Renslow, R S; Babauta, J T; Majors, P D; Mehta, H S; Ewing, R J; Ewing, T W; Mueller, K T; Beyenal, H
2014-01-01
Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for noninvasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live biofilms respiring on electrodes. Here, we describe a biofilm microreactor system, including a reusable and a disposable reactor, that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radio frequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system we grew Geobacter sulfurreducens biofilms on electrodes. EC-NMR was used to investigate growth medium flow velocities and depth-resolved acetate concentration inside the biofilm. As a novel contribution we used Monte Carlo error analysis to estimate the standard deviations of the acetate concentration measurements. Overall, we found that the disposable EC-NMR microreactor provided a 9.7 times better signal-to-noise ratio over the reusable reactor. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.
Coaxial microreactor for particle synthesis
Bartsch, Michael; Kanouff, Michael P; Ferko, Scott M; Crocker, Robert W; Wally, Karl
2013-10-22
A coaxial fluid flow microreactor system disposed on a microfluidic chip utilizing laminar flow for synthesizing particles from solution. Flow geometries produced by the mixing system make use of hydrodynamic focusing to confine a core flow to a small axially-symmetric, centrally positioned and spatially well-defined portion of a flow channel cross-section to provide highly uniform diffusional mixing between a reactant core and sheath flow streams. The microreactor is fabricated in such a way that a substantially planar two-dimensional arrangement of microfluidic channels will produce a three-dimensional core/sheath flow geometry. The microreactor system can comprise one or more coaxial mixing stages that can be arranged singly, in series, in parallel or nested concentrically in parallel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovett, S.; Berruti, F.; Behie, L.A.
1997-11-01
Viable operating conditions were identified experimentally for maximizing the production of high-value products such as ethylene, propylene, styrene, and benzene, from the ultrapyrolysis of waste plastics. Using both a batch microreactor and a pilot-plant-sized reactor, the key operating variables considered were pyrolysis temperature, product reaction time, and quench time. In the microreactor experiments, polystyrene (PS), a significant component of waste plastics, was pyrolyzed at temperatures ranging from 800 to 965 C, with total reaction times ranging from 500 to 1,000 ms. At a temperature of 965 C and 500 ms, the yields of styrene plus benzene were greater than 95more » wt %. In the pilot-plant experiments, the recently patented internally circulating fluidized bed (ICFB) reactor (Milne et al., US Patent Number 5,370,789, 1994b) was used to ultrapyrolyze low-density polyethylene (LDPE) in addition to LDPE (5% by weight)/heavy oil mixtures at a residence time of 600 ms. Both experiments produced light olefin yields greater than 55 wt % at temperatures above 830 C.« less
Microreactor and method for preparing a radiolabeled complex or a biomolecule conjugate
Reichert, David E; Kenis, Paul J. A.; Wheeler, Tobias D; Desai, Amit V; Zeng, Dexing; Onal, Birce C
2015-03-17
A microreactor for preparing a radiolabeled complex or a biomolecule conjugate comprises a microchannel for fluid flow, where the microchannel comprises a mixing portion comprising one or more passive mixing elements, and a reservoir for incubating a mixed fluid. The reservoir is in fluid communication with the microchannel and is disposed downstream of the mixing portion. A method of preparing a radiolabeled complex includes flowing a radiometal solution comprising a metallic radionuclide through a downstream mixing portion of a microchannel, where the downstream mixing portion includes one or more passive mixing elements, and flowing a ligand solution comprising a bifunctional chelator through the downstream mixing portion. The ligand solution and the radiometal solution are passively mixed while in the downstream mixing portion to initiate a chelation reaction between the metallic radionuclide and the bifunctional chelator. The chelation reaction is completed to form a radiolabeled complex.
A microfluidic microreactor for the synthesis of gold nanorods.
Day, Daniel; Gu, Min
2009-03-11
A microfluidic microreactor for the synthesis of gold nanorods is fabricated using femtosecond pulse laser microfabrication techniques. Femtosecond pulse lasers are able to etch a wide range of materials that are required for a microreactor, from the photomasks to the microheaters. The heating of the fluid in the microreactor is achieved through the design and fabrication of a microscale heating element incorporated onto the bottom surface of the microreactor which is capable of reaching temperatures greater than 130 degrees C. Computational fluid dynamic simulations of the heating profile of an optimized microreactor show increased heating performance with respect to a serpentine microreactor. The synthesis of gold nanorods is demonstrated in the optimized microreactor, based on a flow rate of 0.5 microg min(-1).
Otsyina, H R; Nguhiu-Mwangi, J; Mogoa, E G M; Mbuthia, P G; Ogara, W O
2018-06-01
The objective of this study was to evaluate knowledge, attitudes, and practices of people in the Nairobi and Kajiado Counties, Kenya, on the usage, disposal, and effect of plastic waste on sheep and goats (shoats). A semi-structured questionnaire was used to collect data from 384 respondents in four communities in the two counties. Most of the people irrespective of their age, occupation, and educational status used plastic bags of some type on a daily basis. A high proportion of the respondents (37.0%, 142) used plastic bags because of the low cost. Approximately, 79.1% (304) disposed used plastic bags in open dumps. A total of 147 (38.3%) households kept shoats. Out of these, 38.1% (56) purchased feed and also allowed their animals to roam. Most of them (45.3%, 174) thought that lack of feed for the animals was the main reason why shoats roam and scavenge at refuse dump sites and road sides. A large proportion of the respondents (44.5%, 143) mentioned death of animals as the ultimate consequence of ingestion of waste plastic bags. Though, the respondents were aware that indiscriminate disposal of used plastic bags could result in death of the animals from which they derive their livelihoods, they nevertheless continued with the practice. There is a need for a paradigm shift in the way and manner plastic bags are used and disposed.
NASA Astrophysics Data System (ADS)
Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua
2013-05-01
We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h
Plastic Membrane Sensor from a Disposed Combined Glass Electrode
ERIC Educational Resources Information Center
Marafie, Hayat M.; Shoukry, Adel F.; Alshatti, Laila A.
2007-01-01
The construction of combined plastic membrane electrode for hydralazinium cation from a disposed glass electrode is described. A variety of electrodes could be prepared by students using other types of polymers, plasticizers, or exchangers which could also help to study effects of pH and temperature, or environmental investigations.
Fine structuration of low-temperature co-fired ceramic (LTCC) microreactors.
Jiang, Bo; Haber, Julien; Renken, Albert; Muralt, Paul; Kiwi-Minsker, Lioubov; Maeder, Thomas
2015-01-21
The development of microreactors that operate under harsh conditions is always of great interest for many applications. Here we present a microfabrication process based on low-temperature co-fired ceramic (LTCC) technology for producing microreactors which are able to perform chemical processes at elevated temperature (>400 °C) and against concentrated harsh chemicals such as sodium hydroxide, sulfuric acid and hydrochloric acid. Various micro-scale cavities and/or fluidic channels were successfully fabricated in these microreactors using a set of combined and optimized LTCC manufacturing processes. Among them, it has been found that laser micromachining and multi-step low-pressure lamination are particularly critical to the fabrication and quality of these microreactors. Demonstration of LTCC microreactors with various embedded fluidic structures is illustrated with a number of examples, including micro-mixers for studies of exothermic reactions, multiple-injection microreactors for ionone production, and high-temperature microreactors for portable hydrogen generation.
2007-04-01
target molecules, we are interested in incorporating the existing, liquid AChE sensor chemistry into a multiphase microreactor . The multiphase... microreactor will play a critical role in combining microsensor technology with analytical biochemistry and increase reaction time, sensitivity and... microreactor with a micro-scale gas- liquid interface, 2) to adapt AChE biochemistry into the microreactor in order to develop an electrochemical biosensor for
Disposable stainless steel vs plastic laryngoscope blades among paramedics.
Dos Santos, Frank D; Schnakofsky, Roberto; Cascio, Anthony; Liu, Junfeng; Merlin, Mark A
2011-07-01
Several studies have been published in the literature about intubation methods, but little is available on intubation equipment used in this setting. This is the first prehospital comparison of disposable plastic vs disposable stainless steel laryngoscope blades used by paramedics. The objective of this study was to compare prehospital intubation success rates on first attempt and overall number of attempts to obtain intubations using disposable plastic laryngoscopes blades vs disposable stainless steel laryngoscope blades. A retrospective prehospital cohort study was conducted during two 3-year periods. Two-way contingency table and χ(2) test were conducted to determine if there was a difference between the 2 types of blades. A proportional odds model with calculated 95% confidence interval (CI) and odd ratios were then calculated. A total of 2472 paramedic intubations were recorded over the 6-year period. The stainless steel single-use blades had a first attempt success rate of 88.9% vs 78.5% with plastic blades (P = .01; odds ratio, 1.94; 95% CI, 1.17-3.41). The stainless steel single-use laryngoscope blade had a lower number of attempts to successful intubation than the plastic blade (88.8% vs 74.3%, respectively) (P < .01; odds ratio, 1.64; 95% CI, 1.34-2.00). In the prehospital setting, stainless steel disposable blades were superior to plastic disposable blades in first attempt and overall number of attempts to intubation. Until further research is done, we recommend use of stainless steel blades for intubations in the prehospital setting by paramedics. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, Neil Reginald; Colston, Jr, Billy W.
An apparatus for chip-based sorting, amplification, detection, and identification of a sample having a planar substrate. The planar substrate is divided into cells. The cells are arranged on the planar substrate in rows and columns. Electrodes are located in the cells. A micro-reactor maker produces micro-reactors containing the sample. The micro-reactor maker is positioned to deliver the micro-reactors to the planar substrate. A microprocessor is connected to the electrodes for manipulating the micro-reactors on the planar substrate. A detector is positioned to interrogate the sample contained in the micro-reactors.
Organic microchemical performance of solvent resistant polycarbosilane based microreactor.
Yoon, Tae-Ho; Jung, Sang-Hee; Kim, Dong-Pyo
2011-05-01
We report the successful fabrication of preceramic polymer allylhydridopolycarbosilane (AHPCS) derived microchannels with excellent organic solvent resistance and optical transparency via economic imprinting process, followed by UV and post thermal curing process at 160 degrees C for 3 h. The microchemical performance of the fabricated microreactors was evaluated by choosing two model micro chemical reactions under organic solvent conditions; syntheses of 2-aminothiazole in DMF and dimethylpyrazole in THF, and compared with glass-based microreactor having identical dimensions and batch system with analogy. It is clear that AHPCS derived microreactor showed excellent solvent resistance and chemical stability compare with glass derived microreactor made by high cost of photolithography and thermal bonding process. The novel preceramic polymer derived microreactors showed reliable mechanical and chemical stability and conversion yields compare with that of glass derived microreactors, which is very promising for developing an integrated microfluidics by adopting available microstructuring techniques of the polymers.
Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua
2013-06-07
We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.
Lan, Yang; Yang, Li; Zhang, Minchao; Zhang, Wangqing; Wang, Shengnan
2010-01-01
A microreactor of Pd nanoparticles immobilized shell-corona hollow microspheres of poly[styrene-co-2-(acetoacetoxy) ethyl methacrylate-co-acrylamide] has been designed for catalytic hydrodechlorination (HDC) of chlorophenols in the sole solvent of water. The strategy of the combined use of the shell-corona hollow microspheres as microcapsule and catalyst scaffold endues the microreactor several advantages. First, the microreactor can be dispersed in the sole solvent of water and acts as a quasi-homogeneous catalyst for catalytic HDC of chlorophenols. Second, the reactant of chlorophenols can be highly concentrated within the hollow microspheres of the microreactor in the sole solvent of water. Third, the resultant product of phenol can be favorably excreted off the microreactor into water because of the polar difference between the reactant of chlorophenols and the product of phenol. Ascribed to the combined advantages, catalytic HDC of chlorophenols can be performed efficiently within the microreactor in the sole solvent of water at room temperature under atmosphere pressure.
Soft tissue decomposition of submerged, dismembered pig limbs enclosed in plastic bags.
Pakosh, Caitlin M; Rogers, Tracy L
2009-11-01
This study examines underwater soft tissue decomposition of dismembered pig limbs deposited in polyethylene plastic bags. The research evaluates the level of influence that disposal method has on underwater decomposition processes and details observations specific to this scenario. To our knowledge, no other study has yet investigated decomposing, dismembered, and enclosed remains in water environments. The total sample size consisted of 120 dismembered pig limbs, divided into a subsample of 30 pig limbs per recovery period (34 and 71 days) for each treatment. The two treatments simulated non-enclosed and plastic enclosed disposal methods in a water context. The remains were completely submerged in Lake Ontario for 34 and 71 days. In both recovery periods, the non-enclosed samples lost soft tissue to a significantly greater extent than their plastic enclosed counterparts. Disposal of remains in plastic bags therefore results in preservation, most likely caused by bacterial inhibition and reduced oxygen levels.
On Study of Application of Micro-reactor in Chemistry and Chemical Field
NASA Astrophysics Data System (ADS)
Zhang, Yunshen
2018-02-01
Serving as a micro-scale chemical reaction system, micro-reactor is characterized by high heat transfer efficiency and mass transfer, strictly controlled reaction time and good safety performance; compared with the traditional mixing reactor, it can effectively shorten reaction time by virtue of these advantages and greatly enhance the chemical reaction conversion rate. However, problems still exist in the process where micro-reactor is used for production in chemistry and chemical field, and relevant researchers are required to optimize and perfect the performance of micro-reactor. This paper analyzes specific application of micro-reactor in chemistry and chemical field.
Micro-Fluidic Chemical Reactor Systems: Development, Scale-Up and Demonstration
2002-11-01
B) A ) Figure 1: Gas Phase Microreactor . ( A ) Photograph of device. (B) Top view schematic. (C) Side view across channel. ( D ) Side view along... Microreactor system showing controller, heater power, fluid mixing, and microreactor cards (as in Figure 14) in a PCI chassis... microreactor design used for gas-phase heterogeneous reactions is a microchannel device that can be integrated with a heat exchange layer for highly
Hospitals as factories of medical garbage.
Hodges, Sarah
2017-12-01
Over the course of the twentieth century, as hospitals cleaned up, they came to produce more and more rubbish. Beginning in the 1970s and gaining pace in the 1980s and 1990s, single-use plastic items (syringes, blood bags, tubing) saturated everyday medical practice across the globe. This essay brings the question of plastic to bear upon the longer history of twentieth century sanitary science. The widespread adoption of single-use disposable medical plastics consolidated a century's worth of changes in medical hygiene. As strange as it may seem today, the initial uptake of medical plastics was not driven primarily by concerns about hygiene. Plastic began as a mid-century technology of convenience and durability. It was not until the end of the twentieth century that it morphed into a powerful symbol and instrument of medical hygiene. Today, both patients and practitioners have embraced plastic as an indispensable technology of clean medicine. The procession of single-use medical plastics through everyday medicine now comprises a constant, if disposable, infrastructure of medical hygiene. This new processional infrastructure of disposable hygiene has produced another, albeit unintended, consequence. This new regime has exponentially increased hospitals' material outputs. In so doing, plastic has refigured the ecologies of everyday medicine. Plastic hygiene has rendered hospitals factories of medical garbage.
Fluorogenic DNA Sequencing in PDMS Microreactors
Sims, Peter A.; Greenleaf, William J.; Duan, Haifeng; Xie, X. Sunney
2012-01-01
We have developed a multiplex sequencing-by-synthesis method combining terminal-phosphate labeled fluorogenic nucleotides (TPLFNs) and resealable microreactors. In the presence of phosphatase, the incorporation of a non-fluorescent TPLFN into a DNA primer by DNA polymerase results in a fluorophore. We immobilize DNA templates within polydimethylsiloxane (PDMS) microreactors, sequentially introduce one of the four identically labeled TPLFNs, seal the microreactors, allow template-directed TPLFN incorporation, and measure the signal from the fluorophores trapped in the microreactors. This workflow allows sequencing in a manner akin to pyrosequencing but without constant monitoring of each microreactor. With cycle times of <10 minutes, we demonstrate 30 base reads with ∼99% raw accuracy. “Fluorogenic pyrosequencing” combines benefits of pyrosequencing, such as rapid turn-around, native DNA generation, and single-color detection, with benefits of fluorescence-based approaches, such as highly sensitive detection and simple parallelization. PMID:21666670
Zhang, Quan; Zhang, Qinghong; Wang, Hongzhi; Li, Yaogang
2013-06-15
A high efficiency microreactor with Pt coated ZnO (Pt/ZnO) nanorod arrays on the inner wall was successfully fabricated by pumping a Pt sol into the microchannel containing preformed ZnO nanorod arrays. Phenol was selected as a persistent organic pollutant to evaluate the photocatalytic performance of the microreactors. The microreactor which was coated by Pt sol for 5 min showed the best photocatalytic performance compared with other Pt/ZnO nanorod array-modified microreactors. The presence of Pt nanoparticles on the surfaces of ZnO nanorods promoted the separation of photoinduced electron-hole pairs and thus enhanced the photocatalytic activity. In addition, the recyclable property of the microcreator was investigated. It was found that the microreactor displayed higher durability during the continuous photocatalytic process. Copyright © 2013 Elsevier B.V. All rights reserved.
Use of recycled plastic in concrete: a review.
Siddique, Rafat; Khatib, Jamal; Kaur, Inderpreet
2008-01-01
Numerous waste materials are generated from manufacturing processes, service industries and municipal solid wastes. The increasing awareness about the environment has tremendously contributed to the concerns related with disposal of the generated wastes. Solid waste management is one of the major environmental concerns in the world. With the scarcity of space for landfilling and due to its ever increasing cost, waste utilization has become an attractive alternative to disposal. Research is being carried out on the utilization of waste products in concrete. Such waste products include discarded tires, plastic, glass, steel, burnt foundry sand, and coal combustion by-products (CCBs). Each of these waste products has provided a specific effect on the properties of fresh and hardened concrete. The use of waste products in concrete not only makes it economical, but also helps in reducing disposal problems. Reuse of bulky wastes is considered the best environmental alternative for solving the problem of disposal. One such waste is plastic, which could be used in various applications. However, efforts have also been made to explore its use in concrete/asphalt concrete. The development of new construction materials using recycled plastics is important to both the construction and the plastic recycling industries. This paper presents a detailed review about waste and recycled plastics, waste management options, and research published on the effect of recycled plastic on the fresh and hardened properties of concrete. The effect of recycled and waste plastic on bulk density, air content, workability, compressive strength, splitting tensile strength, modulus of elasticity, impact resistance, permeability, and abrasion resistance is discussed in this paper.
An Optically Accessible Pyrolysis Microreactor
NASA Astrophysics Data System (ADS)
Baraban, Joshua H.; David, Donald E.; Ellison, Barney; Daily, John W.
2016-06-01
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions. (This work has been published in J. H. Baraban, D. E. David, G. B. Ellison, and J. W. Daily. An Optically Accessible Pyrolysis Micro-Reactor. Review of Scientific Instruments, 87(1):014101, 2016.)
NASA Astrophysics Data System (ADS)
Knapkiewicz, P.
2013-03-01
The technology and preliminary qualitative tests of silicon-glass microreactors with embedded pressure and temperature sensors are presented. The concept of microreactors for leading highly exothermic reactions, e.g. nitration of hydrocarbons, and design process-included computer-aided simulations are described in detail. The silicon-glass microreactor chip consisting of two micromixers (multistream micromixer), reaction channels, cooling/heating chambers has been proposed. The microreactor chip was equipped with a set of pressure and temperature sensors and packaged. Tests of mixing quality, pressure drops in channels, heat exchange efficiency and dynamic behavior of pressure and temperature sensors were documented. Finally, two applications were described.
Evaluation of a disposable plastic Neubauer counting chamber for semen analysis.
Kirkman-Brown, Jackson; Björndahl, Lars
2009-02-01
To evaluate whether disposable plastic counting chambers effectively could replace nondisposable, time-consuming, and potentially dangerous glass hemocytometers. Evaluation of equipment in modern laboratory andrology. Comparison of results obtained with plastic chambers with results obtained with "gold-standard" glass hemocytometer counts. Diagnostic laboratory for andrology. Twenty-one patients undergoing investigation for infertility problems. No interventions with patients; sperm in diluted semen samples were used when patients had allowed the use for research and training. Sperm concentration, difference from results obtained with standard equipment. In the first three experimental series, with use of standard routine phase-contrast microscopy, significantly lower count results were obtained consistently from the plastic chambers than from standard chambers. In the fourth series, with use of specialized equipment, equivalent results were obtained but with a considerably greater time commitment because of difficulties in distinguishing sperm adjacent to the gridlines in the plastic chambers. The plastic disposable chamber type was not suitable for routine semen analysis because results are variable depending on the microscope used, and increased time is necessary to do the assessment accurately.
Plastic, Fantastic? What We Make. Science and Technology Education in Philippine Society.
ERIC Educational Resources Information Center
Philippines Univ., Quezon City. Inst. for Science and Mathematics Education Development.
This module provides information about plastics, focusing on the uses of plastic bags in particular. Topic areas considered include: (1) making plastic bags; (2) transparency of plastic bags; (3) plastic bags and food odors; (4) food containers (before and since plastics); and (5) disposing of plastic bags and other plastic products. The text is…
Triple-channel microreactor for biphasic gas-liquid reactions: Photosensitized oxygenations.
Maurya, Ram Awatar; Park, Chan Pil; Kim, Dong-Pyo
2011-01-01
A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas-liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols.
An optically accessible pyrolysis microreactor
NASA Astrophysics Data System (ADS)
Baraban, J. H.; David, D. E.; Ellison, G. Barney; Daily, J. W.
2016-01-01
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
An optically accessible pyrolysis microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baraban, J. H.; Ellison, G. Barney; David, D. E.
2016-01-15
We report an optically accessible pyrolysis micro-reactor suitable for in situ laser spectroscopic measurements. A radiative heating design allows for completely unobstructed views of the micro-reactor along two axes. The maximum temperature demonstrated here is only 1300 K (as opposed to 1700 K for the usual SiC micro-reactor) because of the melting point of fused silica, but alternative transparent materials will allow for higher temperatures. Laser induced fluorescence measurements on nitric oxide are presented as a proof of principle for spectroscopic characterization of pyrolysis conditions.
Dual-channel microreactor for gas-liquid syntheses.
Park, Chan Pil; Kim, Dong-Pyo
2010-07-28
A microreactor consisting of two microfluidic channels that are separated by a thin membrane is devised for intimate contact between gas and liquid phases. Gas flowing in one microchannel can diffuse into the liquid flowing in the other microchannel through the thin membrane. An oxidative Heck reaction carried out in the dual-channel (DC) microreactor, in which gaseous oxygen plays a key role in the catalytic reaction, shows the significant improvement that can be made over the traditional batch reactor and the conventional segmental microreactor in terms of yield, selectivity, and reaction time. It also allows independent control of the flow of the gaseous reagent. The proposed DC microreactor should prove to be a powerful tool for fully exploring gas-liquid microchemistry.
Triple-channel microreactor for biphasic gas–liquid reactions: Photosensitized oxygenations
Maurya, Ram Awatar; Park, Chan Pil
2011-01-01
Summary A triple-channel microreactor fabricated by means of a soft-lithography technique was devised for efficient biphasic gas–liquid reactions. The excellent performance of the microreactor was demonstrated by carrying out photosensitized oxygenations of α-terpinene, citronellol, and allyl alcohols. PMID:21915221
ERIC Educational Resources Information Center
Erk, Kendra A.; Rhein, Morgan; Krafcik, Matthew J.; Ydstie, Sophie
2015-01-01
An educational activity is described in which the structure and physical properties of disposable plastic cups were directly related to the method of processing. The mechanical properties of specimens cut from the walls of poly(ethylene terephthalate) (PETE) cups, oriented parallel and perpendicular to the thermoforming direction, were measured in…
Droplet-based microreactor for synthesis of water-soluble Ag₂S quantum dots.
Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling
2015-07-10
A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.
Zhu, Liangliang; Fu Tan, Chuan; Gao, Minmin; Ho, Ghim Wei
2015-12-16
A macroporous carbon network combined with mesoporous catalyst immobilization by a template method gives a metal-oxide-organic framework (MoOF) foam microreactor that readily soaks up pollutants and localizes solar energy in itself, leading to effective degradation of water pollutants (e.g., methyl orange (MO) and also hydrogen generation. The cleaned-up water can be removed from the microreactor simply by compression, and the microreactor used repeatedly. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Droplet-based microreactor for synthesis of water-soluble Ag2S quantum dots
NASA Astrophysics Data System (ADS)
Shu, Yun; Jiang, Peng; Pang, Dai-Wen; Zhang, Zhi-Ling
2015-07-01
A droplet-based microreactor was used for synthesis of water-soluble Ag2S quantum dots (QDs). Monodispersed Ag2S nanoparticles with a surface of carboxylic acid-terminated were synthesized in the droplet microreactor. The x-ray powder diffraction results indicated products were monoclinic Ag2S nanocrystals. Furthermore, different-sized Ag2S QDs that were near-infrared-emitting or visible-emitting were continuously stably synthesized in droplet microreactors at different temperatures. We believe we offer a new method for obtaining different-sized Ag2S nanoparticles.
Generation and reactions of oxiranyllithiums by use of a flow microreactor system.
Nagaki, Aiichiro; Takizawa, Eiji; Yoshida, Jun-ichi
2010-12-17
A flow microreactor system consisting of micromixers and microtubes provides an effective reactor for the generation and reactions of aryloxiranyllithiums without decomposition by virtue of short residence time and efficient temperature control. The deprotonation of styrene oxides with sBuLi can be conducted by using the flow microreactor system at -78 or -68 °C (whereas much lower temperatures (< -100 °C) are needed for the same reactions conducted under macrobatch conditions). The resulting α-aryloxiranyllithiums were allowed to react with electrophiles in the flow microreactor system at the same temperature. The sequential introduction of various electrophiles onto 2,3-diphenyloxiranes was also achieved by using an integrated flow microreactor, which serves as a powerful system for the stereoselective synthesis of tetrasubstituted epoxides.
Chen, Yingzhuang; Wu, Minghuo; Wang, Keyi; Chen, Bo; Yao, Shouzhuo; Zou, Hanfa; Nie, Lihua
2011-11-04
A novel thiol-ene "click" strategy for the preparation of monolithic trypsin microreactor was proposed. The hybrid organic-inorganic monolithic capillary column with ene-functionality was fabricated by sol-gel process using tetramethoxysilane (TMOS) and γ-methacryloxypropyltrimethoxysilane (γ-MAPS) as precursors. The disulfide bonds of trypsin were reduced to form free thiol groups. Then the trypsin containing free thiol groups was attached on the γ-MAPS hybrid monolithic column with ene-functionality via thiol-ene click chemistry to form a trypsin microreactor. The activity of the trypsin microreactor was characterized by detecting the substrate (Nα-p-tosyl-L-arginine methyl ester hydrochloride, TAME) and the product (Nα-p-tosyl-L-arginine, TA) with on-line capillary zone electrophoresis. After investigating various synthesizing conditions, it was found that the microreactor with poly(N,N'-methylenebisacrylamide) as spacer can deliver the highest activity, yielding a rapid reaction rate. After repeatedly sampling and analyzing for 100 times, the monolithic trypsin microreactor still remained 87.5% of its initial activity. It was demonstrated that thiol-ene "click" strategy for the construction of enzyme microreactor is a promising method for the highly selective immobilization of proteins under mild conditions, especially enzymes with free thiol radicals. Copyright © 2011 Elsevier B.V. All rights reserved.
Development and characterization of a disposable plastic microarray printhead.
Griessner, Matthias; Hartig, Dave; Christmann, Alexander; Pohl, Carsten; Schellhase, Michaela; Ehrentreich-Förster, Eva
2011-06-01
During the last decade microarrays have become a powerful analytical tool. Commonly microarrays are produced in a non-contact manner using silicone printheads. However, silicone printheads are expensive and not able to be used as a disposable. Here, we show the development and functional characterization of 8-channel plastic microarray printheads that overcome both disadvantages of their conventional silicone counterparts. A combination of injection-molding and laser processing allows us to produce a high quantity of cheap, customizable and disposable microarray printheads. The use of plastics (e.g., polystyrene) minimizes the need for surface modifications required previously for proper printing results. Time-consuming regeneration processes, cleaning procedures and contaminations caused by residual samples are avoided. The utilization of plastic printheads for viscous liquids, such as cell suspensions or whole blood, is possible. Furthermore, functional parts within the plastic printhead (e.g., particle filters) can be included. Our printhead is compatible with commercially available TopSpot devices but provides additional economic and technical benefits as compared to conventional TopSpot printheads, while fulfilling all requirements demanded on the latter. All in all, this work describes how the field of traditional microarray spotting can be extended significantly by low cost plastic printheads.
Bartolotta, Jill F; Hardy, Scott D
2018-02-01
Given the growing saliency of plastic marine debris, and the impact of plastics on beaches and aquatic environments in the Laurentian Great Lakes, applied research is needed to support municipal and nongovernmental campaigns to prevent debris from reaching the water's edge. This study addresses this need by examining the barriers and benefits to positive behavior for two plastic debris items in northeast Ohio's Lake Erie basin: plastic bags and plastic water bottles. An online survey is employed to gather data on the use and disposal of these plastic items and to solicit recommendations on how to positively change behavior to reduce improper disposal. Results support a ban on plastic bags and plastic water bottles, with more enthusiasm for a bag ban. Financial incentives are also seen as an effective way to influence behavior change, as are location-specific solutions focused on education and outreach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plastics and Environmental Health: The Road Ahead
North, Emily J.; Halden, Rolf U.
2013-01-01
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including endocrine-disrupting properties and long-term pollution. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials – such as metal or glass – and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications, such as disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by widespread, unwanted human exposure to endocrine-disrupting bisphenol-A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of ever increasing mass-production of plastic consumer articles. By example of the healthcare sector, this review concentrates on benefits and downsides of plastics and identities opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the healthcare and food industry, and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process. PMID:23337043
Plastics and environmental health: the road ahead.
North, Emily J; Halden, Rolf U
2013-01-01
Plastics continue to benefit society in innumerable ways, even though recent public focus on plastics has centered mostly on human health and environmental concerns, including their endocrine-disrupting properties and the long-term pollution they represent. The benefits of plastics are particularly apparent in medicine and public health. Plastics are versatile, cost-effective, require less energy to produce than alternative materials like metal or glass, and can be manufactured to have many different properties. Due to these characteristics, polymers are used in diverse health applications like disposable syringes and intravenous bags, sterile packaging for medical instruments as well as in joint replacements, tissue engineering, etc. However, not all current uses of plastics are prudent and sustainable, as illustrated by the widespread, unwanted human exposure to endocrine-disrupting bisphenol A (BPA) and di-(2-ethylhexyl)phthalate (DEHP), problems arising from the large quantities of plastic being disposed of, and depletion of non-renewable petroleum resources as a result of the ever-increasing mass production of plastic consumer articles. Using the health-care sector as example, this review concentrates on the benefits and downsides of plastics and identifies opportunities to change the composition and disposal practices of these invaluable polymers for a more sustainable future consumption. It highlights ongoing efforts to phase out DEHP and BPA in the health-care and food industry and discusses biodegradable options for plastic packaging, opportunities for reducing plastic medical waste, and recycling in medical facilities in the quest to reap a maximum of benefits from polymers without compromising human health or the environment in the process.
Microfluidic radiolabeling of biomolecules with PET radiometals
Zeng, Dexing; Desai, Amit V.; Ranganathan, David; Wheeler, Tobias D.; Kenis, Paul J. A.; Reichert, David E.
2012-01-01
Introduction A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. Methods The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both 64Cu and 68Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Results Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with 64Cu/68Ga using the microreactor, which demonstrates the ability to label both small and large molecules. Conclusions A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. PMID:23078875
Microfluidic radiolabeling of biomolecules with PET radiometals.
Zeng, Dexing; Desai, Amit V; Ranganathan, David; Wheeler, Tobias D; Kenis, Paul J A; Reichert, David E
2013-01-01
A robust, versatile and compact microreactor has been designed, fabricated and tested for the labeling of bifunctional chelate conjugated biomolecules (BFC-BM) with PET radiometals. The developed microreactor was used to radiolabel a chelate, either 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) or 1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) that had been conjugated to cyclo(Arg-Gly-Asp-DPhe-Lys) peptide, with both ⁶⁴Cu and ⁶⁸Ga respectively. The microreactor radiolabeling conditions were optimized by varying temperature, concentration and residence time. Direct comparisons between the microreactor approach and conventional methods showed improved labeling yields and increased reproducibility with the microreactor under identical labeling conditions, due to enhanced mass and heat transfer at the microscale. More importantly, over 90% radiolabeling yields (incorporation of radiometal) were achieved with a 1:1 stoichiometry of bifunctional chelate biomolecule conjugate (BFC-BM) to radiometal in the microreactor, which potentially obviates extensive chromatographic purification that is typically required to remove the large excess of unlabeled biomolecule in radioligands prepared using conventional methods. Moreover, higher yields for radiolabeling of DOTA-functionalized BSA protein (Bovine Serum Albumin) were observed with ⁶⁴Cu/⁶⁸Ga using the microreactor, which demonstrates the ability to label both small and large molecules. A robust, reliable, compact microreactor capable of chelating radiometals with common chelates has been developed and validated. Based on our radiolabeling results, the reported microfluidic approach overall outperforms conventional radiosynthetic methods, and is a promising technology for the radiometal labeling of commonly utilized BFC-BM in aqueous solutions. Copyright © 2013 Elsevier Inc. All rights reserved.
A convenient enantioselective CBS-reduction of arylketones in flow-microreactor systems.
De Angelis, Sonia; De Renzo, Maddalena; Carlucci, Claudia; Degennaro, Leonardo; Luisi, Renzo
2016-05-04
A convenient, versatile, and green CBS-asymmetric reduction of aryl and heteroaryl ketones has been developed by using the microreactor technology. The study demonstrates that it is possible to handle borane solution safely within microreactors and that the reaction performs well using 2-MeTHF as a greener solvent.
Membrane microreactors: gas-liquid reactions made easy.
Noël, Timothy; Hessel, Volker
2013-03-01
Getting phases together: Membrane microreactors provide new opportunities for gas-liquid reactions. The advantages of this microreactor concept are a large interfacial area, a greater flexibility with regard to flow rates, and the opportunity to immobilize a catalyst on the membrane. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultrafast synthesis of LTA nanozeolite using a two-phase segmented fluidic microreactor.
Zhou, Jianhai; Jiang, Hao; Xu, Jian; Hu, Jun; Liu, Honglai; Hu, Ying
2013-08-01
Fast synthesis of nanosized zeolite is desirable for many industrial applications. An ultrafast synthesis of LTA nanozeolite by the organic-additive-free method in a two-phase segmented fluidic microreactor has been realized. The results reveal that the obtained LTA nanozeolites through microreactor are much smaller and higher crystallinity than those under similar conditions through conventional macroscale batch reactor. By investing various test conditions, such as the crystallization temperature, the flow rate, the microchannel length, and the aging time of gel solution, this two-phase segmented fluidic microreactor system enables us to develop an ultrafast method for nanozeolite production. Particularly, when using a microreactor with the microchannel length of 20 m, it only takes 10 min for the crystallization and no aging process to successfully produce the crystalline LTA nanozeolites at 95 degrees C.
Wu, Wenming; Trinh, Kieu The Loan; Lee, Nae Yoon
2015-03-07
We introduce a new strategy for fabricating a seamless three-dimensional (3D) helical microreactor utilizing a silicone tube and a paraffin mold. With this method, various shapes and sizes of 3D helical microreactors were fabricated, and a complicated and laborious photolithographic process, or 3D printing, was eliminated. With dramatically enhanced portability at a significantly reduced fabrication cost, such a device can be considered to be the simplest microreactor, developed to date, for performing the flow-through polymerase chain reaction (PCR).
Modeling chemical vapor deposition of silicon dioxide in microreactors at atmospheric pressure
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2015-01-01
We developed a multiphysics mathematical model for simulation of silicon dioxide Chemical Vapor Deposition (CVD) from tetraethyl orthosilicate (TEOS) and oxygen mixture in a microreactor at atmospheric pressure. Microfluidics is a promising technology with numerous applications in chemical synthesis due to its high heat and mass transfer efficiency and well-controlled flow parameters. Experimental studies of CVD microreactor technology are slow and expensive. Analytical solution of the governing equations is impossible due to the complexity of intertwined non-linear physical and chemical processes. Computer simulation is the most effective tool for design and optimization of microreactors. Our computational fluid dynamics model employs mass, momentum and energy balance equations for a laminar transient flow of a chemically reacting gas mixture at low Reynolds number. Simulation results show the influence of microreactor configuration and process parameters on SiO2 deposition rate and uniformity. We simulated three microreactors with the central channel diameter of 5, 10, 20 micrometers, varying gas flow rate in the range of 5-100 microliters per hour and temperature in the range of 300-800 °C. For each microchannel diameter we found an optimal set of process parameters providing the best quality of deposited material. The model will be used for optimization of the microreactor configuration and technological parameters to facilitate the experimental stage of this research.
Anuar, Sabiqah Tuan; Villegas, Carla; Mugo, Samuel M; Curtis, Jonathan M
2011-06-01
This study demonstrates the utility of a flow-through enzyme immobilized silica microreactor for lipid transformations. A silica micro structured fiber (MSF) consisting of 168 channels of internal diameter 4-5 μm provided a large surface area for the covalent immobilization of Candida antartica lipase. The specific activity of the immobilized lipase was determined by hydrolysis of p-nitrophenyl butyrate and calculated to be 0.81 U/mg. The catalytic performance of the lipase microreactor was demonstrated by the efficient ethanolysis of canola oil. The parameters affecting the performance of the MSF microreactor, including temperature and reaction flow rate, were investigated. Characterization of the lipid products exiting the microreactor was performed by non-aqueous reversed-phased liquid chromatography (NARP-LC) with evaporative light scattering detector (ELSD) and by comprehensive two-dimensional gas chromatography (GC x GC). Under optimized conditions of 1 μL/min flow rate of 5 mg/mL trioleoylglycerol (TO) in ethanol and 50 °C reaction temperature, 2-monooleoylglycerol was the main product at > 90% reaction yield. The regioselectivity of the Candida antartica lipase immobilized MSF microreactor in the presence of ethanol was found to be comparable to that obtained under conventional conditions. The ability of these reusable flow-through microreactors to regioselectively form monoacylglycerides in high yield from triacylglycerides demonstrate their potential use in small-scale lipid transformations or analytical lipids profiling.
Joly, François-Xavier; Coulis, Mathieu
2018-02-01
It is estimated that 4.5 trillion cigarette butts are discarded annually, making them numerically the most common type of litter on Earth. To accelerate their disappearance after disposal, a new type of cigarette filters made of cellulose, a readily biodegradable compound, has been introduced in the market. Yet, the advantage of these cellulose filters over the conventional plastic ones (cellulose acetate) for decomposition, remains unknown. Here, we compared the decomposition of cellulose and plastic cigarettes filters, either intact or smoked, on the soil surface or within a composting bin over a six-month field decomposition experiment. Within the compost, cellulose filters decomposed faster than plastic filters, but this advantage was strongly reduced when filters had been used for smoking. This indicates that the accumulation of tars and other chemicals during filter use can strongly affect its subsequent decomposition. Strikingly, on the soil surface, we observed no difference in mass loss between cellulose and plastic filters throughout the incubation. Using a first order kinetic model for mass loss of for used filters over the short period of our experiment, we estimated that conventional plastic filters take 7.5-14 years to disappear, in the compost and on the soil surface, respectively. In contrast, we estimated that cellulose filters take 2.3-13 years to disappear, in the compost and on the soil surface, respectively. Our data clearly showed that disposal environments and the use of cellulose filters must be considered when assessing their advantage over plastic filters. In light of our results, we advocate that the shift to cellulose filters should not exempt users from disposing their waste in appropriate collection systems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xiaoli; Sun, Fuchan; Peng, Xuewei; Jin, Wenrui
2007-02-01
An electrochemical method for quantitative determination of enzyme activity in single cells was developed by scanning a microelectrode (ME) over a nitrocellulose film-covered microreactor with micropores by means of a scanning electrochemical microscope (SECM). Peroxidase (PO) in neutrophils was chosen as the model system. The microreactor consisted of a microwell with a solution and a nitrocellulose film with micropores. A single cell perforated by digitonin was injected into the microwell. After the perforated cell was lysed and allowed to dry, physiological buffer saline (PBS) containing hydroquinone (H2Q) and H2O2 as substrates of the enzyme-catalyzed reaction was added in the microwell. The microwell containing the extract of the lysed cell and the enzyme substrates was covered with Parafilm to prevent evaporation. The solution in the microwell was incubated for 20 min. In this case, the released PO from the cell converted H2Q into benzoquinone (BQ). Then, the Parafilm was replaced by a nitrocellulose film with micropores to fabricate the microreactor. The microreactor was placed in an electrochemical cell containing PBS, H2Q, and H2O2. After a 10-microm-radius Au ME was inserted into the electrochemical cell and approached down to the microreactor, the ME was scanned along the central line across the microreactor by means of a SECM. The scan curve with a peak was obtained by detecting BQ that diffused out from the microreactor through the micropores on the nitrocellulose film. PO activity could be quantified on the basis of the peak current on the scan curve using a calibration curve. This method had two obvious advantages: no electrode fouling and no oxygen interference.
Song, Wentong; Shi, Da; Tao, Shengyang; Li, Zhaoliang; Wang, Yuchao; Yu, Yongxian; Qiu, Jieshan; Ji, Min; Wang, Xinkui
2016-11-01
A facile method is reported to construct monolithic microreactor with high catalytic performance for Knoevenagel reaction. The microreactor is based on hierarchically porous silica (HPS) which has interconnected macro- and mesopores. Then the HPS is surface modified by pyrogallol (PG) polymer. Al(NO3)3 and Mg(NO3)2 are loaded on the surface of HPS through coordination with -OH groups of PG. After thermal treatment, Al(NO3)3 and Mg(NO3)2 are converted Al2O3 and MgO. The as-synthesized catalytic microreactor shows a high and stable performance in Knoevenagel reaction. The microreactor possess large surface area and interconnected pore structures which are beneficial for reactions. Moreover, this economic, facile and eco-friendly surface modification method can be used in loading more metal oxides for more reactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Product selectivity control induced by using liquid-liquid parallel laminar flow in a microreactor.
Amemiya, Fumihiro; Matsumoto, Hideyuki; Fuse, Keishi; Kashiwagi, Tsuneo; Kuroda, Chiaki; Fuchigami, Toshio; Atobe, Mahito
2011-06-07
Product selectivity control based on a liquid-liquid parallel laminar flow has been successfully demonstrated by using a microreactor. Our electrochemical microreactor system enables regioselective cross-coupling reaction of aldehyde with allylic chloride via chemoselective cathodic reduction of substrate by the combined use of suitable flow mode and corresponding cathode material. The formation of liquid-liquid parallel laminar flow in the microreactor was supported by the estimation of benzaldehyde diffusion coefficient and computational fluid dynamics simulation. The diffusion coefficient for benzaldehyde in Bu(4)NClO(4)-HMPA medium was determined to be 1.32 × 10(-7) cm(2) s(-1) by electrochemical measurements, and the flow simulation using this value revealed the formation of clear concentration gradient of benzaldehyde in the microreactor channel over a specific channel length. In addition, the necessity of the liquid-liquid parallel laminar flow was confirmed by flow mode experiments.
Wang, Siming; Su, Ping; Hongjun, E; Yang, Yi
2010-10-15
Polyamidoamine dendrimer (PAMAM) is one of a number of dendritic polymers with precise molecular structure, highly geometric symmetry, and a large number of terminal groups. In this study, different generations of PAMAM (G0-G4) were introduced onto the inner wall of fused-silica capillaries by microwave irradiation and a new type of glucose oxidase (GOx) capillary enzyme microreactor was developed based on enzyme immobilization in the prepared PAMAM-grafted fused-silica capillaries. The optimal enzymolysis conditions for beta-d-glucose in the microreactor were evaluated by capillary zone electrophoresis. In addition, the enzymolysis efficiencies of different generations of PAMAM-GOx capillary enzyme microreactor were compared. The results indicate that enzymolysis efficiency increased with increasing generations of PAMAM. The experimental results provide the possibility for the development and application of an online immobilized capillary enzyme microreactor. Crown Copyright 2010. Published by Elsevier Inc. All rights reserved.
Dong, Zhengya; Yao, Chaoqun; Zhang, Xiaoli; Xu, Jie; Chen, Guangwen; Zhao, Yuchao; Yuan, Quan
2015-02-21
The combination of ultrasound and microreactor is an emerging and promising area, but the report of designing high-power ultrasonic microreactor (USMR) is still limited. This work presents a robust, high-power and highly efficient USMR by directly coupling a microreactor plate with a Langevin-type transducer. The USMR is designed as a longitudinal half wavelength resonator, for which the antinode plane of the highest sound intensity is located at the microreactor. According to one dimension design theory, numerical simulation and impedance analysis, a USMR with a maximum power of 100 W and a resonance frequency of 20 kHz was built. The strong and uniform sound field in the USMR was then applied to intensify gas-liquid mass transfer of slug flow in a microfluidic channel. Non-inertial cavitation with multiple surface wave oscillation was excited on the slug bubbles, enhancing the overall mass transfer coefficient by 3.3-5.7 times.
Recycling disposable cups into paper plastic composites.
Mitchell, Jonathan; Vandeperre, Luc; Dvorak, Rob; Kosior, Ed; Tarverdi, Karnik; Cheeseman, Christopher
2014-11-01
The majority of disposable cups are made from paper plastic laminates (PPL) which consist of high quality cellulose fibre with a thin internal polyethylene coating. There are limited recycling options for PPLs and this has contributed to disposable cups becoming a high profile, problematic waste. In this work disposable cups have been shredded to form PPL flakes and these have been used to reinforce polypropylene to form novel paper plastic composites (PPCs). The PPL flakes and polypropylene were mixed, extruded, pelletised and injection moulded at low temperatures to prevent degradation of the cellulose fibres. The level of PPL flake addition and the use of a maleated polyolefin coupling agent to enhance interfacial adhesion have been investigated. Samples have been characterised using tensile testing, dynamic mechanical analysis (DMA) and thermogravimetric analysis. Use of a coupling agent allows composites containing 40 wt.% of PPL flakes to increase tensile strength of PP by 50% to 30 MPa. The Young modulus also increases from 1 to 2.5 GPa and the work to fracture increases by a factor of 5. The work demonstrates that PPL disposable cups have potential to be beneficially reused as reinforcement in novel polypropylene composites. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Senapati, Pradipta Kumar; Mishra, Barada Kanta
2017-06-01
The conventional lean phase copper tailings slurry disposal systems create pollution all around the disposal area through seepage and flooding of waste slurry water. In order to reduce water consumption and minimize pollution, the pipeline disposal of these waste slurries at high solids concentrations may be considered as a viable option. The paper presents the rheological and pipeline flow characteristics of copper tailings samples in the solids concentration range of 65-72 % by weight. The tailings slurry indicated non-Newtonian behaviour at these solids concentrations and the rheological data were best fitted by Bingham plastic model. The influence of solids concentration on yield stress and plastic viscosity for the copper tailings samples were discussed. Using a high concentration test loop, pipeline experiments were conducted in a 50 mm nominal bore (NB) pipe by varying the pipe flow velocity from 1.5 to 3.5 m/s. A non-Newtonian Bingham plastic pressure drop model predicted the experimental data reasonably well for the concentrated tailings slurry. The pressure drop model was used for higher size pipes and the operating conditions for pipeline disposal of concentrated copper tailings slurry in a 200 mm NB pipe with respect to specific power consumption were discussed.
Scalable microreactors and methods for using same
Lawal, Adeniyi; Qian, Dongying
2010-03-02
The present invention provides a scalable microreactor comprising a multilayered reaction block having alternating reaction plates and heat exchanger plates that have a plurality of microchannels; a multilaminated reactor input manifold, a collecting reactor output manifold, a heat exchange input manifold and a heat exchange output manifold. The present invention also provides methods of using the microreactor for multiphase chemical reactions.
Plasma microreactor in supercritical xenon and its application to diamondoid synthesis
NASA Astrophysics Data System (ADS)
Oshima, F.; Stauss, S.; Ishii, C.; Pai, D. Z.; Terashima, K.
2012-10-01
The generation of plasmas in a microreactor is demonstrated in xenon from atmospheric pressure up to supercritical conditions. Ac high voltage at a frequency of 15 kHz was applied across a 25-µm discharge gap between a tungsten wire and a fused silica micro-capillary tube in a coaxial configuration. Using this continuous flow supercritical fluid microreactor, it was possible to synthesize diamantane and other diamondoids up to nonamantane, using adamantane as a precursor and seed. It is anticipated that plasmas generated in supercritical fluid microreactors may not only allow faster fabrication of diamondoids, but also offer opportunities for the fabrication of other nanomaterials.
Wu, Nan; Wang, Siming; Yang, Ye; Song, Jiayi; Su, Ping; Yang, Yi
2018-07-01
A novel type of trypsin capillary microreactor was developed based on a DNA-directed immobilization (DDI) technique applied to a fused-silica capillary modified with polyamidoamine (PAMAM) dendrimers. Trypsin binding to the inner wall of the capillary was confirmed by confocal laser scanning microscopy. The properties of the trypsin-DNA conjugated, PAMAM-modified capillary microreactor were investigated by monitoring hydrolysis of Nα-benzoyl- L -arginine ethyl ester. Through the hybridization and dehybridization of the DNA, the inner wall of the capillary functionalized with trypsin can be regenerated, thus indicating the renewability of this enzyme microreactor. In addition, these results demonstrated that introduction of PAMAM enabled higher amounts of trypsin to be immobilized, markedly improving the enzymolysis efficiency, compared with traditional modified capillaries. The digestion performance of the trypsin capillary microreactor was further evaluated by digesting cytochrome C, and a peptide numbers of 8, and a sequence coverage of 59% were obtained. This renewable and efficient immobilized trypsin capillary microreactor combines advantages of both DDI technology and PAMAM, and is potentially adaptable to high-throughput enzyme assays in biochemical and clinical research. Copyright © 2018. Published by Elsevier B.V.
Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.
Yoshida, Jun-ichi
2010-10-01
This article addresses a fascinating aspect of flash chemistry, high-resolution reaction-time control by virtue of a flow microreactor system, and its applications. The length of time that the solution remains inside the reactor is called the residence time. The residence time between the addition of a reagent and that of a quenching agent or the next reagent in a flow microreactor is the reaction time, and the reaction time can be greatly reduced by adjusting the length of a reaction channel in a flow microreactor. This feature is quite effective for conducting reactions involving short-lived reactive intermediates. A reactive species can be generated and transferred to another location to be used in the next reaction before it decomposes by adjusting the residence time in the millisecond to second timescale. The principle of such high-resolution reaction-time control, which can be achieved only by flow microreactors, and its applications to synthetic reactions including Swern-Moffatt-type oxidation, as well as the generation and reactions of aryllithium compounds bearing electrophilic substituents, such as alkoxycarbonyl groups, are presented. Integration of such reactions using integrated flow microreactor systems is also demonstrated. © 2010 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Facile silicification of plastic surface for bioassays
Hong, Seonki; Park, Ki Soo; Weissleder, Ralph; Castro, Cesar M.; Lee, Hakho
2017-01-01
We herein report a biomimetic technique to modify plastic substrates for bioassays. The method first places a polydopamine adhesion layer to plastic surface, and then grows conformal silica coating. As proof of principle, we coated plastic microbeads to construct a disposable filter for point-of-care nucleic acid extraction. PMID:28134385
Rapid Multistep Synthesis of 1,2,4-Oxadiazoles in a Single Continuous Microreactor Sequence
Grant, Daniel; Dahl, Russell; Cosford, Nicholas D. P.
2009-01-01
A general method for the synthesis of bis-substituted 1,2,4-oxadiazoles from readily available arylnitriles and activated carbonyls in a single continuous microreactor sequence is described. The synthesis incorporates three sequential microreactors to produce 1,2,4-oxadiazoles in ~30 min in quantities (40–80 mg) sufficient for full characterization and rapid library supply. PMID:18687005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiting, G.K.; Liu, Y.A.; Squires, A.M.
1986-10-01
Vibrofluidized microreactor systems have been developed for studies of unsteady-state Fischer-Tropsch synthesis. This development is aimed at preventing carbon deposition on a fused-iron catalyst in a novel reactor called the ''heat tray.'' This reactor involves a supernatant gas flowing over a shallow fluidized bed of catalyst particles. Three systems were built: (1) a vibrofluidized-bed microreactor system for obtaining baseline carbon deposition information under industrially important reaction conditions; (2) a sliding-plug vibrofluidized-bed microreactor system for rapid switching of feed gases in the F-T synthesis; and (3) a cold-flow microreactor model for studying the gas mixing characteristics of the sliding-plug vibrofluidized-bed microreactor.more » The results show that catalyst defluidization occurred under steady-state synthesis conditions below 395 C using a feed gas of H/sub 2//CO ratio of 2:1 or less. Above 395 C, the probability of hydrocarbon chain growth (..cap alpha.. < 0.50 to prevent accumulation of high-molecular-weight species that cause defluidization. Carbon deposition was rapid above 395 C when a feed gas of H/sub 2//CO ratio of 2:1 or less was used. Cold-flow microreactor model studies show that rapid (on the order of seconds), quantitative switching of feed gases over a vibrofluidized bed of catalyst could be achieved. Vibrofluidization of the catalyst bed induced little backmixing of feed gas over the investigated flow-rate range of 417 to 1650 actual mm/sup 3//s. Further, cold-flow microreactor model studies showed intense solid mixing when a bed of fused-iron catalyst (150 to 300 microns) was vibrofluidized at 24 cycles per second with a peak-to-peak amplitude of 4 mm. The development of the microreactor systems provided an easy way of accurately determining integral fluid-bed kinetics in a laboratory reactor. 408 refs., 156 figs., 27 tabs.« less
Utilization of polyethylene terephthalate (PET) in asphalt pavement: A review
NASA Astrophysics Data System (ADS)
Ahmad, A. F.; Razali, A. R.; Razelan, I. S. M.
2017-05-01
The quantity of plastics used throughout the world is increasing every year. Municipal solid wastes (MSW), manufacturing processes and service industries produce a lot of waste plastic materials. The increasing awareness among consumers about the environment has contributed to the concerns over disposal of generated wastes. The growing number of plastic materials every year and limited landfill conditions causes many alternatives exist for the disposal of plastic waste. This paper provides a summary of the study on the utilization of polyethylene terephthalate (PET) in road construction. Data from researcher show that PET can improve some properties of modified asphalt mixture. Having considered the economic and environmental prudent angles, utilization of PET as an additive to asphalt mixture is suitable to be used for road pavement.
Difluoro-and Trifluoromethylation of Electron-Deficient Alkenes in an Electrochemical Microreactor.
Arai, Kenta; Watts, Kevin; Wirth, Thomas
2014-02-01
Electrochemical microreactors, which have electrodes integrated into the flow path, can afford rapid and efficient electrochemical reactions without redox reagents due to the intrinsic properties of short diffusion distances. Taking advantage of electrochemical microreactors, Kolbe electrolysis of di-and trifluoroacetic acid in the presence of various electron-deficient alkenes was performed under constant current at continuous flow at room temperature. As a result, di-and trifluoromethylated compounds were effectively produced in either equal or higher yields than identical reactions under batch conditions previously reported by Uneyamas group. The strategy of using electrochemical microreactor technology is useful for an effective fluoromethylation of alkenes based on Kolbe electrolysis in significantly shortened reaction times.
DEVELOPING SUSTAINABLE ALTERNATIVES TO PLASTIC MULCH
We propose a project to raise awareness of pollution associated with the production, use and disposal of plastic films/ sheeting used as mulch, and to work with farmers and industry partners to develop a biodegradable, sustainable alternative to plastic mulch.
Synthesis of Monodisperse Chitosan Nanoparticles and in Situ Drug Loading Using Active Microreactor.
Kamat, Vivek; Marathe, Ila; Ghormade, Vandana; Bodas, Dhananjay; Paknikar, Kishore
2015-10-21
Chitosan nanoparticles are promising drug delivery vehicles. However, the conventional method of unregulated mixing during ionic gelation limits their application because of heterogeneity in size and physicochemical properties. Therefore, a detailed theoretical analysis of conventional and active microreactor models was simulated. This led to design and fabrication of a polydimethylsiloxane microreactor with magnetic micro needles for the synthesis of monodisperse chitosan nanoparticles. Chitosan nanoparticles synthesized conventionally, using 0.5 mg/mL chitosan, were 250 ± 27 nm with +29.8 ± 8 mV charge. Using similar parameters, the microreactor yielded small size particles (154 ± 20 nm) at optimized flow rate of 400 μL/min. Further optimization at 0.4 mg/mL chitosan concentration yielded particles (130 ± 9 nm) with higher charge (+39.8 ± 5 mV). The well-controlled microreactor-based mixing generated highly monodisperse particles with tunable properties including antifungal drug entrapment (80%), release rate, and effective activity (MIC, 1 μg/mL) against Candida.
Modeling of methanol decomposition on Pt/CeO2/ZrO2 catalyst in a packed bed microreactor
NASA Astrophysics Data System (ADS)
Pohar, Andrej; Belavič, Darko; Dolanc, Gregor; Hočevar, Stanko
2014-06-01
Methanol decomposition on Pt/CeO2/ZrO2 catalyst is studied inside a packed bed microreactor in the temperature range of 300-380 °C. The microreactor is fabricated using low-temperature co-fired ceramic (LTCC) technology, which is well suited for the production of relatively complex three-dimensional structures. It is packed with 2 wt% Pt-CeO2 catalyst, which is deposited onto ZrO2 spherical particles. A 1D mathematical model, which incorporates diffusion, convection and mass transfer through the boundary layer to the catalyst particles, as well as a 3D computational fluid dynamics model, are developed to describe the methanol decomposition process inside the packed bed. The microreactor exhibits reliable operation and no catalyst deactivation was observed during three months of experimentation. A comparison between the 1D mathematical model and the 3D model, considering the full 3D geometry of the microreactor is made and the differences between the models are identified and evaluated.
Chakraborty, Saikat; Singh, Prasun Kumar; Paramashetti, Pawan
2017-08-01
A novel microreactor-based energy-efficient process of using complete convective mixing in a macroreactor till an optimal mixing time followed by no mixing in 200-400μl microreactors enhances glucose and reducing sugar yields by upto 35% and 29%, respectively, while saving 72-90% of the energy incurred on reactor mixing in the enzymatic hydrolysis of cellulose. Empirical exponential relations are provided for determining the optimal mixing time, during which convective mixing in the macroreactor promotes mass transport of the cellulase enzyme to the solid Avicel substrate, while the latter phase of no mixing in the microreactor suppresses product inhibition by preventing the inhibitors (glucose and cellobiose) from homogenizing across the reactor. Sugar yield increases linearly with liquid to solid height ratio (r h ), irrespective of substrate loading and microreactor size, since large r h allows the inhibitors to diffuse in the liquid away from the solids, thus reducing product inhibition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Su, Yuanhai; Straathof, Natan J W; Hessel, Volker; Noël, Timothy
2014-08-18
Continuous-flow photochemistry is used increasingly by researchers in academia and industry to facilitate photochemical processes and their subsequent scale-up. However, without detailed knowledge concerning the engineering aspects of photochemistry, it can be quite challenging to develop a suitable photochemical microreactor for a given reaction. In this review, we provide an up-to-date overview of both technological and chemical aspects associated with photochemical processes in microreactors. Important design considerations, such as light sources, material selection, and solvent constraints are discussed. In addition, a detailed description of photon and mass-transfer phenomena in microreactors is made and fundamental principles are deduced for making a judicious choice for a suitable photomicroreactor. The advantages of microreactor technology for photochemistry are described for UV and visible-light driven photochemical processes and are compared with their batch counterparts. In addition, different scale-up strategies and limitations of continuous-flow microreactors are discussed. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeniyi Lawal
We successfully demonstrated an innovative hydrogen peroxide (H2O2) production concept which involved the development of flame- and explosion-resistant microchannel reactor system for energy efficient, cost-saving, on-site H2O2 production. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for controlled direct combination of H2 and O2 in all proportions including explosive regime, at a low pressure and a low temperature to produce about 1.5 wt% H2O2 as proposed. In the second phase of the program, as a prelude to full-scale commercialization, we demonstrated our H2O2 production approach by ‘numbering up’ the channels in a multi-channel microreactor-based pilot plant tomore » produce 1 kg/h of H2O2 at 1.5 wt% as demanded by end-users of the developed technology. To our knowledge, we are the first group to accomplish this significant milestone. We identified the reaction pathways that comprise the process, and implemented rigorous mechanistic kinetic studies to obtain the kinetics of the three main dominant reactions. We are not aware of any such comprehensive kinetic studies for the direct combination process, either in a microreactor or any other reactor system. We showed that the mass transfer parameter in our microreactor system is several orders of magnitude higher than what obtains in the macroreactor, attesting to the superior performance of microreactor. A one-dimensional reactor model incorporating the kinetics information enabled us to clarify certain important aspects of the chemistry of the direct combination process as detailed in section 5 of this report. Also, through mathematical modeling and simulation using sophisticated and robust commercial software packages, we were able to elucidate the hydrodynamics of the complex multiphase flows that take place in the microchannel. In conjunction with the kinetics information, we were able to validate the experimental data. If fully implemented across the whole industry as a result of our technology demonstration, our production concept is expected to save >5 trillion Btu/year of steam usage and >3 trillion Btu/year in electric power consumption. Our analysis also indicates >50 % reduction in waste disposal cost and ~10% reduction in feedstock energy. These savings translate to ~30% reduction in overall production and transportation costs for the $1B annual H2O2 market.« less
2005-11-01
micromixing and microreactor concept. OPA by itself is non- fluorescent, but it reacts with primary amine groups in the presence of β-mercaptoethanol to form...hybrid microchannel/nanopore-membrane devices can serve as efficient micromixers and microreactors, and (2) microscopic kinetics can be obtained from...single image measurements. An immediate application which extended from the micromixing and microreactor concept was microsensing. Calcium ions
Improving the performance of immobilized β-glucosidase using a microreactor.
Wei, Ce; Zhou, Yan; Zhuang, Wei; Li, Ganlu; Jiang, Min; Zhang, Hongman
2018-04-01
Here, we have presented a technically simple and efficient method for preparing a continuous flow microreactor by employing immobilized β-glucosidase in a silica quartz capillary tube. Developing an immobilized enzyme layer on the inner wall of the capillary tube involved the modification of the inner wall using bifunctional crosslinking agents 3-aminopropyltriethoxysilane and glutaraldehyde before attaching β-glucosidase. The microreactor afforded unique reaction capacities compared with conventional batch operational configurations. These included enhanced pH and thermal stability during storage tests, increased conversion rates of cellobiose, and reduced product inhibition. The maximum conversion rate of soluble substrate cellobiose digestion in the microreactor was 76% at 50°C and pH 4.8 when the microreactor was operated continually over 10 h at a flow rate of 7 μL/min. This was markedly contrasting to the observed conversion rate of 56% when cellobiose was digested in a conventional batch mode under the same pH and temperature conditions. Reaction inhibition by glucose was significantly reduced in the microreactor. We postulate that the increased capacity of glucose to diffuse into the continual flowing media above the immobilized enzyme layer prevents glucose from reaching inhibitory concentrations at the substrate-enzyme interface. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
High quantum yield ZnO quantum dots synthesizing via an ultrasonication microreactor method.
Yang, Weimin; Yang, Huafang; Ding, Wenhao; Zhang, Bing; Zhang, Le; Wang, Lixi; Yu, Mingxun; Zhang, Qitu
2016-11-01
Green emission ZnO quantum dots were synthesized by an ultrasonic microreactor. Ultrasonic radiation brought bubbles through ultrasonic cavitation. These bubbles built microreactor inside the microreactor. The photoluminescence properties of ZnO quantum dots synthesized with different flow rate, ultrasonic power and temperature were discussed. Flow rate, ultrasonic power and temperature would influence the type and quantity of defects in ZnO quantum dots. The sizes of ZnO quantum dots would be controlled by those conditions as well. Flow rate affected the reaction time. With the increasing of flow rate, the sizes of ZnO quantum dots decreased and the quantum yields first increased then decreased. Ultrasonic power changed the ultrasonic cavitation intensity, which affected the reaction energy and the separation of the solution. With the increasing of ultrasonic power, sizes of ZnO quantum dots first decreased then increased, while the quantum yields kept increasing. The effect of ultrasonic temperature on the photoluminescence properties of ZnO quantum dots was influenced by the flow rate. Different flow rate related to opposite changing trend. Moreover, the quantum yields of ZnO QDs synthesized by ultrasonic microreactor could reach 64.7%, which is higher than those synthesized only under ultrasonic radiation or only by microreactor. Copyright © 2016 Elsevier B.V. All rights reserved.
Roibu, Anca; Fransen, Senne; Leblebici, M Enis; Meir, Glen; Van Gerven, Tom; Kuhn, Simon
2018-04-03
Coupling photochemistry with flow microreactors enables novel synthesis strategies with higher efficiencies compared to batch systems. Improving the reproducibility and understanding of the photochemical reaction mechanisms requires quantitative tools such as chemical actinometry. However, the choice of actinometric systems which can be applied in microreactors is limited, due to their short optical pathlength in combination with a large received photon flux. Furthermore, actinometers for the characterization of reactions driven by visible light between 500 and 600 nm (e.g. photosensitized oxidations) are largely missing. In this paper, we propose a new visible-light actinometer which can be applied in flow microreactors between 480 and 620 nm. This actinometric system is based on the photoisomerization reaction of a diarylethene derivative from its closed to the open form. The experimental protocol for actinometric measurements is facile and characterized by excellent reproducibility and we also present an analytical estimation to calculate the photon flux. Furthermore, we propose an experimental methodology to determine the average pathlength in microreactors using actinometric measurements. In the context of a growing research interest on using flow microreactors for photochemical reactions, the proposed visible-light actinometer facilitates the determination of the received photon flux and average pathlength in confined geometries.
Deng, Jingren; Lazar, Iulia M
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Deng, Jingren; Lazar, Iulia M.
2016-04-01
The characterization of phosphorylation state(s) of a protein is best accomplished by using isolated or enriched phosphoprotein samples or their corresponding phosphopeptides. The process is typically time-consuming as, often, a combination of analytical approaches must be used. To facilitate throughput in the study of phosphoproteins, a microreactor that enables a novel strategy for performing fast proteolytic digestion and selective phosphopeptide enrichment was developed. The microreactor was fabricated using 100 μm i.d. fused-silica capillaries packed with 1-2 mm beds of C18 and/or TiO2 particles. Proteolytic digestion-only, phosphopeptide enrichment-only, and sequential proteolytic digestion/phosphopeptide enrichment microreactors were developed and tested with standard protein mixtures. The protein samples were adsorbed on the C18 particles, quickly digested with a proteolytic enzyme infused over the adsorbed proteins, and further eluted onto the TiO2 microreactor for enrichment in phosphopeptides. A number of parameters were optimized to speed up the digestion and enrichments processes, including microreactor dimensions, sample concentrations, digestion time, flow rates, buffer compositions, and pH. The effective time for the steps of proteolytic digestion and enrichment was less than 5 min. For simple samples, such as standard protein mixtures, this approach provided equivalent or better results than conventional bench-top methods, in terms of both enzymatic digestion and selectivity. Analysis times and reagent costs were reduced ~10- to 15-fold. Preliminary analysis of cell extracts and recombinant proteins indicated the feasibility of integration of these microreactors in more advanced workflows amenable for handling real-world biological samples.
Gas Property Demonstrations Using Plastic Water Bottles
ERIC Educational Resources Information Center
Campbell, Dean J.; Bannon, Stephen J.; Gunter, Molly M.
2011-01-01
Plastic water bottles are convenient containers for demonstrations of gas properties illustrating Boyle's law, Charles's law, and Avogadro's law. The contents of iron-based disposable hand warmer packets can be used to remove oxygen gas from the air within an unfilled plastic water bottle.
Plastics recycling: challenges and opportunities.
Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward
2009-07-27
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.
Plastics recycling: challenges and opportunities
Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward
2009-01-01
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades. PMID:19528059
A quantitative analysis of municipal solid waste disposal charges in China.
Wu, Jian; Zhang, Weiqian; Xu, Jiaxuan; Che, Yue
2015-03-01
Rapid industrialization and economic development have caused a tremendous increase in municipal solid waste (MSW) generation in China. China began implementing a policy of MSW disposal fees for household waste management at the end of last century. Three charging methods were implemented throughout the country: a fixed disposal fee, a potable water-based disposal fee, and a plastic bag-based disposal fee. To date, there has been little qualitative or quantitative analysis on the effectiveness of this relatively new policy. This paper provides a general overview of MSW fee policy in China, attempts to verify whether the policy is successful in reducing general waste collected, and proposes an improved charging system to address current problems. The paper presents an empirical statistical analysis of policy effectiveness derived from an environmental Kuznets curve (EKC) test on panel data of China. EKC tests on different kinds of MSW charge systems were then examined for individual provinces or cities. A comparison of existing charging systems was conducted using environmental and economic criteria. The results indicate the following: (1) the MSW policies implemented over the study period were effective in the reduction of waste generation, (2) the household waste discharge fee policy did not act as a strong driver in terms of waste prevention and reduction, and (3) the plastic bag-based disposal fee appeared to be performing well according to qualitative and quantitative analysis. Based on current situation of waste discharging management in China, a three-stage transitional charging scheme is proposed and both advantages and drawbacks discussed. Evidence suggests that a transition from a fixed disposal fee to a plastic bag-based disposal fee involving various stakeholders should be the next objective of waste reduction efforts.
NASA Astrophysics Data System (ADS)
Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; Labaer, Joshua
2015-03-01
We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented.
NASA Astrophysics Data System (ADS)
Waits, C. M.; Tolmachoff, E. D.; Allmon, W. R.; Zecher-Freeman, N. E.
2016-11-01
An energy analysis is presented for n-dodecane/air combustion in a heat recirculating Inconel microreactor under vacuum conditions. Microreactor channels are partially coated with platinum enabling operating with coupled heterogeneous and homogeneous reactions. The radiant efficiency, important for thermophotovoltaic energy conversion, was found to decrease from 57% to 52% over 5 different runs covering 377 min of operation. A similar decrease in combustion efficiency was observed with 6%-8% energy lost to incomplete combustion and 5%- 6% lost through sensible heat in the exhaust. The remaining thermal loss is from unusable radiation and conduction through inlet and outlet tubing. Changes in the Inconel microreactor geometry and emissivity properties were observed.
Thanh, Nguyen Phuc; Matsui, Yasuhiro; Fujiwara, Takeshi
2011-04-01
Plastic solid waste has become a serious problem when considering the disposal alternatives following the sequential hierarchy of sound solid waste management. This study was undertaken to assess the quantity and composition of household solid waste, especially plastic waste to identify opportunities for waste recycling. A 1-month survey of 130 households was carried out in Can Tho City, the capital city of the Mekong Delta region in southern Vietnam. Household solid waste was collected from each household and classified into ten physical categories; especially plastic waste was sorted into 22 subcategories. The average household solid waste generation rate was 281.27 g/cap/day. The compostable and recyclable shares respectively accounted for high percentage as 80.74% and 11%. Regarding plastic waste, the average plastic waste generation rate was 17.24 g/cap/day; plastic packaging and plastic containers dominated with the high percentage, 95.64% of plastic waste. Plastic shopping bags were especially identified as the major component, accounting for 45.72% of total plastic waste. Relevant factors such as household income and household size were found to have an existing correlation to plastic waste generation in detailed composition. The household habits and behaviors of plastic waste discharge and the aspects of environmental impacts and resource consumption for plastic waste disposal alternatives were also evaluated.
U.S. Navy Shipboard-Generated Plastic Waste Pilot Recycling Program
1991-03-01
2: Recyclable Plastic Items Collected from Lexington Waste at Escambia County MRF Shampoo containers Plastic garbage bags Tyvek suit Shower thongs...bale consisted of polystyrene foam cups, bread bags, bottles, disposable razors, latex gloves, shampoo bottles, and othermiscellaneous items listed in...recent csws telephone survey of recycling firms involved in the separation of mixed 46 plastic bottles, the cost of sorting plastic bottles is
H-ZSM5 Catalyzed co-pyrolysis of biomass and plastics
USDA-ARS?s Scientific Manuscript database
This study aims at addressing two important problems vital to agriculture, disposal of agricultural plastics and production of drop-in fuels from biomass via co-pyrolysis of both feedstocks. Mixtures of biomass (switchgrass, cellulose, xylan and lignin) and plastic (polyethylene terephthalate (PET),...
... place and cover it with a piece of plastic kitchen wrap to prevent the ointment from staining ... to apply the medication. Cover your finger with plastic wrap, a disposable surgical glove, or a finger ...
An experiment on the use of disposable plastics as a reinforcement in concrete beams
NASA Technical Reports Server (NTRS)
Chowdhury, Mostafiz R.
1992-01-01
Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.
1982-12-28
molecular beam-surface scattering, high pressure microreactor , heterogeneous catalysis. :116. AmTRAC? ’CAuI1ae 4111, 8ee 1 111 It oesey -1lP d ify by...Crystallography.. . ..... ....................... 4 11. Design and Construction of a High Pressure Catalvtic Microreactor ... microreactor has been designed and constructed. This micro- reactor will be a useful adjunct to the molecular beam machine since in the former overall
Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors.
Gruber, Pia; Marques, Marco P C; O'Sullivan, Brian; Baganz, Frank; Wohlgemuth, Roland; Szita, Nicolas
2017-07-01
The continuous production of high value or difficult to synthesize products is of increasing interest to the pharmaceutical industry. Cascading reaction systems have already been employed for chemical synthesis with great success, allowing a quick change in reaction conditions and addition of new reactants as well as removal of side products. A cascading system can remove the need for isolating unstable intermediates, increasing the yield of a synthetic pathway. Based on the success for chemical synthesis, the question arises how cascading systems could be beneficial to chemo-enzymatic or biocatalytic synthesis. Microreactors, with their rapid mass and heat transfer, small reaction volumes and short diffusion pathways, are promising tools for the development of such processes. In this mini-review, the authors provide an overview of recent examples of cascaded microreactors. Special attention will be paid to how microreactors are combined and the challenges as well as opportunities that arise from such combinations. Selected chemical reaction cascades will be used to illustrate this concept, before the discussion is widened to include chemo-enzymatic and multi-enzyme cascades. The authors also present the state of the art of online and at-line monitoring for enzymatic microreactor cascades. Finally, the authors review work-up and purification steps and their integration with microreactor cascades, highlighting the potential and the challenges of integrated cascades. © 2017 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Clothing for use in clean-air environments.
Clark, R. P.; Mullan, B. J.
1976-01-01
Disposable plastic two-piece suits were compared with conventional cotton suits, gowns, and plastic aprons by nurses in a burns unit. The plastic suits allowed fewer micro-organisms to be dispersed into the environment than the other garments but were less comfortable. Images Plate 1 PMID:1068201
Venema, K.; van Berkel, W. J. H.; Korf, J.
2007-01-01
This report describes a versatile and robust microreactor for bioactive proteins physically immobilized on a polyether sulfone filter. The potential of the reactor is illustrated with glucose oxidase immobilized on a filter with a cut-off value of 30 kDa. A flow-injection system was used to deliver the reactants and the device was linked on-line to an electrochemical detector. The microreactor was used for on-line preparation of apoglucose oxidase in strong acid and its subsequent reactivation with flavin adenine dinucleotide. In addition we describe a miniaturized version of the microreactor used to assess several characteristics of femtomole to attomole amounts of glucose oxidase. A low negative potential over the electrodes was used when ferrocene was the mediator in combination with horseradish peroxidase, ensuring the absence of oxidation of electro-active compounds in biological fluids. A low backpressure at very low flow rates is an advantage, which increases the sensitivity. A variety of further applications of the microreactor are suggested. Figure Preparation of apoGOx and restoration of enzyme activity using a soluton of FAD PMID:17909761
Bioactive contaminants leach from disposable laboratory plasticware.
McDonald, G Reid; Hudson, Alan L; Dunn, Susan M J; You, Haitao; Baker, Glen B; Whittal, Randy M; Martin, Jonathan W; Jha, Amitabh; Edmondson, Dale E; Holt, Andrew
2008-11-07
Disposable plasticware such as test tubes, pipette tips, and multiwell assay or culture plates are used routinely in most biological research laboratories. Manufacturing of plastics requires the inclusion of numerous chemicals to enhance stability, durability, and performance. Some lubricating (slip) agents, exemplified by oleamide, also occur endogenously in humans and are biologically active, and cationic biocides are included to prevent bacterial colonization of the plastic surface. We demonstrate that these manufacturing agents leach from laboratory plasticware into a standard aqueous buffer, dimethyl sulfoxide, and methanol and can have profound effects on proteins and thus on results from bioassays of protein function. These findings have far-reaching implications for the use of disposable plasticware in biological research.
NASA Astrophysics Data System (ADS)
Long, Ying; Wood, Troy D.
2015-01-01
Most enzymatic microreactors for protein digestion are based on trypsin, but proteins with hydrophobic segments may be difficult to digest because of the paucity of Arg and Lys residues. Microreactors based on pepsin, which is less specific than trypsin, can overcome this challenge. Here, an integrated immobilized pepsin microreactor (IPMR)/nanoelectrospray emitter is examined for its potential for peptide mapping. For myoglobin, equivalent sequence coverage is obtained in a thousandth the time of solution digestion with better sequence coverage. While sequence coverage of cytochrome c is lesser than solution in this short duration, more highly-charged peptic peptides are produced and a number of peaks are unidentified at low-resolution, suggesting that high-resolution mass spectrometry is needed to take full advantage of integrated IPMR/nanoelectrospray devices.
Wiktor, Peter; Brunner, Al; Kahn, Peter; Qiu, Ji; Magee, Mitch; Bian, Xiaofang; Karthikeyan, Kailash; LaBaer, Joshua
2015-01-01
We report a device to fill an array of small chemical reaction chambers (microreactors) with reagent and then seal them using pressurized viscous liquid acting through a flexible membrane. The device enables multiple, independent chemical reactions involving free floating intermediate molecules without interference from neighboring reactions or external environments. The device is validated by protein expressed in situ directly from DNA in a microarray of ~10,000 spots with no diffusion during three hours incubation. Using the device to probe for an autoantibody cancer biomarker in blood serum sample gave five times higher signal to background ratio compared to standard protein microarray expressed on a flat microscope slide. Physical design principles to effectively fill the array of microreactors with reagent and experimental results of alternate methods for sealing the microreactors are presented. PMID:25736721
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe; Verboom, Willem
2013-01-01
Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2-3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3.
Code of Federal Regulations, 2011 CFR
2011-07-01
....8Disposable pipettes. 2.1.9Several 5-ounce (oz.) plastic cups. 2.1.10Ice cube trays (small cubes). 2....0 5 1.0-3.0 2 3.0 1 2.3.4.1Pour about 1 inch of resin into a 5 oz. plastic cup. 2.3.4.2Determine the gross weight of the cup, resin, and disposable pipette (with the narrow tip broken off) fitted with a...
[Trial manufacture of a plunger shield for a disposable plastic syringe].
Murakami, Shigeki; Emoto, Takashi; Mori, Hiroshige; Fujita, Katsuhisa; Kubo, Naoki
2008-08-20
A syringe-type radiopharmaceutical being supplied by a manufacturer has a syringe shield and a plunger shield, whereas an in-hospital labeling radiopharmaceutical is administered by a disposable plastic syringe without the plunger shield. In cooperation with Nihon Medi-Physics Co. Ltd., we have produced a new experimental plunger shield for the disposable plastic syringe. In order to evaluate this shielding effect, we compared the leaked radiation doses of our plunger shield with those of the syringe-type radiopharmaceutical (Medi shield type). Our plunger shield has a lead plate of 21 mm in diameter and 3 mm thick. This shield is equipped with the plunger-end of a disposal plastic syringe. We sealed 99mTc solution into a plastic syringe (Terumo Co.) of 5 ml with our plunger shield and Medi shield type of 2 ml. We measured leaked radiation doses around syringes using fluorescent glass dosimeters (Dose Ace). The number of measure points was 18. The measured doses were converted to 70 microm dose equivalent at 740 MBq of radioactivity. The results of our plunger shield and the Medi shield type were as follows: 4-13 microSv/h and 3-14 microSv/h at shielding areas, 3-545 microSv/h and 6-97 microSv/h at non-shielding areas, 42-116 microSv/h and 88-165 microSv/h in the vicinity of the syringe shield, and 1071 microSv/h and 1243 microSv/h at the front of the needle. For dose rates of shielding areas around the syringe, the shielding effects were approximately the same as those of the Medi shield type. In conclusion, our plunger shield may be useful for reducing finger exposure during the injection of an in-hospital labeled radiopharmaceutical.
Biodegradation of plastics: current scenario and future prospects for environmental safety.
Ahmed, Temoor; Shahid, Muhammad; Azeem, Farrukh; Rasul, Ijaz; Shah, Asad Ali; Noman, Muhammad; Hameed, Amir; Manzoor, Natasha; Manzoor, Irfan; Muhammad, Sher
2018-03-01
Plastic is a general term used for a wide range of high molecular weight organic polymers obtained mostly from the various hydrocarbon and petroleum derivatives. There is an ever-increasing trend towards the production and consumption of plastics due to their extensive industrial and domestic applications. However, a wide spectrum of these polymers is non-biodegradable with few exceptions. The extensive use of plastics, lack of waste management, and casual community behavior towards their proper disposal pose a significant threat to the environment. This has raised growing concerns among various stakeholders to devise policies and innovative strategies for plastic waste management, use of biodegradable polymers especially in packaging, and educating people for their proper disposal. Current polymer degradation strategies rely on chemical, thermal, photo, and biological procedures. In the presence of proper waste management strategies coupled with industrially controlled biodegradation facilities, the use of biodegradable plastics for some applications such as packaging or health industry is a promising and attractive option for economic, environmental, and health benefits. This review highlights the classification of plastics with special emphasis on biodegradable plastics and their rational use, the identified mechanisms of plastic biodegradation, the microorganisms involved in biodegradation, and the current insights into the research on biodegradable plastics. The review has also identified the research gaps in plastic biodegradation followed by future research directions.
Transport and release of chemicals from plastics to the environment and to wildlife.
Teuten, Emma L; Saquing, Jovita M; Knappe, Detlef R U; Barlaz, Morton A; Jonsson, Susanne; Björn, Annika; Rowland, Steven J; Thompson, Richard C; Galloway, Tamara S; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige
2009-07-27
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
Transport and release of chemicals from plastics to the environment and to wildlife
Teuten, Emma L.; Saquing, Jovita M.; Knappe, Detlef R. U.; Barlaz, Morton A.; Jonsson, Susanne; Björn, Annika; Rowland, Steven J.; Thompson, Richard C.; Galloway, Tamara S.; Yamashita, Rei; Ochi, Daisuke; Watanuki, Yutaka; Moore, Charles; Viet, Pham Hung; Tana, Touch Seang; Prudente, Maricar; Boonyatumanond, Ruchaya; Zakaria, Mohamad P.; Akkhavong, Kongsap; Ogata, Yuko; Hirai, Hisashi; Iwasa, Satoru; Mizukawa, Kaoruko; Hagino, Yuki; Imamura, Ayako; Saha, Mahua; Takada, Hideshige
2009-01-01
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development. PMID:19528054
Munirathinam, Rajesh; Ricciardi, Roberto; Egberink, Richard J M; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, Uwe
2013-01-01
Summary Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR, ellipsometry, and X-ray photoelectron spectroscopy (XPS). XPS revealed the presence of one gallium per 2–3 styrene sulfonate groups of the polymer brushes. The catalytic activity of the Lewis acid-functionalized brushes in a microreactor was demonstrated for the dehydration of oximes, using cinnamaldehyde oxime as a model substrate, and for the formation of oxazoles by ring closure of ortho-hydroxy oximes. The catalytic activity of the microreactor could be maintained by periodic reactivation by treatment with GaCl3. PMID:24062830
16 CFR 1611.36 - Application of act to particular types of products.
Code of Federal Regulations, 2012 CFR
2012-01-01
... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...
16 CFR 1611.36 - Application of act to particular types of products.
Code of Federal Regulations, 2014 CFR
2014-01-01
... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...
16 CFR 1611.36 - Application of act to particular types of products.
Code of Federal Regulations, 2011 CFR
2011-01-01
... ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611.36...) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable diapers is...
Cell-free protein synthesis in PDMS-glass hybrid microreactor
NASA Astrophysics Data System (ADS)
Yamamoto, Takatoki; Fujii, Teruo; Nojima, Takahiko; Hong, Jong W.; Endo, Isao
2000-08-01
A living cell has numerous kinds of proteins while only thousands of that have been identified as of now. In order to discover and produce various proteins that are applicable to biotechnological, pharmaceutical and medical applications, cell-free protein synthesis is one of the most useful and promising techniques. In this study, we developed an inexpensive microreactor with temperature control capability for protein synthesis. The microreactor consists of a sandwich of glass-based chip and PDMS(polydimethylsiloxane) chip. The thermo control system, which is composed of a heater and a temperature sensor, is fabricated with an ITO (Indium Tin Oxide) resistive material on a glass substrate by ordinary microfabrication method based on photolithography and etching techniques. The reactor chamber and flow channels are fabricated by injection micromolding of PDMS. Since one can use thermo control system on a glass substrate repeatedly by replacing only the easily-fabricated and low-cost PDMS reactor chamber, this microreactor is quite cost effective. As a demonstration, a DNA template of a GFP (Green Fluorescent Protein) is transcribed and translated using cell-free extract prepared from Escherichia coli. As a result, GFP was successfully synthesized in the present microreactor.
Microreactor-Assisted Nanomaterial Deposition for Photovoltaic Thin-Film Production
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-03-01
This factsheet describes a research project whose goal is to develop and demonstrate a scalable microreactor-assisted nanomaterial deposition pilot platform for the production, purification, functionalization, and solution deposition of nanomaterials for PV applications.
Design of a prototype flow microreactor for synthetic biology in vitro.
Boehm, Christian R; Freemont, Paul S; Ces, Oscar
2013-09-07
As a reference platform for in vitro synthetic biology, we have developed a prototype flow microreactor for enzymatic biosynthesis. We report the design, implementation, and computer-aided optimisation of a three-step model pathway within a microfluidic reactor. A packed bed format was shown to be optimal for enzyme compartmentalisation after experimental evaluation of several approaches. The specific substrate conversion efficiency could significantly be improved by an optimised parameter set obtained by computational modelling. Our microreactor design provides a platform to explore new in vitro synthetic biology solutions for industrial biosynthesis.
Chemical microreactor and method thereof
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2011-08-09
A method for forming a chemical microreactor includes forming at least one capillary microchannel in a substrate having at least one inlet and at least one outlet, integrating at least one heater into the chemical microreactor, interfacing the capillary microchannel with a liquid chemical reservoir at the inlet of the capillary microchannel, and interfacing the capillary microchannel with a porous membrane near the outlet of the capillary microchannel, the porous membrane being positioned beyond the outlet of the capillary microchannel, wherein the porous membrane has at least one catalyst material imbedded therein.
Reduction experiment of iron scale by adding waste plastics.
Zhang, Chongmin; Chen, Shuwen; Miao, Xincheng; Yuan, Hao
2009-01-01
The special features of waste plastics in China are huge in total amount, various in type and dispersive in deposition. Therefore, it is necessary to try some new ways that are fit to Chinese situation for disposing waste plastics as metallurgical raw materials more effectively and flexibly. Owing to its high ferrous content and less impurity, the iron scale became ideal raw material to produce pure iron powder. One of the methods to produce pure iron powder is Hoganas Method, by which, after one or multistage of reduction steps, the iron scale can be reduced pure iron powder. However, combining utilization of waste plastics and iron powder production, a series of reduction experiments were arranged and investigated, which is hoped to take use of both thermal and chemical energy contained in waste plastics as well as to improve the reducing condition of iron scale, and hence to develop a new metallurgical way of disposing waste plastics. The results show that under these experimental conditions, the thermal-decomposition of water plastics can conduce to an increase of porosity in the reduction systems. Moreover, better thermodynamics and kinetics conditions for the reduction of scale can be reached. As a result, the reduction rate is increased.
Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona
2015-08-20
Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana.
Kehres, Jan; Pedersen, Thomas; Masini, Federico; Andreasen, Jens Wenzel; Nielsen, Martin Meedom; Diaz, Ana; Nielsen, Jane Hvolbæk; Hansen, Ole
2016-01-01
The design, fabrication and performance of a novel and highly sensitive micro-reactor device for performing in situ grazing-incidence X-ray scattering experiments of model catalyst systems is presented. The design of the reaction chamber, etched in silicon on insulator (SIO), permits grazing-incidence small-angle X-ray scattering (GISAXS) in transmission through 10 µm-thick entrance and exit windows by using micro-focused beams. An additional thinning of the Pyrex glass reactor lid allows simultaneous acquisition of the grazing-incidence wide-angle X-ray scattering (GIWAXS). In situ experiments at synchrotron facilities are performed utilizing the micro-reactor and a designed transportable gas feed and analysis system. The feasibility of simultaneous in situ GISAXS/GIWAXS experiments in the novel micro-reactor flow cell was confirmed with CO oxidation over mass-selected Ru nanoparticles. PMID:26917133
Silver nanocluster catalytic microreactors for water purification
NASA Astrophysics Data System (ADS)
Da Silva, B.; Habibi, M.; Ognier, S.; Schelcher, G.; Mostafavi-Amjad, J.; Khalesifard, H. R. M.; Tatoulian, M.; Bonn, D.
2016-07-01
A new method for the elaboration of a novel type of catalytic microsystem with a high specific area catalyst is developed. A silver nanocluster catalytic microreactor was elaborated by doping a soda-lime glass with a silver salt. By applying a high power laser beam to the glass, silver nanoclusters are obtained at one of the surfaces which were characterized by BET measurements and AFM. A microfluidic chip was obtained by sealing the silver coated glass with a NOA 81 microchannel. The catalytic activity of the silver nanoclusters was then tested for the efficiency of water purification by using catalytic ozonation to oxidize an organic pollutant. The silver nanoclusters were found to be very stable in the microreactor and efficiently oxidized the pollutant, in spite of the very short residence times in the microchannel. This opens the way to study catalytic reactions in microchannels without the need of introducing the catalyst as a powder or manufacturing complex packed bed microreactors.
Lu, Yue; Zhang, Ling; Lin, Hengwei
2014-04-07
A microreactor is applied and reported, for the first time, in the field of research of carbon dots (CDs), including rapid screening of the reaction conditions and investigation of the photoluminescence (PL) mechanism. Various carbonaceous precursors and solvents were selected and hundreds of reaction conditions were screened (ca. 15 min on average per condition). Through analyzing the screened conditions, tunable PL emission maxima, from about 330 to 550 nm with respectable PL quantum yields, were achieved. Moreover, the relationship between different developmental stages of the CDs and the PL properties was explored by using the microreactor. The PL emission was observed to be independent of the composition, carbonization extent, and morphology/size of the CDs. This study unambiguously presents that a microreactor could serve as a promising tool for the research of CDs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part II.
Lucas, Donald; Petty, Sara M; Keen, Olya; Luedeka, Bob; Schlummer, Martin; Weber, Roland; Yazdani, Ramin; Riise, Brian; Rhodes, James; Nightingale, Dave; Diamond, Miriam L; Vijgen, John; Lindeman, Avery; Blum, Arlene; Koshland, Catherine P
2018-06-01
This is Part II of a review covering the wide range of issues associated with all aspects of the use and responsible disposal of foam and plastic wastes containing toxic or potentially toxic flame retardants. We identify basic and applied research needs in the areas of responsible collection, pretreatment, processing, and management of these wastes. In Part II, we explore alternative technologies for the management of halogenated flame retardant (HFR) containing wastes, including chemical, mechanical, and thermal processes for recycling, treatment, and disposal.
Van Dooren, A A
1991-06-21
In this report the state of the art with respect to PVC as pharmaceutical packaging material is described. A general introduction into the applications of PVC is followed by a description of its production process. The metabolic effects of the monomer of PVC, vinyl chloride and of the most commonly used plasticizer diethylhexylphthalate are mentioned. Special attention is given to the pharmaceutical properties of plasticized PVC bags in comparison to other plastics and the environmental aspects of waste PVC disposal. Although there are emotional and political queries regarding the future use of PVC as a (pharmaceutical) packaging material, we conclude that there is no scientific justification for a total or partial ban of PVC. PVC will remain a fact of life as a cheap, versatile, high-performance and well-investigated plastic material for medical and pharmaceutical applications, to be replaced by newer plastics only for certain well-defined indications where the requirements of the plastic to be used are so specific that it will economically and technically be justified to use another polymer. Community and hospital pharmacists have to be prepared for a role in intake of waste plastic disposables, probably against deposit money, in order to fulfil the logistics needed for recycling.
Montero-Ocampo, C; Gago, A; Abadias, G; Gombert, B; Alonso-Vante, N
2012-11-01
In this work, we report in situ studies of UV photoelectrocatalytic discoloration of a dye (indigo carmine) by a TiO(2) thin film in a microreactor to demonstrate the driving force of the applied electrode potential and the dye flow rate toward dye discoloration kinetics. TiO(2) 65-nm-thick thin films were deposited by PVD magnetron sputtering technique on a conducting glass substrate of fluorinated tin oxide. A microreactor to measure the discoloration rate, the electrode potential, and the photocurrent in situ, was developed. The dye solutions, before and after measurements in the microreactor, were analyzed by Raman spectroscopy. The annealed TiO(2) thin films had anatase structure with preferential orientation (101). The discoloration rate of the dye increased with the applied potential to TiO(2) electrode. Further, acceleration of the photocatalytic reaction was achieved by utilizing dye flow recirculation to the microreactor. In both cases the photoelectrochemical/photocatalytic discoloration kinetics of the dye follows the Langmuir-Hinshelwood model, with first-order kinetics. The feasibility of dye discoloration on TiO(2) thin film electrodes, prepared by magnetron sputtering using a flow microreactor system, has been clearly demonstrated. The discoloration rate is enhanced by applying a positive potential (E (AP)) and/or increasing the flow rate. The fastest discoloration and shortest irradiation time (50 min) produced 80% discoloration with an external anodic potential of 0.931 V and a flow rate of 12.2 mL min(-1).
NASA Astrophysics Data System (ADS)
Balakrishnan, A.; Frei, M.; Kerzenmacher, S.; Reinecke, H.; Mueller, C.
2015-12-01
In this work we present the design and fabrication of the miniaturized PEM fuel cell combined microreactor system with hydrogen regulation mechanism and testing of prototype microreactor. The system consists of two components (i) fuel cell component and (ii) microreactor component. The fuel cell component represents the miniaturized PEM fuel cell system (combination of screen printed fuel cell assembly and an on-board hydrogen storage medium). Hydrogen production based on catalytic hydrolysis of chemical hydride takes place in the microreactor component. The self-regulated hydrogen mechanism based on the gaseous hydrogen produced from the catalytic hydrolysis of sodium borohydride (NaBH4) gets accumulated as bubbles at the vicinity of the hydrophobic coated hydrogen exhaust holes. When the built up hydrogen bubbles pressure exceeds the burst pressure at the hydrogen exhaust holes the bubble collapses. This collapse causes a surge of fresh NaBH4 solution onto the catalyst surface leading to the removal of the reaction by-products formed at the active sites of the catalyst. The catalyst used in the system is platinum deposited on a base substrate. Nickel foam, carbon porous medium (CPM) and ceramic plate were selected as candidates for base substrate for developing a robust catalyst surface. For the first time the platinum layer fabricated by pulsed electrodeposition and dealloying (EPDD) technique is used for hydrolysis of NaBH4. The major advantages of such platinum catalyst layers are its high surface area and their mechanical stability. Prototype microreactor system with self-regulated hydrogen mechanism is demonstrated.
Milne, A D; Brousseau, P A; Brousseau, C A
2014-12-01
A bench-top study was performed to assess the effects of different laryngoscope handles on the light intensity delivered from disposable metal or plastic laryngoscope blades. The light intensity from both the handle light sources themselves and the combined handle and laryngoscope blade sets was measured using a custom-designed testing system and light meter. Five samples of each disposable blade type were tested and compared with a standard re-usable stainless steel blade using three different handle/light sources (Vital Signs LED, Heine 2.5 V Xenon and 3.5 V Xenon). The light intensity delivered by the disposable blades ranged from 790 to 3846 lux for the different handle types. Overall, the 3.5 V Heine handle delivered the highest light output (p < 0.007) in comparison with the other handles. For the disposable blades, the overall light output was significantly higher from the plastic than the metal blades (p < 0.001). © 2014 The Association of Anaesthetists of Great Britain and Ireland.
Laser cutting plastic materials
NASA Astrophysics Data System (ADS)
Vancleave, R. A.
1980-08-01
A 1000 watt CO2 laser was demonstrated as a reliable production machine tool for cutting of plastics, high strength reinforced composites, and other nonmetals. More than 40 different plastics were laser cut, and the results are tabulated. Applications for laser cutting described include fiberglass reinforced laminates, Kevlar/epoxy composites, fiberglass reinforced phenolics, nylon/epoxy laminates, ceramics, and disposal tooling made from acrylic.
16 CFR § 1611.36 - Application of act to particular types of products.
Code of Federal Regulations, 2013 CFR
2013-01-01
... FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF VINYL PLASTIC FILM Rules and Regulations § 1611... inner side. (f) Multilayer fabric and wearing apparel with a film or coating on the uncovered or exposed surface. Plastic film or plastic-coated fabric used, or intended for use, as the outer layer of disposable...
Pickett, M W; Kosegi, J E; Thomas, K S; Waterstram-Rich, K M
1998-09-01
This investigation evaluated the effectiveness of disposable plastic inserts in radiopharmaceutical unit dose lead containers (pigs) in preventing the distribution of doses in blood-contaminated containers. Technologists commonly dispose of the syringes by placing them into the lead pigs, leaving the needles uncapped. This process raises the question of unsuspected blood contamination of these pigs. Consequently, the distribution of commercially prepared radiopharmaceutical doses in reusable lead pigs may result in radiopharmaceutical doses being distributed in containers that are contaminated with blood. Using a simple chemical wipe test designed to determine the presence or absence of blood contamination, 618 pigs from commercial radiopharmacies throughout the U.S. were tested for contamination. The inside of the pigs and inserts, if present, were wiped before and after dose administration. Of the pigs tested, 292 came from radiopharmacies that used a protective, disposable plastic insert inside the pig, and 326 came from radiopharmacies that did not use an insert. Of those pigs without the protective disposable inserts, 39.3% arrived in the nuclear medicine department in pigs contaminated with blood. Of those pigs with inserts, 1% arrived with blood-contaminated inserts. After dose administration, 46.3% of the pigs without inserts were contaminated with blood and 3% of the protective inserts were contaminated. The proper use of disposable plastic inserts reduces the possibility of distributing radiopharmaceutical unit doses in containers contaminated with blood.
Pauson-Khand reactions in a photochemical flow microreactor.
Asano, Keisuke; Uesugi, Yuki; Yoshida, Jun-ichi
2013-05-17
Pauson-Khand reactions were achieved at ambient temperature without any additive using a photochemical flow microreactor. The efficiency of the reaction was better than that in a conventional batch reactor, and the reaction could be operated continuously for 1 h.
NASA Astrophysics Data System (ADS)
Doronkin, D. E.; Baier, S.; Sheppard, T.; Benzi, F.; Grunwaldt, J.-D.
2016-05-01
Selective catalytic reduction of NOx by ammonia over Cu-ZSM-5 was monitored by operando QEXAFS during simulation of the New European Driving Cycle. The required fast temperature transients were realized using a novel silicon microreactor, enabling simultaneous spectroscopic and kinetic analysis by X-ray absorption spectroscopy (XAS) and mass spectrometry (MS). Periods of high temperature were correlated to an increase in both N2 production and change of coordination of Cu sites. This operando approach using Si microreactors can be applied to other heterogeneous catalytic systems involving fast temperature transients.
Novel approach to investigation of semiconductor MOCVD by microreactor technology
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2017-11-01
Metal-Organic Chemical Vapour Deposition is a very complex technology that requires further investigation and optimization. We propose to apply microreactors to (1) replace multiple expensive time-consuming macroscale experiments by just one microreactor deposition with many points on one substrate; (2) to derive chemical reaction rates from individual deposition profiles using theoretical analytical solution. In this paper we also present the analytical solution of a simplified equation describing the deposition rate dependency on temperature. It allows to solve an inverse problem and to obtain detailed information about chemical reaction mechanism of MOCVD process.
Flow microreactor synthesis in organo-fluorine chemistry
Nagaki, Aiichiro
2013-01-01
Summary Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry. PMID:24367443
Flow microreactor synthesis in organo-fluorine chemistry.
Amii, Hideki; Nagaki, Aiichiro; Yoshida, Jun-Ichi
2013-12-05
Organo-fluorine compounds are the substances of considerable interest in various industrial fields due to their unique physical and chemical properties. Despite increased demand in wide fields of science, synthesis of fluoro-organic compounds is still often faced with problems such as the difficulties in handling of fluorinating reagents and in controlling of chemical reactions. Recently, flow microreactor synthesis has emerged as a new methodology for producing chemical substances with high efficiency. This review outlines the successful examples of synthesis and reactions of fluorine-containing molecules by the use of flow microreactor systems to overcome long-standing problems in fluorine chemistry.
Chip-based sequencing nucleic acids
Beer, Neil Reginald
2014-08-26
A system for fast DNA sequencing by amplification of genetic material within microreactors, denaturing, demulsifying, and then sequencing the material, while retaining it in a PCR/sequencing zone by a magnetic field. One embodiment includes sequencing nucleic acids on a microchip that includes a microchannel flow channel in the microchip. The nucleic acids are isolated and hybridized to magnetic nanoparticles or to magnetic polystyrene-coated beads. Microreactor droplets are formed in the microchannel flow channel. The microreactor droplets containing the nucleic acids and the magnetic nanoparticles are retained in a magnetic trap in the microchannel flow channel and sequenced.
Lin, Sen; Sun, Shiyong; Wang, Ke; Shen, Kexuan; Ma, Biaobiao; Ren, Yuquan; Fan, Xiaoyu
2018-02-24
The bioinspired design and construction of enzyme@capsule microreactors with specific cell-like functionality has generated tremendous interest in recent years. Inspired by their fascinating complexity, scientists have endeavored to understand the essential aspects of a natural cell and create biomimicking microreactors so as to immobilize enzymes within the hierarchical structure of a microcapsule. In this study, simultaneous encapsulation of alcohol dehydrogenase (ADH) was achieved during the preparation of microcapsules by the Pickering emulsion method using amphiphilic modified TiO₂ nanoparticles (NPs) as building blocks for assembling the photocatalytic microcapsule membrane. The ADH@TiO₂ NP microreactors exhibited dual catalytic functions, i.e., spatially confined enzymatic catalysis and the membrane-associated photocatalytic oxidation under visible light. The sustainable cycling of nicotinamide adenine dinucleotide (NAD) coenzyme between NADH and NAD⁺ was realized by enzymatic regeneration of NADH from NAD⁺ reduction, and was provided in a form that enabled further photocatalytic oxidation to NAD⁺ under visible light. This bioinspired ADH@TiO₂ NP microreactor allowed the linking of a semiconductor mineral-based inorganic photosystem to enzymatic reactions. This is a first step toward the realization of sustainable biological cycling of NAD⁺/NADH coenzyme in synthetic functional microsystems operating under visible light irradiation.
Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin
2017-01-01
Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications. PMID:28059153
Zhao, Haiyan; Chen, Zilin
2014-05-02
A simple and effective neuraminidase-immobilized capillary microreactor was fabricated by glutaraldehyde cross-linking technology for screening the neuraminidase inhibitors from traditional Chinese medicines. The substrate and product were separated by CE in short-end injection mode within 2 min. Dual-wavelength ultraviolet detection was employed to eliminate the interference from the screened compounds. The parameters relating to the separation efficiency and the activity of immobilized neuraminidase were systematically evaluated. The activity of the immobilized neuraminidase remained 90% after 30 days storage at 4°C. The immobilized NA microreactor could be continuously used for more than 200 runs. The Michaelis-Menten constant of neuraminidase was determined by the microreactor as 136.6 ± 10.8 μM. In addition, six in eighteen natural products were found as potent inhibitors and the inhibition potentials were ranked in the following order: bavachinin>bavachin>baicalein>baicalin>chrysin and vitexin. The half-maximal inhibitory concentrations were 59.52 ± 4.12, 65.28 ± 1.07, 44.79 ± 1.21 and 31.62 ± 2.04 for baicalein, baicalin, bavachin and bavachinin, respectively. The results demonstrated that the neuraminidase-immobilized capillary microreactor was a very effective tool for screening neuraminidase inhibitors from traditional Chinese medicines. Copyright © 2014 Elsevier B.V. All rights reserved.
Das, Susmita; Srivastava, Vimal Chandra
2016-06-08
Photochemical technology with microfluidics is emerging as a new platform in environmental science. Microfluidic technology has various advantages, like better mixing and a shorter diffusion distance for the reactants and products; and uniform distribution of light on the photocatalyst. Depending on the material type and related applications, several fabrication techniques have been adopted by various researchers. Microreactors have been prepared by various techniques, such as lithography, etching, mechanical microcutting technology, etc. Lithography can be classified into photolithography, soft lithography and X-ray lithography techniques whereas the etching process is divided into wet etching (chemical etching) and dry etching (plasma etching) techniques. Several substrates, like polymers, such as polydimethyl-siloxane (PDMS), polymethyle-methacrylate (PMMA), hydrogel, etc.; metals, such as stainless steel, titanium foil, etc.; glass, such as silica capillary, glass slide, etc.; and ceramics have been used for microchannel fabrication. During degradation in a microreactor, the degradation efficiency is affected by few important parameters such as flow rate, initial concentration of the target compound, microreactor dimensions, light intensity, photocatalyst structure and catalyst support. The present paper discusses and critically reviews fabrication techniques and substrates used for microchannel fabrication and critical operating parameters for organics, especially dye degradation in the microreactor. The kinetics of degradation has also been discussed.
NASA Astrophysics Data System (ADS)
Zhang, Fang; Ren, Hao; Dou, Jing; Tong, Guolin; Deng, Yulin
2017-01-01
Hereby we report a novel cellulose nanofirbril aerogel-based W/O/W microreactor system that can be used for fast and high efficient molecule or ions extraction and separation. The ultra-light cellulose nanofibril based aerogel microspheres with high porous structure and water storage capacity were prepared. The aerogel microspheres that were saturated with stripping solution were dispersed in an oil phase to form a stable water-in-oil (W/O) suspension. This suspension was then dispersed in large amount of external waste water to form W/O/W microreactor system. Similar to a conventional emulsion liquid membrane (ELM), the molecules or ions in external water can quickly transport to the internal water phase. However, the microreactor is also significantly different from traditional ELM: the water saturated nanocellulose cellulose aerogel microspheres can be easily removed by filtration or centrifugation after extraction reaction. The condensed materials in the filtrated aerogel particles can be squeezed and washed out and aerogel microspheres can be reused. This novel process overcomes the key barrier step of demulsification in traditional ELM process. Our experimental indicates the novel microreactor was able to extract 93% phenol and 82% Cu2+ from external water phase in a few minutes, suggesting its great potential for industrial applications.
Status of the waste assay for nonradioactive disposal (WAND) project
NASA Astrophysics Data System (ADS)
Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.
1999-01-01
The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.
Don't ban PVC: incinerate and recycle it instead!
Menke, Doris; Fiedler, Hiltrud; Zwahr, Heiner
2003-04-01
Plastics are making a growing contribution to sustainable development. For example, over an expected lifetime of 50 years, the use of window frames and insulating materials made of plastic in buildings save many times the energy required to manufacture them. Plastics for packaging purposes provide protection against damage and dirt contamination, thereby saving considerable amounts of material and energy. Choosing appropriate disposal strategies for plastic waste also helps to protect the environment (Mark 2000).
Microfluidic labeling of biomolecules with radiometals for use in nuclear medicine.
Wheeler, Tobias D; Zeng, Dexing; Desai, Amit V; Önal, Birce; Reichert, David E; Kenis, Paul J A
2010-12-21
Radiometal-based radiopharmaceuticals, used as imaging and therapeutic agents in nuclear medicine, consist of a radiometal that is bound to a targeting biomolecule (BM) using a bifunctional chelator (BFC). Conventional, macroscale radiolabeling methods use an excess of the BFC-BM conjugate (ligand) to achieve high radiolabeling yields. Subsequently, to achieve maximal specific activity (minimal amount of unlabeled ligand), extensive chromatographic purification is required to remove unlabeled ligand, often resulting in longer synthesis times and loss of imaging sensitivity due to radioactive decay. Here we describe a microreactor that overcomes the above issues through integration of efficient mixing and heating strategies while working with small volumes of concentrated reagents. As a model reaction, we radiolabel 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) conjugated to the peptide cyclo(Arg-Gly-Asp-DPhe-Lys) with (64)Cu(2+). We show that the microreactor (made from polydimethylsiloxane and glass) can withstand 260 mCi of activity over 720 hours and retains only minimal amounts of (64)Cu(2+) (<5%) upon repeated use. A direct comparison between the radiolabeling yields obtained using the microreactor and conventional radiolabeling methods shows that improved mixing and heat transfer in the microreactor leads to higher yields for identical reaction conditions. Most importantly, by using small volumes (~10 µL) of concentrated solutions of reagents (>50 µM), yields of over 90% can be achieved in the microreactor when using a 1:1 stoichiometry of radiometal to BFC-BM. These high yields eliminate the need for use of excess amounts of often precious BM and obviate the need for a chromatographic purification process to remove unlabeled ligand. The results reported here demonstrate the potential of microreactor technology to improve the production of patient-tailored doses of radiometal-based radiopharmaceuticals in the clinic.
Challenges and opportunities of biodegradable plastics: A mini review.
Rujnić-Sokele, Maja; Pilipović, Ana
2017-02-01
The concept of materials coming from nature with environmental advantages of being biodegradable and/or biobased (often referred to as bioplastics) is very attractive to the industry and to the consumers. Bioplastics already play an important role in the fields of packaging, agriculture, gastronomy, consumer electronics and automotive, but still they have a very low share in the total production of plastics (currently about 1% of the about 300 million tonnes of plastic produced annually). Biodegradable plastics are often perceived as the possible solution for the waste problem, but biodegradability is just an additional feature of the material to be exploited at the end of its life in specific terms, in the specific disposal environment and in a specific time, which is often forgotten. They should be used as a favoured choice for the applications that demand a cheap way to dispose of the item after it has fulfilled its job (e.g. for food packaging, agriculture or medical products). The mini-review presents the opportunities and future challenges of biodegradable plastics, regarding processing, properties and waste management options.
Volume reduction of hot cell plastic wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dykes, F W; Henscheid, J P; Lewis, L C
1989-09-19
The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.
A monolithic and flexible fluoropolymer film microreactor for organic synthesis applications.
Kim, Jin-Oh; Kim, Heejin; Ko, Dong-Hyeon; Min, Kyoung-Ik; Im, Do Jin; Park, Soo-Young; Kim, Dong-Pyo
2014-11-07
A photocurable and viscous fluoropolymer with chemical stability is a highly desirable material for fabrication of microchemical devices. Lack of a reliable fabrication method, however, limits actual applications for organic reactions. Herein, we report fabrication of a monolithic and flexible fluoropolymer film microreactor and its use as a new microfluidic platform. The fabrication involves facile soft lithography techniques that enable partial curing of thin laminates, which can be readily bonded by conformal contact without any external forces. We demonstrate fabrication of various functional channels (~300 μm thick) such as those embedded with either a herringbone micromixer pattern or a droplet generator. Organic reactions under strongly acidic and basic conditions can be carried out in this film microreactor even at elevated temperature with excellent reproducibility. In particular, the transparent film microreactor with good deformability could be wrapped around a light-emitting lamp for close contact with the light source for efficient photochemical reactions with visible light, which demonstrates easy integration with optical components for functional miniaturized systems.
Liu, Ai-Lin; Li, Zhong-Qiu; Wu, Zeng-Qiang; Xia, Xing-Hua
2018-05-15
For study of the photocatalytic reaction kinetics in a confined microsystem, a photocatalysis microreactor integrated on a microfluidic device has been fabricated using an on-line UV/vis detector. The performance of the photocatalysis microreactor is evaluated by the photocatalytic degradation of Rhodamine B chosen as model target by using commercial titanium dioxide (Degussa P25, TiO 2 ) nanoparticles as a photocatalyst. Results show that the photocatalytic reaction occurs via the Langmuir-Hinshelwood mechanism and the photocatalysis kinetics in the confined microsystem (r = 0.359 min -1 ) is about 10 times larger than that in macrosystem (r = 0.033 min -1 ). In addition, the photocatalysis activity of the immobilized TiO 2 nanoparticles in the microreactor exhibits good stability under flowing conditions. The present microchip device offers an interesting platform for screening of photocatalysts and exploration of photocatalysis mechanisms and kinetics. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Zhanjun; Zong, Chen; Ju, Huangxian; Yan, Feng
2011-11-07
A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using α-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL(-1) and a low detection limit of 0.1 ng mL(-1). The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay. Copyright © 2011 Elsevier B.V. All rights reserved.
Wang, Jun; Gu, Shuang-Shuang; Cui, Hong-Sheng; Yang, Liu-Qing; Wu, Xiang-Yang
2013-12-01
Propyl caffeate has the highest antioxidant activity among caffeic acid alkyl esters, but its industrial production via enzymatic transesterification in batch reactors is hindered by a long reaction time (24h). To develop a rapid process for the production of propyl caffeate in high yield, a continuous-flow microreactor composed of a two-piece PDMS in a sandwich-like microchannel structure was designed for the transesterification of methyl caffeate and 1-propanol catalyzed by Novozym 435 in [B mim][CF3SO3]. The maximum yield (99.5%) in the microreactor was achieved in a short period of time (2.5h) with a flow rate of 2 μL/min, which kinetic constant Km was 16 times lower than that of a batch reactor. The results indicated that the use of a continuous-flow packed bed enzyme microreactor is an efficient method of producing propyl caffeate with an overall yield of 84.0%. Copyright © 2013 Elsevier Ltd. All rights reserved.
Li, Jiahui; Liu, Junqi; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin
2015-01-01
In this work, multiple reuses of Rhodococcus ruber TH3 free cells for the hydration of acrylonitrile to produce acrylamide in a membrane dispersion microreactor were carried out. Through using a centrifuge, the reactions reached 39.9, 39.5, 38.6 and 38.0wt% of the final acrylamide product concentration respectively within 35min in a four cycle reuse of free cells. In contrast, using a stirring tank, free cells could only be used once with the same addition speed of acrylonitrile with a microreactor. Through observing the dissolution behavior of acrylonitrile microdroplets in a free cell solution using a coaxial microfluidic device and microscope, it was found that the acrylonitrile microdroplets with a diameter of 75μm were rarely observed within a length of 2cm channel within 10s, which illustrated that the microreactor can intensify the reaction rate to reduce the inhibition of acrylonitrile and acrylamide. Copyright © 2015 Elsevier Ltd. All rights reserved.
Limited proteolysis in proteomics using protease-immobilized microreactors.
Yamaguchi, Hiroshi; Miyazaki, Masaya; Maeda, Hideaki
2012-01-01
Proteolysis is the key step for proteomic studies integrated with MS analysis. Compared with the conventional method of in-solution digestion, proteolysis by a protease-immobilized microreactor has a number of advantages for proteomic analysis; i.e., rapid and efficient digestion, elimination of a purification step of the digests prior to MS, and high stability against a chemical or thermal denaturant. This chapter describes the preparation of the protease-immobilized microreactors and proteolysis performance of these microreactors. Immobilization of proteases by the formation of a polymeric membrane consisting solely of protease-proteins on the inner wall of the microchannel is performed. This was realized either by a cross-linking reaction in a laminar flow between lysine residues sufficiently present on the protein surfaces themselves or in the case of acidic proteins by mixing them with poly-lysine prior to the crosslink-reaction. The present procedure is simple and widely useful not only for proteases but also for several other enzymes.
Foolmaun, Rajendra Kumar; Ramjeeawon, Toolseeram
2012-09-01
The annual rise in population growth coupled with the flourishing tourism industry in Mauritius has lead to a considerable increase in the amount of solid waste generated. In parallel, the disposal of non-biodegradable wastes, especially plastic packaging and plastic bottles, has also shown a steady rise. Improper disposal of used polyethylene terephthalate (PET) bottles constitutes an eyesore to the environmental landscape and is a threat to the flourishing tourism industry. It is of utmost importance, therefore, to determine a suitable disposal method for used PET bottles which is not only environmentally efficient but is also cost effective. This study investigated the environmental impacts and the cost effectiveness of four selected disposal alternatives for used PET bottles in Mauritius. The four disposal routes investigated were: 100% landfilling; 75% incineration with energy recovery and 25% landfilling; 40% flake production (partial recycling) and 60% landfilling; and 75% flake production and 25% landfilling. Environmental impacts of the disposal alternatives were determined using ISO standardized life cycle assessment (LCA) and with the support of SimaPro 7.1 software. Cost effectiveness was determined using life cycle costing (LCC). Collected data were entered into a constructed Excel-based model to calculate the different cost categories, Net present values, damage costs and payback periods. LCA and LCC results indicated that 75% flake production and 25% landfilling was the most environmentally efficient and cost-effective disposal route for used PET bottles in Mauritius.
Public health impact of plastics: An overview
Rustagi, Neeti; Pradhan, S. K.; Singh, Ritesh
2011-01-01
Plastic, one of the most preferred materials in today's industrial world is posing serious threat to environment and consumer's health in many direct and indirect ways. Exposure to harmful chemicals during manufacturing, leaching in the stored food items while using plastic packages or chewing of plastic teethers and toys by children are linked with severe adverse health outcomes such as cancers, birth defects, impaired immunity, endocrine disruption, developmental and reproductive effects etc. Promotion of plastics substitutes and safe disposal of plastic waste requires urgent and definitive action to take care of this potential health hazard in future. PMID:22412286
NASA Astrophysics Data System (ADS)
Murakami, Sunao; Ohtaki, Kenichiro; Matsumoto, Sohei; Inoue, Tomoya
2012-06-01
High-throughput and stable treatments are required to achieve the practical production of chemicals with microreactors. However, the flow maldistribution to the paralleled microchannels has been a critical problem in achieving the productive use of multichannel microreactors for multiphase flow conditions. In this study, we newly designed and fabricated a glass four-channel catalytic packed-bed microreactor for the scale-up of gas-liquid multiphase chemical reactions. We embedded microstructures generating high pressure losses at the upstream side of each packed bed, and experimentally confirmed the efficacy of the microstructures in decreasing the maldistribution of the gas-liquid flow to the parallel microchannels.
NASA Astrophysics Data System (ADS)
Jiang, Chenyang; Uto, Koichiro; Ebara, Mitsuhiro; Aoyagi, Takao; Ichiki, Takanori
2015-06-01
Implementation of shape-memory polymer (SMP) sheet-based microvalves into plastic-based microfluidic devices has been studied toward the use in disposable and mass producible micro total analysis devices. Poly(ε-caprolactone) (PCL) and poly(methyl methacrylate-co-styrene) (MS) were used as SMP and main substrate materials, respectively. Bonding between PCL sheets and MS plates was the critical issue in the practical implementation. We found the pristine PCL sheet has relatively rough surface with Ra of 85.14 nm, which is the cause of poor bonding. Hence, by introducing the post-anneal treatment with sandwiched between two flat glass plates, the PCL surface could be smoothed to Ra of 12.50 nm, and tight bonding could be obtained. Consequently, microfluidic devices consisting of plastic/PCL/plastic layers were successfully fabricated and therein the actuation of SMP valves without any leakage was demonstrated. The present technology is expected to be applicable to disposable microfluidic devices as required for point-of-care testing.
Quartey, Ebo Tawiah; Tosefa, Hero; Danquah, Kwasi Asare Baffour; Obrsalova, Ilona
2015-01-01
Currently, use and disposal of plastic by consumers through waste management activities in Ghana not only creates environmental problems, but also reinforces the notion of a wasteful society. The magnitude of this problem has led to increasing pressure from the public for efficient and practical measures to solve the waste problem. This paper analyses the impact of plastic use and disposal in Ghana. It emphasizes the need for commitment to proper management of the impacts of plastic waste and effective environmental management in the country. Sustainable Solid Waste Management (SSWM) is a critical problem for developing countries with regards to climate change and greenhouse gas emission, and also the general wellbeing of the populace. Key themes of this paper are producer responsibility and management of products at end of life. The paper proposes two theatrical recovery models that can be used to address the issue of sachet waste in Ghana. PMID:26308016
Lei, Kin Fong; Huang, Chia-Hao
2014-12-24
Investigation of cellular phosphorylation and signaling pathway has recently gained much attention for the study of pathogenesis of cancer. Related conventional bioanalytical operations for this study including cell culture and Western blotting are time-consuming and labor-intensive. In this work, a paper-based microreactor has been developed to integrate cell culture and subsequent immunoassay on a single paper. The paper-based microreactor was a filter paper with an array of circular zones for running multiple cell cultures and subsequent immunoassays. Cancer cells were directly seeded in the circular zones without hydrogel encapsulation and cultured for 1 day. Subsequently, protein expressions including structural, functional, and phosphorylated proteins of the cells could be detected by their specific antibodies, respectively. Study of the activation level of phosphorylated Stat3 of liver cancer cells stimulated by IL-6 cytokine was demonstrated by the paper-based microreactor. This technique can highly reduce tedious bioanalytical operation and sample and reagent consumption. Also, the time required by the entire process can be shortened. This work provides a simple and rapid screening tool for the investigation of cellular phosphorylation and signaling pathway for understanding the pathogenesis of cancer. In addition, the operation of the paper-based microreactor is compatible to the molecular biological training, and therefore, it has the potential to be developed for routine protocol for various research areas in conventional bioanalytical laboratories.
Coffee Stirrers and Drinking Straws as Disposable Spatulas
ERIC Educational Resources Information Center
Turano, Morgan A.; Lobuono, Cinzia; Kirschenbaum, Louis J.
2015-01-01
Although metal spatulas are damaged through everyday use and become discolored and corroded by chemical exposure, plastic drinking straws are inexpensive, sterile, and disposable, reducing the risk of cross-contamination during laboratory procedures. Drinking straws are also useful because they come in a variety of sizes; narrow sample containers…
Sudhir, G; Wilkes, A R; Clyburn, P; Aguilera, I; Hall, J E
2007-10-01
Increasing awareness of prion-related diseases has led to an increase in the number of disposable laryngoscope blades available. We compared 11 disposable and standard re-usable Miller size 1 blades. In this manikin-based study, we studied user satisfaction for field of view at laryngoscopy, build quality and users' willingness to use the blade in an emergency situation. These were found to be better with metal disposable blades (p=0.001). Vertical and horizontal forces developed during laryngoscopy were greater with plastic than with metal blades.
Operating room waste reduction in plastic and hand surgery.
Albert, Mark G; Rothkopf, Douglas M
2015-01-01
Operating rooms (ORs), combined with labour and delivery suites, account for approximately 70% of hospital waste. Previous studies have reported that recycling can have a considerable financial impact on a hospital-wide basis; however, its importance in the OR has not been demonstrated. To propose a method of decreasing cost through judicious selection of instruments and supplies, and initiation of recycling in plastic and hand surgery. The authors identified disposable supplies and instruments that are routinely opened and wasted in common plastic and hand surgery procedures, and calculated the savings that can result from eliminating extraneous items. A cost analysis was performed, which compared the expense of OR waste versus single-stream recycling and the benefit of recycling HIPAA documents and blue wrap. Fifteen total items were removed from disposable plastic packs and seven total items from hand packs. A total of US$17,381.05 could be saved per year from these changes alone. Since initiating single-stream recycling, the authors' institution has saved, on average, US$3,487 per month at the three campuses. After extrapolating at the current savings rate, one would expect to save a minimum of US$41,844 per year. OR waste reduction is an effective method of decreasing cost in the surgical setting. By revising the contents of current disposable packs and instrument sets designated for plastic and hand surgery, hospitals can reduce the amount of opened and unused material. Significant financial savings and environmental benefit can result from this judicious supply and instrument selection, as well as implementation of recycling.
NASA Astrophysics Data System (ADS)
Baier, S.; Rochet, A.; Hofmann, G.; Kraut, M.; Grunwaldt, J.-D.
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
Baier, S; Rochet, A; Hofmann, G; Kraut, M; Grunwaldt, J-D
2015-06-01
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor for in situ studies.
Chitosan-microreactor: a versatile approach for heterogeneous organic synthesis in microfluidics.
Basavaraju, K C; Sharma, Siddharth; Singh, Ajay K; Im, Do Jin; Kim, Dong-Pyo
2014-07-01
Microreactors have been proven to be efficient tools for a variety of homogeneous organic transformations due to their mixing efficiency, which results in very fast reactions, better heat and mass transfer, and simple scale-up. However, in heterogeneous catalytic reactions each catalyst needs an individual substrate as support. Herein, a versatile approach to immobilize metal catalysts on chitosan as a common substrate is presented. Chitosan, accommodating many metal catalysts, is grafted onto the microchannel surface as nanobrush. The versatility, catalytic efficiency, and stability/durability of the microreactor are demonstrated for a number of organic transformations involving various metal compounds as catalysts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A biphasic oxidation of alcohols to aldehydes and ketones using a simplified packed-bed microreactor
Bogdan, Andrew
2009-01-01
Summary We demonstrate the preparation and characterization of a simplified packed-bed microreactor using an immobilized TEMPO catalyst shown to oxidize primary and secondary alcohols via the biphasic Anelli-Montanari protocol. Oxidations occurred in high yields with great stability over time. We observed that plugs of aqueous oxidant and organic alcohol entered the reactor as plugs but merged into an emulsion on the packed-bed. The emulsion coalesced into larger plugs upon exiting the reactor, leaving the organic product separate from the aqueous by-products. Furthermore, the microreactor oxidized a wide range of alcohols and remained active in excess of 100 trials without showing any loss of catalytic activity. PMID:19478910
ERIC Educational Resources Information Center
Mustafa, Hasrina; Yusoff, Ronzi Mohd
2011-01-01
This research looked into the effectiveness of a campaign at the Universiti Sains Malaysia for a compulsory ban on disposable plastics. Although there was high awareness of the "Say No to Plastic Bags" bags campaign, and moderate compliance on campus, we wondered whether a compulsory approach would maintain the desired behaviours off…
Soil Quality and Colloid Transport under Biodegradable Mulches
NASA Astrophysics Data System (ADS)
Sintim, Henry; Bandopadhyay, Sreejata; Ghimire, Shuresh; Flury, Markus; Bary, Andy; Schaeffer, Sean; DeBruyn, Jennifer; Miles, Carol; Inglis, Debra
2016-04-01
Polyethylene (PE) mulch is commonly used in agriculture to increase water use efficiency, to control weeds, manage plant diseases, and maintain a favorable micro-climate for plant growth. However, producers need to retrieve and safely dispose PE mulch after usage, which creates enormous amounts of plastic waste. Substituting PE mulch with biodegradable plastic mulches could alleviate disposal needs. However, repeated applications of biodegradable mulches, which are incorporated into the soil after the growing season, may cause deterioration of soil quality through breakdown of mulches into colloidal fragments, which can be transported through soil. Findings from year 1 of a 5-year field experiment will be presented.
A disposable insulated container for rearing fall webworm larvae in the laboratory
William N., Jr. Cannon
1970-01-01
Plastic-foam cups with plastic lids were found to be more suitable for rearing larvae of the fall webworm, Hyphantria cunea Drury, than other types of containers tested. These cups are inexpensive, lightweight, rigid, and translucent; and they protect the contents from rapid fluctuations in temperature.
Thompson, Richard C; Swan, Shanna H; Moore, Charles J; vom Saal, Frederick S
2009-07-27
Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation.
Plastic Accumulation in the North Atlantic Subtropical Gyre
NASA Astrophysics Data System (ADS)
Law, Kara Lavender; Morét-Ferguson, Skye; Maximenko, Nikolai A.; Proskurowski, Giora; Peacock, Emily E.; Hafner, Jan; Reddy, Christopher M.
2010-09-01
Plastic marine pollution is a major environmental concern, yet a quantitative description of the scope of this problem in the open ocean is lacking. Here, we present a time series of plastic content at the surface of the western North Atlantic Ocean and Caribbean Sea from 1986 to 2008. More than 60% of 6136 surface plankton net tows collected buoyant plastic pieces, typically millimeters in size. The highest concentration of plastic debris was observed in subtropical latitudes and associated with the observed large-scale convergence in surface currents predicted by Ekman dynamics. Despite a rapid increase in plastic production and disposal during this time period, no trend in plastic concentration was observed in the region of highest accumulation.
Thompson, Richard C.; Swan, Shanna H.; Moore, Charles J.; vom Saal, Frederick S.
2009-01-01
Within the last few decades, plastics have revolutionized our daily lives. Globally we use in excess of 260 million tonnes of plastic per annum, accounting for approximately 8 per cent of world oil production. In this Theme Issue of Philosophical Transactions of the Royal Society, we describe current and future trends in usage, together with the many benefits that plastics bring to society. At the same time, we examine the environmental consequences resulting from the accumulation of waste plastic, the effects of plastic debris on wildlife and concerns for human health that arise from the production, usage and disposal of plastics. Finally, we consider some possible solutions to these problems together with the research and policy priorities necessary for their implementation. PMID:19528049
Lewis, Leroy C.; Trammell, David R.
1986-01-01
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Lewis, L.C.; Trammell, D.R.
1983-10-12
A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.
Trash--Our Only Growing Resource. Environmental Ecological Education Project.
ERIC Educational Resources Information Center
Giebelhausen, Maribeth R.; And Others
With the increases in population and technology, non-biodegradable materials like plastic, glass, and aluminum and waste disposal have become very real problems in out society. This unit, designed for seventh-grade students, focuses on the problems of waste disposal and examines the function of recycling, the role of the consumer in determining…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, Jason; McKelvy, Michael; Chizmeshya, Andrew V.G.
2005-01-01
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 deg. C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full opticalmore » accessibility and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diefenbacher, J.; McKelvy, M.; Chizemeshya, A.V.
2010-07-13
A microreactor has been developed for in situ, spectroscopic investigations of materials and reaction processes with full external pressure and temperature control from ambient conditions to 400 C and 310 bar. The sample chamber is in direct contact with an external manifold, whereby gases, liquids or fluids can be injected and their activities controlled prior to and under investigation conditions. The microreactor employs high strength, single crystal moissanite windows which allow direct probe beam interaction with a sample to investigate in situ reaction processes and other materials properties. The relatively large volume of the cell, along with full optical accessibilitymore » and external temperature and pressure control, make this reaction cell well suited for experimental investigations involving any combination of gas, fluid, and solid interactions. The microreactor's capabilities are demonstrated through an in situ x-ray diffraction study of the conversion of a meta-serpentine sample to magnesite under high pressure and temperature. Serpentine is one of the mineral candidates for the implementation of mineral carbonation, an intriguing carbon sequestration candidate technology.« less
Gao, Mingxia; Zhang, Peng; Hong, Guangfeng; Guan, Xia; Yan, Guoquan; Deng, Chunhui; Zhang, Xiangmin
2009-10-30
In this work, a novel and facile monolithic enzymatic microreactor was prepared in the fused-silica capillary via a two-step procedure including surface acryloylation and in situ aqueous polymerization/immobilization to encapsulate a single enzyme, and its application to fast protein digestion through a direct matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) analysis was demonstrated. At first, vinyl groups on the protein surface were generated by a mild acryloylation with N-acryloxysuccinimide in alkali buffer. Then, acryloylated enzyme was encapsulated into polyacrylates by free-radical copolymerization with acrylamide as the monomer, N,N'-methylenebisacrylamide as the cross-linker, and N,N,N',N'-tetramethylethylenediamine/ammonium persulfate as the initiator. Finally, polymers were immobilized onto the activated inner wall of capillaries via the reaction of vinyl groups. Capability of the enzyme-immobilized monolithic microreactor was demonstrated by myoglobin and bovine serum albumin as model proteins. The digestion products were characterized using MALDI-TOF-MS with sequence coverage of 94% and 29% observed. This microreactor was also applied to the analysis of fractions through two-dimensional separation of weak anion exchange/reversed-phase liquid chromatography of human liver extract. After a database search, 16 unique peptides corresponding to 3 proteins were identified when two RPLC fractions of human liver extract were digested by the microreactor. This opens a route for its future application in top-down proteomic analysis.
Neutron and gamma detector using an ionization chamber with an integrated body and moderator
Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul
2006-07-18
A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.
2014-09-01
resources, and generate large amounts of food and solid waste daily. Almost all Contingency Basecamp (CB) DFACs provide individual paper and plastic ware...which is costly in terms of purchase, transportation, and disposal. This work analyzed the effects of replacing paper and plastic ware with...reusable materials, and of adding industrial dishwashers to re- duce the logistical burden of using paper and plastic ware. Additional en- hancements
Porous media heat transfer for injection molding
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
An Organotypic Liver System for Tumor Progression
2006-04-01
a physiologically relevant microreactor that has proved suitable for organotypic liver culture to investigate metastatic seeding. The sub-millimeter...metastasis. Our objective is to utilize a physiologically relevant microreactor that has proved suitable for organotypic liver culture (3) to...C Yates, D B Stolz, L Griffith, A Wells (2004) Direct Visualization of Prostate Cancer Progression Utilizing a Bioreactor. American Association
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baier, S.; Rochet, A.; Hofmann, G.
2015-06-15
We report on a new modular setup on a silicon-based microreactor designed for correlative spectroscopic, scattering, and analytic on-line gas investigations for in situ studies of heterogeneous catalysts. The silicon microreactor allows a combination of synchrotron radiation based techniques (e.g., X-ray diffraction and X-ray absorption spectroscopy) as well as infrared thermography and Raman spectroscopy. Catalytic performance can be determined simultaneously by on-line product analysis using mass spectrometry. We present the design of the reactor, the experimental setup, and as a first example for an in situ study, the catalytic partial oxidation of methane showing the applicability of this reactor formore » in situ studies.« less
Chemical microreactor and method thereof
Morse, Jeffrey D.; Jankowski, Alan
2005-11-01
A chemical microreactor suitable for generation of hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. One such microreactor employs a packed catalyst capillary microchannel and at least one porous membrane. Another employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2 /cm.sup.3. The packed catalyst capillary microchannels, porous membranes and porous membrane support structures may be formed by a variety of methods.
A Student-Made Inexpensive Multichannel Pipet
ERIC Educational Resources Information Center
Dragojlovic, Veljko
2009-01-01
An inexpensive multichannel pipet designed to deliver small volumes of liquid simultaneously to wells in a multiwell plate can be prepared by students in a single laboratory period. The multichannel pipet is made of disposable plastic 1 mL syringes and drilled plastic plates, which are used to make plunger and barrel assemblies. Application of the…
Zhao, Qun; Liang, Yu; Yuan, Huiming; Sui, Zhigang; Wu, Qi; Liang, Zhen; Zhang, Lihua; Zhang, Yukui
2013-09-17
Combining good dissolving ability of formic acid (FA) for membrane proteins and excellent complementary retention behavior of proteins on strong cation exchange (SCX) and strong anion exchange (SAX) materials, a biphasic microreactor was established to pretreat membrane proteins at microgram and even nanogram levels. With membrane proteins solubilized by FA, all of the proteomics sample processing procedures, including protein preconcentration, pH adjustment, reduction, and alkylation, as well as tryptic digestion, were integrated into an "SCX-SAX" biphasic capillary column. To evaluate the performance of the developed microreactor, a mixture of bovine serum albumin, myoglobin, and cytochrome c was pretreated. Compared with the results obtained by the traditional in-solution process, the peptide recovery (93% vs 83%) and analysis throughput (3.5 vs 14 h) were obviously improved. The microreactor was further applied for the pretreatment of 14 μg of membrane proteins extracted from rat cerebellums, and 416 integral membrane proteins (IMPs) (43% of total protein groups) and 103 transmembrane peptides were identified by two-dimensional nanoliquid chromatography-electrospray ionization tandem mass spectrometry (2D nano-LC-ESI-MS/MS) in triplicate analysis. With the starting sample preparation amount decreased to as low as 50 ng, 64 IMPs and 17 transmembrane peptides were identified confidently, while those obtained by the traditional in-solution method were 10 and 1, respectively. All these results demonstrated that such an "SCX-SAX" based biphasic microreactor could offer a promising tool for the pretreatment of trace membrane proteins with high efficiency and throughput.
Matosevic, S; Lye, G J; Baganz, F
2010-01-01
In this work, we describe the design of an immobilized enzyme microreactor (IEMR) for use in transketolase (TK) bioconversion process characterization. The prototype microreactor is based on a 200-microm ID fused silica capillary for quantitative kinetic analysis. The concept is based on the reversible immobilization of His(6)-tagged enzymes via Ni-NTA linkage to surface derivatized silica. For the initial microreactor design, the mode of operation is a stop-flow analysis which promotes higher degrees of conversion. Kinetics for the immobilized TK-catalysed synthesis of L-erythrulose from substrates glycolaldehyde (GA) and hydroxypyruvate (HPA) were evaluated based on a Michaelis-Menten model. Results show that the TK kinetic parameters in the IEMR (V(max(app)) = 0.1 +/- 0.02 mmol min(-1), K(m(app)) = 26 +/- 4 mM) are comparable with those measured in free solution. Furthermore, the k(cat) for the microreactor of 4.1 x 10(5) s(-1) was close to the value for the bioconversion in free solution. This is attributed to the controlled orientation and monolayer surface coverage of the His(6)-immobilized TK. Furthermore, we show quantitative elution of the immobilized TK and the regeneration and reuse of the derivatized capillary over five cycles. The ability to quantify kinetic parameters of engineered enzymes at this scale has benefits for the rapid and parallel evaluation of evolved enzyme libraries for synthetic biology applications and for the generation of kinetic models to aid bioconversion process design and bioreactor selection as a more efficient alternative to previously established microwell-based systems for TK bioprocess characterization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vehlow, J.; Mark, F.E.
1997-12-01
The recovery or disposal of end-of-life electrical and electronic (E+E) equipment is receiving considerable attention from industry organisations such as APME in order to supply factual information which can be used in the development of a clear industry strategy. It is hoped that such information will persuade EU member states to define the best management practices for this waste stream. One of the difficulties regarding the recovery or disposal of E+E waste is a lack of data regarding its behaviour when incinerated. This lack of data has led to unfounded conclusions by sonic parties that plastic wastes contain harmful halogenatedmore » species which are difficult to treat and remove, and when incinerated contribute to the emission of halogenated species and are responsible for the major portion of emissions. APME has a comprehensive testing program investigating the impact of plastics on municipal solid waste (MSW) incineration. APME`s previous work has demonstrated the positive, beneficial effects of mixed waste plastics in the MSW energy recovery process as well as studying halogen behaviour during the combustion of packaging plastics waste and construction foam from the building industry. The current study was designed to evaluate the incineration of MSW containing typical levels of electrical and electronic (E+E) plastic waste, as well as MSW containing E+E waste in amounts up to 12%.« less
Unger, Scott R; Hottle, Troy A; Hobbs, Shakira R; Thiel, Cassandra L; Campion, Nicole; Bilec, Melissa M; Landis, Amy E
2017-01-01
Background While petroleum-based plastics are extensively used in health care, recent developments in biopolymer manufacturing have created new opportunities for increased integration of biopolymers into medical products, devices and services. This study compared the environmental impacts of single-use disposable devices with increased biopolymer content versus typically manufactured devices in hysterectomy. Methods A comparative life cycle assessment of single-use disposable medical products containing plastic(s) versus the same single-use medical devices with biopolymers substituted for plastic(s) at Magee-Women's Hospital (Magee) in Pittsburgh, PA and the products used in four types of hysterectomies that contained plastics potentially suitable for biopolymer substitution. Magee is a 360-bed teaching hospital, which performs approximately 1400 hysterectomies annually. Results There are life cycle environmental impact tradeoffs when substituting biopolymers for petroplastics in procedures such as hysterectomies. The substitution of biopolymers for petroleum-based plastics increased smog-related impacts by approximately 900% for laparoscopic and robotic hysterectomies, and increased ozone depletion-related impacts by approximately 125% for laparoscopic and robotic hysterectomies. Conversely, biopolymers reduced life cycle human health impacts, acidification and cumulative energy demand for the four hysterectomy procedures. The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects. However, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts of products and devices made using biopolymers. Conclusions The integration of biopolymers into medical products is correlated with reductions in carcinogenic impacts, non-carcinogenic impacts and respiratory effects; however, the significant agricultural inputs associated with manufacturing biopolymers exacerbate environmental impacts.
Catalyst for microelectromechanical systems microreactors
Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA
2010-06-29
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Catalyst for microelectromechanical systems microreactors
Morse, Jeffrey D [Martinez, CA; Sopchak, David A [Livermore, CA; Upadhye, Ravindra S [Pleasanton, CA; Reynolds, John G [San Ramon, CA; Satcher, Joseph H [Patterson, CA; Gash, Alex E [Brentwood, CA
2011-11-15
A microreactor comprising a silicon wafer, a multiplicity of microchannels in the silicon wafer, and a catalyst coating the microchannels. In one embodiment the catalyst coating the microchannels comprises a nanostructured material. In another embodiment the catalyst coating the microchannels comprises an aerogel. In another embodiment the catalyst coating the microchannels comprises a solgel. In another embodiment the catalyst coating the microchannels comprises carbon nanotubes.
Benito-Lopez, Fernando; Verboom, Willem; Kakuta, Masaya; Gardeniers, J Han G E; Egberink, Richard J M; Oosterbroek, Edwin R; van den Berg, Albert; Reinhoudt, David N
2005-06-14
With a miniaturized (3 microL volume) fiber-optics based system for on-line measurement by UV/Vis spectroscopy, the reaction rate constants (at different pressures) and the activation volumes (deltaV(not =)) were determined for a nucleophilic aromatic substitution and an aza Diels-Alder reaction in a capillary microreactor.
Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao
2016-01-01
Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min−1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min−1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts. PMID:27346555
Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip
Kimura, Hiroyuki; Tomatsu, Kenji; Saiki, Hidekazu; Arimitsu, Kenji; Ono, Masahiro; Kawashima, Hidekazu; Iwata, Ren; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo
2016-01-01
In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted radiosynthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) via a three-step procedure using a microreactor. We examined individual steps for [18F]SFB using a batch reactor and microreactor and developed a new continuous-flow synthetic method with a single microfluidic chip to achieve rapid and efficient radiosynthesis of [18F]SFB. In the synthesis of [18F]SFB using this continuous-flow method, the three-step reaction was successfully completed within 6.5 min and the radiochemical yield was 64 ± 2% (n = 5). In addition, it was shown that the quality of [18F]SFB synthesized on this method was equal to that synthesized by conventional methods using a batch reactor in the radiolabeling of bovine serum albumin with [18F]SFB. PMID:27410684
Synthesis of CuInSe2 nanocrystals using a continuous hot-injection microreactor
NASA Astrophysics Data System (ADS)
Jin, Hyung Dae; Chang, Chih-Hung
2012-10-01
A very rapid and simple synthesis of CuInSe2 nanocrystals (NCs) was successfully performed using a continuous hot-injection microreactor with a high throughput per reactor volume. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times along with the formation of Cu2Se and In2Se3. Binary syntheses were performed and the results show a much faster formation rate of Cu2Se than In2Se3. The rate limiting step in the formation of CuInSe2 is forming the In2Se3 intermediate. Rapid synthesis of stoichiometric CuInSe2 NCs using a continuous-flow microreactor was accomplished by properly adjusting the Cu/In precursor ratio. Tuning the ratio of coordinating solvents can cause size differences from 2.6 to 4.1 nm, bandgaps from 1.1 to 1.3 eV, and different production yields of NCs. The highest production yield as determined by weight was achieved up to 660 mg/h using a microreactor with a small volume of 3.2 cm3.
Kawashima, Hidekazu; Kimura, Hiroyuki; Nakaya, Yuta; Tomatsu, Kenji; Arimitsu, Kenji; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo
2015-01-01
A new radiolabeling method using a microreactor was developed for the rapid synthesis of [(11)C]raclopride. A chip bearing a Y-shaped mixing junction with a 200 µm (width)×20 µm (depth)×250 mm (length) flow channel was designed, and the efficiency of O-[11C]methylation was evaluated. Dimethyl sulfoxide solutions containing the O-desmethyl precursor or [11C]CH3I were introduced into separate injection ports by infusion syringes, and the radiochemical yields were measured under various conditions. The decay-corrected radiochemical yield of microreactor-derived [11C]raclopride reached 12% in 20 s at 25 °C, which was observed to increase with increasing temperature. In contrast, batch synthesis at 25 °C produced a yield of 5%: this indicates that this device could effectively achieve O-[11C]methylation in a shorter period of time. The microreactor technique may facilitate simple and efficient routine production of 11C-labeled compounds via O-[11C]methylation with [11C]CH3I.
Continuous-flow biosynthesis of Au-Ag bimetallic nanoparticles in a microreactor
NASA Astrophysics Data System (ADS)
Liu, Hongyu; Huang, Jiale; Sun, Daohua; Odoom-Wubah, Tareque; Li, Jun; Li, Qingbiao
2014-11-01
Herein, a microfluidic biosynthesis of Au-Ag bimetallic nanoparticle (NP) in a tubular microreactor, based on simultaneous reduction of HAuCl4 and AgNO3 precursors in the presence of Cacumen Platycladi ( C. Platycladi) extract was studied. The flow velocity profile was numerically analyzed with computational fluid dynamics. Au-Ag bimetallic NPs with Ag/Au molar ratios of 1:1 and 2:1 were synthesized, respectively. The alloy formation, morphology, structure, and size were investigated by UV-Vis spectra analysis, transmission electron microscopy (TEM), high resolution TEM, scanning TEM, and energy-dispersive X-ray analysis. In addition, the effects of volumetric flow rate, reaction temperature, and concentration of C. Platycladi extract and NaOH on the properties of the as-synthesized Au-Ag bimetallic NPs were investigated. The results indicated that these factors could not only affect the molar ratios of the two elements in the Au-Ag bimetallic NPs, but also affect particle size which can be adjusted from 3.3 to 5.6 nm. The process was very rapid and green, since a microreactor was employed with no additional synthetic reagents used. This work is anticipated to provide useful parameters for continuous-flow biosynthesis of bimetallic NPs in microreactors.
NASA Astrophysics Data System (ADS)
Li, Yifan; Lin, Beichen; Ge, Likai; Guo, Hongchen; Chen, Xinyi; Lu, Miao
2016-06-01
Photocatalytic microreactors have been utilized as rapid, versatile platforms for the characterization of photocatalysts. In this work, a photocatalytic microreactor integrated with absorption spectroscopy was proposed for the real-time monitoring of photocatalytic activity using different catalysts. The validity of this method was investigated by the rapid screening on the photocatalytic performance of a titanium oxide (TiO2)-decorated graphene oxide (GO) sheet for the degradation of methylene blue under monochromatic visible irradiation. The sampling interval time could be minimized to 10 s for achieving real-time detection. The best photocatalytic activity was observed for an optimized TiO2/GO weight mixing ratio of 7:11, with a reaction rate constant up to 0.067 min-1. The addition of GO into TiO2 enhances photocatalytic activity and adsorption of MB molecules. The synthetic reaction rate constant was up to approximately 0.11 min-1, which was also the highest among the catalysts. The microreactor exhibited good sensitivity and reproducibility without weakening the performance of the photocatalysts. Consequently, the photocatalytic microreactor is promising as a simple, portable, and rapid screening tool for new photocatalysts.
Roman-Gusetu, Georgiana; Waldron, Karen C; Rochefort, Dominic
2009-11-20
Microencapsulation is used here as a new technique to immobilize enzymes in a microreactor coupled off-line to capillary electrophoresis (CE), allowing the determination of enzymatic reaction products. The redox enzyme laccase was encapsulated using the method of interfacial cross-linking of poly(ethyleneimine) (PEI). The 50 microm diameter capsules were slurry packed from a suspension into a capillary-sized reactor made easily and quickly from a short length of 530 microm diameter fused-silica tubing. The volume of the bed of laccase microcapsules in the microreactor was in the order of 1.1 microL through which 50 microL of the substrate o-phenylenediamine (OPD) was flowed. The oxidation product 2,3-diaminophenazine (DAP) and the remaining OPD were quantified by CE in a pH 2.5 phosphate buffer. Peak migration time reproducibility was in the order of 0.4% RSD and peak area reproducibility was less than 1.7% RSD within the same day. Using the OPD peak area calibration curve, a conversion efficiency of 48% was achieved for a 2-min oxidation reaction in the microreactor.
Use of selected waste materials in concrete mixes.
Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim
2007-01-01
A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.
Uniform integration of gold nanoparticles in PDMS microfluidics with 3D micromixing
NASA Astrophysics Data System (ADS)
SadAbadi, H.; Packirisamy, M.; Wuthrich, R.
2015-09-01
The integration of gold nanoparticles (AuNPs) on the surface of polydimethylsiloxane (PDMS) microfluidics for biosensing applications is a challenging task. In this paper we address this issue by integration of pre-synthesized AuNPs (in a microreactor) into a microfluidic system. This method explored the affinity of AuNPs toward the PDMS surface so that the pre-synthesized particles will be adsorbed onto the channel walls. AuNPs were synthesized inside a microreactor before integration. In order to improve the size uniformity of the synthesized AuNPs and also to provide full mixing of reactants, a 3D-micromixer was designed, fabricated and then integrated with the microreactor in a single platform. SEM and UV/Vis spectroscopy were used to characterize the AuNPs on the PDMS surface.
Flow optimization study of a batch microfluidics PET tracer synthesizing device
Elizarov, Arkadij M.; Meinhart, Carl; van Dam, R. Michael; Huang, Jiang; Daridon, Antoine; Heath, James R.; Kolb, Hartmuth C.
2010-01-01
We present numerical modeling and experimental studies of flow optimization inside a batch microfluidic micro-reactor used for synthesis of human-scale doses of Positron Emission Tomography (PET) tracers. Novel techniques are used for mixing within, and eluting liquid out of, the coin-shaped reaction chamber. Numerical solutions of the general incompressible Navier Stokes equations along with time-dependent elution scalar field equation for the three dimensional coin-shaped geometry were obtained and validated using fluorescence imaging analysis techniques. Utilizing the approach presented in this work, we were able to identify optimized geometrical and operational conditions for the micro-reactor in the absence of radioactive material commonly used in PET related tracer production platforms as well as evaluate the designed and fabricated micro-reactor using numerical and experimental validations. PMID:21072595
Method for forming a chemical microreactor
Morse, Jeffrey D [Martinez, CA; Jankowski, Alan [Livermore, CA
2009-05-19
Disclosed is a chemical microreactor that provides a means to generate hydrogen fuel from liquid sources such as ammonia, methanol, and butane through steam reforming processes when mixed with an appropriate amount of water. The microreactor contains capillary microchannels with integrated resistive heaters to facilitate the occurrence of catalytic steam reforming reactions. Two distinct embodiment styles are discussed. One embodiment style employs a packed catalyst capillary microchannel and at least one porous membrane. Another embodiment style employs a porous membrane with a large surface area or a porous membrane support structure containing a plurality of porous membranes having a large surface area in the aggregate, i.e., greater than about 1 m.sup.2/cm.sup.3. Various methods to form packed catalyst capillary microchannels, porous membranes and porous membrane support structures are also disclosed.
Usability study of a novel, self-lighted, disposable speculum: military applications.
Jones, Christina L; Gruber, Daniel D; Warner, William; Buller, Jerome L
2013-04-01
Data collected from a postutilization questionnaire were used to evaluate the usability of the OfficeSPEC disposable vaginal speculum, specifically the effectiveness, efficiency, and acceptability, in clinical, hospital, and austere environments. Usability data analysis showed the OfficeSPEC speculum had an effectiveness rating of 4.6/5, efficiency rating of 4.5/5, and acceptability rating of 4.6/5; overall usability in deployed environments was favorable. The overall rankings were 3.4 for plastic, 4.2 for metal (p < 0.001), and 4.5 for OfficeSPEC (p < 0.001). Cost analysis of the OfficeSPEC placed the disposable speculum as a reasonable alternative with yearly cost of $129,200, compared to traditional metal ($209,100) and plastic ($319,175). By evaluating the OfficeSPEC speculum within a usability framework, it proved to be practical, viable alternative in all environments, particularly in the forward deployed environment. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.
Fanelli, Flavio; Parisi, Giovanna; Degennaro, Leonardo; Luisi, Renzo
2017-01-01
Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development.
NASA Astrophysics Data System (ADS)
Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.
2015-08-01
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.
Chemical bath deposition of semiconductor thin films & nanostructures in novel microreactors
NASA Astrophysics Data System (ADS)
McPeak, Kevin M.
Chemical bath deposition (CBD) offers a simple and inexpensive route to deposit semiconductor nanostructures and thin films, but lack of fundamental understanding and control of the underlying chemistry has limited its versatility. CBD is traditionally performed in a batch reactor, requiring only a substrate to be immersed in a supersaturated solution of aqueous precursors such as metal salts, complexing agents, and pH buffers. Highlights of CBD include low cost, operation at low temperature and atmospheric pressure, and scalability to large area substrates. In this dissertation, I explore CBD of semiconductor thin films and nanowire arrays in batch and continuous flow microreactors. Microreactors offer many advantages over traditional reactor designs including a reduction in mass transport limitations, precise temperature control and ease of production scale-up by "numbering up". Continuous flow micoreactors offer the unique advantage of providing reaction conditions that are time-invariant but change smoothly as a function of distance down the reaction channel. Growth from a bath whose composition changes along the reactor length results in deposited materials whose properties vary as a function of position on the substrate, essentially creating a combinatorial library. These substrates can be rapidly characterized to identify relationships between growth conditions and material properties or growth mechanisms. I have used CBD in a continuous flow microreactor to deposit ZnO nanowire arrays and CdZnS films whose optoelectronic properties vary as a function of position. The spatially-dependent optoelectronic properties of these materials have been correlated to changes in the composition, structure or growth mechanisms of the materials and ultimately their growth conditions by rigorous spatial characterization. CBD in a continuous flow microreactor, coupled with spatial characterization, provides a new route to understanding the connection between CBD growth conditions and the resulting optoelectronic properties of the film. The high surface-to-volume ratio of a microreactor also lends itself to in situ characterization studies. I demonstrated the first in situ x-ray absorption fine-structure spectroscopy (XAFS) study of CBD. The high sensitivity and ability to characterize liquid, amorphous and crystalline materials simultaneously make in situ XAFS spectroscopy an ideal tool to study the CBD of inorganic nanomaterials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanov, Konstantin L., E-mail: ivanov@tomo.nsc.ru; Lukzen, Nikita N.; Novosibirsk State University, Pirogova St. 2, Novosibirsk 630090
2015-08-28
In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression formore » the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting experimental data for magnetic field effects on RP recombination in confined space and (ii) for describing kinetics of chemical reactions, which occur predominantly on the surfaces of biomembranes, i.e., lipid peroxidation reactions.« less
NASA Astrophysics Data System (ADS)
Coti, Karla Karina
I: Microreactors, a class of microfluidics, offer numerous benefits -- such as small sample requirement, short analysis times and automations -- and have been used to study reactions of chemical and biological reagents. In order to understand the relationship between fast mixing, product regioselectivity, as well as the ability to separate, in time and space, the nanoparticle (NP) formation stages, a microreactor capable of fast and controllable mixing was developed (Chapter 1) based on multi-lamination and hydrodynamic-focusing. By taking advantage of the fast and controllable mixing properties of this novel microreactor one can control the time when chemical reactions commence inside the microchannels. These properties of the microreactor can be exploited to improve the product regioselectivity of a diazo-coupling reaction to attain a product distribution of monoazo to diazo product of ˜1:99, a selectivity unprecedented in both conventional, macroscopic reactors and other microfluidic systems. Additionally, the ability to separate different stages during the NP formation process inside the microreactor, allowed us to study the aggregation of polypyrrole NPs. II: Supramolecular actuators and molecular interlocked molecules, such as catenanes and rotaxanes, have attracted considerable attention because of their sophisticated topology and their application in functional molecular devices. The blending of supramolecular and mechanostereochemistry with mesoporous silica NPs has proven to be a powerful combination, leading to the development of a new class of materials -- mechanized silica nanoparticles ( Chapter 2). These new hybrid materials are designed to release their content in response to an external stimuli and their development is being driven by the need to improve current drug delivery technologies. In an effort to explore how the stimuli-controlled mechanical movement of switchable, bistable [2]rotaxanes -- based on a cyclobis(paraquat-p-phenylene) ring, tetrathiafulvalene and 1,5-dioxynapthalene as the recognition units -- can be exploited to develop new electro-optical liquid crystalline (LC) materials, a novel cholesteric LC bistable [2]rotaxane has been designed (Chapter 3) and its synthesis is underway. Furthermore, the electrochromic behavior of Smectic A LC bistable Rlrotaxanes has been accomplished (Chapter 4) in the condensed LC state as well as within a PMMA polymer matrix.
Plastics, the environment and human health: current consensus and future trends
Thompson, Richard C.; Moore, Charles J.; vom Saal, Frederick S.; Swan, Shanna H.
2009-01-01
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded. PMID:19528062
Plastics, the environment and human health: current consensus and future trends.
Thompson, Richard C; Moore, Charles J; vom Saal, Frederick S; Swan, Shanna H
2009-07-27
Plastics have transformed everyday life; usage is increasing and annual production is likely to exceed 300 million tonnes by 2010. In this concluding paper to the Theme Issue on Plastics, the Environment and Human Health, we synthesize current understanding of the benefits and concerns surrounding the use of plastics and look to future priorities, challenges and opportunities. It is evident that plastics bring many societal benefits and offer future technological and medical advances. However, concerns about usage and disposal are diverse and include accumulation of waste in landfills and in natural habitats, physical problems for wildlife resulting from ingestion or entanglement in plastic, the leaching of chemicals from plastic products and the potential for plastics to transfer chemicals to wildlife and humans. However, perhaps the most important overriding concern, which is implicit throughout this volume, is that our current usage is not sustainable. Around 4 per cent of world oil production is used as a feedstock to make plastics and a similar amount is used as energy in the process. Yet over a third of current production is used to make items of packaging, which are then rapidly discarded. Given our declining reserves of fossil fuels, and finite capacity for disposal of waste to landfill, this linear use of hydrocarbons, via packaging and other short-lived applications of plastic, is simply not sustainable. There are solutions, including material reduction, design for end-of-life recyclability, increased recycling capacity, development of bio-based feedstocks, strategies to reduce littering, the application of green chemistry life-cycle analyses and revised risk assessment approaches. Such measures will be most effective through the combined actions of the public, industry, scientists and policymakers. There is some urgency, as the quantity of plastics produced in the first 10 years of the current century is likely to approach the quantity produced in the entire century that preceded.
A Review on Landfill Management in the Utilization of Plastic Waste as an Alternative Fuel
NASA Astrophysics Data System (ADS)
Hidayah, Nurul; Syafrudin
2018-02-01
Wastes from landfills originate from many spheres of life. These are produces as a result of human activities either domestically or industrially. The global plastic production increased over years due to the vast applications of plastics in many sectors. The continuous demand of plastics caused the plastic wastes accumulation in the landfill consumed a lot of spaces that contributed to the environmental. In addition, economic growth and development also increased our demand and dependency on plastics which leads to its accumulation in landfills imposing risk on human health, animals and cause environmental pollution problems such as ground water contamination, sanitary related issues, etc. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste of plastic. Hence, this paper aims review at utilizing of plastic as an alternative fuel.
NASA Astrophysics Data System (ADS)
Lonergan, Jeffrey M.
1992-04-01
As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.
Liang, Ru-Ping; Wang, Xiao-Ni; Liu, Chun-Ming; Meng, Xiang-Ying; Qiu, Jian-Ding
2013-11-08
A new strategy for facile construction of graphene oxide magnetic nanocomposites (GO/Fe3O4 MNCs)-based on-chip enzymatic microreactor and ultrasensitive pesticide detection has been proposed. GO/Fe3O4 MNCs were first prepared through an in situ chemical deposition strategy. Then, acetylcholinesterase (AChE) was adsorbed onto the GO/Fe3O4 surface to form GO/Fe3O4/AChE MNCs which was locally packed into PDMS microchannel simply with the help of external magnetic field to form an on-chip enzymatic microreactor. The constructed GO/Fe3O4/AChE MNCs-based enzymatic microreactor not only have the magnetism of Fe3O4 NPs that make them conveniently manipulated by an external magnetic field, but also have the larger surface and excellent biocompatibility of graphene which can incorporate much more AChE molecules and well maintain their biological activity. On the basis of the AChE inhibition principle, a novel on-chip enzymatic microreactor was constructed for analyzing dimethoate which is usually used as a model of organophosphorus pesticides. Under optimal conditions, a linear relationship between the inhibition rates of AChE and the concentration of dimethoate from 1 to 20 μgL(-1) with a detection limit of 0.18 μgL(-1) (S/N=3) was obtained. The developed electrophoretic and magnetic-based chip exhibited excellent reproducibility and stability with no decrease in the activity of enzyme for more than 20 repeated measurements over one week period, which provided a new and promising tool for the analysis of enzyme inhibitors with low cost and excellent performance. Copyright © 2013 Elsevier B.V. All rights reserved.
Cementation of colloidal particles on electrodes in a galvanic microreactor.
Jan, Linda; Punckt, Christian; Aksay, Ilhan A
2013-07-10
We have studied the processes leading to the cementation of colloidal particles during their autonomous assembly on corroding copper electrodes within a Cu-Au galvanic microreactor. We determined the onset of particle immobilization through particle tracking, monitored the dissolution of copper as well as the deposition of insoluble products of the corrosion reactions in situ, and showed that particle immobilization initiated after reaction products (RPs) began to deposit on the electrode substrate. We further demonstrated that the time and the extent of RP precipitation and thus the strength of the particle-substrate bond could be tuned by varying the amount of copper in the system and the microreactor pH. The ability to cement colloidal particles at locations undergoing corrosion illustrates that the studied colloidal assembly approach holds potential for applications in dynamic material property adaptation.
Krivec, M; Dillert, R; Bahnemann, D W; Mehle, A; Štrancar, J; Dražić, G
2014-07-28
Photocatalytic degradation of dichloroacetic acid (DCA) was studied in a continuous-flow set-up using a titanium microreactor with an immobilized double-layered TiO2 nanoparticle/nanotube film. Chloride ions, formed during the degradation process, negatively affect the photocatalytic efficiency and at a certain concentration (approximately 0.5 mM) completely stop the reaction in the microreactor. Two proposed mechanisms of inhibition with chloride ions, competitive adsorption and photogenerated-hole scavenging, have been proposed and investigated by adsorption isotherms and electron paramagnetic resonance (EPR) measurements. The results show that chloride ions block the DCA adsorption sites on the titania surface and reduce the amount of adsorbed DCA molecules. The scavenging effect of chloride ions during photocatalysis through the formation of chlorine radicals was not detected.
Bioproduction of food additives hexanal and hexanoic acid in a microreactor.
Šalić, Anita; Pindrić, Katarina; Zelić, Bruno
2013-12-01
Hexanal and hexanoic acid have number of applications in food and cosmetic industry because of their organoleptic characteristics. Problems like low yields, formation of unwanted by-products, and large quantities of waste in their traditional production processes are the reasons for developing new production methods. Biotransformation in a microreactor, as an alternative to classical synthesis processes, is being investigated. Because conditions in microreactors can be precisely controlled, the quality of the product and its purity can also be improved. Biocatalytic oxidation of hexanol to hexanal and hexanoic acid using suspended and immobilized permeabilized whole baker's yeast cells and suspended and immobilized purified alcohol dehydrogenase (ADH) was investigated in this study. Three different methods for covalent immobilization of biocatalyst were analyzed, and the best method for biocatalyst attachment on microchannel wall was used in the production of hexanal and hexanoic acid.
ERIC Educational Resources Information Center
Herron, J. Dudley
1977-01-01
Presents short articles on: recycling disposable plastics for laboratory use; an inexpensive source of atomic and molecular models; a simplified Boyle's Law demonstration; and a lab demonstrating energy transformation. (MLH)
Fanelli, Flavio; Parisi, Giovanna
2017-01-01
Microreactor technology and flow chemistry could play an important role in the development of green and sustainable synthetic processes. In this review, some recent relevant examples in the field of flash chemistry, catalysis, hazardous chemistry and continuous flow processing are described. Selected examples highlight the role that flow chemistry could play in the near future for a sustainable development. PMID:28405232
Pharmacy on Demand Feasibility Assessment
2008-07-19
We have successfully carried out the first two steps of the ibuprofen synthesis in our microreactor using homogeneous reactions in a continuous...Average of two trials. c Average of three trials. d Using a 0.25 M stock solution of isobutylbenzene. e Using a 0.5 M stock solution of...the creation of a packed-bed microreactor is the preparation of the solid-supported reagent. We have previously demonstrated that the performance
Novel Catalyst for the Chirality Selective Synthesis of Single Walled Carbon Nanotubes
2015-05-12
hierarchical structures comprising nitrogen- doped reduced GO (rGO) and acid- oxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber...structures comprising nitrogen- doped reduced GO (rGO) and acidoxidized SWCNTs was produced using a linear hydrothermal microreactor. Fiber micro... doped into Co/SiO2 catalysts to change their chirality selectivity. Further, enrichment of (9,8) nanotubes was carried out by extraction using fluorene
Shi, Jing; Zhao, Wenwen; Chen, Yuanfang; Guo, Liping; Yang, Li
2012-07-01
A novel replaceable dual-enzyme capillary microreactor was developed and evaluated using magnetic fields to immobilize the alcohol dehydrogenase (ADH)- and lactate dehydrogenase (LDH)-coated magnetic beads at desired positions in the capillary. The dual-enzyme assay was achieved by measuring the two consumption peaks of the coenzyme β-nicotinamide adenine dinucleotide (NADH), which were related to the ADH reaction and LDH reaction. The dual-enzyme capillary microreactor was constructed using magnetic beads without any modification of the inner surface of the capillary, and showed great stability and reproducibility. The electrophoretic resolution for different analytes can be easily controlled by altering the relative distance of different enzyme-coated magnetic beads. The apparent K(m) values for acetaldehyde with ADH-catalyzed reaction and for pyruvate with LDH-catalyzed reaction were determined. The detection limits for acetaldehyde and pyruvate determination are 0.01 and 0.016 mM (S/N = 3), respectively. The proposed method was successfully applied to simultaneously determine the acetaldehyde and pyruvate contents in beer samples. The results indicated that combing magnetic beads with CE is of great value to perform replaceable and controllable multienzyme capillary microreactor for investigation of a series of enzyme reactions and determination of multisubstrates. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gross, Elad; Shu, Xing-Zhong; Alayoglu, Selim; Bechtel, Hans A; Martin, Michael C; Toste, F Dean; Somorjai, Gabor A
2014-03-05
Analysis of catalytic organic transformations in flow reactors and detection of short-lived intermediates are essential for optimization of these complex reactions. In this study, spectral mapping of a multistep catalytic reaction in a flow microreactor was performed with a spatial resolution of 15 μm, employing micrometer-sized synchrotron-based IR and X-ray beams. Two nanometer sized Au nanoclusters were supported on mesoporous SiO2, packed in a flow microreactor, and activated toward the cascade reaction of pyran formation. High catalytic conversion and tunable products selectivity were achieved under continuous flow conditions. In situ synchrotron-sourced IR microspectroscopy detected the evolution of the reactant, vinyl ether, into the primary product, allenic aldehyde, which then catalytically transformed into acetal, the secondary product. By tuning the residence time of the reactants in a flow microreactor a detailed analysis of the reaction kinetics was performed. An in situ micrometer X-ray absorption spectroscopy scan along the flow reactor correlated locally enhanced catalytic conversion, as detected by IR microspectroscopy, to areas with high concentration of Au(III), the catalytically active species. These results demonstrate the fundamental understanding of the mechanism of catalytic reactions which can be achieved by the detailed mapping of organic transformations in flow reactors.
An RF-Powered Micro-Reactor for Efficient Extraction and Hydrolysis
NASA Astrophysics Data System (ADS)
Scott, V.
2014-12-01
An RF sample-processing micro-reactor that was developed as part of potential in situ Exploration Missions to inner- and outer-planetary bodies was designed to utilize aqueous solutions subjected to 60 GHz radiation at 730 mW of input power to extract target organic compounds and molecular and inorganic ions as well as to hydrolyze complex polymeric materials. Successful identification and characterization of these molecules relies on the sample-processing techniques utilized alongside state-of-the-art detection and analysis. For mass and power restrictions put on space exploration missions, smaller and more efficient instruments are highly desirable. The RF micro-reactor potentially offers a simplified alternative to the typical gold-standard extractions that often use solvents, chemicals, and conditions that can vary wildly and depend on the targeted molecules. Instead, this instrument uses a single solvent — water — that can be "tuned" under the different experimental conditions, leveraging the operating principles of the Sub-Critical Water Extractor. Proof-of-concept experiments examining the hydrolysis of glycosidic and peptide bonds were successful in demonstrating the RF micro-reactor's capabilities. Progress toward coupling the reactor with a micro-scale sample-handling system enabling slurry delivery has been made and preliminary results on heterogeneous reactions and extractions will be presented.
Effect of disposable infection control barriers on light output from dental curing lights.
Scott, Barbara A; Felix, Corey A; Price, Richard B T
2004-02-01
To prevent contamination of the light guide on a dental curing light, barriers such as disposable plastic wrap or covers may be used. This study compared the effect of 3 disposable barriers on the spectral output and power density from a curing light. The hypothesis was that none of the barriers would have a significant clinical effect on the spectral output or the power density from the curing light. Three disposable barriers were tested against a control (no barrier). The spectra and power from the curing light were measured with a spectrometer attached to an integrating sphere. The measurements were repeated on 10 separate occasions in a random sequence for each barrier. Analysis of variance (ANOVA) followed by Fisher's protected least significant difference test showed that the power density was significantly less than control (by 2.4% to 6.1%) when 2 commercially available disposable barriers were used (p < 0.05). There was no significant difference in the power density when general-purpose plastic wrap was used (p > 0.05). The effect of each of the barriers on the power output was small and probably clinically insignificant. ANOVA comparisons of mean peak wavelength values indicated that none of the barriers produced a significant shift in the spectral output relative to the control ( p > 0.05). Two of the 3 disposable barriers produced a significant reduction in power density from the curing light. This drop in power was small and would probably not adversely affect the curing of composite resin. None of the barriers acted as light filters.
New perspectives in plastic biodegradation.
Sivan, Alex
2011-06-01
During the past 50 years new plastic materials, in various applications, have gradually replaced the traditional metal, wood, leather materials. Ironically, the most preferred property of plastics--durability--exerts also the major environmental threat. Recycling has practically failed to provide a safe solution for disposal of plastic waste (only 5% out of 1 trillion plastic bags, annually produced in the US alone, are being recycled). Since the most utilized plastic is polyethylene (PE; ca. 140 million tons/year), any reduction in the accumulation of PE waste alone would have a major impact on the overall reduction of the plastic waste in the environment. Since PE is considered to be practically inert, efforts were made to isolate unique microorganisms capable of utilizing synthetic polymers. Recent data showed that biodegradation of plastic waste with selected microbial strains became a viable solution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Microfluidic Reactors for the Controlled Synthesis of Nanoparticles
NASA Astrophysics Data System (ADS)
Erdem, Emine Yegan
Nanoparticles have attracted a lot of attention in the past few decades due to their unique, size-dependent properties. In order to use these nanoparticles in devices or sensors effectively, it is important to maintain uniform properties throughout the system; therefore nanoparticles need to have uniform sizes -- or monodisperse. In order to achieve monodispersity, an extreme control over the reaction conditions is required during their synthesis. These reaction conditions such as temperature, concentration of reagents, residence times, etc. affect the structure of nanoparticles dramatically; therefore when the conditions vary locally in the reaction vessel, different sized nanoparticles form, causing polydispersity. In widely-used batch wise synthesis techniques, large sized reaction vessels are used to mix and heat reagents. In these types of systems, it is very hard to avoid thermal gradients and to achieve rapid mixing times as well as to control residence times. Also it is not possible to make rapid changes in the reaction parameters during the synthesis. The other drawback of conventional methods is that it is not possible to separate the nucleation of nanoparticles from their growth; this leads to combined nucleation and growth and subsequently results in polydisperse size distributions. Microfluidics is an alternative method by which the limitations of conventional techniques can be addressed. Due to the small size, it is possible to control temperature and concentration of reagents precisely as well as to make rapid changes in mixing ratios of reagents or temperature of the reaction zones. There have been several microfluidic reactors -- (microreactors) in literature that were designed to improve the size distribution of nanoparticles. In this work, two novel microfluidic systems were developed for achieving controlled synthesis of nanoparticles. The first microreactor was made out of a chemically robust polymer, polyurethane, and it was used for low temperature nanoparticle synthesis. This microreactor was fabricated by using a CO 2-laser printer, which is an inexpensive method for fabricating microfluidic devices and it is a relatively fast way compared to other fabrication techniques. Iron oxide nanoparticle synthesis was demonstrated using this reactor and size distributions with a standard deviation of 10% was obtained. The second microreactor presented in this work was designed to produce monodisperse nanoparticles by utilizing thermally isolated heated and cooled regions for separating nucleation and growth processes. This microreactor was made out of silicon and it was used to demonstrate the synthesis of TiO 2 nanoparticles. Size distributions with less than 10% standard deviation were achieved. This microreactor also provides a platform for studying the effects of temperature and residence times which is very important to understand the reaction kinetics of nanoparticle synthesis. In this work, two microfluidic techniques for retrieving nanoparticles from the microreactors were also discussed. The first method was based on trapping the aqueous droplet phase inside the microchannel and the second method was utilizing a micropost array to direct droplets from the oil solution to the pure water. As a final step, a printing technique was used to print nanoparticles synthesized inside the microreactors for future applications. This ability is important for achieving smart surfaces that can utilize the properties of nanoparticles for sensing applications in the future.
Halden, Rolf U
2010-01-01
By 2010, the worldwide annual production of plastics will surpass 300 million tons. Plastics are indispensable materials in modern society, and many products manufactured from plastics are a boon to public health (e.g., disposable syringes, intravenous bags). However, plastics also pose health risks. Of principal concern are endocrine-disrupting properties, as triggered for example by bisphenol A and di-(2-ethylhexyl) phthalate (DEHP). Opinions on the safety of plastics vary widely, and despite more than five decades of research, scientific consensus on product safety is still elusive. This literature review summarizes information from more than 120 peer-reviewed publications on health effects of plastics and plasticizers in lab animals and humans. It examines problematic exposures of susceptible populations and also briefly summarizes adverse environmental impacts from plastic pollution. Ongoing efforts to steer human society toward resource conservation and sustainable consumption are discussed, including the concept of the 5 Rs--i.e., reduce, reuse, recycle, rethink, restrain--for minimizing pre- and postnatal exposures to potentially harmful components of plastics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormond, Thomas K.; Scheer, Adam M.; Nimlos, Mark R.
2015-07-16
The thermal decomposition of cyclopentadienone (C5H4-O) has been studied in a flash pyrolysis continuous flow microreactor. Passing dilute samples of o-phenylene sulfite (C6H4O2SO) in He through the microreactor at elevated temperatures yields a relatively clean source of C5H4-O. The pyrolysis of C5H4-O was investigated over the temperature range 1000-2000 K.
NASA Astrophysics Data System (ADS)
Zhang, Jing; Tian, Yu; Ling, Lu-Ting; Yin, Su-Na; Wang, Cai-Feng; Chen, Su
2014-12-01
Versatile hydrogel-based nanocrystal (NC) microreactors were designed in this work for the construction of uniform fluorescence colloidal photonic crystal (CPC) supraballs. The hydrogel-based microspheres with sizes ranging from 150 to 300 nm were prepared by seeded copolymerization of acrylic acid and 2-hydroxyethyl methacrylate with micrometer-sized PS seed particles. As an independent NC microreactor, the as-synthesized hydrogel microsphere can effectively capture the guest cadmium ions due to the abundant carboxyl groups inside. Followed by the introduction of chalcogenides, in situ generation of higher-uptake NCs with sizes less than 5 nm was finally realized. Additionally, with the aid of the microfluidic device, the as-obtained NC-latex hybrids can be further self-assembled to bi-functional CPC supraballs bearing brilliant structural colors and uniform fluorescence. This research offers an alternative way to finely bind CPCs with NCs, which will facilitate progress in fields of self-assembled functional colloids and photonic materials.
CE-microreactor-CE-MS/MS for protein analysis
Schoenherr, Regine M.; Ye, Mingliang; Vannatta, Michael
2008-01-01
We present a proof-of-principle for a fully automated bottom-up approach to protein characterization. Proteins are first separated by capillary electrophoresis. A pepsin microreactor is incorporated into the distal end of this capillary. Peptides formed in the reactor are transferred to a second capillary, where they are separated by capillary electrophoresis and characterized by mass spectrometry. While peptides generated from one digestion are being separated in the second capillary, the next protein fraction undergoes digestion in the microreactor. The migration time in the first dimension capillary is characteristic of the protein while migration time in the second dimension is characteristic of the peptide. Spot capacity for the two-dimensional separation is 590. A MS/MS analysis of a mixture of cytochrome C and myoglobin generated Mascot MOWSE scores of 107 for cytochrome C and 58 for myoglobin. The sequence coverages were 48% and 22%, respectively. PMID:17295444
Continuous flow synthesis of VO2 nanoparticles or nanorods by using a microreactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jie; Sun, Yugang; Muehleisen, Ralph T.
The invention provides a method for producing composite nanoparticles, the method using a first compound capable of transitioning from a monoclinic to a tetragonal rutile crystal state upon heating, and having the steps of subjecting the first compound to a hydrothermal synthesis to create anisotropic crystals of the compound; encapsulating the first compound with a second compound to create a core-shell construct; and annealing the construct as needed. Also provided is a device for continuously synthesizing composite nanoparticles, the device having a first precursor supply and a second precursor supply; a mixer to homogeneously combine the first precursor and secondmore » precursor to create a liquor; a first microreactor to subject the liquor to hydrothermic conditions to create an\\isotropic particles in a continuous operation mode; and a second microreactor for coating the particles with a third precursor to create a core-shell construct.« less
Paper microfluidic-based enzyme catalyzed double microreactor.
Ferrer, Ivonne M; Valadez, Hector; Estala, Lissette; Gomez, Frank A
2014-08-01
We describe a paper microfluidic-based enzyme catalyzed double microreactor assay using fluorescent detection. Here, solutions of lactate dehydrogenase (LDH) and diaphorase (DI) were directly spotted onto the microfluidic paper-based analytical device (μPAD). Samples containing lactic acid, resazurin, and nicotinamide adenine dinucleotide oxidized form (NAD(+) ), potassium chloride (KCl), and BSA, in MES buffer were separately spotted onto the μPAD and MES buffer flowed through the device. A cascade reaction occurs upon the sample spot overlapping with LDH to form pyruvate and nicotinamide adenine dinucleotide reduced form (NADH). Subsequently, NADH is used in the conversion of resazurin to fluorescent resorufin by DI. The μPAD avoids the need of surface functionalization or enzyme immobilization steps. These microreactor devices are low cost and easy to fabricate and effect reaction based solely on buffer capillary action. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Straathof, Natan J W; Su, Yuanhai; Hessel, Volker; Noël, Timothy
2016-01-01
In this protocol, we describe the construction and use of an operationally simple photochemical microreactor for gas-liquid photoredox catalysis using visible light. The general procedure includes details on how to set up the microreactor appropriately with inlets for gaseous reagents and organic starting materials, and it includes examples of how to use it to achieve continuous-flow preparation of disulfides or trifluoromethylated heterocycles and thiols. The reported photomicroreactors are modular, inexpensive and can be prepared rapidly from commercially available parts within 1 h even by nonspecialists. Interestingly, typical reaction times of gas-liquid visible light photocatalytic reactions performed in microflow are lower (in the minute range) than comparable reactions performed as a batch process (in the hour range). This can be attributed to the improved irradiation efficiency of the reaction mixture and the enhanced gas-liquid mass transfer in the segmented gas-liquid flow regime.
Disposable Plasmonics: Plastic Templated Plasmonic Metamaterials with Tunable Chirality.
Karimullah, Affar S; Jack, Calum; Tullius, Ryan; Rotello, Vincent M; Cooke, Graeme; Gadegaard, Nikolaj; Barron, Laurence D; Kadodwala, Malcolm
2015-10-07
Development of low-cost disposable plasmonic substrates is vital for the applicability of plasmonic sensing. Such devices can be made using injection-molded templates to create plasmonic films. The elements of these plasmonic films are hybrid nanostructures composed of inverse and solid structures. Tuning the modal coupling between the two allows optimization of the optical properties for nanophotonic applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O.; Ssempebwa, John C.
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. Methods. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Results. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Conclusion. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices. PMID:27066081
Mukama, Trasias; Ndejjo, Rawlance; Musoke, David; Musinguzi, Geofrey; Halage, Abdullah Ali; Carpenter, David O; Ssempebwa, John C
2016-01-01
Poor solid waste management is among the major challenges facing urban slums in developing countries including Uganda. Understanding community concerns and willingness towards involvement in solid waste management improvement initiatives is critical for informing interventions in slums. We used a cross-sectional study to collect quantitative data from 435 residents in two urban slums in central Uganda. A semistructured questionnaire was used which assessed waste collection practices, separation and disposal methods, concerns regarding solid wastes, and willingness to participate in waste separation and composting. Data was analysed using STATA 12. Food remains (38%) and plastics (37%) formed the biggest proportion of wastes generated in households. Most households (35.9%) disposed of general wastes by open dumping while 27% disposed of plastics by burning. Only 8.8% of households conducted composting while 55% carried out separation for some decomposable wastes. Separation was carried out for only banana peelings and leftover foods for feeding animals. Respondents expressed high willingness to separate (76.6%) and compost (54.9%) solid wastes. Practices in waste disposal and separation were poor despite high willingness to participate in initiatives to improve waste management, highlighting a need for authorities to engage residents of slums to improve their practices.
Electrochemical apparatus comprising modified disposable rectangular cuvette
Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E
2013-09-10
Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.
Bioplastics science from a policy vantage point.
Philp, Jim C; Bartsev, Alexandre; Ritchie, Rachael J; Baucher, Marie-Ange; Guy, K
2013-09-25
Society is fundamentally ambivalent to the use of plastics. On the one hand, plastics are uniquely flexible materials that have seen them occupy a huge range of functions, from simple packing materials to complex engineering components. On the other hand, their durability has raised concerns about their end-of-life disposal. When that disposal route is landfill, their invulnerability to microbial decomposition, combined with relatively low density and high bulk, means that plastics will occupy increasing amounts of landfill space in a world where available suitable landfill sites is shrinking. The search for biodegradable plastics and their introduction to the marketplace would appear to be a suitable amelioration strategy for such a problem. And yet the uptake of biodegradable plastics has been slow. The term biodegradable itself has entered public controversy, with accidental and intended misuse of the term; the intended misuse has led to accusations and instances of 'greenwashing'. For this and other reasons standards for biodegradability and compostability testing of plastics have been sought. An environmental dilemma with more far-reaching implications is climate change. The need for rapid and deep greenhouse gas (GHG) emissions cuts is one of the drivers for the resurgence of industrial biotechnology generally, and the search for bio-based plastics more specifically. Bio-based has come to mean plastics based on renewable resources, but this need not necessarily imply biodegradability. If the primary purpose is GHG emissions savings, then once again plastics durability can be a virtue, if the end-of-life solution can be energy recovery during incineration or recycling. The pattern of production is shifting from the true biodegradable plastics to the bio-based plastics, and that trend is likely to persist into the future. This paper looks at aspects of the science of biodegradable and bio-based plastics from the perspective of policy advisers and makers. It is often said that the bioplastics suffer from a lack of a favourable policy regime when compared to the wide-ranging set of policy instruments that are available on both the supply and demand side of biofuels production. Some possible policy measures are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
... the adhesive surface of the patch, the clear plastic protective strip should be peeled off and discarded. ... needed, remove the patch and dispose of it. Wrap the patch in tissue or paper to avoid ...
50 CFR 300.109 - Gear disposal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... articles and substances include, but are not limited to, fishing gear, net scraps, bale straps, plastic bags, oil drums, petroleum containers, oil, toxic chemicals or any manmade items retrieved in a...
50 CFR 300.109 - Gear disposal.
Code of Federal Regulations, 2010 CFR
2010-10-01
... articles and substances include, but are not limited to, fishing gear, net scraps, bale straps, plastic bags, oil drums, petroleum containers, oil, toxic chemicals or any manmade items retrieved in a...
Current research trends on plastic pollution and ecological impacts on the soil ecosystem: A review.
Chae, Yooeun; An, Youn-Joo
2018-05-09
Plastic pollution in the environment is currently receiving worldwide attention. Improper dumping of disused or abandoned plastic wastes leads to contamination of the environment. In particular, the disposal of municipal wastewater effluent, sewage sludge landfill, and plastic mulch from agricultural activities is a serious issue and of major concern regarding soil pollution. Compared to plastic pollution in the marine and freshwater ecosystems, that in the soil ecosystem has been relatively neglected. In this study, we discussed plastic pollution in the soil environment and investigated research on the effects of plastic wastes, especially microplastics, on the soil ecosystem. We found that earthworms have been predominantly used as the test species in investigating the effects of soil plastic pollution on organisms. Therefore, further research investigating the effects of plastic on other species models (invertebrates, plants, microorganisms, and insects) are required to understand the effects of plastic pollution on the overall soil ecosystem. In addition, we suggest other perspectives for future studies on plastic pollution and soil ecotoxicity of plastics wastes, providing a direction for such research. Copyright © 2018 Elsevier Ltd. All rights reserved.
Controlling measures of micro-plastic and nano pollutants: A short review of disposing waste toners.
Ruan, Jujun; Qin, Baojia; Huang, Jiaxin
2018-05-31
Micro-plastic and nano-particle have been the focal pollutants in environmental science. The printer toner is omitted micro-plastic and nano pollutant. It is comprised of micro polyacrylate styrene and nano-Fe 3 O 4 particles. Polyacrylate styrene and nano-metal were proved to be irreversibly toxic to biological cells. Therefore, toners have the potential environmental risk and healthy harm due to include micro plastics and nano-metal. To our knowledge, few studies provided the specific collection and treatment of micro-plastic pollutant. This paper has chosen a kind of micro-plastic and nano pollutant toxic toner and provided technical guidance and inspiration for controlling the micro-plastic and nano pollutants. The method of vacuum-gasification-condensation was adopted for controlling the micro-plastic and nano pollutant toner. We believe this review will open up a potential avenue for controlling micro-plastic and nano pollutants for environmental protection. Copyright © 2018 Elsevier Ltd. All rights reserved.
1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor.
Jadhav, Abhijeet S; Anand, Ramasamy Vijaya
2016-12-20
An efficient method for the synthesis of alkyl diarylmethanes through the 1,6-conjugate addition of dialkylzinc reagents to para-quinone methides (p-QMs) has been developed under continuous flow conditions using a microreactor. This protocol allows to access unsymmetrical alkyl diarylmethanes in moderate to excellent yields using a wide range of p-QMs and dialkylzinc reagents. Interestingly, this transformation worked well without the requirement of a catalyst.
Chen, Xueye; Shen, Jienan; Li, Tiechuan
2016-01-01
A microreactor for the chemiluminescence detection of copper (II) in water samples, based on the measurement of light emitted from the copper (II) catalysed oxidation of 1,10-phenanthroline by hydrogen peroxide in basic aqueous solution, is presented. Polymethyl methacrylate (PMMA) was chose as material for fabricating the microreactor with mill and hot bonding method. Optimized reagents conditions were found to be 6.3 × 10(-5)mol/L 1,10-phenanthroline, 1.5 × 10(-3)mol/L hydrogen peroxide, 7.0 × 10(-2)mol/L sodium hydroxide and 2.4 × 10(-5)mol/L Hexadecyl trimethyl ammonium Bromide (CTMAB). In the continuous flow injection mode the system can perform fully automated detection with a reagent consumption of only 3.5 μL each time. The linear range of the Cu (II) ions concentration was 1.5 × 10(-8) mol/L to 1.0 × 10(-4) mol/L, and the detection limit was 9.4 × 10(-9)mol/L with the S/N ratio of 4. The relative standard deviation was 3.0 % for 2.0 × 10(-6) mol/L Cu (II) ions (n = 10). The most obvious features of the detection method are simplicity, rapidity and easy fabrication of the microreactor.
Rao, Longshi; Tang, Yong; Li, Zongtao; Ding, Xinrui; Liang, Guanwei; Lu, Hanguang; Yan, Caiman; Tang, Kairui; Yu, Binhai
2017-12-01
Rapidly obtaining strong photoluminescence (PL) of carbon dots with high stability is crucial in all practical applications of carbon dots, such as cell imaging and biological detection. In this study, we proposed a rapid, continuous carbon dots synthesis technique by using a microreactor method. By taking advantage of the microreactor, we were able to rapidly synthesized CDs at a large scale in less than 5min, and a high quantum yield of 60.1% was achieved. This method is faster and more efficient than most of the previously reported methods. To explore the relationship between the microreactor structure and CDs PL properties, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were carried out. The results show the surface functional groups and element contents influence the PL emission. Subsequent ion detection experiments indicated that CDs are very suitable for use as nanoprobes for Fe 3+ ion detection, and the lowest detection limit for Fe 3+ is 0.239μM, which is superior to many other research studies. This rapid and simple synthesis method will not only aid the development of the quantum dots industrialization but also provide a powerful and portable tool for the rapid and continuous online synthesis of quantum dots supporting their application in cell imaging and safety detection. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Pedro, Sara Gómez-De; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de La Fuente, J. M.; Alonso-Chamarro, Julián
2012-02-01
In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels.
50 CFR 600.510 - Gear avoidance and disposal.
Code of Federal Regulations, 2011 CFR
2011-10-01
... any marine resource, including marine mammals and birds, except in cases of emergency involving the..., fishing gear, net scraps, bale straps, plastic bags, oil drums, petroleum containers, oil, toxic chemicals...
Tsuchida, Daisuke; Kajihara, Yusuke; Shimidzu, Nobuhiro; Hamamura, Kengo; Nagase, Makoto
2011-06-01
In the present study it was demonstrated that organic additives eluted from plastic resins could be utilized as substrates by sulfate-reducing bacteria. Two laboratory-scale experiments, a microcosm experiment and a leaching experiment, were conducted using polyvinyl chloride (PVC) as a model plastic resin. In the former experiment, the conversion of sulfate to sulfide was evident in microcosms that received plasticized PVC as the sole carbon source, but not in those that received PVC homopolymer. Additionally, dissolved organic carbon accumulated only in microcosms that received plasticized PVC, indicating that the dissolved organic carbon originated from additives. In the leaching experiment, phenol and bisphenol A were found in the leached solutions. These results suggest that the disposal of waste plastics in inert waste landfills may result in the production of H(2)S.
NASA Astrophysics Data System (ADS)
Wardrop, Nicola A.; Dzodzomenyo, Mawuli; Aryeetey, Genevieve; Hill, Allan G.; Bain, Robert E. S.; Wright, Jim
2017-08-01
Packaged water consumption is growing in low- and middle-income countries, but the magnitude of this phenomenon and its environmental consequences remain unclear. This study aims to quantify both the volumes of packaged water consumed relative to household water requirements and associated plastic waste generated for three West African case study countries. Data from household expenditure surveys for Ghana, Nigeria and Liberia were used to estimate the volumes of packaged water consumed and thereby quantify plastic waste generated in households with and without solid waste disposal facilities. In Ghana, Nigeria and Liberia respectively, 11.3 (95% confidence interval: 10.3-12.4), 10.1 (7.5-12.5), and 0.38 (0.31-0.45) Ml day-1 of sachet water were consumed. This generated over 28 000 tonnes yr-1 of plastic waste, of which 20%, 63% and 57% was among households lacking formal waste disposal facilities in Ghana, Nigeria and Liberia respectively. Reported packaged water consumption provided sufficient water to meet daily household drinking-water requirements for 8.4%, less than 1% and 1.6% of households in Ghana, Nigeria and Liberia respectively. These findings quantify packaged water’s contribution to household water needs in our study countries, particularly Ghana, but indicate significant subsequent environmental repercussions.
Environmental impact of pyrolysis of mixed WEEE plastics part 2: Life cycle assessment.
Alston, Sue M; Arnold, J Cris
2011-11-01
Waste electrical and electronic equipment (WEEE) contains up to 25% plastics. Extraction of higher quality fractions for recycling leaves a mix of plastic types contaminated with other materials, requiring the least environmentally harmful disposal route. Data from trials of pyrolysis, described in part 1 of this paper set, were used in a life cycle assessment of the treatment of WEEE plastics. Various levels of recycling of the sorted fraction were considered, and pyrolysis was compared with incineration (with energy recovery) and landfill for disposal of the remainder. Increased recycling gave reduced environmental impact in almost all categories considered, although inefficient recycling decreased that benefit. Significant differences between pyrolysis, incineration and landfill were seen in climate change impacts, carbon sent to landfill, resources saved, and radiation. There was no overall "best" option. Landfill had the least short-term impact on climate change so could be a temporary means of sequestering carbon. Incineration left almost no carbon to landfill, but produced the most greenhouse gases. Pyrolysis or incineration saved most resources, with the balance depending on the source of electricity replaced by incineration. Pyrolysis emerged as a strong compromise candidate since the gases and oils produced could be used as fuels and so provided significant resource saving without high impact on climate change or landfill space.
Model-Based Design of Biochemical Microreactors
Elbinger, Tobias; Gahn, Markus; Neuss-Radu, Maria; Hante, Falk M.; Voll, Lars M.; Leugering, Günter; Knabner, Peter
2016-01-01
Mathematical modeling of biochemical pathways is an important resource in Synthetic Biology, as the predictive power of simulating synthetic pathways represents an important step in the design of synthetic metabolons. In this paper, we are concerned with the mathematical modeling, simulation, and optimization of metabolic processes in biochemical microreactors able to carry out enzymatic reactions and to exchange metabolites with their surrounding medium. The results of the reported modeling approach are incorporated in the design of the first microreactor prototypes that are under construction. These microreactors consist of compartments separated by membranes carrying specific transporters for the input of substrates and export of products. Inside the compartments of the reactor multienzyme complexes assembled on nano-beads by peptide adapters are used to carry out metabolic reactions. The spatially resolved mathematical model describing the ongoing processes consists of a system of diffusion equations together with boundary and initial conditions. The boundary conditions model the exchange of metabolites with the neighboring compartments and the reactions at the surface of the nano-beads carrying the multienzyme complexes. Efficient and accurate approaches for numerical simulation of the mathematical model and for optimal design of the microreactor are developed. As a proof-of-concept scenario, a synthetic pathway for the conversion of sucrose to glucose-6-phosphate (G6P) was chosen. In this context, the mathematical model is employed to compute the spatio-temporal distributions of the metabolite concentrations, as well as application relevant quantities like the outflow rate of G6P. These computations are performed for different scenarios, where the number of beads as well as their loading capacity are varied. The computed metabolite distributions show spatial patterns, which differ for different experimental arrangements. Furthermore, the total output of G6P increases for scenarios where microcompartimentation of enzymes occurs. These results show that spatially resolved models are needed in the description of the conversion processes. Finally, the enzyme stoichiometry on the nano-beads is determined, which maximizes the production of glucose-6-phosphate. PMID:26913283
Food Safety While Hiking, Camping and Boating
... list. Carry items like dried pasta, rice, and baking mixes in plastic bags and take only the ... away from fresh water. Some wilderness campers use baking soda to wash their utensils. Pack disposable wipes ...
A complete life cycle assessment of high density polyethylene plastic bottle
NASA Astrophysics Data System (ADS)
Treenate, P.; Limphitakphong, N.; Chavalparit, O.
2017-07-01
This study was aimed to determine environmental performances of a lubricant oil bottle made from high density polyethylene and to develop potential measures for reducing its impacts. A complete life cycle assessment was carried out to understand a whole effect on the environment from acquiring, processing, using, and disposing the product. Two scenarios of disposal phase; recycle and incineration: were examined to quantify a lesser degree on environmental impact. The results illustrated that major impacts of the two scenarios were at the same categories with the highest contributor of raw material acquisition and pre-processing. However, all impacts in case of recycling provided a lower point than that in case of incineration, except mineral extraction. Finally, feasible measures for reducing the environmental impact of high density polyethylene plastic bottle were proposed in accordance with 3Rs concept.
Chemical pyrolysis of E-waste plastics: Char characterization.
Shen, Yafei; Chen, Xingming; Ge, Xinlei; Chen, Mindong
2018-05-15
This work studied the disposal of the non-metallic fraction from waste printed circuit board (NMF-WPCB) via the chemical pretreatments followed by pyrolysis. As a main heavy metal, the metallic Cu could be significantly removed by 92.4% using the HCl leaching process. Subsequently, the organic-Br in the brominated flame retardants (BFRs) plastics could be converted into HBr by pyrolysis. The alkali pretreatment was benefit for the Br fixation in the solid char. The Br fixation efficiency could reach up to 53.6% by the NaOH pretreatment followed by the pyrolysis process. The formed HBr could react with NaOH/KOH to generate the stabilized NaBr/KBr. Therefore, the integrated chemical pretreatment could be used for the eco-friendly disposal of the NMF-WPCB via pyrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
2008-04-15
been achieved, but our microreactor studies showed a slight loss in product flow from the reactor, indicating a loss of decomposition capacity for...examination by infrared spectroscopy. A second sample of the same solid was placed in the microreactor as before and treated in the same fashion... a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. a
Plastic ingestion in aquatic-associated bird species in southern Portugal.
Nicastro, Katy R; Lo Savio, Roberto; McQuaid, Christopher D; Madeira, Pedro; Valbusa, Ugo; Azevedo, Fábia; Casero, Maria; Lourenço, Carla; Zardi, Gerardo I
2018-01-01
Excessive use of plastics in daily life and the inappropriate disposal of plastic products are severely affecting wildlife species in both coastal and aquatic environments. Birds are top-predators, exposed to all threats affecting their environments, making them ideal sentinel organisms for monitoring ecosystems change. We set a baseline assessment of the prevalence of marine plastic litter affecting multi-species populations of aquatic birds in southern Portugal. By examining 160 stomach contents from 8 species of aquatic birds, we show that 22.5% were affected by plastic debris. Plastic was found in Ciconia ciconia, Larus fuscus and L. michahellis. Ciconia ciconia ingested the highest amount (number of items and total mass) of plastic debris. Polydimethylsiloxane (PDMS, silicones) was the most abundant polymer and was recorded only in C. ciconia. Plastic ingestion baseline data are of crucial importance to evaluate changes through time and among regions and to define management and conservation strategies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Baztan, Juan; Carrasco, Ana; Chouinard, Omer; Cleaud, Muriel; Gabaldon, Jesús E; Huck, Thierry; Jaffrès, Lionel; Jorgensen, Bethany; Miguelez, Aquilino; Paillard, Christine; Vanderlinden, Jean-Paul
2014-03-15
Coastal zones and the biosphere as a whole show signs of cumulative degradation due to the use and disposal of plastics. To better understand the manifestation of plastic pollution in the Atlantic Ocean, we partnered with local communities to determine the concentrations of micro-plastics in 125 beaches on three islands in the Canary Current: Lanzarote, La Graciosa, and Fuerteventura. We found that, in spite of being located in highly-protected natural areas, all beaches in our study area are exceedingly vulnerable to micro-plastic pollution, with pollution levels reaching concentrations greater than 100 g of plastic in 1l of sediment. This paper contributes to ongoing efforts to develop solutions to plastic pollution by addressing the questions: (i) Where does this pollution come from?; (ii) How much plastic pollution is in the world's oceans and coastal zones?; (iii) What are the consequences for the biosphere?; and (iv) What are possible solutions? Copyright © 2014 Elsevier Ltd. All rights reserved.
Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review
NASA Astrophysics Data System (ADS)
Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar
2017-05-01
The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.
Kandori, Kazuhiko; Kuroda, Tomohiko; Togashi, Shigenori; Katayama, Erika
2011-02-03
The calcium hydroxyapatite Ca(10)(PO(4))(6)(OH)(2) (Hap) nanoparticles were prepared by using microreactor and employed these Hap nanoparticles to clarify the adsorption behavior of proteins. The size of Hap particles produced by the microreactor reduced in the order of a hardness of the reaction conditions for mixing Ca(OH)(2) and H(3)PO(4) aqueous solutions, such as flow rates of both solutions and temperature. Finally, the size of the smallest Hap nanoparticle became 2 × 15 nm(2), similar to that of BSA molecule (4 × 14 nm(2)). It is noteworthy that the smallest Hap nanoparticles still possesses rodlike shape, suggesting that particles are grown along c-axis even though the reactants mixed very rapidly in narrow channels of the microreactors. The X-ray diffraction patterns of the Hap nanoparticles revealed that the crystallinity of the materials produced by the microreactor is low. The FTIR measurement indicated that the Hap nanoparticles produced by microreactor were carbonate-substituted type B Hap, where the carbonate ions replace the phosphate ions in the crystal lattice. All the adsorption isotherms of acidic bovine serum albumin (BSA), neutral myoglobin (MGB), and basic lysozyme (LSZ) onto Hap nanoparticles from 1 × 10(-4) mol/dm(3) KCl solution were the Langmuirian type. The saturated amounts of adsorbed BSA (n(S)(BSA)) for the Hap nanoparticles produced by microreactor were decreased with decrease in the mean particle length, and finally it reduced to zero for the smallest Hap nanoparticles. Similar results were observed for the adsorption of LSZ; the saturated amounts of adsorbed LSZ (n(S)(LSZ)) also reduced to zero for the smallest Hap nanoparticles. However, in the case of MGB, the saturated mounts of adsorbed MGB (n(S)(MGB)) are also depressed with decreased in their particle size, but about half of MGB molecules still adsorbed onto the smallest Hap nanoparticles. This difference in the protein adsorption behavior was explained by the difference in the size and flexibility of three kinds of proteins. The reduction of n(S)(BSA) is due to the decrease in the fraction of C sites on the side face of each Hap nanoparticle; i.e., there is not enough area left on the nanoparticle surface to adsorb large BSA molecules even though the BSA molecules are soft and their conformations are alterable. The reduction of n(S)(LSZ) was explained by the reduction of P sites. Further, rigidity of the LSZ molecules was given another possibility of the depression of n(S)(LSZ) for the Hap nanoparticles. However, MGB molecules with small and soft structure were adsorbed on the Hap nanoparticle surface by changing their conformation. We could control the amounts of adsorbed proteins by changing the particle size of Hap in the nanometer range and kinds of proteins. These obtained results may be useful for developing biomimetic materials for bone grafts and successful surgical devices in the biochemical field.
Bio-inspired organic field effect transistors
NASA Astrophysics Data System (ADS)
Irimia-Vladu, Mihai; Troshin, Pavel A.; Schwabegger, Günther; Bodea, Marius; Schwödiauer, Reinhard; Fergus, Jeffrey W.; Razumov, Vladimir; Bauer, Siegfried; Sariciftci, Niyazi Serdar
2010-08-01
Two major concerns in the world nowadays are the plastic consumption and waste. Because to the economic growth and the incessant demand of plastics in developing countries, plastics consumption is projected to increase by a factor of two to three during the actual decade1. As an intuitive example, the amount of municipal solid waste (estimated per person per year) averages ~440 kg for China, ~550 kg for the European Union and ~790 kg for the United States, with almost 50% of the waste being electronic products and plastics1,2. Green technology based on biodegradable/compostable materials is perceived as an ultimate goal for solving waste problems. Currently there are numerous efforts for producing compostable plastic materials for applications in daily life products, such as plastic bags and disposable dishware. When such low-end products are fabricated with compostable materials, electronics included in such goods should be also based on materials that are easily compostable.
Nanoparticles from Degradation of Biodegradable Plastic Mulch
NASA Astrophysics Data System (ADS)
Flury, Markus; Sintim, Henry; Bary, Andy; English, Marie; Schaefer, Sean
2017-04-01
Plastic mulch films are commonly used in crop production. They provide multiple benefits, including control of weeds and insects, increase of soil and air temperature, reduction of evaporation, and prevention of soil erosion. The use of plastic mulch film in agriculture has great potential to increase food production and security. Plastic mulch films must be retrieved and disposed after usage. Biodegradable plastic mulch films, who can be tilled into the soil after usage offer great benefits as alternative to conventional polyethylene plastic. However, it has to be shown that the degradation of these mulches is complete and no micro- and nanoparticles are released during degradation. We conducted a field experiment with biodegradable mulches and tested mulch degradation. Mulch was removed from the field after the growing season and composted to facilitate degradation. We found that micro- and nanoparticles were released during degradation of the mulch films in compost. This raises concerns about degradation in soils as well.
Disposable Bioreactors for Plant Micropropagation and Mass Plant Cell Culture
NASA Astrophysics Data System (ADS)
Ducos, Jean-Paul; Terrier, Bénédicte; Courtois, Didier
Different types of bioreactors are used at Nestlé R&D Centre - Tours for mass propagation of selected plant varieties by somatic embryogenesis and for large scale culture of plants cells to produce metabolites or recombinant proteins. Recent studies have been directed to cut down the production costs of these two processes by developing disposable cell culture systems. Vegetative propagation of elite plant varieties is achieved through somatic embryogenesis in liquid medium. A pilot scale process has recently been set up for the industrial propagation of Coffea canephora (Robusta coffee). The current production capacity is 3.0 million embryos per year. The pre-germination of the embryos was previously conducted by temporary immersion in liquid medium in 10-L glass bioreactors. An improved process has been developed using a 10-L disposable bioreactor consisting of a bag containing a rigid plastic box ('Box-in-Bag' bioreactor), insuring, amongst other advantages, a higher light transmittance to the biomass due to its horizontal design. For large scale cell culture, two novel flexible plastic-based disposable bioreactors have been developed from 10 to 100 L working volumes, validated with several plant species ('Wave and Undertow' and 'Slug Bubble' bioreactors). The advantages and the limits of these new types of bioreactor are discussed, based mainly on our own experience on coffee somatic embryogenesis and mass cell culture of soya and tobacco.
NASA Astrophysics Data System (ADS)
Jolhe, P. D.; Bhanvase, B. A.; Patil, V. S.; Sonawane, S. H.
The present work deals with the investigation of the greener route for the production of silver nanoparticles using Raphanus sativus (R. sativus) bioextract in a continuous flow tubular microreactor. The parameters affecting the particle size and distribution were investigated. From the results obtained it can be inferred that the ascorbic acid (reducing agent) present in the R. sativus bioextract is responsible for the reduction of silver ions. At optimum condition, the particle size distribution of nanoparticles is found between 18nm and 39nm. The absorbance value was found to be decreased with an increase in the diameter of the microreactor. It indicates that a number of nuclei are formed in the micrometer sized (diameter) reactor because of the better solute transfer rate leading to the formation of large number of silver nanoparticles. The study of antibacterial activity of green synthesized silver nanoparticles shows effective inhibitory activity against waterborne pathogens, Shegella and Listeria bacteria.
Li, Jiahui; Chen, Jie; Wang, Yujun; Luo, Guangsheng; Yu, Huimin
2014-10-01
In this work, a membrane dispersion microreactor was utilized for the hydration of acrylonitrile to produce acrylamide. Through observation using a microscopy, it was found that the acrylonitrile was dispersed into the continuous phase (the aqueous phase contains nitrile hydratase (NHase)) as droplets with a diameter ranged from 25 to 35 μm, hence the mass transfer specific surface area was significantly increased, and the concentration of acrylamide reached 52.5 wt% within 50 min. By contrast, in stirred tanks, the concentration of acrylamide only got 39.5 wt% within 245 min. Moreover, only a few amounts of acrylonitrile were accumulated in this microreactor system. Through optimizing the flow rate, the concentration of acrylamide reached 45.8 wt% within 35 min, the short reaction time greatly weakened the inhibition of acrylonitrile and acrylamide on the enzyme activity, which is suitable for prolonging the life of free cell. Copyright © 2014 Elsevier Ltd. All rights reserved.
Gómez-de Pedro, Sara; Puyol, Mar; Izquierdo, David; Salinas, Iñigo; de la Fuente, J M; Alonso-Chamarro, Julián
2012-02-21
In this paper, a computer controlled microreactor to synthesize water soluble CdS and CdS/ZnS nanocrystals with in situ monitoring of the reaction progress is developed. It is based on ceramic tapes and the Low-Temperature Co-fired Ceramics technology (LTCC). As well the microsystem set-up, the microreactor fluidic design has also been thoroughly optimized. The final device is based on a hydrodynamic focusing of the reagents followed by a three-dimensional micromixer. This generates monodispersed and stable CdS and core-shell CdS/ZnS nanocrystals of 4.5 and 4.2 nm, respectively, with reproducible optical properties in terms of fluorescence emission wavelengths, bandwidth, and quantum yields, which is a key requirement for their future analytical applications. The synthetic process is also controlled in real time with the integration of an optical detection system for absorbance and fluorescence measurements based on commercial miniaturized optical components. This makes possible the efficient managing of the hydrodynamic variables to obtain the desired colloidal suspension. As a result, a simple, economic, robust and portable microsystem for the well controlled synthesis of CdS and CdS/ZnS nanocrystals is presented. Moreover, the reaction takes place in aqueous medium, thus allowing the direct modular integration of this microreactor in specific analytical microsystems, which require the use of such quantum dots as labels. This journal is © The Royal Society of Chemistry 2012
Auditing an intensive care unit recycling program.
Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha
2015-06-01
The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated (primarily by other plastics), but there was less than 1% contamination of other recycling streams. The estimated cost of the recycling program was about an additional $1000/year. In our 11-bed ICU, we recycled 14% of the total waste produced over 7-days, which was nearly half of the potentially recyclable waste. There was no infectious contamination of recyclables and minimal contamination with other waste streams, except for the PVC plastic. The estimated annual cost of the recycling program was $1000, reflecting the greater cost of disposal of some recyclables (paper and cardboard v most plastic types).
Hodgson, D J; Bréchon, A L; Thompson, R C
2018-02-01
Inappropriate disposal of plastic debris has led to the contamination of marine habitats worldwide. This debris can be ingested by organisms; however, the extent to which chewing and gut transit modifies plastic debris is unclear. Detritivores, such as amphipods, ingest and shred natural organic matter and are fundamental to its breakdown. Here we examine ingestion and shredding of plastic carrier bags by Orchestia gammarellus. A laboratory experiment showed these amphipods shredded plastic carrier bags, generating numerous microplastic fragments (average diameter 488.59μm). The presence of a biofilm significantly increased the amount of shredding, but plastic type (conventional, degradable and biodegradable) had no effect. Subsequent field observations confirmed similar shredding occurred on the strandline. Rates of shredding will vary according to amphipod density; however, our data indicates that shredding by organisms could substantially accelerate the formation microplastics in the environment. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
A review of plastic waste biodegradation.
Zheng, Ying; Yanful, Ernest K; Bassi, Amarjeet S
2005-01-01
With more and more plastics being employed in human lives and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. This review looks at the technological advancement made in the development of more easily biodegradable plastics and the biodegradation of conventional plastics by microorganisms. Additives, such as pro-oxidants and starch, are applied in synthetic materials to modify and make plastics biodegradable. Recent research has shown that thermoplastics derived from polyolefins, traditionally considered resistant to biodegradation in ambient environment, are biodegraded following photo-degradation and chemical degradation. Thermoset plastics, such as aliphatic polyester and polyester polyurethane, are easily attacked by microorganisms directly because of the potential hydrolytic cleavage of ester or urethane bonds in their structures. Some microorganisms have been isolated to utilize polyurethane as a sole source of carbon and nitrogen source. Aliphatic-aromatic copolyesters have active commercial applications because of their good mechanical properties and biodegradability. Reviewing published and ongoing studies on plastic biodegradation, this paper attempts to make conclusions on potentially viable methods to reduce impacts of plastic waste on the environment.
Kaimal, Viswanath K; Vijayabalan, P
2016-05-01
The demand for plastic is ever increasing and has produced a huge amount of plastic waste. The management and disposal of plastic waste have become a major concern, especially in developing cities. The idea of waste to energy recovery is one of the promising techniques used for managing the waste plastic. This paper assesses the potential of using Waste Plastic Oil (WPO), synthesized using pyrolysis of waste plastic, as an alternative for diesel fuel. In this research work, the performance and emission characteristics of a single cylinder diesel engine fuelled with WPO and its blends with diesel are studied. In addition to neat plastic oil, three blends (PO25, PO50 and PO75) were prepared on a volumetric basis and the engine was able to run on neat plastic oil. Brake thermal efficiency of blends was lower compared to diesel, but PO25 showed similar performance to that of diesel. The emissions were reduced considerably while using blends when compared to neat plastic oil. The smoke and NOX were reduced by 22% and 17.8% respectively for PO25 than that of plastic oil. Copyright © 2016 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Cummins, William M.
1988-01-01
Outlines a Michigan summer camp's efforts to reduce solid waste disposal by recycling cardboard, tin, glass, aluminum, and plastic milk containers. Points out variables affecting the success of such efforts. Discusses Michigan state funding for the development of recycling programs. (SV)
Needles and Other Sharps (Safe Disposal Outside of Health Care Settings)
... sharps containers are generally available through pharmacies, medical supply companies, health care providers and online. These containers are made of puncture-resistant plastic with leak-resistant sides and bottom. They also have a ...
Recycling behaviour in healthcare: waste handling at work.
Vogt, Joachim; Nunes, Katia R A
2014-01-01
This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.
2015-05-01
1 Recycled Antifreeze 01-197-7692 MIL-PRF-10924H GAA Grease 01-102-9455 MIL-PRF-46176B Brake Fluid 00-252-6383 MIL-PRF-5606H Hydraulic Fluid H515...contaminated clothing , clean thoroughly before reuse. Inhalation: Move to fresh air. If not breathing, give rescue breathing. I f breathing is...material to absorb the spill, use plastic shovel to pick up absorbent for disposal Spills and Leaks: Dispose in accordance to local, state or federal
Afonso, André S; Uliana, Carolina V; Martucci, Diego H; Faria, Ronaldo C
2016-01-01
This work describes the construction of an all-plastic disposable carbon-based electrochemical cell (DCell) using a simple procedure based on the use of a home cutter printer for prototyping and laminating. The cutter printer and adhesive vinyl films were used to produce three electrodes in an electrochemical cell layout, and a laminating process was then used to define the geometric area and insulate the electrodes. The DCell showed excellent performance in several applications including the determination of toxic metals in water samples, the immobilization of DNA and the detection of Salmonella. An unmodified DCell was applied for Pb and Cd detection in the range of 100-300 ng mL(-1) with a limit of detection of 50 and 39 ng mL(-1) for Cd and Pb, respectively. DNA was successfully immobilized on a DCell and used for studies of interaction between bisphenol A and DNA. The square wave voltammetry of a DNA modified DCell presented a guanine oxidation current 2.5 times greater after exposure of the electrode to bisphenol A and no current variation for the adenine moiety indicating that bisphenol A showed a preference for DNA interaction sites. A magneto-immunoassay was developed using a DCell for Salmonella detection in milk samples. The system presented a linear range from 100 to 700 cells mL(-1) with a limit of detection of 100 cells mL(-1) and good recovery values between 93% and 101% in milk samples, with no interference from Escherichia coli. Using the proposed method, hundreds of DCells can be assembled in less than two hours, at a material cost of less than US $0.02 per cell. The all-plastic disposable electrochemical cell developed was successfully applied as an electrochemical sensor and biosensor. The feasibility of the developed all-plastic disposable electrochemical cell was demonstrated in applications as both sensor and biosensor. Copyright © 2015 Elsevier B.V. All rights reserved.
Immobilized enzyme studies in a microscale bioreactor.
Jones, Francis; Forrest, Scott; Palmer, Jim; Lu, Zonghuan; Elmore, John; Elmore, Bill B
2004-01-01
Novel microreactors with immobilized enzymes were fabricated using both silicon and polymer-based microfabrication techniques. The effectiveness of these reactors was examined along with their behavior over time. Urease enzyme was successfully incorporated into microchannels of a polymeric matrix of polydimethylsiloxane and through layer-bylayer self-assembly techniques onto silicon. The fabricated microchannels had cross-sectional dimensions ranging from tens to hundreds of micrometers in width and height. The experimental results for continuous-flow microreactors are reported for the conversion of urea to ammonia by urease enzyme. Urea conversions of >90% were observed.
Solid and hazardous waste management practices onboard ocean going vessels: a review.
Swamy, Yeddanapudi V R P P
2012-01-01
Shipping or carriage of goods play an important role in the development of human societies and international shipping industry, which carries 90% of the world trade, is the life blood of global economy. During ships operational activity a number of solid and hazardous wastes, also referred as garbage are produced from galleys, crew cabins and engine/deck departments stores. This review provides an overview of the current practices onboard and examines the evidence that links waste management plan regulations to shipping trade. With strict compliance to International Maritime Organization's MARPOL regulations, which prevents the pollution of sea from ships various discharges, well documented solid and hazardous waste management practices are being followed onboard ships. All ship board wastes are collected, segregated, stored and disposed of in appropriate locations, in accordance with shipping company's environmental protection policy and solid and hazardous waste management plan. For example, food residues are ground onboard and dropped into the sea as fish food. Cardboard and the like are burned onboard in incinerators. Glass is sorted into dark/light and deposited ashore, as are plastics, metal, tins, batteries, fluorescent tubes, etc. The residue from plastic incineration which is still considered as plastic is brought back to shore for disposal. New targets are being set up to reduce the volume of garbage generated and disposed of to shore facilities, and newer ships are using baling machines which compress cardboard etc into bales to be taken ashore. The garbage management and its control system work as a 'continual improvement' process to achieve new targets.
Research notes : recycled plastics in highway construction and maintenance.
DOT National Transportation Integrated Search
1994-04-01
The Oregon public and Oregon Legislature have great interests in the use of recycled waste products. The costs of waste disposal continue to increase as existing landfills approach maximum capacity forcing development of additional landfills. In resp...
Triboelectrostatic separation for granular plastic waste recycling: a review.
Wu, Guiqing; Li, Jia; Xu, Zhenming
2013-03-01
The world's plastic consumption has increased incredibly in recent decades, generating more and more plastic waste, which makes it a great public concern. Recycling is the best treatment for plastic waste since it cannot only reduce the waste but also reduce the consumption of oil for producing new virgin plastic. Mechanical recycling is recommended for plastic waste to avoid the loss of its virgin value. As a mechanical separation technology, triboelectrostatic separation utilizes the difference between surface properties of different materials to get them oppositely charged, deflected in the electric field and separately collected. It has advantages such as high efficiency, low cost, no concern of water disposal or secondary pollution and a relatively wide processing range of particle size especially suitable for the granular plastic waste. The process of triboelectrostatic separation for plastic waste is reviewed in this paper. Different devices have been developed and proven to be effective for separation of plastic waste. The influence factors are also discussed. It can be concluded that the triboelectrostatic separation of plastic waste is a promising technology. However, more research is required before it can be widely applied in industry. Copyright © 2012 Elsevier Ltd. All rights reserved.
Galinski, Michel; Catineau, Jean; Rayeh, Fatima; Muret, Jane; Ciebiera, Jean-Pierre; Plantevin, Frédéric; Foucrier, Arnaud; Tual, Loic; Combes, Xavier; Adnet, Frédéric
2011-03-01
To compare two brands of disposable plastic laryngoscope blades, Vital View plastic blades and Heine XP plastic blades, with the reusable Heine Classic+ Macintosh metal blades. Prospective randomized, controlled, single-blinded study. Operating room of a university-affiliated hospital. 519 patients without criteria for predicted difficult intubation, undergoing scheduled surgery during general anesthesia. Patients were randomized to three groups according to laryngoscope blade brand. Difficult tracheal intubation was evaluated by the Intubation Difficulty Scale (IDS) (IDS > 5 = procedure involving moderate to major difficulty). The percentage of intubations with an IDS > 5 was 3.1% in Group M (metal blade group), 5.1% in Group V (Vital View plastic blade group), and 10.0% in Group H (Heine plastic blade group). A significant difference was noted between Groups M and H (P = 0.02) but not between Groups M and V. Intubation may be more challenging when using Heine XP plastic blades but no significant difference exists between Vital-View plastic blades and Heine Classic+ metal blades. Copyright © 2011 Elsevier Inc. All rights reserved.
Patterning of colloidal particles in the galvanic microreactor
NASA Astrophysics Data System (ADS)
Jan, Linda
A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.
Gruber, Pia; Carvalho, Filipe; Marques, Marco P C; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank; Szita, Nicolas
2018-03-01
Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino-alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)-2-amino-1,3,4-butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non-chiral starting materials, by coupling a transketolase- and a transaminase-catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor-based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous-flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase-catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml -1 . Following optimization of the transaminase-catalyzed reaction, a volumetric activity of 10.8 U ml -1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous-flow microreactors can be applied for the design and optimization of biocatalytic processes. © 2017 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Matosevic, S; Lye, G J; Baganz, F
2011-09-20
Complex molecules are synthesised via a number of multi-step reactions in living cells. In this work, we describe the development of a continuous flow immobilized enzyme microreactor platform for use in evaluation of multi-step bioconversion pathways demonstrating a de novo transketolase/ω-transaminase-linked asymmetric amino alcohol synthesis. The prototype dual microreactor is based on the reversible attachment of His₆-tagged enzymes via Ni-NTA linkage to two surface derivatised capillaries connected in series. Kinetic parameters established for the model transketolase (TK)-catalysed conversion of lithium-hydroxypyruvate (Li-HPA) and glycolaldehyde (GA) to L-erythrulose using a continuous flow system with online monitoring of reaction output was in good agreement with kinetic parameters determined for TK in stop-flow mode. By coupling the transketolase catalysed chiral ketone forming reaction with the biocatalytic addition of an amine to the TK product using a transaminase (ω-TAm) it is possible to generate chiral amino alcohols from achiral starting compounds. We demonstrated this in a two-step configuration, where the TK reaction was followed by the ω-TAm-catalysed amination of L-erythrulose to synthesise 2-amino-1,3,4-butanetriol (ABT). Synthesis of the ABT product via the dual reaction and the on-line monitoring of each component provided a full profile of the de novo two-step bioconversion and demonstrated the utility of this microreactor system to provide in vitro multi-step pathway evaluation. Copyright © 2011 Elsevier B.V. All rights reserved.
Silva, R; Dow, P; Dubay, R; Lissandrello, C; Holder, J; Densmore, D; Fiering, J
2017-09-01
Acoustic manipulation has emerged as a versatile method for microfluidic separation and concentration of particles and cells. Most recent demonstrations of the technology use piezoelectric actuators to excite resonant modes in silicon or glass microchannels. Here, we focus on acoustic manipulation in disposable, plastic microchannels in order to enable a low-cost processing tool for point-of-care diagnostics. Unfortunately, the performance of resonant acoustofluidic devices in plastic is hampered by a lack of a predictive model. In this paper, we build and test a plastic blood-bacteria separation device informed by a design of experiments approach, parametric rapid prototyping, and screening by image-processing. We demonstrate that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82%, while maintaining equivalent separation performance and resolution when compared to the previously published plastic acoustofluidic separation device.
Enhanced lifetime for thin-dielectric microdischarge-arrays operating in DC
NASA Astrophysics Data System (ADS)
Dussart, Remi; Felix, Valentin; Overzet, Lawrence; Aubry, Olivier; Stolz, Arnaud; Lefaucheux, Philippe; Gremi-Univ Orleans-Cnrs Collaboration; University Of Texas At Dallas Collaboration
2016-09-01
Micro-hollow cathode discharge arrays using silicon as the cathode have a very limited lifetime because the silicon bubbles and initiates micro-arcing. To avoid this destructive behavior, the same configuration was kept but, another material was selected for the cathode. Using micro and nanotechnologies ordinarily used in microelectronic and MEMS device fabrication, we made arrays of cathode boundary layer (CBL)-type microreactors consisting of nickel electrodes separated by a 6 µm thick SiO2 layer. Microdischarges were ignited in arrays of 100 µm diameter holes at different pressures (200750 Torr) in different gases. Electrical and optical measurements were made to characterize the arrays. Unlike the microdischarges produced using silicon cathodes, the Ni cathode discharges remain very stable with essentially no micro-arcing. DC currents between 50 and 900 µA flowed through each microreactor with a discharge voltage of typically 200 V. Stable V-I characteristics showing both the normal and abnormal regimes were observed and are consistent with the spread of the plasma over the cathode area. Due to their stability and lifetime, new applications of these DC, CBL-type microreactors can now be envisaged.
NASA Astrophysics Data System (ADS)
Sahare, Padmavati; Ayala, Marcela; Vazquez-Duhalt, Rafael; Agrawal, Vivechana
2014-08-01
In this work, a commercial peroxidase was immobilized onto porous silicon (PS) support functionalized with 3-aminopropyldiethoxysilane (APDES) and the performance of the obtained catalytic microreactor was studied. The immobilization steps were monitored and the activity of the immobilized enzyme in the PS pores was spectrophotometrically determined. The enzyme immobilization in porous silicon has demonstrated its potential as highly efficient enzymatic reactor. The effect of a polar organic solvent (acetonitrile) and the temperature (up to 50°C) on the activity and stability of the biocatalytic microreactor were studied. After 2-h incubation in organic solvent, the microreactor retained 80% of its initial activity in contrast to the system with free soluble peroxidase that lost 95% of its activity in the same period of time. Peroxidase immobilized into the spaces of the porous silicon support would be perspective for applications in treatments for environmental security such as removal of leached dye in textile industry or in treatment of different industrial effluents. The system can be also applied in the field of biomedicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andersen, T.; Jensen, R.; Christensen, M. K.
2012-07-15
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/{Delta}m > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detectionmore » by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH{sub 3}.« less
Zhang, Chengxi; Luan, Weiling; Yin, Yuhang; Yang, Fuqian
2017-01-01
Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX 3 , X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19-35 nm, high fluorescence quantum yield of 47.8-90.55%, and photoluminescence emission in the range of 450-700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices.
Wang, Jun; Gu, Shuang-Shuang; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An
2014-04-01
Caffeic acid phenethyl ester (CAPE) is a rare natural ingredient with several biological activity, but the industrial production of CAPE using lipase-catalyzed esterification of caffeic acid (CA) and 2-phenylethanol (PE) in ionic liquids is hindered by low substrate concentrations and a long reaction time. To establish a high-efficiency bioprocess for obtaining CAPE, a novel continuous flow biosynthesis of CAPE from alkyl caffeate and PE in [Bmim][Tf2N] using a packed bed microreactor was successfully carried out. Among the tested alkyl caffeates and lipases, methyl caffeate and Novozym 435, respectively, were selected as the suitable substrate and biocatalyst. Under the optimum conditions selected using response surface methodology, a 93.21% CAPE yield was achieved in 2.5h using a packed bed microreactor, compared to 24h using a batch reactor. The reuse of Novozym 435 for 20 cycles and continuous reaction for 9 days did not result in any decrease in activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sartipi, Sina; Jansma, Harrie; Bosma, Duco; Boshuizen, Bart; Makkee, Michiel; Gascon, Jorge; Kapteijn, Freek
2013-12-01
Design and operation of a "six-flow fixed-bed microreactor" setup for Fischer-Tropsch synthesis (FTS) is described. The unit consists of feed and mixing, flow division, reaction, separation, and analysis sections. The reactor system is made of five heating blocks with individual temperature controllers, assuring an identical isothermal zone of at least 10 cm along six fixed-bed microreactor inserts (4 mm inner diameter). Such a lab-scale setup allows running six experiments in parallel, under equal feed composition, reaction temperature, and conditions of separation and analysis equipment. It permits separate collection of wax and liquid samples (from each flow line), allowing operation with high productivities of C5+ hydrocarbons. The latter is crucial for a complete understanding of FTS product compositions and will represent an advantage over high-throughput setups with more than ten flows where such instrumental considerations lead to elevated equipment volume, cost, and operation complexity. The identical performance (of the six flows) under similar reaction conditions was assured by testing a same catalyst batch, loaded in all microreactors.
NASA Astrophysics Data System (ADS)
Andersen, T.; Jensen, R.; Christensen, M. K.; Pedersen, T.; Hansen, O.; Chorkendorff, I.
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH3.
Zhang, Chengxi; Yin, Yuhang
2017-01-01
Colloidal perovskite nanocrystals comprised of all inorganic cesium lead halide (CsPbX3, X = Cl, Br, I or a mixture thereof) have potential as optical gain materials due to their high luminescence efficiency. In this work, cesium lead halide nanocrystals are continuously synthesized via a microreactor system consisting of poly(tetrafluoroethylene) (PTFE) capillaries. The synthesized nanocrystals possess excellent optical properties, including a full width at half maximum of 19–35 nm, high fluorescence quantum yield of 47.8–90.55%, and photoluminescence emission in the range of 450–700 nm. For the same precursor concentrations, the photoluminescence emission peak generally increases with increasing reaction temperature, revealing a controllable temperature effect on the photoluminescence characteristics of the synthesized nanocrystals. For quantum dots synthesized with a Br/I ratio of 1:3, a slight blue shift was observed for reaction temperatures greater than 100 °C. This PTFE-based microreactor system provides the unique capability of continuously synthesizing high-quality perovskite nanocrystals that emit over the full visible spectrum with applications ranging from displays and optoelectronic devices. PMID:29259867
NASA Astrophysics Data System (ADS)
Konakov, S. A.; Krzhizhanovskaya, V. V.
2016-08-01
We present a novel three-jet microreactor design for localized deposition of gallium arsenide (GaAs) by low-pressure Metal-Organic Chemical Vapour Deposition (MOCVD) for semiconductor devices, microelectronics and solar cells. Our approach is advantageous compared to the standard lithography and etching technology, since it preserves the nanostructure of the deposited material, it is less time-consuming and less expensive. We designed two versions of reactor geometry with a 10-micron central microchannel for precursor supply and with two side jets of a dilutant to control the deposition area. To aid future experiments, we performed computational modeling of a simplified-geometry (twodimensional axisymmetric) microreactor, based on Navier-Stokes equations for a laminar flow of chemically reacting gas mixture of Ga(CH3)3-AsH3-H2. Simulation results show that we can achieve a high-rate deposition (over 0.3 μm/min) on a small area (less than 30 μm diameter). This technology can be used in material production for microelectronics, optoelectronics, photovoltaics, solar cells, etc.
Andersen, T; Jensen, R; Christensen, M K; Pedersen, T; Hansen, O; Chorkendorff, I
2012-07-01
We demonstrate a combined microreactor and time of flight system for testing and characterization of heterogeneous catalysts with high resolution mass spectrometry and high sensitivity. Catalyst testing is performed in silicon-based microreactors which have high sensitivity and fast thermal response. Gas analysis is performed with a time of flight mass spectrometer with a modified nude Bayard-Alpert ionization gauge as gas ionization source. The mass resolution of the time of flight mass spectrometer using the ion gauge as ionization source is estimated to m/Δm > 2500. The system design is superior to conventional batch and flow reactors with accompanying product detection by quadrupole mass spectrometry or gas chromatography not only due to the high sensitivity, fast temperature response, high mass resolution, and fast acquisition time of mass spectra but it also allows wide mass range (0-5000 amu in the current configuration). As a demonstration of the system performance we present data from ammonia oxidation on a Pt thin film showing resolved spectra of OH and NH(3).
Co-pyrolyzing plastic mulch waste with animal manures
USDA-ARS?s Scientific Manuscript database
Pyrolyzing various livestock and agricultural wastes produces power and value-added byproducts. It also substantially reduces ultimate waste volume to be disposed of and improves soil fertility and promotes carbon sequestration via soil application of biochar. Researchers found that manure-derived ...
Rani, Manviri; Shim, Won Joon; Han, Gi Myung; Jang, Mi; Song, Young Kyoung; Hong, Sang Hee
2017-02-01
Ultraviolet stabilizers (UVSs) and antioxidants are the most widely used additives in plastics to enhance the lifetime of polymeric materials. There is growing interest in the roles of plastic marine debris and microplastics as source or vector of toxic substances to marine environment and organisms. However, there is limited information available on plastic associated chemicals, particularly additive chemicals. Therefore, to evaluate their extent of exposure from plastics to the marine environment, we determined UVSs and antioxidants in plastic debris (n=29) collected from beaches along with their corresponding new plastic products in markets (n=27) belonging to food, fisheries, and general use. Antioxidants were present at higher concentrations than UVSs in both plastic debris and new plastics, indicative of their high use over UVSs. Irganox 1076 and Irganox 1010 were more commonly used than other chemicals investigated. The irregular use with high concentration of additive chemicals was observed in short-term use plastic products. Except for Irganox 1076 and UV 326, most antioxidants and UVSs were relatively high in new plastics compared to corresponding plastic marine debris, implying their potential leaching or degradation during use or after disposal. The present study provides quantitative information about additive chemicals contained in plastic marine debris and their new products. These results could be useful for better understanding of environmental exposure to hazardous chemicals through plastic pollution. Copyright © 2016 Elsevier B.V. All rights reserved.
Folgueiras-Amador, Ana A; Philipps, Kai; Guilbaud, Sébastien; Poelakker, Jarno; Wirth, Thomas
2017-11-27
Flow electrochemistry is an efficient methodology to generate radical intermediates. An electrochemical flow microreactor has been designed and manufactured to improve the efficiency of electrochemical flow reactions. With this device only little or no supporting electrolytes are needed, making processes less costly and enabling easier purification. This is demonstrated by the facile synthesis of amidyl radicals used in intramolecular hydroaminations to produce isoindolinones. The combination with inline mass spectrometry facilitates a much easier combination of chemical steps in a single flow process. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
NASA Astrophysics Data System (ADS)
Cavusoglu, G.; Dallmann, F.; Lichtenberg, H.; Goldbach, A.; Dittmeyer, R.; Grunwaldt, J.-D.
2016-05-01
Microreactor technology with high heat transfer in combination with stable catalysts is a very attractive approach for reactions involving major heat effects such as methane steam reforming and to some extent, also the high temperature water gas shift (WGS) reaction. For this study Rh/ceria catalysts and an ultrathin hydrogen selective membrane were characterized in situ in a microreactor specially designed for x-ray absorption spectroscopic measurements under WGS conditions. The results of these experiments can serve as a basis for further development of the catalysts and membranes.
A wide-angle camera module for disposable endoscopy
NASA Astrophysics Data System (ADS)
Shim, Dongha; Yeon, Jesun; Yi, Jason; Park, Jongwon; Park, Soo Nam; Lee, Nanhee
2016-08-01
A wide-angle miniaturized camera module for disposable endoscope is demonstrated in this paper. A lens module with 150° angle of view (AOV) is designed and manufactured. All plastic injection-molded lenses and a commercial CMOS image sensor are employed to reduce the manufacturing cost. The image sensor and LED illumination unit are assembled with a lens module. The camera module does not include a camera processor to further reduce its size and cost. The size of the camera module is 5.5 × 5.5 × 22.3 mm3. The diagonal field of view (FOV) of the camera module is measured to be 110°. A prototype of a disposable endoscope is implemented to perform a pre-clinical animal testing. The esophagus of an adult beagle dog is observed. These results demonstrate the feasibility of a cost-effective and high-performance camera module for disposable endoscopy.
Ductile alloys for sealing modular component interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, John J.; Wessell, Brian J.; James, Allister W.
2017-08-08
A vane assembly (10) having: an airfoil (12) and a shroud (14) held together without metallurgical bonding there between; a channel (22) disposed circumferentially about the airfoil (12), between the airfoil (12) and the shroud (14); and a seal (20) disposed in the channel (22), wherein during operation of a turbine engine having the vane assembly (10) the seal (20) has a sufficient ductility such that a force generated on the seal (20) resulting from relative movement of the airfoil (12) and the shroud (14) is sufficient to plastically deform the seal (20).
Determining the bio-based content of bio-plastics used in Thailand by radiocarbon analysis
NASA Astrophysics Data System (ADS)
Ploykrathok, T.; Chanyotha, S.
2017-06-01
Presently, there is an increased interest in the development of bio-plastic products from agricultural materials which are biodegradable in order to reduce the problem of waste disposal. Since the amount of modern carbon in bio-plastics can indicate how much the amount of agricultural materials are contained in the bio-plastic products, this research aims to determine the modern carbon in bio-plastic using the carbon dioxide absorption method. The radioactivity of carbon-14 contained in the sample is measured by liquid scintillation counter (Tri-carb 3110 TR, PerkinElmer). The percentages of bio-based content in the samples were determined by comparing the observed modern carbon content with the values contained in agricultural raw materials. The experimental results show that only poly(lactic acid) samples have the modern carbon content of 97.4%, which is close to the agricultural materials while other bio-plastics types are found to have less than 50% of the modern carbon content. In other words, most of these bio-plastic samples were mixed with other materials which are not agriculturally originated.
Zhang, Cong-Cong; Zhang, Fu-Shen
2012-06-30
Brominated flame retardants (BFRs) in electrical and electronic (E&E) waste plastic are toxic, bioaccumulative and recalcitrant. In the present study, tetrabromobisphenol A (TBBPA) contained in this type of plastic was tentatively subjected to solvothermal treatment so as to obtain bromine-free plastic. Methanol, ethanol and isopropanol were examined as solvents for solvothermal treatment and it was found that methanol was the optimal solvent for TBBPA removal. The optimum temperature, time and liquid to solid ratio for solvothermal treatment to remove TBBPA were 90°C, 2h and 15:1, respectively. After the treatment with various alcohol solvents, it was found that TBBPA was finally transferred into the solvents and bromine in the extract was debrominated catalyzed by metallic copper. Bisphenol A and cuprous bromide were the main products after debromination. The morphology and FTIR properties of the plastic were generally unchanged after the solvothermal treatment indicating that the structure of the plastic maintained after the process. This work provides a clean and applicable process for BFRs-containing plastic disposal. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of Waste Plastic on the Physical and Rheological Properties of Bitumen
NASA Astrophysics Data System (ADS)
Ezree Abdullah, Mohd; Asyiqin Ahmad, Nurul; Putra Jaya, Ramadhansyah; Hassan, Norhidayah Abdul; Yaacob, Haryati; Rosli Hainin, Mohd
2017-05-01
Plastic disposal is one of the major problems for developing countries like Malaysia, at the same time Malaysia needs a large network of roads for its smooth economic and social development. The limited source of bitumen needs a deep thinking to ensure fast road construction. Therefore, the use of plastic waste in road construction not only can help to protect environment but also able to help the road construction industry. The aims of this research are to study the effects of waste plastic on rheological properties of bitumen. Modified bitumen was prepared by using blending techniques. Bitumen was heated and plastic waste was slowly added. Rheological properties of bitumen were performance by penetration, softening point, viscosity and direct shear rheometer test. The results showed that when content of plastic waste increase, the penetration value, softening point and viscosity of bitumen also increase. Generally, plastic waste improves the performance of bitumen when it was added into bitumen. It can be said that the usage helps to improve the performance of the road pavement which also reduces the rutting effect.
Study on Mechanical Properties of Concrete Using Plastic Waste as an Aggregate
NASA Astrophysics Data System (ADS)
Jaivignesh, B.; Sofi, A.
2017-07-01
Disposal of large quantity of plastic causes land, water and air pollution etc.., so a study is conducted to recycle the plastic in concrete. This work investigates about the replacement of natural aggregate with non-biodegradable plastic aggregate made up of mixed plastic waste in concrete. Several tests are conducted such as compressive strength of cube, split tensile strength of cylinder, flexural strength test of prism to identify the properties and behavior of concrete using plastic aggregate. Replacement of fine aggregate weight by 10%, 15%, 20% with Plastic fine (PF) aggregate and for each replacement of fine aggregate 15%, 20%, 25% of coarse aggregate replacement also conducted with Plastic Coarse(PC) aggregate. In literatures reported that the addition of plastic aggregate in concrete causes the reduction of strength in concrete due to poor bonding between concrete and plastic aggregate, so addition of 0.3% of steel fiber by weight of cement in concrete is done to improve the concrete strength. Totally 60 cubes, 60 cylinders and 40 prisms are casted to identify the compressive strength, split tensile strength and flexural strength respectively. Casted specimens are tested at 7 and 28 days. The identified results from concrete using plastic aggregate are compared with conventional concrete. Result shows that reduction in mechanical properties of plastic aggregate added concrete. This reduction in strength is mainly due to poor bond strength between cement and plastic aggregate.
Porterfield, Jessica P; Baraban, Joshua H; Troy, Tyler P; Ahmed, Musahid; McCarthy, Michael C; Morgan, Kathleen M; Daily, John W; Nguyen, Thanh Lam; Stanton, John F; Ellison, G Barney
2016-04-14
Both glycolaldehyde and glyoxal were pyrolyzed in a set of flash-pyrolysis microreactors. The pyrolysis products resulting from CHO-CH2OH and HCO-CHO were detected and identified by vacuum ultraviolet (VUV) photoionization mass spectrometry. Complementary product identification was provided by argon matrix infrared absorption spectroscopy. Pyrolysis pressures in the microreactor were about 100 Torr, and contact times with the microreactors were roughly 100 μs. At 1200 K, the products of glycolaldehyde pyrolysis are H atoms, CO, CH2═O, CH2═C═O, and HCO-CHO. Thermal decomposition of HCO-CHO was studied with pulsed 118.2 nm photoionization mass spectrometry and matrix infrared absorption. Under these conditions, glyoxal undergoes pyrolysis to H atoms and CO. Tunable VUV photoionization mass spectrometry provides a lower bound for the ionization energy (IE)(CHO-CH2OH) ≥ 9.95 ± 0.05 eV. The gas-phase heat of formation of glycolaldehyde was established by a sequence of calorimetric experiments. The experimental result is ΔfH298(CHO-CH2OH) = -75.8 ± 1.3 kcal mol(-1). Fully ab initio, coupled cluster calculations predict ΔfH0(CHO-CH2OH) of -73.1 ± 0.5 kcal mol(-1) and ΔfH298(CHO-CH2OH) of -76.1 ± 0.5 kcal mol(-1). The coupled-cluster singles doubles and noniterative triples correction calculations also lead to a revision of the geometry of CHO-CH2OH. We find that the O-H bond length differs substantially from earlier experimental estimates, due to unusual zero-point contributions to the moments of inertia.
Lin, Yuqing; Yu, Ping; Mao, Lanqun
2015-06-07
This study demonstrates an online electrochemical system (OECS) for selective and continuous measurements of acetylcholine (ACh) through efficiently integrating in vivo microdialysis, a multi-enzyme microreactor and an electrochemical detector. A multi-enzyme microreactor was prepared first by co-immobilizing two kinds of enzymes, i.e. choline oxidase (ChOx) and catalase (Cat), onto magnetite nanoparticles and then confining the as-formed nanoparticles into a fused-silica capillary with the assistance of an external magnet. The multi-enzyme microreactor was settled between an in vivo microdialysis sampling system and an electrochemical detector to suppress the interference from choline toward ACh detection. Selective detection of ACh was accomplished using the electrochemical detector with ACh esterase (AChE) and ChOx as the recognition units for ACh and Prussian blue (PB) as the electrocatalyst for the reduction of hydrogen peroxide (H2O2). The current recorded with the OECS was linear with the concentration of ACh (I/nA = -3.90CACh/μM + 1.21, γ = 0.998) within a concentration range of 5 μM to 100 μM. The detection limit, based on a signal-to-noise ratio of 3, was calculated to be 1 μM. Interference investigation demonstrates that the OECS did not produce an observable current response toward physiological levels of common electroactive species, such as ascorbic acid (AA), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), and uric acid (UA). The high selectivity and the good linearity in combination with the high stability may enable the OECS developed here as a potential system for continuous monitoring of cerebral ACh release in some physiological and pathological processes.
The Chinese import ban and its impact on global plastic waste trade
Wang, Shunli
2018-01-01
The rapid growth of the use and disposal of plastic materials has proved to be a challenge for solid waste management systems with impacts on our environment and ocean. While recycling and the circular economy have been touted as potential solutions, upward of half of the plastic waste intended for recycling has been exported to hundreds of countries around the world. China, which has imported a cumulative 45% of plastic waste since 1992, recently implemented a new policy banning the importation of most plastic waste, begging the question of where the plastic waste will go now. We use commodity trade data for mass and value, region, and income level to illustrate that higher-income countries in the Organization for Economic Cooperation have been exporting plastic waste (70% in 2016) to lower-income countries in the East Asia and Pacific for decades. An estimated 111 million metric tons of plastic waste will be displaced with the new Chinese policy by 2030. As 89% of historical exports consist of polymer groups often used in single-use plastic food packaging (polyethylene, polypropylene, and polyethylene terephthalate), bold global ideas and actions for reducing quantities of nonrecyclable materials, redesigning products, and funding domestic plastic waste management are needed. PMID:29938223
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, M.
1980-03-04
A light-weight, low-cost and high efficiency solar panel includes a light-weight rectangular wood frame which surrounds and houses a copper absorber plate. A pair of spaced glazings, formed from plastic film materials, are disposed above the absorber to define a pair of enclosed air spaces. The lower glazing is capable of withstanding high temperatures and the upper glazing material is capable of providing good weather resistance. The material of the upper glazing extends fully about the frame to protect the entire frame from weathering. Insulation is provided beneath the absorber plate. The frame rests on top of a bottom sheetmore » of insulative foam plastic which is wrapped in a plastic envelope. The surrounding film of the outer glazing is bonded securely to the envelope to encase the entire panel within a protective sealed envelope of weather-resistant plastic film.« less
A critical comparison of ten disposable cup LCAs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harst, Eugenie van der, E-mail: eugenie.vanderharst@wur.nl; Potting, José, E-mail: jose.potting@wur.nl; Environmental Strategies Research
Disposable cups can be made from conventional petro-plastics, bioplastics, or paperboard (coated with petro-plastics or bioplastics). This study compared ten life cycle assessment (LCA) studies of disposable cups with the aim to evaluate the robustness of their results. The selected studies have only one impact category in common, namely climate change with global warming potential (GWP) as its category indicator. Quantitative GWP results of the studies were closer examined. GWPs within and across each study show none of the cup materials to be consistently better than the others. Comparison of the absolute GWPs (after correction for the cup volume) alsomore » shows no consistent better or worse cup material. An evaluation of the methodological choices and the data sets used in the studies revealed their influence on the GWP. The differences in GWP can be attributed to a multitude of factors, i.e., cup material and weight, production processes, waste processes, allocation options, and data used. These factors basically represent different types of uncertainty. Sensitivity and scenario analyses provided only the influence of one factor at once. A systematic and simultaneous use of sensitivity and scenario analyses could, in a next research, result in more robust outcomes. -- Highlights: • Conflicting results from life cycle assessment (LCA) on disposable cups • GWP results of LCAs did not point to a best or worst cup material. • Differences in GWP results are due to methodological choices and data sets used. • Standardized LCA: transparency of LCA studies, but still different in approaches.« less
New Electronic Materials and CO2 Reduction.
1988-02-02
REPORT DOCUMENTATION PAGE ! a ;t, C ’ SE -R .r N ’ D RE--R’tThVE "j f ’ .NUS UNCLASSIFIED APPROVED FOR PUBLIC RELEASE AD-A240 192 Lit R 11 II6 NOOO 14...by H12 have been carried out at 290C in a microreactor with a H2 /CO ration of 9/1. The catalysts studied were iron(III) oxide, iron(1I) diiron(1II...Methanation studies have been carried out at 290’C in a microreactor with a H 2 /CO ratio of 9/1. The catalysts studied were iron(III) oxide, iron(IT
Multichannel quench-flow microreactor chip for parallel reaction monitoring.
Bula, Wojciech P; Verboom, Willem; Reinhoudt, David N; Gardeniers, Han J G E
2007-12-01
This paper describes a multichannel silicon-glass microreactor which has been utilized to investigate the kinetics of a Knoevenagel condensation reaction under different reaction conditions. The reaction is performed on the chip in four parallel channels under identical conditions but with different residence times. A special topology of the reaction coils overcomes the common problem arising from the difference in pressure drop of parallel channels having different length. The parallelization of reaction coils combined with chemical quenching at specific locations results in a considerable reduction in experimental effort and cost. The system was tested and showed good reproducibility in flow properties and reaction kinetic data generation.
A novel microreactor approach for analysis of ketones and aldehydes in breath.
Fu, Xiao-An; Li, Mingxiao; Biswas, Souvik; Nantz, Michael H; Higashi, Richard M
2011-11-21
We report a fabricated microreactor with thousands of micropillars in channels. Each micropillar surface is chemically functionalized to selectively preconcentrate gaseous ketones and aldehydes of exhaled breath and to enhance ultra-trace, rapid analysis by direct-infusion Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The micropillar reactive coating contains the quaternary ammonium aminooxy salt 2-(aminooxy)ethyl-N,N,N-trimethylammonium iodide (ATM) for capturing trace carbonyl VOCs by means of an oximation reaction. We demonstrate the utility of this approach for detection of C(1) to C(12) aldehydes and ketones in exhaled breath, but the approach is applicable to any gaseous sample.
Hydrogen production through aqueous-phase reforming of ethylene glycol in a washcoated microchannel.
D'Angelo, M Fernanda Neira; Ordomsky, Vitaly; Paunovic, Violeta; van der Schaaf, John; Schouten, Jaap C; Nijhuis, T Alexander
2013-09-01
Aqueous-phase reforming (APR) of biocarbohydrates is conducted in a catalytically stable washcoated microreactor where multiphase hydrogen removal enhances hydrogen efficiency. Single microchannel experiments are conducted following a simplified model based on the microreactor concept. A coating method to deposit a Pt-based catalyst on the microchannel walls is selected and optimized. APR reactivity tests are performed by using ethylene glycol as the model compound. Optimum results are achieved with a static washcoating technique; a highly uniform and well adhered 5 μm layer is deposited on the walls of a 320 μm internal diameter (ID) microchannel in one single step. During APR of ethylene glycol, the catalyst layer exhibits high stability over 10 days after limited initial deactivation. The microchannel presents higher conversion and selectivity to hydrogen than a fixed-bed reactor. The benefits of using a microreactor for APR can be further enhanced by utilizing increased Pt loadings, higher reaction temperatures, and larger carbohydrates (e.g., glucose). The use of microtechnology for aqueous-phase reforming will allow for a great reduction in the reformer size, thus rendering it promising for distributed hydrogen production. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bravo Bersano, Jaime Cristian
This research has focused on the need to coat microreactor systems composed of channels in the micron size range of 100 to 1000 mum. The experimental procedures and learning are outlined in terms of slurry and surface preparation requirements which are detailed in the experimental section. This system is motivated and applied to micro methanol steam reformers. Thus, a detailed discussion on the driving motivation is given in the introduction. The low temperatures required for steam-reforming of methanol ˜ 493°K (220°C) make it possible to utilize the reformate as a feed to the fuel cell anode. The group of catalysts that shows the highest activity for methanol steam reforming (SR) at low temperature has composition of CuO/ZnO/Al 2O3, which is also the catalyst used for methanol synthesis. Steam reforming of methanol is a highly endothermic process. Conventional reactor configurations, such as a packed bed reactor, operate in a heat transfer limited mode for this reaction. Using catalyst in packed bed form for portable devices is also not convenient due to high pressure drop and possible channeling of gases in addition to poor heat transfer. A wall-coated catalyst represents a superior geometry since it provides lower pressure drop and ease of manufacturing. Due to their small size, microreactors are especially suited for endothermic reactions whose reactivity depends on the rate of heat input. A brief review on microreaction technology is given with a comprehensive survey for catalyst integration into microreactors for catalytic heterogeneous gas phase reactions. The strength of this research is the model that was developed to coat the interior of micron sized capillaries with coats of CuO/ZnO/Al2O 3 slurries as thick as 25 mum in the dry state. The details of the model are given in terms Taylor's theory and Rayleigh's theory. A model is presented that can predict the coat thickness based on experimental conditions The model combines Taylor's experimental work with Lord Rayleigh's instability theory for annular coatings. The model presented serves as a design tool for microreactor design. The model can also estimate the maximum coat thickness possible for a given system. The results are presented in graphical format in the Microchannel Coating Model chapter.
Piccoli, Giorgina Barbara; Nazha, Marta; Ferraresi, Martina; Vigotti, Federica Neve; Pereno, Amina; Barbero, Silvia
2015-06-01
Approximately 2 million chronic haemodialysis patients produce over 2,000,000 tons of waste per year that includes about 600,000 tons of potentially hazardous waste. The aim of the present study was to analyse the characteristics of the waste that is produced through chronic haemodialysis in an effort to identify strategies to reduce its environmental and financial impact. The study included three dialysis machines and disposables for bicarbonate dialysis, haemodiafiltration (HFR) and lactate dialysis. Hazardous waste is defined as waste that comes into contact with bodily fluids. The weight and cost of waste management was evaluated by various policies of differentiation, ranging from a careful-optimal differentiation to a careless one. The amount of time needed for optimal management was recorded in 30 dialysis sessions. Non-hazardous materials were assessed for potential recycling. The amount of plastic waste that is produced per dialysis session ranges from 1.5 to 8 kg (from 1.1 to 8 kg of potentially hazardous waste), depending upon the type of dialysis machine and supplies, differentiation and emptying policies. The financial cost of waste disposal is high, and is mainly related to hazardous waste disposal, with costs ranging from 2.2 to 16 Euro per session (2.7-21 USD) depending on the waste management policy. The average amount of time needed for careful, optimal differentiation disposal is approximately 1 minute for a haemodialysis session and 2 minutes for HFR. The ecological cost is likewise high: less than one-third of non-hazardous waste (23-28%) is potentially recyclable, while the use of different types of plastic, glues, inks and labels prevents the remaining materials from being recycled. Acknowledging the problem of waste management in dialysis could lead to savings of hundreds of millions of Dollars and to the reuse and recycling of hundreds of tons of plastic waste per year on a world-wide scale with considerable financial and ecological savings. © The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.
Biological degradation of plastics: a comprehensive review.
Shah, Aamer Ali; Hasan, Fariha; Hameed, Abdul; Ahmed, Safia
2008-01-01
Lack of degradability and the closing of landfill sites as well as growing water and land pollution problems have led to concern about plastics. With the excessive use of plastics and increasing pressure being placed on capacities available for plastic waste disposal, the need for biodegradable plastics and biodegradation of plastic wastes has assumed increasing importance in the last few years. Awareness of the waste problem and its impact on the environment has awakened new interest in the area of degradable polymers. The interest in environmental issues is growing and there are increasing demands to develop material which do not burden the environment significantly. Biodegradation is necessary for water-soluble or water-immiscible polymers because they eventually enter streams which can neither be recycled nor incinerated. It is important to consider the microbial degradation of natural and synthetic polymers in order to understand what is necessary for biodegradation and the mechanisms involved. This requires understanding of the interactions between materials and microorganisms and the biochemical changes involved. Widespread studies on the biodegradation of plastics have been carried out in order to overcome the environmental problems associated with synthetic plastic waste. This paper reviews the current research on the biodegradation of biodegradable and also the conventional synthetic plastics and also use of various techniques for the analysis of degradation in vitro.
Optimizing biomass blends for manufacturing molded packaging materials using mycelium
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...
21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.
Code of Federal Regulations, 2011 CFR
2011-04-01
... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...
21 CFR 878.4680 - Nonpowered, single patient, portable suction apparatus.
Code of Federal Regulations, 2010 CFR
2010-04-01
... apparatus. 878.4680 Section 878.4680 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND....4680 Nonpowered, single patient, portable suction apparatus. (a) Identification. A nonpowered, single patient, portable suction apparatus is a device that consists of a manually operated plastic, disposable...
Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations.
Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing
2012-12-28
Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene.
Ethylene Formation by Catalytic Dehydration of Ethanol with Industrial Considerations
Fan, Denise; Dai, Der-Jong; Wu, Ho-Shing
2012-01-01
Ethylene is the primary component in most plastics, making it economically valuable. It is produced primarily by steam-cracking of hydrocarbons, but can alternatively be produced by the dehydration of ethanol, which can be produced from fermentation processes using renewable substrates such as glucose, starch and others. Due to rising oil prices, researchers now look at alternative reactions to produce green ethylene, but the process is far from being as economically competitive as using fossil fuels. Many studies have investigated catalysts and new reaction engineering technologies to increase ethylene yield and to lower reaction temperature, in an effort to make the reaction applicable in industry and most cost-efficient. This paper presents various lab synthesized catalysts, reaction conditions, and reactor technologies that achieved high ethylene yield at reasonable reaction temperatures, and evaluates their practicality in industrial application in comparison with steam-cracking plants. The most promising were found to be a nanoscale catalyst HZSM-5 with 99.7% ethylene selectivity at 240 °C and 630 h lifespan, using a microreactor technology with mechanical vapor recompression, and algae-produced ethanol to make ethylene. PMID:28809297
González Carman, Victoria; Machain, Natalia; Campagna, Claudio
2015-03-15
Plastics are the most common form of debris found along the Argentine coastline. The Río de la Plata estuarine area is a relevant case study to describe a situation where ample policy exists against a backdrop of plastics disposed by populated coastal areas, industries, and vessels; with resultant high impacts of plastic pollution on marine turtles and mammals. Policy and institutions are in place but the impact remains due to ineffective waste management, limited public education and awareness, and weaknesses in enforcement of regulations. This context is frequently repeated all over the world. We list possible interventions to increase the effectiveness of policy that require integrating efforts among governments, the private sector, non-governmental organizations and the inhabitants of coastal cities to reduce the amount of plastics reaching the Río de la Plata and protect threatened marine species. What has been identified for Argentina applies to the region and globally. Copyright © 2015 Elsevier Ltd. All rights reserved.
The influence of temperature on the formation of liquid fuel from Polypropylene plastic wastes
NASA Astrophysics Data System (ADS)
Martynis, M.; Mulyazmi; Praputri, E.; Witri, R.; Putri, N.
2018-03-01
The current trend of municipal waste management in urban areas is caused by rapid changes in social, economic, political and cultural life. As a non-biodegradable polymers that have become essential materials, plastic wastes have created a very serious environmental challenge because of the huge quantities and their disposal problems. Recycling of plastics is seen as one method for reducing environmental and resource depletion. The most attractive technique of plastics recycling is pyrolysis involving the degradation of the polymeric materials by heating in the absence of oxygen. This study investigated the characteristics of pyrolysis liquid fuel (PLF) produced from polypropylene plastic wastes with temperature variations. Pyrolisis was carried out on 200 grams of polypropylene waste plastics at the operating temperature of 200°C, 250°C, 300 °C and 350 °C for 45 minutes. The liquid products were found to have carbon chain length in the range of C8-C9, similar with gasoline. The maximum density, volume and calorific value of the oil obtained were 0.8 g/cm3, 61 ml and 1307 cal/gr, respectively.
Yadav, Sapna; Rai, Satyajeet; Srivastava, Ashutosh K; Panchal, Smita; Patel, D K; Sharma, V P; Jain, Sudha; Srivastava, L P
2017-01-01
In this study, the quick, easy, cheap, effective, rugged, and safe (QuEChERS) method was applied for the analysis of the multiclass pesticide residues of 12 organochlorines (OCs), 9 organophosphates (OPs), 11 synthetic pyrethroids (SPs), 4 herbicides, 6 phthalates in raw tea (loose tea, branded tea and herbal tea), and tea infusion in 4 different containers (glass cup, earthen cup, plastic bag and disposal cup). In loose tea and branded tea residues, malathion (0.257 and 0.118 mg kg -1 ), cypermethrin (0.065 and 0.030 mg kg -1 ), and fenvalerate (0.032 and 0.030 mg kg -1 ) were detected, respectively. In herbal tea, residues of only cypermethrin (0.053 mg kg -1 ) and fenvalerate (0.045 mg kg -1 ) were detected. Tea infusion samples contained in a plastic bag were found to be contaminated with only dibutyl phthalate (DBP) (0.038 mg kg -1 ). Disposable cup was found to be contaminated with DBP (0.026 mg kg -1 ) and diethyl phthalate (DEP) (0.004 mg kg -1 ). Further, to know the processing behavior of pesticides, the spiked raw tea was subjected to tea infusion at different brewing times (2, 5, 10 min). The analysis demonstrated that dimethoate, dichlorvos, and malathion had shown more than 10 % of translocation at 5 min of brewing time. Further brewing for 10 min revealed the reduction in concentration of pesticides. Leaching of phthalate residues from different plastic containers was also studied at 10, 30, and 60 min. DBP, benzyl butyl phthalate (BzBP), and di-2-(ethylhexyl) phthalate (DEHP) were leached in the tea infusion samples packed in plastic bags. On the other hand, in disposable cups, leaching of DBP, DEP, and dimethyl phthalate were found. The concentration of phthalate residues increased with retention time. Pesticide and phthalate contaminants were recorded at low quantities in few samples only.
Dual linear accelerator system for use in sterilization of medical disposable supplies
NASA Astrophysics Data System (ADS)
Sadat, Theo
1991-05-01
Accelerators can be used for sterilization or decontamination (medical disposables, food, plastics, hospital waste, etc.). Most of these accelerators are located in an industrial environment and must have a high availability. A dual accelerator system (composed of two accelerators) offers optimal flexibility and reliability. The main advantage of this system is "all-in all-out" because it does not need a turnover of products. Such a dual system, composed of two 10 MeV 20 kW linear accelerators (instead of one 40 kW linac), has been chosen by a Swedish company (Mölnlycke).
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
40 CFR 268.3 - Dilution prohibited as a substitute for treatment.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The waste consists of organic, debris-like materials (e.g., wood, paper, plastic, or cloth... (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS General § 268.3 Dilution prohibited as a... restricted waste or the residual from treatment of a restricted waste as a substitute for adequate treatment...
Takahashi, Shota; Asada, Atsushi; Matsuo, Minako; Kishikawa, Kenta; Mizuno, Akira
2015-01-01
Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy. PMID:26649904
Alimi, Olubukola S; Farner Budarz, Jeffrey; Hernandez, Laura M; Tufenkji, Nathalie
2018-02-20
Plastic litter is widely acknowledged as a global environmental threat, and poor management and disposal lead to increasing levels in the environment. Of recent concern is the degradation of plastics from macro- to micro- and even to nanosized particles smaller than 100 nm in size. At the nanoscale, plastics are difficult to detect and can be transported in air, soil, and water compartments. While the impact of plastic debris on marine and fresh waters and organisms has been studied, the loads, transformations, transport, and fate of plastics in terrestrial and subsurface environments are largely overlooked. In this Critical Review, we first present estimated loads of plastics in different environmental compartments. We also provide a critical review of the current knowledge vis-à-vis nanoplastic (NP) and microplastic (MP) aggregation, deposition, and contaminant cotransport in the environment. Important factors that affect aggregation and deposition in natural subsurface environments are identified and critically analyzed. Factors affecting contaminant sorption onto plastic debris are discussed, and we show how polyethylene generally exhibits a greater sorption capacity than other plastic types. Finally, we highlight key knowledge gaps that need to be addressed to improve our ability to predict the risks associated with these ubiquitous contaminants in the environment by understanding their mobility, aggregation behavior and their potential to enhance the transport of other pollutants.
Using nudges to reduce waste? The case of Toronto's plastic bag levy.
Rivers, Nicholas; Shenstone-Harris, Sarah; Young, Nathan
2017-03-01
The overuse of disposable plastic bags is a major environmental problem across the globe. In recent years, numerous jurisdictions have sought to curb disposable bag use by implementing a levy or fee at the point of purchase. These levies are typically small and symbolic (around $0.05 per bag), but serve as a highly-visible and continuous reminder to consumers. As such, they are consistent with nudging policies that seek to encourage broad changes in behaviour through small, non-coercive measures that influence people's thinking about an issue. While existing empirical evidence suggests that nudges are highly effective in reducing disposable bag use, we argue that many of these studies are flawed because they lack adequate temporal and geographic controls. We use longitudinal data from four waves of a major Canadian survey to analyze the effect of a disposable bag levy in the City of Toronto. Controlling for demographics and changes in social norms over time, we find that the levy increased the use of reusable shopping bags by 3.4 percentage points. Moreover, we find that the impact of the policy was highly variable across behavioural and demographic groups. The levy was highly effective in encouraging people who already used reusable bags to use them more frequently, while having no effect on infrequent users. We also find that the effects are limited to households with high socio-economic status (as measured by income, educational attainment, and housing situation). This suggests important limitations for nudging policy more generally, as people with lower socio-economic status appear to have been unaffected by this behavioural prompt. Copyright © 2016 Elsevier Ltd. All rights reserved.
Masuda, Kaoru; Murakami, Hiroshi; Kurimoto, Yoshitaka; Kato, Osamu; Kato, Ko; Honda, Akira
2013-01-01
Some of the low level radioactive wastes from reprocessing of spent nuclear fuels contain nitrates. Nitrates can be present in the form of soluble salts and can be reduced by various reactions. Among them, reduction by metal compounds and microorganisms seems to be important in the underground repository. Reduction by microorganism is more important in near field area than inside the repository because high pH and extremely high salt concentration would prevent microorganism activities. In the near field, pH is more moderate (pH is around 8) and salt concentration is lower. However, the electron donor may be limited there and it might be the control factor for microorganism's denitrification activities. In this study, in-vitro experiments of the nitrate reduction reaction were conducted using model organic materials purported to exist in underground conditions relevant to geological disposal. Two kinds of organic materials were selected. A super plasticizer was selected as being representative of the geological disposal system and humic acid was selected as being representative of pre-existing organic materials in the bedrock. Nitrates were reduced almost to N2 gas in the existence of super plasticizer. In the case of humic acids, although nitrates were reduced, the rate was much lower and, in this case, dead organism was used as an electron donor instead of humic acids. A reaction model was developed based on the in-vitro experiments and verified by running simulations against data obtained from in-situ experiments using actual groundwaters and microorganisms. The simulation showed a good correlation with the experimental data and contributes to the understanding of microbially mediated denitrification in geological disposal systems.
Paper-Plastic Hybrid Microfluidic Device for Smartphone-Based Colorimetric Analysis of Urine.
Jalal, Uddin M; Jin, Gyeong Jun; Shim, Joon S
2017-12-19
In this work, a disposable paper-plastic hybrid microfluidic lab-on-a-chip (LOC) has been developed and successfully applied for the colorimetric measurement of urine by the smartphone-based optical platform using a "UrineAnalysis" Android app. The developed device was cost-effectively implemented as a stand-alone hybrid LOC by incorporating the paper-based conventional reagent test strip inside the plastic-based LOC microchannel. The LOC device quantitatively investigated the small volume (40 μL) of urine analytes for the colorimetric reaction of glucose, protein, pH, and red blood cell (RBC) in integration with the finger-actuating micropump. On the basis of our experiments, the conventional urine strip showed large deviation as the reaction time goes by, because dipping the strip sensor in a bottle of urine could not control the reaction volume. By integrating the strip sensor in the LOC device for urine analysis, our device significantly improves the time-dependent inconstancy of the conventional dipstick-based urine strip, and the smartphone app used for image analysis enhances the visual assessment of the test strip, which is a major user concern for the colorimetric analysis in point-of-care (POC) applications. As a result, the user-friendly LOC, which is successfully implemented in a disposable format with the smartphone-based optical platform, may be applicable as an effective tool for rapid and qualitative POC urinalysis.
Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing.
Economou, Anastasios; Kokkinos, Christos; Prodromidis, Mamas
2018-06-26
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Assessment and quantification of plastics waste generation in major 60 cities of India.
Nalini, R; Srinivasulu, B; Shit, Subhas C; Nigam, Suneel Kumar; Akolkar, A B; Dwivedfi, R K
2013-04-01
Polymers or plastics materials registered rapid growth in 1970s, 1980s and 1990s at the rate of 2-2.5 times the GDP growth in India. The demand for plastic raw material got more than doubled from 3.3 Million Metric Ton to 6.8 Million Metric Tons in 2010 attributed mainly to rapid urbanization, spread of retail chains, plastics based packaging from grocery to food and vegetable products to cosmetics and consumer items. Plastics packages have its merits over many of conventional materials in the related sector but unless they are collected back effectively after their use to go into recycling process, they become an eyesore in the stream of Municipal Solid Waste (MSW) due to high visibility. As the synthetic and conventional plastics are non-biodegradable in nature, these remain in the dump yards/ landfills for several years, if not collected properly. Due to non- biodegradability, plastics waste remains in the environment for several years, if not collected and disposing plastics wastes at landfills are unsafe since toxic chemicals leach out into the soil and as they contaminate soil and underground water quality. The municipal solid waste also increasing day-by-day due to the inefficient source collection, segregation and transmission of plastics waste for recycling and reusing. In order to find out the realistic plastics waste generation, a study on assessment and quantification of plastics waste has been carried out by CPCB in collaboration with CIPET on selected 60 major cities of India.
Noninvasive detection of lung cancer using exhaled breath
Fu, Xiao-An; Li, Mingxiao; Knipp, Ralph J; Nantz, Michael H; Bousamra, Michael
2014-01-01
Early detection of lung cancer is a key factor for increasing the survival rates of lung cancer patients. The analysis of exhaled breath is promising as a noninvasive diagnostic tool for diagnosis of lung cancer. We demonstrate the quantitative analysis of carbonyl volatile organic compounds (VOCs) and identification of lung cancer VOC markers in exhaled breath using unique silicon microreactor technology. The microreactor consists of thousands of micropillars coated with an ammonium aminooxy salt for capture of carbonyl VOCs in exhaled breath by means of oximation reactions. Captured aminooxy-VOC adducts are analyzed by nanoelectrospray Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry (MS). The concentrations of 2-butanone, 2-hydroxyacetaldehyde, 3-hydroxy-2-butanone, and 4-hydroxyhexenal (4-HHE) in the exhaled breath of lung cancer patients (n = 97) were significantly higher than in the exhaled breath of healthy smoker and nonsmoker controls (n = 88) and patients with benign pulmonary nodules (n = 32). The concentration of 2-butanone in exhaled breath of patients (n = 51) with stages II though IV non–small cell lung cancer (NSCLC) was significantly higher than in exhaled breath of patients with stage I (n = 34). The carbonyl VOC profile in exhaled breath determined using this new silicon microreactor technology provides for the noninvasive detection of lung cancer. PMID:24402867
Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan
2016-05-01
Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released.
Guan, Xuewei; Hou, Likai; Ren, Yukun; Deng, Xiaokang; Lang, Qi; Jia, Yankai; Hu, Qingming; Tao, Ye; Liu, Jiangwei; Jiang, Hongyuan
2016-01-01
Droplet-based microfluidics has provided a means to generate multi-core double emulsions, which are versatile platforms for microreactors in materials science, synthetic biology, and chemical engineering. To provide new opportunities for double emulsion platforms, here, we report a glass capillary microfluidic approach to first fabricate osmolarity-responsive Water-in-Oil-in-Water (W/O/W) double emulsion containing two different inner droplets/cores and to then trigger the coalescence between the encapsulated droplets precisely. To achieve this, we independently control the swelling speed and size of each droplet in the dual-core double emulsion by controlling the osmotic pressure between the inner droplets and the collection solutions. When the inner two droplets in one W/O/W double emulsion swell to the same size and reach the instability of the oil film interface between the inner droplets, core-coalescence happens and this coalescence process can be controlled precisely. This microfluidic methodology enables the generation of highly monodisperse dual-core double emulsions and the osmolarity-controlled swelling behavior provides new stimuli to trigger the coalescence between the encapsulated droplets. Such swelling-caused core-coalescence behavior in dual-core double emulsion establishes a novel microreactor for nanoliter-scale reactions, which can protect reaction materials and products from being contaminated or released. PMID:27279935
Highly efficient TiO2-based microreactor for photocatalytic applications.
Krivec, Matic; Žagar, Kristina; Suhadolnik, Luka; Čeh, Miran; Dražić, Goran
2013-09-25
A photocatalytic, TiO2-based microreactor is designed and fabricated on a metal-titanium foil. The microchannel is mechanically engraved in the substrate foil, and a double-layered TiO2 anatase film is immobilized on its inner walls with a two-step synthesis, which included anodization and a hydrothermal treatment. X-ray diffraction (XRD) and scanning electron microscopy (SEM) confirm the presence of an approximately 10-μm-thick layer of titania nanotubes and anatase nanoparticles. The SEM and transmission electron microscopy (TEM) of the cross sections show a dense interface between the titanium substrate and the TiO2 nanotubes. An additional layer of TiO2-anatase nanoparticles on the top of the film provides a large, photocatalytic surface area. The metal-titanium substrate with a functionalized serpentine channel is sealed with UV-transparent Plexiglas, and four 0.8-mW UV LEDs combined with a power controller on a small printed-circuit board are fixed over the substrate. The photocatalytic activity and the kinetic properties for the degradation of caffeine are provided, and the longer-term stability of the TiO2 film is evaluated. The results show that after 6 months of use and 3600 working cycles the microreactor still exhibits 60% of its initial efficiency.
Microfluidic reactors for visible-light photocatalytic water purification assisted with thermolysis
Wang, Ning; Tan, Furui; Wan, Li; Wu, Mengchun
2014-01-01
Photocatalytic water purification using visible light is under intense research in the hope to use sunlight efficiently, but the conventional bulk reactors are slow and complicated. This paper presents an integrated microfluidic planar reactor for visible-light photocatalysis with the merits of fine flow control, short reaction time, small sample volume, and long photocatalyst durability. One additional feature is that it enables one to use both the light and the heat energy of the light source simultaneously. The reactor consists of a BiVO4-coated glass as the substrate, a blank glass slide as the cover, and a UV-curable adhesive layer as the spacer and sealant. A blue light emitting diode panel (footprint 10 mm × 10 mm) is mounted on the microreactor to provide uniform irradiation over the whole reactor chamber, ensuring optimal utilization of the photons and easy adjustments of the light intensity and the reaction temperature. This microreactor may provide a versatile platform for studying the photocatalysis under combined conditions such as different temperatures, different light intensities, and different flow rates. Moreover, the microreactor demonstrates significant photodegradation with a reaction time of about 10 s, much shorter than typically a few hours using the bulk reactors, showing its potential as a rapid kit for characterization of photocatalyst performance. PMID:25584117
Lin, Pingtan; Zhao, Shulin; Lu, Xin; Ye, Fanggui; Wang, Hengshan
2013-08-01
A CE method based on a dual-enzyme co-immobilized capillary microreactor was developed for the simultaneous screening of multiple enzyme inhibitors. The capillary microreactor was prepared by co-immobilizing adenosine deaminase and xanthine oxidase on the inner wall at the inlet end of the separation capillary. The enzymes were first immobilized on gold nanoparticles, and the functionalized gold nanoparticles were then assembled on the inner wall at the inlet end of the separation capillary treated with polyethyleneimine. With the developed CE method, the substrates and products were baseline separated within 3 min. The activity of the immobilized enzyme can be directly detected by measuring the peak height of the products. A statistical parameter Z' factor was recommended for evaluation of the accuracy of a drug screening system. In the present study, it was calculated to be larger than 0.5, implying a good accuracy. Finally, screening a small compound library containing two known enzyme inhibitors and 20 natural extracts by the proposed method was demonstrated. The known inhibitors were identified, and some natural extracts were found to be positive for two-enzyme inhibition by the present method. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Zhenbin; Sun, Liangliang; Zhu, Guijie; Cox, Olivia F; Huber, Paul W; Dovichi, Norman J
2016-01-05
A sulfonate-silica hybrid strong cation exchange monolith microreactor was synthesized and coupled to a linear polyacrylamide coated capillary for online sample preparation and capillary zone electrophoresis-tandem mass spectrometry (CZE-MS/MS) bottom-up proteomic analysis. The protein sample was loaded onto the microreactor in an acidic buffer. After online reduction, alkylation, and digestion with trypsin, the digests were eluted with 200 mM ammonium bicarbonate at pH 8.2 for CZE-MS/MS analysis using 1 M acetic acid as the background electrolyte. This combination of basic elution and acidic background electrolytes results in both sample stacking and formation of a dynamic pH junction. 369 protein groups and 1274 peptides were identified from 50 ng of Xenopus laevis zygote homogenate, which is comparable with an offline sample preparation method, but the time required for sample preparation was decreased from over 24 h to less than 40 min. Dramatically improved performance was produced by coupling the reactor to a longer separation capillary (∼100 cm) and a Q Exactive HF mass spectrometer. 975 protein groups and 3749 peptides were identified from 50 ng of Xenopus protein using the online sample preparation method.
Ionic Liquid Droplet Microreactor for Catalysis Reactions Not at Equilibrium.
Zhang, Ming; Ettelaie, Rammile; Yan, Tao; Zhang, Suojiang; Cheng, Fangqin; Binks, Bernard P; Yang, Hengquan
2017-12-06
We develop a novel strategy to more effectively and controllably process continuous enzymatic or homogeneous catalysis reactions based on nonaqueous Pickering emulsions. A key element of this strategy is "bottom-up" construction of a macroscale continuous flow reaction system through packing catalyst-containing micron-sized ionic liquid (IL) droplet in oil in a column reactor. Due to the continuous influx of reactants into the droplet microreactors and the continuous release of products from the droplet microreactors, catalysis reactions in such a system can take place without limitations arising from establishment of the reaction equilibrium and catalyst separation, inherent in conventional batch reactions. As proof of the concept, enzymatic enantioselective trans-esterification and CuI-catalyzed cycloaddition reactions using this IL droplet-based flow system both exhibit 8 to 25-fold enhancement in catalysis efficiency compared to their batch counterparts, and a durability of at least 4000 h for the enantioselective trans-esterification of 1-phenylethyl alcohol, otherwise unattainable in their batch counterparts. We further establish a theoretical model for such a catalysis system working under nonequilibrium conditions, which not only supports the experimental results but also helps to predict reaction progress at a microscale level. Being operationally simple, efficient, and adaptive, this strategy provides an unprecedented platform for practical applications of enzymes and homogeneous catalysts even at a controllable level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.
2014-03-01
In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactorsmore » were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms.« less
NASA Astrophysics Data System (ADS)
Pontes, P. C.; Naveira-Cotta, C. P.
2016-09-01
The theoretical analysis for the design of microreactors in biodiesel production is a complicated task due to the complex liquid-liquid flow and mass transfer processes, and the transesterification reaction that takes place within these microsystems. Thus, computational simulation is an important tool that aids in understanding the physical-chemical phenomenon and, consequently, in determining the suitable conditions that maximize the conversion of triglycerides during the biodiesel synthesis. A diffusive-convective-reactive coupled nonlinear mathematical model, that governs the mass transfer process during the transesterification reaction in parallel plates microreactors, under isothermal conditions, is here described. A hybrid numerical-analytical solution via the Generalized Integral Transform Technique (GITT) for this partial differential system is developed and the eigenfunction expansions convergence rates are extensively analyzed and illustrated. The heuristic method of Particle Swarm Optimization (PSO) is applied in the inverse analysis of the proposed direct problem, to estimate the reaction kinetics constants, which is a critical step in the design of such microsystems. The results present a good agreement with the limited experimental data in the literature, but indicate that the GITT methodology combined with the PSO approach provide a reliable computational algorithm for direct-inverse analysis in such reactive mass transfer problems.
Micro-reactors for characterization of nanostructure-based sensors.
Savu, R; Silveira, J V; Flacker, A; Vaz, A R; Joanni, E; Pinto, A C; Gobbi, A L; Santos, T E A; Rotondaro, A L P; Moshkalev, S A
2012-05-01
Fabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 μl) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding. The contact pins were electrically insulated from the body of the reactor using a borosilicate sealing glass and the reactor was hermetically sealed using a lid and an elastomeric o-ring. One of the advantages of the reactor lies in its simple assembly and ease of use with any vacuum/gas system, allowing the connection of more than one device. Moreover, the lid can be modified in order to fit a window for in situ optical characterization. In order to prove its versatility, carbon nanotube-based sensors were tested using this micro-reactor. The devices were fabricated by depositing carbon nanotubes over 1 μm thick gold electrodes patterned onto Si/SiO(2) substrates. The sensors were tested using oxygen and nitrogen atmospheres, in the pressure range between 10(-5) and 10(-1) mbar. The small chamber volume allowed the measurement of fast sensor characteristic times, with the sensors showing good sensitivity towards gas and pressure as well as high reproducibility.
Micro-reactors for characterization of nanostructure-based sensors
NASA Astrophysics Data System (ADS)
Savu, R.; Silveira, J. V.; Flacker, A.; Vaz, A. R.; Joanni, E.; Pinto, A. C.; Gobbi, A. L.; Santos, T. E. A.; Rotondaro, A. L. P.; Moshkalev, S. A.
2012-05-01
Fabrication and testing of micro-reactors for the characterization of nanosensors is presented in this work. The reactors have a small volume (100 μl) and are equipped with gas input/output channels. They were machined from a single piece of kovar in order to avoid leaks in the system due to additional welding. The contact pins were electrically insulated from the body of the reactor using a borosilicate sealing glass and the reactor was hermetically sealed using a lid and an elastomeric o-ring. One of the advantages of the reactor lies in its simple assembly and ease of use with any vacuum/gas system, allowing the connection of more than one device. Moreover, the lid can be modified in order to fit a window for in situ optical characterization. In order to prove its versatility, carbon nanotube-based sensors were tested using this micro-reactor. The devices were fabricated by depositing carbon nanotubes over 1 μm thick gold electrodes patterned onto Si/SiO2 substrates. The sensors were tested using oxygen and nitrogen atmospheres, in the pressure range between 10-5 and 10-1 mbar. The small chamber volume allowed the measurement of fast sensor characteristic times, with the sensors showing good sensitivity towards gas and pressure as well as high reproducibility.
Gu, Fu; Guo, Jianfeng; Zhang, Wujie; Summers, Peter A; Hall, Philip
2017-12-01
Mechanical recycling of waste plastics is an environmental solution to the problem of waste plastic disposal, and has already become a common practice in industry. However, limited information can be found on either the industralised plastic recycling or the recycled materials, despite the use of recycled plastics has already extended to automobile production. This study investigates the life cycle environmental impacts of mechanical plastic recycling practice of a plastic recycling company in China. Waste plastics from various sources, such as agricultural wastes, plastic product manufacturers, collected solid plastic wastes and parts dismantled from waste electric and electronic equipments, are processed in three routes with products end up in different markets. The results of life cycle assessments show that the extrusion process has the largest environmental impacts, followed by the use of fillers and additives. Compared to production of virgin plastics and composites, the mechanical recycling is proved to be a superior alternative in most environmental aspects. Substituting virgin plastic composites with recycled plastic composites has achieved the highest environmental benefits, as virgin composite production has an impact almost 4 times higher that of the recycled composite production in each ReCiPe endpoint damage factor. Sensitivity analysis shows that the coverage of collecting network contribute affect little to overall environmental impact, and centralisation plays an important role in reducing overall environmental impacts. Among the fillers and additives, impact modifiers account for the most significant contributions to the environmental impacts of recycled composites. This study provides necessary information about the existing industrialised plastic recycling practice, and recommendations are given. Research implications are presented with the purpose to achieve higher substitution rate and lower environmental impact. Copyright © 2017 Elsevier B.V. All rights reserved.
2015-01-01
Immunoassays have been translated into microfluidic device formats, but significant challenges relating to upstream sample processing still limit their applications. Here, stimuli-responsive polymer–antibody conjugates are utilized in a microfluidic immunoassay to enable rapid biomarker purification and enrichment as well as sensitive detection. The conjugates were constructed by covalently grafting poly(N-isopropylacrylamide) (PNIPAAm), a thermally responsive polymer, to the lysine residues of anti-prostate specific antigen (PSA) Immunoglobulin G (IgG) using carbodiimide chemistry via the polymer end-carboxylate. The antibody-PNIPAAm (capture) conjugates and antibody-alkaline phosphatase (detection) conjugates formed sandwich immunocomplexes via PSA binding in 50% human plasma. The complexes were loaded into a recirculating poly(dimethylsiloxane) microreactor, equipped with micropumps and transverse flow features, for subsequent separation, enrichment, and quantification. The immunocomplexes were captured by heating the solution to 39 °C, mixed over the transverse features for 2 min, and washed with warm buffer. In one approach, the assay utilized immunocomplex solution that was contained in an 80 nL microreactor, which was loaded with solution at room temperature and subsequently heated to 39 °C. The assay took 25 min and resulted in 37 pM PSA limit of detection (LOD), which is comparable to a plate ELISA employing the same antibody pair. In another approach, the microreactor was preheated to 39 °C, and immunocomplex solution was flowed through the reactor, mixed, and washed. When the specimen volume was increased to 7.5 μL by repeating the capture process three times, the higher specimen volume led to immunocomplex enrichment within the microreactor. The resulting assay LOD was 0.5 pM, which is 2 orders of magnitude lower than the plate ELISA. Both approaches generate antigen specific signal over a clinically significant range. The sample processing capabilities and subsequent utility in a biomarker assay demonstrate the opportunity for stimuli-responsive polymer–protein conjugates in novel diagnostic technologies. PMID:25405605
Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, Emory Ming-Yue
2006-01-01
Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystalmore » diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag 2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.« less
NASA Astrophysics Data System (ADS)
Sendula, E.; Lamadrid, H. M.; Bodnar, R. J.
2017-12-01
Ultramafic and mafic rocks (e.g. peridotites, serpentinites and basalts) are being considered as possible targets for CO2 sequestration via mineral carbonation. The determination of reaction kinetics and the factors that control mineralization are important in order to understand and predict fluid-rock reactions between the injected CO2 and the host rocks. Here we present results of experiments focused on determining the reaction rates of carbonation of olivine as a function of initial CO2 concentration (20 mol% and 11 mol%) in the aqueous solution and temperature (100°C and 50°C). We used a recently developed experimental method (Lamadrid et al., 2017) that uses synthetic fluid inclusions as micro-reactors. The micro-reactor technique coupled with non-destructive Raman spectroscopy allows us to monitor the reaction progress in situ and in real time, by quantifying the amount of CO2 consumed in the reaction as a function of time. Results show a measurable decrease of CO2 density in the fluid inclusions as a result of the reaction between the CO2-bearing aqueous phase and olivine. Magnesite formation begins within several hours at 100°C and most of the CO2 was consumed within two days. At 50°C, however, magnesite nucleation and precipitation required weeks to months to begin, and the reaction rates were about an order of magnitude slower than in the experiments at 100°C. No significant differences were observed in the reaction rates as a function of initial CO2 concentration. The application of the synthetic fluid inclusion technique as micro-reactors coupled with non-destructive analytical techniques is a promising tool to monitor rates of fluid-rock reactions in situ and in real time, allowing detailed micron-scale investigations. The technique can be applied to a wide variety of chemical systems, host minerals, reaction products, fluid densities, temperatures, and different starting fluid compositions.
49 CFR 173.156 - Exceptions for limited quantity and ORM.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., carts, boxes or similar overpacks; (ii) Offered for transportation or transported by: (A) Rail; (B... transported to a disposal facility from one offeror. (2) The 30 kg (66 pounds) gross weight limitation does... a fiberboard box which is banded and secured to a wooden pallet by metal, fabric, or plastic straps...
Small, low cost, artificial kidney
NASA Technical Reports Server (NTRS)
Lavender, A. R.; Markley, F. W.
1972-01-01
Disposable hemodialyzer is described that can be used at home by non-medically trained personnel. Short lengths of semipermeable membrane tubes are arranged in parallel, supported by plastic mesh and encased in epoxy at ends. Tubes are connected to input and output blood manifolds which are separated by dialysate chamber. Daily dialysis requires only two hours or less.
This is a webinar page for the Sustainable Management of Materials (SMM) Web Academy webinar titled Let’s WRAP (Wrap Recycling Action Program): Best Practices to Boost Plastic Film Recycling in Your Community
Getting a Little More from Your Speed Stacks
ERIC Educational Resources Information Center
Barney, David; Galzki, Aarin; Beil, Dawn; Bates, Derald
2006-01-01
Physical educators have at their disposal basketballs, jump ropes, cones and other types of equipment to assist student learning during physical education class time. Recently, a new product has been introduced to physical educators: cup stacks, which are cups made of thick durable plastic. They are intended to help improve ambidexterity,…
Manual tube-to-tubesheet welding torch
Kiefer, Joseph H.; Smith, Danny J.
1982-01-01
A welding torch made of a high temperature plastic which fits over a tube intermediate the ends thereof for welding the juncture between the tube and the back side of a tube plate and has a ballooned end in which an electrode, filler wire guide, fiber optic bundle, and blanketing gas duct are disposed.
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; and 3) Extruded p...
USDA-ARS?s Scientific Manuscript database
Polystyrene is one of the most widely used plastics and is commonly produced in three forms: 1) Extruded polystyrene – disposable utensils, CD/DVD cases, yogurt containers, smoke alarm housing, etc.; 2) Expanded polystyrene foam – molded packaging materials and packaging "peanuts"; 3) Extruded polys...
Resource Recovery. Redefining the 3 Rs. Reduce...Reuse...Recycle. Resources in Technology.
ERIC Educational Resources Information Center
Technology Teacher, 1991
1991-01-01
Discusses the problems of waste disposal, recycling, and resource recovery. Includes information on the social and cultural impact, the three classes of resource recovery (reuse, direct recycling, and indirect recycling), and specific products (paper, glass, plastics, metals, and so on). Includes a student quiz and possible outcomes. (JOW)
ERIC Educational Resources Information Center
Meikle, Teresa, Comp.
Municipal solid waste refers to waste materials generated by residential, commercial, and institutional sources, and consists predominantly of paper, glass, metals, plastics, and food and yard waste. Within the definition of the Solid Waste Disposal Act, municipal solid waste does not include sewage sludge or hazardous waste. The three main…
Field Study of Solid Waste Reduction, Management, and Disposal Issues at Fort Benning, Georgia
1998-02-01
bailer w/fluffer attachment Ball & Jewel plastic granulator Two forklifts Four-ton covered flatbed truck 1 /2-ton pick-up 3/4-ton truck with fifth...pressure- treated laminate , or creosote-treated wood has some limited potential applications. A major barrier to the use of any construction or
Demonstrating Microscale Gas Reactions Using Disposable Plastic Syringes
ERIC Educational Resources Information Center
Goodwin, Alan
2011-01-01
This article provides an example of a teacher's learning, since the author only became aware of the microscale technique described very late in his professional career. The technique provides a convenient method of preparing and manipulating gases on a very small scale and a relatively safe means of demonstrating reactions that would be very…
Hartwig, Eike; Clemens, Thomas; Heckroth, Mathias
2007-05-01
This paper continues the investigations of Clemens and Hartwig from 1992 on the proportion of garbage used as nesting material in the Kittiwake colony at Bulbjerg in the Jammerbugt in Northwest Denmark. Whereas in the year 1992 plastic garbage items were included in 39.3% of 466 Kittiwake nests in the Bulbjerg colony, in 2005 57.2% of 311 nests contained plastic debris. Although it has been forbidden to dispose of plastic garbage into the marine environment since the implementation of the MARPOL 73/78-Agreement/Annex V (Regulation for the Prevention of Pollution by Ship Waste) of 1989 and especially since the declaration of the North Sea as a MARPOL-Special Area for garbage in 1991, the pollution of the oceans and the North Sea is still an ubiquitous problem, particularly with regard to plastic waste. Plastic waste is presumably not used preferentially for nest-building, but in the context of available nesting material in the waters surrounding the breeding colony. Therefore the share of garbage parts in nests of certain species of birds is an indicator of the amount of waste in the natural environment in the vicinity of their breeding site.
Coprocessing of plastics with coal and petroleum resid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joo, H.; Curtis, C.W.
1995-12-31
Waste plastics have become an increasing problem in the United States since land filling is no longer considered a feasible disposal method. Since plastics are petroleum-derived materials, coprocessing then with coal to produce transportation fuels is a feasible alternative. In this study, catalytic coprocessing reactions were performed using Blind Canyon bituminous coal, Manji petroleum resid, and waste plastics. Model polymers including polystyrene, low density polyethylene (LDPE) and polyethylene tereplithalare (PET) were selected because they represent a substantial portion of the waste plastics generated in the United States. Coprocessing reactions of coal, resid, and polymer as well as reactions of individualmore » components and combinations of two components were performed at 430{degrees}C for one hour with an initial H{sub 2} pressure of 8.5 MPa introduced at ambient temperature with presulfided NiMo/Al{sub 2}O{sub 3} as catalyst. Coprocessing all three materials resulted in a substantial improvement in the total conversion compared to the coal plus polymer reaction and slightly less conversion than the resid plus polymer combinations.« less
Kumar, P Senthil; Sankaranarayanan, G
2016-12-01
Rapid depletion of conventional fossil fuel resources, their rising prices and environmental issues are the major concern of alternative fuels. On the other hand waste plastics cause a very serious environmental dispute because of their disposal problems. Waste plastics are one of the promising factors for fuel production because of their high heat of combustion and their increasing availability in local communities. In this study, waste plastic oil (WPO) is tested in DI diesel engine to evaluate its performance and emission characteristics. Results showed that oxides of nitrogen (NO x ) emission get increased with WPO when compared to diesel oil. Further, the three phase (O/W/O) plastic oil emulsion is prepared with an aid of ultrasonicater according to the %v (10, 20 & 30). Results expose that brake thermal efficiency (BTE) is found to be increased. NO x and smoke emissions were reduced up to 247ppm and 41% respectively, when compared to diesel at full load condition with use of 30% emulsified WPO. Copyright © 2016 Elsevier Inc. All rights reserved.
Jeong, Heondo; Na, Jeong-Geol; Jang, Min Su; Ko, Chang Hyun
2016-05-01
In hydrogen production by methanol steam reforming reaction with microchannel reactor, Al2O3 thin film formed by atomic layer deposition (ALD) was introduced on the surface of microchannel reactor prior to the coating of catalyst particles. Methanol conversion rate and hydrogen production rate, increased in the presence of Al2O3 thin film. Over-view and cross-sectional scanning electron microscopy study showed that the adhesion between catalyst particles and the surface of microchannel reactor enhanced due to the presence of Al2O3 thin film. The improvement of hydrogen production rate inside the channels of microreactor mainly came from the stable fixation of catalyst particles on the surface of microchannels.
Gas bubble formation and its pressure signature in T-junction of a microreactor
NASA Astrophysics Data System (ADS)
Pouya, Shahram; Koochesfahani, Manoochehr
2013-11-01
The segmented gas-liquid flow is of particular interest in microreactors used for high throughput material synthesis with enhanced mixing and more efficient reaction. A typical geometry to introduce gas plugs into the reactor is a T-junction where the dispersed liquid is squeezed and pinched by the continuous fluid in the main branch of the junction. We present experimental data of time resolved pressure along with synchronous imaging of the drop formation at the junction to show the transient behavior of the process. The stability of the slug regime and the regularity of the slug/plug pattern are investigated in this study. This work was supported by the CRC Program of the National Science Foundation, Grant Number CHE-0714028.
Ortiz de Solorzano, Isabel; Prieto, Martín; Mendoza, Gracia; Alejo, Teresa; Irusta, Silvia; Sebastian, Victor; Arruebo, Manuel
2016-08-24
The continuous synthesis of biodegradable photothermal copper sulfide nanoparticles has been carried out with the aid of a microfluidic platform. A comparative physicochemical characterization of the resulting products from the microreactor and from a conventional batch reactor has been performed. The microreactor is able to operate in a continuous manner and with a 4-fold reduction in the synthesis times compared to that of the conventional batch reactor producing nanoparticles with the same physicochemical requirements. Biodegradation subproducts obtained under simulated physiological conditions have been identified, and a complete cytotoxicological analysis on different cell lines was performed. The photothermal effect of those nanomaterials has been demonstrated in vitro as well as their ability to generate reactive oxygen species.
NASA Astrophysics Data System (ADS)
Javadi, Alireza
Petroleum-based polymers have made a significant contribution to human society due to their extraordinary adaptability and processability. However, due to the wide-spread application of plastics over the past few decades, there are growing concerns over depleting fossil resources and the undesirable environmental impact of plastics. Most of the petroleum-based plastics are non-biodegradable and thus will be disposed in landfills. Inappropriate disposal of plastics may also become a potential threat to the environment. Many approaches, such as efficient plastics waste management and replacing petroleum-based plastics with biodegradable materials obtained from renewable resources, have been put forth to overcome these problems. Plastics waste management is at its beginning stages of development which is also more expensive than expected. Thus, there is a growing interest in developing sustainable biobased and biodegradable materials produced from renewable resources such as plants and crops, which can offer comparable performance with additional advantages, such as biodegradability, biocompatibility, and reducing the carbon footprint. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) is one of the most promising biobased and biodegradable polymers, In fact many petroleum based polymers such as poly(propylene) (PP) can be potentially replaced by PHBV because of the similarity in their properties. Despite PHBV's attractive properties, there are many drawbacks such as high cost, brittleness, and thermal instability, which hamper the widespread usage of this specific polymer. The goals of this study are to investigate various strategies to address these drawbacks, including blending with other biodegradable polymers such as poly (butylene adipate-coterephthalate) (PBAT) or fillers (e.g., coir fiber, recycled wood fiber, and nanofillers) and use of novel processing technologies such as microcellular injection molding technique. Microcellular injection molding technique will not only reduce cost but also improve processability due to the use of supercritical fluid. Various material properties of the solid (without the foaming agent) and microcellular components (with foaming agent) made of PHBV-based polymer blends or composites were investigated including static mechanical properties (tensile testing), dynamic mechanical properties (dynamic mechanical analysis), thermal properties (differential scanning calorimetry and thermo gravimetric analysis), crystallinity(wide angle X-ray scattering analysis), and morphology (scanning electron microscopy and transmission electron microscopy). The composition-processing-structure-property relationship of these solid and microcellular components were established.
Monitoring the abundance of plastic debris in the marine environment.
Ryan, Peter G; Moore, Charles J; van Franeker, Jan A; Moloney, Coleen L
2009-07-27
Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.
Monitoring the abundance of plastic debris in the marine environment
Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.
2009-01-01
Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052
Toxic Effects of Di-2-ethylhexyl Phthalate: An Overview
2018-01-01
Di-2-ethylhexyl phthalate (DEHP) is extensively used as a plasticizer in many products, especially medical devices, furniture materials, cosmetics, and personal care products. DEHP is noncovalently bound to plastics, and therefore, it will leach out of these products after repeated use, heating, and/or cleaning of the products. Due to the overuse of DEHP in many products, it enters and pollutes the environment through release from industrial settings and plastic waste disposal sites. DEHP can enter the body through inhalation, ingestion, and dermal contact on a daily basis, which has raised some concerns about its safety and its potential effects on human health. The main aim of this review is to give an overview of the endocrine, testicular, ovarian, neural, hepatotoxic, and cardiotoxic effects of DEHP on animal models and humans in vitro and in vivo. PMID:29682520
Suresh Kumar, M; Mudliar, S N; Reddy, K M K; Chakrabarti, T
2004-12-01
Most of the excess sludge from a wastewater treatment plant (60%) is disposed by landfill. As a resource utilization of excess sludge, the production of biodegradable plastics using the sludge has been proposed. Storage polymers in bacterial cells can be extracted and used as biodegradable plastics. However, widespread applications have been limited by high production cost. In the present study, activated sludge bacteria in a conventional wastewater treatment system were induced, by controlling the carbon: nitrogen ratio to accumulate storage polymers. Polymer yield increased to a maximum 33% of biomass (w/w) when the C/N ratio was increased from 24 to 144, where as specific growth yield decreased with increasing C/N ratio. The conditions which are required for the maximum polymer accumulation were optimized and are discussed.
Stoichiometric Experiments with Alkane Combustion: A Classroom Demonstration
ERIC Educational Resources Information Center
Zhilin, Denis M.
2012-01-01
A simple, effective demonstration of the concept of limiting and excess reagent is presented. Mixtures of either air/methane (from a gas line) or air/butane (from a disposable cigarette lighter) contained in a plastic 2 L soda bottles are ignited. The mixtures combust readily when air/fuel ratios are stoichiometric, but not at a 2-fold excess of…
Microstrucutral Modeling of Hot Spot and Failure Mechanisms in RDX Energetic Aggregates
2014-01-01
with applications to disposable blood pressure cuffs . He graduated cum laude with a Bachelors of Science degree in Mechanical Engineering in May of...35 Figure 4.2. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d...39 Figure 4.6. (a) Rotation , (b) Normal Stress, (c) Pressure, and (d) Accumulated plastic shear
Method and apparatus for passive optical dosimeter comprising caged dye molecules
Sandison, David R.
2001-07-03
A new class of ultraviolet dosimeters is made possible by exposing caged dye molecules, which generate a dye molecule on exposure to ultraviolet radiation, to an exterior environment. Applications include sunburn monitors, characterizing the UV exposure history of UV-sensitive materials, especially including structural plastics, and use in disposable `one-use` optical equipment, especially medical devices.
Nested potassium hydroxide etching and protective coatings for silicon-based microreactors
NASA Astrophysics Data System (ADS)
de Mas, Nuria; Schmidt, Martin A.; Jensen, Klavs F.
2014-03-01
We have developed a multilayer, multichannel silicon-based microreactor that uses elemental fluorine as a reagent and generates hydrogen fluoride as a byproduct. Nested potassium hydroxide etching (using silicon nitride and silicon oxide as masking materials) was developed to create a large number of channels (60 reaction channels connected to individual gas and liquid distributors) of significantly different depths (50-650 µm) with sloped walls (54.7° with respect to the (1 0 0) wafer surface) and precise control over their geometry. The wetted areas were coated with thermally grown silicon oxide and electron-beam evaporated nickel films to protect them from the corrosive fluorination environment. Up to four Pyrex layers were anodically bonded to three silicon layers in a total of six bonding steps to cap the microchannels and stack the reaction layers. The average pinhole density in as-evaporated films was 3 holes cm-2. Heating during anodic bonding (up to 350 °C for 4 min) did not significantly alter the film composition. Upon fluorine exposure, nickel films (160 nm thick) deposited on an adhesion layer of Cr (10 nm) over an oxidized silicon substrate (up to 500 nm thick SiO2) led to the formation of a nickel fluoride passivation layer. This microreactor was used to investigate direct fluorinations at room temperature over several hours without visible signs of film erosion.
NASA Astrophysics Data System (ADS)
Li, Jiajie; Zhang, Yumin; Gao, Tangling; Han, Jiecai; Wang, Xianjie; Hultman, Benjamin; Xu, Ping; Zhang, Zhihua; Wu, Gang; Song, Bo
2018-02-01
In virtue of abundant sodium resources, sodium ion batteries (SIBs) have been regarded as one of the most promising alternatives for large-scale energy storage applications. However, the absence of a suitable anode material makes it difficult to realize these applications. Here, we demonstrate an effective synthesis strategy of using a "microreactor" consisting of melamine fiber (inside) and graphene oxide (GO, outside) to fabricate three dimensional (3D) nitrogen doped (N-doped) graphene as high-performance anode materials for sodium ion batteries. Through a controlled pyrolysis, the inside melamine fiber and the outside GO layer has been converted into N-doped graphene and reduced graphene oxide (r-GO) respectively, and thus the "microreactor" is transformed into interconnected 3D N-doped graphene structures. Such highly desired 3D graphene structures show reversible sodium storage capacities up to ∼305 mA h g-1 after 500 cycles at a current density of 0.2 A g-1 and promising long cycling stability with a stable capacity of ∼198 mA h g-1 at 5 A g-1 after 5000 cycles. The high capacity and superior durability in combination with the facile synthesis procedure of the 3D graphene structure make it a promising anode material for SIBs and other energy storage applications.
In Situ Visualization of the Phase Behavior of Oil Samples Under Refinery Process Conditions.
Laborde-Boutet, Cedric; McCaffrey, William C
2017-02-21
To help address production issues in refineries caused by the fouling of process units and lines, we have developed a setup as well as a method to visualize the behavior of petroleum samples under process conditions. The experimental setup relies on a custom-built micro-reactor fitted with a sapphire window at the bottom, which is placed over the objective of an inverted microscope equipped with a cross-polarizer module. Using reflection microscopy enables the visualization of opaque samples, such as petroleum vacuum residues, or asphaltenes. The combination of the sapphire window from the micro-reactor with the cross-polarizer module of the microscope on the light path allows high-contrast imaging of isotropic and anisotropic media. While observations are carried out, the micro-reactor can be heated to the temperature range of cracking reactions (up to 450 °C), can be subjected to H2 pressure relevant to hydroconversion reactions (up to 16 MPa), and can stir the sample by magnetic coupling. Observations are typically carried out by taking snapshots of the sample under cross-polarized light at regular time intervals. Image analyses may not only provide information on the temperature, pressure, and reactive conditions yielding phase separation, but may also give an estimate of the evolution of the chemical (absorption/reflection spectra) and physical (refractive index) properties of the sample before the onset of phase separation.
NASA Astrophysics Data System (ADS)
Jin, Hyung Dae
Recent advances in nanocrystalline materials production are expected to impact the development of next generation low-cost and/or high efficiency solar cells. For example, semiconductor nanocrystal inks are used to lower the fabrication cost of the absorber layers of the solar cells. In addition, some quantum confined nanocrystals display electron-hole pair generation phenomena with greater than 100% quantum yield, called multiple exciton generation (MEG). These quantum dots could potentially be used to fabricate solar cells that exceed the Schockley-Queisser limit. At present, continuous syntheses of nanoparticles using microreactors have been reported by several groups. Microreactors have several advantages over conventional batch synthesis. One advantage is their efficient heat transfer and mass transport. Another advantage is the drastic reduction in the reaction time, in many cases, down to minutes from hours. Shorter reaction time not only provides higher throughput but also provide better particle size control by avoiding aggregation and by reducing probability of oxidizing precursors. In this work, room temperature synthesis of Au11 nanoclusters and high temperature synthesis of chalcogenide nanocrystals were demonstrated using continuous flow microreactors with high throughputs. A high rate production of phosphine-stabilized Au11 nanoclusters was achieved using a layer-up strategy which involves the use of microlamination architectures; the patterning and bonding of thin layers of material (laminae) to create a multilayered micromixer in the range of 25-250 mum thick was used to step up the production of phosphine-stabilized Au11 nanoclusters. Continuous production of highly monodispersed phosphine-stabilized Au 11 nanoclusters at a rate of about 11.8 [mg/s] was achieved using a microreactor with a size of 1.687cm3. This result is about 30,000 times over conventional batch synthesis according to production rate/per reactor volume. We have elucidated the formation mechanism of CuInSe2 nanocrystals for the development of a continuous flow process for their synthesis. It was found that copper-rich CuInSe2 with a sphalerite structure was formed initially followed by the formation of more ordered CuInSe2 at longer reaction times, along with the formation of Cu2Se and In2Se3. It was found that Cu2Se was formed at a much faster rate than In2Se3 under the same reaction conditions. By adjusting the Cu/In precursor ratio, we were able to develop a very rapid and simple synthesis of CuInSe2 nanocrystals using a continuous flow microreactor with a high throughput per reactor volume. The microreactor has a simple design which uses readily available low cost components. It comprised an inner microtube to precisely control the injection of TOPSe into a larger diameter tube that preheated CuCl and InCl3 hot mixture was pumped through. Rapid injection plays an important role in dividing the nucleation and growth process which is crucial in getting narrow size distribution. The design of this microreactor also has the advantages of alleviating sticking of QDs on the growth channel wall since QDs were formed from the center of the reactor. Furthermore, size-controlled synthesis of CuInSe2 nanocrystals was achieved using this reactor simply by adjusting ratio between coordinating solvents. Semiconductors with a direct bandgap between 1 and 2eV including Cu(In,Ga)Se 2 (1.04--1.6eV) and CuIn(Se,S)2 (1.04--1.53eV) are ideal for single junction cells utilize the visible spectrum. However, half of the solar energy available to the Earth lies in the infrared region. Inorganic QD-based solar cells with a decent efficiency near 1.5 mum have been reported. Therefore, syntheses of narrow gap IV-VI (SnTe, PbS, PbSe, PbTe), II-IV (HgTe, CdXHg1-XTe), and III-V (InAs) QDs have attracted significant attention and these materials have potential uses for a variety of other optical, electronic, and optoelectronic applications. SnTe with an energy gap of 0.18eV at 300K can be used for IR photodetectors, laser diodes, and thermophotovoltaic energy converters. First continuous synthesis of shape-controlled SnTe nanocrystals were also accomplished in this work. SnCl2, and TOPTe were used as reactants successfully in coordinating OA and TOP solvents. Both rod shape and dot shape SnTe nanocrystals with uniform size distributions could be obtained. A blue shift was observed from these SnTe nanocrystals. Production rate at about 5mg/min (300mg/hr) was achieved using a microreactor at a size of 1.78cm3.
Sherman, Jodi D; Raibley, Lewis A; Eckelman, Matthew J
2018-01-09
Traditional medical device procurement criteria include efficacy and safety, ease of use and handling, and procurement costs. However, little information is available about life cycle environmental impacts of the production, use, and disposal of medical devices, or about costs incurred after purchase. Reusable and disposable laryngoscopes are of current interest to anesthesiologists. Facing mounting pressure to quickly meet or exceed conflicting infection prevention guidelines and oversight body recommendations, many institutions may be electively switching to single-use disposable (SUD) rigid laryngoscopes or overcleaning reusables, potentially increasing both costs and waste generation. This study provides quantitative comparisons of environmental impacts and total cost of ownership among laryngoscope options, which can aid procurement decision making to benefit facilities and public health. We describe cradle-to-grave life cycle assessment (LCA) and life cycle costing (LCC) methods and apply these to reusable and SUD metal and plastic laryngoscope handles and tongue blade alternatives at Yale-New Haven Hospital (YNHH). The US Environmental Protection Agency's Tool for the Reduction and Assessment of Chemical and other environmental Impacts (TRACI) life cycle impact assessment method was used to model environmental impacts of greenhouse gases and other pollutant emissions. The SUD plastic handle generates an estimated 16-18 times more life cycle carbon dioxide equivalents (CO2-eq) than traditional low-level disinfection of the reusable steel handle. The SUD plastic tongue blade generates an estimated 5-6 times more CO2-eq than the reusable steel blade treated with high-level disinfection. SUD metal components generated much higher emissions than all alternatives. Both the SUD handle and SUD blade increased life cycle costs compared to the various reusable cleaning scenarios at YNHH. When extrapolated over 1 year (60,000 intubations), estimated costs increased between $495,000 and $604,000 for SUD handles and between $180,000 and $265,000 for SUD blades, compared to reusables, depending on cleaning scenario and assuming 4000 (rated) uses. Considering device attrition, reusable handles would be more economical than SUDs if they last through 4-5 uses, and reusable blades 5-7 uses, before loss. LCA and LCC are feasible methods to ease interpretation of environmental impacts and facility costs when weighing device procurement options. While management practices vary between institutions, all standard methods of cleaning were evaluated and sensitivity analyses performed so that results are widely applicable. For YNHH, the reusable options presented a considerable cost advantage, in addition to offering a better option environmentally. Avoiding overcleaning reusable laryngoscope handles and blades is desirable from an environmental perspective. Costs may vary between facilities, and LCC methodology demonstrates the importance of time-motion labor analysis when comparing reusable and disposable device options.
Household disposables as breeding habitats of dengue vectors: Linking wastes and public health
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com; Aditya, Gautam, E-mail: gautamaditya2001@gmail.com; Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104
Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities ofmore » tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that are most frequently disposed off contributed largely to the sustenance of Aedes mosquito population in the city. This calls for a strict legislation towards disposal as well as enhanced management of the household wastes. A link between the wastes disposed and subsequent conversion to the mosquito larval habitats cautions for continuance of Aedes population and possibility of dengue epidemics if the existing management practices are not improved.« less
Size-controlled synthesis of ZnO quantum dots in microreactors
NASA Astrophysics Data System (ADS)
Schejn, Aleksandra; Frégnaux, Mathieu; Commenge, Jean-Marc; Balan, Lavinia; Falk, Laurent; Schneider, Raphaël
2014-04-01
In this paper, we report on a continuous-flow microreactor process to prepare ZnO quantum dots (QDs) with widely tunable particle size and photoluminescence emission wavelengths. X-ray diffraction, electron diffraction, UV-vis, photoluminescence and transmission electron microscopy measurements were used to characterize the synthesized ZnO QDs. By varying operating conditions (temperature, flow rate) or the capping ligand, ZnO QDs with diameters ranging from 3.6 to 5.2 nm and fluorescence maxima from 500 to 560 nm were prepared. Results obtained show that low reaction temperatures (20 or 35 °C), high flow rates and the use of propionic acid as a stabilizing agent are favorable for the production of ZnO QDs with high photoluminescence quantum yields (up to 30%).
Concepts for compact mid-IR spectroscopy in photochemistry
NASA Astrophysics Data System (ADS)
Cu-Nguyen, Phuong-Ha; Wang, Ziyu; Zappe, Hans
2016-11-01
Mid-infrared (IR) spectroscopy, typically 3 to 5 µm, is often the technology of choice to monitor the interaction between and concentration of molecules during photochemical reactions. However, classical mid-IR spectrometers are bulky, complex and expensive, making them unsuitable for use in the miniaturized microreactors increasingly being employed for chemical synthesis. We present here the concept for an ultra-miniaturized mid-IR spectrometer directly integrated onto a chemical microreactor to monitor the chemical reaction. The spectrometer is based on micro-machined Fabry-Perot resonator filters realized using pairs of Bragg mirrors to achieve a high spectral resolution. The fabrication of the optical filters is outlined and the measurement of transmittance spectra in the mid-IR range show a good agreement with theory and are thus promising candidates for a fully integrated system.
Synthesis of copper nanocolloids using a continuous flow based microreactor
NASA Astrophysics Data System (ADS)
Xu, Lei; Peng, Jinhui; Srinivasakannan, C.; Chen, Guo; Shen, Amy Q.
2015-11-01
The copper (Cu) nanocolloids were prepared by sodium borohydride (NaBH4) reduction of metal salt solutions in a T-shaped microreactor at room temperature. The influence of NaBH4 molar concentrations on copper particle's diameter, morphology, size distribution, and elemental compositions has been investigated by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The ultraviolet-visible spectroscopy (UV-vis) was used to verify the chemical compounds of nanocolloids and estimate the average size of copper nanocolloids. The synthesized copper nanocolloids were uniform in size and non-oxidized. A decrease in the mean diameter of copper nanocolloids was observed with increasing NaBH4 molar concentrations. The maximum mean diameter (4.25 nm) occurred at the CuSO4/NaBH4 molar concentration ratio of 1:2.
Another expert system rule inference based on DNA molecule logic gates
NASA Astrophysics Data System (ADS)
WÄ siewicz, Piotr
2013-10-01
With the help of silicon industry microfluidic processors were invented utilizing nano membrane valves, pumps and microreactors. These so called lab-on-a-chips combined together with molecular computing create molecular-systems-ona- chips. This work presents a new approach to implementation of molecular inference systems. It requires the unique representation of signals by DNA molecules. The main part of this work includes the concept of logic gates based on typical genetic engineering reactions. The presented method allows for constructing logic gates with many inputs and for executing them at the same quantity of elementary operations, regardless of a number of input signals. Every microreactor of the lab-on-a-chip performs one unique operation on input molecules and can be connected by dataflow output-input connections to other ones.
Derboven, Pieter; Van Steenberge, Paul H M; Vandenbergh, Joke; Reyniers, Marie-Francoise; Junkers, Thomas; D'hooge, Dagmar R; Marin, Guy B
2015-12-01
The superior capabilities of structured microreactors over batch reactors are demonstrated for reversible addition-fragmentation chain transfer (RAFT) solution polymerization of n-butyl acrylate with the aid of simulations, explicitly accounting for the chain length distribution of all macrospecies types. Since perfect isothermicity can be established in a microreactor, less side products due to backbiting and β-scission are formed compared to the batch operation in which ineffective heat removal leads to an undesirable temperature spike. For a given RAFT chain transfer agent (CTA), additional microstructural control results under microflow conditions by optimizing the reaction temperature, lowering the dilution degree, or decreasing the initial molar ratio of monomer to RAFT CTA. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yano, Junya; Hirai, Yasuhiro; Sakai, Shin-ichi; Tsubota, Jun
2014-04-01
The purpose of this study was to quantify the life-cycle greenhouse gas (GHG) emissions reduction that could be achieved by replacement of fossil-derived materials with biodegradable, biomass-based materials for household plastic containers and packaging, considering a variety of their treatment options. The biomass-based materials were 100% polylactide or a combination of polybutylene succinate adipate and polylactide. A scenario analysis was conducted considering alternative recycling methods. Five scenarios were considered: two for existing fossil-derived materials (the current approach in Japan) and the three for biomass-based materials. Production and waste disposal of 1 m(3) of plastic containers and packaging from households was defined as the functional unit. The results showed that replacement of fossil-derived materials with biomass-based materials could reduce life-cycle GHG emissions by 14-20%. Source separation and recycling should be promoted. When the separate collection ratio reached 100%, replacement with biomass-based materials could potentially reduce GHG emissions by 31.9%. Food containers are a priority for replacement, because they alone could reduce GHG emissions by 10%. A recycling system for biomass-based plastics must be carefully designed, considering aspects such as the transition period from fossil-derived plastics to biomass-based plastics.
Hahladakis, John N; Velis, Costas A; Weber, Roland; Iacovidou, Eleni; Purnell, Phil
2018-02-15
Over the last 60 years plastics production has increased manifold, owing to their inexpensive, multipurpose, durable and lightweight nature. These characteristics have raised the demand for plastic materials that will continue to grow over the coming years. However, with increased plastic materials production, comes increased plastic material wastage creating a number of challenges, as well as opportunities to the waste management industry. The present overview highlights the waste management and pollution challenges, emphasising on the various chemical substances (known as "additives") contained in all plastic products for enhancing polymer properties and prolonging their life. Despite how useful these additives are in the functionality of polymer products, their potential to contaminate soil, air, water and food is widely documented in literature and described herein. These additives can potentially migrate and undesirably lead to human exposure via e.g. food contact materials, such as packaging. They can, also, be released from plastics during the various recycling and recovery processes and from the products produced from recyclates. Thus, sound recycling has to be performed in such a way as to ensure that emission of substances of high concern and contamination of recycled products is avoided, ensuring environmental and human health protection, at all times. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Zhao, Yi-Bo; Lv, Xu-Dong; Yang, Wan-Dong; Ni, Hong-Gang
2017-11-01
The recovery of four dominant plastics from electronic waste (e-waste) using mixed solvent extraction was studied. The target plastics included polycarbonate (PC), polystyrene (PS), acrylonitrile butadiene styrene (ABS), and styrene acrylonitrile (SAN). The extraction procedure for multi-polymers at room temperature yielded PC, PS, ABS, and SAN in acceptable recovery rates (64%, 86%, 127%, and 143%, respectively, where recovery rate is defined as the mass ratio of the recovered plastic to the added standard polymer). Fourier transform infrared spectroscopy (FTIR) was used to verify the recovered plastics' purity using a similarity analysis. The similarities ranged from 0.98 to 0.99. Another similar process, which was denoted as an alternative method for plastic recovery, was examined as well. Nonetheless, the FTIR results showed degradation may occur over time. Additionally, the recovery cost estimation model of our method was established. The recovery cost estimation indicated that a certain range of proportion of plastics in e-waste, especially with a higher proportion of PC and PS, can achieve a lower cost than virgin polymer product. It also reduced 99.6%, 30.7% and 75.8% of energy consumptions and CO 2 emissions during the recovery of PC, PS and ABS, and reduced the amount of plastic waste disposal via landfill or incineration and associated environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.
2.0 SUMMARY OF METHOD
2.1. A 50 mL aliquot of a well-mixed, non-filtered, acid preserved aqueous sample is accurately transferred to clean 50-mL plastic disposable digestion tube containing a mixture of nitric and hydrochloric acids. The aliquot is heated to 95 degrees C (+ o...
Environmental Assessment: Anti-Terrorism/Force Protection McConnell Air Force Base, Kansas
2003-09-01
handled, stored, transported, disposed, or recycled in accordance with these regulations. The potential for hazardous waste generation from gate...Loader (rubber tire) Concrete Truck Concrete Finisher Crane Asphalt Spreader Roller Flat Bed Truck (18 wheel) Scraper Trenching Machine 1...plastics, and lumber. These materials would be placed in the appropriate construction materials landfill or recycled when possible. These wastes
Plastic container bagless transfer
Tibrea, Steven L.; D'Amelio, Joseph A.; Daugherty, Brent A.
2003-11-18
A process and apparatus are provided for transferring material from an isolated environment into a storage carrier through a conduit that can be sealed with a plug. The plug and conduit can then be severed to provide a hermetically sealed storage carrier containing the material which may be transported for storage or disposal and to maintain a seal between the isolated environment and the ambient environment.
Integrated polymerase chain reaction/electrophoresis instrument
Andresen, Brian D.
2000-01-01
A new approach and instrument for field identification of micro-organisms and DNA fragments using a small and disposable device containing integrated polymerase chain reaction (PCR) enzymatic reaction wells, attached capillary electrophoresis (CE) channels, detectors, and read-out all on/in a small hand-held package. The analysis instrument may be made inexpensively, for example, of plastic, and thus is disposable, which minimizes cross contamination and the potential for false positive identification between samples. In addition, it is designed for multiple users with individual applications. The integrated PCR/CE is manufactured by the PCR well and CE channels are "stamped" into plastic depressions where conductive coatings are made in the wells and ends of the CE microchannels to carry voltage and current to heat the PCR reaction mixtures and simultaneously draw DNA bands up the CE channels. Light is transmitted through the instrument at appropriate points and detects PCR bands and identifies DNA fragments by size (retention time) and quantifies each by the amount of light generated as each phototransistor positioned below each CE channel detects a passing band. The instrument is so compact that at least 100 PCR/CE reactions/analyses can be performed easily on one detection device.
Molded composite pyrogen igniter for rocket motors. [solid propellant ignition
NASA Technical Reports Server (NTRS)
Heier, W. C.; Lucy, M. H. (Inventor)
1978-01-01
A lightweight pyrogen igniter assembly including an elongated molded plastic tube adapted to contain a pyrogen charge was designed for insertion into a rocket motor casing for ignition of the rocket motor charge. A molded plastic closure cap provided for the elongated tube includes an ignition charge for igniting the pyrogen charge and an electrically actuated ignition squib for igniting the ignition charge. The ignition charge is contained within a portion of the closure cap, and it is retained therein by a noncorrosive ignition pellet retainer or screen which is adapted to rest on a shoulder of the elongated tube when the closure cap and tube are assembled together. A circumferentially disposed metal ring is provided along the external circumference of the closure cap and is molded or captured within the plastic cap in the molding process to provide, along with O-ring seals, a leakproof rotary joint.
Gent, Malcolm Richard; Menendez, Mario; Toraño, Javier; Torno, Susana
2011-06-01
It is demonstrated that substantial reductions in plastics presently disposed of in landfills can be achieved by cyclone density media separation (DMS). In comparison with the size fraction of plastics presently processed by industrial density separations (generally 6.4 to 9.5 mm), cyclone DMS methods are demonstrated to effectively process a substantially greater range of particle sizes (from 0.5 up to 120 mm). The purities of plastic products and recoveries obtained with a single stage separation using a cylindrical cyclone are shown to attain virtually 100% purity and recoveries >99% for high-density fractions and >98% purity and recoveries were obtained for low-density products. Four alternative schemas of multi-stage separations are presented and analyzed as proposed methods to obtain total low- and high-density plastics fraction recoveries while maintaining near 100% purities. The results of preliminary tests of two of these show that the potential for processing product purities and recoveries >99.98% of both density fractions are indicated. A preliminary economic comparison of capital costs of DMS systems suggests cyclone DMS methods to be comparable with other DMS processes even if the high volume capacity for recycling operations of these is not optimized.
PVC removal from mixed plastics by triboelectrostatic separation.
Park, Chul-Hyun; Jeon, Ho-Seok; Park, Jai-Koo
2007-06-01
Ever increasing oil price and the constant growth in generation of waste plastics stimulate a research on material separation for recycling of waste plastics. At present, most waste plastics cause serious environmental problems due to the disposal by reclamation and incineration. Particularly, polyvinyl chloride (PVC) materials among waste plastics generates hazardous HCl gas, dioxins containing Cl, and so on, which lead to air pollution and shorten the life of incinerator, and it makes difficultly recycling of other plastics. Therefore, we designed a bench scale triboelectrostatic separator for PVC removal from mixed plastics (polyvinyl chloride/polyethylene terephthalate), and then carried out material separation tests. In triboelectrostatic separation, PVC and PET particles are charged negatively and positively, respectively, due to the difference of the work function of plastics in tribo charger of the fluidized-bed, and are separated by means of splitter through an opposite electric field. In this study, the charge efficiency of PVC and PET was strongly dependent on the tribo charger material (polypropylene), relative humidity (below 30%), air velocity (over 10 m/s), and mixture ratio (PET:PVC=1:1). At the optimum conditions (electrode potential of 20 kV and splitter position of -2 cm), PVC rejection and PET recovery in PET products were 99.60 and 98.10%, respectively, and the reproducibility of optimal test was very good (+/-1%). In addition, as a change of splitter position, we developed the technique to recover high purity PET (over 99.99%) although PET recovery decreases by degrees.
Microbial Enzymatic Degradation of Biodegradable Plastics.
Roohi; Bano, Kulsoom; Kuddus, Mohammed; Zaheer, Mohammed R; Zia, Qamar; Khan, Mohammed F; Ashraf, Ghulam Md; Gupta, Anamika; Aliev, Gjumrakch
2017-01-01
The renewable feedstock derived biodegradable plastics are important in various industries such as packaging, agricultural, paper coating, garbage bags and biomedical implants. The increasing water and waste pollution due to the available decomposition methods of plastic degradation have led to the emergence of biodegradable plastics and biological degradation with microbial (bacteria and fungi) extracellular enzymes. The microbes utilize biodegradable polymers as the substrate under starvation and in unavailability of microbial nutrients. Microbial enzymatic degradation is suitable from bioremediation point of view as no waste accumulation occurs. It is important to understand the microbial interaction and mechanism involved in the enzymatic degradation of biodegradable plastics under the influence of several environmental factors such as applied pH, thermo-stability, substrate molecular weight and/or complexity. To study the surface erosion of polymer film is another approach for hydrolytic degradation characteristion. The degradation of biopolymer is associated with the production of low molecular weight monomer and generation of carbon dioxide, methane and water molecule. This review reported the degradation study of various existing biodegradable plastics along with the potent degrading microbes (bacteria and fungi). Patents available on plastic biodegradation with biotechnological significance is also summarized in this paper. This paper assesses that new disposal technique should be adopted for the degradation of polymers and further research is required for the economical production of biodegradable plastics along with their enzymatic degradation. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Asymmetric reactions in continuous flow
Mak, Xiao Yin; Laurino, Paola
2009-01-01
Summary An overview of asymmetric synthesis in continuous flow and microreactors is presented in this review. Applications of homogeneous and heterogeneous asymmetric catalysis as well as biocatalysis in flow are discussed. PMID:19478913
Domestic waste disposal practice and perceptions of private sector waste management in urban Accra
2014-01-01
Background Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. Methods The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. Results The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Conclusion Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases. PMID:25005728
Domestic waste disposal practice and perceptions of private sector waste management in urban Accra.
Yoada, Ramatta Massa; Chirawurah, Dennis; Adongo, Philip Baba
2014-07-08
Waste poses a threat to public health and the environment if it is not stored, collected, and disposed of properly. The perception of waste as an unwanted material with no intrinsic value has dominated attitudes towards disposal. This study investigates the domestic waste practices, waste disposal, and perceptions about waste and health in an urban community. The study utilised a mixed-method approach. A cross-sectional survey questionnaire and in-depth interview were used to collect data. A total of 364 household heads were interviewed in the survey and six key informants were interviewed with the in-depth interviews. The results of the study revealed that 93.1% of households disposed of food debris as waste and 77.8% disposed of plastic materials as waste. The study also showed that 61.0% of the households disposed of their waste at community bins or had waste picked up at their homes by private contractors. The remaining 39.0% disposed of their waste in gutters, streets, holes and nearby bushes. Of those who paid for the services of private contractors, 62.9% were not satisfied with the services because of their cost and irregular collection. About 83% of the respondents were aware that improper waste management contributes to disease causation; most of the respondents thought that improper waste management could lead to malaria and diarrhoea. There was a general perception that children should be responsible for transporting waste from the households to dumping sites. Proper education of the public, the provision of more communal trash bins, and the collection of waste by private contractors could help prevent exposing the public in municipalities to diseases.
NASA Astrophysics Data System (ADS)
Davies, C. W.; Davie, D. C.; Charles, D. A.
2015-12-01
Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
Black plastics: Linear and circular economies, hazardous additives and marine pollution.
Turner, Andrew
2018-08-01
Black products constitute about 15% of the domestic plastic waste stream, of which the majority is single-use packaging and trays for food. This material is not, however, readily recycled owing to the low sensitivity of black pigments to near infrared radiation used in conventional plastic sorting facilities. Accordingly, there is mounting evidence that the demand for black plastics in consumer products is partly met by sourcing material from the plastic housings of end-of-life waste electronic and electrical equipment (WEEE). Inefficiently sorted WEEE plastic has the potential to introduce restricted and hazardous substances into the recyclate, including brominated flame retardants (BFRs), Sb, a flame retardant synergist, and the heavy metals, Cd, Cr, Hg and Pb. The current paper examines the life cycles of single-use black food packaging and black plastic WEEE in the context of current international regulations and directives and best practices for sorting, disposal and recycling. The discussion is supported by published and unpublished measurements of restricted substances (including Br as a proxy for BFRs) in food packaging, EEE plastic goods and non-EEE plastic products. Specifically, measurements confirm the linear economy of plastic food packaging and demonstrate a complex quasi-circular economy for WEEE plastic that results in significant and widespread contamination of black consumer goods ranging from thermos cups and cutlery to tool handles and grips, and from toys and games to spectacle frames and jewellery. The environmental impacts and human exposure routes arising from WEEE plastic recycling and contamination of consumer goods are described, including those associated with marine pollution. Regarding the latter, a compilation of elemental data on black plastic litter collected from beaches of southwest England reveals a similar chemical signature to that of contaminated consumer goods and blended plastic WEEE recyclate, exemplifying the pervasiveness of the problem. Copyright © 2018 Elsevier Ltd. All rights reserved.
Glanville, Thomas D; Ahn, Heekwon; Akdeniz, Neslihan; Crawford, Benjamin P; Koziel, Jacek A
2016-02-01
A passively-ventilated plastic-wrapped composting system initially developed for biosecure disposal of poultry mortalities caused by avian influenza was adapted and tested to assess its potential as an emergency disposal option for disease-related swine mortalities. Fresh air was supplied through perforated plastic tubing routed through the base of the compost pile. The combined air inlet and top vent area is ⩽∼1% of the gas exchange surface of a conventional uncovered windrow. Parameters evaluated included: (1) spatial and temporal variations in matrix moisture content (m.c.), leachate production, and matrix O2 concentrations; (2) extent of soft tissue decomposition; and (3) internal temperature and the success rate in achieving USEPA time/temperature (T) criteria for pathogen reduction. Six envelope materials (wood shavings, corn silage, ground cornstalks, ground oat straw, ground soybean straw, or ground alfalfa hay) and two initial m.c.'s (15-30% w.b. for materials stored indoors, and 45-65% w.b. to simulate materials exposed to precipitation) were tested to determine their effect on performance parameters (1-3). Results of triple-replicated field trials showed that the composting system did not accumulate moisture despite the 150kg carcass water load (65% of 225kg total carcass mass) released during decomposition. Mean compost m.c. in the carcass layer declined by ∼7 percentage points during 8-week trials, and a leachate accumulation was rare. Matrix O2 concentrations for all materials other than silage were ⩾10% using the equivalent of 2m inlet/vent spacing. In silage O2 dropped below 5% in some cases even when 0.5m inlet/vent spacing was used. Eight week soft tissue decomposition ranged from 87% in cornstalks to 72% in silage. Success rates for achievement of USEPA Class B time/temperature criteria ranged from 91% for silage to 33-57% for other materials. Companion laboratory biodegradation studies suggest that Class B success rates can be improved by slightly increasing envelope material m.c. Moistening initially dry (15% m.c.) envelope materials to 35% m.c. nearly doubled their heat production potential, boosting it to levels ⩾silage. The 'contradictory' silage test results showing high temperatures paired with slow soft tissue degradation are likely due to this material's high density, low gas permeability and low water vapor loss. While slow decomposition typically suggests low microbial activity and heat production, it does not rule out high internal temperatures if the heat produced is conserved. Occasional short-term odor releases during the first 2weeks of composting were associated with top-to-bottom gas flow which is contrary to the typical bottom-to-top flow typically observed in conventional compost piles. In cases where biosecurity concerns are paramount, results of this study show the plastic-wrapped passively-ventilated composting method to have good potential for above-ground swine mortality disposal. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.
1978-08-01
We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of coupled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detectionmore » system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory.« less
Operando characterization of catalysts through use of a portable microreactor
Zhao, Shen; Li, Yuanyuan; Stavitski, Eli; ...
2015-10-09
To provide new understandings of the mechanisms of catalytic reactions, improved methods are needed than can monitor changes in the electronic, structural and chemical properties of catalysts, doing so in the operando conditions in which catalysts work. We describe here a microreactor-based approach that integrates the capabilities of advanced x-ray, electron, optical and gas-phase compositional analysis techniques in operando conditions. For several exemplary catalytic systems, we demonstrate how this approach enables characterization of three major factors contributing to structure-property correlations evidenced in heterogeneously catalyzed reactions, namely: the atomic structure and elemental compositions of nanocatalysts; the physiochemical properties of the supportmore » and catalyst-support interfaces; and the gas and surface-phase chemistry occurring under operando conditions. We highlight the generality of the approach as well as outline opportunities for future developments.« less
Ishigaki, Yusuke; Suzuki, Takanori; Nishida, Jun-ichi; Nagaki, Aiichiro; Takabayashi, Naofumi; Kawai, Hidetoshi; Fujiwara, Kenshu; Yoshida, Jun-ichi
2011-01-01
A series of biphenyl-2,2'-diylbis(diarylmethanol)s 3, which have two kinds of aryl groups at the bay region, were efficiently obtained by integrated flow microreactor synthesis. The diols 3NO/NX are the precursors of unsymmetric biphenylic dications 2NO/NX2+, which are transformed into the corresponding dihydrophenanthrenes 1NO/NX via 2NO/NX+• upon reduction, when they exhibit two-stage color changes. On the other hand, the steady-state concentration of the intermediate 2NO/NX+• is negligible during the oxidation of 1NO/NX to 2NO/NX2+, which reflects unique tricolor electrochromicity with a hysteretic pattern of color change [color 1→color 2→color 3→color 1]. PMID:28824114
Micromotors for "Chemistry-on-the-Fly".
Karshalev, Emil; Esteban-Fernández de Ávila, Berta; Wang, Joseph
2018-03-21
This perspective reviews mobile micro/nanomotor scaffolds for performing "chemistry-on-the-fly". Synthetic nano/micromotors offer great versatility and distinct advantages in diverse chemical applications owing to their efficient propulsion and facile surface functionalization that allow these mobile platforms to move and disperse reactive materials across the solution. Such dynamic microreactors have led to accelerated chemical processes, including organic pollutant degradation, metal chelation, biorecognition, redox chemistry, chemical "writing", and a variety of other chemical transformations. Representative examples of such micromotor-enhanced chemical reactions are discussed, focusing on the specific chemical role of these mobile microreactors. The advantages, gaps and limitations of using micromotors as mobile chemical platforms are discussed, concluding with the future prospects of this emerging field. We envision that artificial nano/micromotors will become attractive dynamic tools for speeding up and enhancing "on-the-fly" chemical reactions.
Closure for milliliter scale bioreactor
Klein, David L.; Laidlaw, Robert D.; Andronaco, Gregory; Boyer, Stephen G.
2010-12-14
A closure for a microreactor includes a cap that is configured to be inserted into a well of the microreactor. The cap, or at least a portion of the cap, is compliant so as to form a seal with the well when the cap is inserted. The cap includes an aperture that provides an airway between the inside of the well to the external environment when the cap is inserted into the well. A porous plug is inserted in the aperture, e.g., either directly or in tube that extends through the aperture. The porous plug permits gas within the well to pass through the aperture while preventing liquids from passing through to reduce evaporation and preventing microbes from passing through to provide a sterile environment. A one-way valve may also be used to help control the environment in the well.
Akwi, Faith M; Watts, Paul
2016-01-01
In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66-91% were attained.
Camara, Mohamed Amara; Tian, Miaomiao; Liu, Xiaoxia; Liu, Xin; Wang, Yujia; Yang, Jiqing; Yang, Li
2016-08-01
Natural herbal medicines are an important source of enzyme inhibitors for the discovery of new drugs. A number of natural extracts such as green tea have been used in prevention and treatment of diseases due to their low-cost, low toxicity and good performance. The present study reports an online assay of the activity and inhibition of the green tea extract of the Glucose 6-phosphate dehydrogenase (G6PDH) enzyme using multilayer capillary electrophoresis based immobilized enzyme microreactors (CE-IMERs). The multilayer CE-IMERs were produced with layer-by-layer electrostatic assembly, which can easily enhance the enzyme loading capacity of the microreactor. The activity of the G6PDH enzyme was determined and the enzyme inhibition by the inhibitors from green tea extract was investigated using online assay of the multilayer CE-IMERs. The Michaelis constant (Km ) of the enzyme, the IC50 and Ki values of the inhibitors were achieved and found to agree with those obtained using offline assays. The results show a competitive inhibition of green tea extract on the G6PDH enzyme. The present study provides an efficient and easy-to-operate approach for determining G6PDH enzyme reaction and the inhibition of green tea extract, which may be beneficial in research and the development of natural herbal medicines. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Gruber, Pia; Carvalho, Filipe; Marques, Marco P. C.; O'Sullivan, Brian; Subrizi, Fabiana; Dobrijevic, Dragana; Ward, John; Hailes, Helen C.; Fernandes, Pedro; Wohlgemuth, Roland; Baganz, Frank
2017-01-01
Abstract Rapid biocatalytic process development and intensification continues to be challenging with currently available methods. Chiral amino‐alcohols are of particular interest as they represent key industrial synthons for the production of complex molecules and optically pure pharmaceuticals. (2S,3R)‐2‐amino‐1,3,4‐butanetriol (ABT), a building block for the synthesis of protease inhibitors and detoxifying agents, can be synthesized from simple, non‐chiral starting materials, by coupling a transketolase‐ and a transaminase‐catalyzed reaction. However, until today, full conversion has not been shown and, typically, long reaction times are reported, making process modifications and improvement challenging. In this contribution, we present a novel microreactor‐based approach based on free enzymes, and we report for the first time full conversion of ABT in a coupled enzyme cascade for both batch and continuous‐flow systems. Using the compartmentalization of the reactions afforded by the microreactor cascade, we overcame inhibitory effects, increased the activity per unit volume, and optimized individual reaction conditions. The transketolase‐catalyzed reaction was completed in under 10 min with a volumetric activity of 3.25 U ml−1. Following optimization of the transaminase‐catalyzed reaction, a volumetric activity of 10.8 U ml−1 was attained which led to full conversion of the coupled reaction in 2 hr. The presented approach illustrates how continuous‐flow microreactors can be applied for the design and optimization of biocatalytic processes. PMID:28986983
Thermal Decomposition of Methyl Acetate (CH_3COOCH_3) in a Flash-Pyrolysis Micro-Reactor
NASA Astrophysics Data System (ADS)
Porterfield, Jessica P.; Bross, David H.; Ruscic, Branko; Thorpe, James H.; Nguyen, Thanh Lam; Baraban, Joshua H.; Stanton, John F.; Daily, John W.; Ellison, Barney
2017-06-01
The thermal decomposition of methyl acetate (CH_3COOCH_3) has been studied in a set of flash pyrolysis micro-reactors. Samples were diluted to (0.06 - 0.13%) in carrier gases (He, Ar) and subjected to temperatures of 300 - 1600 K at roughly 20 Torr. After residence times of approximately 25 - 150 μseconds, the unimolecular pyrolysis products were detected by vacuum ultraviolet photoionization mass spectrometry at 10.487 eV (118.2 nm). Complementary product identification was provided by matrix isolation infrared spectroscopy. Decomposition began at 1000 K with the observation of (CH_2=C=O, CH_3OH), products of a four centered rearrangement with a Δ_{rxn}H_{298} = 39.1 ± 0.2 kcal mol^{-1}. As the micro-reactor was heated to 1300 K, a mixture of (CH_2=C=O, CH_3OH, CH_3, CH_2=O, H, CO, CO_2) appeared. A new novel pathway is calculated in which both methyl groups leave behind CO_2 simultaneously, Δ_{rxn}H_{298} = 74.5 ± 0.4 kcal mol^{-1}. This pathway is in contrast to step-wise loss of methyl radical, which can go in two ways: Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3 + COOCH_3) = 95.4 ± 0.4 kcal mol^{-1}, Δ_{rxn}H_{298} (CH_3COOCH_3 → CH_3COO + CH_3) = 88.0 ± 0.3 kcal mol^{-1}.
Anjum, Anbreen; Zuber, Mohammad; Zia, Khalid Mahmood; Noreen, Aqdas; Anjum, Muhammad Naveed; Tabasum, Shazia
2016-08-01
Traditional mineral oil based plastics are important commodity to enhance the comfort and quality of life but the accumulation of these plastics in the environment has become a major universal problem due to their low biodegradation. Solution to the plastic waste management includes incineration, recycling and landfill disposal methods. These processes are very time consuming and expensive. Biopolymers are important alternatives to the petroleum-based plastics due to environment friendly manufacturing processes, biodegradability and biocompatibility. Therefore use of novel biopolymers, such as polylactide, polysaccharides, aliphatic polyesters and polyhydroxyalkanoates is of interest. PHAs are biodegradable polyesters of hydroxyalkanoates (HA) produced from renewable resources by using microorganisms as intracellular carbon and energy storage compounds. Even though PHAs are promising candidate for biodegradable polymers, however, the production cost limit their application on an industrial scale. This article provides an overview of various substrates, microorganisms for the economical production of PHAs and its copolymers. Recent advances in PHAs to reduce the cost and to improve the performance of PHAs have also been discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Chien, Y C; Yang, S H
2013-01-01
Polycaprolactone (PCL) is one of the most attractive biodegradable plastics that has been widely used in medicine and agriculture fields. Because of the large increase in biodegradable plastics usage, the production of waste biodegradable plastics will be increasing dramatically, producing a growing environmental problem. Generally, waste PCL is collected along with municipal solid wastes and then incinerated. This study investigates the combustion kinetics and emission factors of 16 US Environmental Protection Agency (EPA) priority polycyclic aromatic hydrocarbons (PAHs) in the PCL combustion. Experimentally, two reactions are involved in the PCL combustion process, possibly resulting in the emission of carbon dioxide, propanal, protonated caprolactone and very small amounts of PAH produced by incomplete combustion. The intermediate products may continuously be oxidized to form CO2. The emission factors for 16 US EPA priority PAHs are n.d. -2.95 microg/g, which are much lower than those of poly lactic acid and other plastics combustion. The conversion of PCL is 100%. Results from this work suggest that combustion is a good choice for the waste PCL disposal.
Sañudo Hacar, P; Blanco, M G; Martínez, E; Duarte, J A; González, A; Hernández, M; Martínez, M; Cueto, E; Navajas, J A; Navarrete, M J
2012-01-01
To identify and classify disposable hospital products containing polyvinyl chloride (PVC), including the search and evaluation of cost-effective sustainable alternative products free of PVC. A descriptive observational analysis was performed, after classifying the latest research in major databases, and disposable products that could contain PVC. These were divided into 5 groups: cannulas, catheters, tubes, bags, and equipment, purchased in the period 2008-2009, differentiating between the technical and economic assessment of the materials. In the analysis of the composition of 492 articles selected, 234 (47.5%) contained PVC, and 19.4% were considered PVC-free alternatives, with only 11.3% of these being economically viable. This study highlights the advantages of the classification of PVC products, by showing that safe and efficient alternatives exist for some product lines that are consistent with patient safety and quality in the work by doctors. Copyright © 2011 SECA. Published by Elsevier Espana. All rights reserved.
Optical biosensor system with integrated microfluidic sample preparation and TIRF based detection
NASA Astrophysics Data System (ADS)
Gilli, Eduard; Scheicher, Sylvia R.; Suppan, Michael; Pichler, Heinz; Rumpler, Markus; Satzinger, Valentin; Palfinger, Christian; Reil, Frank; Hajnsek, Martin; Köstler, Stefan
2013-05-01
There is a steadily growing demand for miniaturized bioanalytical devices allowing for on-site or point-of-care detection of biomolecules or pathogens in applications like diagnostics, food testing, or environmental monitoring. These, so called labs-on-a-chip or micro-total analysis systems (μ-TAS) should ideally enable convenient sample-in - result-out type operation. Therefore, the entire process from sample preparation, metering, reagent incubation, etc. to detection should be performed on a single disposable device (on-chip). In the early days such devices were mainly fabricated using glass or silicon substrates and adapting established fabrication technologies from the electronics and semiconductor industry. More recently, the development focuses on the use of thermoplastic polymers as they allow for low-cost high volume fabrication of disposables. One of the most promising materials for the development of plastic based lab-on-achip systems are cyclic olefin polymers and copolymers (COP/COC) due to their excellent optical properties (high transparency and low autofluorescence) and ease of processing. We present a bioanalytical system for whole blood samples comprising a disposable plastic chip based on TIRF (total internal reflection fluorescence) optical detection. The chips were fabricated by compression moulding of COP and microfluidic channels were structured by hot embossing. These microfluidic structures integrate several sample pretreatment steps. These are the separation of erythrocytes, metering of sample volume using passive valves, and reagent incubation for competitive bioassays. The surface of the following optical detection zone is functionalized with specific capture probes in an array format. The plastic chips comprise dedicated structures for simple and effective coupling of excitation light from low-cost laser diodes. This enables TIRF excitation of fluorescently labeled probes selectively bound to detection spots at the microchannel surface. The fluorescence of these detection arrays is imaged using a simple set-up based on a digital consumer camera. Image processing for spot detection and intensity calculation is accomplished using customized software. Using this combined TIRF excitation and imaging based detection approach allowes for effective suppression of background fluorescence from the sample, multiplexed detection in an array format, as well as internal calibration and background correction.
NASA Astrophysics Data System (ADS)
Bonifazi, Giuseppe; Palmieri, Roberta; Serranti, Silvia
2015-03-01
Postconsumer plastics from packing and packaging represent about the 60% of the total plastic wastes (i.e. 23 million of tons) produced in Europe. The EU Directive (2014/12/EC) fixes as target that the 60%, by weight, of packaging waste has to be recovered, or thermally valorized. When recovered, the same directive established that packaging waste has to be recycled in a percentage ranging between 55% (minimum) and 60% (maximum). The non-respect of these rules can produce that large quantities of end-of-life plastic products, specifically those utilized for packaging, are disposed-off, with a strong environmental impact. The application of recycling strategies, finalized to polymer recovery, can represent an opportunity to reduce: i) not renewable raw materials (i.e. oil) utilization, ii) carbon dioxide emissions and iii) amount of plastic waste disposed-off. Aim of this work was to perform a full characterization of different end-of-life polymers based products, constituted not only by single polymers but also of mixtures, in order to realize their identification for quality control and/or certification assessment. The study was specifically addressed to characterize the different recovered products as resulting from a recycling plant where classical processing flow-sheets, based on milling, classification and separation, are applied. To reach this goal, an innovative sensing technique, based on the utilization of a HyperSpectral[b] I[/b]maging (HSI) device working in the SWIR region (1000-2500 nm), was investigated. Following this strategy, single polymers and/or mixed polymers recovered were correctly recognized. The main advantage of the proposed approach is linked to the possibility to perform "on-line" analyses, that is directly on the different material flow streams, as resulting from processing, without any physical sampling and classical laboratory "off-line" determination.
Keratin based bioplastic film from chicken feathers and its characterization.
Ramakrishnan, Navina; Sharma, Swati; Gupta, Arun; Alashwal, Basma Yahya
2018-05-01
Plastics have been one of the highly valued materials and it plays an significant role in human's life such as in food packaging and biomedical applications. Bioplastic materials can gradually work as a substitute for various materials based on fossil oil. The issue like sustainability and environmental challenges which occur due to manufacturing and disposal of synthetic plastics can be conquering by bio-based plastics. Feathers are among the most inexpensive abundant, and renewable protein sources. Feathers disposal to the landfills leads to environmental pollutions and it results into wastage of 90% of protein raw material. Keratin is non-burning hydrophilic, and biodegradable due to which it can be applicable in various ways via chemical processing. Main objective of this research is to synthesis bioplastic using keratin from chicken feathers. Extracted keratin solution mixed with different concentration of glycerol (2 to 10%) to produce plastic films. The mixture was stirred under constant magnetic stirring at 60 °C for 5 h. The mixtures are then poured into aluminum weighing boat and dried in an oven at 60 °C for 24 h. The mechanical properties of the samples were tested and the physic-chemical properties of the bioplastic were studied. According to the results, Scanning Electron Microscopy test showed good compatible morphologies without holes, cavity and edge. The difference in chemical composition was analyzed using Fourier transform infrared spectroscopy (FTIR). The samples were also characterized by thermo gravimetric analysis (TGA), differential scanning calorimetry (DSC), X-Ray diffraction (XRD) to check the thermal and crystallinity properties. Other than that, bioplastic made up from keratin with 2% of glycerol has the best mechanical and thermal properties. According to biodegradability test, all bioplastic produced are proven biodegradable. Therefore, the results showed possible application of the film as an alternative to fossil oil based materials which are harmful to the environment. Copyright © 2018 Elsevier B.V. All rights reserved.
Microplastic pollution, a threat to marine ecosystem and human health: a short review.
Sharma, Shivika; Chatterjee, Subhankar
2017-09-01
Human populations are using oceans as their household dustbins, and microplastic is one of the components which are not only polluting shorelines but also freshwater bodies globally. Microplastics are generally referred to particles with a size lower than 5 mm. These microplastics are tiny plastic granules and used as scrubbers in cosmetics, hand cleansers, air-blasting. These contaminants are omnipresent within almost all marine environments at present. The durability of plastics makes it highly resistant to degradation and through indiscriminate disposal they enter in the aquatic environment. Today, it is an issue of increasing scientific concern because these microparticles due to their small size are easily accessible to a wide range of aquatic organisms and ultimately transferred along food web. The chronic biological effects in marine organisms results due to accumulation of microplastics in their cells and tissues. The potential hazardous effects on humans by alternate ingestion of microparticles can cause alteration in chromosomes which lead to infertility, obesity, and cancer. Because of the recent threat of microplastics to marine biota as well as on human health, it is important to control excessive use of plastic additives and to introduce certain legislations and policies to regulate the sources of plastic litter. By setup various plastic recycling process or promoting plastic awareness programmes through different social and information media, we will be able to clean our sea dustbin in future.
Blettler, Martin C M; Ulla, Maria Alicia; Rabuffetti, Ana Pia; Garello, Nicolás
2017-10-23
Plastic pollution is considered an important environmental problem by the United Nations Environment Programme, and it is identified, alongside climate change, as an emerging issue that might affect biological diversity and human health. However, despite research efforts investigating plastics in oceans, relatively little studies have focused on freshwater systems. The aim of this study was to estimate the spatial distribution, types, and characteristics of macro-, meso-, and microplastic fragments in shoreline sediments of a freshwater lake. Food wrappers (mainly polypropylene and polystyrene), bags (high- and low-density polyethylene), bottles (polyethylene terephthalate), and disposable Styrofoam food containers (expanded polystyrene) were the dominant macroplastics recorded in this study. Contrary to other studies, herein macroplastic item surveys would not serve as surrogates for microplastic items. This is disadvantageous since macroplastic surveys are relatively easier to conduct. Otherwise, an average of 25 mesoplastics (mainly expanded polystyrene) and 704 microplastic particles (diverse resins) were recorded per square meter in sandy sediments. Comparisons with other studies from freshwater and marine beaches indicated similar relevance of plastic contamination, demonstrating for the first time that plastic pollution is a serious problem in the Paraná floodplain lakes. This study is also valuable from a social/educational point of view, since plastic waste has been ignored in the Paraná catchment as a pollutant problem, and therefore, the outcome of the current study is a relevant contribution for decision makers.
Somner, J E A; Cavanagh, D J; Wong, K K Y; Whitelaw, M; Thomson, T; Mansfield, D
2010-02-01
Instilling eye drops is a ubiquitous procedure in eye clinics. This audit aimed to assess the risk of contamination of disposable droppers and to quantify the financial and waste implications of reducing this risk to zero by using disposable droppers only once. A total of 100 disposable Minims were used to place one drop in each eye of 70 patients. The dropper tip was then cultured for aerobic and anaerobic microbes. Coagulase-negative staphylococcus was cultured from five samples. The contamination rate per drop application was 2.5%. The risk of cross-contamination with coagulase-negative staphylococcus would be between 1 : 400 and 1 : 80 if the bottle was reused once or six times. Reducing this risk to zero costs between pound2.75 and pound4.6 million per annum and generates between 6.85 and 11.42 more tonnes of paper waste and between 12.69 and 21.15 more tonnes of plastic waste than a strategy that reuses the disposable dropper. Reducing the risk of dropper contamination and subsequent cross infection has financial and environmental costs. As exposure to coagulase-negative staphylococcus is not necessarily associated with infection, it would be useful to decide acceptable risk levels for a given cost to maximise both cost-effectiveness and patient safety.
[Hygiene problems in inland and sea navigation].
Goethe, H
1983-09-01
Both waste and sewage disposal are ubiquitous problems which have also affected navigation. Shipping is a very important transport carrier on a worldwide basis which together with the fishing industry employs roughly two million people. The problems associated with waste and sewage disposal obviously present a severe hazard to the coastal areas, narrow sea basins and, in particular, to inland and open-sea waterways. These problems are particularly alarming in large sea-ports, docks without outfall etc. The reduction of the crews aboard the ships operated by the industialised countries has helped to quantitatively ease the problem of waste and sewage disposal caused by the crews. However, passenger steamers with high waste and sewage volumes cause considerable nuisance in small harbours and the same holds for the disposal of technical waste products from ships such as dunnage packing material, ropes, plastic material, oil, etc. The quantity of waste water aboard a sea-going vessel including that from the toilets, washrooms, galley, and cleaning is rather considerable and is estimated at 300 litres per person and day under tropical climates. The volume of waste varies greatly and depends mainly on the type of material used aboard as mentioned above. Passenger liners with a very high volume of kitchen refuse and other solid waste give rise to specially insidious problems. In the past, sea-going vessels as well as ships employed in inland navigation used to throw overboard any type of refuse and sewage. However, during the last few decades the port authorities and also governments have introduced local and national regulations ruling that waste may no longer be thrown into harbour basins, but must be collected and disposed of on shore. Most ships have complied with these provisions, but some of them kept the collected refuse aboard and disposed of it on the open sea outside the harbours. International agreements on the prohibition of emptying oil and oil-containing waste into the sea were reached as early as 1954. The first rigorous provisions on the strict prohibition of discharging sewage and throwing spoilage overboard on the sea were promulgated around 1960 for the Great Lakes (USA and Canada) as well as for some Baltic Sea and Black Sea harbours (USSR). This legislation has been increasingly tightened. The international agreement on the prevention of sea pollution by ships, submitted by the International Maritime Consultative Organization (IMCO) in 1973 and 1978, strictly bans the throwing overboard or discharging of oil, plastic material, stowing and packing materials etc. as well as unperishable substances.(ABSTRACT TRUNCATED AT 400 WORDS)
Recovery of monomers from recycled plastics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharp, L.L.; Ness, R.O. Jr.; Sosa, J.M.
1995-10-01
Plastics make up approximately 20% by volume of the material disposed of in landfills in the United States. The increased interest in recycling has focused attention on ways to expand our current recycling efforts. Types of commodity plastics typically found in a postconsumer stream include high-density polyethylene (HDPE), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), polypropylene (PP), polyethylene terephthalate (PET), polyvinyl chloride (PVC), and polystyrene (PS). In addition to plastics such as these, a number of organic and inorganic constituents will be present, including paper, paint, food, and various metals. These constituents are present as a result of introduction intomore » the plastics during manufacturing (to give a plastic product selective properties) or as residual matter from use by the consumer. The Energy & Environmental Research Center (EERC) is one of several groups in the United States and Europe that, over the last several years, has worked toward developing a process to thermally break down postconsumer plastics to hydrocarbon liquids and gases. Such a process, sometimes referred to as thermal depolymerization, thermal recycling, or feedstock recycling, produces hydrocarbon liquids and gases that could be used for the manufacture of new plastics or other petroleum products. The specific slate of products depends on processing conditions. Subsequent studies have identified several relatively high-value products possible from the process, including ethylene (C{sub 2}{sup -}), propylene (C{sub 3}{sup -}), and butylenes. Past work at the EERC has also indicated that optimal processing conditions exist for these olefin yields. The proposed the EPA work is based on information, presented here, that was obtained in studies completed at the EERC under the sponsorship of the American Plastics Council (APC) and the U.S. Department of Energy (DOE).« less
Ogunola, Oluniyi Solomon; Onada, Olawale Ahmed; Falaye, Augustine Eyiwunmi
2018-04-01
The increasing demand for and reliance on plastics as an everyday item, and rapid rise in their production and subsequent indiscriminate disposal, rise in human population and industrial growth, have made the material an important environmental concern and focus of interest of many research. Historically, plastic production has increased tremendously to over 250 million tonnes by 2009 with an annual increased rate of 9%. In 2015, the global consumption of plastic materials was reported to be > 300 million tonnes and is expected to surge exponentially. Because plastic polymers are ubiquitous, highly resistant to degradation, the influx of these persistent, complex materials is a risk to human and environmental health. Because microplastics are principally generated from the weathering or breakdown of larger plastics (macroplastics), it is noteworthy and expedient to discuss in detail, expatiate, and tackle this main source. Macro- and microplastic pollution has been reported on a global scale from the poles to the equator. The major problem of concern is that they strangulate and are ingested by a number of aquatic biota especially the filter feeders, such as molluscs, mussels, oysters, from where it enters the food chain and consequently could lead to physical and toxicological effects on aquatic organisms and human being as final consumers. To this end, in order to minimise the negative impacts posed by plastic pollution (macro- and microplastics), a plethora of strategies have been developed at various levels to reduce and manage the plastic wastes. The objective of this paper is to review some published literature on management measures of plastic wastes to curb occurrence and incidents of large- and microplastics pollution in the marine environments.
Oil sorbents from plastic wastes and polymers: A review.
Saleem, Junaid; Adil Riaz, Muhammad; Gordon, McKay
2018-01-05
A large volume of the waste produced across the world is composed of polymers from plastic wastes such as polyethylene (HDPE or LDPE), polypropylene (PP), and polyethylene terephthalate (PET) amongst others. For years, environmentalists have been looking for various ways to overcome the problems of such large quantities of plastic wastes being disposed of into landfill sites. On the other hand, the usage of synthetic polymers as oil sorbents in particular, polyolefins, including polypropylene (PP) and polyethylene (PE) have been reported. In recent years, the idea of using plastic wastes as the feed for the production of oil sorbents has gained momentum. However, the studies undertaking such feasibility are rather scattered. This review paper is the first of its kind reporting, compiling and reviewing these various processes. The production of an oil sorbent from plastic wastes is being seen to be satisfactorily achievable through a variety of methods Nevertheless, much work needs to be done regarding further investigation of the numerous parameters influencing production yields and sorbent qualities. For example, differences in results are seen due to varying operating conditions, experimental setups, and virgin or waste plastics being used as feeds. The field of producing oil sorbents from plastic wastes is still very open for further research, and seems to be a promising route for both waste reduction, and the synthesis of value-added products such as oil sorbents. In this review, the research related to the production of various oil sorbents based on plastics (plastic waste and virgin polymer) has been discussed. Further oil sorbent efficiency in terms of oil sorption capacity has been described. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, M.S.; Bostick, W.D.; Dinsmore, S.R.
1978-08-01
We describe a new concept in continuously referenced monitoring of the isoenzyme activities of creatine kinase (EC 2.7.3.2) after liquid-chromatographic separation. After separation on a diethylaminoethyl-Sephacel column, the three isoenzymes of creatine kinase undergo a series of upled enzyme reactions, ultimately resulting in the formation of ultraviolet-detectable NADPH. A major advantage of this detection system is the immobilized-enzyme microreactor (2 x 17 mm), which may be removed and stored refrigerated when not in use. A split-stream configuration allows self-blanking of endogenous ultraviolet-absorbing constituents in authentic sera samples, which would otherwise make definitive diagnosis and quantitation difficult or impossible. This detectionmore » system is applicable to the automated analysis of creatine kinase isoenzymes in the clinical laboratory. 5 figures; 42 references.« less
Autonomous colloidal crystallization in a galvanic microreactor
NASA Astrophysics Data System (ADS)
Punckt, Christian; Jan, Linda; Jiang, Peng; Frewen, Thomas A.; Saville, Dudley A.; Kevrekidis, Ioannis G.; Aksay, Ilhan A.
2012-10-01
We report on a technique that utilizes an array of galvanic microreactors to guide the assembly of two-dimensional colloidal crystals with spatial and orientational order. Our system is comprised of an array of copper and gold electrodes in a coplanar arrangement, immersed in a dilute hydrochloric acid solution in which colloidal micro-spheres of polystyrene and silica are suspended. Under optimized conditions, two-dimensional colloidal crystals form at the anodic copper with patterns and crystal orientation governed by the electrode geometry. After the aggregation process, the colloidal particles are cemented to the substrate by co-deposition of reaction products. As we vary the electrode geometry, the dissolution rate of the copper electrodes is altered. This way, we control the colloidal motion as well as the degree of reaction product formation. We show that particle motion is governed by a combination of electrokinetic effects acting directly on the colloidal particles and bulk electrolyte flow generated at the copper-gold interface.
Colmenares, Juan Carlos; Nair, Vaishakh; Kuna, Ewelina; Łomot, Dariusz
2018-03-01
Formation of thin layers of photocatalyst in photo-microreactor is a challenging work considering the properties of both catalyst and the microchannel material. The deposition of semiconductor materials on fluoropolymer based microcapillary requires the use of economical methods which are also less energy dependent. The current work introduces a new method for depositing nanoparticles of TiO 2 on the inner walls of a hexafluoropropylene tetrafluoroethylene microtube under mild conditions using ultrasound technique. During the ultrasonication process, changes in the polymer surface were observed and characterized using Attenuated Total Reflectance spectroscopy, Scanning Electron Microscopy and Confocal Microscopy. The rough patches form sites for catalyst deposition resulting in the formation of thin layer of TiO 2 nanoparticles in the inner walls of the microtube. The photocatalytic activity of the TiO 2 coated fluoropolymer based microcapillary was evaluated for removal of phenol present in water. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Akbaba, Hasan; Karagöz, Uğur; Selamet, Yusuf; Kantarcı, A. Gülten
2017-03-01
The aim of this study was to develop a novel iron oxide nanoparticle synthesis method with in-situ surface coating. For this purpose multiple emulsions were used as microreactors for the first time and magnetic iron oxide particles synthesized in the core of cationic solid lipid nanoparticles. DLS, SEM, TEM, VSM, Raman Spectrometer, XRD, and XPS techniques were performed for characterization of the magnetic nanoparticles. Obtained magnetic nanoparticles are superparamagnetic and no additional process was needed for surface adjustments. They are positively charged as a result of cationic lipid coating and has appropriate particle size (<30 nm) for drug or nucleic acid delivery. Structure analysis showed that magnetic core material is in the form of magnetite. Saturation magnetization value was measured as 15-17 emu g-1 for lipid coated magnetic nanoparticles obtained by multiple emulsion method which is reasonably sufficient for magnetic targeting.
Microwave and continuous flow technologies in drug discovery.
Sadler, Sara; Moeller, Alexander R; Jones, Graham B
2012-12-01
Microwave and continuous flow microreactors have become mainstream heating sources in contemporary pharmaceutical company laboratories. Such technologies will continue to benefit from design and engineering improvements, and now play a key role in the drug discovery process. The authors review the applications of flow- and microwave-mediated heating in library, combinatorial, solid-phase, metal-assisted, and protein chemistries. Additionally, the authors provide a description of the combination of microwave and continuous flow platforms, with applications in the preparation of radiopharmaceuticals and in drug candidate development. Literature reviewed is chiefly 2000 - 2012, plus key citations from earlier reports. With the advent of microwave irradiation, reactions that normally took days to complete can now be performed in a matter of minutes. Coupled with the introduction of continuous flow microreactors, pharmaceutical companies have an easy way to improve the greenness and efficiency of many synthetic operations. The combined force of these technologies offers the potential to revolutionize discovery and manufacturing processes.
Chapter 8: Pyrolysis Mechanisms of Lignin Model Compounds Using a Heated Micro-Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robichaud, David J.; Nimlos, Mark R.; Ellison, G. Barney
2015-10-03
Lignin is an important component of biomass, and the decomposition of its thermal deconstruction products is important in pyrolysis and gasification. In this chapter, we investigate the unimolecular pyrolysis chemistry through the use of singly and doubly substituted benzene molecules that are model compounds representative of lignin and its primary pyrolysis products. These model compounds are decomposed in a heated micro-reactor, and the products, including radicals and unstable intermediates, are measured using photoionization mass spectrometry and matrix isolation infrared spectroscopy. We show that the unimolecular chemistry can yield insight into the initial decomposition of these species. At pyrolysis and gasificationmore » severities, singly substituted benzenes typically undergo bond scission and elimination reactions to form radicals. Some require radical-driven chain reactions. For doubly substituted benzenes, proximity effects of the substituents can change the reaction pathways.« less
Application of magnetohydrodynamic actuation to continuous flow chemistry.
West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen
2002-11-01
Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.
A Catalyst-Free Amination of Functional Organolithium Reagents by Flow Chemistry.
Kim, Heejin; Yonekura, Yuya; Yoshida, Jun-Ichi
2018-04-03
Reported is the electrophilic amination of functional organolithium intermediates with well-designed aminating reagents under mild reaction conditions using flow microreactors. The aminating reagents were optimized to achieve efficient C-N bond formation without using any catalyst. The electrophilic amination reactions of functionalized aryllithiums were successfully conducted under mild reaction conditions, within 1 minute, by using flow microreactors. The aminating reagent was also prepared by the flow method. Based on stopped-flow NMR analysis, the reaction time for the preparation of the aminating reagent was quickly optimized without the necessity of work-up. Integrated one-flow synthesis consisting of the generation of an aryllithium, the preparation of an aminating reagent, and their combined reaction was successfully achieved to give the desired amine within 5 minutes of total reaction time. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao Xia; Liu Bing; Hou Qian
A new route for the economic and efficient treatment of azo dye pollutants is reported, in which surface-modified organic-inorganic hybrid mesoporous silica (MS) spheres were chosen as microreactors for the accumulation and subsequent photodegradation of pollutants in defined regions. The surface-modified silica materials were prepared by anchoring the polycationic species such as poly(allylamine hydrochloride) on MS spheres via a simple wet impregnation method. The as-synthesized spheres with well-defined porous structures exhibited 15 times of accumulating capacity for orange II and Congo red compared to that of the pure MS spheres. Diffuse reflectance UV-vis spectroscopy and confocal laser scanning microscopy demonstratedmore » that the accumulated orange II and CR in defined MS spheres were rapidly degraded in the presence of Fenton reagent under visible radiation. Kinetics analysis in recycling degradation showed that the as-synthesized materials might be utilized as environment-friendly preconcentrators/microreactors for the remediation of dye wastewater.« less
Akwi, Faith M
2016-01-01
Summary In this paper, a micro-fluidic optimized process for the continuous flow synthesis of azo compounds is presented. The continuous flow synthesis of Sudan II azo dye was used as a model reaction for the study. At found optimal azo coupling reaction temperature and pH an investigation of the optimum flow rates of the reactants for the diazotization and azo coupling reactions in Little Things Factory-MS microreactors was performed. A conversion of 98% was achieved in approximately 2.4 minutes and a small library of azo compounds was thus generated under these reaction conditions from couplers with aminated or hydroxylated aromatic systems. The scaled up synthesis of these compounds in PTFE tubing (i.d. 1.5 mm) was also investigated, where good reaction conversions ranging between 66–91% were attained. PMID:27829903
Buszka, P M; Yeskis, D J; Kolpin, D W; Furlong, E T; Zaugg, S D; Meyer, M T
2009-06-01
Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill.
Effect of low-density polyethylene on smoke emissions from burning of simulated debris piles
Seyedehsan Hosseini; Qi Li; Manish Shrivastava; David R. Weise; David R. Cocker; J. Wayne Miller; Heejung S Jung
2014-01-01
Low-density polyethylene (LDPE) plastic is used to keep piled debris from silvicultural activitiesâactivities associated with development and care of forestsâdry to enable efficient disposal by burning. The effects of inclusion of LDPE in this manner on smoke emissions are not well known. In a combustion laboratory experiment, 2-kg mixtures of LDPE and manzanita (
Using Frozen Barriers for Containment of Contaminants
2017-09-21
barriers are constructed of grout slurry and plastic or steel sheet pilings. Circumferential barriers can be used to completely enclose a source of...2.1.1 Slurry walls A soil-bentonite slurry trench cutoff wall (slurry wall) is excavated and backfilled with grout, cement , or soil-bentonite...installation requires a mixing area, and there is a substantial amount of excavation and the need to dispose of spoil. The advantages of cement -based
Methods of Responsibly Managing End-of-Life Foams and Plastics Containing Flame Retardants: Part I.
Lucas, Donald; Petty, Sara M; Keen, Olya; Luedeka, Bob; Schlummer, Martin; Weber, Roland; Barlaz, Morton; Yazdani, Ramin; Riise, Brian; Rhodes, James; Nightingale, Dave; Diamond, Miriam L; Vijgen, John; Lindeman, Avery; Blum, Arlene; Koshland, Catherine P
2018-06-01
Flame retardants (FRs) are added to foams and plastics to comply with flammability standards and test requirements in products for household and industrial uses. When these regulations were implemented, potential health and environmental impacts of FR use were not fully recognized or understood. Extensive research in the past decades reveal that exposure to halogenated FRs, such as those used widely in furniture foam, is associated with and/or causally related to numerous health effects in animals and humans. While many of the toxic FRs have been eliminated and replaced by other FRs, existing products containing toxic or potentially toxic chemical FRs will remain in use for decades, and new products containing these and similar chemicals will permeate the environment. When such products reach the end of their useful life, proper disposal methods are needed to avoid health and ecological risks. To minimize continued human and environmental exposures to hazardous FR chemicals from discarded products, waste management technologies and processes must be improved. This review discusses a wide range of issues associated with all aspects of the use and responsible disposal of wastes containing FRs, and identifies basic and applied research needs in the areas of responsible collection, pretreatment, processing, and management of these wastes.
Bolivar, Juan M; Tribulato, Marco A; Petrasek, Zdenek; Nidetzky, Bernd
2016-11-01
Exploiting enzymes for chemical synthesis in flow microreactors necessitates their reuse for multiple rounds of conversion. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach, but practical methods for it are lacking. Using fusion to a silica-binding module to engineer enzyme adsorption to glass surfaces, we show convenient immobilization of d-amino acid oxidase on borosilicate microchannel plates. In confocal laser scanning microscopy, channel walls appeared uniformly coated with target protein. The immobilized enzyme activity was in the range expected for monolayer coverage of the plain surface with oxidase (2.37 × 10(-5) nmol/mm(2) ). Surface attachment of the enzyme was completely stable under flow. The operational half-life of the immobilized oxidase (25°C, pH 8.0; soluble catalase added) was 40 h. Enzymatic oxidation of d-Met into α-keto-γ-(methylthio)butyric acid was characterized in single-pass and recycle reactor configurations, employing in-line measurement of dissolved O2 , and off-line determination of the keto-acid product. Reaction-diffusion time-scale analysis for different flow conditions showed that the heterogeneously catalyzed reaction was always slower than diffusion of O2 to the solid surface (DaII ≤ 0.3). Potential of the microreactor for intensifying O2 -dependent biotransformations restricted by mass transfer in conventional reactors is thus revealed. Biotechnol. Bioeng. 2016;113: 2342-2349. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Exploitation of Food Industry Waste for High-Value Products.
Ravindran, Rajeev; Jaiswal, Amit K
2016-01-01
A growing global population leads to an increasing demand for food production and the processing industry associated with it and consequently the generation of large amounts of food waste. This problem is intensified due to slow progress in the development of effective waste management strategies and measures for the proper treatment and disposal of waste. Food waste is a reservoir of complex carbohydrates, proteins, lipids, and nutraceuticals and can form the raw materials for commercially important metabolites. The current legislation on food waste treatment prioritises the prevention of waste generation and least emphasises disposal. Recent valorisation studies for food supply chain waste opens avenues to the production of biofuels, enzymes, bioactive compounds, biodegradable plastics, and nanoparticles among many other molecules. Copyright © 2015 Elsevier Ltd. All rights reserved.
Microplastic ingestion decreases energy reserves in marine worms.
Wright, Stephanie L; Rowe, Darren; Thompson, Richard C; Galloway, Tamara S
2013-12-02
The indiscriminate disposal of plastic to the environment is of concern. Microscopic plastic litter (<5 mm diameter; 'microplastic') is increasing in abundance in the marine environment, originating from the fragmentation of plastic items and from industry and personal-care products [1]. On highly impacted beaches, microplastic concentrations (<1mm) can reach 3% by weight, presenting a global conservation issue [2]. Microplastics are a novel substrate for the adherence of hydrophobic contaminants [1], deposition of eggs [3], and colonization by unique bacterial assemblages [4]. Ingestion by indiscriminate deposit-feeders has been reported, yet physical impacts remain understudied [1]. Here, we show that deposit-feeding marine worms maintained in sediments spiked with microscopic unplasticised polyvinylchloride (UPVC) at concentrations overlapping those in the environment had significantly depleted energy reserves by up to 50% (Figure 1). Our results suggest that depleted energy reserves arise from a combination of reduced feeding activity, longer gut residence times of ingested material and inflammation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Process intensification for the production of hydroxyapatite nanoparticles
NASA Astrophysics Data System (ADS)
Castro, Filipa Juliana Fernandes
Precipitation processes are widely used in chemical industry for the production of particulate solids. In these processes, the chemical and physical nature of synthesized particles is of key importance. The traditional stirred tank batch reactors are affected by non-uniform mixing of reactants, often resulting in broad particle size distribution. The main objective of this thesis was to apply meso and microreactors for the synthesis of hydroxyapatite (HAp) nanoparticles under near-physiological conditions of pH and temperature, in order to overcome the limitations associated with stirred tank batch reactors. Meso and microreactors offer unique features in comparison with conventional chemical reactors. Their high surface-to-volume ratio enables enhanced heat and mass transfer, as well as rapid and efficient mixing. In addition to low consumption of reagents, meso and microreactors are usually operated in continuous flow, making them attractive tools for high throughput experimentation. Precipitation of HAp was first studied in a stirred tank batch reactor, mixing being assured by a novel metal stirrer. HAp was synthetized by mixing diluted aqueous solutions of calcium hydroxide and orthophosphoric acid at 37 °C. After process optimization, a suspension of HAp nanoparticles with pH close to 7 was obtained for a mixing molar ratio Ca/P=1.33. The precipitation process was characterized by three stages: precipitation of amorphous calcium phosphate, transformation of amorphous calcium phosphate into HAp and growth of HAp crystals. The reaction system was further characterized based on equilibrium equations. The resolution of the system, which was possible with the knowledge of three process variables (temperature, pH and calcium concentration), allowed identifying and quantifying all the chemical species present in solution. The proposed model was validated by comparing the experimental and theoretical conductivity. Precipitation of HAp was then investigated in a meso oscillatory flow reactor (meso-OFR). The mesoreactor was first operated batchwise in a vertical tube and experiments were performed under the same conditions of temperature, reactants concentration and power density applied in the stirred tank batch reactor. Despite hydrodynamic conditions being not directly comparable, it was possible to assess the effectiveness of both reactors in terms of mixing and quality of the precipitated particles. The experimental results show the advantages of the meso-OFR over the stirred tank due to the production, about four times faster, of smaller and more uniform HAp nanoparticles. Afterwards, continuous-flow precipitation of HAp was carried out in one meso-OFR and in a series of eight meso-OFRs. Experiments were carried out using fixed frequency (f) and amplitude (x0), varying only the residence time. HAp nanoparticles were successfully obtained in both systems, mean particle size and aggregation degree of the prepared HAp particles decreasing with decreasing residence time. In the present work continuous-flow precipitation of HAp was also investigated in two ultrasonic microreactors. Initially, the process was carried out in a tubular microreactor immersed in an ultrasonic bath, where single-phase (laminar) and gas-liquid flow experiments were both performed. Continuous-flow precipitation of HAp in single-phase flow was then done in a Teflon microreactor with integrated piezoelectric actuator. Rod-like shape HAp nanoparticles were yielded in both reactors under near-physiological conditions of pH and temperature. Further, particles showed improved characteristics, namely in terms of size, shape, particle aggregation and crystallinity. In summary, scale-down of the HAp precipitation process has resulted in the formation of HAp nanoparticles with improved characteristics when compared with HAp particles prepared in a stirred tank batch reactor. Therefore, we believe that the work developed can be a useful contribution to the development of a platform for the continuous production of high quality HAp nanoparticles.
The mass flow and proposed management of bisphenol A in selected Norwegian waste streams.
Arp, Hans Peter H; Morin, Nicolas A O; Hale, Sarah E; Okkenhaug, Gudny; Breivik, Knut; Sparrevik, Magnus
2017-02-01
Current initiatives for waste-handling in a circular economy favor prevention and recycling over incineration or landfilling. However, the impact of such a transition on environmental emissions of contaminants like bisphenol A (BPA) during waste-handling is not fully understood. To address this, a material flow analysis (MFA) was constructed for selected waste categories in Norway, for which the amount recycled is expected to increase in the future; glass, vehicle, electronic, plastic and combustible waste. Combined, 92tons/y of BPA are disposed of via these waste categories in Norway, with 98.5% associated with plastic and electronic waste. During the model year 2011, the MFA showed that BPA in these waste categories was destroyed through incineration (60%), exported for recycling into new products (35%), stored in landfills (4%) or released into the environment (1%). Landfilling led to the greatest environmental emissions (up to 13% of landfilled BPA), and incinerating the smallest (0.001% of incinerated BPA). From modelling different waste management scenarios, the most effective way to reduce BPA emissions are to incinerate BPA-containing waste and avoid landfilling it. A comparison of environmental and human BPA concentrations with CoZMoMAN exposure model estimations suggested that waste emissions are an insignificant regional source. Nevertheless, from monitoring studies, landfill emissions can be a substantial local source of BPA. Regarding the transition to a circular economy, it is clear that disposing of less BPA-containing waste and less landfilling would lead to lower environmental emissions, but several uncertainties remain regarding emissions of BPA during recycling, particularly for paper and plastics. Future research should focus on the fate of BPA, as well as BPA alternatives, in emerging reuse and recycling processes, as part of the transition to a circular economy. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sett, Rupnarayan; Soni, Bhawna
2013-04-01
In plants, nitrogen deficiency causes stunted growth and chlorosis or yellowing of the leaves due to decreased levels of chlorophyll, while excess nitrogen uptake may cause dark green overly vigorous foliage which may have increased susceptibility to disease and insect attacks. Phosphorus is an important nutrient in crop production, since many soils in their native state do not have sufficient available phosphorus to maximize crop yield. Potassium deficiency may cause necrosis or interveinal chlorosis. Plastics are synthetic or semi-synthetic moldable organic solids that are organic polymers of high molecular mass, most commonly derived from petrochemicals; these polymers are based on chains of carbon atoms alone or with oxygen, sulfur, or nitrogen. Plastic is a non- biodegradable major toxic pollutant. It pollutes earth and leads to air pollution and water pollution. Merely there is any safe way to dispose the hazardous plastic wastes. The study was targeted to estimate foliar level of NPK content of three plant species, viz. Cassia tora (Herb), Ailanthus excelsa (Tree) and Dalbergia sissoo (Tree) from polluted areas associated to polythene-industries as well as control areas having least pollution, where all the parameters were found to be higher than the control experiments.
Cuhra, Marek; Bøhn, Thomas; Cuhra, Petr
2017-01-01
Plastic laboratory materials are found to affect vital parameters of the waterflea Daphnia magna. The main responsible factor is defined as “newness” of the materials. Juvenile D. magna were raised individually in; a) new laboratory-standard 50 ml polypropylene tubes, and; b) identical tubes which had been washed and aerated for several weeks. Newness had significant effects on growth and fecundity of D. magna. New tubes caused delayed maturation, reduced reproduction and reduced growth when compared to washed and re-used tubes of the same commercial brand. The findings indicate that newness of tubes has inhibiting or toxic effects on D. magna. Often laboratory plastics are intended for single-use due to sterility demands. Newness might be an important confounding factor in research results and should not be disregarded. Disposable plastic utensils may come with a seemingly ignored cost and induce adverse effects in biological test-organisms and systems. The presented findings accentuate continued need for general awareness concerning confounding factors stemming from material laboratory environment. Based on the present findings the authors suggest that plastics intended for use in sensitive research may need to be washed and aerated prior to use. PMID:28425469
Liu, Xi; Yu, Jingjing; Li, Shen; Wang, Hong; Liu, Jiaxin
2013-08-01
We used blood as leaching medium, simulating clinical operation under maximum condition, to develop Liquid-phase extraction- High Performance Liquid Chromatography (HPLC) method for determination of plasticizer Di-(2-ethylhexyl)phthalate (DEHP) released from Disposable Extracorporeal Circulation Tube in order to lay the foundation of risk analysis of this product. The characteristic wavelength of DEHP in methanol was detected. Acetonitrile was added to the leaching blood in proportion and extracted DEHP from blood. The methodology for HPLC to quantify DEHP was established and the DEHP amount released from this disposable extracorporeal circulation tube was measured. The experiments showed good results as follows. The characteristic wavelength of DEHP was 272nm. The concentration of DEHP (5-250 microg/mL) kept good linear relationship with peak area (r=0.9999). Method sensitivity was 1 microg/mL. Precisions showed RSD<5%. The adding standard extraction Recovery Rates of 25, 100 and 250 microg DEHP standard were 61.91 +/- 3.32)%, (69.38 +/- 0.55)% and (68.47 +/- 1.15)%. The DEHP maximum amounts released from 3 sets of this disposable extracorporeal circulation tube were 204.14, 106.30 and 165.34 mg/set. Our Liquid-phase Extraction-HPLC method showed high accuracy and precision, and relatively stable recovery rate. Its operation was also convenient.
Fully printed flexible and disposable wireless cyclic voltammetry tag.
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-29
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Fully printed flexible and disposable wireless cyclic voltammetry tag
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to −500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health. PMID:25630250
Fully printed flexible and disposable wireless cyclic voltammetry tag
NASA Astrophysics Data System (ADS)
Jung, Younsu; Park, Hyejin; Park, Jin-Ah; Noh, Jinsoo; Choi, Yunchang; Jung, Minhoon; Jung, Kyunghwan; Pyo, Myungho; Chen, Kevin; Javey, Ali; Cho, Gyoujin
2015-01-01
A disposable cyclic voltammetry (CV) tag is printed on a plastic film by integrating wireless power transmitter, polarized triangle wave generator, electrochemical cell and signage through a scalable gravure printing method. By proximity of 13.56 MHz RF reader, the printed CV tag generates 320 mHz of triangular sweep wave from +500 mV to -500 mV which enable to scan a printed electrochemical cell in the CV tag. By simply dropping any specimen solution on the electrochemical cell in the CV tag, the presence of solutes in the solution can be detected and shown on the signage of the CV tag in five sec. 10 mM of N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) was used as a standard solute to prove the working concept of fully printed disposable wireless CV tag. Within five seconds, we can wirelessly diagnose the presence of TMPD in the solution using the CV tag in the proximity of the 13.56 MHz RF reader. This fully printed and wirelessly operated flexible CV tag is the first of its kind and marks the path for the utilization of inexpensive and disposable wireless electrochemical sensor systems for initial diagnose hazardous chemicals and biological molecules to improve public hygiene and health.
Used-Oil Generation and Its Disposal along East-West Road, Port Harcourt Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zitte, LF, E-mail: lefzy@yahoo.com; Awi-Waadu, GDB; Okorodike, CG
Environmental Pollution from anthropogenic activities has contributed greatly towards the loss of biodiversity, and some organisms are at the verge of extinction and total extermination. Used oil as one of the wastes from automobile engines have contribute immensely towards the degradation of the environment and the problem of this has been traced to the poor handling of used oil and the ignorance of the major disposers of this used-oil. Out of 20 automobile mechanics interviewed in this study, 60% admitted that they dispose of used-oil on the land, 30% said that they sell it and only 10% acknowledge that theymore » reuse it. On the issue of awareness about recycling, 50% admitted that they are aware, 30% claimed ignorance while 20% do not see the need for recycling. While considering storage method, 55% said that they do not store used oil, 25% store it in a metal drum, and 20% store in plastic drum. The mechanics estimated that about 418 cars are serviced weekly and a total of 1628.50 litres of used-oil are produced. For this result it is worth knowing that indiscriminate disposal of used oil as is commonly observed in our society can be of great environmental concern.« less
A critical perspective on early communications concerning human health aspects of microplastics.
Rist, Sinja; Carney Almroth, Bethanie; Hartmann, Nanna B; Karlsson, Therese M
2018-06-01
Microplastic research in recent years has shown that small plastic particles are found almost everywhere we look. Besides aquatic and terrestrial environments, this also includes aquatic species intended for human consumption and several studies have reported their prevalence in other food products and beverages. The scientific as well as public debate has therefore increasingly focused on human health implications of microplastic exposure. However, there is a big discrepancy between the magnitude of this debate and actual scientific findings, which have merely shown the presence of microplastics in certain products. While plastics can undoubtedly be hazardous to human health due to toxicity of associated chemicals or as a consequence of particle toxicity, the extent to which microplastics in individual food products and beverages contribute to this is debatable. Considering the enormous use of plastic materials in our everyday lives, microplastics from food products and beverages likely only constitute a minor exposure pathway for plastic particles and associated chemicals to humans. But as this is rarely put into perspective, the recent debate has created a skewed picture of human plastic exposure. We risk pulling the focus away from the root of the problem: the way in which we consume, use and dispose of plastics leading to their widespread presence in our everyday life and in the environment. Therefore we urge for a more careful and balanced discussion which includes these aspects. Copyright © 2018 Elsevier B.V. All rights reserved.
2012-09-30
Palisades , NY 10964-8000 phone: (845) 365-8552 fax: (845) 365-8150 email: chekaluk@ldeo.columbia.edu Andrew Barnard WET Labs, Inc 620...UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Lamont-Doherty Earth Observatory of Columbia University,61 Route 9W, Palisades ,NY...sample compartments for flow-through measurements and discrete sample analysis. The easy access allows use of disposable plastic cells for the
Shelf-Life Specifications for Mission Readiness
1993-03-01
R applies to this item. Arthur D Little t..., 4-48 NSN: 7930009353794 Name: Polish , Plastic Description: White lotion with a slight odor Intended...MISSION READINESS TC•T I AR16 19931 Abstract The Navy disposes of tons of hazardous material as hazardous waste due to the expiration of excessively...of hazardous material as hazardous waste due to the expiration of excessively conservati’e shielf-Ihfe terms. In order to reduce this occurrence, the
Considerations for Net Zero Waste Installations: Treatment of Municipal Solid Waste
2015-09-01
plastic) containers or reusable drink containers (such as thermoses) can reduce the amount of metals in the waste stream. Foun- tain drink loyalty ...alternatives are needed to give customers outlets to safely dispose of unwanted HHHW. Periodic turn-in days can be valuable for this pur- pose... restaurants , schools, hospitals, and dining halls) and family housing areas where food waste is continually generated. ERDC/CERL TR-15-21 24
Construction technique of disposable bin from sludge cake and its environmental risk.
Kongmuang, Udomsak; Kiykaew, Duangta; Morioka, Ikuharu
2015-01-01
Now, a lot of researchers have tried to make recycled rigid materials from the sludge cake produced in paper mill industries for the purpose of decreasing its volume. In this study, the researchers tried to make economically a disposable bin and to examine whether it is toxic or not to the outside environment. To make a disposable bin, the researchers used the sludge cake, a plastic basket, as a fixed mold, white cloth or newspaper, as a removable supporter for wrapping around the mold, and latex or plaster, as a binder. The strength of the samples was measured by tensile-stress testing. The water absorption was evaluated by Cobb test. As toxicological tests, leaching test and seed germination test were selected. It was possible to form the disposal bin from the cleaned sludge cake. They seemed safe to carry garbage in the industry judging from the results of tensile-stress testing. Some of them showed less water absorptiveness (higher water resistance) in the results of Cobb test. The results of leaching test showed small values of three heavy metals, lead, nickel and copper, in the leachate. The seed germination test suggested no adverse effects of the bins in the clay and sand on the tomato growth. The results of these tests suggest that the bins have good strength, sufficient water resistance and no toxicological effect on the environment. This new recycled bin has the possibility to solve the environmental and health problems at disposing the sludge cake.
de Santos, Eloína Maria Mendonça; de Melo-Santos, Maria Alice Varjal; de Oliveira, Claudia Maria Fontes; Correia, Juliana Cavalcanti; de Albuquerque, Cleide Maria Ribeiro
2012-09-07
Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap), produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors) were evaluated. During a one year period, traps were placed in a dengue endemic area in 28 day cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3). Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors) and front or back yard (outdoors). The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. During a 28 day cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically infested by mosquitoes. Low requirements for skilled labor together with easy maintenance and low cost are additional advantages of using this sticky trap.
2012-01-01
Background Dengue virus, which is transmitted by Aedes aegypti mosquitoes is the most important emerging viral disease, infecting more than 50 million people annually. Currently used sticky traps are useful tools for monitoring and control of A. aegypti, despite differences in efficiency, labor requirements and cost. In the present work, a field assay was carried out to evaluate the performance of a sticky trap (AedesTrap), produced using disposable material, in capturing gravid Aedes spp. females. Additionally, conditions necessary for the improved performance of the device, such as number of traps per site and location (indoors or outdoors) were evaluated. Methods During a one year period, traps were placed in a dengue endemic area in 28 day cycles. The trap, named AedesTrap, consisted of a disposable plastic soda bottle coated inside with colophony resin, which served as a sticky substrate. Disposable bottles were donated by restaurants, and traps were made by laboratory staff, reducing the cost of the sticky trap (less than U$3). Mosquito capture in indoor and outdoor areas was compared by placing the traps in laundry room, kitchen or bedroom (indoors) and front or back yard (outdoors). The relationship between the number of AedesTraps and quantity of captured mosquitoes was investigated by utilizing one or three traps/site. Results During a 28 day cycle, a single AedesTrap was capable of capturing up to 15 A. aegypti in a house, with a mean capture of 0.5 to 2.63 females per premise. The AedesTrap collected three times more outdoors versus indoors. Similarly, the capability of detecting Aedes spp. infestation, and of capturing females, was three times higher when using three AedesTraps per house, compared with one trap per house. Conclusions AedesTrap was shown to be capable of capturing A. aegypti and other culicidae, providing information on the adult mosquito population, and allowing the identification of areas critically infested by mosquitoes. Low requirements for skilled labor together with easy maintenance and low cost are additional advantages of using this sticky trap. PMID:22958376
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-08-11
The New Brighton/Arden Hills site, also known as the Twin Cities Army Ammunition Plant (TCAAP) site, is in New Brighton, Minnesota. Past disposal of ammunition manufacturing wastes onsite resulted in contamination of ground water beneath and downgradient of the site. A total of 14 waste-disposal locations have been identified and assigned as Sites A through K. During remedial investigations at Site D, soil was discovered to be contaminated with PCBs and other organic and metal contaminants. A soil-gas extraction system was implemented to remove the source of volatile organic contamination and reduce the potential of migration to ground water. Inmore » implementing the soil gas extraction system, PCB-contaminated soil was removed, stockpiled near Site D, and sealed with a plastic-liner material. The interim remedy addresses the treatment and disposal of contaminated soil that is stockpiled near Site D. The primary contaminants of concern affecting the soil are VOCs including TCE and PCE, other organics including PCBs, and metals including arsenic and lead.« less
A Bio Medical Waste Identification and Classification Algorithm Using Mltrp and Rvm.
Achuthan, Aravindan; Ayyallu Madangopal, Vasumathi
2016-10-01
We aimed to extract the histogram features for text analysis and, to classify the types of Bio Medical Waste (BMW) for garbage disposal and management. The given BMW was preprocessed by using the median filtering technique that efficiently reduced the noise in the image. After that, the histogram features of the filtered image were extracted with the help of proposed Modified Local Tetra Pattern (MLTrP) technique. Finally, the Relevance Vector Machine (RVM) was used to classify the BMW into human body parts, plastics, cotton and liquids. The BMW image was collected from the garbage image dataset for analysis. The performance of the proposed BMW identification and classification system was evaluated in terms of sensitivity, specificity, classification rate and accuracy with the help of MATLAB. When compared to the existing techniques, the proposed techniques provided the better results. This work proposes a new texture analysis and classification technique for BMW management and disposal. It can be used in many real time applications such as hospital and healthcare management systems for proper BMW disposal.
Buszka, P.M.; Yeskis, D.J.; Kolpin, D.W.; Furlong, E.T.; Zaugg, S.D.; Meyer, M.T.
2009-01-01
Four wells downgradient from a landfill near Elkhart, Indiana were sampled during 2000-2002 to evaluate the presence of waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water. Compounds detected in leachate-affected ground water included detergent metabolites (p-nonylphenol, nonylphenol monoethoxylate, nonylphenol diethoxylate, and octylphenol monoethoxylate), plasticizers (ethanol-2-butoxy-phosphate and diethylphthalate), a plastic monomer (bisphenol A), disinfectants (1,4-dichlorobenzene and triclosan), an antioxidant (5-methyl-1H-benzotriazole), three fire-retardant compounds (tributylphosphate and tri(2-chloroethyl)phosphate, and tri(dichlorisopropyl)phosphate), and several pharmaceuticals and metabolites (acetaminophen, caffeine, cotinine, 1,7-dimethylxanthine, fluoxetine, and ibuprofen). Acetaminophen, caffeine, and cotinine detections confirm prior indications of pharmaceutical and nicotinate disposal in the landfill. ?? 2009 Springer Science + Business Media, LLC.
Combating oil spill problem using plastic waste.
Saleem, Junaid; Ning, Chao; Barford, John; McKay, Gordon
2015-10-01
Thermoplastic polymers (such as polypropylene, polyethylene, polyethylene terephthalate (PET) and high density polyethylene (HDPE)) constitute 5-15% of municipal solid waste produced across the world. A huge quantity of plastic waste is disposed of each year and is mostly either discarded in landfills or incinerated. On the other hand, the usage of synthetic polymers as oil sorbents, in particular, polyolefins, including polypropylene (PP), and polyethylene (PE) are the most commonly used oil sorbent materials mainly due to their low cost. However, they possess relatively low oil absorption capacities. In this work, we provide an innovative way to produce a value-added product such as oil-sorbent film with high practical oil uptake values in terms of g/g from waste HDPE bottles for rapid oil spill remedy. Copyright © 2015 Elsevier Ltd. All rights reserved.
A PORTABLE MICROREACTOR SYSTEM TO SYNTHESIZE HYDROGEN PEROXIDE - PHASE I
In the event that vehicles of buildings become contaminated by hazardous chemical or biological materials, a well-studied and effective decontaminant is hydrogen peroxide vapor (HPV). Unfortunately, the current technology for generating HPV requires 35 weight percent hydro...
Flash chemistry: flow chemistry that cannot be done in batch.
Yoshida, Jun-ichi; Takahashi, Yusuke; Nagaki, Aiichiro
2013-11-04
Flash chemistry based on high-resolution reaction time control using flow microreactors enables chemical reactions that cannot be done in batch and serves as a powerful tool for laboratory synthesis of organic compounds and for production in chemical and pharmaceutical industries.
Tripathi, Pranav K; Durbach, Shane; Coville, Neil J
2017-09-22
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman I D / I G ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst.
Durbach, Shane
2017-01-01
The disposal of non-biodegradable plastic waste without further upgrading/downgrading is not environmentally acceptable and many methods to overcome the problem have been proposed. Herein we indicate a simple method to make high-value nanomaterials from plastic waste as a partial solution to the environmental problem. Laboratory-based waste centrifuge tubes made of polypropylene were chosen as a carbon source to show the process principle. In the process, multi-walled carbon nanotubes (MWCNTs) were synthesized from plastic waste in a two-stage stainless steel 316 (SS 316) metal tube that acted as both reactor vessel and catalyst. The steel reactor contains Fe (and Ni, and various alloys), which act as the catalyst for the carbon conversion process. The reaction and products were studied using electron probe microanalysis, thermogravimetric analysis, Raman spectroscopy and transmission electron microscopy and scanning electron microscopy. Optimization studies to determine the effect of different parameters on the process showed that the highest yield and most graphitized MWCNTs were formed at 900 °C under the reaction conditions used (yield 42%; Raman ID/IG ratio = 0.48). The high quality and high yield of the MWCNTs that were produced in a flow reactor from plastic waste using a two stage SS 316 chemical vapor deposition (CVD) furnace did not require the use of an added catalyst. PMID:28937596
NASA Astrophysics Data System (ADS)
Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg; Troy, Tyler P.; Ahmed, Musahid; Robichaud, David J.; Nimlos, Mark R.; Daily, John W.; Ellison, G. Barney
2016-07-01
Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 μs. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures up to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H513CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H513CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buckingham, Grant T.; Porterfield, Jessica P.; Kostko, Oleg
2016-07-05
Cycloheptatrienyl (tropyl) radical, C7H7, was cleanly produced in the gas-phase, entrained in He or Ne carrier gas, and subjected to a set of flash-pyrolysis micro-reactors. The pyrolysis products resulting from C7H7 were detected and identified by vacuum ultraviolet photoionization mass spectrometry. Complementary product identification was provided by infrared absorption spectroscopy. Pyrolysis pressures in the micro-reactor were roughly 200 Torr and residence times were approximately 100 us. Thermal cracking of tropyl radical begins at 1100 K and the products from pyrolysis of C7H7 are only acetylene and cyclopentadienyl radicals. Tropyl radicals do not isomerize to benzyl radicals at reactor temperatures upmore » to 1600 K. Heating samples of either cycloheptatriene or norbornadiene never produced tropyl (C7H7) radicals but rather only benzyl (C6H5CH2). The thermal decomposition of benzyl radicals has been reconsidered without participation of tropyl radicals. There are at least three distinct pathways for pyrolysis of benzyl radical: the Benson fragmentation, the methyl-phenyl radical, and the bridgehead norbornadienyl radical. These three pathways account for the majority of the products detected following pyrolysis of all of the isotopomers: C6H5CH2, C6H5CD2, C6D5CH2, and C6H5 13CH2. Analysis of the temperature dependence for the pyrolysis of the isotopic species (C6H5CD2, C6D5CH2, and C6H5 13CH2) suggests the Benson fragmentation and the norbornadienyl pathways open at reactor temperatures of 1300 K while the methyl-phenyl radical channel becomes active at slightly higher temperatures (1500 K).« less
Matesic, Lidia; Kallinen, Annukka; Greguric, Ivan; Pascali, Giancarlo
2017-09-01
The production of 18 F-radiotracers using continuous flow microfluidics is under-utilized due to perceived equipment limitations. We describe the dose-on-demand principle, whereby the back-to-back production of multiple, diverse 18 F-radiotracers can be prepared on the same day, on the same microfluidic system using the same batch of [ 18 F]fluoride, the same microreactor, the same HPLC column and SPE cartridge to obtain a useful production yield. [ 18 F]MEL050, [ 18 F]Fallypride and [ 18 F]PBR111 were radiolabeled with [ 18 F]fluoride using the Advion NanoTek Microfluidic Synthesis System. The outlet of the microreactor was connected to an automated HPLC injector and following the collection of the product, SPE reformulation produced the 18 F-radiotracer in <10% ethanolic saline. A thorough automated cleaning procedure was implemented to ensure no cross-contamination between radiotracer synthesis. The complete productions for [ 18 F]MEL050 and [ 18 F]Fallypride were performed at total flow rates of 20μL/min, resulting in 40±13% and 25±13% RCY respectively. [ 18 F]PBR111 was performed at 200μL/min to obtain 27±8% RCY. Molar activities for each 18 F-radiotracer were >100GBq/μmol and radiochemical purities were >97%, implying that the cleaning procedure was effective. Using the same initial solution of [ 18 F]fluoride, microreactor, HPLC column and SPE cartridge, three diverse 18 F-radiotracers could be produced in yields sufficient for preclinical studies in a back-to-back fashion using a microfluidic system with no detectable cross-contamination. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.
Roper, Kimberley A; Lange, Heiko; Polyzos, Anastasios; Berry, Malcolm B; Baxendale, Ian R; Ley, Steven V
2011-01-01
Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification.
Li, Yihan; Wojcik, Roza; Dovichi, Norman J.
2010-01-01
We describe a two-dimensional capillary electrophoresis system that incorporates a replaceable enzymatic microreactor for on-line protein digestion. In this system, trypsin is immobilized on magnetic beads. At the start of each experiment, old beads are flushed to waste and replaced with a fresh plug of beads, which is captured by a pair of magnets at the distal tip of the first capillary. For analysis, proteins are separated in the first capillary. A fraction is then parked in the reactor to create peptides. Digested peptides are periodically transferred to the second capillary for separation; a fresh protein fraction is simultaneously moved to the reactor for digestion. An electrospray interface is used to introduce peptides into a mass spectrometer for analysis. This procedure is repeated for several dozen fractions under computer control. The system was demonstrated by the separation and digestion of insulin chain b oxidized and β-casein as model proteins. PMID:21030030
Tušek, Ana Jurinjak; Šalić, Anita; Zelić, Bruno
2017-08-01
Laccase belongs to the group of enzymes that are capable to catalyze the oxidation of phenols. Since the water is only by-product in laccase-catalyzed phenol oxidations, it is ideally "green" enzyme with many possible applications in different industrial processes. To make the oxidation process more sustainable in terms of biocatalyst consumption, immobilization of the enzyme is implemented in to the processes. Additionally, when developing a process, choice of a reactor type plays a significant role in the total outcome.In this study, the use of immobilized laccase from Trametes versicolor for biocatalytic catechol oxidation was explored. Two different methods of immobilization were performed and compared using five different reactor types. In order to compare different systems used for catechol oxidation, biocatalyst turnover number and turnover frequency were calculated. With low consumption of the enzyme and good efficiency, obtained results go in favor of microreactors with enzyme covalently immobilized on the microchannel surface.
He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung
2017-06-09
Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.
Stromalized microreactor supports murine hematopoietic progenitor enrichment.
Khong, Danika; Li, Matthew; Singleton, Amy; Chin, Ling-Yee; Parekkadan, Biju
2018-01-20
There is an emerging need to process, expand, and even genetically engineer hematopoietic stem and progenitor cells (HSPCs) prior to administration for blood reconstitution therapy. A closed-system and automated solution for ex vivo HSC processing can improve adoption and standardize processing techniques. Here, we report a recirculating flow bioreactor where HSCs are stabilized and enriched for short-term processing by indirect fibroblast feeder coculture. Mouse 3 T3 fibroblasts were seeded on the extraluminal membrane surface of a hollow fiber micro-bioreactor and were found to support HSPC cell number compared to unsupported BMCs. CFSE analysis indicates that 3 T3-support was essential for the enhanced intrinsic cell cycling of HSPCs. This enhanced support was specific to the HSPC population with little to no effect seen with the Lineage positive and Lineage negative cells. Together, these data suggest that stromal-seeded hollow fiber micro-reactors represent a platform to screening various conditions that support the expansion and bioprocessing of HSPCs ex vivo.
Microchannel Reactor System for Catalytic Hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adeniyi Lawal; Woo Lee; Ron Besser
2010-12-22
We successfully demonstrated a novel process intensification concept enabled by the development of microchannel reactors, for energy efficient catalytic hydrogenation reactions at moderate temperature, and pressure, and low solvent levels. We designed, fabricated, evaluated, and optimized a laboratory-scale microchannel reactor system for hydrogenation of onitroanisole and a proprietary BMS molecule. In the second phase of the program, as a prelude to full-scale commercialization, we designed and developed a fully-automated skid-mounted multichannel microreactor pilot plant system for multiphase reactions. The system is capable of processing 1 – 10 kg/h of liquid substrate, and an industrially relevant immiscible liquid-liquid was successfully demonstratedmore » on the system. Our microreactor-based pilot plant is one-of-akind. We anticipate that this process intensification concept, if successfully demonstrated, will provide a paradigm-changing basis for replacing existing energy inefficient, cost ineffective, environmentally detrimental slurry semi-batch reactor-based manufacturing practiced in the pharmaceutical and fine chemicals industries.« less
Muñoz, Lourdes; Dimov, Nikolay; Carot-Sans, Gerard; Bula, Wojciech P.; Guerrero, Angel; Gardeniers, Han J. G. E.
2012-01-01
Infochemical production, release and detection of (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone of the moth Spodoptera littoralis, is achieved in a novel microfluidic system designed to mimic the final step of the pheromone biosynthesis by immobilized recombinant alcohol acetyl transferase. The microfluidic system is part of an “artificial gland”, i.e., a chemoemitter that comprises a microreactor connected to a microevaporator and is able to produce and release a pre-defined amount of the major component of the pheromone from the corresponding (Z,E)-9,11-tetradecadienol. Performance of the entire chemoemitter has been assessed in electrophysiological and behavioral experiments. Electroantennographic depolarizations of the pheromone produced by the chemoemitter were ca. 40% relative to that evoked by the synthetic pheromone. In a wind tunnel, the pheromone released from the evaporator elicited on males a similar attraction behavior as 3 virgin females in most of the parameters considered. PMID:23155372
NASA Astrophysics Data System (ADS)
Stauss, Sven; Ishii, Chikako; Pai, David Z.; Urabe, Keiichiro; Terashima, Kazuo
2014-06-01
Due to their small size, low-power consumption and potential for integration with other devices, microplasmas have been used increasingly for the synthesis of nanomaterials. Here, we have investigated the possibility of using dielectric barrier discharges generated in continuous flow glass microreactors for the synthesis of diamondoids, at temperatures of 300 and 320 K, and applied voltages of 3.2-4.3 kVp-p, at a frequency of 10 kHz. The microplasmas were generated in gas mixtures containing argon, methane, hydrogen and adamantane, which was used as a precursor and seed. The plasmas were monitored by optical emission spectroscopy measurements and the synthesized products were characterized by gas chromatography—mass spectrometry (GC-MS). Depending on the gas composition, the optical emission spectra contained CH and C2 bands of varying intensities. The GC-MS measurements revealed that diamantane can be synthesized by microplasmas generated at atmospheric pressure, and that the yields highly depend on the gas composition and the presence of carbon sources.
NASA Astrophysics Data System (ADS)
He, Yujuan; Kim, Ki-Joong; Chang, Chih-Hung
2017-06-01
Hollow silica nanoparticles (HSNPs) were synthesized using a microreactor-assisted system with a hydrodynamic focusing micromixer. Due to the fast mixing of each precursor in the system, the poly(acrylic acid) (PAA) thermodynamic-locked (TML) conformations were protected from their random aggregations by the immediately initiated growth of silica shells. When altering the mixing time through varying flow rates and flow rate ratios, the different degrees of the aggregation of PAA TML conformations were observed. The globular and necklace-like TML conformations were successfully captured by modifying the PAA concentration at the optimized mixing condition. Uniform HSNPs with an average diameter ∼30 nm were produced from this system. COMSOL numerical models was established to investigate the flow and concentration profiles, and their effects on the formation of PAA templates. Finally, the quality and utility of these uniform HSNPs were demonstrated by the fabrication of antireflective thin films on monocrystalline photovoltaic cells which showed a 3.8% increase in power conversion efficiency.
A flow reactor setup for photochemistry of biphasic gas/liquid reactions
Schachtner, Josef; Bayer, Patrick
2016-01-01
Summary A home-built microreactor system for light-mediated biphasic gas/liquid reactions was assembled from simple commercial components. This paper describes in full detail the nature and function of the required building elements, the assembly of parts, and the tuning and interdependencies of the most important reactor and reaction parameters. Unlike many commercial thin-film and microchannel reactors, the described set-up operates residence times of up to 30 min which cover the typical rates of many organic reactions. The tubular microreactor was successfully applied to the photooxygenation of hydrocarbons (Schenck ene reaction). Major emphasis was laid on the realization of a constant and highly reproducible gas/liquid slug flow and the effective illumination by an appropriate light source. The optimized set of conditions enabled the shortening of reaction times by more than 99% with equal chemoselectivities. The modular home-made flow reactor can serve as a prototype model for the continuous operation of various other reactions at light/liquid/gas interfaces in student, research, and industrial laboratories. PMID:27829887
Structured fluids as microreactors for flavor formation by the Maillard reaction.
Vauthey, S; Milo, C; Frossard, P; Garti, N; Leser, M E; Watzke, H J
2000-10-01
Thermal reactions of cysteine/furfural and cysteine/ribose mixtures were studied in model systems to gain more insight into the influence of structured fluids such as L(2) microemulsions and cubic phases on the generation of aroma compounds. Formation of 2-furfurylthiol from cysteine/furfural was particularly efficient in L(2) microemulsions and cubic phases compared to aqueous systems. The reaction led to the formation of two new sulfur compounds, which were identified as 2-(2-furyl)thiazolidine and, tentatively, N-(2-mercaptovinyl)-2-(2-furyl)thiazolidine. Similarly, generation of 2-furfurylthiol and 2-methyl-3-furanthiol from cysteine/ribose mixtures was strongly enhanced in structured fluids. The cubic phase was shown to be even more efficient in flavor generation than the L(2) microemulsion. It was denoted "cubic catalyst" or "cubic selective microreactor". The obtained results are interpreted in terms of a surface and curvature control of the reactions defined by the structural properties of the formed surfactant associates.
Switchable Opening and Closing of a Liquid Marble via Ultrasonic Levitation.
Zang, Duyang; Li, Jun; Chen, Zhen; Zhai, Zhicong; Geng, Xingguo; Binks, Bernard P
2015-10-27
Liquid marbles have promising applications in the field of microreactors, where the opening and closing of their surfaces plays a central role. We have levitated liquid water marbles using an acoustic levitator and, thereby, achieved the manipulation of the particle shell in a controlled manner. Upon increasing the sound intensity, the stable levitated liquid marble changes from a quasi-sphere to a flattened ellipsoid. Interestingly, a cavity on the particle shell can be produced on the polar areas, which can be completely healed when decreasing the sound intensity, allowing it to serve as a microreactor. The integral of the acoustic radiation pressure on the part of the particle surface protruding into air is responsible for particle migration from the center of the liquid marble to the edge. Our results demonstrate that the opening and closing of the liquid marble particle shell can be conveniently achieved via acoustic levitation, opening up a new possibility to manipulate liquid marbles coated with non-ferromagnetic particles.
Sample Handling and Chemical Kinetics in an Acoustically Levitated Drop Microreactor
2009-01-01
Accurate measurement of enzyme kinetics is an essential part of understanding the mechanisms of biochemical reactions. The typical means of studying such systems use stirred cuvettes, stopped-flow apparatus, microfluidic systems, or other small sample containers. These methods may prove to be problematic if reactants or products adsorb to or react with the container’s surface. As an alternative approach, we have developed an acoustically-levitated drop reactor eventually intended to study enzyme-catalyzed reaction kinetics related to free radical and oxidative stress chemistry. Microliter-scale droplet generation, reactant introduction, maintenance, and fluid removal are all important aspects in conducting reactions in a levitated drop. A three capillary bundle system has been developed to address these needs. We report kinetic measurements for both luminol chemiluminescence and the reaction of pyruvate with nicotinamide adenine dinucleotide, catalyzed by lactate dehydrogenase, to demonstrate the feasibility of using a levitated drop in conjunction with the developed capillary sample handling system as a microreactor. PMID:19769373
Continuous Microreactor-Assisted Solution Deposition for Scalable Production of CdS Films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramprasad, Sudhir; Su, Yu-Wei; Chang, Chih-Hung
2013-06-13
Solution deposition offers an attractive, low temperature option in the cost effective production of thin film solar cells. Continuous microreactor-assisted solution deposition (MASD) was used to produce nanocrystalline cadmium sulfide (CdS) films on fluorine doped tin oxide (FTO) coated glass substrates with excellent uniformity. We report a novel liquid coating technique using a ceramic rod to efficiently and uniformly apply reactive solution to large substrates (152 mm × 152 mm). This technique represents an inexpensive approach to utilize the MASD on the substrate for uniform growth of CdS films. Nano-crystalline CdS films have been produced from liquid phase at ~90°C,more » with average thicknesses of 70 nm to 230 nm and with a 5 to 12% thickness variation. The CdS films produced were characterized by UV-Vis spectroscopy, transmission electron microscopy, and X-Ray diffraction to demonstrate their suitability to thin-film solar technology.« less
Environmental Assessment: Military Family Housing Revitalization Travis Air Force Base, California
2007-05-01
such as mulch, straw , plastic netting, or a combination of these protective coverings • Implementation of site grading procedures to limit the time...areas. All uses of chlordane were banned by the U.S. EPA in 1988. 3.3.5 Polychlorinated Biphenyls The disposal of PCBs is regulated under the...federal Toxic Substances Control Act (TSCA) (15 U.S.C. Section 2601, et seq., as implemented by 40 CFR Part 761), which banned the manufacture and
Use of Computer Imaging in Rhinoplasty: A Survey of the Practices of Facial Plastic Surgeons.
Singh, Prabhjyot; Pearlman, Steven
2017-08-01
The objective of this study was to quantify the use of computer imaging by facial plastic surgeons. AAFPRS Facial plastic surgeons were surveyed about their use of computer imaging during rhinoplasty consultations. The survey collected information about surgeon demographics, practice settings, practice patterns, and rates of computer imaging (CI) for primary and revision rhinoplasty. For those surgeons who used CI, additional information was also collected, which included who performed the imaging and whether the patient was given the morphed images after the consultation. A total of 238 out of 1200 (19.8%) facial plastic surgeons responded to the survey. Out of those who responded, 195 surgeons (83%) were board certified by the American Board of Facial Plastic and Reconstructive Surgeons (ABFPRS). The majority of respondents (150 surgeons, 63%) used CI during rhinoplasty consultation. Of the surgeons who use CI, 92% performed the image morphing themselves. Approximately two-thirds of surgeons who use CI gave their patient a printout of the morphed images after the consultation. Computer imaging (CI) is a frequently utilized tool for facial plastic surgeons during cosmetic consultations with patients. Based on these results of this study, it can be suggested that the majority of facial plastic surgeons who use CI do so for both primary and revision rhinoplasty. As more sophisticated systems become available, it is possible that utilization of CI modalities will increase. This provides the surgeon with further tools to use at his or her disposal during discussion of aesthetic surgery. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
How to recycle asbestos containing materials (ACM)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, C.M.
The current disposal of asbestos containing materials (ACM) in the private sector consists of sealing asbestos wetted with water in plastic for safe transportation and burial in regulated land fills. This disposal methodology requires large disposal volumes especially for asbestos covered pipe and asbestos/fiberglass adhering to metal framework, e.g. filters. This wrap and bury technology precludes recycle of the asbestos, the pipe and/or the metal frameworks. Safe disposal of ACM at U.S. Department of Energy (DOE) sites, likewise, requires large disposal volumes in landfills for non-radioactive ACM and large disposal volumes in radioactive burial grounds for radioactive and suspect contaminatedmore » ACM. The availability of regulated disposal sites is rapidly diminishing causing recycle to be a more attractive option. Asbestos adhering to metal (e.g., pipes) can be recycled by safely removing the asbestos from the metal in a patented hot caustic bath which prevents airborne contamination /inhalation of asbestos fibers. The dissolution residue (caustic and asbestos) can be wet slurry fed to a melter and vitrified into a glass or glass-ceramic. Palex glasses, which are commercially manufactured, are shown to be preferred over conventional borosilicate glasses. The Palex glasses are alkali magnesium silicate glasses derived by substituting MgO for B{sub 2}O{sub 3} in borosilicate type glasses. Palex glasses are very tolerant of the high MgO and high CaO content of the fillers used in forming asbestos coverings for pipes and found in boiler lashing, e.g., hydromagnesite (3MgCO{sub 3} Mg(OH){sub 2} 3H{sub 2}O) and plaster of paris, gypsum (CaSO{sub 4}). The high temperate of the vitrification process destroys the asbestos fibers and renders the asbestos non-hazardous, e.g., a glass or glass-ceramic. In this manner the glass or glass-ceramic produced can be recycled, e.g., glassphalt or glasscrete, as can the clean metal pipe or metal framework.« less
Compaction of Space Mission Wastes
NASA Technical Reports Server (NTRS)
Fisher, John; Pisharody, Suresh; Wignarajah, K.
2004-01-01
The current solid waste management system employed on the International Space Station (ISS) consists of compaction, storage, and disposal. Wastes such plastic food packaging and trash are compacted manually and wrapped in duct tape footballs by the astronauts. Much of the waste is simply loaded either into the empty Russian Progress vehicle for destruction on reentry or into Shuttle for return to Earth. This manual method is wasteful of crew time and does not transition well to far term missions. Different wastes onboard spacecraft vary considerably in their characteristics and in the appropriate method of management. In advanced life support systems for far term missions, recovery of resources such as water from the wastes becomes important. However waste such as plastic food packaging, which constitutes a large fraction of solid waste (roughly 21% on ISS, more on long duration missions), contains minimal recoverable resource. The appropriate management of plastic waste is waste stabilization and volume minimization rather than resource recovery. This paper describes work that has begun at Ames Research Center on development of a heat melt compactor that can be used on near term and future missions, that can minimize crew interaction, and that can handle wastes with a significant plastic composition. The heat melt compactor takes advantage of the low melting point of plastics to compact plastic materials using a combination of heat and pressure. The US Navy has demonstrated successful development of a similar unit for shipboard application. Ames is building upon the basic approach demonstrated by the Navy to develop an advanced heat melt type compactor for space mission type wastes.
Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor.
Porterfield, Jessica P; Nguyen, Thanh Lam; Baraban, Joshua H; Buckingham, Grant T; Troy, Tyler P; Kostko, Oleg; Ahmed, Musahid; Stanton, John F; Daily, John W; Ellison, G Barney
2015-12-24
The thermal decomposition of cyclohexanone (C6H10═O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C6H10═O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of which open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C6H9OH), is followed by retro-Diels-Alder cleavage to CH2═CH2 and CH2═C(OH)-CH═CH2. Further isomerization of CH2═C(OH)-CH═CH2 to methyl vinyl ketone (CH3CO-CH═CH2, MVK) was also observed. Photoionization spectra identified both enols, C6H9OH and CH2═C(OH)-CH═CH2, and the ionization threshold of C6H9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be ΔfH298(cis-CH3CO-CH═CH2) = -26.1 ± 0.5 kcal mol(-1) and ΔfH298(s-cis-1-CH2═C(OH)-CH═CH2) = -13.7 ± 0.5 kcal mol(-1). The reaction enthalpy ΔrxnH298(C6H10═O → CH2═CH2 + s-cis-1-CH2═C(OH)-CH═CH2) is 53 ± 1 kcal mol(-1) and ΔrxnH298(C6H10═O → CH2═CH2 + cis-CH3CO-CH═CH2) is 41 ± 1 kcal mol(-1). At 1200 K, the products of cyclohexanone pyrolysis were found to be C6H9OH, CH2═C(OH)-CH═CH2, MVK, CH2CHCH2, CO, CH2═C═O, CH3, CH2═C═CH2, CH2═CH-CH═CH2, CH2═CHCH2CH3, CH2═CH2, and HC≡CH.
Isomerization and Fragmentation of Cyclohexanone in a Heated Micro-Reactor
Porterfield, Jessica P.; Nguyen, Thanh Lam; Baraban, Joshua H.; ...
2015-11-30
Here, the thermal decomposition of cyclohexanone (C 6H 10=O) has been studied in a set of flash-pyrolysis microreactors. Decomposition of the ketone was observed when dilute samples of C 6H 10=O were heated to 1200 K in a continuous flow microreactor. Pyrolysis products were detected and identified by tunable VUV photoionization mass spectroscopy and by photoionization appearance thresholds. Complementary product identification was provided by matrix infrared absorption spectroscopy. Pyrolysis pressures were roughly 100 Torr, and contact times with the microreactors were roughly 100 μs. Thermal cracking of cyclohexanone appeared to result from a variety of competing pathways, all of whichmore » open roughly simultaneously. Isomerization of cyclohexanone to the enol, cyclohexen-1-ol (C 6H 9OH), is followed by retro-Diels–Alder cleavage to CH 2=CH 2 and CH 2=C(OH)–CH=CH 2. Further isomerization of CH 2=C(OH)–CH=CH 2 to methyl vinyl ketone (CH 3CO–CH=CH 2, MVK) was also observed. Photoionization spectra identified both enols, C 6H 9OH and CH 2=C(OH)–CH=CH 2, and the ionization threshold of C 6H 9OH was measured to be 8.2 ± 0.1 eV. Coupled cluster electronic structure calculations were used to establish the energetics of MVK. The heats of formation of MVK and its enol were calculated to be Δ fH 298(cis-CH 3CO–CH=CH 2) = -26.1 ± 0.5 kcal mol –1 and Δ fH 298(s-cis-1-CH 2=C(OH)–CH=CH 2) = -13.7 ± 0.5 kcal mol –1. The reaction enthalpy Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + s-cis-1-CH 2=C(OH)–CH=CH 2) is 53 ± 1 kcal mol –1 and Δ rxnH 298(C 6H 10=O → CH 2=CH 2 + cis-CH 3CO–CH=CH 2) is 41 ± 1 kcal mol –1. At 1200 K, the products of cyclohexanone pyrolysis were found to be C 6H 9OH, CH 2=C(OH)–CH=CH 2, MVK, CH 2CHCH 2, CO, CH 2=C=O, CH 3, CH 2=C=CH 2, CH 2=CH–CH=CH 2, CH 2=CHCH 2CH 3, CH 2=CH 2, and HC≡CH.« less
Boadi, Kwasi Owusu; Kuitunen, Markku
2005-11-01
Inadequate provision of solid waste management facilities in Third World cities results in indiscriminate disposal and unsanitary environments, which threatens the health of urban residents. The study reported here examined household-level waste management and disposal practices in the Accra Metropolitan Area, Ghana. The residents of Accra currently generate large amounts of solid waste, beyond the management capabilities of the existing waste management system. Because the solid waste infrastructure is inadequate, over 80 percent of the population do not have home collection services. Only 13.5 percent of respondents are served with door-to-door collection of solid waste, while the rest dispose of their waste at communal collection points, in open spaces, and in waterways. The majority of households store their waste in open containers and plastic bags in the home. Waste storage in the home is associated with the presence of houseflies in the kitchen (r = .17, p < .0001). The presence of houseflies in the kitchen during cooking is correlated with the incidence of childhood diarrhea (r = .36, p < .0001). Inadequate solid waste facilities result in indiscriminate burning and burying of solid waste. There is an association between waste burning and the incidence of respiratory health symptoms among adults (r = .25, p < .0001) and children (r = .22, p < .05). Poor handling and disposal of waste are major causes of environmental pollution, which creates breeding grounds for pathogenic organisms, and the spread of infectious diseases. Improving access to solid waste collection facilities and services will help achieve sound environmental health in Accra.
Disposable diapers biodegradation by the fungus Pleurotus ostreatus.
Espinosa-Valdemar, Rosa María; Turpin-Marion, Sylvie; Delfín-Alcalá, Irma; Vázquez-Morillas, Alethia
2011-08-01
This research assesses the feasibility of degrading used disposable diapers, an important component (5-15% in weight) of urban solid waste in Mexico, by the activity of the fungus Pleurotus ostreatus, also known as oyster mushroom. Disposable diapers contain polyethylene, polypropylene and a super absorbent polymer. Nevertheless, its main component is cellulose, which degrades slowly. P. ostreatus has been utilized extensively to degrade cellulosic materials of agroindustrial sources, using in situ techniques. The practice has been extended to the commercial farming of the mushroom. This degradation capacity was assayed to reduce mass and volume of used disposable diapers. Pilot laboratory assays were performed to estimate the usefulness of the following variables on conditioning of used diapers before they act as substrate for P. ostreatus: (1) permanence vs removal of plastic cover; (2) shredding vs grinding; (3) addition of grape wastes to improve structure, nitrogen and trace elements content. Wheat straw was used as a positive control. After 68 days, decrease of the mass of diapers and productivity of fungus was measured. Weight and volume of degradable materials was reduced up to 90%. Cellulose content was diminished in 50% and lignine content in 47%. The highest efficiency for degradation of cellulosic materials corresponded to the substrates that showed highest biological efficiency, which varied from 0% to 34%. Harvested mushrooms had good appearance and protein content and were free of human disease pathogens. This research indicates that growing P. ostreatus on disposable diapers could be a good alternative for two current problems: reduction of urban solid waste and availability of high protein food sources. Copyright © 2011 Elsevier Ltd. All rights reserved.
Disposable gold coated pyramidal SERS sensor on the plastic platform.
Oo, S Z; Siitonen, S; Kontturi, V; Eustace, D A; Charlton, M D B
2016-01-11
In this paper we investigate suitability of arrays of gold coated pyramids for surface-enhanced Raman scattering (SERS) sensing applications. Pyramidarrays composed of 1000 nm pit size with 1250 nm pitch lengthwerereplicated on a plastic substrate by roll-to-roll (R2R) ultraviolet (UV) embossing. The level of SERS enhancement, and qualitative performance provided by the new substrate is investigated by comparing Raman spectrum of benzenethiol (BTh) test molecules to the benchmark Klarite SERS substrate which comprises inverted pyramid arrays(1500 nm pit size with 2000 nm pitch length) fabricated on a silicon substrate. The new substrate is found to provide upto 11 times increase in signal in comparison to the inverted pyramid (IV-pyramid) arrays fabricated on an identical plastic substrate. Numerical simulation and experimental evidence suggest that strongly confined electromagnetic fields close to the base of the pyramids, are mainly responsible for the Raman enhancement factor, instead of the fields localized around the tip. Unusually strong plasmon fields are projected upto 200nm from the sidewalls at the base of the pyramid increasing the cross sectional sensing volume.
Adsorption of Nanoplastics on Algal Photosynthesis
NASA Astrophysics Data System (ADS)
Turner, James; Bhattacharya, Priyanka; Lin, Sijie; Ke, Pu Chun
2010-03-01
The rapid accumulation of disposed plastics in the environment, especially in the Pacific Ocean, has become a global concern in recent years. Photo, chemical and physical degradations constantly fragment these plastics into a wide array of macroscopic to microscopic particles. As a result, marine organisms such as algae may be exposed to plastic particles through ingestion, adsorption and other forms of uptake. Such interactions, currently little understood, could potentially impact on the health state of the entire food chain. Here we report on polystyrene-algae interaction and its impact on algal photosynthesis. We first investigated the adsorption of polystyrene beads (20 nm) on a cellulose film coated on a 96-well plate. We derived a supralinear increase of the adsorption with the beads concentration for both positively and negatively charged polystyrene beads, with a saturation observed for the negatively charged polystyrene beads of concentration above 1.6 mg/mL. Using a bicarbonate indicator we discovered decreased carbon dioxide depletion due to polystyrene-algae binding. Since polystyrene beads also mediated algae aggregation, nanoplastics may alternatively be harnessed for waste water treatment.
Anazawa, Takashi; Uchiho, Yuichi; Yokoi, Takahide; Chalkidis, George; Yamazaki, Motohiro
2017-06-27
A five-color fluorescence-detection system for eight-channel plastic-microchip electrophoresis was developed. In the eight channels (with effective electrophoretic lengths of 10 cm), single-stranded DNA fragments were separated (with single-base resolution up to 300 bases within 10 min), and seventeen-loci STR genotyping for forensic human identification was successfully demonstrated. In the system, a side-entry laser beam is passed through the eight channels (eight A channels), with alternately arrayed seven sacrificial channels (seven B channels), by a technique called "side-entry laser-beam zigzag irradiation." Laser-induced fluorescence from the eight A channels and Raman-scattered light from the seven B channels are then simultaneously, uniformly, and spectroscopically detected, in the direction perpendicular to the channel array plane, through a transmission grating and a CCD camera. The system is therefore simple and highly sensitive. Because the microchip is fabricated by plastic-injection molding, it is inexpensive and disposable and thus suitable for actual use in various fields.
Plastic and the nest entanglement of urban and agricultural crows.
Townsend, Andrea K; Barker, Christopher M
2014-01-01
Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds.
Dhar-Chowdhury, Parnali; Haque, C. Emdad; Lindsay, Robbin; Hossain, Shakhawat
2016-01-01
This study examined household risk factors and prevalence, abundance, and distribution of immature Aedes aegypti and Aedes albopictus, and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature Ae. aegypti and Ae. albopictus, and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the “most productive” for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes. PMID:27022149
Dhar-Chowdhury, Parnali; Haque, C Emdad; Lindsay, Robbin; Hossain, Shakhawat
2016-06-01
This study examined household risk factors and prevalence, abundance, and distribution of immature Aedes aegypti and Aedes albopictus, and their association with socioeconomic and ecological factors at urban zonal and household levels in the city of Dhaka, Bangladesh. During the 2011 monsoon, 826 households in 12 randomly selected administrative wards were surveyed for vector mosquitoes. Results revealed that the abundance and distribution of immature Ae. aegypti and Ae. albopictus, and pupae-per-person indices did not vary significantly among the zones with varied socioeconomic status. Of 35 different types of identified wet containers, 30 were infested, and among the 23 pupae-positive container types, nine were defined as the "most productive" for pupae including: disposable plastic containers (12.2% of 550), sealable plastic barrels (12.0%), tires (10.4%), abandoned plastic buckets (9.6%), flower tub and trays (8.5%), refrigerator trays (6.5%), plastic bottles (6.4%), clay pots (4.9%), and water tanks (1.6%). When the function of the containers was assessed, ornamental, discarded, and household repairing and reconstruction-related container categories were found significantly associated with the number of pupae in the households. The purpose of storing water and income variables were significant predictors of possession of containers that were infested by vector mosquitoes. © The American Society of Tropical Medicine and Hygiene.
Plastic and the Nest Entanglement of Urban and Agricultural Crows
Townsend, Andrea K.; Barker, Christopher M.
2014-01-01
Much attention has been paid to the impacts of plastics and other debris on marine organisms, but the effects of plastic on terrestrial organisms have been largely ignored. Detrimental effects of terrestrial plastic could be most pronounced in intensively human-modified landscapes (e.g., urban and agricultural areas), which are a source of much anthropogenic debris. Here, we examine the occurrence, types, landscape associations, and consequences of anthropogenic nest material in the American crow (Corvus brachyrhynchos), a North American species that breeds in both urban and agricultural landscapes. We monitored 195 nestlings in 106 nests across an urban and agricultural gradient in the Sacramento Valley, California, USA. We found that 85.2% of crow nests contained anthropogenic material, and 11 of 195 nestlings (5.6%) were entangled in their nests. The length of the material was greater in nests in agricultural territories than in urban territories, and the odds of entanglement increased 7.55 times for each meter of anthropogenic material in the nest. Fledging success was significantly lower for entangled than for unentangled nestlings. In all environments, particularly urban, agricultural, and marine, careful disposal of potential hazards (string, packing and hay bale twine, balloon ribbon, wire, fishing line) could reduce the occurrence of entanglement of nestling birds. PMID:24498238
Ecodesign of Liquid Fuel Tanks
NASA Astrophysics Data System (ADS)
Gicevska, Jana; Bazbauers, Gatis; Repele, Mara
2011-01-01
The subject of the study is a 10 litre liquid fuel tank made of metal and used for fuel storage and transportation. The study dealt with separate life cycle stages of this product, compared environmental impacts of similar fuel tanks made of metal and plastic, as well as analysed the product's end-of-life cycle stage, studying the waste treatment and disposal scenarios. The aim of this study was to find opportunities for improvement and to develop proposals for the ecodesign of 10 litre liquid fuel tank.
Environmental Aspects Of The Green Surface Plastic Deformation Technology Of Car Parts
NASA Astrophysics Data System (ADS)
Grigoriev, S. N.; Bobrovskij, N. M.; Bobrovskij, I. N.; Melnikov, P. A.; Lukyanov, A. A.
2017-01-01
Foreign and domestic experience in development of dry processing technologies are considered. The results of the introduction of dry processing technologies (cutting, boring, milling, drilling) on the industrial companies in Germany are given. The negative impact on the environment and human health is shown. The possible ways of leakage of lubricoolant components in the atmosphere and soil are considered. Lubricoolants are considered as a required permanent component. Three main tasks for lubricoolant: cooling, lubricating and chip disposal are discribed.
Disposable screen-printed sensors for determination of duloxetine hydrochloride
2012-01-01
A screen-printed disposable electrode system for the determination of duloxetine hydrochloride (DL) was developed using screen-printing technology. Homemade printing has been characterized and optimized on the basis of effects of the modifier and plasticizers. The fabricated bi-electrode potentiometric strip containing both working and reference electrodes was used as duloxetine hydrochloride sensor. The proposed sensors worked satisfactorily in the concentration range from 1.0 × 10-6-1.0 × 10-2 mol L-1 with detection limit reaching 5.0 × 10-7 mol L-1 and adequate shelf life of 6 months. The method is accurate, precise and economical. The proposed method has been applied successfully for the analysis of the drug in pure and in its dosage forms. In this method, there is no interference from any common pharmaceutical additives and diluents. Results of the analysis were validated statistically by recovery studies. PMID:22264225
Rechargeable thin-film electrochemical generator
Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.
2000-09-15
An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.
CATALYTIC HYDRODECHLORINATION OF 1,3-DICHLOROPROPENE. (R826694C626)
The hydrodechlorination reactions of 1,3-dichloropropene, a component of the waste stream from epichlorohydrin manufacturing, were examined over a variety of catalysts in a packed-bed microreactor. The reactor operated between 7.5–9 Mpa and 325°C and rates of ...
ERIC Educational Resources Information Center
Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.
2017-01-01
Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…
Goodell, John R.; McMullen, Jonathan P.; Zaborenko, Nikolay; Maloney, Jason R.; Ho, Chuan-Xing; Jensen, Klavs F.; Porco, John A.
2010-01-01
An automated, silicon-based microreactor system has been developed for rapid, low-volume, multidimensional reaction screening. Use of the microfluidic platform to identify transformations of densely functionalized bicyclo[3.2.1]octanoid scaffolds will be described. PMID:20560568
Roper, Kimberley A; Lange, Heiko; Polyzos, Anastasios; Berry, Malcolm B; Baxendale, Ian R
2011-01-01
Summary Herein we describe the application of a monolithic triphenylphosphine reagent to the Appel reaction in flow-chemistry processing, to generate various brominated products with high purity and in excellent yields, and with no requirement for further off-line purification. PMID:22238543