the flight guidance function. Using a different flight guidance function between displays might have masked the effect of visual clutter on pilots' performance. To solve this issue, we proposed three requirements that all tested displays must satisfy to assure that only the variable of visual clutter is changed during study while leaving other variables unaffected. Then, we designed three primary flight displays with a different visual clutter level (low, medium, high) but with the same flight guidance function, by respecting the previous requirements. Twelve pilots, with a mean experience of over 4000 total flight hours, completed an instrument landing in a flight simulator using all three displays for a total of nine repetitions. Our results showed that pilots reported lower workload level and had better lateral precision during the approach using the medium-clutter display compared to the low- and high-clutter displays. Also, pilots reported that the medium-clutter display was the most useful for the flight task compared to the two other displays. Eye tracker results showed that pilots' gaze pattern was less efficient for the high-clutter display compared to the low- and medium-clutter displays. Overall, these new experimental results emphasize the importance of optimizing visual clutter of flight displays as it affects both objective and subjective performance of experienced pilots in their flying task. This thesis ends with practical recommendations to help designers optimize visual clutter of displays used for man-machine interface.
The Effects of Data and Graph Type on Concepts and Visualizations of Variability
ERIC Educational Resources Information Center
Cooper, Linda L.; Shore, Felice S.
2010-01-01
Recognizing and interpreting variability in data lies at the heart of statistical reasoning. Since graphical displays should facilitate communication about data, statistical literacy should include an understanding of how variability in data can be gleaned from a graph. This paper identifies several types of graphs that students typically…
How do medical students form impressions of the effectiveness of classroom teachers?
Rannelli, Luke; Coderre, Sylvain; Paget, Michael; Woloschuk, Wayne; Wright, Bruce; McLaughlin, Kevin
2014-08-01
Teaching effectiveness ratings (TERs) are used to provide feedback to teachers on their performance and to guide decisions on academic promotion. However, exactly how raters make decisions on teaching effectiveness is unclear. The objectives of this study were to identify variables that medical students appraise when rating the effectiveness of a classroom teacher, and to explore whether the relationships among these variables and TERs are modified by the physical attractiveness of the teacher. We asked 48 Year 1 medical students to listen to 2-minute audio clips of 10 teachers and to describe their impressions of these teachers and rate their teaching effectiveness. During each clip, we displayed either an attractive or an unattractive photograph of an unrelated third party. We used qualitative analysis followed by factor analysis to identify the principal components of teaching effectiveness, and multiple linear regression to study the associations among these components, type of photograph displayed, and TER. We identified two principal components of teaching effectiveness: charisma and intellect. There was no association between rating of intellect and TER. Rating of charisma and the display of an attractive photograph were both positively associated with TER and a significant interaction between these two variables was apparent (p < 0.001). The regression coefficient for the association between charisma and TER was 0.26 (95% confidence interval [CI] 0.10-0.41) when an attractive picture was displayed and 0.83 (95% CI 0.66-1.00) when an unattractive picture was displayed (p < 0.001). When medical students rate classroom teachers, they consider the degree to which the teacher is charismatic, although the relationship between this attribute and TER appears to be modified by the perceived physical attractiveness of the teacher. Further studies are needed to identify other variables that may influence subjective ratings of teaching effectiveness and to evaluate alternative strategies for rating teaching effectiveness. © 2014 John Wiley & Sons Ltd.
Hawkins, Keith A; Jennings, Danna; Vincent, Andrea S; Gilliland, Kirby; West, Adrienne; Marek, Kenneth
2012-08-01
The automated neuropsychological assessment metrics battery-4 for PD offers the promise of a computerized approach to cognitive assessment. To assess its utility, the ANAM4-PD was administered to 72 PD patients and 24 controls along with a traditional battery. Reliability was assessed by retesting 26 patients. The cognitive efficiency score (CES; a global score) exhibited high reliability (r = 0.86). Constituent variables exhibited lower reliability. The CES correlated strongly with the traditional battery global score, but displayed weaker relationships to UPDRS scores than the traditional score. Multivariate analysis of variance revealed a significant difference between the patient and control groups in ANAM4-PD performance, with three ANAM4-PD tests, math, tower, and pursuit tracking, displaying sizeable differences. In discriminant analyses these variables were as effective as the total ANAM4-PD in classifying cases designated as impaired based on traditional variables. Principal components analyses uncovered fewer factors in the ANAM4-PD relative to the traditional battery. ANAM4-PD variables correlated at higher levels with traditional motor and processing speed variables than with untimed executive, intellectual or memory variables. The ANAM4-PD displays high global reliability, but variable subtest reliability. The battery assesses a narrower range of cognitive functions than traditional tests, and discriminates between patients and controls less effectively. Three ANAM4-PD tests, pursuit tracking, math, and tower performed as well as the total ANAM4-PD in classifying patients as cognitively impaired. These findings could guide the refinement of the ANAM4-PD as an efficient method of screening for mild to moderate cognitive deficits in PD patients. Copyright © 2012 Elsevier Ltd. All rights reserved.
Anatomical background and generalized detectability in tomosynthesis and cone-beam CT.
Gang, G J; Tward, D J; Lee, J; Siewerdsen, J H
2010-05-01
Anatomical background presents a major impediment to detectability in 2D radiography as well as 3D tomosynthesis and cone-beam CT (CBCT). This article incorporates theoretical and experimental analysis of anatomical background "noise" in cascaded systems analysis of 2D and 3D imaging performance to yield "generalized" metrics of noise-equivalent quanta (NEQ) and detectability index as a function of the orbital extent of the (circular arc) source-detector orbit. A physical phantom was designed based on principles of fractal self-similarity to exhibit power-law spectral density (kappa/Fbeta) comparable to various anatomical sites (e.g., breast and lung). Background power spectra [S(B)(F)] were computed as a function of source-detector orbital extent, including tomosynthesis (approximately 10 degrees -180 degrees) and CBCT (180 degrees + fan to 360 degrees) under two acquisition schemes: (1) Constant angular separation between projections (variable dose) and (2) constant total number of projections (constant dose). The resulting S(B) was incorporated in the generalized NEQ, and detectability index was computed from 3D cascaded systems analysis for a variety of imaging tasks. The phantom yielded power-law spectra within the expected spatial frequency range, quantifying the dependence of clutter magnitude (kappa) and correlation (beta) with increasing tomosynthesis angle. Incorporation of S(B) in the 3D NEQ provided a useful framework for analyzing the tradeoffs among anatomical, quantum, and electronic noise with dose and orbital extent. Distinct implications are posed for breast and chest tomosynthesis imaging system design-applications varying significantly in kappa and beta, and imaging task and, therefore, in optimal selection of orbital extent, number of projections, and dose. For example, low-frequency tasks (e.g., soft-tissue masses or nodules) tend to benefit from larger orbital extent and more fully 3D tomographic imaging, whereas high-frequency tasks (e.g., microcalcifications) require careful, application-specific selection of orbital extent and number of projections to minimize negative effects of quantum and electronic noise. The complex tradeoffs among anatomical background, quantum noise, and electronic noise in projection imaging, tomosynthesis, and CBCT can be described by generalized cascaded systems analysis, providing a useful framework for system design and optimization.
NASA Astrophysics Data System (ADS)
Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard
1997-07-01
The polyplanar optical display (POD) is a unique display screen which can be use with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser as its optical source. In order to produce real- time video, the laser light is being modulated by a digital light processing (DLP) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the electronic interfacing to the DLP chip, the opto-mechanical design and viewing angle characteristics.
Laser-driven polyplanar optic display
NASA Astrophysics Data System (ADS)
Veligdan, James T.; Beiser, Leo; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard
1998-05-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte-black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 200 milliwatt green solid- state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, we discuss the DLPTM chip, the opto-mechanical design and viewing angle characteristics.
CACDA Jiffy War Game Programmers Manual
1977-03-01
variables for INDEX5. F-12 F-4. Program variables for LOSS. F-14 F-5. Program variables for DISPLAY. F- 16 G-I. Program variables for OVLY 1 (ROFA). G...variables for FASCAM. J-9 K-1. Program variables for OVLY 5 (AHAD). K-2 L-i. Program variables for CANNON. L-2 L-2. Program variables for CLGP. L- 16 M-i...flow diagram. 56 13. TANK (OVLY 2) flow diagram. 62 14. INFANT (OVLY 3) flow diagram. 69 15. MINE flow diagram. 74 16 . Subroutine FASCAM flow
Format and basic geometry of a perspective display of air traffic for the cockpit
NASA Technical Reports Server (NTRS)
Mcgreevy, Michael Wallace; Ellis, Stephen R.
1991-01-01
The design and implementation of a perspective display of air traffic for the cockpit is discussed. Parameters of the perspective are variable and interactive so that the appearance of the projected image can be widely varied. This approach makes allowances for exploration of perspective parameters and their interactions. The display was initially used to study the cases of horizontal maneuver biases found in experiments involving a plan view air traffic display format. Experiments to determine the effect of perspective geometry on spatial judgements have evolved from the display program. Several scaling techniques and other adjustments to the perspective are used to tailor the geometry for effective presentation of 3-D traffic situations.
Age and Sex Differences in Intra-Individual Variability in a Simple Reaction Time Task
ERIC Educational Resources Information Center
Ghisletta, Paolo; Renaud, Olivier; Fagot, Delphine; Lecerf, Thierry; de Ribaupierre, Anik
2018-01-01
While age effects in reaction time (RT) tasks across the lifespan are well established for level of performance, analogous findings have started appearing also for indicators of intra-individual variability (IIV). Children are not only slower, but also display more variability than younger adults in RT. Yet, little is known about potential…
Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality
Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio
2017-01-01
Abstract The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project. Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal–temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal–parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders. PMID:28122961
Fonti, Patrick; von Arx, Georg; García-González, Ignacio; Eilmann, Britta; Sass-Klaassen, Ute; Gärtner, Holger; Eckstein, Dieter
2010-01-01
Variability in xylem anatomy is of interest to plant scientists because of the role water transport plays in plant performance and survival. Insights into plant adjustments to changing environmental conditions have mainly been obtained through structural and functional comparative studies between taxa or within taxa on contrasting sites or along environmental gradients. Yet, a gap exists regarding the study of hydraulic adjustments in response to environmental changes over the lifetimes of plants. In trees, dated tree-ring series are often exploited to reconstruct dynamics in ecological conditions, and recent work in which wood-anatomical variables have been used in dendrochronology has produced promising results. Environmental signals identified in water-conducting cells carry novel information reflecting changes in regional conditions and are mostly related to short, sub-annual intervals. Although the idea of investigating environmental signals through wood anatomical time series goes back to the 1960s, it is only recently that low-cost computerized image-analysis systems have enabled increased scientific output in this field. We believe that the study of tree-ring anatomy is emerging as a promising approach in tree biology and climate change research, particularly if complemented by physiological and ecological studies. This contribution presents the rationale, the potential, and the methodological challenges of this innovative approach.
ERIC Educational Resources Information Center
Bruyèl-Olmedo, Antonio; Juan-Garau, Maria
2015-01-01
Linguistic landscape studies increasingly focus on the variables that intertwine to generate the meaning of texts on display. International tourist resorts, largely multilingual, reveal how languages in signage combine and respond to the sociolinguistic profile of their readership. However, these settings have received scant attention in the…
DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures
Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo
2016-01-01
In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817
Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.
Dornas, João V; Braun, Jochen
2018-01-15
Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Defining the common femoral artery: Insights from the femoral arterial access with ultrasound trial.
Seto, Arnold H; Tyler, Jeffrey; Suh, William M; Harrison, Alexander T; Vera, Jesus A; Zacharias, Soni J; Daly, Timothy S; Sparling, Jeffrey M; Patel, Pranav M; Kern, Morton J; Abu-Fadel, Mazen
2017-06-01
We sought to establish the typical location of the common femoral artery (CFA) bifurcation, the origin and most inferior reflection of the inferior epigastric artery (IEA) relative to the femoral head (FH) and whether patient demographics predicted anatomical variations. In the absence of ultrasound guidance or prior imaging, the precise location of the CFA bifurcation and IEA can only be determined following access site angiography. Fluoroscopic landmarks are commonly used to estimate the location of the CFA bifurcation, but the position of the IEA is less well characterized. Prospectively collected data on 989 patients with femoral angiography in the FAUST trial were analyzed. The level of CFA bifurcation and the origin and most inferior reflection of the IEA were classified by angiography. Logistic regression was used to explore whether baseline demographics were associated with anatomic variations. The CFA bifurcation occurs below the middle 1/3 rd of the femoral head in 95% of patients, and no patient factors are predictive of a high bifurcation. The IEA origin has a more variable anatomically pattern, with high BSA, male gender, and white race associated with a low IEA origin. Operators should attempt to access the CFA at the level of the middle 1/3 rd of the FH to maximize the chance of CFA cannulation. However, this location carries an 11% risk of being at or above the IEA origin. Baseline demographics were of limited utility for predicting anatomic variants of the CFA bifurcation and the course of the IEA. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Watanabe, Koichi; Saga, Tsuyoshi; Iwanaga, Joe; Tabira, Yoko; Yamaki, Koh-Ichi
2017-01-01
The transversus nuchae muscle appears inconsistently in the occipital region. It has gained attention as one of the muscles composing the superficial musculoaponeurotic system (SMAS). The purpose of this study was to clarify its detailed anatomical features. We examined 124 sides of 62 cadavers. The transversus nuchae muscle was identified when present and examined after it had been completely exposed. We also examined its relationship to the occipital cutaneous nerves.The transversus nuchae muscle was detected in 40 sides (40/124, 32.2%) of 26 cadavers; it was present bilaterally in 14 and unilaterally in 12. It originated from the external occipital protuberance; 43% of the observed muscles inserted around the mastoid process, and 58% curved upward around the mastoid process and became the uppermost bundle of the platysma. In one case, an additional bundle originated from the lower posterior border of the sternocleidomastoid muscle and coursed obliquely upward along with platysma. Ninety percent of the muscles ran below the sling through which the greater occipital nerve passed; 65% of the lesser occipital nerves ran deep to the muscle, and 55% of the great auricular nerves ran superficial to it. Our observations clarify the unique anatomical features of the transversus nuchae muscle. We found that it occurs at a rate similar to that described in previous reports, but its arrangement is variable. Further investigations will be performed to clarify its innervation and other anatomical features. Clin. Anat. 30:32-38, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Anderson, Sarah J.; Hecker, Kent G.; Krigolson, Olave E.; Jamniczky, Heather A.
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise. PMID:29467638
Anderson, Sarah J; Hecker, Kent G; Krigolson, Olave E; Jamniczky, Heather A
2018-01-01
In anatomy education, a key hurdle to engaging in higher-level discussion in the classroom is recognizing and understanding the extensive terminology used to identify and describe anatomical structures. Given the time-limited classroom environment, seeking methods to impart this foundational knowledge to students in an efficient manner is essential. Just-in-Time Teaching (JiTT) methods incorporate pre-class exercises (typically online) meant to establish foundational knowledge in novice learners so subsequent instructor-led sessions can focus on deeper, more complex concepts. Determining how best do we design and assess pre-class exercises requires a detailed examination of learning and retention in an applied educational context. Here we used electroencephalography (EEG) as a quantitative dependent variable to track learning and examine the efficacy of JiTT activities to teach anatomy. Specifically, we examined changes in the amplitude of the N250 and reward positivity event-related brain potential (ERP) components alongside behavioral performance as novice students participated in a series of computerized reinforcement-based learning modules to teach neuroanatomical structures. We found that as students learned to identify anatomical structures, the amplitude of the N250 increased and reward positivity amplitude decreased in response to positive feedback. Both on a retention and transfer exercise when learners successfully remembered and translated their knowledge to novel images, the amplitude of the reward positivity remained decreased compared to early learning. Our findings suggest ERPs can be used as a tool to track learning, retention, and transfer of knowledge and that employing the reinforcement learning paradigm is an effective educational approach for developing anatomical expertise.
DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.
Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo
2016-05-15
In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Nogueira, Miguel; Soares, Pedro M. M.; Tomé, Ricardo; Cardoso, Rita M.
2018-05-01
We present a detailed evaluation of wind energy density (WED) over Portugal, based on the EURO-CORDEX database of high-resolution regional climate model (RCM) simulations. Most RCMs showed reasonable accuracy in reproducing the observed near-surface wind speed. The climatological patterns of WED displayed large sub-regional heterogeneity, with higher values over coastal regions and steep orography. Subsequently, we investigated the future changes of WED throughout the twenty-first century, considering mid- and end-century periods, and two emission scenarios (RCP4.5 and RCP8.5). On the yearly average, the multi-model ensemble WED changes were below 10% (15%) under RCP4.5 (RCP8.5). However, the projected WED anomalies displayed strong seasonality, dominated by low positive values in summer (< 10% for both scenarios), negative values in winter and spring (up to - 10% (- 20%) under RCP4.5 (RCP8.5)), and stronger negative anomalies in autumn (up to - 25% (- 35%) under RCP4.5 (RCP8.5)). These projected WED anomalies displayed large sub-regional variability. The largest reductions (and lowest increases) are linked to the northern and central-eastern elevated terrain, and the southwestern coast. In contrast, the largest increases (and lowest reductions) are linked to the central-western orographic features of moderate elevation. The projections also showed changes in inter-annual variability of WED, with small increases for annual averages, but with distinct behavior when considering year-to-year variability over a specific season: small increases in winter, larger increases in summer, slight decrease in autumn, and no relevant change in spring. The changes in inter-annual variability also displayed strong dependence on the underlying terrain. Finally, we found significant model spread in the magnitude of projected WED anomalies and inter-annual variability, affecting even the signal of the changes.
Display format, highlight validity, and highlight method: Their effects on search performance
NASA Technical Reports Server (NTRS)
Donner, Kimberly A.; Mckay, Tim D.; Obrien, Kevin M.; Rudisill, Marianne
1991-01-01
Display format and highlight validity were shown to affect visual display search performance; however, these studies were conducted on small, artificial displays of alphanumeric stimuli. A study manipulating these variables was conducted using realistic, complex Space Shuttle information displays. A 2x2x3 within-subjects analysis of variance found that search times were faster for items in reformatted displays than for current displays. Responses to valid applications of highlight were significantly faster than responses to non or invalidly highlighted applications. The significant format by highlight validity interaction showed that there was little difference in response time to both current and reformatted displays when the highlight validity was applied; however, under the non or invalid highlight conditions, search times were faster with reformatted displays. A separate within-subject analysis of variance of display format, highlight validity, and several highlight methods did not reveal a main effect of highlight method. In addition, observed display search times were compared to search time predicted by Tullis' Display Analysis Program. Benefits of highlighting and reformatting displays to enhance search and the necessity to consider highlight validity and format characteristics in tandem for predicting search performance are discussed.
Ahmad, Maha; Sleiman, Naama H; Thomas, Maureen; Kashani, Nahid; Ditmyer, Marcia M
2016-02-01
Laboratory cadaver dissection is essential for three-dimensional understanding of anatomical structures and variability, but there are many challenges to teaching gross anatomy in medical and dental schools, including a lack of available space and qualified anatomy faculty. The aim of this study was to determine the efficacy of high-definition audiovisual educational technology in the gross anatomy laboratory in improving dental students' learning outcomes and satisfaction. Exam scores were compared for two classes of first-year students at one U.S. dental school: 2012-13 (no audiovisual technology) and 2013-14 (audiovisual technology), and section exams were used to compare differences between semesters. Additionally, an online survey was used to assess the satisfaction of students who used the technology. All 284 first-year students in the two years (2012-13 N=144; 2013-14 N=140) participated in the exams. Of the 140 students in the 2013-14 class, 63 completed the survey (45% response rate). The results showed that those students who used the technology had higher scores on the laboratory exams than those who did not use it, and students in the winter semester scored higher (90.17±0.56) than in the fall semester (82.10±0.68). More than 87% of those surveyed strongly agreed or agreed that the audiovisual devices represented anatomical structures clearly in the gross anatomy laboratory. These students reported an improved experience in learning and understanding anatomical structures, found the laboratory to be less overwhelming, and said they were better able to follow dissection instructions and understand details of anatomical structures with the new technology. Based on these results, the study concluded that the ability to provide the students a clear view of anatomical structures and high-quality imaging had improved their learning experience.
Polyplanar optic display for cockpit application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veligdan, J.; Biscardi, C.; Brewster, C.
1998-04-01
The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments,more » Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veligdan, J.; Biscardi, C.; Brewster, C.
1997-07-01
The Polyplanar Optical Display (POD) is a unique display screen which can be used with any projection source. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a 100 milliwatt green solid state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLP{trademark}) chip manufactured by Texas Instruments, Inc.more » A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design, the authors discuss the electronic interfacing to the DLP{trademark} chip, the opto-mechanical design and viewing angle characteristics.« less
Polyplanar optic display for cockpit application
NASA Astrophysics Data System (ADS)
Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin; DeSanto, Leonard; Freibott, William C.
1998-09-01
The Polyplanar Optical Display (POD) is a high contrast display screen being developed for cockpit applications. This display screen is 2 inches thick and has a matte black face which allows for high contrast images. The prototype being developed is a form, fit and functional replacement display for the B-52 aircraft which uses a monochrome ten-inch display. The new display uses a long lifetime, (10,000 hour), 200 mW green solid-state laser (532 nm) as its optical source. In order to produce real-time video, the laser light is being modulated by a Digital Light Processing (DLPTM) chip manufactured by Texas Instruments, Inc. A variable astigmatic focusing system is used to produce a stigmatic image on the viewing face of the POD. In addition to the optical design and speckle reduction, we discuss the electronic interfacing to the DLPTM chip, the opto-mechanical design and viewing angle characteristics.
Development of a high frequency single-element ultrasound needle transducer for anesthesia delivery
NASA Astrophysics Data System (ADS)
Ameri, Golafsoun; Son, Jungik; Liang, Jingwei; Foster, F. Stuart; Ganapathy, Sugantha; Peters, Terry M.
2017-03-01
Epidural anesthesia is one of the most commonly used and yet challenging techniques employed for pain management and anesthesia delivery. The major complications of this procedure are due to accidental dural puncture, with an incidence of 1-3%, which could lead to both temporary and irreversible permanent neurological complications. Needle placement under ultrasound (US) guidance has received increasing interest for improving needle placement accuracy. However, poor needle visibility in US, difficulties in displaying relevant anatomical structure such as dura mater due to attenuation and bone shadowing, and image interpretation variability among users pose significant hurdles for any US guidance system. As a result, US guidance for epidural injections has not been widely adopted for everyday use for the performance of neuraxial blocks. The difficulties in localizing the ligamentum flavum and dura with respect to the needle tip can be addressed by integrating A-mode US, provided by a single-element transducer at the needle tip, into the B-mode US guidance system. We have taken the first steps towards providing such a guidance system. Our goal is to improve the safety of this procedure with minimal changes to the clinical workflow. This work presents the design and development of a 20 MHz single-element US transducer housed at the tip of a 19 G needle hypodermic tube, which can fit inside an epidural introducer needle. In addition, the results from initial transducer characterization tests and performance evaluation of the transducer in a euthanized porcine model are provided.
Gonadotrophic status in adolescents with pituitary stalk interruption syndrome.
Rottembourg, Diane; Linglart, Agnès; Adamsbaum, Catherine; Lahlou, Najiba; Teinturier, Cécile; Bougnères, Pierre; Carel, Jean-Claude
2008-07-01
Pituitary stalk interruption syndrome (PSIS) is a frequent cause of GH deficiency (GHD) and is commonly associated with other PH deficiencies (PHDs). Although previous reports have correlated multiple PHDs with severe anatomical lesions, the status of the gonadotrophic axis has not yet been thoroughly analysed. We retrospectively reviewed the medical records of 27 patients (15 males, 12 females) with GHD and PSIS defined by MRI findings. The status of the gonadotrophic axis was evaluated in children who were at least 14.5 years (boys) or 13 years (girls). Out of 27 patients, five displayed spontaneous full pubertal development with normal hormonal values at the final evaluation, whereas 22 of 27 patients (81%) had complete (n = 18) or partial pubertal deficiency. Three girls had primary amenorrhoea with normal gonadotrophin values, raising the possibility of subtle disturbances of gonadotrophin pulsatility. Of the 21 patients with TSH or ACTH deficiency, 17 (81%) had complete gonadotrophin deficiency. Two of our six patients with apparently isolated GHD during childhood had gonadotrophin deficiency. Cryptorchidism was present at birth in six boys (40%). Of these six boys, one had normal pubertal development. Ten of 11 boys with micropenis at birth had gonadotrophin deficiency. Gonadotrophin deficiency is a common finding in adolescents with PSIS and is frequently associated with other PHDs. However its severity is variable, ranging from complete gonadotrophin deficiency to normogonadotrophic amenorrhoea. The occurrence of gonadotrophin deficiency in 33% of children with apparently isolated GHD and PSIS has important implications for the counselling and follow-up of these patients.
Denou, Emmanuel; Rezzonico, Enea; Panoff, Jean-Michel; Arigoni, Fabrizio; Brüssow, Harald
2009-08-01
The relative contribution of competition and cooperation at the microbe-microbe level is not well understood for the bacteria constituting the gut microbiota. The high number and variability of human gut commensals have hampered the analysis. To get some insight into the question how so many different bacterial species can coexist in the mammalian gut, we studied the interaction between three human gut commensals (Escherichia coli K-12, Lactobacillus johnsonii NCC533, and Bifidobacterium longum NCC2705) in the intestine of gnotobiotic mice. The bacterial titers and their anatomical distribution were studied in the colonized mice. L. johnsonii achieved the highest cell counts in the stomach, while B. longum dominated the colon. The colon was also the intestinal location in which B. longum displayed the highest number of expressed genes, followed by the cecum and the small intestine. Addition of further bacterial strains led to strikingly different results. A Lactobacillus paracasei strain coexisted, while a second B. longum strain was excluded from the system. Notably, this strain lacked an operon involved in the degradation, import, and metabolism of mannosylated glycans. Subsequent introduction of the E. coli Nissle strain resulted in the elimination of L. johnsonii NCC533 and E. coli K-12, while B. longum NCC2705 showed a transient decrease in population size, demonstrating the dynamic nature of microbe-microbe interactions. The study of such simple interacting bacterial systems might help to derive some basic rules governing microbial ecology within the mammalian gut.
Increasing the perceptual salience of relationships in parallel coordinate plots.
Harter, Jonathan M; Wu, Xunlei; Alabi, Oluwafemi S; Phadke, Madhura; Pinto, Lifford; Dougherty, Daniel; Petersen, Hannah; Bass, Steffen; Taylor, Russell M
2012-01-01
We present three extensions to parallel coordinates that increase the perceptual salience of relationships between axes in multivariate data sets: (1) luminance modulation maintains the ability to preattentively detect patterns in the presence of overplotting, (2) adding a one-vs.-all variable display highlights relationships between one variable and all others, and (3) adding a scatter plot within the parallel-coordinates display preattentively highlights clusters and spatial layouts without strongly interfering with the parallel-coordinates display. These techniques can be combined with one another and with existing extensions to parallel coordinates, and two of them generalize beyond cases with known-important axes. We applied these techniques to two real-world data sets (relativistic heavy-ion collision hydrodynamics and weather observations with statistical principal component analysis) as well as the popular car data set. We present relationships discovered in the data sets using these methods.
Imaging the Facial Nerve: A Contemporary Review
Gupta, Sachin; Mends, Francine; Hagiwara, Mari; Fatterpekar, Girish; Roehm, Pamela C.
2013-01-01
Imaging plays a critical role in the evaluation of a number of facial nerve disorders. The facial nerve has a complex anatomical course; thus, a thorough understanding of the course of the facial nerve is essential to localize the sites of pathology. Facial nerve dysfunction can occur from a variety of causes, which can often be identified on imaging. Computed tomography and magnetic resonance imaging are helpful for identifying bony facial canal and soft tissue abnormalities, respectively. Ultrasound of the facial nerve has been used to predict functional outcomes in patients with Bell's palsy. More recently, diffusion tensor tractography has appeared as a new modality which allows three-dimensional display of facial nerve fibers. PMID:23766904
Introversion and individual differences in middle ear acoustic reflex function.
Bar-Haim, Yair
2002-10-01
A growing body of psychophysiological evidence points to the possibility that individual differences in early auditory processing may contribute to social withdrawal and introverted tendencies. The present study assessed the response characteristics of the acoustic reflex arc of introverted-withdrawn and extraverted-sociable individuals. Introverts displayed a greater incidence of abnormal middle ear acoustic reflexes and lower acoustic reflex amplitudes than extraverts. These findings were strongest for stimuli presented at a frequency of 2000 Hz. Results are discussed in light of the controversy concerning the anatomic loci (peripheral vs. central neuronal activity) of the individual differences between introverts and extraverts in early auditory processing. Copyright 2002 Elsevier Science B.V.
Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.
Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander
2008-04-16
The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.
Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display
NASA Astrophysics Data System (ADS)
Long, David L.
Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE's 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers.
The iMeteo is a web-based weather visualization tool
NASA Astrophysics Data System (ADS)
Tuni San-Martín, Max; San-Martín, Daniel; Cofiño, Antonio S.
2010-05-01
iMeteo is a web-based weather visualization tool. Designed with an extensible J2EE architecture, it is capable of displaying information from heterogeneous data sources such as gridded data from numerical models (in NetCDF format) or databases of local predictions. All this information is presented in a user-friendly way, being able to choose the specific tool to display data (maps, graphs, information tables) and customize it to desired locations. *Modular Display System* Visualization of the data is achieved through a set of mini tools called widgets. A user can add them at will and arrange them around the screen easily with a drag and drop movement. They can be of various types and each can be configured separately, forming a really powerful and configurable system. The "Map" is the most complex widget, since it can show several variables simultaneously (either gridded or point-based) through a layered display. Other useful widgets are the the "Histogram", which generates a graph with the frequency characteristics of a variable and the "Timeline" which shows the time evolution of a variable at a given location in an interactive way. *Customization and security* Following the trends in web development, the user can easily customize the way data is displayed. Due to programming in client side with technologies like AJAX, the interaction with the application is similar to the desktop ones because there are rapid respone times. If a user is registered then he could also save his settings in the database, allowing access from any system with Internet access with his particular setup. There is particular emphasis on application security. The administrator can define a set of user profiles, which may have associated restrictions on access to certain data sources, geographic areas or time intervals.
DOT National Transportation Integrated Search
2009-02-01
The present report reviews research concerning the possible effects of Commercial Electronic Variable Message Signs (CEVMS) used for outdoor advertising on driver safety. Such CEVMS displays are alternatively known as Electronic Billboards (EBB) and ...
Wade, Nicholas J
2008-01-01
The art of visual communication is not restricted to the fine arts. Scientists also apply art in communicating their ideas graphically. Diagrams of anatomical structures, like the eye and visual pathways, and figures displaying specific visual phenomena have assisted in the communication of visual ideas for centuries. It is often the case that the development of a discipline can be traced through graphical representations and this is explored here in the context of concepts of visual science. As with any science, vision can be subdivided in a variety of ways. The classification adopted is in terms of optics, anatomy, and visual phenomena; each of these can in turn be further subdivided. Optics can be considered in terms of the nature of light and its transmission through the eye. Understanding of the gross anatomy of the eye and visual pathways was initially dependent upon the skills of the anatomist whereas microanatomy relied to a large extent on the instruments that could resolve cellular detail, allied to the observational skills of the microscopist. Visual phenomena could often be displayed on the printed page, although novel instruments expanded the scope of seeing, particularly in the nineteenth century.
Diego Rivera's fresco and the case taken from Morgagni's De sedibus.
Zampieri, Fabio; Zanatta, Alberto; Scattolin, Giuliano; Stramare, Roberto; Thiene, Gaetano
2013-09-01
The fresco by Diego Rivera (1886 to 1957) on the history of cardiology was displayed at the "Instituto Nacional de Cardiología" of Mexico City at the time of inauguration on April 14, 1944. Some of the most important masters of the Padua Medical School were depicted, namely Vesalius, Harvey, and Morgagni. There is a vivid description of the anatomoclinical method introduced by Giovanni Battista Morgagni (1682 to 1771), when he was professor of Theoretical Medicine first and then of Anatomy at the University of Padua (1711 to 1771). By reading Morgagni's De sedibus, we found the case of aortic syphilitic aneurysm that corresponds perfectly with the one represented in Diego Rivera's mural. In the Museum of Pathological Anatomy of the Padua University, an anatomical specimen that displays the same lesion is preserved, and we have performed a computed tomography scan to analyze the state of the heart and aneurysm, thus finding diffuse calcific deposits of aorta and pericardium. In conclusion, in Diego Rivera's fresco the clinicopathologic method of Morgagni is well represented and the case of syphilitic aneurysm, reported by Morgagni in his De sedibus, depicted.
Dameron, O; Gibaud, B; Morandi, X
2004-06-01
The human cerebral cortex anatomy describes the brain organization at the scale of gyri and sulci. It is used as landmarks for neurosurgery as well as localization support for functional data analysis or inter-subject data comparison. Existing models of the cortex anatomy either rely on image labeling but fail to represent variability and structural properties or rely on a conceptual model but miss the inner 3D nature and relations of anatomical structures. This study was therefore conducted to propose a model of sulco-gyral anatomy for the healthy human brain. We hypothesized that both numeric knowledge (i.e., image-based) and symbolic knowledge (i.e., concept-based) have to be represented and coordinated. In addition, the representation of this knowledge should be application-independent in order to be usable in various contexts. Therefore, we devised a symbolic model describing specialization, composition and spatial organization of cortical anatomical structures. We also collected numeric knowledge such as 3D models of shape and shape variation about cortical anatomical structures. For each numeric piece of knowledge, a companion file describes the concept it refers to and the nature of the relationship. Demonstration software performs a mapping between the numeric and the symbolic aspects for browsing the knowledge base.
Weymuller, E A
1997-12-01
A Strategic Planning Conference (jointly supported by NCI and NIDCD) was convened to consider potential improvements in surgical patient data for multi-institutional trials. The thesis underlying this project is that inadequacies in staging, pretreatment patient stratification, and the details of surgical resection may have obscured the detection of treatment effect. The goals of this project were multiple: (1) to consider the utility of new clinical stratification variables, (2) to increase the precision of tumor staging, and (3) to improve operative reporting for multi-institutional trials in head and neck cancer. The conference attendees came to a number of important conclusions: (1) TNM status is inadequate for describing head and neck cancer in a multi-institutional trial setting. A detailed anatomic reporting scheme is proposed; (2) comorbidity measures should be included as patient descriptors, especially those that meet the criteria "definitely important and easy to obtain"; (3) surgical reporting in multi-institutional trials should use a format that is compatible with computer analysis and use the same items as the revised (anatomic) staging system; (4) the surgeon should be personally responsible for data coding and should interact directly with the pathologist in marking the surgical specimen; (5) pathologic reporting should use an anatomic template identical to the staging and operative reporting formats.
Majno, Pietro; Mentha, Gilles; Toso, Christian; Morel, Philippe; Peitgen, Heinz O; Fasel, Jean H D
2014-03-01
The vascular anatomy of the liver can be described at three different levels of complexity according to the use that the description has to serve. The first--conventional--level corresponds to the traditional 8-segments scheme of Couinaud and serves as a common language between clinicians from different specialties to describe the location of focal hepatic lesions. The second--surgical--level, to be applied to anatomical liver resections and transplantations, takes into account the real branching of the major portal pedicles and of the hepatic veins. Radiological and surgical techniques exist nowadays to make full use of this anatomy, but this requires accepting that the Couinaud scheme is a simplification, and looking at the vascular architecture with an unprejudiced eye. The third--academic--level of complexity concerns the anatomist, and the need to offer a systematization that resolves the apparent contradictions between anatomical literature, radiological imaging, and surgical practice. Based on the real number of second-order portal branches that, although variable averages 20, we submit a system called the "1-2-20 concept", and suggest that it fits best the number of actual--as opposed to idealized--anatomical liver segments. Copyright © 2013 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Computed Tomography of the Normal Bovine Tarsus.
Hagag, U; Tawfiek, M; Brehm, W; Gerlach, K
2016-12-01
The objective of this study was to provide a detailed multiplanar computed tomographic (CT) anatomic reference for the bovine tarsus. The tarsal regions from twelve healthy adult cow cadavers were scanned in both soft and bone windows via a 16-slice multidetector CT scanner. Tarsi were frozen at -20 o C and sectioned to 10-mm-thick slices in transverse, dorsal and sagittal planes respecting the imaging protocol. The frozen sections were cleaned and then photographed. Anatomic structures were identified, labelled and compared with the corresponding CT images. The sagittal plane was indispensable for evaluation of bone contours, the dorsal plane was valuable in examination of the collateral ligaments, and both were beneficial for assessment of the tarsal joint articulations. CT images allowed excellent delineation between the cortex and medulla of bones, and the trabecular structure was clearly depicted. The tarsal soft tissues showed variable shades of grey, and the synovial fluid was the lowest attenuated structure. This study provided full assessment of the clinically relevant anatomic structures of the bovine tarsal joint. This technique may be of value when results from other diagnostic imaging techniques are indecisive. Images presented in this study should serve as a basic CT reference and assist in the interpretation of various bovine tarsal pathology. © 2016 Blackwell Verlag GmbH.
Analyticity in Time and Smoothing Effect of Solutions to Nonlinear Schrödinger Equations
NASA Astrophysics Data System (ADS)
Hayashi, Nakao; Kato, Keiichi
In this paper we consider analyticity in time and smoothing effect of solutions to nonlinear Schrödinger equations
Barkley, K E; Fields, B; Dilger, A C; Boler, D D
2018-06-07
The objective was to determine the effect of machine, anatomical location and replication (multiple readings) on instrumental color and to characterize the amount of variation each factor contributed to overall color. Instrumental color was measured 3 times on the anterior and 3 times on the posterior end of 250 pork loins with 2 different Minolta CR-400 Chroma meter devices. Each Minolta was programed to use a D65 illuminant, 2º observer with an 8 mm aperture, and calibrated with white tiles specific to each machine. Therefore, a total of 12 instrumental color measurements were collected on each loin. The VARCOMP procedure in SAS was used to estimate the proportion of variation contributed by each factor to CIE L*, a*, b*, chroma and hue. Based on previous research, the average untrained consumer is able to distinguish between 3-L* units, 0.4-a* units, and 0.9-hue angle units. Loins evaluated with machine 1 were 0.71 L* units darker (P < 0.01), 1.09 b* units more yellow (P < 0.01), 0.47 chroma units more saturated (P < 0.01), and had a hue angle 5.12 units greater (P < 0.01) than when evaluated with machine 2 but did not differ (P = 0.24) in redness. The anterior portion of the loin was lighter, less red, more yellow, more saturated and had a greater hue angle than the posterior end (P < 0.01). All color trait values decreased (P < 0.01) as replication number increased. Inherent color differences among loins contributed the greatest proportion of variability for lightness (58%), redness (57%), yellowness (70%), saturation (70%) and hue angle (49%). Machine contributed 1% variability to lightness 3% to saturation, 23% to yellowness and 31% to hue angle (31%) but did not contribute to variability for redness. Anatomical location contributed 41% to lightness, 43% to redness, 7% to yellowness, 27% to saturation and 31% to hue angle. Replication did not contribute to total variation for any color traits, even though it did differ among measurements. Overall, there were differences in instrumental color values between the two machines tested but those differences were likely less than the threshold for detection by a consumer. Even so, inherent color differences between loins were a greater contributor to total variability than the differences between the 2 machines. Therefore, it is more important to define the location of measurements than replication or machine when using a Minolta CR-400 when performing color evaluations, assuming the settings are the same.
Incorporating 3-dimensional models in online articles.
Cevidanes, Lucia H S; Ruellas, Antonio C O; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz
2015-05-01
The aims of this article are to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article's online version for viewing and downloading using the reader's software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader's software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. When submitting manuscripts, authors can now upload 3D models that will allow readers to interact with or download them. Such interaction with 3D models in online articles now will give readers and authors better understanding and visualization of the results. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chetvertkov, Mikhail A.
Purpose: To develop standard and regularized principal component analysis (PCA) models of anatomical changes from daily cone beam CTs (CBCTs) of head and neck (H&N) patients, assess their potential use in adaptive radiation therapy (ART), and to extract quantitative information for treatment response assessment. Methods: Planning CT (pCT) images of H&N patients were artificially deformed to create "digital phantom" images, which modeled systematic anatomical changes during Radiation Therapy (RT). Artificial deformations closely mirrored patients' actual deformations, and were interpolated to generate 35 synthetic CBCTs, representing evolving anatomy over 35 fractions. Deformation vector fields (DVFs) were acquired between pCT and synthetic CBCTs (i.e., digital phantoms), and between pCT and clinical CBCTs. Patient-specific standard PCA (SPCA) and regularized PCA (RPCA) models were built from these synthetic and clinical DVF sets. Eigenvectors, or eigenDVFs (EDVFs), having the largest eigenvalues were hypothesized to capture the major anatomical deformations during treatment. Modeled anatomies were used to assess the dose deviations with respect to the planned dose distribution. Results: PCA models achieve variable results, depending on the size and location of anatomical change. Random changes prevent or degrade SPCA's ability to detect underlying systematic change. RPCA is able to detect smaller systematic changes against the background of random fraction-to-fraction changes, and is therefore more successful than SPCA at capturing systematic changes early in treatment. SPCA models were less successful at modeling systematic changes in clinical patient images, which contain a wider range of random motion than synthetic CBCTs, while the regularized approach was able to extract major modes of motion. For dose assessment it has been shown that the modeled dose distribution was different from the planned dose for the parotid glands due to their shrinkage and shift into the higher dose volumes during the radiotherapy course. Modeled DVHs still underestimated the effect of parotid shrinkage due to the large compression factor (CF) used to acquire DVFs. Conclusion: Leading EDVFs from both PCA approaches have the potential to capture systematic anatomical changes during H&N radiotherapy when systematic changes are large enough with respect to random fraction-to-fraction changes. In all cases the RPCA approach appears to be more reliable than SPCA at capturing systematic changes, enabling dosimetric consequences to be projected to the future treatment fractions based on trends established early in a treatment course, or, potentially, based on population models. This work showed that PCA has a potential in identifying the major mode of anatomical changes during the radiotherapy course and subsequent use of this information in future dose predictions is feasible. Use of smaller CF values for DVFs is preferred, otherwise anatomical motion will be underestimated.
O'Daniel, Jennifer C; Rosenthal, David I; Garden, Adam S; Barker, Jerry L; Ahamad, Anesa; Ang, K Kian; Asper, Joshua A; Blanco, Angel I; de Crevoisier, Renaud; Holsinger, F Christopher; Patel, Chirag B; Schwartz, David L; Wang, He; Dong, Lei
2007-04-01
To investigate interobserver variability in the delineation of head-and-neck (H&N) anatomic structures on CT images, including the effects of image artifacts and observer experience. Nine observers (7 radiation oncologists, 1 surgeon, and 1 physician assistant) with varying levels of H&N delineation experience independently contoured H&N gross tumor volumes and critical structures on radiation therapy treatment planning CT images alongside reference diagnostic CT images for 4 patients with oropharynx cancer. Image artifacts from dental fillings partially obstructed 3 images. Differences in the structure volumes, center-of-volume positions, and boundary positions (1 SD) were measured. In-house software created three-dimensional overlap distributions, including all observers. The effects of dental artifacts and observer experience on contouring precision were investigated, and the need for contrast media was assessed. In the absence of artifacts, all 9 participants achieved reasonable precision (1 SD < or =3 mm all boundaries). The structures obscured by dental image artifacts had larger variations when measured by the 3 metrics (1 SD = 8 mm cranial/caudal boundary). Experience improved the interobserver consistency of contouring for structures obscured by artifacts (1 SD = 2 mm cranial/caudal boundary). Interobserver contouring variability for anatomic H&N structures, specifically oropharyngeal gross tumor volumes and parotid glands, was acceptable in the absence of artifacts. Dental artifacts increased the contouring variability, but experienced participants achieved reasonable precision even with artifacts present. With a staging contrast CT image as a reference, delineation on a noncontrast treatment planning CT image can achieve acceptable precision.
Morphometric anatomical and CT study of the human adult sacroiliac region.
Postacchini, Roberto; Trasimeni, Guido; Ripani, Francesca; Sessa, Pasquale; Perotti, Stefano; Postacchini, Franco
2017-01-01
To identify and describe the morphometry and CT features of the articular and extra-articular portions of the sacroiliac region. The resulting knowledge might help to avoid complications in sacroiliac joint (SIJ) fusion. We analyzed 102 dry hemi-sacra, 80 ilia, and 10 intact pelves and assessed the pelvic computerized tomography (CT) scans of 90 patients, who underwent the examination for conditions not involving the pelvis. We assessed both the posterior aspect of sacrum with regard to the depressions located externally to the lateral sacral crest at the level of the proximal three sacral vertebrae and the posteroinferior aspect of ilium. Coronal and axial CT scans of the SIJ of patients were obtained and the joint space was measured. On each side, the sacrum exhibits three bone depressions, not described in anatomic textbooks or studies, facing the medial aspect of the posteroinferior ilium, not yet described in detail. Both structures are extra-articular portions situated posteriorly to the SIJ. Coronal CT scans of patients showing the first three sacral foramens and the interval between sacrum and ilium as a continuous space display only the S1 and S3 portions of SIJ, the intermediate portion being extra-articular. The S2 portion is visible on the most anterior coronal scan. Axial scans show articular and extra-articular portions and features improperly described as anatomic variations. Extra-articular portions of the sacroiliac region, not yet described exhaustively, have often been confused with SIJ. Coronal CT scans through the middle part of sacrum, the most used to evaluate degenerative and inflammatory conditions of SIJ, show articular and extra-articular portions of the region.
Why Can’t Rodents Vomit? A Comparative Behavioral, Anatomical, and Physiological Study
Horn, Charles C.; Kimball, Bruce A.; Wang, Hong; Kaus, James; Dienel, Samuel; Nagy, Allysa; Gathright, Gordon R.; Yates, Bill J.; Andrews, Paul L. R.
2013-01-01
The vomiting (emetic) reflex is documented in numerous mammalian species, including primates and carnivores, yet laboratory rats and mice appear to lack this response. It is unclear whether these rodents do not vomit because of anatomical constraints (e.g., a relatively long abdominal esophagus) or lack of key neural circuits. Moreover, it is unknown whether laboratory rodents are representative of Rodentia with regards to this reflex. Here we conducted behavioral testing of members of all three major groups of Rodentia; mouse-related (rat, mouse, vole, beaver), Ctenohystrica (guinea pig, nutria), and squirrel-related (mountain beaver) species. Prototypical emetic agents, apomorphine (sc), veratrine (sc), and copper sulfate (ig), failed to produce either retching or vomiting in these species (although other behavioral effects, e.g., locomotion, were noted). These rodents also had anatomical constraints, which could limit the efficiency of vomiting should it be attempted, including reduced muscularity of the diaphragm and stomach geometry that is not well structured for moving contents towards the esophagus compared to species that can vomit (cat, ferret, and musk shrew). Lastly, an in situ brainstem preparation was used to make sensitive measures of mouth, esophagus, and shoulder muscular movements, and phrenic nerve activity–key features of emetic episodes. Laboratory mice and rats failed to display any of the common coordinated actions of these indices after typical emetic stimulation (resiniferatoxin and vagal afferent stimulation) compared to musk shrews. Overall the results suggest that the inability to vomit is a general property of Rodentia and that an absent brainstem neurological component is the most likely cause. The implications of these findings for the utility of rodents as models in the area of emesis research are discussed. PMID:23593236
Kunkel, Maria E; Herkommer, Andrea; Reinehr, Michael; Böckers, Tobias M; Wilke, Hans-Joachim
2011-01-01
The main aim of this study was to provide anatomical data on the heights of the human intervertebral discs for all levels of the thoracic spine by direct and radiographic measurements. Additionally, the heights of the neighboring vertebral bodies were measured, and the prediction of the disc heights based only on the size of the vertebral bodies was investigated. The anterior (ADH), middle (MDH) and posterior heights (PDH) of the discs were measured directly and on radiographs of 72 spine segments from 30 donors (age 57.43 ± 11.27 years). The radiographic measurement error and the reliability of the measurements were calculated. Linear and non-linear regression analyses were employed for investigation of statistical correlations between the heights of the thoracic disc and vertebrae. Radiographic measurements displayed lower repeatability and were shorter than the anatomical ones (approximately 9% for ADH and 37% for PDH). The thickness of the discs varied from 4.5 to 7.2 mm, with the MDH approximately 22.7% greater. The disc heights showed good correlations with the vertebral body heights (R2, 0.659–0.835, P-values < 0.005; anova), allowing the generation of 10 prediction equations. New data on thoracic disc morphometry were provided in this study. The generated set of regression equations could be used to predict thoracic disc heights from radiographic measurement of the vertebral body height posterior. For the creation of parameterized models of the human thoracic discs, the use of the prediction equations could eliminate the need for direct measurement on intervertebral discs. Moreover, the error produced by radiographic measurements could be reduced at least for the PDH. PMID:21615399
An augmented reality tool for learning spatial anatomy on mobile devices.
Jain, Nishant; Youngblood, Patricia; Hasel, Matthew; Srivastava, Sakti
2017-09-01
Augmented Realty (AR) offers a novel method of blending virtual and real anatomy for intuitive spatial learning. Our first aim in the study was to create a prototype AR tool for mobile devices. Our second aim was to complete a technical evaluation of our prototype AR tool focused on measuring the system's ability to accurately render digital content in the real world. We imported Computed Tomography (CT) data derived virtual surface models into a 3D Unity engine environment and implemented an AR algorithm to display these on mobile devices. We investigated the accuracy of the virtual renderings by comparing a physical cube with an identical virtual cube for dimensional accuracy. Our comparative study confirms that our AR tool renders 3D virtual objects with a high level of accuracy as evidenced by the degree of similarity between measurements of the dimensions of a virtual object (a cube) and the corresponding physical object. We developed an inexpensive and user-friendly prototype AR tool for mobile devices that creates highly accurate renderings. This prototype demonstrates an intuitive, portable, and integrated interface for spatial interaction with virtual anatomical specimens. Integrating this AR tool with a library of CT derived surface models provides a platform for spatial learning in the anatomy curriculum. The segmentation methodology implemented to optimize human CT data for mobile viewing can be extended to include anatomical variations and pathologies. The ability of this inexpensive educational platform to deliver a library of interactive, 3D models to students worldwide demonstrates its utility as a supplemental teaching tool that could greatly benefit anatomical instruction. Clin. Anat. 30:736-741, 2017. © 2017Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Anatomical and Radiological Aspects of the Supratrochlear Foramen in Brazilians
Gutfiten-Schlesinger, Gabriel; Leite, Túlio FO; Pires, Lucas AS; Silva, Julio G.
2016-01-01
Introduction The supratrochlear foramen is an anatomic variation of great clinical and anthropologic interest. Although many studies addressed this subject in different ethnic groups, there are no studies regarding Brazilians. Aim To verify the incidence and morphometric measures of the supratrochlear foramen in Brazilian humeri. Materials and Methods A total of 330 dry humeri were analysed and divided in three groups: bones presenting the supratrochlear foramen (Group 1), bones displaying a translucent foramen (Group 2) and humeri without the foramen (Group 3). The aperture was measured with a digital vernier caliper. Radiographic pictures with different incidences were taken. Results Our analysis showed that 22.5% of humeri belonged in Group 1, 41.2% in Group 2, and 36.3% in Group 3. The mean vertical diameter and the mean horizontal diameter of the supratrochlear foramen on the left side were 2.779±2.050 mm and 2.332±1.23 mm, respectively. The mean vertical diameter and the mean horizontal diameter of the foramen on the right side were 2.778±2.197 mm, and 2.365±1.396 mm, respectively. The student’s t-test showed that there was no significant difference regarding the size of the foramen between both sides. The best X-ray machine setup was 50 kilo voltage and 0.08 milliamperage per second, associated with a slight increase in the distance of the x-ray tube. Conclusion The aperture seems to be the key point during the pre-operative planning of intramedullary fixation, since it has direct relation to the size of the intramedullary canal, thus, being an entity of clinical, anatomical, anthropological, radiological, and surgical interest. PMID:27790415
Interganglionic segregation of distinct vagal afferent fibre phenotypes in guinea-pig airways.
Ricco, M M; Kummer, W; Biglari, B; Myers, A C; Undem, B J
1996-01-01
1. The present study addressed the hypothesis that jugular and nodose vagal ganglia contain the somata of functionally and anatomically distinct airway afferent fibres. 2. Anatomical investigations were performed by injecting guinea-pig airways with the neuronal tracer Fast Blue. The animals were killed 7 days later, and the ganglia were removed and immunostained with antisera against substance P (SP) and neurofilament protein (NF). In the nodose ganglion, NF-immunoreactive neurones accounted for about 98% of the Fast Blue-labelled cells while in the jugular ganglion they accounted for approximately 48%. SP and NF immunoreactivity was never (n = 100) observed in the same cell suggesting that the antisera labelled distinct populations. 3. Electrophysiological investigations were performed using an in vitro guinea-pig tracheal and bronchial preparation with intact afferent vagal pathways, including nodose and jugular ganglia. Action potentials arriving from single airway afferent nerve endings were monitored extracellularly using a glass microelectrode positioned near neuronal cell bodies in either ganglion. 4. The nodose ganglion contained the somata of mainly fast-conducting tracheal A delta fibres whereas the jugular ganglion contained equal numbers of C fibre and A delta fibre tracheal afferent somata. The nodose A delta neurones adapted rapidly to mechanical stimulation, had relatively low mechanical thresholds, were not activated by capsaicin and adapted rapidly to a hyperosmotic stimulus. By contrast, jugular A delta and C fibres adapted slowly to mechanical stimulation, were often activated by capsaicin, had higher mechanical thresholds and displayed a slow adaptation to a hyperosmotic stimulus. 5. The anatomical, physiological and pharmacological data provide evidence to support the contention that the vagal ganglionic source of the fibre supplying the airways ultimately dictates its neurochemical and physiological phenotype. Images Figure 1 PMID:8910234
Pupil-class determinants of aggressive and victim behaviour in pupils.
Mooij, T
1998-09-01
Aggressive behaviour in pupils is expressed in, e.g., bullying, sexual harassment, and violence. Different kinds of variables could be relevant in explaining a pupil's aggressive or victim behaviour. To develop a multilevel theoretical and empirical explanation for different kinds of aggressive and victim behaviour displayed by pupils in a classroom and school environment. A national survey was carried out to identify different kinds of aggressive and victim behaviour displayed by pupils and to assess other variables related to pupils, classes, and schools. A total of 1998 pupils from 100 third and fourth year classes attending 71 different secondary schools took part in the research. Data were analysed by a series of secondary multilevel analyses using the MLA-program. Being a boy, being more extravert, being more disagreeable, coming across fewer teachers with positive teaching behaviour, and attending a lower type of secondary school, help explain why someone is a perpetrator as such. Being a boy, being more disagreeable, being more emotionally unstable, being open to new ideas, and seeing more teachers as being strict, function as explanatory pupil variables for victim behaviour. Other pupil level variables determine more specific aggressive and victim behaviour aspects. Various other class level and school level variables are relevant, too. Personal and environmental pupil variables are more important than class variables but class variables are in turn more important than school variables in explaining a pupil's aggressive and victim behaviour.
NASA Technical Reports Server (NTRS)
1975-01-01
Flow charts and display formats for the simulation of five experiments are given. The experiments are: (1) electromagnetic wave transmission; (2) passive observations of ambient plasma; (3) ionospheric measurements with subsatellite; (4) electron accelerator beam measurements; and (5) measurement of acoustical gravity waves in the sodium layer using lasers. A detailed explanation of the simulation procedure, definition of variables, and an explanation of how the experimenter makes display choices is also presented. A functional description is included on each flow chart and the assumptions and definitions of terms and scope of the flow charts and displays are presented.
Human factors studies of control configurations for advanced transport aircraft
NASA Technical Reports Server (NTRS)
Snyder, Harry L.; Monty, Robert W.; Old, Joe
1985-01-01
This research investigated the threshold levels of display luminance contrast which were required to interpret static, achromatic, integrated displays of primary flight information. A four-factor within-subjects design was used to investigate the influences of type of flight variable information, the level of ambient illumination, the type of control input, and the size of the display symbology on the setting of these interpretability thresholds. A three-alternative forced choice paradigm was used in conjunction with the method of adjustments to obtain a measure of the upper limen of display luminance contrast needed to interpret a complex display of primary flight information. The pattern of results and the absolute magnitudes of the luminance contrast settings were found to be in good agreement with previously reported data from psychophysical investigations of display luminance contrast requirements.
de Haan, Bianca; Karnath, Hans-Otto
2017-12-01
Nowadays, different anatomical atlases exist for the anatomical interpretation of the results from neuroimaging and lesion analysis studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. A major problem with the use of different atlases in different studies, however, is that the anatomical interpretation of neuroimaging and lesion analysis results might vary as a function of the atlas used. This issue might be particularly prominent in studies that investigate the contribution of white matter fiber tract integrity to cognitive (dys)function. We used a single large-sample dataset of right brain damaged stroke patients with and without cognitive deficit (here: spatial neglect) to systematically compare the influence of three different, widely-used white matter fiber tract atlases (1 histology-based atlas and 2 DTI tractography-based atlases) on conclusions concerning the involvement of white matter fiber tracts in the pathogenesis of cognitive dysfunction. We both calculated the overlap between the statistical lesion analysis results and each long association fiber tract (topological analyses) and performed logistic regressions on the extent of fiber tract damage in each individual for each long association white matter fiber tract (hodological analyses). For the topological analyses, our results suggest that studies that use tractography-based atlases are more likely to conclude that white matter integrity is critical for a cognitive (dys)function than studies that use a histology-based atlas. The DTI tractography-based atlases classified approximately 10 times as many voxels of the statistical map as being located in a long association white matter fiber tract than the histology-based atlas. For hodological analyses on the other hand, we observed that the conclusions concerning the overall importance of long association fiber tract integrity to cognitive function do not necessarily depend on the white matter atlas used, but conclusions may vary as a function of atlas used at the level of individual fiber tracts. Moreover, these analyses revealed that hodological studies that express the individual extent of injury to each fiber tract as a binomial variable are more likely to conclude that white matter integrity is critical for a cognitive function than studies that express the individual extent of injury to each fiber tract as a continuous variable. Copyright © 2017 Elsevier Inc. All rights reserved.
Pacheco, Arturo; Camarero, J Julio; Carrer, Marco
2016-04-01
Forecasted warmer and drier conditions will probably lead to reduced growth rates and decreased carbon fixation in long-term woody pools in drought-prone areas. We therefore need a better understanding of how climate stressors such as drought constrain wood formation and drive changes in wood anatomy. Drying trends could lead to reduced growth if they are more intense in spring, when radial growth rates of conifers in continental Mediterranean climates peak. Since tree species from the aforementioned areas have to endure dry summers and also cold winters, we chose two coexisting species: Aleppo pine (Pinus halepensisMill., Pinaceae) and Spanish juniper (Juniperus thuriferaL., Cupressaceae) (10 randomly selected trees per species), to analyze how growth (tree-ring width) and wood-anatomical traits (lumen transversal area, cell-wall thickness, presence of intra-annual density fluctuations-IADFs-in the latewood) responded to climatic variables (minimum and maximum temperatures, precipitation, soil moisture deficit) calculated for different time intervals. Tree-ring width and mean lumen area showed similar year-to-year variability, which indicates that they encoded similar climatic signals. Wet and cool late-winter to early-spring conditions increased lumen area expansion, particularly in pine. In juniper, cell-wall thickness increased when early summer conditions became drier and the frequency of latewood IADFs increased in parallel with late-summer to early-autumn wet conditions. Thus, latewood IADFs of the juniper capture increased water availability during the late growing season, which is reflected in larger tracheid lumens. Soil water availability was one of the main drivers of wood formation and radial growth for the two species. These analyses allow long-term (several decades) growth and wood-anatomical responses to climate to be inferred at intra-annual scales, which agree with the growing patterns already described by xylogenesis approaches for the same species. A plastic bimodal growth behavior, driven by dry summer conditions, is coherent with the presented wood-anatomical data. The different wood-anatomical responses to drought stress are observed as IADFs with contrasting characteristics and responses to climate. These different responses suggest distinct capacities to access soil water between the two conifer species. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Upshaw, Michaela B.; Kaiser, Cheryl R.; Sommerville, Jessica A.
2015-01-01
Empathy emerges in children’s overt behavior around the middle of the second year of life. Younger infants, however, exhibit arousal in response to others’ emotional displays, which is considered to be a precursor to fully developed empathy. The goal of the present study was to investigate individual variability in infants’ arousal toward others’ emotional displays, as indexed by 12- and 15-month-old infants’ (n = 49) pupillary changes in response to another infant’s emotions, and to determine whether such variability is linked to parental empathy and prosociality, as indexed via self-report questionnaires. We found that increases in infants’ pupil dilation in response to others’ emotional displays were associated with aspects of parental empathy and prosociality. Specifically, infants who exhibited the greatest arousal in response to others’ emotions had parents who scored highly on empathic perspective taking and self-reported altruism. These relations may have been found because arousal toward others’ emotions shares certain characteristics with empathic and prosocial dispositions. Together, these results demonstrate the presence of early variability in a precursor to mature empathic responding in infancy, which is meaningfully linked to parents’ empathic dispositions and prosocial behaviors. PMID:25883577
2010-08-01
a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a ...SECURITY CLASSIFICATION OF: This study presents a methodology for computing stochastic sensitivities with respect to the design variables, which are the...Random Variables Report Title ABSTRACT This study presents a methodology for computing stochastic sensitivities with respect to the design variables
USDA-ARS?s Scientific Manuscript database
Commercial refrigeration equipment is projected to rise 5.2% annually to meet the consumer demand for fresh-cut produce items. The highly variable temperature conditions associated with storage of fresh-cuts in commercial open-refrigerated display cases dramatically affects the shelf-life and qualit...
Diversions: Writing the Alphabet Using Dots, Pixillated Alphanumerics, and Cross-Stitch
ERIC Educational Resources Information Center
Gough, John
2017-01-01
When computers started having screens (or monitors), as well as printers, a new alphanumeric display was created using dots. A crucial variable in designing alphabet letters and digits, using dots, is the height of the display, measured in dots. This article addresses the same design questions tackled by designers of typefaces or fonts, and shows…
Results of a simulator test comparing two display concepts for piloted flight-path-angle control
NASA Technical Reports Server (NTRS)
Kelley, W. W.
1978-01-01
Results of a simulator experiment which was conducted in order to compare pilot gamma-control performance using two display formats are reported. Pilots flew a variable flight path angle tracking task in the landing configuration. Pilot and airplane performance parameters were recorded and pilot comments noted for each case.
Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules.
Stavenga, Doekele G; Leertouwer, Hein L; Marshall, N Justin; Osorio, Daniel
2011-07-22
The breast-plate plumage of male Lawes' parotia (Parotia lawesii) produces dramatic colour changes when this bird of paradise displays on its forest-floor lek. We show that this effect is achieved not solely by the iridescence--that is an angular-dependent spectral shift of the reflected light--which is inherent in structural coloration, but is based on a unique anatomical modification of the breast-feather barbule. The barbules have a segmental structure, and in common with many other iridescent feathers, they contain stacked melanin rodlets surrounded by a keratin film. The unique property of the parotia barbules is their boomerang-like cross section. This allows each barbule to work as three coloured mirrors: a yellow-orange reflector in the plane of the feather, and two symmetrically positioned bluish reflectors at respective angles of about 30°. Movement during the parotia's courtship displays thereby achieves much larger and more abrupt colour changes than is possible with ordinary iridescent plumage. To our knowledge, this is the first example of multiple thin film or multi-layer reflectors incorporated in a single structure (engineered or biological). It nicely illustrates how subtle modification of the basic feather structure can achieve novel visual effects. The fact that the parotia's breast feathers seem to be specifically adapted to give much stronger colour changes than normal structural coloration implies that colour change is important in their courtship display.
External and internal anatomy of third molars.
Guerisoli, D M; de Souza, R A; de Sousa Neto, M D; Silva, R G; Pécora, J D
1998-01-01
The external and internal anatomy of 269 third molars (155 maxillary and 114 mandibular) were studied. The teeth were measured, classified according to their root number and shape and the internal anatomy was observed by the use of diaphanization. A great anatomical variability was found, with the presence of up to 5 roots in maxillary third molars and 3 roots in mandibular third molars. The number of root canals followed the same pattern.
Heterogeneous incidence and propagation of spreading depolarizations
Kaufmann, Dan; Theriot, Jeremy J; Zyuzin, Jekaterina; Service, C Austin; Chang, Joshua C; Tang, Y Tanye; Bogdanov, Vladimir B; Multon, Sylvie; Schoenen, Jean; Ju, Y Sungtaek
2016-01-01
Spreading depolarizations are implicated in a diverse set of neurologic diseases. They are unusual forms of nervous system activity in that they propagate very slowly and approximately concentrically, apparently not respecting the anatomic, synaptic, functional, or vascular architecture of the brain. However, there is evidence that spreading depolarizations are not truly concentric, isotropic, or homogeneous, either in space or in time. Here we present evidence from KCl-induced spreading depolarizations, in mouse and rat, in vivo and in vitro, showing the great variability that these depolarizations can exhibit. This variability can help inform the mechanistic understanding of spreading depolarizations, and it has implications for their phenomenology in neurologic disease. PMID:27562866
Visualization of the variability of 3D statistical shape models by animation.
Lamecker, Hans; Seebass, Martin; Lange, Thomas; Hege, Hans-Christian; Deuflhard, Peter
2004-01-01
Models of the 3D shape of anatomical objects and the knowledge about their statistical variability are of great benefit in many computer assisted medical applications like images analysis, therapy or surgery planning. Statistical model of shapes have successfully been applied to automate the task of image segmentation. The generation of 3D statistical shape models requires the identification of corresponding points on two shapes. This remains a difficult problem, especially for shapes of complicated topology. In order to interpret and validate variations encoded in a statistical shape model, visual inspection is of great importance. This work describes the generation and interpretation of statistical shape models of the liver and the pelvic bone.
Chokshi, F H; Sadigh, G; Carpenter, W; Allen, J W
2017-04-01
Spinal anatomy has been variably investigated using 3D MRI. We aimed to compare the diagnostic quality of T2 sampling perfection with application-optimized contrasts by using flip angle evolution (SPACE) with T2-FSE sequences for visualization of cervical spine anatomy. We predicted that T2-SPACE will be equivalent or superior to T2-FSE for visibility of anatomic structures. Adult patients undergoing cervical spine MR imaging with both T2-SPACE and T2-FSE sequences for radiculopathy or myelopathy between September 2014 and February 2015 were included. Two blinded subspecialty-trained radiologists independently assessed the visibility of 12 anatomic structures by using a 5-point scale and assessed CSF pulsation artifact by using a 4-point scale. Sagittal images and 6 axial levels from C2-T1 on T2-FSE were reviewed; 2 weeks later and after randomization, T2-SPACE was evaluated. Diagnostic quality for each structure and CSF pulsation artifact visibility on both sequences were compared by using a paired t test. Interobserver agreement was calculated (κ). Forty-five patients were included (mean age, 57 years; 40% male). The average visibility scores for intervertebral disc signal, neural foramina, ligamentum flavum, ventral rootlets, and dorsal rootlets were higher for T2-SPACE compared with T2-FSE for both reviewers ( P < .001). Average scores for remaining structures were either not statistically different or the superiority of one sequence was discordant between reviewers. T2-SPACE showed less degree of CSF flow artifact ( P < .001). Interobserver variability ranged between -0.02-0.20 for T2-SPACE and -0.02-0.30 for T2-FSE (slight to fair agreement). T2-SPACE may be equivalent or superior to T2-FSE for the evaluation of cervical spine anatomic structures, and T2-SPACE shows a lower degree of CSF pulsation artifact. © 2017 by American Journal of Neuroradiology.
Dallmann, André; Ince, Ibrahim; Meyer, Michaela; Willmann, Stefan; Eissing, Thomas; Hempel, Georg
2017-11-01
In the past years, several repositories for anatomical and physiological parameters required for physiologically based pharmacokinetic modeling in pregnant women have been published. While providing a good basis, some important aspects can be further detailed. For example, they did not account for the variability associated with parameters or were lacking key parameters necessary for developing more detailed mechanistic pregnancy physiologically based pharmacokinetic models, such as the composition of pregnancy-specific tissues. The aim of this meta-analysis was to provide an updated and extended database of anatomical and physiological parameters in healthy pregnant women that also accounts for changes in the variability of a parameter throughout gestation and for the composition of pregnancy-specific tissues. A systematic literature search was carried out to collect study data on pregnancy-related changes of anatomical and physiological parameters. For each parameter, a set of mathematical functions was fitted to the data and to the standard deviation observed among the data. The best performing functions were selected based on numerical and visual diagnostics as well as based on physiological plausibility. The literature search yielded 473 studies, 302 of which met the criteria to be further analyzed and compiled in a database. In total, the database encompassed 7729 data. Although the availability of quantitative data for some parameters remained limited, mathematical functions could be generated for many important parameters. Gaps were filled based on qualitative knowledge and based on physiologically plausible assumptions. The presented results facilitate the integration of pregnancy-dependent changes in anatomy and physiology into mechanistic population physiologically based pharmacokinetic models. Such models can ultimately provide a valuable tool to investigate the pharmacokinetics during pregnancy in silico and support informed decision making regarding optimal dosing regimens in this vulnerable special population.
Simmons, J M; Ackermann, R F; Gallistel, C R
1998-10-15
Lesions in the medial forebrain bundle rostral to a stimulating electrode have variable effects on the rewarding efficacy of self-stimulation. We attempted to account for this variability by measuring the anatomical and functional effects of electrolytic lesions at the level of the lateral hypothalamus (LH) and by correlating these effects to postlesion changes in threshold pulse frequency (pps) for self-stimulation in the ventral tegmental area (VTA). We implanted True Blue in the VTA and compared cell labeling patterns in forebrain regions of intact and lesioned animals. We also compared stimulation-induced regional [14C]deoxyglucose (DG) accumulation patterns in the forebrains of intact and lesioned animals. As expected, postlesion threshold shifts varied: threshold pps remained the same or decreased in eight animals, increased by small but significant amounts in three rats, and increased substantially in six subjects. Unexpectedly, LH lesions did not anatomically or functionally disconnect all forebrain nuclei from the VTA. Most septal and preoptic regions contained equivalent levels of True Blue label in intact and lesioned animals. In both intact and lesioned groups, VTA stimulation increased metabolic activity in the fundus of the striatum (FS), the nucleus of the diagonal band, and the medial preoptic area. On the other hand, True Blue labeling demonstrated anatomical disconnection of the accumbens, FS, substantia innominata/magnocellular preoptic nucleus (SI/MA), and bed nucleus of the stria terminalis. [14C]DG autoradiography indicated functional disconnection of the lateral preoptic area and SI/MA. Correlations between patterns of True Blue labeling or [14C]deoxyglucose accumulation and postlesion shifts in threshold pulse frequency were weak and generally negative. These direct measures of connectivity concord with the behavioral measures in suggesting a diffuse net-like connection between forebrain nuclei and the VTA.
Zeta Pegasi: An SPB Variable Star
NASA Technical Reports Server (NTRS)
Goebel, John H.
2007-01-01
Broadband photometric observations of the bright star Zeta Pegasi are presented that display brightness variability of 488.2 +/- 6.6 micromag (ppm) range with a period of 22.952 +/- 0.804 hr (f approx. equals 1.04566 c/d). The variation is monosinusoidal, so the star is recommended for membership in the class of small-amplitude Slowly Pulsating B-Stars (SPB) variables oscillating in a non-radial g-mode.
Effects of translational and rotational motions and display polarity on visual performance.
Feng, Wen-Yang; Tseng, Feng-Yi; Chao, Chin-Jung; Lin, Chiuhsiang Joe
2008-10-01
This study investigated effects of both translational and rotational motion and display polarity on a visual identification task. Three different motion types--heave, roll, and pitch--were compared with the static (no motion) condition. The visual task was presented on two display polarities, black-on-white and white-on-black. The experiment was a 4 (motion conditions) x 2 (display polarities) within-subjects design with eight subjects (six men and two women; M age = 25.6 yr., SD = 3.2). The dependent variables used to assess the performance on the visual task were accuracy and reaction time. Motion environments, especially the roll condition, had statistically significant effects on the decrement of accuracy and reaction time. The display polarity was significant only in the static condition.
Sequential dynamics of culturally moderated facial expressions of emotion.
Matsumoto, David; Willingham, Bob; Olide, Andres
2009-10-01
There is consensus that when emotions are aroused, the displays of those emotions are either universal or culture-specific. We investigated the idea that an individual's emotional displays in a given context can be both universal and culturally variable, as they change over time. We examined the emotional displays of Olympic athletes across time, classified their expressive styles, and tested the association between those styles and a number of characteristics associated with the countries the athletes represented. Athletes from relatively urban, individualistic cultures expressed their emotions more, whereas athletes from less urban, collectivistic cultures masked their emotions more. These culturally influenced expressions occurred within a few seconds after initial, immediate, and universal emotional displays. Thus, universal and culture-specific emotional displays can unfold across time in an individual in a single context.
Valdés, Ángel; Cadien, Donald B; Gosliner, Terrence M
2016-08-08
Based on morphological data a total of nine native species of Philinidae are recognized from the northeastern Pacific including the Bering Sea and the adjacent Arctic Ocean (Beaufort Sea). Four of them have been previously described: Philine ornatissima Yokoyama, 1927, Philine bakeri Dall, 1919, Philine polystrigma (Dall, 1908), and Philine hemphilli Dall, 1919. Five of them are new and described herein: Philine mcleani sp. nov., Philine baxteri sp. nov., Philine malaquiasi sp. nov., Philine wareni sp. nov., and Philine harrisae sp. nov. These species display a substantial degree of variation in internal and external morphological traits (i.e., presence/absence of gizzard plates, different radular structure and tooth morphology, various reproductive anatomical features) and it is likely that they belong to different clades (genera). However, in the absence of a comprehensive phylogeny for Philine, they are here provisionally regarded as Philine sensu lato. In addition to the nine native species, two introduced species: Philine orientalis A. Adams, 1854 and Philine auriformis Suter, 1909 are here illustrated and compared to the native species to facilitate identification. Finally, two species previously considered members of Philinidae are examined anatomically and confirmed as members of Laonidae, Laona californica (Willett, 1944) and Philinorbidae, Philinorbis albus (Mattox, 1958), based on morphological data.
Optimising magnetic resonance image quality of the ear in healthy dogs.
Wolf, Davina; Lüpke, Matthias; Wefstaedt, Patrick; Klopmann, Thilo; Nolte, Ingo; Seifert, Hermann
2011-03-01
The aim of this study was to develop an examination protocol for magnetic resonance imaging, in order to display diagnostically important information of the canine middle and inner ear. To ensure that this protocol could also be used as a basis for determining pathological changes, the anatomical structures of the ear were presented in detail. To minimise stress through anaesthesia in live animals, preliminary examinations were carried out on four dog cadavers. During these initial examinations, three-dimensional (3D) sequences proved to be superior to two-dimensional ones. Therefore, only 3D sequences were applied for the main examinations performed on six clinically healthy Beagles. The anonymised MR images were rated by three experienced reviewers using a five-point scale. The most valuable sequence was a T2-weighted CISS sequence (TR = 16.7 ms, TE = 8.08 ms). This sequence proved to be most suitable for illustrating the inner ear structures and enabled good tissue contrasts. The sequence ranked second best was also a T2-weighted DESS sequence (TR = 19 ms, TE = 6 ms), allowing the imaging of the tympanic cavity and enabling 3D reconstruction due to its isotropic voxels. Due to low contrast and strong noise, the other sequences (TSE, FISP, MP RAGE) were not suitable for anatomical illustration of the middle and inner ear.
Effect of Viscous Agents on Corneal Density in Dry Eye Disease.
Wegener, Alfred R; Meyer, Linda M; Schönfeld, Carl-Ludwig
2015-10-01
To investigate the effect of the viscous agents, hydroxypropyl methylcellulose (HPMC), carbomer, povidone, and a combination of HPMC and povidone on corneal density in patients with dry eye disease. In total, 98 eyes of 49 patients suffering from dry eye and 65 eyes of 33 healthy age-matched individuals were included in this prospective, randomized study. Corneal morphology was documented with Scheimpflug photography and corneal density was analyzed in 5 anatomical layers (epithelium, bowman membrane, stroma, descemet's membrane, and endothelium). Corneal density was evaluated for the active ingredients HPMC, carbomer, povidone, and a combination of HPMC and povidone as the viscous agents contained in the artificial tear formulations used by the dry eye patients. Data were compared to the age-matched healthy control group without medication. Corneal density in dry eye patients was reduced in all 5 anatomical layers compared to controls. Corneal density was highest and very close to control in patients treated with HPMC containing ocular lubricants. Patients treated with lubricants, including carbomer as the viscous agent displayed a significant reduction of corneal density in layers 1 and 2 compared to control. HPMC containing ocular lubricants can help to maintain physiological corneal density and may be beneficial in the treatment of dry eye disease.
A combinatorial morphospace for angiosperm pollen
NASA Astrophysics Data System (ADS)
Mander, Luke
2016-04-01
The morphology of angiosperm (flowering plant) pollen is extraordinarily diverse. This diversity results from variations in the morphology of discrete anatomical components. These components include the overall shape of a pollen grain, the stratification of the exine, the number and form of any apertures, the type of dispersal unit, and the nature of any surface ornamentation. Different angiosperm pollen morphotypes reflect different combinations of these discrete components. In this talk, I ask the following question: given the anatomical components of angiosperm pollen that are known to exist in the plant kingdom, how many unique biologically plausible combinations of these components are there? I explore this question from the perspective of enumerative combinatorics using an algorithm I have written in the Python programming language. This algorithm (1) calculates the number of combinations of these components; (2) enumerates those combinations; and (3) graphically displays those combinations. The result is a combinatorial morphospace that reflects an underlying notion that the process of morphogenesis in angiosperm pollen can be thought of as an n choose k counting problem. I compare the morphology of extant and fossil angiosperm pollen grains to this morphospace, and suggest that from a combinatorial point of view angiosperm pollen is not as diverse as it could be, which may be a result of developmental constraints.
Stereoscopic vascular models of the head and neck: A computed tomography angiography visualization.
Cui, Dongmei; Lynch, James C; Smith, Andrew D; Wilson, Timothy D; Lehman, Michael N
2016-01-01
Computer-assisted 3D models are used in some medical and allied health science schools; however, they are often limited to online use and 2D flat screen-based imaging. Few schools take advantage of 3D stereoscopic learning tools in anatomy education and clinically relevant anatomical variations when teaching anatomy. A new approach to teaching anatomy includes use of computed tomography angiography (CTA) images of the head and neck to create clinically relevant 3D stereoscopic virtual models. These high resolution images of the arteries can be used in unique and innovative ways to create 3D virtual models of the vasculature as a tool for teaching anatomy. Blood vessel 3D models are presented stereoscopically in a virtual reality environment, can be rotated 360° in all axes, and magnified according to need. In addition, flexible views of internal structures are possible. Images are displayed in a stereoscopic mode, and students view images in a small theater-like classroom while wearing polarized 3D glasses. Reconstructed 3D models enable students to visualize vascular structures with clinically relevant anatomical variations in the head and neck and appreciate spatial relationships among the blood vessels, the skull and the skin. © 2015 American Association of Anatomists.
Detecting corpus callosum abnormalities in autism based on anatomical landmarks
He, Qing; Duan, Ye; Karsch, Kevin; Miles, Judith
2010-01-01
Autism is a severe developmental disorder whose neurological basis is largely unknown. Autism is a subtype of autism that displays more homogeneous features within group. The aim of this study was to identify the shape differences of the corpus callosum between patients with autism and the controls. Anatomical landmarks were collected from mid-sagittal MRI of 25 patients and 18 controls. Euclidean distance matrix analysis and thin-plate spline were used to analyze the landmark forms. Point-by-point shape comparison was performed both globally and locally. A new local shape comparison scheme was proposed which compared each part of the shape in its local coordinate system. Point correspondence was established among individual shapes based on the inherent landmark correspondence. No significant difference was found in the landmark form between patients and controls, but the distance between interior genu and posterior most was found significantly shorter in patients. Thin-plate spline analysis showed significant group difference between the landmark configurations in terms of the deformation from the overall mean configuration. Significant global shape differences were found in the anterior lower body and posterior bottom, and local shape difference existed in the anterior bottom. This study can serve as both clinical reference and a detailed procedure guideline for similar studies in the future. PMID:20620032
Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes
Gunji, Megu; Endo, Hideki
2016-01-01
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes. PMID:26998330
Functional cervicothoracic boundary modified by anatomical shifts in the neck of giraffes.
Gunji, Megu; Endo, Hideki
2016-02-01
Here we examined the kinematic function of the morpho- logically unique first thoracic vertebra in giraffes. The first thoracic vertebra of the giraffe displayed similar shape to the seventh cervical vertebra in general ruminants. The flexion experiment using giraffe carcasses demonstrated that the first thoracic vertebra exhibited a higher dorsoventral mobility than other thoracic vertebrae. Despite the presence of costovertebral joints, restriction in the intervertebral movement imposed by ribs is minimized around the first thoracic vertebra by subtle changes of the articular system between the vertebra and ribs. The attachment area of musculus longus colli, mainly responsible for ventral flexion of the neck, is partly shifted posteriorly in the giraffe so that the force generated by muscles is exerted on the cervical vertebrae and on the first thoracic vertebra. These anatomical modifications allow the first thoracic vertebra to adopt the kinematic function of a cervical vertebra in giraffes. The novel movable articulation in the thorax functions as a fulcrum of neck movement and results in a large displacement of reachable space in the cranial end of the neck. The unique first thoracic vertebra in giraffes provides higher flexibility to the neck and may provide advantages for high browsing and/or male competition behaviours specific to giraffes.
Guerra, C; Schwartz, C J
2012-02-01
Friction blisters occur when shear loading causes the separation of dermal layers. Consequences range from minor pain to life-threatening infection. Past research in blister formation has focused on in vivo experiments, which complicate a mechanics-based study of the phenomenon. A Synthetic Skin Simulant Platform (3SP) approach was developed to investigate the effect of textile fabrics (t-shirt knit and denim cottons) and surface treatments (dry and wet lubricants) on blister formation. 3SP samples consist of bonded elastomeric layers that are surrogates for various dermal layers. These layers display frictional and mechanical properties similar to their anatomical analogues. Blistering was assessed by the measurement of deboned area between layers. Denim caused greater blistering than did the t-shirt knit cotton, and both lubricants significantly reduced blister area and surface damage. A triglyceride-based lubricant had a more pronounced effect on blister reduction than corn starch. The triglyceride lubricant used with t-shirt knit cotton resulted in no blisters being formed. The performance of the 3SP approach follows previously reported frictional behavior of skin in vivo. The results of textile and surface treatment performance suggest that future 3SP iterations can be focused on specific anatomical sites based on application type. © 2011 John Wiley & Sons A/S.
Advanced Transport Operating System (ATOPS) control display unit software description
NASA Technical Reports Server (NTRS)
Slominski, Christopher J.; Parks, Mark A.; Debure, Kelly R.; Heaphy, William J.
1992-01-01
The software created for the Control Display Units (CDUs), used for the Advanced Transport Operating Systems (ATOPS) project, on the Transport Systems Research Vehicle (TSRV) is described. Module descriptions are presented in a standardized format which contains module purpose, calling sequence, a detailed description, and global references. The global reference section includes subroutines, functions, and common variables referenced by a particular module. The CDUs, one for the pilot and one for the copilot, are used for flight management purposes. Operations performed with the CDU affects the aircraft's guidance, navigation, and display software.
AOIPS water resources data management system
NASA Technical Reports Server (NTRS)
Vanwie, P.
1977-01-01
The text and computer-generated displays used to demonstrate the AOIPS (Atmospheric and Oceanographic Information Processing System) water resources data management system are investigated. The system was developed to assist hydrologists in analyzing the physical processes occurring in watersheds. It was designed to alleviate some of the problems encountered while investigating the complex interrelationships of variables such as land-cover type, topography, precipitation, snow melt, surface runoff, evapotranspiration, and streamflow rates. The system has an interactive image processing capability and a color video display to display results as they are obtained.
A whole brain atlas with sub-parcellation of cortical gyri using resting fMRI
NASA Astrophysics Data System (ADS)
Joshi, Anand A.; Choi, Soyoung; Sonkar, Gaurav; Chong, Minqi; Gonzalez-Martinez, Jorge; Nair, Dileep; Shattuck, David W.; Damasio, Hanna; Leahy, Richard M.
2017-02-01
The new hybrid-BCI-DNI atlas is a high-resolution MPRAGE, single-subject atlas, constructed using both anatomical and functional information to guide the parcellation of the cerebral cortex. Anatomical labeling was performed manually on coronal single-slice images guided by sulcal and gyral landmarks to generate the original (non-hybrid) BCI-DNI atlas. Functional sub-parcellations of the gyral ROIs were then generated from 40 minimally preprocessed resting fMRI datasets from the HCP database. Gyral ROIs were transferred from the BCI-DNI atlas to the 40 subjects using the HCP grayordinate space as a reference. For each subject, each gyral ROI was subdivided using the fMRI data by applying spectral clustering to a similarity matrix computed from the fMRI time-series correlations between each vertex pair. The sub-parcellations were then transferred back to the original cortical mesh to create the subparcellated hBCI-DNI atlas with a total of 67 cortical regions per hemisphere. To assess the stability of the gyral subdivisons, a separate set of 60 HCP datasets were processed as follows: 1) coregistration of the structural scans to the hBCI-DNI atlas; 2) coregistration of the anatomical BCI-DNI atlas without functional subdivisions, followed by sub-parcellation of each subject's resting fMRI data as described above. We then computed consistency between the anatomically-driven delineation of each gyral subdivision and that obtained per subject using individual fMRI data. The gyral sub-parcellations generated by atlas-based registration show variable but generally good overlap of the confidence intervals with the resting fMRI-based subdivisions. These consistency measures will provide a quantitative measure of reliability of each subdivision to users of the atlas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoven, Andor F. van den, E-mail: a.f.vandenhoven@umcutrecht.nl; Leeuwen, Maarten S. van, E-mail: m.s.vanleeuwen@umcutrecht.nl; Lam, Marnix G. E. H., E-mail: m.lam@umcutrecht.nl
PurposeCurrent anatomical classifications do not include all variants relevant for radioembolization (RE). The purpose of this study was to assess the individual hepatic arterial configuration and segmental vascularization pattern and to develop an individualized RE treatment strategy based on an extended classification.MethodsThe hepatic vascular anatomy was assessed on MDCT and DSA in patients who received a workup for RE between February 2009 and November 2012. Reconstructed MDCT studies were assessed to determine the hepatic arterial configuration (origin of every hepatic arterial branch, branching pattern and anatomical course) and the hepatic segmental vascularization territory of all branches. Aberrant hepatic arteries weremore » defined as hepatic arterial branches that did not originate from the celiac axis/CHA/PHA. Early branching patterns were defined as hepatic arterial branches originating from the celiac axis/CHA.ResultsThe hepatic arterial configuration and segmental vascularization pattern could be assessed in 110 of 133 patients. In 59 patients (54 %), no aberrant hepatic arteries or early branching was observed. Fourteen patients without aberrant hepatic arteries (13 %) had an early branching pattern. In the 37 patients (34 %) with aberrant hepatic arteries, five also had an early branching pattern. Sixteen different hepatic arterial segmental vascularization patterns were identified and described, differing by the presence of aberrant hepatic arteries, their respective vascular territory, and origin of the artery vascularizing segment four.ConclusionsThe hepatic arterial configuration and segmental vascularization pattern show marked individual variability beyond well-known classifications of anatomical variants. We developed an individualized RE treatment strategy based on an extended anatomical classification.« less
Yushkevich, Paul A.; Amaral, Robert S. C.; Augustinack, Jean C.; Bender, Andrew R.; Bernstein, Jeffrey D.; Boccardi, Marina; Bocchetta, Martina; Burggren, Alison C.; Carr, Valerie A.; Chakravarty, M. Mallar; Chetelat, Gael; Daugherty, Ana M.; Davachi, Lila; Ding, Song-Lin; Ekstrom, Arne; Geerlings, Mirjam I.; Hassan, Abdul; Huang, Yushan; Iglesias, Eugenio; La Joie, Renaud; Kerchner, Geoffrey A.; LaRocque, Karen F.; Libby, Laura A.; Malykhin, Nikolai; Mueller, Susanne G.; Olsen, Rosanna K.; Palombo, Daniela J.; Parekh, Mansi B; Pluta, John B.; Preston, Alison R.; Pruessner, Jens C.; Ranganath, Charan; Raz, Naftali; Schlichting, Margaret L.; Schoemaker, Dorothee; Singh, Sachi; Stark, Craig E. L.; Suthana, Nanthia; Tompary, Alexa; Turowski, Marta M.; Van Leemput, Koen; Wagner, Anthony D.; Wang, Lei; Winterburn, Julie L.; Wisse, Laura E.M.; Yassa, Michael A.; Zeineh, Michael M.
2015-01-01
OBJECTIVE An increasing number of human in vivo magnetic resonance imaging (MRI) studies have focused on examining the structure and function of the subfields of the hippocampal formation (the dentate gyrus, CA fields 1–3, and the subiculum) and subregions of the parahippocampal gyrus (entorhinal, perirhinal, and parahippocampal cortices). The ability to interpret the results of such studies and to relate them to each other would be improved if a common standard existed for labeling hippocampal subfields and parahippocampal subregions. Currently, research groups label different subsets of structures and use different rules, landmarks, and cues to define their anatomical extents. This paper characterizes, both qualitatively and quantitatively, the variability in the existing manual segmentation protocols for labeling hippocampal and parahippocampal substructures in MRI, with the goal of guiding subsequent work on developing a harmonized substructure segmentation protocol. METHOD MRI scans of a single healthy adult human subject were acquired both at 3 Tesla and 7 Tesla. Representatives from 21 research groups applied their respective manual segmentation protocols to the MRI modalities of their choice. The resulting set of 21 segmentations was analyzed in a common anatomical space to quantify similarity and identify areas of agreement. RESULTS The differences between the 21 protocols include the region within which segmentation is performed, the set of anatomical labels used, and the extents of specific anatomical labels. The greatest overall disagreement among the protocols is at the CA1/subiculum boundary, and disagreement across all structures is greatest in the anterior portion of the hippocampal formation relative to the body and tail. CONCLUSIONS The combined examination of the 21 protocols in the same dataset suggests possible strategies towards developing a harmonized subfield segmentation protocol and facilitates comparison between published studies. PMID:25596463
Reyner, Karina; Heffner, Alan C; Karvetski, Colleen H
2016-04-01
Urinary tract infection (UTI) is a common cause of severe sepsis, and anatomic urologic obstruction is a recognized factor for complicated disease. We aimed to identify the incidence of urinary obstruction complicating acute septic shock and determine the characteristics and outcomes of this group. Patients prospectively enrolled in a sepsis treatment pathway registry between October 2013 and July 2014 were reviewed for the diagnosis of UTI. Standardized medical record review was performed to confirm sepsis due to UTI and determine clinical variables including the presence of anatomic urinary obstruction. Patients with septic shock due to UTI with obstruction were compared with those without obstruction. The primary outcomes were incidence of urinary obstruction and hospital mortality. Among 1084 registry enrollees, 209 (19.2%) met inclusion criteria for the study. Acute anatomic obstruction was identified in 22 (10.5%) patients. Hospital mortality in patients with obstruction was 27.3% compared with 11.2% in patients without obstruction (absolute difference of 16.1%; P = .03; 95% confidence interval [CI], 1.2%-30.9%). Hospital length of stay among survivors was 12.8 days compared with 8.3 days (absolute difference of 4.5 days; P = .04; 95% CI, 0.2-8.8 days). History of urinary stone disease was independently associated with obstruction (odds ratio, 5.6; 95% CI, 2.2-14.3). Approximately 1 in 10 patients presenting with septic shock due to a urinary source is complicated by anatomic urinary obstruction. These patients have significantly higher mortality compared with patients without obstruction. Early imaging of patients with septic shock due to suspected urinary source should be considered to identify obstruction requiring emergency intervention. Copyright © 2015 Elsevier Inc. All rights reserved.
Giacomozzi, Claudia; Stebbins, Julie A
2017-03-01
Plantar pressure analysis is widely used in the assessment of foot function. In order to assess regional loading, a mask is applied to the footprint to sub-divide it into regions of interest (ROIs). The most common masking method is based on geometric features of the footprint (GM). Footprint masking based on anatomical landmarks of the foot has been implemented more recently, and involves the integration of a 3D motion capture system, plantar pressure measurement device, and a multi-segment foot model. However, thorough validation of anatomical masking (AM) using pathological footprints has not yet been presented. In the present study, an AM method based on the Oxford Foot Model (OFM) was compared to an equivalent GM. Pressure footprints from 20 young healthy subjects (HG) and 20 patients with clubfoot (CF) were anatomically divided into 5 ROIs using a subset of the OFM markers. The same foot regions were also identified by using a standard GM method. Comparisons of intra-subject coefficient of variation (CV) showed that the OFM-based AM was at least as reliable as the GM for all investigated pressure parameters in all foot regions. Clinical relevance of AM was investigated by comparing footprints from HG and CF groups. Contact time, maximum force, force-time integral and contact area proved to be sensitive parameters that were able to distinguish HG and CF groups, using both AM and GM methods However, the AM method revealed statistically significant differences between groups in 75% of measured variables, compared to 62% using a standard GM method, indicating that the AM method is more sensitive for revealing differences between groups. Copyright © 2017 Elsevier B.V. All rights reserved.
Atlas-based automatic measurements of the morphology of the tibiofemoral joint
NASA Astrophysics Data System (ADS)
Brehler, M.; Thawait, G.; Shyr, W.; Ramsay, J.; Siewerdsen, J. H.; Zbijewski, W.
2017-03-01
Purpose: Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce userdependence of the metrics arising from manual identification of the anatomical landmarks. Methods: The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Results: Intra-reader variability as high as 10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. Conclusions: The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.
Reina, Miguel A; Lirk, Philipp; Puigdellívol-Sánchez, Anna; Mavar, Marija; Prats-Galino, Alberto
2016-03-01
The ligamentum flavum (LF) forms the anatomic basis for the loss-of-resistance technique essential to the performance of epidural anesthesia. However, the LF presents considerable interindividual variability, including the possibility of midline gaps, which may influence the performance of epidural anesthesia. We devise a method to reconstruct the anatomy of the digitally LF based on magnetic resonance images to clarify the exact limits and edges of LF and its different thickness, depending on the area examined, while avoiding destructive methods, as well as the dissection processes. Anatomic cadaveric cross sections enabled us to visually check the definition of the edges along the entire LF and compare them using 3D image reconstruction methods. Reconstruction was performed in images obtained from 7 patients. Images from 1 patient were used as a basis for the 3D spinal anatomy tool. In parallel, axial cuts, 2 to 3 cm thick, were performed in lumbar spines of 4 frozen cadavers. This technique allowed us to identify the entire ligament and its exact limits, while avoiding alterations resulting from cutting processes or from preparation methods. The LF extended between the laminas of adjacent vertebrae at all vertebral levels of the patients examined, but midline gaps are regularly encountered. These anatomical variants were reproduced in a 3D portable document format. The major anatomical features of the LF were reproduced in the 3D model. Details of its structure and variations of thickness in successive sagittal and axial slides could be visualized. Gaps within LF previously studied in cadavers have been identified in our interactive 3D model, which may help to understand their nature, as well as possible implications for epidural techniques.
Tosens, Tiina
2012-01-01
In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r m), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r m in leaves with varying structure, the full CO2 physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r m was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r m was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO2 diffusion into chloroplasts. The strongest sources of variation in r m were S c/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t cw. The strong correlation of r m with t cw could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO2 drawdown from intercellular spaces to chloroplasts was positively correlated with t cw, suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S c/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r m for any given species. PMID:22888123
Damaceno, Quésia; Nicoli, Jacques R; Oliveira, Adriana
2015-01-01
To compare cutaneous and nasal population levels between patients colonized and infected by multidrug-resistant organisms in two intensive care units. A prospective cohort study was performed in adult intensive care units of two hospitals in Belo Horizonte, Brazil (April 2012 to February 2013). Clinical and demographic data were first collected by reviewing patients' charts. Then, samples collected with nasal, groin, and perineum swabs were cultivated in selective media for 48 h at 37°C. After isolation, determination of antimicrobial susceptibility and biochemical identification were performed. A total of 53 cases of colonization were observed by the following bacteria in decreasing frequencies: imipenem-resistant Acinetobacter baumannii (50.9%), vancomycin-resistant Enterococcus faecalis (43.4%), extended-spectrum beta-lactamase-producing Klebsiella pneumoniae (37.7%), imipenem-resistant Pseudomonas aeruginosa (32.1%), oxacillin-resistant Staphylococcus aureus (7.5%), and imipenem-resistant Klebsiella pneumoniae (5.7%). Among these colonization cases, 26 (49.0%) were followed by infection with bacteria phenotypically similar to those of the colonization. A relation between high population levels of colonization by most of the multidrug-resistant organisms at anatomical sites and a subsequent infection was observed. After colonization/infection, bacterial population levels decreased progressively and spontaneously until disappearance by day 45 in all the anatomical sites and for all the multidrug-resistant organisms. There was a correlation between high population levels of colonization by multidrug-resistant organisms at anatomical sites and a subsequent infection. Reduction in multidrug-resistant organism populations after colonization at anatomical sites could be a preventive measure to reduce evolution to infection as well as transmission of these bacteria between patients in intensive care unit.
Atlas-based automatic measurements of the morphology of the tibiofemoral joint.
Brehler, M; Thawait, G; Shyr, W; Ramsay, J; Siewerdsen, J H; Zbijewski, W
2017-02-11
Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce user-dependence of the metrics arising from manual identification of the anatomical landmarks. The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Intra-reader variability as high as ~10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.
Bonmati, Ester; Hu, Yipeng; Gibson, Eli; Uribarri, Laura; Keane, Geri; Gurusami, Kurinchi; Davidson, Brian; Pereira, Stephen P; Clarkson, Matthew J; Barratt, Dean C
2018-06-01
Navigation of endoscopic ultrasound (EUS)-guided procedures of the upper gastrointestinal (GI) system can be technically challenging due to the small fields-of-view of ultrasound and optical devices, as well as the anatomical variability and limited number of orienting landmarks during navigation. Co-registration of an EUS device and a pre-procedure 3D image can enhance the ability to navigate. However, the fidelity of this contextual information depends on the accuracy of registration. The purpose of this study was to develop and test the feasibility of a simulation-based planning method for pre-selecting patient-specific EUS-visible anatomical landmark locations to maximise the accuracy and robustness of a feature-based multimodality registration method. A registration approach was adopted in which landmarks are registered to anatomical structures segmented from the pre-procedure volume. The predicted target registration errors (TREs) of EUS-CT registration were estimated using simulated visible anatomical landmarks and a Monte Carlo simulation of landmark localisation error. The optimal planes were selected based on the 90th percentile of TREs, which provide a robust and more accurate EUS-CT registration initialisation. The method was evaluated by comparing the accuracy and robustness of registrations initialised using optimised planes versus non-optimised planes using manually segmented CT images and simulated ([Formula: see text]) or retrospective clinical ([Formula: see text]) EUS landmarks. The results show a lower 90th percentile TRE when registration is initialised using the optimised planes compared with a non-optimised initialisation approach (p value [Formula: see text]). The proposed simulation-based method to find optimised EUS planes and landmarks for EUS-guided procedures may have the potential to improve registration accuracy. Further work will investigate applying the technique in a clinical setting.
van der Sluijs, Winfried; Miller, Martine; MacGregor, Andy; Sharp, Clare; Amos, Amanda; Best, Catherine; Stead, Martine; Eadie, Douglas; Pearce, Jamie; Frank, John; Haw, Sally
2016-01-01
Introduction: As further restrictions have been placed on tobacco advertising and promotions, point-of-sale (PoS) displays of cigarettes in shops have become an increasingly important source of young people’s exposure to tobacco products. This study explored the relationship between PoS displays of cigarettes and brand awareness among secondary school students in Scotland. Methods: Cross-sectional school surveys (n = 1406) and focus groups (n = 86) were conducted with S2 (13–14 years) and S4 (15–16 years) students in four schools of differing socioeconomic status in 2013, prior to the PoS display ban in large shops. Adjusted negative binomial regression analysis examined associations between brand awareness and exposure variables (visiting tobacco retailers, noticing displays of tobacco products). Results: Students visiting small shops more frequently (relative rate ratio [RRR] 1.19, 95% confidence interval [CI] 1.01–1.41) and those who noticed cigarette displays in small shops (RRR 1.24, 95% CI 1.03–1.51) and large supermarkets (RRR 1.15, 95% CI 1.01–1.30) had higher brand awareness. The focus groups supported these findings. Participants described PoS tobacco displays as being eye-catching, colorful and potentially attractive to young people. Conclusions: This mixed-methods study showed that higher cigarette brand awareness was significantly associated with regularly visiting small shops and noticing PoS displays in small and large shops, even when students’ smoking status, smoking in their social networks, leisure activities, and demographics were included as confounding variables. This highlights the importance of PoS displays of tobacco products in increasing brand awareness, which is known to increase youth smoking susceptibility, and thus the importance of implementing PoS display bans in all shops. Implications: As increasing restrictions have been placed on tobacco promotion in many countries, PoS displays of cigarettes in shops have become an important source of young people’s exposure to tobacco products and marketing. This mixed-methods study showed that prior to the PoS display ban in Scotland, and controlling for other factors, 13- and 15-year olds who regularly visited small shops and those who noticed PoS displays in small and large shops, had a higher awareness of cigarette brands. This highlights the importance of PoS displays in increasing youth brand awareness, which increases smoking susceptibility, and thus the need for comprehensive bans on PoS displays which cover all shops. PMID:26883750
van der Sluijs, Winfried; Haseen, Farhana; Miller, Martine; MacGregor, Andy; Sharp, Clare; Amos, Amanda; Best, Catherine; Stead, Martine; Eadie, Douglas; Pearce, Jamie; Frank, John; Haw, Sally
2016-10-01
As further restrictions have been placed on tobacco advertising and promotions, point-of-sale (PoS) displays of cigarettes in shops have become an increasingly important source of young people's exposure to tobacco products. This study explored the relationship between PoS displays of cigarettes and brand awareness among secondary school students in Scotland. Cross-sectional school surveys (n = 1406) and focus groups (n = 86) were conducted with S2 (13-14 years) and S4 (15-16 years) students in four schools of differing socioeconomic status in 2013, prior to the PoS display ban in large shops. Adjusted negative binomial regression analysis examined associations between brand awareness and exposure variables (visiting tobacco retailers, noticing displays of tobacco products). Students visiting small shops more frequently (relative rate ratio [RRR] 1.19, 95% confidence interval [CI] 1.01-1.41) and those who noticed cigarette displays in small shops (RRR 1.24, 95% CI 1.03-1.51) and large supermarkets (RRR 1.15, 95% CI 1.01-1.30) had higher brand awareness. The focus groups supported these findings. Participants described PoS tobacco displays as being eye-catching, colorful and potentially attractive to young people. This mixed-methods study showed that higher cigarette brand awareness was significantly associated with regularly visiting small shops and noticing PoS displays in small and large shops, even when students' smoking status, smoking in their social networks, leisure activities, and demographics were included as confounding variables. This highlights the importance of PoS displays of tobacco products in increasing brand awareness, which is known to increase youth smoking susceptibility, and thus the importance of implementing PoS display bans in all shops. As increasing restrictions have been placed on tobacco promotion in many countries, PoS displays of cigarettes in shops have become an important source of young people's exposure to tobacco products and marketing. This mixed-methods study showed that prior to the PoS display ban in Scotland, and controlling for other factors, 13- and 15-year olds who regularly visited small shops and those who noticed PoS displays in small and large shops, had a higher awareness of cigarette brands. This highlights the importance of PoS displays in increasing youth brand awareness, which increases smoking susceptibility, and thus the need for comprehensive bans on PoS displays which cover all shops. © The Author 2016. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco.
ERIC Educational Resources Information Center
Verhoek, Nancy A.
A study involved the creation of a 20-variable checklist for children's and young adult war literature, to be utilized as a data-recording instrument for 24 examples of literature. The checklist components were based upon a combination of cognitive and affective attributes assisting in the formulation of attitudes toward war displayed by…
ERIC Educational Resources Information Center
Crosland, Kimberly A.; Zarcone, Jennifer R.; Schroeder, Stephen; Zarcane, Troy; Fowler, Stephen
2005-01-01
Stereotyped movements displayed by 6 participants and tics displayed by 6 children were evaluated using an antecedent behavioral analysis and a force sensitive platform. We found that tics occurred more often in an alone condition when compared to high preference toy and play conditions, whereas stereotyped movements were more variable across…