Science.gov

Sample records for disposal decommissioning method

  1. Radiological Surveys Performed in Support of the Demolition and Bulk Disposal Decommissioning Method

    SciTech Connect

    Yetter, R.F.; Newson, C.T.

    2006-07-01

    Connecticut Yankee Atomic Power Company is decommissioning the Haddam Neck Plant using the 'Demolition and Bulk Disposal' method, or commonly referred to as 'Rip and Ship'. In general, completing the project using this method entails the removal of all irradiated fuel and highly contaminated systems and components, and the subsequent demolition of the above ground portions of most site structures. Since most structures are removed from site, cost and time savings are realized by virtually eliminating the need for remediation. However, this method of decommissioning creates more waste, both radiological and non-radiological, which must be segregated, packaged and disposed of properly. Prior to demolition, various types of radiological surveys must be performed and work controls put into place to minimize the spread of contamination to other areas of the site, and to prevent the inadvertent release of radioactive materials from the site. This paper will discuss the various types of radiological surveys performed, and controls implemented, in support of the demolition and bulk material disposal decommissioning method, with the emphasis on pre-demolition surveys. Details will be provided on the release criteria, survey design, survey implementation and data analysis on each of the various surveys, as well as a discussion on the controls implemented to prevent the various wastes from inadvertently being shipped to an inappropriate disposal facility. This paper will also strive to provide lessons learned for future projects that utilize the demolition and bulk disposal decommissioning method. (authors)

  2. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    SciTech Connect

    Phillips, Ann Marie; Meservey, Richard H.

    2003-02-27

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  3. Packaging, Transportation, and Disposal Logistics for Large Radioactively Contaminated Reactor Decommissioning Components

    SciTech Connect

    Lewis, Mark S.

    2008-01-15

    The packaging, transportation and disposal of large, retired reactor components from operating or decommissioning nuclear plants pose unique challenges from a technical as well as regulatory compliance standpoint. In addition to the routine considerations associated with any radioactive waste disposition activity, such as characterization, ALARA, and manifesting, the technical challenges for large radioactively contaminated components, such as access, segmentation, removal, packaging, rigging, lifting, mode of transportation, conveyance compatibility, and load securing require significant planning and execution. In addition, the current regulatory framework, domestically in Titles 49 and 10 and internationally in TS-R-1, does not lend itself to the transport of these large radioactively contaminated components, such as reactor vessels, steam generators, reactor pressure vessel heads, and pressurizers, without application for a special permit or arrangement. This paper addresses the methods of overcoming the technical and regulatory challenges. The challenges and disposition decisions do differ during decommissioning versus component replacement during an outage at an operating plant. During decommissioning, there is less concern about critical path for restart and more concern about volume reduction and waste minimization. Segmentation on-site is an available option during decommissioning, since labor and equipment will be readily available and decontamination activities are routine. The reactor building removal path is also of less concern and there are more rigging/lifting options available. Radionuclide assessment is necessary for transportation and disposal characterization. Characterization will dictate the packaging methodology, transportation mode, need for intermediate processing, and the disposal location or availability. Characterization will also assist in determining if the large component can be transported in full compliance with the transportation

  4. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... COMMISSION Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste... document entitled: NUREG-1307 Revision 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities.'' DATES: Please submit comments by October...

  5. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... COMMISSION Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste... Commission (NRC or the Commission) issued Draft NUREG-1307, Revision 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities,'' in the...

  6. Release and disposal of materials during decommissioning of Siemens MOX fuel fabrication plant at Hanau, Germany

    SciTech Connect

    Koenig, Werner; Baumann, Roland

    2007-07-01

    In September 2006, decommissioning and dismantling of the Siemens MOX Fuel Fabrication Plant in Hanau were completed. The process equipment and the fabrication buildings were completely decommissioned and dismantled. The other buildings were emptied in whole or in part, although they were not demolished. Overall, the decommissioning process produced approximately 8500 Mg of radioactive waste (including inactive matrix material); clearance measurements were also performed for approximately 5400 Mg of material covering a wide range of types. All the equipment in which nuclear fuels had been handled was disposed of as radioactive waste. The radioactive waste was conditioned on the basis of the requirements specified for the projected German final disposal site 'Schachtanlage Konrad'. During the pre-conditioning, familiar processes such as incineration, compacting and melting were used. It has been shown that on account of consistently applied activity containment (barrier concept) during operation and dismantling, there has been no significant unexpected contamination of the plant. Therefore almost all the materials that were not a priori destined for radioactive waste were released without restriction on the basis of the applicable legal regulations (chap. 29 of the Radiation Protection Ordinance), along with the buildings and the plant site. (authors)

  7. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee

    2007-07-01

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  8. Radionuclide characterization at US commercial light-water reactors for decommissioning assessment: Distributions, inventories, and waste disposal considerations

    SciTech Connect

    Abel, K.H.; Robertson, D.E.; Thomas, C.W.

    1992-09-01

    A continuing research program, conducted by Pacific Northwest Laboratory for the US Nuclear Regulatory Commission, characterizing radionuclide concentrations associated with US light-water reactors has been conducted for more than a decade. The research initially focused upon sampling and analytical measurements for the purpose of establishing radionuclide distributions and inventories for decommissioning assessment, since very little empirical data existed. The initial phase of the research program examined radionuclide concentrations and distributions external to the reactor vessel at seven US light water reactors. Later stages of the research program have examined the radionuclide distributions in the highly radioactive reactor internals and fuel assembly. Most recently, the research program is determining radionuclide concentrations in these highly radioactive components and comparing empirical results with those derived from the several nonempirical methodologies employed to estimate radionuclide inventories for disposal classification. The results of the research program to date are summarized, and their implications and significance for the decommissioning process are noted.

  9. Pilot-scale treatability testing -- Recycle, reuse, and disposal of materials from decontamination and decommissioning activities: Soda blasting demonstration

    SciTech Connect

    1995-08-01

    The US Department of Energy (DOE) is in the process of defining the nature and magnitude of decontamination and decommissioning (D and D) obligations at its sites. With disposal costs rising and available storage facilities decreasing, DOE is exploring and implementing new waste minimizing D and D techniques. Technology demonstrations are being conducted by LMES at a DOE gaseous diffusion processing plant, the K-25 Site, in Oak Ridge, Tennessee. The gaseous diffusion process employed at Oak Ridge separated uranium-235 from uranium ore for use in atomic weapons and commercial reactors. These activities contaminated concrete and other surfaces within the plant with uranium, technetium, and other constituents. The objective of current K-25 D and D research is to make available cost-effective and energy-efficient techniques to advance remediation and waste management methods at the K-25 Site and other DOE sites. To support this objective, O`Brien and Gere tested a decontamination system on K-25 Site concrete and steel surfaces contaminated with radioactive and hazardous waste. A scouring system has been developed that removes fixed hazardous and radioactive surface contamination and minimizes residual waste. This system utilizes an abrasive sodium bicarbonate medium that is projected at contaminated surfaces. It mechanically removes surface contamination while leaving the surface intact. Blasting residuals are captured and dissolved in water and treated using physical/chemical processes. Pilot-scale testing of this soda blasting system and bench and pilot-scale treatment of the generated residuals were conducted from December 1993 to September 1994.

  10. Updating irradiated graphite disposal: Project 'GRAPA' and the international decommissioning network.

    PubMed

    Wickham, Anthony; Steinmetz, Hans-Jürgen; O'Sullivan, Patrick; Ojovan, Michael I

    2017-05-01

    Demonstrating competence in planning and executing the disposal of radioactive wastes is a key factor in the public perception of the nuclear power industry and must be demonstrated when making the case for new nuclear build. This work addresses the particular waste stream of irradiated graphite, mostly derived from reactor moderators and amounting to more than 250,000 tonnes world-wide. Use may be made of its unique chemical and physical properties to consider possible processing and disposal options outside the normal simple classifications and repository options for mixed low or intermediate-level wastes. The IAEA has an obvious involvement in radioactive waste disposal and has established a new project 'GRAPA' - Irradiated Graphite Processing Approaches - to encourage an international debate and collaborative work aimed at optimising and facilitating the treatment of irradiated graphite.

  11. Estimating decommissioning costs: The 1994 YNPS decommissioning cost study

    SciTech Connect

    Szymczak, W.J.

    1994-12-31

    Early this year, Yankee Atomic Electric Company began developing a revised decommissioning cost estimate for the Yankee Nuclear Power Station (YNPS) to provide a basis for detailed decommissioning planning and to reflect slow progress in siting low-level waste (LLW) and spent-nuclear-fuel disposal facilities. The revision also reflects the need to change from a cost estimate that focuses on overall costs to a cost estimate that is sufficiently detailed to implement decommissioning and identify the final cost of decommissioning.

  12. Method of Disposing of Corrosive Gases

    DOEpatents

    Burford, W.B. III; Anderson, H.C.

    1950-07-11

    Waste gas containing elemental fluorine is disposed of in the disclosed method by introducing the gas near the top of a vertical chamber under a downward spray of caustic soda solution which contains a small amount of sodium sulfide.

  13. Allowable residual contamination levels for decommissioning. Part 1. A description of the method

    SciTech Connect

    Napier, B.A.; Kennedy, W.E. Jr.

    1984-10-01

    This paper contains a description of the methods used in a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for decommissioning facilities in the 100 Areas of the Hanford Site. The ARCL method is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. Thes modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use is intended to permit a full consideration of decommissioning alternatives. The analysis results in site-specific ARCL values that can be used for determining compliance with any annual dose limit selected. This flexibility permits proper consideration of field situations involving the radionuclide mixtures and physical conditions encountered. In addition, this method permits a full determination of as low as reasonably achievable (ALARA) conditions.

  14. 32 CFR 644.503 - Methods of disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.503 Methods of disposal. Standing timber, crops, sand, gravel, or stone-quarried products,...

  15. 32 CFR 644.503 - Methods of disposal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.503 Methods of disposal. Standing timber, crops, sand, gravel, or stone-quarried products,...

  16. 32 CFR 644.503 - Methods of disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.503 Methods of disposal. Standing timber, crops, sand, gravel, or stone-quarried products,...

  17. 32 CFR 644.503 - Methods of disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone § 644.503 Methods of disposal. Standing timber, crops, sand, gravel, or stone-quarried products,...

  18. Decommissioning of a RCRA Treatment, Storage, and Disposal Facility: A case study of the 216-A-29 ditch at the Hanford Site

    SciTech Connect

    Smith, D.L.; Hayward, W.M.

    1991-09-01

    The 216-A-29 ditch is located in the central portion of the Hanford Site with Operable Unit 200-PO-5. The ditch is classified under the Resource Conservation and Recovery Act of 1976 as a Treatment, Storage, and Disposal (TSD) Facility and as such, is to be removed from service in support of the Hanford Federal Facility Agreement and Consent Order Tri-Party Agreement (Ecology et al. 1989) Milestone M-17-10, which states cease all liquid discharges to hazardous land disposal units unless such units have been clean closed in accordance with the Resource Conservation and Recovery Act of 1976''. The 216-A-29 ditch is one stream feeding the 216-B-3 Pond system, and its removal from service was necessary to support the closure strategy for the 216-B-3 Pond system. Interim stabilization of the 216-A-29 ditch is the first step required to comply with the Tri-Party Agreement (Ecology et al. 1989) and the eventual decommissioning of the entire B Pond system. Interim stabilization was required to maintain the 216-A-29 ditch in a stable configuration until closure actions have been determined and initiated. 4 refs., 3 figs.

  19. Technology, safety and costs of decommissioning a reference pressurized water reactor power station. Classification of decommissioning wastes. Addendum 3

    SciTech Connect

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference pressurized water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 17,885 cubic meters of waste from DECON are classified as follows: Class A, 98.0%; Class B, 1.2%; Class C, 0.1%. About 0.7% (133 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods.

  20. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Classification of decommissioning wastes. Addendum 2

    SciTech Connect

    Murphy, E.S.

    1984-09-01

    The radioactive wastes expected to result from decommissioning of the reference boiling water reactor power station are reviewed and classified in accordance with 10 CFR 61. The 18,949 cubic meters of waste from DECON are classified as follows: Class A, 97.5%; Class B, 2.0%; Class C, 0.3%. About 0.2% (47 cubic meters) of the waste would be generally unacceptable for disposal using near-surface disposal methods.

  1. Decommissioning Handbook

    SciTech Connect

    Not Available

    1994-03-01

    The Decommissioning Handbook is a technical guide for the decommissioning of nuclear facilities. The decommissioning of a nuclear facility involves the removal of the radioactive and, for practical reasons, hazardous materials to enable the facility to be released and not represent a further risk to human health and the environment. This handbook identifies and technologies and techniques that will accomplish these objectives. The emphasis in this handbook is on characterization; waste treatment; decontamination; dismantling, segmenting, demolition; and remote technologies. Other aspects that are discussed in some detail include the regulations governing decommissioning, worker and environmental protection, and packaging and transportation of the waste materials. The handbook describes in general terms the overall decommissioning project, including planning, cost estimating, and operating practices that would ease preparation of the Decommissioning Plan and the decommissioning itself. The reader is referred to other documents for more detailed information. This Decommissioning Handbook has been prepared by Enserch Environmental Corporation for the US Department of Energy and is a complete restructuring of the original handbook developed in 1980 by Nuclear Energy Services. The significant changes between the two documents are the addition of current and the deletion of obsolete technologies and the addition of chapters on project planning and the Decommissioning Plan, regulatory requirements, characterization, remote technology, and packaging and transportation of the waste materials.

  2. 32 CFR 644.503 - Methods of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Methods of disposal. 644.503 Section 644.503 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Standing Timber, Crops, and Embedded Gravel, Sand and Stone §...

  3. Disposable sludge dewatering container and method

    DOEpatents

    Cole, Clifford M.

    1993-01-01

    A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

  4. Method for disposing of hazardous wastes

    DOEpatents

    Burton, Frederick G.; Cataldo, Dominic A.; Cline, John F.; Skiens, W. Eugene

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  5. Decommissioning handbook

    SciTech Connect

    Manion, W.J.; LaGuardia, T.S.

    1980-11-01

    This document is a compilation of information pertinent to the decommissioning of surplus nuclear facilities. This handbook is intended to describe all stages of the decommissioning process including selection of the end product, estimation of the radioactive inventory, estimation of occupational exposures, description of the state-of-the-art in re decontamination, remote csposition of wastes, and estimation of program costs. Presentation of state-of-the-art technology and data related to decommissioning will aid in consistent and efficient program planning and performance. Particular attention is focused on available technology applicable to those decommissioning activities that have not been accomplished before, such as remote segmenting and handling of highly activated 1100 MW(e) light water reactor vessel internals and thick-walled reactor vessels. A summary of available information associated with the planning and estimating of a decommissioning program is also presented. Summarized in particular are the methodologies associated with the calculation and measurement of activated material inventory, distribution, and surface dose level, system contamination inventory and distribution, and work area dose levels. Cost estimating techniques are also presented and the manner in which to account for variations in labor costs as impacting labor-intensive work activities is explained.

  6. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  7. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  8. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  9. 41 CFR 109-45.5104-2 - Methods of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 45-SALE, ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY 45.51-Disposal of Excess and Surplus Personal Property in Foreign Areas § 109-45.5104-2 Methods of disposal. (a) Sales of foreign surplus... foreign areas without a condition which states that its importation into the United States is...

  10. DECOMMISSIONING THE BROOKHAVEN NATIONAL LABORATORY BUILDING 830 GAMMA IRRADIATION FACILITY.

    SciTech Connect

    BOWERMAN, B.S.; SULLIVAN, P.T.

    2001-08-13

    The Building 830 Gamma Irradiation Facility (GIF) at Brookhaven National Laboratory (BNL) was decommissioned because its design was not in compliance with current hazardous tank standards and its cobalt-60 sources were approaching the end of their useful life. The facility contained 354 stainless steel encapsulated cobalt-60 sources in a pool, which provided shielding. Total cobalt-60 inventory amounted to 24,000 Curies when the sources were shipped for disposal. The decommissioning project included packaging, transport, and disposal of the sources and dismantling and disposing of all other equipment associated with the facility. Worker exposure was a major concern in planning for the packaging and disposal of the sources. These activities were planned carefully according to ALARA (As Low As Reasonably Achievable) principles. As a result, the actual occupational exposures experienced during the work were within the planned levels. Disposal of the pool water required addressing environmental concerns, since the planned method was to discharge the slightly contaminated water to the BNL sewage treatment plant. After the BNL evaluation procedure for discharge to the sewage treatment plant was revised and reviewed by regulators and BNL's Community Advisory Council, the pool water was discharged to the Building 830 sanitary system. Because the sources were sealed and the pool water contamination levels were low, most of the remaining equipment was not contaminated; therefore disposal was straightforward, as scrap metal and construction debris.

  11. In-situ determination of radionuclide levels in facilities to be decommissioned using the allowable residual contamination level method

    SciTech Connect

    Arthur, R.J.; Haggard, D.L.

    1989-07-01

    This feasibility study resulted in verification of a direct and two alternate indirect techniques for making in-situ determinations of {sup 90}Sr and other radionuclide levels in a Hanford facility to be decommissioned that was evaluated using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is used to determine the extent of decontamination that will be required before a facility can be decommissioned. A sump in the 1608F Building was chosen for the feasibility study. Hanford decommissioning personnel had previously taken 79 concrete and surface scale samples from the building to be analyzed by radiochemical analysis. The results of the radiochemical analyses compare favorably with the values derived by the in-situ methods presented in this report. Results obtained using a portable spectrometer and thermoluminescent dosimeters (TLDs) were both very close to the radiochemistry results. Surface {sup 90}Sr levels detected on the sump floor were 550 pCi/cm{sup 2} using the spectrometer system and 780 pCi/cm{sup 2} using the TLD data. This compares favorably with the levels determined by radiochemical analyses (i.e., 230 to 730 pCi/cm{sup 2}). Surface {sup 90}Sr levels detected on the sump wall ranged between 10 and 80 pCi/cm{sup 2} using the spectrometer system, compared with a conservative 200 pCi/cm{sup 2} using the TLD data. The radiochemical results ranged between 19 and 77 pCi/cm{sup 2} for the four samples taken from the wall at indeterminate locations. 17 refs., 15 figs., 2 tabs.

  12. Radionuclide characterization of reactor decommissioning waste and spent fuel assembly hardware

    SciTech Connect

    Robertson, D.E.; Thomas, C.W.; Wynhoff, N.L.; Hetzer, D.C. )

    1991-01-01

    This study is providing the NRC and licensees with a more comprehensive and defensible data base and regulatory assessment of the radiological factors associated with reactor decommissioning and disposal of wastes generated during these activities. The objectives of this study are being accomplished during a two-phase sampling, measurement, and assessment program involving the actual decommissioning of Shippingport Station and the detailed analysis of neutron-activated materials from commercial reactors. Radiological characterization studies at Shippingport have shown that neutron activation products, dominated by {sup 60}Co, comprised the residual radionuclide inventory. Fission products and transuranic radionuclides were essentially absent. Waste classification assessments have shown that all decommissioning materials (except reactor pressure vessel internals) could be disposed of as Class A waste. Measurements and assessments of spent fuel assembly hardware have shown that {sup 63}Ni, {sup 59}Ni, and {sup 94}Nb sometimes greatly exceed the 10CFR61 Class C limit for some components, and thus would require disposal in a high level waste repository. These measurements are providing the basis for an assessment of the disposal options for these types of highly radioactive materials. Comparisons of predicted (calculated) activation product concentrations with the empirical data are providing as assessment of the accuracy of calculational methods. Work is continuing on radiological characterization of spent PWR and BWR control rod assemblies. Additional work is planned on current issues/problems relating to reactor decommissioning. These efforts will be reported on in future supplements to this report. 20 refs., 23 figs., 34 tabs.

  13. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, C.C.

    1994-10-11

    An apparatus, and method of operating the apparatus is described, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials. 3 figs.

  14. Earth melter and method of disposing of feed materials

    DOEpatents

    Chapman, Christopher C.

    1994-01-01

    An apparatus, and method of operating the apparatus, wherein a feed material is converted into a glassified condition for subsequent use or disposal. The apparatus is particularly useful for disposal of hazardous or noxious waste materials which are otherwise either difficult or expensive to dispose of. The apparatus is preferably constructed by excavating a melt zone in a quantity of soil or rock, and lining the melt zone with a back fill material if refractory properties are needed. The feed material is fed into the melt zone and, preferably, combusted to an ash, whereupon the heat of combustion is used to melt the ash to a molten condition. Electrodes may be used to maintain the molten feed material in a molten condition, and to maintain homogeneity of the molten materials.

  15. Waste management strategy for cost effective and environmentally friendly NPP decommissioning

    SciTech Connect

    Per Lidar; Arne Larsson; Niklas Bergh; Gunnar Hedin

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named ndcon to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  16. Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543

    SciTech Connect

    Larsson, Arne; Lidar, Per; Bergh, Niklas; Hedin, Gunnar

    2013-07-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle

  17. The environmental issues of platform decommissioning

    SciTech Connect

    Susani, L.

    1996-12-31

    This paper provides a review of the environmental impacts of offshore platform disposal, based on past activities and technical and research studies. Environmental impacts are considered in relation to four main decommissioning options. The most significant effects stem from explosive cutting, sediment resuspension and release of contamination during initial production shut-down, well purging and removal of the jacket structure from the seabed. Any decommissioning option that minimizes movement of structures and avoids explosive cutting must therefore be viewed as preferable from an ecological viewpoint. Complete removal is preferred on the grounds of energy conservation, fisheries and navigational safety, and controlled disposal of potential contaminants.

  18. Decommissioning: Nuclear Power's Missing Link. Worldwatch Paper 69.

    ERIC Educational Resources Information Center

    Pollock, Cynthia

    The processes and associated dilemmas of nuclear power plant decommissioning are reviewed in this publication. Decommissioning involves the clearing up and disposal of a retired nuclear plant and its equipment of such a way as to safeguard the public from the dangers of radioactivity. Related problem areas are identified and include: (1) closure…

  19. How utilities can achieve more accurate decommissioning cost estimates

    SciTech Connect

    Knight, R.

    1999-07-01

    The number of commercial nuclear power plants that are undergoing decommissioning coupled with the economic pressure of deregulation has increased the focus on adequate funding for decommissioning. The introduction of spent-fuel storage and disposal of low-level radioactive waste into the cost analysis places even greater concern as to the accuracy of the fund calculation basis. The size and adequacy of the decommissioning fund have also played a major part in the negotiations for transfer of plant ownership. For all of these reasons, it is important that the operating plant owner reduce the margin of error in the preparation of decommissioning cost estimates. To data, all of these estimates have been prepared via the building block method. That is, numerous individual calculations defining the planning, engineering, removal, and disposal of plant systems and structures are performed. These activity costs are supplemented by the period-dependent costs reflecting the administration, control, licensing, and permitting of the program. This method will continue to be used in the foreseeable future until adequate performance data are available. The accuracy of the activity cost calculation is directly related to the accuracy of the inventory of plant system component, piping and equipment, and plant structural composition. Typically, it is left up to the cost-estimating contractor to develop this plant inventory. The data are generated by searching and analyzing property asset records, plant databases, piping and instrumentation drawings, piping system isometric drawings, and component assembly drawings. However, experience has shown that these sources may not be up to date, discrepancies may exist, there may be missing data, and the level of detail may not be sufficient. Again, typically, the time constraints associated with the development of the cost estimate preclude perfect resolution of the inventory questions. Another problem area in achieving accurate cost

  20. Yankee Nuclear Power Station - analysis of decommissioning costs

    SciTech Connect

    Lessard, L.P.

    1996-12-31

    The preparation of decommissioning cost estimates for nuclear power generating stations has received a great deal of interest in the last few years. Owners are required by regulation to ensure that adequate funds are collected for the timely decommissioning of their facilities. The unexpected premature shutdown of several facilities and uncertainties associated with radioactive waste disposal and long-term spent-fuel storage, when viewed in the light of a deregulated electric utility industry, has caused many companies to reevaluate their decommissioning cost estimates. The decommissioning of the Yankee Nuclear Power Station represents the first large-scale project involving the complete decontamination and dismantlement of a commercial light water nuclear power generation facility in the United States. Since this pressurized water reactor operated for 32 yr at a respectable 74% lifetime capacity factor, the actual costs and resources required to decommission the plant, when compared with decommissioning estimates, will yield valuable benchmarking data.

  1. Alternative methods of salt disposal at the seven salt sites for a nuclear waste repository

    SciTech Connect

    Not Available

    1987-02-01

    This study discusses the various alternative salt management techniques for the disposal of excess mined salt at seven potentially acceptable nuclear waste repository sites: Deaf Smith and Swisher Counties, Texas; Richton and Cypress Creek Domes, Mississippi; Vacherie Dome, Louisiana; and Davis and Lavender Canyons, Utah. Because the repository development involves the underground excavation of corridors and waste emplacement rooms, in either bedded or domed salt formations, excess salt will be mined and must be disposed of offsite. The salt disposal alternatives examined for all the sites include commercial use, ocean disposal, deep well injection, landfill disposal, and underground mine disposal. These alternatives (and other site-specific disposal methods) are reviewed, using estimated amounts of excavated, backfilled, and excess salt. Methods of transporting the excess salt are discussed, along with possible impacts of each disposal method and potential regulatory requirements. A preferred method of disposal is recommended for each potentially acceptable repository site. 14 refs., 5 tabs.

  2. Soil Segregation Methods for Reducing Transportation and Disposal Costs - 13544

    SciTech Connect

    Frothingham, David; Andrews, Shawn; Barker, Michelle; Boyle, James; Buechi, Stephen; Graham, Marc; Houston, Linda; Polek, Michael; Simmington, Robert; Spector, Harold; Elliott, Robert 'Dan'; Durham, Lisa

    2013-07-01

    At Formerly Utilized Sites Remedial Action Program (FUSRAP) sites where the selected alternative for contaminated soil is excavation and off-site disposal, the most significant budget items of the remedial action are the costs for transportation and disposal of soil at an off-site facility. At these sites, the objective is to excavate and dispose of only those soils that exceed derived concentration guideline levels. In situ soil segregation using gross gamma detectors to guide the excavation is often challenging at sites where the soil contamination is overlain by clean soil or where the contaminated soil is located in isolated, subsurface pockets. In addition, data gaps are often identified during the alternative evaluation and selection process, resulting in increased uncertainty in the extent of subsurface contamination. In response, the U.S. Army Corps of Engineers, Buffalo District is implementing ex situ soil segregation methods. At the remediated Painesville Site, soils were excavated and fed through a conveyor-belt system, which automatically segregated them into above- and below-cleanup criteria discharge piles utilizing gamma spectroscopy. At the Linde Site and the Shallow Land Disposal Area (SLDA) Site, which are both in the remediation phase, soils are initially segregated during the excavation process using gross gamma detectors and then transported to a pad for confirmatory manual surveying and sampling. At the Linde Site, the ex situ soils are analyzed on the basis of a site-specific method, to establish compliance with beneficial reuse criteria that were developed for the Linde remediation. At the SLDA Site, the ex situ soils are surveyed and sampled based on Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM) final status survey guidance to demonstrate compliance with the derived concentration guideline levels. At all three sites, the ex situ soils that meet the site- specific DCGLs are retained on-site and used as backfill

  3. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    SciTech Connect

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  4. 78 FR 64028 - Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-25

    ... COMMISSION Decommissioning of Nuclear Power Reactors AGENCY: Nuclear Regulatory Commission. ACTION... regulatory guide (RG) 1.184 ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC... decommissioning process for nuclear power reactors. The revision takes advantage of the 13 years...

  5. Environmentally Compliant Disposal Method for Heavy Metal Containing Propellants

    NASA Technical Reports Server (NTRS)

    Decker, M. W.; Erickson, E. D.; Byrd, E. R.; Crispin, K. W. R.; Ferguson, B. W.

    2000-01-01

    ABSTRACT An environmentally friendly, cost effective technology has been developed and demonstrated by a team of Naval Air Warfare Center and Lockheed Martin personnel to dispose of Shillelagh solid rocket motor propellants. The Shillelagh is a surface to surface anti-tank weapon approaching the end of its service life. The current demilitarization process employs open detonation, but the presence of lead stearate in the N5 propellant grain motivated the need for the development of an environmentally friendly disposal method. Contained burning of the propellant followed by propellant exhaust processing was chosen as the disposal methodology. The developmental test bed, completed in February 1998, is inexpensive and transportable. Contained burning of Shillelagh propellants posed two technical hurdles: 1) removal of the sub micron lead and cadmium particulate generated during combustion, and 2) secondary combustion of the significant quantifies of carbon monoxide and hydrogen. A firing chamber with a stepped nozzle, air injection, and active ignition was developed to combust the carbon monoxide and hydrogen in real time. The hot gases and particulates from the combustion process are completely contained within a gas holder. The gases are subsequently cooled and routed through a treatment facility to remove the heavy metal particulate. Results indicate that the lead and cadmium particulates are removed below their respective detection limits (2 micro-g/cu m & 0.2 micro-g/cu m) of the analytical procedures employed and that the carbon monoxide and hydrogen levels have been reduced well below the lower flammability limits. Organic concentrations, principally benzene, are I ppm or less. A semi-automated machine has been developed which can rapidly prepare Shillelagh missiles for the contained burn facility. This machine allows the contained burn technology to be more competitive with current open bum open detonation disposal rates.

  6. A manual for applying the allowable residual contamination level method for decommissioning facilities on the Hanford Site

    SciTech Connect

    Napier, B.A.; Piepel, G.F.; Kennedy, W.E. Jr.; Schreckhise, R.G.

    1988-08-01

    This report describes the modifications that have been made to enhance the original Allowable Residual Contamination Level (ARCL) method to make it more applicable to site-specific analyses. This version considers the mixture of radionuclides present at the time of site characterization, the elapsed time after decommissioning when exposure to people could occur, and includes a calculation of the upper confidence limit of the potential dose based on sampling statistics that are developed during the site characterization efforts. The upper confidence limit of potential exposure can now be used for comparison against applicable radiation dose limits (i.e., 25 mrem/yr at Hanford). The level of confidence can be selected by the user. A wide range of exposure scenarios were evaluated; the rationale used to select the most limiting scenarios is explained. The radiation dose factors used for the inhalation and ingestion pathways were also updated to correspond with the radiation dosimetry methods utilized in the International Commission of Radiological Protection Publications 26 and 30 (ICRP 1977; 1979a,b, 1980, 1981, 1982a,b). This simplifies the calculations, since ''effective whole body'' doses are now calculated, and also brings the dosimetry methods used in the ARCL method in conformance with the rationale used by DOE in developing the 25 mrem/yr limit at Hanford. 46 refs., 21 figs., 15 tabs.

  7. 32 CFR 644.473 - Methods of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ESTATE HANDBOOK Disposal Disposal of Buildings and Other Improvements (without the Related Land) § 644... a denominational house of worship. (4) Owner of the underlying land as a part of restoration... specific purpose. (e) By donation, abandonment or destruction....

  8. 10 CFR 20.2002 - Method for obtaining approval of proposed disposal procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Method for obtaining approval of proposed disposal procedures. 20.2002 Section 20.2002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2002 Method for obtaining approval of proposed disposal procedures. A...

  9. 10 CFR 20.2002 - Method for obtaining approval of proposed disposal procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Method for obtaining approval of proposed disposal procedures. 20.2002 Section 20.2002 Energy NUCLEAR REGULATORY COMMISSION STANDARDS FOR PROTECTION AGAINST RADIATION Waste Disposal § 20.2002 Method for obtaining approval of proposed disposal procedures. A...

  10. 32 CFR 644.474 - Determining method of disposal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 644.474 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Buildings and Other Improvements (without the Related... action may result in a greater burden to transferee agencies or, in the case of disposal by sale...

  11. 32 CFR 644.474 - Determining method of disposal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 644.474 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) REAL PROPERTY REAL ESTATE HANDBOOK Disposal Disposal of Buildings and Other Improvements (without the Related... action may result in a greater burden to transferee agencies or, in the case of disposal by sale...

  12. Application of integrated methods in mapping waste disposal areas

    NASA Astrophysics Data System (ADS)

    Soupios, Pantelis; Papadopoulos, Nikos; Papadopoulos, Ilias; Kouli, Maria; Vallianatos, Filippos; Sarris, Apostolos; Manios, Thrassyvoulos

    2007-11-01

    An integrated suite of environmental methods was used to characterize the hydrogeological, geological and tectonic regime of the largest waste disposal landfill of Crete Island, the Fodele municipal solid waste site (MSW), to determine the geometry of the landfill (depth and spatial extent of electrically conductive anomalies), to define the anisotropy caused by bedrock fabric fractures and to locate potential zones of electrically conductive contamination. A combination of geophysical methods and chemical analysis was implemented for the characterization and management of the landfill. Five different types of geophysical surveys were performed: (1) 2D electrical resistance tomography (ERT), (2) electromagnetic measurements using very low frequencies (VLF), (3) electromagnetic conductivity (EM31), (4) seismic refraction measurements (SR), and (5) ambient noise measurements (HVSR). The above geophysical methods were used with the aim of studying the subsurface properties of the landfill and to define the exact geometrical characteristics of the site under investigation.

  13. Costs for off-site disposal of nonhazardous oil field wastes: Salt caverns versus other disposal methods

    SciTech Connect

    Veil, J.A.

    1997-09-01

    According to an American Petroleum Institute production waste survey reported on by P.G. Wakim in 1987 and 1988, the exploration and production segment of the US oil and gas industry generated more than 360 million barrels (bbl) of drilling wastes, more than 20 billion bbl of produced water, and nearly 12 million bbl of associated wastes in 1985. Current exploration and production activities are believed to be generating comparable quantities of these oil field wastes. Wakim estimates that 28% of drilling wastes, less than 2% of produced water, and 52% of associated wastes are disposed of in off-site commercial facilities. In recent years, interest in disposing of oil field wastes in solution-mined salt caverns has been growing. This report provides information on the availability of commercial disposal companies in oil-and gas-producing states, the treatment and disposal methods they employ, and the amounts they charge. It also compares cavern disposal costs with the costs of other forms of waste disposal.

  14. 10 CFR 20.2002 - Method for obtaining approval of proposed disposal procedures.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... RADIATION Waste Disposal § 20.2002 Method for obtaining approval of proposed disposal procedures. A licensee... licensee's activities. Each application shall include: (a) A description of the waste containing licensed material to be disposed of, including the physical and chemical properties important to risk...

  15. 10 CFR 20.2002 - Method for obtaining approval of proposed disposal procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... RADIATION Waste Disposal § 20.2002 Method for obtaining approval of proposed disposal procedures. A licensee... licensee's activities. Each application shall include: (a) A description of the waste containing licensed material to be disposed of, including the physical and chemical properties important to risk...

  16. 76 FR 35511 - Decommissioning Planning

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ... Regulatory Commission (NRC or the Commission) is amending its regulations to improve decommissioning planning... financial assurance requirements. The amended regulations require decommissioning power reactor licensees to... with respect to permanently shutdown reactor decommissioning fund status and spent fuel management...

  17. Rancho Seco--Decommissioning Update

    SciTech Connect

    Newey, J. M.; Ronningen, E. T.; Snyder, M. W.

    2003-02-26

    The Rancho Seco Nuclear Generating Station ceased operation in June of 1989 and entered an extended period of SAFSTOR to allow funds to accumulate for dismantlement. Incremental dismantlement was begun in 1997 of steam systems and based on the successful completion of work, the Sacramento Municipal Utility District (SMUD) board of directors approved full decommissioning in July 1999. A schedule has been developed for completion of decommissioning by 2008, allowing decommissioning funds to accumulate until they are needed. Systems removal began in the Auxiliary Building in October of 1999 and in the Reactor Building in January of 2000. Systems dismantlement continues in the Reactor Building and should be completed by the end of 2003. System removal is near completion in the Auxiliary Building with removal of the final liquid waste tanks in progress. The spent fuel has been moved to dry storage in an onsite ISFSI, with completion on August 21, 2002. The spent fuel racks are currently being removed from the pool, packaged and shipped, and then the pool will be cleaned. Also in the last year the reactor coolant pumps and primary piping were removed and shipped. Characterization and planning work for the reactor vessel and internals is also in progress with various cut-up and/or disposal options being evaluated. In the year ahead the remaining systems in the Reactor Building will be removed, packaged and sent for disposal, including the pressurizer. Work will be started on embedded and underground piping and the large outdoor tanks. Building survey and decontamination will begin. RFP's for removal of the vessel and internals and the steam generators are planned to fix the cost of those components. If the costs are consistent with current estimates the work will go forward. If they are not, hardened SAFSTOR/entombment may be considered.

  18. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    SciTech Connect

    Serrato, Michael G.; Musall, John C.; Bergren, Christopher L.

    2013-07-01

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international

  19. Pipeline Decommissioning Trial AWE Berkshire UK - 13619

    SciTech Connect

    Agnew, Kieran

    2013-07-01

    This Paper details the implementation of a 'Decommissioning Trial' to assess the feasibility of decommissioning the redundant pipeline operated by AWE located in Berkshire UK. The paper also presents the tool box of decommissioning techniques that were developed during the decommissioning trial. Constructed in the 1950's and operated until 2005, AWE used a pipeline for the authorised discharge of treated effluent. Now redundant, the pipeline is under a care and surveillance regime awaiting decommissioning. The pipeline is some 18.5 km in length and extends from AWE site to the River Thames. Along its route the pipeline passes along and under several major roads, railway lines and rivers as well as travelling through woodland, agricultural land and residential areas. Currently under care and surveillance AWE is considering a number of options for decommissioning the pipeline. One option is to remove the pipeline. In order to assist option evaluation and assess the feasibility of removing the pipeline a decommissioning trial was undertaken and sections of the pipeline were removed within the AWE site. The objectives of the decommissioning trial were to: - Demonstrate to stakeholders that the pipeline can be removed safely, securely and cleanly - Develop a 'tool box' of methods that could be deployed to remove the pipeline - Replicate the conditions and environments encountered along the route of the pipeline The onsite trial was also designed to replicate the physical prevailing conditions and constraints encountered along the remainder of its route i.e. working along a narrow corridor, working in close proximity to roads, working in proximity to above ground and underground services (e.g. Gas, Water, Electricity). By undertaking the decommissioning trial AWE have successfully demonstrated the pipeline can be decommissioned in a safe, secure and clean manor and have developed a tool box of decommissioning techniques. The tool box of includes; - Hot tapping - a method

  20. Decontamination & decommissioning focus area

    SciTech Connect

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  1. Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant

    SciTech Connect

    Elder, H. K.

    1981-10-01

    .88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the

  2. Radioactive waste from decommissioning of fast reactors (through the example of BN-800)

    NASA Astrophysics Data System (ADS)

    Rybin, A. A.; Momot, O. A.

    2017-01-01

    Estimation of volume of radioactive waste from operating and decommissioning of fast reactors is introduced. Preliminary estimation has shown that the volume of RW from decommissioning of BN-800 is amounted to 63,000 cu. m. Comparison of the amount of liquid radioactive waste derived from operation of different reactor types is performed. Approximate costs of all wastes disposal for complete decommissioning of BN-800 reactor are estimated amounting up to approx. 145 million.

  3. STANDARD OPERATING PROTOCOLS FOR DECOMMISSIONING

    SciTech Connect

    Foss, D. L.; Stevens, J. L.; Gerdeman, F. W.

    2002-02-25

    Decommissioning projects at Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) sites are conducted under project-specific decision documents, which involve extensive preparation time, public comment periods, and regulatory approvals. Often, the decision documents must be initiated at least one year before commencing the decommissioning project, and they are expensive and time consuming to prepare. The Rocky Flats Environmental Technology Site (RFETS) is a former nuclear weapons production plant at which hazardous substances and wastes were released or disposed during operations. As a result of the releases, RFETS was placed on the National Priorities List in 1989, and is conducting cleanup activities under a federal facilities compliance agreement. Working closely with interested stakeholders and state and federal regulatory agencies, RFETS has developed and implemented an improved process for obtaining the approvals. The key to streamlining the approval process has been the development of sitewide decision documents called Rocky Flats Cleanup Agreement Standard Operating Protocols or ''RSOPs.'' RSOPs have broad applicability, and could be used instead of project-specific documents. Although no two decommissioning projects are exactly the same and they may vary widely in contamination and other hazards, the basic steps taken for cleanup are usually similar. Because of this, using RSOPs is more efficient than preparing a separate project-specific decision documents for each cleanup action. Over the Rocky Flats cleanup life cycle, using RSOPs has the potential to: (1) Save over 5 million dollars and 6 months on the site closure schedule; (2) Eliminate preparing one hundred and twenty project-specific decision documents; and (3) Eliminate writing seventy-five closure description documents for hazardous waste unit closure and corrective actions.

  4. Decommissioning at AWE

    SciTech Connect

    Biles, K.; Hedges, M.; Campbell, C

    2008-07-01

    AWE (A) has been at the heart of the UK Nuclear deterrent since it was established in the early 1950's. It is a nuclear licensed site and is governed by the United Kingdoms Nuclear Installation Inspectorate (NII). AWE plc on behalf of the Ministry of Defence (MOD) manages the AWE (A) site and all undertakings including decommissioning. Therefore under NII license condition 35 'Decommissioning', AWE plc is accountable to make and implement adequate arrangements for the decommissioning of any plant or process, which may affect safety. The majority of decommissioning projects currently being undertaken are to do with Hazard category 3, 4 or 5 facilities, systems or plant that have reached the end of their operational span and have undergone Post-Operational Clean-Out (POCO). They were either built for the production of fissile components, for supporting the early reactor fuels programmes or for processing facility waste arisings. They either contain redundant contaminated gloveboxes associated process areas, process plant or systems or a combination of all. In parallel with decommissioning project AWE (A) are undertaking investigation into new technologies to aid decommissioning projects; to remove the operative from hands on operations; to develop and implement modifications to existing process and techniques used. AWE (A) is currently going thorough a sustained phase of upgrading its facilities to enhance its scientific capability, with older facilities, systems and plant being replaced, making decommissioning a growth area. It is therefore important to the company to reduce these hazards progressively and safety over the coming years, making decommissioning an important feature of the overall legacy management aspects of AWE PLC's business. This paper outlines the current undertakings and progress of Nuclear decommissioning on the AWE (A) site. (authors)

  5. HLRW management during MR reactor decommissioning in NRC 'Kurchatov Institute'

    SciTech Connect

    Chesnokov, Alexander; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Stepanov, Vyacheslav; Smirnov, Sergey; Potapov, Victor; Fadin, Sergey; Volkov, Victor; Shisha, Anatoly

    2013-07-01

    A program of decommissioning of MR research reactor in the Kurchatov institute started in 2008. The decommissioning work presumed a preliminary stage, which included: removal of spent fuel from near reactor storage; removal of spent fuel assemble of metal liquid loop channel from a core; identification, sorting and disposal of radioactive objects from gateway of the reactor; identification, sorting and disposal of radioactive objects from cells of HLRW storage of the Kurchatov institute for radwaste creating form the decommissioning of MR. All these works were performed by a remote controlled means with use of a remote identification methods of high radioactive objects. A distribution of activity along high radiated objects was measured by a collimated radiometer installed on the robot Brokk-90, a gamma image of the object was registered by gamma-visor. Spectrum of gamma radiation was measured by a gamma locator and semiconductor detector system. For identification of a presence of uranium isotopes in the HLRW a technique, based on the registration of characteristic radiation of U, was developed. For fragmentation of high radiated objects was used a cold cutting technique and dust suppression system was applied for reduction of volume activity of aerosols in air. The management of HLRW was performed by remote controlled robots Brokk-180 and Brokk-330. They executed sorting, cutting and parking of high radiated part of contaminated equipment. The use of these techniques allowed to reduce individual and collective doses of personal performed the decommissioning. The average individual dose of the personnel was 1,9 mSv/year in 2011, and the collective dose is estimated by 0,0605 man x Sv/year. Use of the remote control machines enables reducing the number of working personal (20 men) and doses. X-ray spectrometric methods enable determination of a presence of the U in high radiated objects and special cans and separation of them for further spent fuel inspection. The

  6. 50 CFR 31.2 - Methods of surplus wildlife population control and disposal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Methods of surplus wildlife population control and disposal. 31.2 Section 31.2 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... Surplus Wildlife § 31.2 Methods of surplus wildlife population control and disposal. Upon a...

  7. 50 CFR 31.2 - Methods of surplus wildlife population control and disposal.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 9 2012-10-01 2012-10-01 false Methods of surplus wildlife population control and disposal. 31.2 Section 31.2 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... Surplus Wildlife § 31.2 Methods of surplus wildlife population control and disposal. Upon a...

  8. 50 CFR 31.2 - Methods of surplus wildlife population control and disposal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 8 2011-10-01 2011-10-01 false Methods of surplus wildlife population control and disposal. 31.2 Section 31.2 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... Surplus Wildlife § 31.2 Methods of surplus wildlife population control and disposal. Upon a...

  9. 50 CFR 31.2 - Methods of surplus wildlife population control and disposal.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 9 2014-10-01 2014-10-01 false Methods of surplus wildlife population control and disposal. 31.2 Section 31.2 Wildlife and Fisheries UNITED STATES FISH AND WILDLIFE SERVICE... Surplus Wildlife § 31.2 Methods of surplus wildlife population control and disposal. Upon a...

  10. Integrated Disposal Facility Risk Assessment

    SciTech Connect

    MANN, F. M.

    2003-06-03

    An environmental risk assessment associated with the disposal of projected Immobilized Low-Activity Waste, solid wastes and failed or decommissioned melters in an Integrated Disposal Facility was performed. Based on the analyses all performance objectives associated with the groundwater, air, and intruder pathways were met.

  11. Sodium Reactor Experiment decommissioning. Final report

    SciTech Connect

    Carroll, J.W.; Conners, C.C.; Harris, J.M.; Marzec, J.M.; Ureda, B.F.

    1983-08-15

    The Sodium Reactor Experiment (SRE) located at the Rockwell International Field Laboratories northwest of Los Angeles was developed to demonstrate a sodium-cooled, graphite-moderated reactor for civilian use. The reactor reached full power in May 1958 and provided 37 GWh to the Southern California Edison Company grid before it was shut down in 1967. Decommissioning of the SRE began in 1974 with the objective of removing all significant radioactivity from the site and releasing the facility for unrestricted use. Planning documentation was prepared to describe in detail the equipment and techniques development and the decommissioning work scope. A plasma-arc manipulator was developed for remotely dissecting the highly radioactive reactor vessels. Other important developments included techniques for using explosives to cut reactor vessel internal piping, clamps, and brackets; decontaminating porous concrete surfaces; and disposing of massive equipment and structures. The documentation defined the decommissioning in an SRE dismantling plan, in activity requirements for elements of the decommissioning work scope, and in detailed procedures for each major task.

  12. Evaluation of nuclear facility decommissioning projects. Project summary report, Elk River Reactor

    SciTech Connect

    Miller, R.L.; Adams, J.A.

    1982-12-01

    This report summarizes information concerning the decommissioning of the Elk River Reactor. Decommissioning data from available documents were input into a computerized data-handling system in a manner that permits specific information to be readily retrieved. The information is in a form that assists the Nuclear Regulatory Commission in its assessment of decommissioning alternatives and ALARA methods for future decommissionings projects. Samples of computer reports are included in the report. Decommissioning of other reactors, including NRC reference decommissioning studies, will be described in similar reports.

  13. Pyramiding tumuli waste disposal site and method of construction thereof

    DOEpatents

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  14. Comparative assessment of municipal wastewater disposal methods in southeast Florida.

    PubMed

    Bloetscher, Frederick; Englehardt, James D; Chin, David A; Rose, Joan B; Tchobanoglous, George; Amy, Vincent P; Gokgoz, Sinem

    2005-01-01

    A comparative assessment of the risks of three effluent disposal alternatives currently available to wastewater utilities in Southeast Florida is presented in this paper. The alternatives are: deep well injection and ocean outfalls following secondary treatment, and surface water (canal) discharges following secondary wastewater treatment, filtration and nutrient removal. Water quality data, relative to disposal of wastewater treatment plant effluent were gathered, along with water quality data on the receiving waters, from utilities. Comparisons and conclusions regarding potential health concerns associated with the three disposal alternatives are presented. The results indicated that health risks associated with deep wells were generally lower than those of the other two alternatives. The proximity of injection wells to aquifer storage and recovery wells was a determining factor relative to injection well risk. Urban ecological risks were also indicated to be lower, though impacts of urban water use/reuse to the Everglades were not studied. Additional data collection and analysis were recommended to understand the effects of wastewater management on the cycling of water, nutrients and other constituents on southeast Florida. In particular, it was recommended that monitoring of effluents for nitrosamines and pharmaceutically active substances be implemented on a broad scale.

  15. Factors Impacting Decommissioning Costs - 13576

    SciTech Connect

    Kim, Karen; McGrath, Richard

    2013-07-01

    The Electric Power Research Institute (EPRI) studied United States experience with decommissioning cost estimates and the factors that impact the actual cost of decommissioning projects. This study gathered available estimated and actual decommissioning costs from eight nuclear power plants in the United States to understand the major components of decommissioning costs. Major costs categories for decommissioning a nuclear power plant are removal costs, radioactive waste costs, staffing costs, and other costs. The technical factors that impact the costs were analyzed based on the plants' decommissioning experiences. Detailed cost breakdowns by major projects and other cost categories from actual power plant decommissioning experiences will be presented. Such information will be useful in planning future decommissioning and designing new plants. (authors)

  16. Site decommissioning management plan

    SciTech Connect

    Fauver, D.N.; Austin, J.H.; Johnson, T.C.; Weber, M.F.; Cardile, F.P.; Martin, D.E.; Caniano, R.J.; Kinneman, J.D.

    1993-10-01

    The Nuclear Regulatory Commission (NRC) staff has identified 48 sites contaminated with radioactive material that require special attention to ensure timely decommissioning. While none of these sites represent an immediate threat to public health and safety they have contamination that exceeds existing NRC criteria for unrestricted use. All of these sites require some degree of remediation, and several involve regulatory issues that must be addressed by the Commission before they can be released for unrestricted use and the applicable licenses terminated. This report contains the NRC staff`s strategy for addressing the technical, legal, and policy issues affecting the timely decommissioning of the 48 sites and describes the status of decommissioning activities at the sites.

  17. Technical Methods of Evaluation of Near-surface Disposal of Very Low Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Zuo, R.; Teng, Y.; Wang, J.

    2010-12-01

    Radioactive waste disposal is one of the most difficult world's environmental problems for control and solving, it is as a hotspot in the field of pollution control and remediation. For the economical and efficient disposal, very low level radioactive waste (VLLW) is separated from low and intermediate level waste, and bulky VLLW could be disposed in the disposal site without the special engineering barrier. The approach is not only significant savings in disposal costs, but meeting the public on the environment. Therefore, it is very important for disposal and management of radioactive waste. In this paper, as the studied object of the VLLW disposal site in the southwestern China, a systemic analysis in the relational technology was developed, and as the key technology, the barrier and technical methods of evaluation was researched with emphasis. The disposal site was on a hilltop of debris flow, and the repository with barrier was selected, 90Sr were selected as the typical nuclides, and the releasing concentration was calculated by the given model. The fine particle (d<1mm) was used as barrier material of the repository with the thickness of 0.5m. The sorption and migration characteristics were measured by batch and column tests, and the results reflected the material has a good sorption capacity on 90Sr. From the results of simulation, the nuclide of 90Sr was almost basically retarded in the unsaturated zone.

  18. Revised Analyses of Decommissioning Reference Non-Fuel-Cycle Facilities

    SciTech Connect

    MC Bierschbach; DR Haffner; KJ Schneider; SM Short

    2002-12-01

    Cost information is developed for the conceptual decommissioning of non-fuel-cycle nuclear facilities that represent a significant decommissioning task in terms of decontamination and disposal activities. This study is a re-evaluation of the original study (NUREG/CR-1754 and NUREG/CR-1754, Addendum 1). The reference facilities examined in this study are the same as in the original study and include: a laboratory for the manufacture of {sup 3}H-labeled compounds; a laboratory for the manufacture of {sup 14}C-labeled compounds; a laboratory for the manufacture of {sup 123}I-labeled compounds; a laboratory for the manufacture of {sup 137}Cs sealed sources; a laboratory for the manufacture of {sup 241}Am sealed sources; and an institutional user laboratory. In addition to the laboratories, three reference sites that require some decommissioning effort were also examined. These sites are: (1) a site with a contaminated drain line and hold-up tank; (2) a site with a contaminated ground surface; and (3) a tailings pile containing uranium and thorium residues. Decommissioning of these reference facilities and sites can be accomplished using techniques and equipment that are in common industrial use. Essentially the same technology assumed in the original study is used in this study. For the reference laboratory-type facilities, the study approach is to first evaluate the decommissioning of individual components (e.g., fume hoods, glove boxes, and building surfaces) that are common to many laboratory facilities. The information obtained from analyzing the individual components of each facility are then used to determine the cost, manpower requirements and dose information for the decommissioning of the entire facility. DECON, the objective of the 1988 Rulemaking for materials facilities, is the decommissioning alternative evaluated for the reference laboratories because it results in the release of the facility for restricted or unrestricted use as soon as possible. For a

  19. 26 CFR 1.468A-1T - Nuclear decommissioning costs; general rules (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Nuclear decommissioning costs; general rules...-1T Nuclear decommissioning costs; general rules (temporary). (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income...

  20. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In...

  1. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In...

  2. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In...

  3. 26 CFR 1.468A-1 - Nuclear decommissioning costs; general rules.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; general rules. 1...-1 Nuclear decommissioning costs; general rules. (a) Introduction. Section 468A provides an elective method for taking into account nuclear decommissioning costs for Federal income tax purposes. In...

  4. 77 FR 8902 - Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... COMMISSION Draft Regulatory Guide: Issuance, Availability Decommissioning of Nuclear Power Reactors AGENCY... ``Decommissioning of Nuclear Power Reactors.'' This guide describes a method NRC considers acceptable for use in decommissioning power reactors. DATES: Submit comments by April 16, 2012. Comments received after this date...

  5. 77 FR 75198 - Standard Format and Content for Post-Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-19

    ... COMMISSION Standard Format and Content for Post-Shutdown Decommissioning Activities Report AGENCY: Nuclear... Format and Content for Post-shutdown Decommissioning Activities Report.'' This guide describes a method...) 1.185, ``Standard Format and Content for Post-shutdown Decommissioning Activities Report,''...

  6. Technology, Safety and Costs of Decommissioning Nuclear Reactors At Multiple-Reactor Stations

    SciTech Connect

    Wittenbrock, N. G.

    1982-01-01

    Safety and cost information is developed for the conceptual decommissioning of large (1175-MWe) pressurized water reactors (PWRs) and large (1155-MWe) boiling water reactors {BWRs) at multiple-reactor stations. Three decommissioning alternatives are studied: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). Safety and costs of decommissioning are estimated by determining the impact of probable features of multiple-reactor-station operation that are considered to be unavailable at a single-reactor station, and applying these estimated impacts to the decommissioning costs and radiation doses estimated in previous PWR and BWR decommissioning studies. The multiple-reactor-station features analyzed are: the use of interim onsite nuclear waste storage with later removal to an offsite nuclear waste disposal facility, the use of permanent onsite nuclear waste disposal, the dedication of the site to nuclear power generation, and the provision of centralized services. Five scenarios for decommissioning reactors at a multiple-reactor station are investigated. The number of reactors on a site is assumed to be either four or ten; nuclear waste disposal is varied between immediate offsite disposal, interim onsite storage, and immediate onsite disposal. It is assumed that the decommissioned reactors are not replaced in one scenario but are replaced in the other scenarios. Centralized service facilities are provided in two scenarios but are not provided in the other three. Decommissioning of a PWR or a BWR at a multiple-reactor station probably will be less costly and result in lower radiation doses than decommissioning an identical reactor at a single-reactor station. Regardless of whether the light water reactor being decommissioned is at a single- or multiple-reactor station: • the estimated occupational radiation dose for decommissioning an LWR is lowest for SAFSTOR and highest for DECON • the estimated

  7. Assessment of alternative disposal methods to reduce greenhouse gas emissions from municipal solid waste in India.

    PubMed

    Yedla, Sudhakar; Sindhu, N T

    2016-06-01

    Open dumping, the most commonly practiced method of solid waste disposal in Indian cities, creates serious environment and economic challenges, and also contributes significantly to greenhouse gas emissions. The present article attempts to analyse and identify economically effective ways to reduce greenhouse gas emissions from municipal solid waste. The article looks at the selection of appropriate methods for the control of methane emissions. Multivariate functional models are presented, based on theoretical considerations as well as the field measurements to forecast the greenhouse gas mitigation potential for all the methodologies under consideration. Economic feasibility is tested by calculating the unit cost of waste disposal for the respective disposal process. The purpose-built landfill system proposed by Yedla and Parikh has shown promise in controlling greenhouse gas and saving land. However, these studies show that aerobic composting offers the optimal method, both in terms of controlling greenhouse gas emissions and reducing costs, mainly by requiring less land than other methods.

  8. INTERNATIONAL DECOMMISSIONING SYMPOSIUM 2000

    SciTech Connect

    M.A. Ebadian, Ph.D.

    2001-01-01

    The purpose of IDS 2000 was to deliver a world-class conference on applicable global environmental issues. The objective of this conference was to publicize environmental progress of individual countries, to provide a forum for technology developer and problem-holder interaction, to facilitate environmental and technology discussions between the commercial and financial communities, and to accommodate information and education exchange between governments, industries, universities, and scientists. The scope of this project included the planning and execution of an international conference on the decommissioning of nuclear facilities, and the providing of a business forum for vendors and participants sufficient to attract service providers, technology developers, and the business and financial communities. These groups, when working together with attendees from regulatory organizations and government decision-maker groups, provide an opportunity to more effectively and efficiently expedite the decommissioning projects.

  9. Effects of ascent trajectory mode and tank disposal method on shuttle payload accommodation

    NASA Technical Reports Server (NTRS)

    Blair, J. C.; Heuser, W. W.; Redus, J. R.

    1973-01-01

    The effects of external tank disposal by retrorocket versus passive tank drop, and targeting the main engine burn for high apogee versus the baseline parking orbit ascent method on shuttle payload accommodation capability were investigated. Missions launched from Eastern Test Range were investigated over a range of orbit altitudes to determine tank disposal requirements including footprint dispersions and alternate impact locations, performance, and orbital maneuvering system requirements. Passive tank drop also proved to be advantageous from a payload accommodation standpoint. Direct insertion was shown to be a means of accommodating long payloads at higher altitudes than permitted by the baseline ascent method.

  10. A method for permanent disposal of CO{sub 2} in solid form

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.

    1997-02-04

    We describe a method for binding the greenhouse gas carbon dioxide as magnesium carbonate, a thermodynamically stable solid, for safe and permanent disposal, and with minimal environment impact. The technique is based on extracting magnesium hydroxide from common ultramafic rock for thermal carbonation and subsequent disposition. The economics of the method appear to be promising, however, many details of the proposed process have yet to be optimized. Initial estimates indicate that binding and disposal would impose a burden of approximately 3{cents}/kWH onto the cost of electricity. This cost could be reduced significantly in the short term by entering niche markets for various technologies for efficient extraction and thermal carbonation. In this paper, we describe some of the kinetic limitations and opportunities. The proposed disposal technique may be viewed as a sort of insurance policy in case global warming, or the perception of global warming causes severe restrictions on CO{sub 2} emissions.

  11. Constructing Predictive Estimates for Worker Exposure to Radioactivity During Decommissioning: Analysis of Completed Decommissioning Projects - Master Thesis

    SciTech Connect

    Dettmers, Dana Lee; Eide, Steven Arvid

    2002-10-01

    An analysis of completed decommissioning projects is used to construct predictive estimates for worker exposure to radioactivity during decommissioning activities. The preferred organizational method for the completed decommissioning project data is to divide the data by type of facility, whether decommissioning was performed on part of the facility or the complete facility, and the level of radiation within the facility prior to decommissioning (low, medium, or high). Additional data analysis shows that there is not a downward trend in worker exposure data over time. Also, the use of a standard estimate for worker exposure to radioactivity may be a best estimate for low complete storage, high partial storage, and medium reactor facilities; a conservative estimate for some low level of facility radiation facilities (reactor complete, research complete, pits/ponds, other), medium partial process facilities, and high complete research facilities; and an underestimate for the remaining facilities. Limited data are available to compare different decommissioning alternatives, so the available data are reported and no conclusions can been drawn. It is recommended that all DOE sites and the NRC use a similar method to document worker hours, worker exposure to radiation (person-rem), and standard industrial accidents, injuries, and deaths for all completed decommissioning activities.

  12. ORNL decontamination and decommissioning program

    SciTech Connect

    Bell, J. P.

    1980-01-01

    A program has been initiated at ORNL to decontaminate and decommission surplus or abandoned nuclear facilities. Program planning and technical studies have been performed by UCC-ND Engineering. A feasibility study for decommissioning the Metal Recovery Facility, a fuel reprocessing pilot plant, has been completed.

  13. Safety in the Chemical Laboratory: Tested Disposal Methods for Chemical Wastes from Academic Laboratories.

    ERIC Educational Resources Information Center

    Armour, M. A.; And Others

    1985-01-01

    Describes procedures for disposing of dichromate cleaning solution, picric acid, organic azides, oxalic acid, chemical spills, and hydroperoxides in ethers and alkenes. These methods have been tested under laboratory conditions and are specific for individual chemicals rather than for groups of chemicals. (JN)

  14. Don't Flush! Why Your Drug Disposal Method Matters ...

    EPA Pesticide Factsheets

    April 30th is the U.S. Drug Enforcement Administration’s National Drug Take-Back Day. All over the country there will be facilities accepting any unwanted or expired medications from 10:00 AM – 2:00 PM – it is the perfect opportunity to clean out your medicine cabinet while simultaneously helping to protect aquatic animals and their environment from chemical exposure!Have you ever participated in a drug take-back program? If not, what do you typically do with leftover medications after you defeat a bacterial infection or find an old bottle of Tylenol? Many people may flush unwanted or expired pharmaceuticals down the toilet or throw them in the trash, but those methods can actually harm our environment.When flushed or thrown-out, these drugs end up in our coastal ecosystems; and all the chemicals in those little pills that were once working together to make us feel better, are now dissolving in our waterways where they can negatively impact aquatic animals.Scientists throughout EPA continue to evaluate the potential toxicity of different drugs in order to determine what specific effects they have on aquatic wildlife, and to develop new ways to detect if an organism has been exposed to those drugs.I recently spoke with Bushra Khan (NRC post-doc) and Theresa Johnson (ORISE fellow) of the EPA’s Atlantic Ecology Division to learn about some of the specific effects they have observed in their research. Bushra talked to me about the effects beta blockers, m

  15. Disposal of Large Reactor Components - Rulemaking to Address Funding of Disposal Costs

    SciTech Connect

    Greeves, J.T.; Lieberman, J.; Magette, T.E.

    2008-07-01

    The paper will explore the current challenges of financing the disposal costs for disposing of large reactor components such as reactor pressure vessel heads and steam generators and the resulting delays in disposal caused by the current regulatory requirements. The paper also will discuss a recent rulemaking petition submitted by EnergySolutions to the US Nuclear Regulatory Commission designed to improve the regulatory process by providing a process to permit funds from decommissioning trust funds to be used to fund disposal of large reactor components. If granted, the disposal of these large components could be expedited where reactor licensees have sufficient decommissioning trust funds available. Perspectives on the rulemaking will be addressed. In conclusion: NRC should provide serious consideration to this Petition. There is support in the industry for granting this Petition. As of the date this paper was submitted, there have been no negative comments. Granting this Petition is prudent and consistent with the underlying purpose of 10 C.F.R. 50.82(a)(8) and 10 CFR 20.1406. It provides flexibility without any adverse impact on the public health and safety. It should facilitate the decommissioning process by providing a regulatory framework to allow removing MRCs from sites, resulting in (1) the source term at the site being reduced, (2) the site workers being exposed to less radiation, (3) eliminating an unnecessary regulatory burden as the costs associated with maintaining the MRCs on-site and providing protection to the workers as a result of those components can be avoided, (4) the overall cost to decommission the site being reduced, and (5) more funds being made available to decommission the reactor at the time the reactor ceases operation. Finally, the framework would provide the demonstration by a site-specific decommissioning cost estimate and the associated funding program that adequate funds are available to dispose of these components as well as

  16. Fuzzy multicriteria disposal method and site selection for municipal solid waste

    SciTech Connect

    Ekmekcioglu, Mehmet; Kaya, Tolga; Kahraman, Cengiz

    2010-08-15

    The use of fuzzy multiple criteria analysis (MCA) in solid waste management has the advantage of rendering subjective and implicit decision making more objective and analytical, with its ability to accommodate both quantitative and qualitative data. In this paper a modified fuzzy TOPSIS methodology is proposed for the selection of appropriate disposal method and site for municipal solid waste (MSW). Our method is superior to existing methods since it has capability of representing vague qualitative data and presenting all possible results with different degrees of membership. In the first stage of the proposed methodology, a set of criteria of cost, reliability, feasibility, pollution and emission levels, waste and energy recovery is optimized to determine the best MSW disposal method. Landfilling, composting, conventional incineration, and refuse-derived fuel (RDF) combustion are the alternatives considered. The weights of the selection criteria are determined by fuzzy pairwise comparison matrices of Analytic Hierarchy Process (AHP). It is found that RDF combustion is the best disposal method alternative for Istanbul. In the second stage, the same methodology is used to determine the optimum RDF combustion plant location using adjacent land use, climate, road access and cost as the criteria. The results of this study illustrate the importance of the weights on the various factors in deciding the optimized location, with the best site located in Catalca. A sensitivity analysis is also conducted to monitor how sensitive our model is to changes in the various criteria weights.

  17. Norm - contaminated iodine production facilities decommissioning in Turkmenistan: experience and results

    SciTech Connect

    Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander; Troshev, Alexander; Boriskin, Mikhail

    2013-07-01

    This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnover is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)

  18. Technology, safety and costs of decommissioning a reference boiling water reactor power station. Appendices. Volume 2

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Appendices are presented concerning the evaluations of decommissioning financing alternatives; reference site description; reference BWR facility description; radiation dose rate and concrete surface contamination data; radionuclide inventories; public radiation dose models and calculated maximum annual doses; decommissioning methods; generic decommissioning information; immediate dismantlement details; passive safe storage, continuing care, and deferred dismantlement details; entombment details; demolition and site restoration details; cost estimating bases; public radiological safety assessment details; and details of alternate study bases.

  19. Decontamination and Decommissioning Experience at a Sellafield Uranium Purification Plant

    SciTech Connect

    Prosser, J.L.

    2006-07-01

    Built in the 1950's, this plant was originally designed to purify depleted uranyl nitrate solution arising from reprocessing operations at the Primary Separation and Head End Plant (Fig. 1). The facility was used for various purposes throughout its life cycle such as research, development and trial based processes. Test rigs were operated in the building from the 1970's until 1984 to support development of the process and equipment now used at Sellafield's Thermal Oxide Reprocessing Plant (THORP). The extensive decommissioning program for this facility began over 15 years ago. Many challenges have been overcome throughout this program such as decommissioning the four main process cells, which were very highly alpha contaminated. The cells contained vessels and pipeline systems that were contaminated to such levels that workers had to use pressurized suits to enter the cells. Since decommissioning at Sellafield was in its infancy, this project has trialed various decontamination/decommissioning methods and techniques in order to progress the project, and this has provided valuable learning for other decommissioning projects. The project has included characterization, decontamination, dismantling, waste handling, and is now ready for demolition during late 2005, early 2006. This will be the first major facility within the historic Separation Area at Sellafield to be demolished down to base slab level. The lessons learnt from this project will directly benefit numerous decommissioning projects as the cleanup at Sellafield continues. (authors)

  20. Methods to enhance compost practices as an alternative to waste disposal

    SciTech Connect

    Stuckey, H.T.; Hudak, P.F.

    1998-12-31

    Creating practices that are ecologically friendly, economically profitable, and ethically sound is a concept that is slowly beginning to unfold in modern society. In developing such practices, the authors challenge long-lived human behavior patterns and environmental management practices. In this paper, they trace the history of human waste production, describe problems associated with such waste, and explore regional coping mechanisms. Composting projects in north central Texas demonstrate new methods for waste disposal. The authors studied projects conducted by municipalities, schools, agricultural organizations, and individual households. These efforts were examined within the context of regional and statewide solid waste plans. They conclude that: (1) regional composting in north central Texas will substantially reduce the waste stream entering landfills; (2) public education is paramount to establishing alternative waste disposal practices; and (3) new practices for compost will catalyze widespread and efficient production.

  1. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations

    PubMed Central

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W.

    2016-01-01

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty’s 1–9 scale, this paper proposes a cross-ratio-based bipolar 0.1–0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness. PMID:27618082

  2. Medical Waste Disposal Method Selection Based on a Hierarchical Decision Model with Intuitionistic Fuzzy Relations.

    PubMed

    Qian, Wuyong; Wang, Zhou-Jing; Li, Kevin W

    2016-09-09

    Although medical waste usually accounts for a small fraction of urban municipal waste, its proper disposal has been a challenging issue as it often contains infectious, radioactive, or hazardous waste. This article proposes a two-level hierarchical multicriteria decision model to address medical waste disposal method selection (MWDMS), where disposal methods are assessed against different criteria as intuitionistic fuzzy preference relations and criteria weights are furnished as real values. This paper first introduces new operations for a special class of intuitionistic fuzzy values, whose membership and non-membership information is cross ratio based ]0, 1[-values. New score and accuracy functions are defined in order to develop a comparison approach for ]0, 1[-valued intuitionistic fuzzy numbers. A weighted geometric operator is then put forward to aggregate a collection of ]0, 1[-valued intuitionistic fuzzy values. Similar to Saaty's 1-9 scale, this paper proposes a cross-ratio-based bipolar 0.1-0.9 scale to characterize pairwise comparison results. Subsequently, a two-level hierarchical structure is formulated to handle multicriteria decision problems with intuitionistic preference relations. Finally, the proposed decision framework is applied to MWDMS to illustrate its feasibility and effectiveness.

  3. Management of the decommissioning of the Thetis reactor

    SciTech Connect

    Ooms, Luc; Maris, Patrick; Noynaert, Luc

    2013-07-01

    The Thetis research reactor on the site of the Nuclear Sciences Institute of the Ghent University has been in operation from 1967 until December 2003. This light-water moderated graphite-reflected low-enriched uranium pool-type reactor has been used for various purposes e.g. the production of radioisotopes and activation analyses. During the first years its core power was 15 kW. In the early '70, a core enlargement allowed for operation at typically 150 kW, while the maximum was allowed to be 250 kW In September 2007, Ghent University entrusted to SCK-CEN the management of the back-end of the spent fuel and the decommissioning of the reactor. In 2010, the spent fuel was removed from the reactor and transported to Belgoprocess for cementation in 400 l drums and interim storage awaiting final disposal. This activity allows tackling the decommissioning of the reactor. The objective is to complete its decommissioning by the end of 2014. In the framework of the decommissioning of the Thetis reactor, SCK-CEN set-up the final decommissioning plan and the decommissioning licensing file. These documents include among others a radiological inventory of the reactor. The graphite moderator blocks, the control and the safety pates, the liner of the pool were modeled to assess the activation products (isotopic vector and intensity). At the end of the unloading of the reactor in 2010 a brief mapping of the equipment's and internals of the reactor pool was performed. In 2012, we realized a more detailed mapping. These results confirmed those performed earlier and allowed to confirm the assumptions made in the final decommissioning plan. We set-up the terms of reference for the first decommissioning phase of the reactor namely the dismantling of the reactor i.e. reactor pool, circuits and rabbit system, equipment's and ventilation ducts. The removal of asbestos is also included into this phase. We conducted the selection process and the awarding of this decommissioning job. We

  4. Hydraulic fracturing: A proven N.O.R.M. disposal method

    SciTech Connect

    Young, S.C.; Chambers, D.G.; Woods, S.E.; Abernathy, S.E.

    1995-10-01

    Since the discovery that many drill cuttings, scales, sludges, and platings contain elevated amounts of naturally occurring radioactive material (NORM), many companies and regulating authorities have discussed the merits of various disposal methods. This paper covers a process that disposes of NORM and provides isolation of the material from the environment. Disposal of NORM slurry through fracturing an existing depleted sandstone requires careful analysis to optimize a safe and effective design. A radioactivity assay was performed on the NORM before and after slurrification to determine activity concentrations. Tests were conducted on the NORM to proved parameters for the fracture design. The process consists of slurrying the material and keeping the particles suspended in solution until time for well injection. Well injection takes the form of hydraulic fracturing with the material into a deplete zone in the reservoir. Fracturing with the NORM was preceded with a Mini-Frac as a safety precaution to confirm downhole parameters. In conclusion, the philosophy of the process is to take the NORM generated through the exploration and production of oil and gas and place it back into the reservoir from which it came through hydraulic fracturing. This technique is one that helps protect the environment from the possible hazards associated with mismanaged NORM.

  5. DEACTIVATION AND DECOMMISSIONING (D AND D) TECHNOLOGY INTEGRATION

    SciTech Connect

    M.A. Ebadian, Ph.D.

    1999-01-01

    As part of the ongoing task of making Deactivation and Decommissioning (D&D) operations more efficient, this subtask has addressed the need to integrate existing characterization technologies with decontamination technologies in order to provide real-time data on the progress of contamination removal. Specifically, technologies associated with concrete decontamination and/or removal have been examined with the goal of integrating existing technologies and commercializing the resulting hybrid. The Department of Energy (DOE) has estimated that 23 million cubic meters of concrete will require disposition as 1200 buildings undergo the D&D process. All concrete removal to be performed will also necessitate extensive use of characterization techniques. The in-process characterization presents the most potential for improvement and cost-savings as compared to other types. Current methods for in-process characterization usually require cessation of work to allow for radiation surveys to assess the rate of decontamination. Combining together decontamination and characterization technologies would allow for in-process evaluation of decontamination efforts. Since the present methods do not use in-process evaluations for the progress of decontamination, they may allow for ''overremoval'' of materials (removal of contaminated along with non-contaminated materials). Overremoval increases the volume of waste and therefore the costs associated with disposal. Integrating technologies would facilitate the removal of only contaminated concrete and reduce the total volume of radioactive waste, which would be disposed of. This would eventually ensure better productivity and time savings. This project presents a general procedure to integrate the above-mentioned technologies in the form of the Technology Integration Module (TIM) along with combination lists of commercially available decontamination and characterization technologies. The scope of the project has also been expanded by FIU

  6. Assessment of health-care waste disposal methods using a VIKOR-based fuzzy multi-criteria decision making method

    SciTech Connect

    Liu, Hu-Chen; Wu, Jing; Li, Ping

    2013-12-15

    Highlights: • Propose a VIKOR-based fuzzy MCDM technique for evaluating HCW disposal methods. • Linguistic variables are used to assess the ratings and weights for the criteria. • The OWA operator is utilized to aggregate individual opinions of decision makers. • A case study is given to illustrate the procedure of the proposed framework. - Abstract: Nowadays selection of the appropriate treatment method in health-care waste (HCW) management has become a challenge task for the municipal authorities especially in developing countries. Assessment of HCW disposal alternatives can be regarded as a complicated multi-criteria decision making (MCDM) problem which requires consideration of multiple alternative solutions and conflicting tangible and intangible criteria. The objective of this paper is to present a new MCDM technique based on fuzzy set theory and VIKOR method for evaluating HCW disposal methods. Linguistic variables are used by decision makers to assess the ratings and weights for the established criteria. The ordered weighted averaging (OWA) operator is utilized to aggregate individual opinions of decision makers into a group assessment. The computational procedure of the proposed framework is illustrated through a case study in Shanghai, one of the largest cities of China. The HCW treatment alternatives considered in this study include “incineration”, “steam sterilization”, “microwave” and “landfill”. The results obtained using the proposed approach are analyzed in a comparative way.

  7. Evaluation of the long-term performance of six alternative disposal methods for LLRW

    SciTech Connect

    Kossik, R.; Sharp, G.; Chau, T.

    1995-12-31

    The State of New York has carried out a comparison of six alternative disposal methods for low-level radioactive waste (LLRW). An important part of these evaluations involved quantitatively analyzing the long-term (10,000 yr) performance of the methods with respect to dose to humans, radionuclide concentrations in the environment, and cumulative release from the facility. Four near-surface methods (covered above-grade vault, uncovered above-grade vault, below-grade vault, augered holes) and two mine methods (vertical shaft mine and drift mine) were evaluated. Each method was analyzed for several generic site conditions applicable for the state. The evaluations were carried out using RIP (Repository Integration Program), an integrated, total system performance assessment computer code which has been applied to radioactive waste disposal facilities both in the U.S. (Yucca Mountain, WIPP) and worldwide. The evaluations indicate that mines in intact low-permeability rock and near-surface facilities with engineered covers generally have a high potential to perform well (within regulatory limits). Uncovered above-grade vaults and mines in highly fractured crystalline rock, however, have a high potential to perform poorly, exceeding regulatory limits.

  8. 77 FR 41107 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-12

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 20, 30, 40, 50, 70, and 72 Decommissioning Planning During... on revised draft regulatory guide (DG) 4014, ``Decommissioning Planning During Operations.'' This... Decommissioning Planning Rule. The NRC will hold a public meeting and concurrent Webinar to facilitate the...

  9. 76 FR 65541 - Assuring the Availability of Funds for Decommissioning Nuclear Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-21

    ... COMMISSION Assuring the Availability of Funds for Decommissioning Nuclear Reactors AGENCY: Nuclear Regulatory... Decommissioning Nuclear Reactors.'' This guide provides guidance to applicants and licensees of nuclear power, research, and test reactors concerning methods acceptable to the staff of the U.S. Nuclear...

  10. Characteristics of leachate in Foot and Mouth Disease Carcass Disposal using Molecular Biology Method

    NASA Astrophysics Data System (ADS)

    Choi, E. J.; Kim, B. J.; Wi, D. W.; Choi, N. C.; Lee, S. J.; Min, J. E.; Park, C. Y.

    2012-04-01

    The Leachate from Foot and Mouth Disease(FMD) carcass disposal by is one of the types of high-concentration contaminated wastewater with the greatest environmental impact. This is due to its pollutants: nitrate nitrogen (NO3--N) and pathogenic microorganisms. Satisfactory treatment of leachate is not an easy task for its high concentrations of nitrate nitrogen and pathogenic microorganisms. Therefore suitable FMD leachate treatment processes should be adopted to improve treatment performance and to reduce overall running costs. The objective of this study was to determine the leachate characteristics through environmental analysis and molecular biology method (bacteria identification and Polymerase Chain Reaction) using FMD leachate samples for optimal FMD leachate treatment processes. The Sixteen FMD leachate samples was obtained from carcass disposal regions in Korea. Results of environmental analysis showed that pH and Eh was observed from 5.57 to 7.40, -134~358mV. This data was exhibited typical early carcass disposal (Neutral pH and Reducing Environment by abundant organic matter). TOC and nitrate nitrogen high concentrations in FMD leachate showed a large variability from 2.3 to 38,730 mg/L(mean - 6,821.93mg/L) and 0.335 ~231.998mg/L(mean - 37.46mg/L), respectively. The result of bacteria identification was observed Bacillus cereus, Pseudomonas putida, Acinetobacter ursingii, Aeromonas hydrophila, Serratia liquefaciens, Brevundimonas naejangsanensis, Serratia liquefaciens, Pseudomonas fluorescens, Pseudomonas aeruginosa, Acinetobacter ursingii. The results of Polymerase Chain Reaction(PCR) using EzTaxon server data revealed Pseudoclavibacter helvolus, Pseudochrobactrum saccharolyticum, Corynebacterium callunae, Paenibacillus lautus, Paenibacillus sp., Bacillus arvi, Brevundimonas bullata, Acinetobacter ursingii, Lysinibacillus sphaericus, Bacillus pumilus, Bacillus sphaericus, Bacillus psychrodurans, Pseudomonas sp.

  11. Regulatory process for decommissioning nuclear power reactors. Final report

    SciTech Connect

    1998-03-01

    This report provides regulatory guidance for utilities consistent with the changes in the decommissioning rule, 10 CFR50.82 as revised in July 1996. The purpose of this report is to explain the new rule in the context of related industry experience and to provide practical guidance to licensees contemplating or implementing a shutdown. Because the regulatory process is still rapidly evolving, this report reflects only a current status of the acceptable methods and practices derived from a review of the current regulations, guidance documents and industry experience for decommissioning a nuclear power reactor. EPRI anticipates periodic updates of this document to incorporate various utility experiences with decommissioning, and also to reflect any regulatory changes. The report provides a summary of ongoing federal agency and industry activities and the regulatory requirements that are currently applicable, or no longer applicable, to nuclear power plants at the time of permanent shutdown through the early decommissioning stage. The report describes the major components of a typical decommissioning action plan, providing industry experience and guidance for licensees considering or implementing permanent shutdown.

  12. Waste isolation pilot plant disposal room model

    SciTech Connect

    Butcher, B.M.

    1997-08-01

    This paper describes development of the conceptual and mathematical models for the part of the Waste Isolation Pilot Plant (WIPP) repository performance assessment that is concerned with what happens to the waste over long times after the repository is decommissioned. These models, collectively referred to as the {open_quotes}Disposal Room Model,{close_quotes} describe the repository closure process during which deformation of the surrounding salt consolidates the waste. First, the relationship of repository closure to demonstration of compliance with the Environmental Protection Agency (EPA) standard (40 CFR 191 Appendix C) and how sensitive performance results are to it are examined. Next, a detailed description is provided of the elements of the disposal region, and properties selected for the salt, waste, and other potential disposal features such as backfill. Included in the discussion is an explanation of how the various models were developed over time. Other aspects of closure analysis, such as the waste flow model and method of analysis, are also described. Finally, the closure predictions used in the final performance assessment analysis for the WIPP Compliance Certification Application are summarized.

  13. Assessment of foreign decommissioning technology with potential application to US decommissioning needs

    SciTech Connect

    Allen, R.P.; Konzek, G.J.; Schneider, K.J.; Smith, R.I.

    1987-09-01

    This study was conducted by the Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) to identify and technically assess foreign decommissioning technology developments that may represent significant improvements over decommissioning technology currently available or under development in the United States. Technology need areas for nuclear power reactor decommissioning operations were identified and prioritized using the results of past light water reactor (LWR) decommissioning studies to quantitatively evaluate the potential for reducing cost and decommissioning worker radiation dose for each major decommissioning activity. Based on these identified needs, current foreign decommissioning technologies of potential interest to the US were identified through personal contacts and the collection and review of an extensive body of decommissioning literature. These technologies were then assessed qualitatively to evaluate their uniqueness, potential for a significant reduction in decommissioning costs and/or worker radiation dose, development status, and other factors affecting their value and applicability to US needs.

  14. Shutdown plus 3 - a look at Yankee decommissioning experience

    SciTech Connect

    Szymczak, W.J.

    1995-12-31

    In three years, the Yankee Nuclear Power Station has not only made the transition from a facility with a full power operating license to a shut down facility but to a facility with a mature and experienced organization poised to effectively and efficiently decommission the remainder of the plant. Opportunities were acted upon to reduce the cost of running and dismantling a shut-down facility. This paper describes some of those opportunities and Yankee`s future strategy for dismantling in an environment with limited waste disposal availability.

  15. 78 FR 77722 - Environmental Assessment and Finding of No Significant Impact Related to an Alternative Disposal...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-24

    ... of soil and soil-like wastes at the US Ecology Idaho, Inc. (USEI) disposal facility located near... authorization for WEC to transfer decommissioning waste from the facility to US Ecology Idaho, Inc. (USEI),...

  16. Decontamination and decommissioning surveillance and maintenance report for FY 1991

    SciTech Connect

    Gunter, David B.; Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  17. Methods of using structures including catalytic materials disposed within porous zeolite materials to synthesize hydrocarbons

    DOEpatents

    Rollins, Harry W.; Petkovic, Lucia M.; Ginosar, Daniel M.

    2011-02-01

    Catalytic structures include a catalytic material disposed within a zeolite material. The catalytic material may be capable of catalyzing a formation of methanol from carbon monoxide and/or carbon dioxide, and the zeolite material may be capable of catalyzing a formation of hydrocarbon molecules from methanol. The catalytic material may include copper and zinc oxide. The zeolite material may include a first plurality of pores substantially defined by a crystal structure of the zeolite material and a second plurality of pores dispersed throughout the zeolite material. Systems for synthesizing hydrocarbon molecules also include catalytic structures. Methods for synthesizing hydrocarbon molecules include contacting hydrogen and at least one of carbon monoxide and carbon dioxide with such catalytic structures. Catalytic structures are fabricated by forming a zeolite material at least partially around a template structure, removing the template structure, and introducing a catalytic material into the zeolite material.

  18. Radiochemistry Lab Decommissioning and Dismantlement. AECL, Chalk River Labs, Ontario, Canada

    SciTech Connect

    Kenny, Stephen

    2008-01-15

    Atomic Energy of Canada (AECL) was originally founded in the mid 1940's to perform research in radiation and nuclear areas under the Canadian Defense Department. In the mid 50's The Canadian government embarked on several research and development programs for the development of the Candu Reactor. AECL was initially built as a temporary site and is now faced with many redundant buildings. Prior to 2004 small amounts of Decommissioning work was in progress. Many reasons for deferring decommissioning activities were used with the predominant ones being: 1. Reduction in radiation doses to workers during the final dismantlement, 2. Development of a long-term solution for the management of radioactive wastes in Canada, 3. Financial constraints presented by the number of facilities shutdown that would require decommissioning funds and the absence of an approved funding strategy. This has led to the development of a comprehensive decommissioning plan that is all inclusive of AECL's current and legacy liabilities. Canada does not have a long-term disposal site; therefore waste minimization becomes the driving factor behind decontamination for decommissioning before and during dismantlement. This decommissioning job was a great learning experience for decommissioning and the associated contractors who worked on this project. Throughout the life of the project there was a constant focus on waste minimization. This focus was constantly in conflict with regulatory compliance primarily with respect to fire regulations and protecting the facility along with adjacent facilities during the decommissioning activities. Discrepancies in historical documents forced the project to treat every space as a contaminated space until proven differently. Decommissioning and dismantlement within an operating site adds to the complexity of the tasks especially when it is being conducted in the heart of the plant. This project was very successful with no lost time accidents in over one hundred

  19. Pre-decommissioning radiological characterization of concrete

    SciTech Connect

    Boden, Sven; Cantrel, Eric

    2007-07-01

    The decommissioning of the BR3 (Belgian Reactor 3) approaches its final phase, in which the building structures are being decontaminated and either denuclearized for possible reuse or demolished. Apart from the presence of naturally occurring radionuclides in building materials, other radionuclides might be present due to contamination or activation. The overall process of the BR3 building structure D and D (Decontamination and Decommissioning) consists of the following steps: - make a complete inventory and preliminary categorize all elements based on historical data; characterize and determine the contamination or activation depth; - determine the decontamination method; - perform the decontamination and clean up; - a possible intermediate characterization followed by an additional decontamination step; and characterize for clearance. A good knowledge of the contamination and activation depth (second step) is fundamental in view of cost minimization. Currently, the method commonly used for the determination of the depth is based on core drilling and destructive analysis. Recently, we have introduced a complementary non destructive assay based on in-situ gamma spectroscopy. Field tests at BR3, both for contamination and activation, showed promising results. (authors)

  20. FLUOR HANFORD DECOMMISSIONING UPDATE

    SciTech Connect

    GERBER MS

    2008-04-21

    workers to a safe level from the residual radioactivity. Workers then continued preparations for demolishing the structure. Currently, they are isolating utilities, removing asbestos, draining oils, and removing other items not allowed to be disposed in Hanford's Environmental Restoration Disposal Facility (ERDF). The basin's superstructure will be demolished using a heavy industrial excavator equipped with a shear. This portion of the work is expected to be completed in September, with removal of the basin substructure to follow in 2009. D&D of the K East Basin eliminated the final major radioactive sources there, and made the Columbia River and the adjacent environment safer for everyone who lives downstream.

  1. A METHOD FOR REGENERATION OF SPENT ELECTROCHEMICAL DECONTAMINATION SOLUTION AND ITS TREATMENT FOR FINAL DISPOSAL

    SciTech Connect

    Davydov, D.Yu.; Davydov, Yu.P.; Toropov, I.G.; John, J.; Rosikova, K.; Motl, A.; Hudson, M.J.; Prazska, M.

    2003-02-27

    This paper describes the method of regeneration of spent electrochemical decontamination solution. The proposed method allows separation of radionuclides and stable metals from spent decontamination solution in a form suitable for final disposal and repeated use of the remaining solution for electrochemical decontamination. Development of this method was based on the results of the speciation studies which showed that Fe(III) can be precipitated in the presence of organic complexing agents, in a form of iron hydroxide, and Ag-110m, Co-60, Mn-54 radionuclides can be coprecipitated on it. In order to verify the conclusions made as a result of the speciation studies, the experiments with electrochemically prepared simulant solution and real solution were carried out. The test results proved that the proposed method can be applied in practice. Treatment of the ultimately spent decontamination solutions can be also made applying iron precipitation, which allows for removal of the bulk amount of contaminants, as the first step. Then, if necessary the remaining radionuclides can be removed by sorption. A series of novel absorbers has been tested for their potential for the sorption removal of the remaining radionuclides from the supernate. The test results showed that most of them were more effective in neutral or alkaline range of pH, however, the high efficiency of the sorption removal can be achieved only after the removal of the oxalic and citric acids from solution.

  2. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sanders, J.A.

    1981-12-01

    A maze of U.S. regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. A set of disposal methods with approximate costs is presented to serve as an initial guide for disposal. 16 refs.

  3. Comparison of different methods to include recycling in LCAs of aluminium cans and disposable polystyrene cups.

    PubMed

    van der Harst, Eugenie; Potting, José; Kroeze, Carolien

    2016-02-01

    Many methods have been reported and used to include recycling in life cycle assessments (LCAs). This paper evaluates six widely used methods: three substitution methods (i.e. substitution based on equal quality, a correction factor, and alternative material), allocation based on the number of recycling loops, the recycled-content method, and the equal-share method. These six methods were first compared, with an assumed hypothetical 100% recycling rate, for an aluminium can and a disposable polystyrene (PS) cup. The substitution and recycled-content method were next applied with actual rates for recycling, incineration and landfilling for both product systems in selected countries. The six methods differ in their approaches to credit recycling. The three substitution methods stimulate the recyclability of the product and assign credits for the obtained recycled material. The choice to either apply a correction factor, or to account for alternative substituted material has a considerable influence on the LCA results, and is debatable. Nevertheless, we prefer incorporating quality reduction of the recycled material by either a correction factor or an alternative substituted material over simply ignoring quality loss. The allocation-on-number-of-recycling-loops method focusses on the life expectancy of material itself, rather than on a specific separate product. The recycled-content method stimulates the use of recycled material, i.e. credits the use of recycled material in products and ignores the recyclability of the products. The equal-share method is a compromise between the substitution methods and the recycled-content method. The results for the aluminium can follow the underlying philosophies of the methods. The results for the PS cup are additionally influenced by the correction factor or credits for the alternative material accounting for the drop in PS quality, the waste treatment management (recycling rate, incineration rate, landfilling rate), and the

  4. A novel method for harmless disposal and resource reutilization of steel wire rope sludges.

    PubMed

    Zhang, Li; Liu, Yang-Sheng

    2016-10-01

    Rapid development of steel wire rope industry has led to the generation of large quantities of pickling sludge, which causes significant ecological problems and considerable negative environmental effects. In this study, a novel method was proposed for harmless disposal and resource reutilization of the steel wire rope sludge. Based on the method, two steel wire rope sludges (the Pb sludge and the Zn sludge) were firstly extracted by hydrochloric or sulfuric acid and then mixed with the hydrochloride acid extracting solution of aluminum skimmings to produce composite polyaluminum ferric flocculants. The optimum conditions (acid concentration, w/v ratio, reaction time, and reaction temperature) for acid extraction of the sludges were studied. Results showed that 97.03 % of Pb sludge and 96.20 % of Zn sludge were extracted. Leaching potential of the residues after acid extraction was evaluated, and a proposed treatment for the residues had been instructed. The obtained flocculant products were used to purify the real domestic wastewater and showed an equivalent or better performance than the commercial ones. This method is environmental-friendly and cost-effective when compared with the conventional sludge treatments.

  5. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect

    Not Available

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 68 refs., 54 figs., 18 tabs.

  6. Resource book: Decommissioning of contaminated facilities at Hanford

    SciTech Connect

    Not Available

    1991-09-01

    In 1942 Hanford was commissioned as a site for the production of weapons-grade plutonium. The years since have seen the construction and operation of several generations of plutonium-producing reactors, plants for the chemical processing of irradiated fuel elements, plutonium and uranium processing and fabrication plants, and other facilities. There has also been a diversification of the Hanford site with the building of new laboratories, a fission product encapsulation plant, improved high-level waste management facilities, the Fast Flux test facility, commercial power reactors and commercial solid waste disposal facilities. Obsolescence and changing requirements will result in the deactivation or retirement of buildings, waste storage tanks, waste burial grounds and liquid waste disposal sites which have become contaminated with varying levels of radionuclides. This manual was established as a written repository of information pertinent to decommissioning planning and operations at Hanford. The Resource Book contains, in several volumes, descriptive information of the Hanford Site and general discussions of several classes of contaminated facilities found at Hanford. Supplementing these discussions are appendices containing data sheets on individual contaminated facilities and sites at Hanford. Twelve appendices are provided, corresponding to the twelve classes into which the contaminated facilities at Hanford have been organized. Within each appendix are individual data sheets containing administrative, geographical, physical, radiological, functional and decommissioning information on each facility within the class. 49 refs., 44 figs., 14 tabs.

  7. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    SciTech Connect

    Burnet, G.; Gokhale, A.J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste and method for producing the same are disclosed, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces. 3 figs.

  8. Hardened, environmentally disposable composite granules of coal cleaning refuse, coal combustion waste, and other wastes, and method preparing the same

    DOEpatents

    Burnet, George; Gokhale, Ashok J.

    1990-07-10

    A hardened, environmentally inert and disposable composite granule of coal cleaning refuse and coal combustion waste, and method for producing the same, wherein the coal combustion waste is first granulated. The coal cleaning refuse is pulverized into fine particles and is then bound, as an outer layer, to the granulated coal combustion waste granules. This combination is then combusted and sintered. After cooling, the combination results in hardened, environmentally inert and disposable composite granules having cores of coal combustion waste, and outer shells of coal cleaning refuse. The composite particles are durable and extremely resistant to environmental and chemical forces.

  9. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA-Winfrith

    SciTech Connect

    Miller, Keith; Cornell, Rowland; Parkinson, Steve; McIntyre, Kevin; Staples, Andy

    2007-07-01

    Available in abstract form only. Full text of publication follows: The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and all remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height ISO containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. (authors)

  10. 76 FR 3837 - Nuclear Decommissioning Funds; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-21

    ... Internal Revenue Service 26 CFR Part 1 RIN 1545-BF08 Nuclear Decommissioning Funds; Correction AGENCY... decommissioning nuclear power plants. DATES: This correction is effective on January 21, 2011, and is applicable... interest in a nuclear power plant. * * * * * (e) * * * (3) * * * Example 2. * * * Pursuant to paragraph...

  11. Current significant challenges in the decommissioning and environmental remediation of radioactive facilities: A perspective from outside the nuclear industry.

    PubMed

    Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J

    2017-05-01

    This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred.

  12. Activities ONDRAF/NIRAS related to the decommissioning of nuclear facilities

    SciTech Connect

    Cantarella, J.; Simenon, R.; Braeckeveldt, M.

    2013-07-01

    's final phase, namely the preparation of decommissioning, decontamination, more or less long-term maintenance, dismantling, treatment, conditioning and disposal of waste produced during this phase. In order to face to multiple and repeated evaluation processes, the Agency, already in the early 90's, started with the implementation of its own integrated data processing system, recording the physical and radiological inventories of nuclear facilities, and allowing the evaluation of the quantities of decommissioning materials and wastes as well as of the decommissioning costs of these facilities. The cost evaluations cover all decommissioning activities from final shutdown of the facility until final release from nuclear control, as well as conventional demolition and site restoration if required. Beside the information related to the inventories, the database involves so called auxiliary tables integrating unit prices of the various decontamination and dismantling techniques, unit rates for radioactive waste processing, interim storage and final disposal. (authors)

  13. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOEpatents

    Heung, Leung K.

    1994-01-01

    Apparatus for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused.

  14. Method and apparatus for extracting tritium and preparing radioactive waste for disposal

    DOEpatents

    Heung, L.K.

    1994-03-29

    Apparatus is described for heating an object such as a nuclear target bundle to release and recover hydrogen and contain the disposable residue for disposal. The apparatus comprises an inverted furnace, a sleeve/crucible assembly for holding and enclosing the bundle, conveying equipment for placing the sleeve onto the crucible and loading the bundle into the sleeve/crucible, a lift for raising the enclosed bundle into the furnace, and hydrogen recovery equipment including a trap and strippers, all housed in a containment having negative internal pressure. The crucible/sleeve assembly has an internal volume that is sufficient to enclose and hold the bundle before heating; the crucible's internal volume is sufficient by itself to hold and enclose the bundle's volume after heating. The crucible can then be covered and disposed of; the sleeve, on the other hand, can be reused. 4 figures.

  15. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    SciTech Connect

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. This paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed

  16. FRHAM-TEX{trademark} cool suit - OST reference No. 1854. Deactivation and decommissioning focus area

    SciTech Connect

    1998-02-01

    This paper describes a demonstration project for the FRHAM-TEX Cool Suit{trademark} manufactured by FRHAM Safety Products. It is a one-piece, disposable, breathable, waterproof coverall designed to permit moisture generated by the wearer to be transmitted outside the suit. The performance of this suit was compared to a Tyvek{reg_sign} suit as a baseline. The suit is proposed as safety ware for workers at decontamination and decommissioning projects.

  17. Alternate Methods of Effluent Disposal for On-Lot Home Sewage Systems. Special Circular 214.

    ERIC Educational Resources Information Center

    Wooding, N. Henry

    This circular provides current information for homeowners who must repair or replace existing on-lot sewage disposal systems. Several alternatives such as elevated sand mounds, sand-lined beds and trenches and oversized absorption areas are discussed. Site characteristics and preparation are outlined. Each alternative is accompanied by a diagram…

  18. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  19. Modelling of nuclear power plant decommissioning financing.

    PubMed

    Bemš, J; Knápek, J; Králík, T; Hejhal, M; Kubančák, J; Vašíček, J

    2015-06-01

    Costs related to the decommissioning of nuclear power plants create a significant financial burden for nuclear power plant operators. This article discusses the various methodologies employed by selected European countries for financing of the liabilities related to the nuclear power plant decommissioning. The article also presents methodology of allocation of future decommissioning costs to the running costs of nuclear power plant in the form of fee imposed on each megawatt hour generated. The application of the methodology is presented in the form of a case study on a new nuclear power plant with installed capacity 1000 MW.

  20. Decommissioning of the Hematite Former Fuel Cycle Facility using a decision flow logic based work control process

    SciTech Connect

    Anderson, Keith D.

    2013-07-01

    The remediation and decommissioning of the Hematite Former Fuel Cycle Facility (FFCF), the Hematite Facility, is currently being carried out by Westinghouse Electric Company LLC under the Hematite Decommissioning Project (HDP). The Hematite Facility is located near the town of Hematite, Missouri, USA. The Hematite Facility consists of 228 acres of land with primary operations historically being conducted within the central portion of the property that is roughly 10 acres including Burial Pits and the Site Pond area. Decommissioning and remediation activities are being performed with the eventual objective of the release of the property. Primary contaminants include the legacy disposal and contamination of natural and enriched uranium from the nuclear fuel cycle, as well as chemicals used during the facility operations. Two major regulatory bodies, the U.S. Nuclear Regulatory Commission (NRC) and the Missouri Department of Natural Resources (MDNR), provide critical roles in the approval and oversight of the current regulatory path to remediation, decommissioning and eventual release. Further, remediation and decommissioning activities are performed under the implementing policies, plans, and procedures under the Hematite Decommissioning Plan (DP) and the Record of Decision (ROD). Remediation and decommissioning tasks at the Hematite Former Fuel Cycle Facility, referred to as the Hematite Facility, are performed against a disciplined decision logic flow that applies accumulated technical and monitoring data to determine each step of the excavation, exhumation, and removal of wastes from the Burial Pits and the remaining Areas of Concern (AOC). Decision flow logic is based upon the nuclear criticality safety controls and threshold conditions, relative level of radioactive and chemical contamination, security protocol, and final waste stream disposition. The end result is to remediate the residual radioactive and chemical contamination to approved dose-based and risk

  1. Proliferation resistance assessment of various methods of spent nuclear fuel storage and disposal

    NASA Astrophysics Data System (ADS)

    Kollar, Lenka

    Many countries are planning to build or already are building new nuclear power plants to match their growing energy needs. Since all nuclear power plants handle nuclear materials that could potentially be converted and used for nuclear weapons, they each present a nuclear proliferation risk. Spent nuclear fuel presents the largest build-up of nuclear material at a power plant. This is a proliferation risk because spent fuel contains plutonium that can be chemically separated and used for a nuclear weapon. The International Atomic Energy Agency (IAEA) safeguards spent fuel in all non-nuclear weapons states that are party to the Non-Proliferation Treaty. Various safeguards methods are in use at nuclear power plants and research is underway to develop safeguards methods for spent fuel in centralized storage or underground storage and disposal. Each method of spent fuel storage presents different proliferation risks due to the nature of the storage method and the safeguards techniques that are utilized. Previous proliferation resistance and proliferation risk assessments have mainly compared nuclear material through the whole fuel cycle and not specifically focused on spent fuel storage. This project evaluates the proliferation resistance of the three main types of spent fuel storage: spent fuel pool, dry cask storage, and geological repository. The proliferation resistance assessment methodology that is used in this project is adopted from previous work and altered to be applicable to spent fuel storage. The assessment methodology utilizes various intrinsic and extrinsic proliferation-resistant attributes for each spent fuel storage type. These attributes are used to calculate a total proliferation resistant (PR) value. The maximum PR value is 1.00 and a greater number means that the facility is more proliferation resistant. Current data for spent fuel storage in the United States and around the world was collected. The PR values obtained from this data are 0.49 for

  2. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  3. Contamination of the environment by the current disposal methods of mercury-containing lamps in the state of Minas Gerais, Brazil.

    PubMed

    Raposo, C; Roeser, H M

    2001-01-01

    This survey describes the degree of environmental contamination resulting from the current disposal methods of mercury-containing lamps. The territory studied for this purpose is the federal state of Minas Gerais, one of the most populated areas in the Brazilian federation of states. The results of this survey derive in part from answers received to a questionnaire mailed out to industrial firms, commercial business enterprises, hospitals and departments of public work. The sampling technique used was a nonprobabilistic (purposive sampling). Three types of disposal were found to prevail: (1) as an addition to corporate waste disposal (garbage), (2) recycling and (3) disposal by other methods. Overall, our study shows that the majority of mercury lamps are being disposed in the metropolitan area of Belo Horizonte, primarily by the public sector, followed by industrial, commercial and hospital sectors. Although recycling constitutes a relatively high fraction of the disposal methods, we find Federal regulations in Brazil regarding the disposal of hazardous, mercury-containing lamps to be far behind the state of technological achievement. This gap has permitted the adoption of disposal measures that are obsolete, incorrect, and a primary cause for the extensive contamination of the ecosystems with harmful effects to human health.

  4. Revised analyses of decommissioning for the reference boiling water reactor power station. Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure - appendices. Final report

    SciTech Connect

    Smith, R.I.; Bierschbach, M.C.; Konzek, G.J.; McDuffie, P.N.

    1996-07-01

    The NRC staff is in need of decommissioning bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to update the needed bases documentation. This report presents the results of a review and reevaluation of the PNL 1980 decommissioning study of the Washington Public Power Supply System`s Washington Nuclear Plant Two (WNP-2) located at Richland, Washington, including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5-7 year period during which time the spent fuel is stored in the spent fuel pool prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clear structures on the site and to restore the site to a {open_quotes}green field{close_quotes} condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities. Sensitivity of the total license termination cost to the disposal costs at different low-level radioactive waste disposal sites, to different depths of contaminated concrete surface removal within the facilities, and to different transport distances is also examined.

  5. Sellafield Decommissioning Programme - Update and Lessons Learned

    SciTech Connect

    Lutwyche, P. R.; Challinor, S. F.

    2003-02-24

    The Sellafield site in North West England has over 240 active facilities covering the full nuclear cycle from fuel manufacture through generation, reprocessing and waste treatment. The Sellafield decommissioning programme was formally initiated in the mid 1980s though several plants had been decommissioned prior to this primarily to create space for other plants. Since the initiation of the programme 7 plants have been completely decommissioned, significant progress has been made in a further 16 and a total of 56 major project phases have been completed. This programme update will explain the decommissioning arrangements and strategies and illustrate the progress made on a number of the plants including the Windscale Pile Chimneys, the first reprocessing plan and plutonium plants. These present a range of different challenges and requiring approaches from fully hands on to fully remote. Some of the key lessons learned will be highlighted.

  6. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    SciTech Connect

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  7. Russian nuclear-powered submarine decommissioning

    SciTech Connect

    Bukharin, O.; Handler, J.

    1995-11-01

    Russia is facing technical, economic and organizational difficulties in dismantling its oversized and unsafe fleet of nuclear powered submarines. The inability of Russia to deal effectively with the submarine decommissioning crisis increases the risk of environmental disaster and may hamper the implementation of the START I and START II treaties. This paper discusses the nuclear fleet support infrastructure, the problems of submarine decommissioning, and recommends international cooperation in addressing these problems.

  8. Decommissioning of the secondary containment of the steam generating heavy water reactor at UKAEA Winfrith

    SciTech Connect

    Miller, K.D.; Cornell, R.M.; Parkinson, S.J.; McIntyre, K.; Staples, A.

    2007-07-01

    The Winfrith SGHWR was a prototype nuclear power plant operated for 23 years by the United Kingdom Atomic Energy Authority (UKAEA) until 1990 when it was shut down permanently. The current Stage 1 decommissioning contract is part of a multi-stage strategy. It involves the removal of all the ancillary plant and equipment in the secondary containment and non-containment areas ahead of a series of contracts for the decommissioning of the primary containment, the reactor core and demolition of the building and ail remaining facilities. As an outcome of a competitive tending process, the Stage 1 decommissioning contract was awarded to NUKEM with operations commencing in April 2005. The decommissioning processes involved with these plant items will be described with some emphasis of the establishment of multiple work-fronts for the production, recovery, treatment and disposal of mainly tritium-contaminated waste arising from its contact with the direct cycle reactor coolant. The means of size reduction of a variety of large, heavy and complex items of plant made from a range of materials will also be described with some emphasis on the control of fumes during hot cutting operations and establishing effective containments within a larger secondary containment structure. Disposal of these wastes in a timely and cost-effective manner is a major challenge facing the decommissioning team and has required the development of a highly efficient means of packing the resultant materials into mainly one-third height IS0 containers for disposal as LLW. Details of the quantities of LLW and exempt wastes handled during this process will be given with a commentary about the difficulty in segregating these two waste streams efficiently. The paper sets out to demonstrate the considerable progress that has been made with these challenging decommissioning operations at the SGHWR plant and to highlight some of the techniques and processes that have contributed to the overall success of the

  9. \\tLaboratory Environmental Sample Disposal Information Document - Companion to Standardized Analytical Methods for Environmental Restoration Following Homeland Security Events (SAM) – Revision 5.0

    EPA Pesticide Factsheets

    Document is intended to provide general guidelines for use byEPA and EPA-contracted laboratories when disposing of samples and associated analytical waste following use of the analytical methods listed in SAM.

  10. Method for permanent disposal of CO{sub 2} in solid form

    SciTech Connect

    Butt, D.P.; Lackner, K.S.; Wendt, C.H.; Nomura, Koji

    1997-12-31

    If society could develop ways to safely and economically dispose of CO{sub 2} in thermodynamically stable forms, we could eliminate the potential danger of climatic changes due to greenhouse gas emissions from burning of fossil fuels. Toward this end, we have recently outlined and developed a methodology for binding carbon dioxide in solid forms that are thermodynamically stable at the earth`s surface. The carbonation of Mg(OH){sub 2} is of particular interest because of the abundance of magnesium on earth and the relative ease with which it can be extracted from Mg-bearing minerals. The major focus of our research has been on developing ways to extract Mg(OH){sub 2} powder from common ultramafic rock, such as serpentinite and peridotite, and then rapidly and efficiently carbonating the powder to MgCO{sub 3}. The quantities of accessible deposits of these minerals vastly exceed the quantities of available fossil fuel in the world. Because this active approach would result in a waste that is thermodynamically stable, it would be possible to permanently dispose of great quantities of CO{sub 2} with minimal environmental impact and without the danger of a sudden accidental release of gaseous CO{sub 2} which has proven fatal even in comparatively small releases of gas.

  11. Land Disposal Restrictions for Hazardous Waste

    EPA Pesticide Factsheets

    The land disposal restrictions prohibits the land disposal of untreated hazardous wastes. EPA has specified either concentration levels or methods of treatment for hazardous constituents to meet before land disposal.

  12. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  13. Revised analyses of decommissioning for the reference pressurized Water Reactor Power Station. Volume 2, Effects of current regulatory and other considerations on the financial assurance requirements of the decommissioning rule and on estimates of occupational radiation exposure: Appendices, Final report

    SciTech Connect

    Konzek, G.J.; Smith, R.I.; Bierschbach, M.C.; McDuffie, P.N.

    1995-11-01

    With the issuance of the final Decommissioning Rule (July 27, 1998), owners and operators of licensed nuclear power plants are required to prepare, and submit to the US Nuclear Regulatory Commission (NRC) for review, decommissioning plans and cost estimates. The NRC staff is in need of bases documentation that will assist them in assessing the adequacy of the licensee submittals, from the viewpoint of both the planned actions, including occupational radiation exposure, and the probable costs. The purpose of this reevaluation study is to provide some of the needed bases documentation. This report contains the results of a review and reevaluation of the 1978 PNL decommissioning study of the Trojan nuclear power plant (NUREG/CR-0130), including all identifiable factors and cost assumptions which contribute significantly to the total cost of decommissioning the nuclear power plant for the DECON, SAFSTOR, and ENTOMB decommissioning alternatives. These alternatives now include an initial 5--7 year period during which time the spent fuel is stored in the spent fuel pool, prior to beginning major disassembly or extended safe storage of the plant. Included for information (but not presently part of the license termination cost) is an estimate of the cost to demolish the decontaminated and clean structures on the site and to restore the site to a ``green field`` condition. This report also includes consideration of the NRC requirement that decontamination and decommissioning activities leading to termination of the nuclear license be completed within 60 years of final reactor shutdown, consideration of packaging and disposal requirements for materials whose radionuclide concentrations exceed the limits for Class C low-level waste (i.e., Greater-Than-Class C), and reflects 1993 costs for labor, materials, transport, and disposal activities.

  14. Toward a risk assessment of the spent fuel and high-level nuclear waste disposal system. Risk assessment requirements, literature review, methods evaluation: an interim report

    SciTech Connect

    Hamilton, L.D.; Hill, D.; Rowe, M.D.; Stern, E.

    1986-04-01

    This report provides background information for a risk assessment of the disposal system for spent nuclear fuel and high-level radioactive waste (HLW). It contains a literature review, a survey of the statutory requirements for risk assessment, and a preliminary evaluation of methods. The literature review outlines the state of knowledge of risk assessment and accident consequence analysis in the nuclear fuel cycle and its applicability to spent fuel and HLW disposal. The survey of statutory requirements determines the extent to which risk assessment may be needed in development of the waste-disposal system. The evaluation of methods reviews and evaluates merits and applicabilities of alternative methods for assessing risks and relates them to the problems of spent fuel and HLW disposal. 99 refs.

  15. Decontamination and decommissioning of the Kerr-McGee Cimarron Plutonium Fuel Plant

    SciTech Connect

    Not Available

    1994-05-01

    This final report is a summary of the events that completes the decontamination and decommissioning of the Cimarron Corporation`s Mixed Oxides Fuel Plant (formally Sequoyah Fuels Corporation and formerly Kerr-McGee Nuclear Corporation - all three wholly owned subsidiaries of the Kerr-McGee Corporation). Included are details dealing with tooling and procedures for performing the unique tasks of disassembly decontamination and/or disposal. That material which could not be economically decontaminated was volume reduced by disassembly and/or compacted for disposal. The contaminated waste cleaning solutions were processed through filtration and ion exchange for release or solidified with cement for L.S.A. waste disposal. The L.S.A. waste was compacted, and stabilized as required in drums for burial in an approved burial facility. T.R.U. waste packaging and shipping was completed by the end of July 1987. This material was shipped to the Hanford, Washington site for disposal. The personnel protection and monitoring measures and procedures are discussed along with the results of exposure data of operating personnel. The shipping containers for both T.R.U. and L.S.A. waste are described. The results of the decommissioning operations are reported in six reports. The personnel protection and monitoring measures and procedures are contained and discussed along with the results of exposure data of operating personnel in this final report.

  16. Development of quantitative methods for the detection of enteroviruses in sewage sludges during activation and following land disposal.

    PubMed Central

    Hurst, C J; Farrah, S R; Gerba, C P; Melnick, J L

    1978-01-01

    The development and evaluation of methods for the quantitative recovery of enteroviruses from sewage sludge are reported. Activated sewage sludge solids were collected by centrifugation, and elution of the solid-associated virus was accomplished by mechanical agitation in glycine buffer at pH 11.0. Eluted viruses were concentrated either onto an aluminum hydroxide floc or by association with a floc which formed de novo upon adjustment of the glycine eluate to pH 3.5. Viruses which remained in the liquid phase after lowering the pH of glycine eluate were concentrated by adsorption to and elution from membrane filters. The method of choice included high pH glycine elution and subsequent low pH concentration; it yielded an efficiency of recovery from activated sludge of 80% for poliovirus type 1, 68% for echovirus type 7, and 75% for coxsackievirus B3. This method was used to study the survival of naturally occurring virus in sludge at a sewage treatment plant and after subsequent land disposal of the solids after aerobic digestion. Reduction of enterovirus titers per gram (dry weight) of solids were modest during sludge activation but increased to a rate of 2 log 10/week after land disposal. PMID:29559

  17. Disposal of drilling fluids

    SciTech Connect

    Bryson, W.R.

    1983-06-01

    Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

  18. 77 FR 14047 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Guidance for Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission... public comment period for Draft Regulatory Guide (DG)-4014, ``Decommissioning Planning During...

  19. Decommissioning and dismantling strategies in the Federal Republic of Germany

    SciTech Connect

    Brennecke, P.; Berg, H.P.; Weil, L.

    1993-12-31

    This report discusses the following aspects of decommissioning and dismantling strategies in the federal republic of germany: legal requirements, nuclear installations to be decommissioned, reactor dismantling techniques, and radioactive waste management.

  20. Evaluation of decommissioning alternatives for the Pilot Plant Complex, Aberdeen Proving Ground

    SciTech Connect

    Rueda, J.; Zimmerman, R.E.

    1995-09-01

    This report presents an evaluation of four decommissioning alternatives for the Pilot Plant Complex (PPC), an inactive chemical weapons research, development, and production facility consisting of nine buildings located in the Edgewood Area of the Aberdeen Proving Ground in Maryland. Decommissioning the PPC involves six steps: (1) assessing existing conditions; (2) dismantling the aboveground portions of the buildings (including the floor slabs, paved roads, and sidewalks within the PPC); (3) reducing the size of the demolition debris and sealing the debris in containers for later testing and evaluation; (4) testing and evaluating the debris; (5) conducting site operation and maintenance activities; and (6) recycling or disposing of the debris with or without prior treatment, as appropriate.

  1. Oil field waste disposal costs at commercial disposal facilities

    SciTech Connect

    Veil, J.A.

    1997-10-01

    The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

  2. Decommissioning and Demolition of a Redundant UK Research Facility at AWE Aldermaston - 12453

    SciTech Connect

    Pritchard, Paul

    2012-07-01

    The redundant two-storey brick built research facility on the AWE Site at Aldermaston, UK is in the closing stages of decommissioning and demolition. The facility was used for a variety of purposes up to 1995 predominately involving the use of alpha-emitting isotopes. The two main areas of alpha-based contamination have been decommissioned with the removal of hot -boxes and fume cupboards on the ground floor and HEPA filter units and ventilation equipment on the first floor. Many of these activities were undertaken using both airline fed suits, (supplied via a free standing mobile unit), and full face respirators. Asbestos materials were located and cleared from the first floor by specialist contractor. All sections of active drain running from the building to the site active effluent disposal system were removed early in the program using established techniques with specialist monitoring equipment used to provide confidence in the data required for disposal of the decommissioning debris. In particular a dedicated High Resolution Gamma Spectrometer (radioactive materials scanning unit) was utilized to categorise waste drums and wrapped packages. The building has been decommissioned and the monitoring and sampling of the structure was completed in November 2011 - the results demonstrating that the building was clear of contamination in accordance with UK clearance and exemption requirements. The demolition plan was developed and implemented in December with site excavation of foundations and site clearance currently ongoing in preparation for final site backfill activities and project close. A number of useful lessons have been learnt during the operations and are set out at the rear of the main text. (authors)

  3. Decommissioning of the Molten Salt Reactor Experiment: A technical evaluation

    SciTech Connect

    Notz, K.J.

    1988-01-01

    This report completes a technical evaluation of decommissioning planning for the former Molten Salt Reactor Experiment, which was shut down in December, 1969. The key issues revolve around the treatment and disposal of some five tons of solid fuel salt which contains over 30 kg of fissionable uranium-233 plus fission products and higher actinides. The chemistry of this material is complicated by the formation of elemental fluorine via a radiolysis reaction under certain conditions. Supporting studies carried out as part of this evaluation include (a) a broad scope analysis of possible options for storage/disposal of the salts, (b) calculation of nuclide decay in future years, (c) technical evaluation of the containment facility and hot cell penetrations, (d) review and update of surveillance and maintenance procedures, (e) measurements of facility groundwater radioactivity and sump pump operation, (f) laboratory studies of the radiolysis reaction, and (g) laboratory studies which resulted in finding a suitable getter for elemental fluorine. In addition, geologic and hydrologic factors of the surrounding area were considered, and also the implications of entombment of the fuel in-place with concrete. The results of this evaluation show that the fuel salt cannot be left in its present form and location permanently. On the other hand, extended storage in its present form is quite acceptable for 20 to 30 years, or even longer. For continued storage in-place, some facility modifications are recommended. 30 refs., 5 figs., 9 tabs.

  4. Validation of analytical methods in GMP: the disposable Fast Read 102® device, an alternative practical approach for cell counting

    PubMed Central

    2012-01-01

    Background The quality and safety of advanced therapy products must be maintained throughout their production and quality control cycle to ensure their final use in patients. We validated the cell count method according to the International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use and European Pharmacopoeia, considering the tests’ accuracy, precision, repeatability, linearity and range. Methods As the cell count is a potency test, we checked accuracy, precision, and linearity, according to ICH Q2. Briefly our experimental approach was first to evaluate the accuracy of Fast Read 102® compared to the Bürker chamber. Once the accuracy of the alternative method was demonstrated, we checked the precision and linearity test only using Fast Read 102®. The data were statistically analyzed by average, standard deviation and coefficient of variation percentages inter and intra operator. Results All the tests performed met the established acceptance criteria of a coefficient of variation of less than ten percent. For the cell count, the precision reached by each operator had a coefficient of variation of less than ten percent (total cells) and under five percent (viable cells). The best range of dilution, to obtain a slope line value very similar to 1, was between 1:8 and 1:128. Conclusions Our data demonstrated that the Fast Read 102® count method is accurate, precise and ensures the linearity of the results obtained in a range of cell dilution. Under our standard method procedures, this assay may thus be considered a good quality control method for the cell count as a batch release quality control test. Moreover, the Fast Read 102® chamber is a plastic, disposable device that allows a number of samples to be counted in the same chamber. Last but not least, it overcomes the problem of chamber washing after use and so allows a cell count in a clean environment such as that in a Cell Factory. In a good

  5. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  6. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  7. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  8. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  9. 26 CFR 1.88-1 - Nuclear decommissioning costs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Nuclear decommissioning costs. 1.88-1 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Items Specifically Included in Gross Income § 1.88-1 Nuclear decommissioning costs. (a) In general. Section 88 provides that the amount of nuclear decommissioning...

  10. Methods for the Safe Storage, Handling, and Disposal of Pyrophoric Liquids and Solids in the Laboratory

    SciTech Connect

    Alnajjar, Mikhail S.; Quigley, David; Kuntamukkula, Murty; Simmons, Fred; Freshwater, David; Bigger, Samuel

    2011-01-01

    Due to the inherent nature of pyrophoric substances to ignite spontaneously upon exposure to air, special precautions must be taken to ensure their safe handling and use. Pyrophoric gases (such as diborane, dichloroborane, phosphine, etc.) are typically the easiest class of pyrophoric substances to handle since the gas can be plumbed directly to the application and used remotely. Pyrophoric solids and liquids, however, require the user to physically manipulate them when transferring them from one container to another. Failure to follow proper safety precautions could result in serious injury or unintended consequences to laboratory personnel.12 Because of this danger, pyrophorics should be handled only by experienced personnel. Users with limited experience must be trained on how to handle pyrophoric reagents and consult with a knowledgeable staff member prior to performing the experimental task. The purpose of this article is three fold: 1) to provide guidelines and general safety precautions to avoid accidents, 2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and 3) illustrate best practices for working with this class of reactants in a laboratory environment.

  11. Decision framework for platform decommissioning in California.

    PubMed

    Bernstein, Brock B

    2015-10-01

    This article describes the overall decision framework for eventual decisions about decommissioning the 27 operating oil and gas platforms offshore southern California. These platforms will eventually reach the end of their useful lifetimes (estimated between 2015 and 2030, although specific dates have not been determined). Current law and regulations allow for alternative uses in lieu of the complete removal required in existing leases. To prepare for eventual decommissioning, the California Natural Resources Agency initiated an in-depth process to identify and investigate issues surrounding possible decommissioning alternatives. The detailed evaluation of alternatives focused on 2-complete removal and artificial reefing that included partial removal to 85 feet below the waterline. These were selected after a comparison of the technical and economic feasibility of several potential alternatives, availability of a legal framework for implementation, degree of interest from proponents, and relative acceptance by state and federal decision makers. Despite California's history of offshore oil and gas production, only 7 decommissioning projects have been completed and these were all relatively small and close to shore. In contrast, nearly 30% of the California platforms are in water depths (as much as 1200 feet) that exceed any decommissioning project anywhere in the world. Most earlier projects considered an artificial reefing alternative but none were implemented and all platforms were completely removed. Future decisions about decommissioning must grapple with a more complex decision context involving greater technological and logistical challenges and cost, a wider range of viable options, tradeoffs among environmental impacts and benefits, and an intricate maze of laws, regulations, and authorities. The specific engineering differences between complete and partial removal provide an explicit basis for a thorough evaluation of their respective impacts.

  12. Decontamination, decommissioning, and vendor advertorial issue, 2006

    SciTech Connect

    Agnihotri, Newal

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  13. Guide for radiological characterization and measurements for decommissioning of US Department of Energy surplus facilities

    SciTech Connect

    Denahm, D. H.; Barnes, M. G.; Jaquish, R. E.; Corley, J. P.; Gilbert, R. O.; Hoenes, G. R.; Jamison, J. D.; McMurray, B. J.; Watson, E. C.

    1983-08-01

    This Guide describes the elements of radiological characterization at DOE excess facilities in preparation for, during, and subsequent to decommissioning operations. It is the intent of this Guide and accompanying appendices to provide the reader (user) with sufficient information to carry out that task with a minimum of confusion and to provide a uniform basis for evaluating site conditions and verifying that decommissioning operations are conducted according to a specific plan. Some areas of particular interest in this Guide are: the need to involve appropriate staff from the affected states in the early planning stages of decommissioning; the need for and suggested methods of radiological site characterization to complete a decommissioning project, including: historical surveys, environmental pathway analyses, statistical sampling design, and choosing appropriate instrumentation and measurements; the need for and emphasis on quality assurance, documentation and records retention; the establishment of a Design Objective approach to applying site-specific contamination limits based on the ALARA philosophy; the establishment of a ''de minimis'' or minimum dose level of concern for decommissioning operations based on existing standards, experience and ALARA considerations.

  14. A summary of methods for approximating salt creep and disposal room closure in numerical models of multiphase flow

    SciTech Connect

    Freeze, G.A.; Larson, K.W.; Davies, P.B.

    1995-10-01

    Eight alternative methods for approximating salt creep and disposal room closure in a multiphase flow model of the Waste Isolation Pilot Plant (WIPP) were implemented and evaluated: Three fixed-room geometries three porosity functions and two fluid-phase-salt methods. The pressure-time-porosity line interpolation method is the method used in current WIPP Performance Assessment calculations. The room closure approximation methods were calibrated against a series of room closure simulations performed using a creep closure code, SANCHO. The fixed-room geometries did not incorporate a direct coupling between room void volume and room pressure. The two porosity function methods that utilized moles of gas as an independent parameter for closure coupling. The capillary backstress method was unable to accurately simulate conditions of re-closure of the room. Two methods were found to be accurate enough to approximate the effects of room closure; the boundary backstress method and pressure-time-porosity line interpolation. The boundary backstress method is a more reliable indicator of system behavior due to a theoretical basis for modeling salt deformation as a viscous process. It is a complex method and a detailed calibration process is required. The pressure lines method is thought to be less reliable because the results were skewed towards SANCHO results in simulations where the sequence of gas generation was significantly different from the SANCHO gas-generation rate histories used for closure calibration. This limitation in the pressure lines method is most pronounced at higher gas-generation rates and is relatively insignificant at lower gas-generation rates. Due to its relative simplicity, the pressure lines method is easier to implement in multiphase flow codes and simulations have a shorter execution time.

  15. METHODS FOR THE SAFE STORAGE, HANDLING, AND DISPOSAL OF PYROPHORIC LIQUIDS AND SOLIDS IN THE LABORATORY

    SciTech Connect

    Simmons, F.; Kuntamukkula, M.; Alnajjar, M.; Quigley, D.; Freshwater, D.; Bigger, S.

    2010-02-02

    to performing the experimental task. The purpose of this article is three fold: (1) to provide guidelines and general safety precautions to avoid accidents, (2) describe proper techniques on how to successfully handle, store, and dispose of pyrophoric liquids and solids, and (3) illustrate best practices for working with this class of reactants in a laboratory environment.

  16. 75 FR 80697 - Nuclear Decommissioning Funds

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-23

    ...This document contains final regulations under section 468A of the Internal Revenue Code relating to deductions for contributions to trusts maintained for decommissioning nuclear power plants. These final regulations affect taxpayers that own an interest in a nuclear power plant and reflect recent statutory changes. The corresponding temporary regulations are...

  17. Decontamination and decommissioning of Shippingport commercial reactor

    SciTech Connect

    Schreiber, J.

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  18. 76 FR 77431 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-13

    ...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 20, 30, 40, 50, 70, and 72 RIN 3150-AI55 Decommissioning Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; request for comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is issuing for public comment...

  19. 78 FR 663 - Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ..., Regulatory Guide Development Branch, Division of Engineering, Office of Nuclear Regulatory Research. BILLING... / Friday, January 4, 2013 / Rules and Regulations#0;#0; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 20, 30, 40, 50, 70, and 72 RIN 3150-AI55 Decommissioning Planning During Operations AGENCY:...

  20. Decontamination and decommissioning focus area. Technology summary

    SciTech Connect

    1995-06-01

    This report presents details of the facility deactivation, decommissioning, and material disposition research for development of new technologies sponsored by the Department of Energy. Topics discussed include; occupational safety, radiation protection, decontamination, remote operated equipment, mixed waste processing, recycling contaminated metals, and business opportunities.

  1. University of Virginia Reactor Facility Decommissioning Results

    SciTech Connect

    Ervin, P. F.; Lundberg, L. A.; Benneche, P. E.; Mulder, R. U.; Steva, D. P.

    2003-02-24

    The University of Virginia Reactor Facility started accelerated decommissioning in 2002. The facility consists of two licensed reactors, the CAVALIER and the UVAR. This paper will describe the progress in 2002, remaining efforts and the unique organizational structure of the project team.

  2. Recommended Method To Account For Daughter Ingrowth For The Portsmouth On-Site Waste Disposal Facility Performance Assessment Modeling

    SciTech Connect

    Phifer, Mark A.; Smith, Frank G. III

    2013-06-21

    A 3-D STOMP model has been developed for the Portsmouth On-Site Waste Disposal Facility (OSWDF) at Site D as outlined in Appendix K of FBP 2013. This model projects the flow and transport of the following radionuclides to various points of assessments: Tc-99, U-234, U-235, U-236, U-238, Am-241, Np-237, Pu-238, Pu-239, Pu-240, Th-228, and Th-230. The model includes the radioactive decay of these parents, but does not include the associated daughter ingrowth because the STOMP model does not have the capability to model daughter ingrowth. The Savannah River National Laboratory (SRNL) provides herein a recommended method to account for daughter ingrowth in association with the Portsmouth OSWDF Performance Assessment (PA) modeling.

  3. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    SciTech Connect

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  4. Gamma-ray spectrometry method used for radioactive waste drums characterization for final disposal at National Repository for Low and Intermediate Radioactive Waste--Baita, Romania.

    PubMed

    Done, L; Tugulan, L C; Dragolici, F; Alexandru, C

    2014-05-01

    The Radioactive Waste Management Department from IFIN-HH, Bucharest, performs the conditioning of the institutional radioactive waste in concrete matrix, in 200 l drums with concrete shield, for final disposal at DNDR - Baita, Bihor county, in an old exhausted uranium mine. This paper presents a gamma-ray spectrometry method for the characterization of the radioactive waste drums' radionuclides content, for final disposal. In order to study the accuracy of the method, a similar concrete matrix with Portland cement in a 200 l drum was used.

  5. Decommissioning and Closure of the Morsleben Deep Geological Repository - The Final Step

    SciTech Connect

    Ripkens, M.; Biurrun, E.

    2002-02-26

    In Germany, a deep geologic repository for low and intermediate-level waste has been in operation since 1971. This repository, which is located in the territory of former Eastern Germany, became a Federal Facility in the wake of German reunification in 1990. Since then, waste from all of Germany was disposed of until a stop ordered by BfS in 1998. The site is now in the process of being decommissioned and later closed down. This process includes updating the concept for guaranteeing appropriate waste isolation for as long as the waste remains a hazard. During the licensing procedure being currently conducted, in line with German requirements for repository sites, the site operator must provide convincing proof of the facility's long-term safety. Thereafter, implementation of the decommissioning and closure concept will follow. It is estimated that the licensing procedure will take until the year 2006. The decommissioning and closure process itself will require about 10 years. Reliable costs estimates are not yet available. This paper briefly covers the history of the Morsleben radioactive waste repository and provides a draft update on the status of the licensing procedure.

  6. Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program

    SciTech Connect

    Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  7. Overview of the 1995 NATO ARW on nuclear submarine decommissioning and related problems

    SciTech Connect

    LeSage, L.G.

    1997-10-01

    The NATO Advanced Research Workshop on Nuclear Submarine Decommissioning and Related Problems was held in Moscow June 19--22, 1995. It was preceded by a visit to the Zvezdotchka Shipyard at Severodvinsk, a repair and maintenance yard for Russian nuclear submarines, for a subgroup of the workshop attendees. Most of the material in this paper is drawn directly form the workshop proceedings. Slightly less than 500 nuclear ships and submarines (the vast majority are submarines) have been constructed by the countries with nuclear navies. This includes approximately 250 by Russia, 195 by the United States, 23 by the United Kingdom, 11 by France and 6 by China. By the year 2000 it is expected that approximately one-half of these nuclear vessels will be removed from service and in various states of decommissioning. A newspaper account in June 1997 indicated that 156 Russian nuclear submarines had been removed from service. In August 1996 it was reported that 55 reactor compartment sections from US nuclear submarines were already in long-term storage at Hanford. Overall the dismantlement of nuclear submarines and the processing, storage and disposal of nuclear fuel, activated components and section of the hulls, and the liquid and solid radioactive and hazardous wastes is an enormous problem. This problem has been exacerbated by the accelerated decommissioning schedule associated with treaty obligations.

  8. Treatment of paint manufacturing wastewater by coagulation/electrochemical methods: Proposals for disposal and/or reuse of treated water.

    PubMed

    da Silva, Larissa F; Barbosa, Andreia D; de Paula, Heber M; Romualdo, Lincoln L; Andrade, Leonardo S

    2016-09-15

    This paper describes and discusses an investigation into the treatment of paint manufacturing wastewater (water-based acrylic texture) by coagulation (aluminum sulfate) coupled to electrochemical methods (BDD electrode). Two proposals are put forward, based on the results. The first proposal considers the feasibility of reusing wastewater treated by the methods separately and in combination, while the second examines the possibility of its disposal into water bodies. To this end, parameters such as toxicity, turbidity, color, organic load, dissolved aluminum, alkalinity, hardness and odor are evaluated. In addition, the proposal for water reuse is strengthened by the quality of the water-based paints produced using the wastewater treated by the two methods (combined and separate), which was evaluated based on the typical parameters for the quality control of these products. Under optimized conditions, the use of the chemical coagulation (12 mL/L of Al2(SO4)3 dosage) treatment, alone, proved the feasibility of reusing the treated wastewater in the paint manufacturing process. However, the use of the electrochemical method (i = 10 mA/cm(2) and t = 90 min) was required to render the treated wastewater suitable for discharge into water bodies.

  9. The Effects of Dosed versus Gravity-Fed Loading Methods on the Performance and Reliability of Contour Trench Disposal Fields Used for Onsite Wastewater Treatment.

    PubMed

    Bridson-Pateman, Evan; Hayward, Jennifer; Jamieson, Rob; Boutilier, Leah; Lake, Craig

    2013-01-01

    In Nova Scotia, Canada, contour trench disposal fields are the most common type of onsite wastewater system. In this study, two identical contour trench disposal fields were monitored for 3 yr to compare performance under gravity-fed versus periodically dosed loading conditions. Influent and effluent from both systems were analyzed for a suite of water quality parameters, and the hydraulics of the systems were assessed using tracer studies and measurements of ponded water depth in the distribution trenches. Ponded water depths in the distribution trench of the gravity-fed disposal field were observed to increase steadily during the monitoring period, indicating progressive clogging. This was not observed in the periodically dosed field. Regarding treatment, both systems performed well, consistently producing effluent with 5-d biochemical oxygen demand and total suspended solids (TSS) concentrations <10 mg L and achieving >5 log reductions in . However, the gravity-fed system produced statistically lower average effluent concentrations for total P and TSS. It is speculated that the slightly better treatment performance achieved by the gravity-fed system is due to enhanced biomat formation. This study demonstrated adequate treatment of residential wastewater by contour trench disposal fields regardless of loading method. However, because the hydraulic performance of these systems is heavily dependent on pretreatment and loading methods, it is recommended that a dosing system be used to distribute wastewater to contour trench disposal fields to help prevent hydraulic failure.

  10. NMSS handbook for decommissioning fuel cycle and materials licensees

    SciTech Connect

    Orlando, D.A.; Hogg, R.C.; Ramsey, K.M.

    1997-03-01

    The US Nuclear Regulatory Commission amended its regulations to set forth the technical and financial criteria for decommissioning licensed nuclear facilities. These regulations were further amended to establish additional recordkeeping requirements for decommissioning; to establish timeframes and schedules for the decommissioning; and to clarify that financial assurance requirements must be in place during operations and updated when licensed operations cease. Reviews of the Site Decommissioning Management Plan (SDMP) program found that, while the NRC staff was overseeing the decommissioning program at nuclear facilities in a manner that was protective of public health and safety, progress in decommissioning many sites was slow. As a result NRC determined that formal written procedures should be developed to facilitate the timely decommissioning of licensed nuclear facilities. This handbook was developed to aid NRC staff in achieving this goal. It is intended to be used as a reference document to, and in conjunction with, NRC Inspection Manual Chapter (IMC) 2605, ``Decommissioning Inspection Program for Fuel Cycle and Materials Licensees.`` The policies and procedures discussed in this handbook should be used by NRC staff overseeing the decommissioning program at licensed fuel cycle and materials sites; formerly licensed sites for which the licenses were terminated; sites involving source, special nuclear, or byproduct material subject to NRC regulation for which a license was never issued; and sites in the NRC`s SDMP program. NRC staff overseeing the decommissioning program at nuclear reactor facilities subject to regulation under 10 CFR Part 50 are not required to use the procedures discussed in this handbook.

  11. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  12. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  13. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  14. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  15. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When must I remove a pipeline decommissioned in... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor...

  16. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false After I decommission a pipeline, what... Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit a written report...

  17. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When must I remove a pipeline decommissioned in... Decommissioning Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that...

  18. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  19. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false When may I decommission a pipeline in place... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that...

  20. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  1. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false How do I decommission a pipeline in place? 250... Decommissioning Activities Pipeline Decommissioning § 250.1751 How do I decommission a pipeline in place? You must do the following to decommission a pipeline in place: (a) Submit a pipeline...

  2. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false When may I decommission a pipeline in place... Decommissioning Activities Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline...

  3. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false After I decommission a pipeline, what... SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline, you must submit...

  4. 30 CFR 250.1753 - After I decommission a pipeline, what information must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false After I decommission a pipeline, what... OUTER CONTINENTAL SHELF Decommissioning Activities Pipeline Decommissioning § 250.1753 After I decommission a pipeline, what information must I submit? Within 30 days after you decommission a pipeline,...

  5. Disposable rabbit

    DOEpatents

    Lewis, Leroy C.; Trammell, David R.

    1986-01-01

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  6. Disposal rabbit

    DOEpatents

    Lewis, L.C.; Trammell, D.R.

    1983-10-12

    A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

  7. Disposable Scholarship?

    ERIC Educational Resources Information Center

    Miller, Fredrick

    2004-01-01

    The digital materials that faculty produce for their classrooms often are saved only to storage devices that might become obsolete in a few years. Without an institutional effort to provide access systems, storage, and services for their digital media, are campuses in danger of creating "Disposable Scholarship"? In this article, the author…

  8. Method of immobilizing weapons plutonium to provide a durable, disposable waste product

    DOEpatents

    Ewing, Rodney C.; Lutze, Werner; Weber, William J.

    1996-01-01

    A method of atomic scale fixation and immobilization of plutonium to provide a durable waste product. Plutonium is provided in the form of either PuO.sub.2 or Pu(NO.sub.3).sub.4 and is mixed with and SiO.sub.2. The resulting mixture is cold pressed and then heated under pressure to form (Zr,Pu)SiO.sub.4 as the waste product.

  9. Mixed waste characterization, treatment, and disposal focus area. Technology summary

    SciTech Connect

    1995-06-01

    This paper presents details about the technology development programs of the Department of Energy. In this document, waste characterization, thermal treatment processes, non-thermal treatment processes, effluent monitors and controls, development of on-site innovative technologies, and DOE business opportunities are applied to environmental restoration. The focus areas for research are: contaminant plume containment and remediation; mixed waste characterization, treatment, and disposal; high-level waste tank remediation; landfill stabilization; and decontamination and decommissioning.

  10. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    DOEpatents

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  11. Assessment of Westinghouse Hanford Company methods for estimating radionuclide release from ground disposal of waste water at the N Reactor sites

    SciTech Connect

    Not Available

    1988-09-01

    This report summarizes the results of an independent assessment by Golder Associates, Inc. of the methods used by Westinghouse Hanford Company (Westinghouse Hanford) and its predecessors to estimate the annual offsite release of radionuclides from ground disposal of cooling and other process waters from the N Reactor at the Hanford Site. This assessment was performed by evaluating the present and past disposal practices and radionuclide migration data within the context of the hydrology, geology, and physical layout of the N Reactor disposal site. The conclusions and recommendations are based upon the available data and simple analytical calculations. Recommendations are provided for conducting more refined analyses and for continued field data collection in support of estimating annual offsite releases. Recommendations are also provided for simple operational and structural measures that should reduce the quantities of radionuclides leaving the site. 5 refs., 9 figs., 1 tab.

  12. Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  13. Decommissioning Cost Estimating -The ''Price'' Approach

    SciTech Connect

    Manning, R.; Gilmour, J.

    2002-02-26

    Over the past 9 years UKAEA has developed a formalized approach to decommissioning cost estimating. The estimating methodology and computer-based application are known collectively as the PRICE system. At the heart of the system is a database (the knowledge base) which holds resource demand data on a comprehensive range of decommissioning activities. This data is used in conjunction with project specific information (the quantities of specific components) to produce decommissioning cost estimates. PRICE is a dynamic cost-estimating tool, which can satisfy both strategic planning and project management needs. With a relatively limited analysis a basic PRICE estimate can be produced and used for the purposes of strategic planning. This same estimate can be enhanced and improved, primarily by the improvement of detail, to support sanction expenditure proposals, and also as a tender assessment and project management tool. The paper will: describe the principles of the PRICE estimating system; report on the experiences of applying the system to a wide range of projects from contaminated car parks to nuclear reactors; provide information on the performance of the system in relation to historic estimates, tender bids, and outturn costs.

  14. Considerations, measurements and logistics associated with low-energy cyclotron decommissioning

    SciTech Connect

    Sunderland, J. J.; Erdahl, C. E.; Bender, B. R.; Sensoy, L.; Watkins, G. L.

    2012-12-19

    The University of Iowa's 20-year-old 17 MeV Scanditronix cyclotron underwent decommissioning in the summer of 2011. To satisfy local, state and federal regulations defining removal, transportation and long-term safe and environmentally secure disposal of the 22 ton activated cyclotron, a series of nuclear spectroscopic measurements were performed to characterize the nature and extent of proton and neutron activation of the 22-ton cyclotron, its associated targets, and the concrete wall that was demolished to remove the old cyclotron. Neutron activation of the concrete wall was minimal and below exempt concentrations resulting in standard landfill disposal. The cyclotron assessment revealed the expected array of short and medium-lived radionuclides. Subsequent calculations suggest that meaningful levels residual activity will have decayed virtually to background after 15 years, with the total residual activity of the entire cyclotron dropping below 37 MBq (1 mCi).

  15. Method for disposing of radioactive graphite and silicon carbide in graphite fuel elements

    SciTech Connect

    Gay, R.L.

    1995-09-12

    Method is described for destroying radioactive graphite and silicon carbide in fuel elements containing small spheres of uranium oxide coated with silicon carbide in a graphite matrix, by treating the graphite fuel elements in a molten salt bath in the presence of air, the salt bath comprising molten sodium-based salts such as sodium carbonate and a small amount of sodium sulfate as catalyst, or calcium-based salts such as calcium chloride and a small amount of calcium sulfate as catalyst, while maintaining the salt bath in a temperature range of about 950 to about 1,100 C. As a further feature of the invention, large radioactive graphite fuel elements, e.g. of the above composition, can be processed to oxidize the graphite and silicon carbide, by introducing the fuel element into a reaction vessel having downwardly and inwardly sloping sides, the fuel element being of a size such that it is supported in the vessel at a point above the molten salt bath therein. Air is bubbled through the bath, causing it to expand and wash the bottom of the fuel element to cause reaction and destruction of the fuel element as it gradually disintegrates and falls into the molten bath. 4 figs.

  16. Characterization of the Hanford 300 area burial grounds. Final report: decontamination and decommissioning

    SciTech Connect

    Phillips, S.J.; Ames, L.L.; Fitzner, R.E.; Gee, G.W.; Sandness, G.A.; Simmons, C.S.

    1980-01-01

    Pacific Northwest Laboratory conducted a series of investigations at the Hanford Site to develop technologies for characterizing and monitoring radioactive waste burial facilities that could be used in determining appropriate decommissioning alternatives. Specific objectives were to develop unique functional geophysics, geochemical, soil physics, numerical modeling, and biological methodologies needed to better characterize and monitor buried radioactive waste disposal sites. To meet these objectives the project was divided into four tasks: Task I, Geophysical Evaluation - Geophysical surveys were taken to locate and define the gross composition of waste materials. Task II, Geochemical Analysis - The interaction of disposed radionuclides with geologic media was analyzed through an integrated radiochemical procedure. Task III, Fluid Transport and Modeling - Computer modeling of water migration in partially saturated groundwater systems was verified with actual data collected at a field test facility used to monitor micrometeorological and geohydrological energy and mass transfer factors. Task IV, Biological Transport - Several biological organisms were evaluated for potential radionuclide uptake and transport. Along with the four tasks, the project included a review of pertinent literature and regulatory issues that might affect the alternatives selected. Surveys were taken of the surrounding area and specific sites and operations. The overall results indicated that the 300 Area Burial Grounds have been adequate in containing radioactive waste. Based on the results of the project, the alternatives identified for decommissioning these sites are exhumation and translocation, entombment, perpetual care, and abandonment. Perpetual care (currently used) appears to be the best decommissioning alternative for these burial grounds at this time. However, another alternative may be selected depending on future waste management policies, plans, or activities.

  17. Minipool Caprylic Acid Fractionation of Plasma Using Disposable Equipment: A Practical Method to Enhance Immunoglobulin Supply in Developing Countries

    PubMed Central

    El-Ekiaby, Magdy; Vargas, Mariángela; Sayed, Makram; Gorgy, George; Goubran, Hadi; Radosevic, Mirjana; Burnouf, Thierry

    2015-01-01

    Background Immunoglobulin G (IgG) is an essential plasma-derived medicine that is lacking in developing countries. IgG shortages leave immunodeficient patients without treatment, exposing them to devastating recurrent infections from local pathogens. A simple and practical method for producing IgG from normal or convalescent plasma collected in developing countries is needed to provide better, faster access to IgG for patients in need. Methodology/Principal Findings IgG was purified from 10 consecutive minipools of 20 plasma donations collected in Egypt using single-use equipment. Plasma donations in their collection bags were subjected to 5%-pH5.5 caprylic acid treatment for 90 min at 31°C, and centrifuged to remove the precipitate. Supernatants were pooled, then dialyzed and concentrated using a commercial disposable hemodialyzer. The final preparation was filtered online by gravity, aseptically dispensed into storage transfusion bags, and frozen at <-20°C. The resulting preparation had a mean protein content of 60.5 g/L, 90.2% immunoglobulins, including 83.2% IgG, 12.4% IgA, and 4.4% IgM, and residual albumin. There was fourfold to sixfold enrichment of anti-hepatitis B and anti-rubella antibodies. Analyses of aggregates (<3%), prekallicrein (5-7 IU/mL), plasmin (26.3 mU/mL), thrombin (2.5 mU/mL), thrombin-like activity (0.011 U/g), thrombin generation capacity (< 223 nM), and Factor XI (<0.01 U/mL) activity, Factor XI/XIa antigen (2.4 ng/g) endotoxin (<0.5 EU/mL), and general safety test in rats showed the in vitro safety profile. Viral validation revealed >5 logs reduction of HIV, BVDV, and PRV infectivity in less than 15 min of caprylic acid treatment. Conclusions/Significance 90% pure, virally-inactivated immunoglobulins can be prepared from plasma minipools using simple disposable equipment and bag systems. This easy-to-implement process could be used to produce immunoglobulins from local plasma in developing countries to treat immunodeficient patients

  18. LAMP using a disposable pocket warmer for anthrax detection, a highly mobile and reliable method for anti-bioterrorism.

    PubMed

    Hatano, Ben; Maki, Takayuki; Obara, Takeyuki; Fukumoto, Hitomi; Hagisawa, Kohsuke; Matsushita, Yoshitaro; Okutani, Akiko; Bazartseren, Boldbaastar; Inoue, Satoshi; Sata, Tetsutaro; Katano, Harutaka

    2010-01-01

    A quick, reliable detection system is necessary to deal with bioterrorism. Loop-mediated isothermal amplification (LAMP) is a DNA amplification method that can amplify specific DNA fragments in isothermal conditions. We developed a new highly mobile and practical LAMP anthrax detection system that uses a disposable pocket warmer without the need for electricity (pocket-warmer LAMP). In our tests, the detection limit of the pocket-warmer LAMP was 1,000 copies of Bacillus anthracis pag and capB gene fragments per tube. The pocket-warmer LAMP also detected B. anthracis genes from DNA extracted from 0.1 volume of a B. anthracis colony. The lower detection limit of the pocket-warmer LAMP was not significantly different from that of a conventional LAMP using a heat block, and was not changed under cold (4 degrees C) or warm (37 degrees C) conditions in a Styrofoam box. The pocket-warmer LAMP could be useful against bioterrorism, and as a sensitive, reliable detection tool in areas with undependable electricity infrastructures.

  19. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    SciTech Connect

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  20. Allowable Residual Contamination Levels in soil for decommissioning the Shippingport Atomic Power Station site

    SciTech Connect

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1983-09-01

    As part of decommissioning the Shippingport Atomic Power Station, a fundamental concern is the determination of Allowable Residual Contamination Levels (ARCL) for radionuclides in the soil at the site. The ARCL method described in this report is based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for unrestricted use of the land after decommissioning. In addition to naturally occurring radionuclides and fallout from weapons testing, soil contamination could potentially come from five other sources. These include operation of the Shippingport Station as a pressurized water reactor, operations of the Shippingport Station as a light-water breeder, operation of the nearby Beaver Valley reactors, releases during decommissioning, and operation of other nearby industries, including the Bruce-Mansfield coal-fired power plants. ARCL values are presented for 29 individual radionculides and a worksheet is provided so that ARCL values can be determined for any mixture of the individual radionuclides for any annual dose limit selected. In addition, a worksheet is provided for calculating present time soil concentration value that will decay to the ARCL values after any selected period of time, such as would occur during a period of restricted access. The ARCL results are presented for both unconfined (surface) and confined (subsurface) soil contamination. The ARCL method and results described in this report provide a flexible means of determining unrestricted-use site release conditions after decommissioning the Shippingport Atomic Power Station.

  1. Disposal pathway for tritiated reactive metals and tritiated hydrogen gas

    SciTech Connect

    Antoniazzi, A. B.; Morton, C. S.

    2008-07-15

    Kinectrics and its predecessor company Ontario Hydro Research Div. (a division of Ontario Hydro) had a fully operational tritium laboratory on site since the early 1980's. During those years numerous projects and experiments were undertaken using hydrogen and tritium for the most part. Metals with an affinity for hydrogen are commonly employed as scavengers of hydrogenic gases from process streams or as hydrogen storage mediums. The two most common of these metals used were depleted uranium and a zirconium-iron alloy (SAES St198). The break-up of Ontario Hydro through deregulation activities resulted in the building of a new, smaller, tritium laboratory and the decommissioning of the original tritium laboratory. Decommissioning activities resulted in the need to safely dispose of these reactive metals. Disposal of these metals is not straight forward. For safe, long term, disposal it has been decided to oxidize the metals in a controlled fashion. The oxidized beds, containing the metals, will be sent to a radioactive waste site for long term storage. Options for disposal of tritiated hydrogen gas are presented and discussed. This paper provides a disposal pathway for tritiated reactive metals and hydrogen thereby closing the loop in tritium handling. (authors)

  2. Cost Savings through Innovation in Decontamination, Decommissioning, and Dismantlement

    SciTech Connect

    Neal A. Yancey

    2003-02-27

    The United States Department of Energy (DOE) continually seeks safer and more cost effective technologies for the decontamination and decommissioning (D&D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsored large-scale demonstration and deployment projects (LSDDPs) to help bring new technologies into the D&D programs. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of needs defining specific problems where improved technologies could be incorporated into ongoing D&D tasks. The needs fell into 5 major categories--characterization, dismantlement, safety, material dispositioning, and decontamination. Technologies were carefully selected that provide a large benefit for a small investment. The technologies must provide significant improvements in cost, safety, radiation exposure, waste volume reduction, or schedule savings and widely applicable throughout the DOE complex. The LSDDP project provided training for the new technologies and worked with technology suppliers to resolve any questions that arose. Since 1998, 26 technologies have been demonstrated or deployed through the LSDDP for the D&D program at the INEEL. Of the 26 demonstrated and deployed technologies, 14 were in characterization, 3 were in decontamination, 4 were in dismantlement, 3 were in safety, and 2 were in material dispositioning. To promote the use of these technologies at other sites within the DOE complex, the LSDDP team published fact sheets, videos, technology summary reports, articles in INEEL star newspaper, posters, and maintained an internet home page on the project. As a result, additional deployments have taken place at the Hanford, Mound, Fernald, Oak Ridge, Ashtabula, and West Valley. Eight of the 26 technologies evaluated were developed in foreign countries. The technologies demonstrated have been shown to be faster, less expensive, and/or safer. The

  3. Magnesium battery disposal characteristics

    NASA Astrophysics Data System (ADS)

    Soffer, Louis; Atwater, Terrill

    1994-12-01

    This study assesses the disposal characteristics of U.S. Army procured military magnesium batteries under current Resource Conservation and Recovery Act (RCRA) hazardous waste identification regulations administered by the U.S. Environmental Protection Agency. Magnesium batteries were tested at 100, 50, 10 and 0 percent remaining state of charge. Present findings indicate that magnesium batteries with less than 50 percent remaining charge do not exceed the federal regulatory limit of 5.0 mg/L for chromium. All other RCRA contaminates were below regulatory limits at all levels of remaining charge. Assay methods, findings, disposal requirements and design implications are discussed.

  4. Closure plan for the decommissioned high explosives rinse-water lagoons at Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    Carpenter, D.W.; Lamarre, A.L.; Crow, N.B.; Swearengen, P.M.

    1988-05-31

    The High Explosives (HE) Process Area is a major facility at Lawrence Livermore National Laboratory (LLNL) Site 300. Within the Process Area, rinse water from various buildings formerly was discharged to nine relatively small, unlined lagoons where it was disposed of by evaporation and infiltration. In 1985, LLNL decommissioned these lagoons and diverted the rinse waters to two doubly lined surface impoundments. LLNL conducted the hydrogeologic investigations required to support the permanent closure of the none decommissioned lagoons. These studies included drilling ground water monitoring wells and extensively collecting soil and rock samples, which were analyzed for EPA toxic metals, HE compounds, and purgeable and extractable priority organic pollutants. On October 26, 1987, the RWQCB requested that we prepare a comprehensive report to summarize and discuss the findings of the LLNL HE Process Area Investigation. This report is our response to the Board's request. 22 refs., 19 figs. , 45 tabs.

  5. Disposal of Liquid Propellants

    DTIC Science & Technology

    1990-03-13

    concentrate (formaldehydestrongly catalyzes the formation of nitrosamines from nitrite and secondary amines ). I ° Minimize concentrations of catalytically ...components, as interest in these compounds is relatively new. Therefore, methods for disposing of similar compounds such as triethanol- amine ...appears to have the greatest potential for accomplishing degradation of HAN- based liquid propellant residues in an economical, environmentally safe manner

  6. Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G

    SciTech Connect

    French, Sean B.; Shuman, Rob

    2012-06-26

    Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have

  7. The Belgoprocess Strategy Relating to the Management of Materials from Decommissioning

    SciTech Connect

    Teunckens, L.; Lewandowski, P.; Walthery, R.; Ooms. B.

    2003-02-27

    Belgium started its nuclear program quite early. The first installations were constructed in the fifties, and presently, more than 55 % of the Belgian electricity production is provided by nuclear power plants. After 30 years of nuclear experience, Belgium started decommissioning of nuclear facilities in the eighties with two main projects: the BR3-PWR plant and the Eurochemic reprocessing plant. The BR3-decommissioning project is carried out at the Belgian Nuclear Research Centre, while the decommissioning of the former Eurochemic reprocessing plant is managed and operated by Belgoprocess n.v., which is also operating the centralized waste treatment facilities and the interim storage for Belgian radioactive waste. Some fundamental principles have to be considered for the management of materials resulting from the decommissioning of nuclear installations, equipment and/or components, mainly based on the guidelines of the ''IAEA-Safety Fundamentals. The Principles of Radioactive Waste Management. Safety Series No. 111-F, IAEA, Vienna, 1995'' with respect to radioactive waste management. Two of the fundamental principles indicated in this document are specifically dealing with the strategy for the management of materials from decommissioning, ''Generation of radioactive waste shall be kept to the minimum practicable'' (seventh principle), and ''Radioactive waste shall be managed in such a way that it will not impose undue burdens on future generations'' (fifth principle). Based on these fundamental principles, Belgoprocess has made a straightforward choice for a strategy with minimization of the amount of materials to be managed as radioactive waste. This objective is obtained through the use of advanced decontamination techniques and the unconditional release of decontaminated materials. Unconditionally released materials are recycled, such as i.e., metal materials that are removed to conventional melting facilities, or are removed to conventional industrial

  8. Optimising waste management performance - The key to successful decommissioning

    SciTech Connect

    Keep, Matthew

    2007-07-01

    Available in abstract form only. Full text of publication follows: On the 1. of April 2005 the United Kingdom's Nuclear Decommissioning Authority became responsible for the enormous task of decommissioning the UK's civilian nuclear liabilities. The success of the NDA in delivering its key objectives of safer, cheaper and faster decommissioning depends on a wide range factors. It is self-evident, however, that the development of robust waste management practices by those charged with decommissioning liability will be at the heart of the NDA's business. In addition, the implementation of rigorous waste minimisation techniques throughout decommissioning will deliver tangible environmental benefits as well as better value for money and release funds to accelerate the decommissioning program. There are mixed views as to whether waste minimisation can be achieved during decommissioning. There are those that argue that the radioactive inventory already exists, that the amount of radioactivity cannot be minimised and that the focus of activities should be focused on waste management rather than waste minimisation. Others argue that the management and decommissioning of the UK's civilian nuclear liability will generate significant volumes of additional radioactive waste and it is in this area where the opportunities for waste minimisation can be realised. (author)

  9. Decommissioning considerations at a time of nuclear renaissance

    SciTech Connect

    Devgun, Jas S.

    2007-07-01

    At a time of renaissance in the nuclear power industry, when it is estimated that anywhere between 60 to 130 new power reactors may be built worldwide over the next 15 years, why should we focus on decommissioning? Yet it is precisely the time to examine what decommissioning considerations should be taken into account as the industry proceeds with developing final designs for new reactors and the construction on the new build begins. One of the lessons learned from decommissioning of existing reactors has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Even though decommissioning may be sixty years down the road from the time they go on line, eventually all reactors will be decommissioned. It is only prudent that new designs be optimized for eventual decommissioning, along with the other major considerations. The overall objective in this regard is that when the time comes for decommissioning, it can be completed in shorter time frames, with minimum generation of radioactive waste, and with better radiological safety. This will ensure that the tail end costs of the power reactors are manageable and that the public confidence in the nuclear power is sustained through the renaissance and beyond. (author)

  10. A review of decommissioning considerations for new reactors

    SciTech Connect

    Devgun, J.S.Ph.D.

    2008-07-01

    At a time of 'nuclear renaissance' when the focus is on advanced reactor designs and construction, it is easy to overlook the decommissioning considerations because such a stage in the life of the new reactors will be some sixty years down the road. Yet, one of the lessons learned from major decommissioning projects has been that decommissioning was not given much thought when these reactors were designed three or four decades ago. Hence, the time to examine what decommissioning considerations should be taken into account is right from the design stage with regular updates of the decommissioning strategy and plans throughout the life cycle of the reactor. Designing D and D into the new reactor designs is necessary to ensure that the tail end costs of the nuclear power are manageable. Such considerations during the design stage will facilitate a more cost-effective, safe and timely decommissioning of the facility when a reactor is eventually retired. This paper examines the current regulatory and industry design guidance for the new reactors with respect to the decommissioning issues and provides a review of the design considerations that can help optimize the reactor designs for the eventual decommissioning. (authors)

  11. Decontamination, decommissioning, and vendor advertorial issue, 2007

    SciTech Connect

    Agnihotri, Newal

    2007-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: An interesting year ahead of us, by Tom Christopher, AREVA NP Inc.; U.S.-India Civil Nuclear Cooperation; Decontamination and recycling of retired components, by Sean P. Brushart, Electric Power Research Institute; and, ANO is 33 and going strong, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The industry innovation article is: Continuous improvement process, by ReNae Kowalewski, Arkansas Nuclear One.

  12. Subseabed Disposal Program Plan. Volume I. Overview

    SciTech Connect

    1981-07-01

    The primary objective of the Subseabed Disposal Program (SDP) is to assess the scientific, environmental, and engineering feasibility of disposing of processed and packaged high-level nuclear waste in geologic formations beneath the world's oceans. High-level waste (HLW) is considered the most difficult of radioactive wastes to dispose of in oceanic geologic formations because of its heat and radiation output. From a scientific standpoint, the understanding developed for the disposal of such HLW can be used for other nuclear wastes (e.g., transuranic - TRU - or low-level) and materials from decommissioned facilities, since any set of barriers competent to contain the heat and radiation outputs of high-level waste will also contain such outputs from low-level waste. If subseabed disposal is found to be feasible for HLW, then other factors such as cost will become more important in considering subseabed emplacement for other nuclear wastes. A secondary objective of the SDP is to develop and maintain a capability to assess and cooperate with the seabed nuclear waste disposal programs of other nations. There are, of course, a number of nations with nuclear programs, and not all of these nations have convenient access to land-based repositories for nuclear waste. Many are attempting to develop legislative and scientific programs that will avoid potential hazards to man, threats to other ocean uses, and marine pollution, and they work together to such purpose in meetings of the international NEA/Seabed Working Group. The US SDP, as the first and most highly developed R and D program in the area, strongly influences the development of subseabed-disposal-related policy in such nations.

  13. Environmental Impact Assessment (EIA) Process of V1 NPP Decommissioning

    SciTech Connect

    Matejovic, Igor; Polak, Vincent

    2007-07-01

    Through the adoption of Governmental Resolution No. 801/99 the Slovak Republic undertook a commitment to shutdown units 1 and 2 of Jaslovske Bohunice V 1 NPP (WWER 230 reactor type) in 2006 and 2008 respectively. Therefore the more intensive preparation of a decommissioning documentation has been commenced. Namely, the VI NPP Conceptual Decommissioning Plan and subsequently the Environmental Impact Assessment Report of VI NPP Decommissioning were developed. Thus, the standard environmental impact assessment process was performed and the most suitable alternative of V1 NPP decommissioning was selected as a basis for development of further decommissioning documents. The status and main results of the environmental impact assessment process and EIA report are discussed in more detail in this paper. (authors)

  14. Reactor Design and Decommissioning - An Overview of International Activities in Post Fukushima Era1 - 12396

    SciTech Connect

    Devgun, Jas S.; Laraia, Michele; Dinner, Paul

    2012-07-01

    sufficiently for that experience to be reliably interpreted, the development of structured on-line sharing of information and especially the creation of an on-line compendium of methods, tools, and techniques by which damaged fuel and other unique situations have been addressed can be addressed sooner and maintained as new problems and solutions arise and are resolved. The IAEA's new 'WEB 2.0 tool' CONNECT is expected to play a significant role in this and related information-sharing activities. The trend in some countries such as the United States has been to re-license the existing reactors for additional twenty years, beyond the original design life. Given the advances in technology over the past four decades, and considering that the newer designs incorporate significant improvements in safety systems, it may not be economical or technically feasible to retrofit enhancements into some of the older reactors. In such cases, the reactors may be retired from service and decommissioned. Overall, the energy demand in the world continues to rise, with sharp increases in the Asian countries, and nuclear power's role in the world's energy supply is expected to continue. Events at Fukushima have led to a re-examination on many fronts, including reactor design and regulatory requirements. Further changes may occur in these areas in the post-Fukushima era. These changes in turn will also impact the world-wide decommissioning scene and the decommissioning phase of the future reactors. (authors)

  15. TA-2 water boiler reactor decommissioning (Phase 1)

    SciTech Connect

    Elder, J.C.; Knoell, C.L.

    1986-12-01

    Removal of external structures and underground piping associated with the gaseous effluent (stack) line from the TA-2 Water Boiler Reactor was performed as Phase I of reactor decommissioning. Six concrete structures were dismantled and 435 ft of contaminated underground piping was removed. Extensive soil contamination by /sup 137/Cs was encountered around structure TA-2-48 and in a suspected leach field near the stream flowing through Los Alamos Canyon. Efforts to remove all contaminated soil were hampered by infiltrating ground water and heavy rains. Methods, cleanup guidelines, and ALARA decisions used to successfully restore the area are described. The cost of the project was approximately $320K; 970 m/sup 3/ of low-level solid radioactive waste resulted from the cleanup operations.

  16. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  17. Nuclear facility decommissioning and site remedial actions

    SciTech Connect

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  18. Lessons learnt from Ignalina NPP decommissioning project

    SciTech Connect

    NAISSE, Jean-Claude

    2007-07-01

    The Ignalina Nuclear Power Plant (INPP) is located in Lithuania, 130 km north of Vilnius, and consists of two 1500 MWe RBMK type units, commissioned respectively in December 1983 and August 1987. On the 1. of May 2004, the Republic of Lithuania became a member of the European Union. With the protocol on the Ignalina Nuclear Power in Lithuania which is annexed to the Accession Treaty, the Contracting Parties have agreed: - On Lithuanian side, to commit closure of unit 1 of INPP before 2005 and of Unit 2 by 31 December 2009; - On European Union side, to provide adequate additional Community assistance to the efforts of Lithuania to decommission INPP. The paper is divided in two parts. The first part describes how, starting from this agreement, the project was launched and organized, what is its present status and which activities are planned to reach the final ambitious objective of a green field. To give a global picture, the content of the different projects that were defined and the licensing process will also be presented. In the second part, the paper will focus on the lessons learnt. It will explain the difficulties encountered to define the decommissioning strategy, considering both immediate or differed dismantling options and why the first option was finally selected. The paper will mention other challenges and problems that the different actors of the project faced and how they were managed and solved. The paper will be written by representatives of the Ignalina NPP and of the Project Management Unit. (author)

  19. Yankee approach to disposal of Greater-Than-Class C (GTCC) waste

    SciTech Connect

    Buchheit, J.M.; Child, C.L.; Thomas, C.D. Jr.

    1995-12-01

    Yankee Atomic Electric Company (Yankee) is in the process of decommissioning the Yankee Nuclear Station in Rowe, Massachusetts and recently finished segmenting reactor internal components. A small percentage of these components is considered Greater-Than-Class C (GTCC) Waste. GTCC Waste comprises that category of highly radioactive materials other than spent fuel or reprocessed waste which is required by Federal Regulation to be disposed of in a geologic repository. The Department of Energy was tasked with this responsibility. To complete decommissioning, a means for disposing of this material must be identified. This paper describes the steps Yankee has taken to assure that GTCC Waste can be treated like spent fuel for disposal purposes, and also addresses transportability and storage of this material.

  20. 26 CFR 1.468A-4T - Treatment of nuclear decommissioning fund (temporary).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 6 2010-04-01 2010-04-01 false Treatment of nuclear decommissioning fund...-4T Treatment of nuclear decommissioning fund (temporary). (a) In general. A nuclear decommissioning... income earned by the assets of the nuclear decommissioning fund. (b) Modified gross income. For...

  1. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  2. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  3. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  4. 26 CFR 1.468A-4 - Treatment of nuclear decommissioning fund.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Treatment of nuclear decommissioning fund. 1...-4 Treatment of nuclear decommissioning fund. (a) In general. A nuclear decommissioning fund is... by the assets of the nuclear decommissioning fund. (b) Modified gross income. For purposes of...

  5. 30 CFR 250.1750 - When may I decommission a pipeline in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When may I decommission a pipeline in place... Pipeline Decommissioning § 250.1750 When may I decommission a pipeline in place? You may decommission a pipeline in place when the Regional Supervisor determines that the pipeline does not constitute a...

  6. 30 CFR 250.1754 - When must I remove a pipeline decommissioned in place?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false When must I remove a pipeline decommissioned in... Activities Pipeline Decommissioning § 250.1754 When must I remove a pipeline decommissioned in place? You must remove a pipeline decommissioned in place if the Regional Supervisor determines that the...

  7. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Pine Bluff Arsenal (PBA) in Arkansas. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the PBA and by recommending the scope and content of a more detailed site- specific study. This dependent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at PBA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources, and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 13 refs., 1 fig.

  8. Chemical Stockpile Disposal Program

    SciTech Connect

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  9. DECOMMISSIONING OF A CAESIUM-137 SEALED SOURCE PRODUCTION FACILITY

    SciTech Connect

    Murray, A.; Abbott, H.

    2003-02-27

    Amersham owns a former Caesium-137 sealed source production facility. They commissioned RWE NUKEM to carry out an Option Study to determine a strategy for the management of this facility and then the subsequent decommissioning of it. The decommissioning was carried out in two sequential phases. Firstly robotic decommissioning followed by a phase of manual decommissioning. This paper describes the remote equipment designed built and operated, the robotic and manual decommissioning operations performed, the Safety Management arrangements and summarizes the lessons learned. Using the equipment described the facility was dismantled and decontaminated robotically. Some 2300kg of Intermediate Level Waste containing in the order of 4000Ci were removed robotically from the facility. Ambient dose rates were reduced from 100's of R per hour {gamma} to 100's of mR per hour {gamma}. The Telerobotic System was then removed to allow man access to complete the decommissioning. Manual decommissioning reduced ambient dose rates further to less than 1mR per hour {gamma} and loose contamination levels to less than 0.25Bq/cm2. This allowed access to the facility without respiratory protection.

  10. Decommissioning planning for the Joint European Torus Fusion Reactor

    SciTech Connect

    Wilson, K.A.; Stevens, K.

    2007-07-01

    The Joint European Torus (JET) machine is an experimental nuclear fusion device built in the United Kingdom by a European consortium. Tritium was first introduced into the Torus as a fuel in 1991 and it is estimated that at the end of operations and following a period of tritium recovery there will be 2 grams of tritium in the vacuum circuit. All in-vessel items are also contaminated with beryllium and the structure of the machine is neutron activated. Decommissioning of the facility will commence immediately JET operations cease and the UKAEA's plan is to remove all the facilities and to landscape the site within 10 years. The decommissioning plan has been through a number of revisions since 1995 that have refined the detail, timescales and costs. The latest 2005 revision of the decommissioning plan highlighted the need to clarify the size reduction and packaging requirements for the ILW and LLW. Following a competitive tender exercise, a contract was placed by UKAEA with NUKEM Limited to undertake a review of the waste estimates and to produce a concept design for the planned size reduction and packaging facilities. The study demonstrated the benefit of refining decommissioning planning by increasing the detail as the decommissioning date approaches. It also showed how a review of decommissioning plans by independent personnel can explore alternative strategies and result in improved methodologies and estimates of cost and time. This paper aims to describe this part of the decommissioning planning process and draw technical and procedural conclusions. (authors)

  11. Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities - 12237

    SciTech Connect

    Chambon, Frederic; Clement, Gilles

    2012-07-01

    AREVA has accumulated over 20 years of experience in managing and operating fuel cycle facilities Decontamination and Decommissioning (D and D) projects of many different types and a variety of scales, both as facility owner (at La Hague for example) and as prime contractor to external customers such as the French Atomic Energy Commission (at Marcoule). A specific Business Unit was created in 2008 to capitalize on this experience and to concentrate - in one division - the specific skills required to be successful and cost effective in decommissioning projects. Indeed one of the key lessons learned in the past decades is that decommissioning is a significantly different business as compared to normal operations of a nuclear facility. Almost all the functions of a project need to be viewed from a different angle, challenged and adapted consequently in order to optimize costs and schedule. Three examples follow to illustrate the point: Safety management needs to take into account the ever changing configuration of a plant under D and D (a quite new situation for the authorities). Production of waste is significantly different in term of volume, activities, conditioning and disposal path. Technology is important but technical issues are often less critical than good management and planning. Further examples and lessons learned are developed through reviewing the projects experience basis. AREVA has a long and vast experience in the cleanup and dismantling of a number of very large and complex nuclear facilities. This effort focused initially on AREVA's own plants and is expanding now to other customers. The setup of a specific Business Unit in 2008 to takeover this business allowed concentration of the skills and the lessons learned in a dedicated division so as to provide the best means to optimize safety, performance, costs and schedules. Indeed transitioning from operations to D and D of a nuclear facility is a quantum leap. The assistance from specialized teams can

  12. Allowable residual-contamination levels for decommissioning facilities in the 100 areas of the Hanford Site

    SciTech Connect

    Kennedy, W.E. Jr.; Napier, B.A.

    1983-07-01

    This report contains the results of a study sponsored by UNC Nuclear Industries to determine Allowable Residual Contamination Levels (ARCL) for five generic categories of facilities in the 100 Areas of the Hanford Site. The purpose of this study is to provide ARCL data useful to UNC engineers in conducting safety and cost comparisons for decommissioning alternatives. The ARCL results are based on a scenario/exposure-pathway analysis and compliance with an annual dose limit for three specific modes of future use of the land and facilities. These modes of use are restricted, controlled, and unrestricted. The information on ARCL values for restricted and controlled use provided by this report is intended to permit a full consideration of decommissioning alternatives. ARCL results are presented both for surface contamination remaining in facilities (in dpm/100 cm/sup 2/), and for unconfined surface and confined subsurface soil conditions (in pCi/g). Two confined soil conditions are considered: contamination at depths between 1 and 4 m, and contamination at depths greater than or equal to 5 m. A set of worksheets are presented in an appendix for modifying the ARCL values to accommodate changes in the radionuclide mixture or concentrations, to consider the impacts of radioactive decay, and to predict instrument responses. Finally, a comparison is made between the unrestricted release ARCL values for the 100 Area facilities and existing decommissioning and land disposal regulations. For surface contamination, the comparison shows good agreement. For soil contamination, the comparison shows good agreement if reasonable modification factors are applied to account for the differences in modeling soil contamination and licensed low-level waste.

  13. Issues in the shipment and disposal of TRU waste from small stream generators: The case of Battelle Columbus Operations

    SciTech Connect

    Kohli, R.; Pasupathi, V.

    1995-11-01

    The Battelle Hot Cell Facility in Central Ohio is scheduled to be decommissioned in the near future. Past nuclear research activities have left the hot cells and other controlled areas with highly contaminated equipment, as well as extensively contaminated surfaces and residual radioactive materials, including approximately 45 m{sup 3} of stored transuranic (TRU) waste. Because of the high radiation levels of the waste, it must be packaged in shielded containers for shipment and, depending on the final disposal site, repackaged in different containers to meet disposal site acceptance criteria. At present, Battelle does not have authorization to ship the TRU waste off site since no storage or disposal site has been designated to receive the waste. Various options are being considered for disposal of the TRU waste each with different packaging requirements that will have major impacts on the cost and schedule for completion of the decommissioning of the facility. These issues are discussed.

  14. Ocean Disposal Site Monitoring

    EPA Pesticide Factsheets

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  15. When a plant shuts down: The psychology of decommissioning

    SciTech Connect

    Schulz, J.; Crawford, A.C. )

    1993-07-01

    Within the next decade, 10 to 25 nuclear plants in the United States may be taken off line. Many will have reached the end of their 40-year life cycles, but others will be retired because the cost of operating them has begun to outweigh their economic benefit. Such was the case at Fort St. Vrain, the first decommissioning of a US commercial plant under new Nuclear Regulatory Commission (NRC) regulations. Two major problems associated with decommissioning plants have been obvious: (1) the technical challenges and costs of decommissioning, and (2) the cost of maintaining and finally decommissioning a plant after a safe storage (SAFSTOR) period of approximately 60 years. What has received little attention is the challenge that affects not only the people who make a plant work, but the quality of the solutions to these problems: how to maintain effective organizational performance during the process of downsizing and decommissioning and/or SAFSTOR. The quality of technical solutions for closing a plant, as well as how successfully the decommissioning process is held within or below budget, will depend largely on how effectively the nuclear organization functions as a social unit. Technical and people issues are bound together. The difficulty is how to operate a plant effectively when plant personnel have no sense of long-term security. As the nuclear power industry matures and the pace for closing operating plants accelerates, the time has come to prepare for the widespread decommissioning of plants. The industry would be well served by conducting a selective, industry-wide evaluation of plants to assess its overall readiness for the decommissioning process. A decommissioning is not likely to be trouble free, but with a healthy appreciation for the human side of the process, it will undoubtedly go more smoothly than if approached as a matter of dismantling a machine.

  16. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect

    Zull, Lawrence M.; Yeniscavich, William

    2008-01-15

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  17. Ultimate disposal of scrubber wastes

    NASA Technical Reports Server (NTRS)

    Cohenour, B. C.

    1978-01-01

    Part of the initial concern with using the wet scrubbers on the hypergolic propellants was the subsequential disposal of the liquid wastes. To do this, consideration was given to all possible methods to reduce the volume of the wastes and stay within the guidelines established by the state and federal environmental protection agencies. One method that was proposed was the use of water hyacinths in disposal ponds to reduce the waste concentration in the effluent to less than EPA tolerable levels. This method was under consideration and even in use by private industry, municipal governments, and NASA for upgrading existing wastewater treatment facilities to a tertiary system. The use of water hyacinths in disposal ponds appears to be a very cost-effective method for reduction and disposal of hypergolic propellants.

  18. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    SciTech Connect

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

  19. Disposal of NORM waste in salt caverns

    SciTech Connect

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  20. Recent achievements for In-situ measurement: applications to an actual decommissioning project

    SciTech Connect

    Lamadie, F.; Girones, P.; Le Goaller, C.; Mahe, C.; Kohler, J.Y.; Risser, M.A.

    2007-07-01

    Decommissioning a nuclear facility implies a policy of limiting the waste volume and its chemical - and especially radiological - toxicity. It is therefore important to determine the activity level contained in each component that will be dismantled. A variety of methods and analysis techniques are used for this purpose, ranging from simple dose rate measurements to {gamma} spectrometry and {gamma} imaging. The results of several measurement campaigns in a reactor currently in operation but for which decommissioning studies have now been undertaken are discussed. The measurements provide additional radiological data for the waste inventory, which is one of the first issues to be examined. This discussion focuses on the methods used ({gamma} imaging, in situ {gamma} spectrometry, etc.), the results obtained, and their implications for the project, as well as the technological and methodological innovations implemented during these campaigns. (authors)

  1. An analytical approach to γ-ray self-shielding effects for radioactive bodies encountered nuclear decommissioning scenarios.

    PubMed

    Gamage, K A A; Joyce, M J

    2011-10-01

    A novel analytical approach is described that accounts for self-shielding of γ radiation in decommissioning scenarios. The approach is developed with plutonium-239, cobalt-60 and caesium-137 as examples; stainless steel and concrete have been chosen as the media for cobalt-60 and caesium-137, respectively. The analytical methods have been compared MCNPX 2.6.0 simulations. A simple, linear correction factor relates the analytical results and the simulated estimates. This has the potential to greatly simplify the estimation of self-shielding effects in decommissioning activities.

  2. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  3. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  4. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  5. Fixed-Price Subcontracting for Decontamination and Decommissioning of Small Facilities at Oak Ridge National Laboratory

    SciTech Connect

    Harper, M. A.; Julius, J. F. K.; McKenna, M. K.

    2002-02-26

    Abandoned facilities were decontaminated and decommissioned in preparation for final remediation of Solid Waste Storage Area (SWSA) 4 at Oak Ridge National Laboratory. The facilities varied in age from approximately 5 years to more than 40 years, with radiological conditions ranging from clean to highly contaminated with fission products. A fixed-price subcontract (FPSC) was awarded by the U.S. Department of Energy's (DOE's) Environmental Management (EM) Management and Integration (M&I) contractor for decontamination and decommissioning (D&D) of these facilities. Included in the FPSC scope were the following: preparation of pre-D&D regulatory documentation; demolition of surface structures to slab; stabilization of below-grade structures; waste management and disposal; and preparation of post-D&D regulatory documentation. Using stand-off techniques to the extent possible, building structures and ancillary equipment were prepared for demolition and demolished. A fixative coating system was used in conjunction with continuous water misting to control airborne contamination. Demolition waste consisted of two major streams: clean construction and demolition waste and low-level (radioactive) waste. The debris was size-reduced and packaged, again via remote means. At all times during the D&D, personnel safety, environmental compliance, and as low as reasonably achievable exposure considerations were paramount. Upon completion of D&D activities, each site was inspected and accepted by the M&I contractor. This project is a success story for fixed-price subcontracting of D&D work under DOE's M&I arrangement.

  6. Characterization of decontamination and decommissioning wastes expected from the major processing facilities in the 200 Areas

    SciTech Connect

    Amato, L.C.; Franklin, J.D.; Hyre, R.A.; Lowy, R.M.; Millar, J.S.; Pottmeyer, J.A.; Duncan, D.R.

    1994-08-01

    This study was intended to characterize and estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the major processing and handling facilities in the 200 Areas of the Hanford Site are decontaminated and decommissioned. The facilities in this study were selected based on processing history and on the magnitude of the estimated decommissioning cost cited in the Surplus Facilities Program Plan; Fiscal Year 1993 (Winship and Hughes 1992). The facilities chosen for this study include B Plant (221-B), T Plant (221-T), U Plant (221-U), the Uranium Trioxide (UO{sub 3}) Plant (224-U and 224-UA), the Reduction Oxidation (REDOX) or S Plant (202-S), the Plutonium Concentration Facility for B Plant (224-B), and the Concentration Facility for the Plutonium Finishing Plant (PFP) and REDOX (233-S). This information is required to support planning activities for current and future solid waste treatment, storage, and disposal operations and facilities.

  7. Decontamination, decommissioning, and vendor advertorial issue, 2008

    SciTech Connect

    Agnihotri, Newal

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  8. Uranium enrichment decontamination and decommissioning fund

    SciTech Connect

    1994-12-31

    One of the most challenging issues facing the Department of Energy`s Office of Environmental Management is the cleanup of the three gaseous diffusion plants. In October 1992, Congress passed the Energy Policy Act of 1992 and established the Uranium Enrichment Decontamination and Decommissioning Fund to accomplish this task. This mission is being undertaken in an environmentally and financially responsible way by: devising cost-effective technical solutions; producing realistic life-cycle cost estimates, based on practical assumptions and thorough analysis; generating coherent long-term plans which are based on risk assessments, land use, and input from stakeholders; and, showing near-term progress in the cleanup of the gaseous diffusion facilities at Oak Ridge.

  9. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    SciTech Connect

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  10. Low-level waste disposal in highly populated areas

    SciTech Connect

    Kowalski, E.; McCombie, C.; Issler, H.

    1989-11-01

    Nuclear-generated electricity supplies almost 40% of the demand in Switzerland (the rest being hydro-power). Allowing for a certain reserve and assuming an operational life-time of 40 years for each reactor, and taking into account wastes from decommissioning and from medicine, industry and research, the total amount of low-level radioactive waste to be disposed of is about 175,000 m{sup 3}. Since there are no unpopulated areas in Switzerland, and since Swiss Federal Law specifies that the safety of disposal may not depend upon supervision of the repository, no shallow-land burial has been foreseen, even for short-lived low-level waste. Instead, geological disposal in a mined cavern system with access through a horizontal tunnel was selected as the best way of meeting the requirements and ensuring the necessary public acceptance.

  11. Lessons Learned from the NASA Plum Brook Reactor Facility Decommissioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    NASA has been conducting decommissioning activities at its PBRF for the last decade. As a result of all this work there have been several lessons learned both good and bad. This paper presents some of the more exportable lessons.

  12. Decommissioning the UHTREX Reactor Facility at Los Alamos, New Mexico

    SciTech Connect

    Salazar, M.; Elder, J.

    1992-08-01

    The Ultra-High Temperature Reactor Experiment (UHTREX) facility was constructed in the late 1960s to advance high-temperature and gas-cooled reactor technology. The 3-MW reactor was graphite moderated and helium cooled and used 93% enriched uranium as its fuel. The reactor was run for approximately one year and was shut down in February 1970. The decommissioning of the facility involved removing the reactor and its associated components. This document details planning for the decommissioning operations which included characterizing the facility, estimating the costs of decommissioning, preparing environmental documentation, establishing a system to track costs and work progress, and preplanning to correct health and safety concerns in the facility. Work to decommission the facility began in 1988 and was completed in September 1990 at a cost of $2.9 million. The facility was released to Department of Energy for other uses in its Los Alamos program.

  13. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D D. Additional details on specific technologies and applications to D D will be made available on request.

  14. Available decontamination and decommissioning capabilities at the Savannah River Technology Center

    SciTech Connect

    Polizzi, L.M.; Norkus, J.K.; Paik, I.K.; Wooten, L.A.

    1992-08-19

    The Safety Analysis and Engineering Services Group has performed a survey of the Savannah River Technology Center (SRTC) technical capabilities, skills, and experience in Decontamination and Decommissioning (D&D) activities. The goal of this survey is to enhance the integration of the SRTC capabilities with the technical needs of the Environmental Restoration Department D&D program and the DOE Office of Technology Development through the Integrated Demonstration Program. This survey has identified technical capabilities, skills, and experience in the following D&D areas: Characterization, Decontamination, Dismantlement, Material Disposal, Remote Systems, and support on Safety Technology for D&D. This review demonstrates the depth and wealth of technical capability resident in the SRTC in relation to these activities, and the unique qualifications of the SRTC to supply technical support in the area of DOE facility D&D. Additional details on specific technologies and applications to D&D will be made available on request.

  15. Progress in Decommissioning the Humboldt Bay Power Plant - 13604

    SciTech Connect

    Rod, Kerry; Shelanskey, Steven K.; Kristofzski, John

    2013-07-01

    Decommissioning of the Pacific Gas and Electric (PG and E) Company Humboldt Bay Power Plant (HBPP) Unit 3 nuclear facility has now, after more than three decades of SAFSTOR and initial decommissioning work, transitioned to full-scale decommissioning. Decommissioning activities to date have been well orchestrated and executed in spite of an extremely small work site with space constricted even more by other concurrent on-site major construction projects including the demolition of four fossil units, construction of a new generating station and 60 KV switchyard upgrade. Full-scale decommissioning activities - now transitioning from Plant Systems Removal (PG and E self-perform) to Civil Works Projects (contractor performed) - are proceeding in a safe, timely, and cost effective manner. As a result of the successful decommissioning work to date (approximately fifty percent completed) and the intense planning and preparations for the remaining work, there is a high level of confidence for completion of all HBPP Unit 3 decommissions activities in 2018. Strategic planning and preparations to transition into full-scale decommissioning was carried out in 2008 by a small, highly focused project team. This planning was conducted concurrent with other critical planning requirements such as the loading of spent nuclear fuel into dry storage at the Independent Spent Fuel Storage Installation (ISFSI) finishing December 2008. Over the past four years, 2009 through 2012, the majority of decommissioning work has been installation of site infrastructure and removal of systems and components, known as the Plant System Removal Phase, where work scope was dynamic with significant uncertainty, and it was self-performed by PG and E. As HBPP Decommissioning transitions from the Plant System Removal Phase to the Civil Works Projects Phase, where work scope is well defined, a contracting plan similar to that used for Fossil Decommissioning will be implemented. Award of five major work scopes

  16. Progress in Decommissioning of Ignalina NPP Unit 1

    SciTech Connect

    Ancius, Darius; Krenevicius, Rimantas; Kutas, Saulius; Chouha, Michel

    2002-07-01

    The aim of the paper is to present the Lithuanian legal framework regarding the nuclear safety in Decommissioning and Waste Management, and the progress in the Decommissioning Programme of the unit 1 of Ignalina Nuclear Power Plant (INPP). INPP is the only nuclear plant in Lithuania. It comprises two RBMK-1500 reactors. After Lithuania has restored its independence, responsibility for Ignalina NPP was transferred to the Republic of Lithuania. To ensure the control of the Nuclear Safety in Lithuania, The State Nuclear Power Safety Inspectorate (VATESI) was created on 18 October 1991, by a resolution of the Lithuanian Government. Significant work has been performed over the last decade, aiming at upgrading the safety level of the Ignalina NPP with reference to the International standards. On 5 October 1999 the Seimas (Parliament) adopted the National Energy Strategy: It has been decided that unit 1 of Ignalina NPP will be closed down before 2005, The conditions and precise final date of the decommissioning of Unit 2 will be stated in the updated National Energy strategy in 2004. On 20-21 June 2000, the International Donors' Conference for the Decommissioning of Ignalina NPP took place in Vilnius. More than 200 Millions Euro were pledged of which 165 M funded directly from the European Union's budget, as financial support to the Decommissioning projects. The Decommissioning Program encompasses legal, organizational, financial and technical means including the social and economical impacts in the region of Ignalina. The Program is financed from International Support Fund, State budget, National Decommissioning Fund of Ignalina NPP and other funds. Decommissioning of Ignalina NPP is subject to VATESI license according to the Law on Nuclear Energy. The Government established the licensing procedure in the so-called 'Procedure for licensing of Nuclear Activities'; and the document 'General Requirements for Decommissioning of the Ignalina NPP' has been issued by VATESI. A

  17. The Decommissioning of the Trino Nuclear Power Plant

    SciTech Connect

    Brusa, L.; DeSantis, R.; Nurden, P. L.; Walkden, P.; Watson, B.

    2002-02-27

    Following a referendum in Italy in 1987, the four Nuclear Power Plants (NPPs) owned and operated by the state utility ENEL were closed. After closing the NPPs, ENEL selected a ''safestore'' decommissioning strategy; anticipating a safestore period of some 40-50 years. This approach was consistent with the funds collected during plant operation, and was reinforced by the lack of both a waste repository and a set of national free release limits for contaminated materials in Italy. During 1999, twin decisions were made to privatize ENEL and to transform the nuclear division into a separate subsidiary of the ENEL group. This group was renamed Sogin and during the following year, ownership of the company was transferred to the Italian Treasury. On formation, Sogin was asked by the Italian government to review the national decommissioning strategy. The objective of the review was to move from a safestore strategy to a prompt decommissioning strategy, with the target of releasing all of the nuclear sites by 2020. It was recognized that this target was conditional upon the availability of a national LLW repository together with interim stores for both spent fuel and HLW by 2009. The government also agreed that additional costs caused by the acceleration of the decommissioning program would be considered as stranded costs. These costs will be recovered by a levy on the kWh price of electricity, a process established and controlled by the Regulator of the Italian energy sector. Building on the successful collaboration to develop a prompt decommissioning strategy for the Latina Magnox reactor (1), BNFL and Sogin agreed to collaborate on an in depth study for the prompt decommissioning of the Sogin PWR at Trino. BNFL is currently decommissioning six NPPs and is at an advanced stage of planning for two further units, having completed a full and rigorous exercise to develop Baseline Decommissioning Plans (BDP's) for these stations. The BDP exercise utilizes the full range of

  18. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    SciTech Connect

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  19. Radioactive waste management and decommissioning of accelerator facilities.

    PubMed

    Ulrici, Luisa; Magistris, Matteo

    2009-11-01

    During the operation of high-energy accelerators, the interaction of radiation with matter can lead to the activation of the machine components and of the surrounding infrastructures. As a result of maintenance operation and during decommissioning of the installation, considerable amounts of radioactive waste are evacuated and shall be managed according to the radiation-protection legislation. This paper gives an overview of the current practices in radioactive waste management and decommissioning of accelerators.

  20. Disposal unit

    DOEpatents

    Landau, Ralph

    2004-03-16

    The invention relates to a method and apparatus for separating toxic compounds from gaseous mixtures, and more particularly to a method and a portable apparatus for the continuous removal of fluorine and compounds thereof from gaseous mixtures.

  1. Novel Problems Associated with Accounting and Control of Nuclear Material from Decontamination and Decommissioning and in Waste

    SciTech Connect

    Schlegel, Steven C.

    2007-01-10

    The United States is eliminating many facilities that support the nuclear weapons program. With the changing political conditions around the world and changes in military capabilities, the decreased emphasis on nuclear weapons has eliminated the need for many of the aging facilities. Since weapons program and commercial applications do not mix in the United States, the facilities in the weapons complex that no longer have a mission are being deinventoried, decontaminated, decommissioned, and dismantled/demolished. The materials from these activities are then disposed of in various ways but usually in select waste burial sites. Additionally, the waste in many historical burial sites associated with the weapons complex are being recovered, repackaged if necessary, and disposed of in either geological sites or low-level waste sites.

  2. Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011

    SciTech Connect

    French, Sean B.; Shuman, Robert

    2012-04-17

    The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call

  3. An overview of U.S. decommissioning experience -- A basic introduction

    SciTech Connect

    Boing, L.E.

    1998-03-09

    This paper presents an overview of the US experiences in the decommissioning technical area. Sections included are: (1) an overview of the magnitude of the problem, (2) a review of the US decommissioning process, (3) regulation of decommissioning, (4) regulatory and funding requirements for decommissioning, and (5) a general overview of all on-going and completed decommissioning projects to date in the US. The final section presents a review of some issues in the decommissioning area currently being debated in the technical specialists community.

  4. 36 CFR 228.57 - Types of disposal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 2 2012-07-01 2012-07-01 false Types of disposal. 228.57 Section 228.57 Parks, Forests, and Public Property FOREST SERVICE, DEPARTMENT OF AGRICULTURE MINERALS Disposal of Mineral Materials Types and Methods of Disposal § 228.57 Types of disposal. Except as...

  5. SU-E-T-534: Level of Residual Radioactivity of Activated Parts of a Decommissioned Cyclotron

    SciTech Connect

    Choi, HHF; Leung, TM; Chiu, TL; Yang, B; Wu, PM; Cheung, KY; Yu, SK

    2015-06-15

    Purpose: CTI cyclotron RDS-111 was used at the Hong Kong Sanatorium and Hospital (HKSH) to produce radiopharmaceuticals and radioactive tracers for diagnostic scans between 1999 and 2007. During the operation, some machine components became radioactive by activation. For the safety of staff, decommissioning took place in 2009, two years after the cyclotron had stopped operation. This study investigates the residual radioactivity and radionuclides found in different cyclotron components in 2014 in compliance with the local regulations in Hong Kong for transfer of radioactive waste. Methods: A representative sample of each part was counted using a high-purity germanium detector (manufacturer: ORTECT) for at least four hours. GammaVision, a multichannel analyzer software, was used to identify the radionuclides found in the cyclotron components, as well as the associated activities. A standard library and a Mariscotti peak search algorithm were used to identify the present radionuclides. Only radionuclides with half-life greater than 180 days were considered. Results: Among the components, the Havar target foil has the highest specific activity ((4.6±0.6)×10{sup 2} Bq/g), with Co-60 being the most prominent ((3.8±0.5)×10{sup 2} Bq/g). The total activity of the target foil, however, is still low due to its small mass of 0.04 g. Radioisotopes Mn-54 (46±6 Bq/g), Na-22 (6.8±0.8 Bq/g), Co-57 (7.3±0.9 Bq/g), and Fe-59 (6.0±0.9 Bq/g) have also been detected in the target foil. The target window holder and the vacuum window register a specific activity of 88.3±0.6 Bq/g and 48.6±0.1 Bq/g, respectively. Other components, such as the collimator, the target tube, the valve body and the beamline, are also found with trace amounts of radionuclides. Conclusion: Even seven years after the cyclotron had stopped operation, some components still exhibited residual radioactivity from activation exceeding the IAEA clearance levels. Special consideration for radiological

  6. Mobile workstation for decontamination and decommissioning operations

    SciTech Connect

    Whittaker, W.L.; Osborn, J.F.; Thompson, B.R.

    1993-10-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The project has three phases. In this the first phase, an existing teleoperated worksystem, the Remote Work Vehicle (developed for use in the Three Mile Island Unit 2 Reactor Building basement), was enhanced for telerobotic performance of several D&D operations. Its ability to perform these operations was then assessed through a series of tests in a mockup facility that contained generic structures and equipment similar to those that D&D work machines will encounter in DOE facilities. Building upon the knowledge gained through those tests and evaluations, a next generation mobile worksystem, the RWV II, and a more advanced controller will be designed, integrated and tested in the second phase, which is scheduled for completion in January 1995. The third phase of the project will involve testing of the RWV II in the real DOE facility.

  7. Successful decommissioning and demolition at Weldon Spring

    SciTech Connect

    Davis, M.L.

    1994-12-31

    B&W Nuclear Environmental Services, Inc. (B&W NESI) and OHM Corporation (OHM) formed a joint venture company, B&W/OHM Weldon Spring, Inc. (B&W/OHM WSI) to perform work at the U.S. Department of Energy`s (DOE`s) Weldon Spring Site Remedial Action Project (WSSRAP). This joint venture company combines the hazardous and toxic waste remediation experience of OHM with the radiological decontamination and decommissioning experience of B&W NESI. Together, the two companies have over 60 yr of relevant experience and a strong record of performance in resolving problems associated with nuclear and hazardous materials contamination. The B&W/OHM WSI is under contract to MK-Ferguson, DOE`s project management contractor (PMC), at WSSRAP to provide supervision, tools, labor, and equipment to decontaminate and dismantle 11 buildings at the chemical plant site. The Weldon Spring site, located in St. Charles, Missouri, was used by the U.S. Atomic Energy Commission from 1957 through 1966 as a feed material production site to process uranium and thorium ore concentrates. Since the cessation of production activity at this site, the buildings and structures contained in the chemical plant have badly deteriorated, posing an immediate potential threat to workers, the general public, and the environment, prompting the DOE to initiate an Expedited Response Action to decontaminate, empty, and dismantle all the buildings and structures.

  8. A temperature control method for shortening thermal cycling time to achieve rapid polymerase chain reaction (PCR) in a disposable polymer microfluidic device

    NASA Astrophysics Data System (ADS)

    Bu, Minqiang; Perch-Nielsen, Ivan R.; Sørensen, Karen S.; Skov, Julia; Sun, Yi; Duong Bang, Dang; Pedersen, Michael E.; Hansen, Mikkel F.; Wolff, Anders

    2013-07-01

    We present a temperature control method capable of effectively shortening the thermal cycling time of polymerase chain reaction (PCR) in a disposable polymer microfluidic device with an external heater and a temperature sensor. The method employs optimized temperature overshooting and undershooting steps to achieve a rapid ramping between the temperature steps for DNA denaturation, annealing and extension. The temperature dynamics within the microfluidic PCR chamber was characterized and the overshooting and undershooting parameters were optimized using the temperature-dependent fluorescence signal from Rhodamine B. The method was validated with the PCR amplification of mecA gene (162 bp) from methicillin-resistant Staphylococcus aureus bacterium (MRSA), where the time for 30 cycles was reduced from 50 min (without over- and undershooting) to 20 min.

  9. Lessons learned from decommissioning projects at Los Alamos National Laboratory

    SciTech Connect

    Salazar, M.

    1995-09-01

    This paper describes lessons learned over the last 20 years from 12 decommissioning projects at Los Alamos National Laboratory. These lessons relate both to overall program management and to management of specific projects during the planning and operations phases. The issues include waste management; the National Environmental Policy Act (NEPA); the Resource Conservation and Recovery Act (RCRA); the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA); contracting; public involvement; client/customer interface; and funding. Key elements of our approach are to be proactive; follow the observation method; perform field activities concurrently; develop strategies to keep reportable incidents from delaying work; seek and use programs, methods, etc., in existence to shorten learning curves; network to help develop solutions; and avoid overstudying and overcharacterizing. This approach results in preliminary plans that require very little revision before implementation, reasonable costs and schedules, early acquisition of permits and NEPA documents, preliminary characterization reports, and contracting documents. Our track record is good -- the last four projects (uranium and plutonium-processing facility and three research reactors) have been on budget and on schedule.

  10. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    SciTech Connect

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  11. Alternative methods for disposal of spent laying hens: evaluation of the efficacy of grinding, mechanical deboning, and of keratinase in the rendering process.

    PubMed

    Freeman, S R; Poore, M H; Middleton, T F; Ferket, P R

    2009-10-01

    Besides the challenges of mortality and litter disposal, the poultry industry must find economical means of disposing of laying hens that have outlived their productive lives. Because spent hens have low market value and disposing of them by composting and burial is often infeasible, finding alternative disposal methods that are environmentally secure is prudent. The feasibility of grinding or mechanically deboning spent hens with and without prior mechanical picking was evaluated for the production of various proteinaceous by-product meals. The end products were analyzed for nutrient content and found to be high in protein (35.3-91.9% CP) and, with the exception of the feathers, high in fat (24.1-58.3%), making them potentially valuable protein and energy sources. After considering physical and economic feasibility, mechanical deboning was determined to be a logical first step for the conversion of spent hens into value-added by-product meals. Because the hard tissue fraction (primarily feathers, bones, and connective tissue) generated by mechanically deboning the hens presents the greatest challenge to their utilization as feedstuffs, attention was focused on technologies that could potentially improve the nutritional value of the hard tissue for use as a ruminant protein source. Traditional hydrolysis of this hard tissue fraction improved its pepsin digestibility from 74% to 85%; however, subsequent keratinase enzyme treatment for 1h, 2h, 4h, or 20 h after steam hydrolysis failed to improve the pepsin or amino acid digestibility any further (P>0.10). Enzyme hydrolysis did, however, increase the quantities of the more soluble protein fractions (A: 45.5, 46.6, 52.8, 51.6, and 55.8% of CP; B(1): 3.2, 9.8, 6.0, 4.6, and 4.1% of CP; B(2): 11.7, 18.1, 22.8, 29.6, and 22.0% of CP for 0, 1h, 2h, 4h, and 20 h, respectively) and reduced quantities of the less soluble fractions (B(3): 30.2, 18.1, 10.8, 5.5, and 10.2% of CP; C: 9.4, 7.5, 7.6, 8.8, and 7.9% of CP for 0, 1h

  12. Landfill disposal systems

    PubMed Central

    Slimak, Karen M.

    1978-01-01

    The current status of landfill disposal of hazardous wastes in the United States is indicated by presenting descriptions of six operating landfills. These landfills illustrate the variety of techniques that exist in landfill disposal of hazardous wastes. Although some landfills more effectively isolate hazardous waste than others, all landfills must deal with the following problems. Leachate from hazardous waste landfills is generally highly polluted. Most landfills attempt to contain leachate at the site and prevent its discharge to surface or groundwaters. To retain leachate within a disposal area, subsurface barriers of materials such as concrete, asphalt, butyl rubber, vinyl, and clay are used. It is difficult to assure that these materials can seal a landfill indefinitely. When a subsurface barrier fails, the leachate enters the groundwater in a concentrated, narrow band which may bypass monitoring wells. Once a subsurface barrier has failed, repairs are time-consuming and costly, since the waste above the repair site may have to be removed. The central problem in landfill disposal is leachate control. Recent emphasis has been on developing subsurface barriers to contain the wastes and any leachate. Future emphasis should also be on techniques for removing water from hazardous wastes before they are placed in landfills, and on methods for preventing contact of the wastes with water during and after disposal operations. When leachate is eliminated, the problems of monitoring, and subsurface barrier failure and repair can be addressed, and a waste can be effectively isolated. A surface seal landfill design is recommended for maintaining the dry state of solid hazardous wastes and for controlling leachate. Any impervious liner is utilized over the top of the landfill to prevent surface water from seeping into the waste. The surface barrier is also the site where monitoring and maintenance activities are focused. Barrier failure can be detected by visual

  13. Windscale pile reactors - Decommissioning progress on a fifty year legacy

    SciTech Connect

    Sexton, Richard J.

    2007-07-01

    The decommissioning of the Windscale Pile 1 reactor, fifty years after the 1957 fire, is one of the most technically challenging decommissioning projects in the UK, if not the world. This paper presents a summary of the 1957 Windscale Pile 1 accident, its unique challenges and a new technical approach developed to safely and efficiently decommission the two Windscale Pile Reactors. The reactors will be decommissioned using a top down approach that employs an array of light weight, carbon fiber, high payload robotic arms to remove the damaged fuel, the graphite core, activated metals and concrete. This relatively conventional decommissioning approach has been made possible by a recently completed technical assessment of reactor core fire and criticality risk which concluded that these types of events are not credible if relatively simple controls are applied. This paper presents an overview of the design, manufacture and testing of equipment to remove the estimated 15 tons of fire damaged fuel and isotopes from the Pile 1 reactor. The paper also discusses recently conducted characterization activities which have allowed for a refined waste estimate and conditioning strategy. These data and an innovative approach have resulted in a significant reduction in the estimated project cost and schedule. (authors)

  14. The Chernobyl NPP decommissioning: Current status and alternatives

    SciTech Connect

    Mikolaitchouk, H.; Steinberg, N.

    1996-08-01

    After the Chernobyl accident of April 26, 1986, many contradictory decisions were taken concerning the Chernobyl nuclear power plant (NPP) future. The principal source of contradictions was a deadline for a final shutdown of the Chernobyl NPP units. Alterations in a political and socioeconomic environment resulted in the latest decision of the Ukrainian Authorities about 2000 as a deadline for a beginning of the Chernobyl NPP decommissioning. The date seems a sound compromise among the parties concerned. However, in order to meet the data a lot of work should be done. First of all, a decommissioning strategy has to be established. The problem is complicated due to both site-specific aspects and an absence of proven solutions for the RBMK-type reactor decommissioning. In the paper the problem of decommissioning option selection is considered taking into account an influence of the following factors: relevant legislative and regulatory requirements; resources required to carry out decommissioning (man-power, equipment, technologies, waste management infrastructure, etc.); radiological and physical status of the plant, including structural integrity and predictable age and weather effects; impact of planned activities at the destroyed unit 4 and within the 30-km exclusion zone of the Chernobyl NPP; planed use of the site; socio-economic considerations.

  15. Action Memorandum for Decommissioning of TAN-607 Hot Shop Area

    SciTech Connect

    M. A. Pinzel

    2007-05-01

    The Department of Energy is documenting the selection of an alternative for the TAN-607 Hot Shop Area using a Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA). The scope of the removal action is limited to TAN-607 Hot Shop Area. An engineering evaluation/cost analysis (EE/CA) has assisted the Department of Energy Idaho Operations Office in identifuomg the most effective method for performing the decommissioning of this structure whose mission has ended. TAN-607 Hot Shop Area is located at Test Area North Technical Support Facility within the Idaho National Laboratory Site. The selected alternative consists of demolishing the TAN-607 aboveground structures and components, removing belowground noninert components (e.g. wood products), and removing the radiologically contaminated debris that does not meet remedial action objectives (RAOs), as defined in the Record of Decision Amendment for the V-Tanks and Explanation of Significant Differences for the PM-2A Tanks at Test Area North, Operable Unit 1-10.

  16. Recycling Of Uranium- And Plutonium-Contaminated Metals From Decommissioning Of The Hanau Fuel Fabrication Plant

    SciTech Connect

    Kluth, T.; Quade, U.; Lederbrink, F. W.

    2003-02-26

    Decommissioning of a nuclear facility comprises not only actual dismantling but also, above all, management of the resulting residual materials and waste. Siemens Decommissioning Projects (DP) in Hanau has been involved in this task since 1995 when the decision was taken to decommission and dismantle the Hanau Fuel Fabrication Plant. Due to the decommissioning, large amounts of contaminated steel scrap have to be managed. The contamination of this metal scrap can be found almost exclusively in the form of surface contamination. Various decontamination technologies are involved, as there are blasting and wiping. Often these methods are not sufficient to meet the free release limits. In these cases, SIEMENS has decided to melt the scrap at Siempelkamp's melting plant. The plant is licensed according to the German Radiation Protection Ordinance Section 7 (issue of 20.07.2001). The furnace is a medium frequency induction type with a load capacity of 3.2 t and a throughput of 2 t/h for steel melting. For safety reasons, the furnace is widely operated by remote handling. A highly efficient filter system of cyclone, bag filter and HEPA-filter in two lines retains the dust and aerosol activity from the off-gas system. The slag is solidified at the surface of the melt and gripped before pouring the liquid iron into a chill. Since 1989, in total 15,000 t have been molten in the plant, 2,000 t of them having been contaminated steel scrap from the decommissioning of fuel fabrication plants. Decontamination factors could be achieved between 80 and 100 by the high affinity of the uranium to the slag former. The activity is transferred to the slag up to nearly 100 %. Samples taken from metal, slag and dust are analyzed by gamma measurements of the 186 keV line of U235 and the 1001 keV line of Pa234m for U238. All produced ingots showed a remaining activity less than 1 Bq/g and could be released for industrial reuse.

  17. Strategy for decommissioning of the glove-boxes in the Belgonucleaire Dessel MOX fuel fabrication plant

    SciTech Connect

    Vandergheynst, Alain; Cuchet, Jean-Marie

    2007-07-01

    Available in abstract form only. Full text of publication follows: BELGONUCLEAIRE has been operating the Dessel plant from the mid-80's at industrial scale. In this period, over 35 metric tons of plutonium (HM) was processed into almost 100 reloads of MOX fuel for commercial West-European Light Water Reactors. In late 2005, the decision was made to stop the production because of the shortage of MOX fuel market remaining accessible to BELGONUCLEAIRE after the successive capacity increases of the MELOX plant (France) and the commissioning of the SMP plant (UK). As a significant part of the decommissioning project of this Dessel plant, about 170 medium-sized glove-boxes are planned for dismantling. In this paper, after having reviewed the different specifications of {+-}-contaminated waste in Belgium, the authors introduce the different options considered for cleaning, size reduction and packaging of the glove-boxes, and the main decision criteria (process, {alpha}-containment, mechanization and radiation protection, safety aspects, generation of secondary waste, etc) are analyzed. The selected strategy consists in using cold cutting techniques and manual operation in shielded disposable glove-tents, and packaging {alpha}-waste in 200-liter drums for off-site conditioning and intermediate disposal. (authors)

  18. The shielding design process--new plants to decommissioning.

    PubMed

    Jeffries, Graham; Cooper, Andrew; Hobson, John

    2005-01-01

    BNFL have over 25 years experience of designing nuclear plant for the whole-fuel cycle. In the UK, a Nuclear Decommissioning Authority (NDA) is to be set up to ensure that Britain's nuclear legacy is cleaned up safely, securely and cost effectively. The resulting challenges and opportunities for shielding design will be substantial as the shielding design process was originally devised for the design of new plants. Although its underlying principles are equally applicable to decommissioning and remediation of old plants, there are many aspects of detailed application that need to adapt to this radically different operating environment. The paper describes both the common issues and the different challenges of shielding design at different operational phases. Sample applications will be presented of both new plant and decommissioning projects that illustrate not only the robust nature of the processes being used, but also how they lead to cost-effective solutions making a substantive and appropriate contribution to radiological protection goals.

  19. DEACTIVATION AND DECOMMISSIONING PLANNING AND ANALYSIS WITH GEOGRAPHIC INFORMATION SYSTEMS

    SciTech Connect

    Bollinger, J; William Austin, W; Larry Koffman, L

    2007-09-17

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dispositioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dispositioning infrastructure and for reporting the future status of impacted facilities.

  20. Beneficial Re-use of Decommissioned Former Nuclear Facilities

    SciTech Connect

    Boing, L.E.

    1997-06-01

    With the decision to decommission a nuclear facility, it is necessary to evaluate whether to fully demolish a facility or to re-use the facility in some capacity. This evaluation is often primarily driven by both the past mission of the site and the facility and the site's perceived future mission. In the case where the facility to be decommissioned is located within a large research or industrial complex and represents a significant resource to the site's future mission, it may be a perfect candidate to be re-used in some fashion. However, if the site is a rather remote older facility with little chance of being modified to today's standards for its re-use, the chances for its re-use will be substantially reduced. In this presentation, some specific cases of former nuclear facilities being decommissioned and re-used will be reviewed and some factors required to be considered in making this decision will be reviewed.

  1. Completion of decommissioning: Monitoring for site release and license termination

    SciTech Connect

    Boing, L.E.

    1997-08-01

    To request termination of a license upon completion of dismantling or decommissioning activities, documenting any residual radioactivity to show that the levels are environmentally acceptable will be necessary. When the regulators approve the decommissioning plan, they establish what the release criteria for the decommissioned site will be at the time of the site release and license termination. The criteria are numeric guidelines for direct radiation in soils and on surfaces. If the regulatory body finds that the measured on-site values are below the guidelines, the site will be acceptable for unrestricted release (no radiological controls or future use). If areas are found above those values, more decontamination or cleanup of these areas may be required unless the regulatory body grants an exemption.

  2. The examination of the spread of the leachates coming out of a solid waste disposal area on the ground with geophysical and geochemical methods (Sivas, Turkey)

    NASA Astrophysics Data System (ADS)

    Özel, Sevda; Yılmaz, Ali; Emin Candansayar, M.

    2017-03-01

    This study has been conducted in the irregular solid waste disposal area in the city of Sivas. The pollution spread formed by the leachates coming out of the disposal area has been examined with geophysical and geochemical works in this study. For this reason, the spread of the leachate pollution expanding in different geological units at both sides of a creek on the ground has been examined. For this purpose, the pollution spread has been examined with the methods of Direct Current Resistivity (DCR) and Electromagnetic Conductivity (EMC) and soil analyses. In the DCR method, 2D inversion of each sounding-profile datum measured alongside the lines parallel to each other and 3D inversion of the data measured in all the lines have been used in the interpretations. Apparent conductivity map has been attained from EMC measurements. The results of heavy metal analyses in the soil samples taken alongside the Haçin Creek have been assessed with the Spider diagram method. It has been determined that the flow of the leachate from geophysical models is in a SE direction and towards Kızılırmak and it continues vertically deeper than 4 m. In addition, it has been understood that the flow direction of the leachate is inspected by the geological structures. It has been understood from the geochemical results that the pollution in the soil stems from the leachate. In this way, it has been observed that the underground and surface water resources in the territory are under the threat of the pollution occurring due to the leachate.

  3. Decommissioning of Active Ventilation Systems in a Nuclear R and D Facility to Prepare for Building Demolition (Whiteshell Laboratories Decommissioning Project, Canada) - 13073

    SciTech Connect

    Wilcox, Brian; May, Doug; Howlett, Don; Bilinsky, Dennis

    2013-07-01

    Whiteshell Laboratories (WL) is a nuclear research establishment owned by the Canadian government and operated by Atomic Energy of Canada Limited (AECL) since the early 1960's. WL is currently under a decommissioning license and the mandate is to remediate the nuclear legacy liabilities in a safe and cost effective manner. The WL Project is the first major nuclear decommissioning project in Canada. A major initiative underway is to decommission and demolish the main R and D Laboratory complex. The Building 300 R and D complex was constructed to accommodate laboratories and offices which were mainly used for research and development associated with organic-cooled reactors, nuclear fuel waste management, reactor safety, advanced fuel cycles and other applications of nuclear energy. Building 300 is a three storey structure of approximately 16,000 m{sup 2}. In order to proceed with building demolition, the contaminated systems inside the building have to be characterized, removed, and the waste managed. There is a significant focus on volume reduction of radioactive waste for the WL project. The active ventilation system is one of the significant contaminated systems in Building 300 that requires decommissioning and removal. The active ventilation system was designed to manage hazardous fumes and radioactivity from ventilation devices (e.g., fume hoods, snorkels and glove boxes) and to prevent the escape of airborne hazardous material outside of the laboratory boundary in the event of an upset condition. The system includes over 200 ventilation devices and 32 active exhaust fan units and high efficiency particulate air (HEPA) filters. The strategy to remove the ventilation system was to work from the laboratory end back to the fan/filter system. Each ventilation duct was radiologically characterized. Fogging was used to minimize loose contamination. Sections of the duct were removed by various cutting methods and bagged for temporary storage prior to disposition

  4. 30 CFR 585.1019 - What are the decommissioning requirements for an Alternate Use RUE?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... an Alternate Use RUE? 585.1019 Section 585.1019 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Facilities Decommissioning An Alternate Use Rue § 585.1019 What are the decommissioning requirements for an Alternate Use RUE? (a) Decommissioning requirements will be determined by BOEM on a case-by-case basis,...

  5. 30 CFR 285.1019 - What are the decommissioning requirements for an Alternate Use RUE?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... an Alternate Use RUE? 285.1019 Section 285.1019 Mineral Resources MINERALS MANAGEMENT SERVICE... Facilities Decommissioning An Alternate Use Rue § 285.1019 What are the decommissioning requirements for an Alternate Use RUE? (a) Decommissioning requirements will be determined by MMS on a case-by-case basis,...

  6. 30 CFR 585.1019 - What are the decommissioning requirements for an Alternate Use RUE?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... an Alternate Use RUE? 585.1019 Section 585.1019 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Facilities Decommissioning An Alternate Use Rue § 585.1019 What are the decommissioning requirements for an Alternate Use RUE? (a) Decommissioning requirements will be determined by BOEM on a case-by-case basis,...

  7. 30 CFR 285.1019 - What are the decommissioning requirements for an Alternate Use RUE?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... an Alternate Use RUE? 285.1019 Section 285.1019 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Activities Using Existing OCS Facilities Decommissioning An Alternate Use Rue § 285.1019 What are the decommissioning requirements for an Alternate Use RUE? (a) Decommissioning requirements will be determined by...

  8. 30 CFR 585.1019 - What are the decommissioning requirements for an Alternate Use RUE?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... an Alternate Use RUE? 585.1019 Section 585.1019 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... Facilities Decommissioning An Alternate Use Rue § 585.1019 What are the decommissioning requirements for an Alternate Use RUE? (a) Decommissioning requirements will be determined by BOEM on a case-by-case basis,...

  9. A costing model for offshore decommissioning in California.

    PubMed

    Bressler, Andrew; Bernstein, Brock B

    2015-10-01

    California's 27 offshore oil and gas platforms will reach the end of their useful lifetimes sometime in the near future and will require decommissioning. Although existing leases require complete removal of all platforms and associated infrastructure, the underlying laws and regulations have changed in recent years to allow a number of alternative uses after decommissioning. In particular, AB 2503, signed into law in September 2010, provides for a rigs-to-reefs program that allows the state to accept ownership of decommissioned platforms in federal waters. Decisions about whether to remove platforms completely or leave them in place as artificial reefs will depend in part on the relative cost of the 2 options. In this study, we describe the design and use of a mathematical decision model that provides detailed cost estimates of complete and partial removal (to 85 feet below the water line) for California's offshore platforms. The model, PLATFORM, is loaded with Bureau of Safety and Environmental Enforcement (BSEE) and Bureau of Ocean Energy Management (BOEM) costs for complete removal, along with costs for partial removal calculated for this study and estimates of the uncertainty associated with decommissioning cost estimates. PLATFORM allows users to define a wide range of decommissioning and costing scenarios (e.g., number of platforms, choice of heavy lift vessel, shell mound removal, reef enhancement). As a benchmark cost, complete removal of all 27 offshore platforms, grouped into the 7 decommissioning projects defined by the most recent federal cost estimates produced in 2010, would cost an estimated $1.09 billion, whereas partial removal of these platforms, grouped into the same set of projects, would cost $478 million, with avoided costs of $616 million (with minor rounding).

  10. The involvement of SCK-CEN in decommissioning projects

    SciTech Connect

    Noynaert, Luc; Cornelissen, Rene; Dadoumont, Jerome; Van den Dungen, Kurt

    2013-07-01

    SCK-CEN is the Belgian Nuclear Research Centre. Founded in the mid-fifties, it has accumulated experience and know-how in all fields of the nuclear power production: in the neutronics calculation, radiation protection, waste management, fuel performance and analysis, nuclear measurements, radiochemistry, reactor technology, etc. Since 1989, SCK-CEN has launched Decommissioning activities to deal with the Technical Liabilities created by 40 years of operation. The main projects started were: - the dismantling of the BR3 PWR reactor; - the dismantling of active laboratories and the decontamination of buildings for unrestricted reuse; - the management of the waste arising from the refurbishment activities of the BR2, especially the management of the high active beryllium matrix. In 1989, the BR3 reactor, a Pressurized Water Reactor, was selected by the European Commission as one of the four pilot dismantling projects in the framework of the EC five year RTD program on dismantling nuclear installations. Through this project, SCK-CEN has built up a broad know-how in dismantling and decommissioning operations. This know how concerns the decontamination for dose rate reduction and/or free release of materials, tele-operated techniques for cutting highly activated components of a reactor, concrete decontamination techniques, characterization techniques of radioactive waste or for free release of components and development of decommissioning management and record-keeping of material streams and of nuclear material accountancy. SCK-CEN is now actively involved in other decommissioning projects in Belgium and in expertise abroad. After giving an overview of the main achievements and the perspectives of the decommissioning of the BR3 reactor, the paper intends to present the involvement of SCK-CEN in the other decommissioning projects and to give an overview of our activities and capacities. (authors)

  11. Alternatives for treatment, storage and disposal of Greater-Than-Class C Low-Level Waste at West Valley, New York

    SciTech Connect

    Ross, W.A.; Janke, D.S.

    1991-02-01

    The West Valley Demonstration Project has generated and will continue to generate commercial Greater-Than-Class C Low-Level Waste from both vitrification operations and decommissioning operations. This paper summarizes information on the quantity of wastes, and describes alternatives for interim storage, treatment, and disposal. Waste management systems comprised of treatment, storage, and disposal options are identified, and the first order economics associated with the systems are evaluated. 5 refs., 2 tabs.

  12. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2b: Earth-mounded concrete bunkers

    SciTech Connect

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1988-01-01

    The US Army Engineers Waterways Experiment Station (WES) and US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the earth-mounded concrete bunker (EMCB) alternative method of low-level radioactive waste (LLW) disposal. An EMCB is generally described as a reinforced concrete vault placed below grade, underneath a tumulus, surrounded by filter-blanket and drainage zones. The tumulus is covered over with a low permeability cover layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the EMCB structure through material quality and durability considerations. Specific design review criteria have been developed in detail for each of the eight major categories. 63 refs., 13 figs., 2 tabs.

  13. Recommendations to the NRC for review criteria for alternative methods of low-level radioactive waste disposal: Task 2a, Below-ground vaults

    SciTech Connect

    Denson, R.H.; Bennett, R.D.; Wamsley, R.M.; Bean, D.L.; Ainsworth, D.L.

    1987-12-01

    The US Army Engineer Waterways Experiment Station (WES) and the US Army Engineer Division, Huntsville (HNDED) have developed general design criteria and specific design review criteria for the below-ground vault (BGV) alternative method of low-level radioactive waste (LLW) disposal. A BGV is a reinforced concrete vault (floor, walls, and roof) placed underground below the frost line, and above the water table, surrounded by filter blanket and drainage zones and covered with a low permeability earth layer and top soil with vegetation. Eight major review criteria categories have been developed ranging from the loads imposed on the BGV structure through material quality and durability considerations. Specific design review criteria have been developed in detail for seven of the eight major categories. 59 refs., 14 figs., 2 tabs.

  14. Technology demonstrations in the Decontamination and Decommissioning Focus Area

    SciTech Connect

    Bossart, S.J.

    1996-02-01

    This paper describes three large-scale demonstration projects sponsored jointly by the Decontamination and Decommissioning Focus Area (DDFA), and the three US Department of Energy (DOE) Operations Offices that successfully offered to deactivate or decommission (D&D) one of its facilities using a combination of innovative and commercial D&D technologies. The paper also includes discussions on recent technology demonstrations for an Advanced Worker Protection System, an Electrohydraulic Scabbling System, and a Pipe Explorer{trademark}. The references at the conclusion of this paper should be consulted for more detailed information about the large-scale demonstration projects and recent technology demonstrations sponsored by the DDFA.

  15. Regulatory Reform and License Termination Planning in Decommissioning

    SciTech Connect

    Michael J. Meisner

    2000-06-04

    Decommissioning of commercial nuclear power plants (NPPs) must be safe and cost-effective and consider the needs of a wide range of stakeholders. The creative tension among these objectives has provided opportunities to reform the way these plants are regulated and managed in decommissioning. Enlightened and visionary leaders from the U.S. Nuclear Regulatory Commission (NRC) and industry are seizing these opportunities to create new paradigms for risk-informed regulation; creative stakeholder involvement; and effective, end-state focused, license termination planning.

  16. Regulatory requirements affecting disposal of asbestos-containing waste

    SciTech Connect

    1995-11-01

    Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  18. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  19. Jose Cabrera dismantling and decommissioning project

    SciTech Connect

    Ondaro, Manuel

    2013-07-01

    The Jose Cabrera Nuclear Power Plant (NPP) was the first commercial power reactor (Westinghouse 1 loop PWR 510 MWth, 160 MWe) commissioned in Spain and provided the base for future development and training. The reactor construction started in 1963 and it was officially on-line by 1969. The NPP operated from 1969 until 2006 when it became the first reactor to be shut down after completing its operational period. The containment is reinforced concrete with a stainless steel head. In 2010 responsibility for D and D was transferred to Enresa to achieve IAEA level 3 (a green field site available for unrestricted re-uses) by 2017. Of the total of more than 104,000 tons of materials that will be generated during dismantling, it is estimated that only ∼4,000 tons will be radioactive waste, some of which, 40 t are considered as intermediate level long-lived wastes and the rest (3,960 t) will be categorized as VLLW and ILLW. The Project is divided into five phases: Phase 0 - Removal of fuel and preliminary work.. Phase 1 - Preparatory Activities for D and D. complete. Phase 2 - Dismantling of Major Components. Phase 3 - Removal of Auxiliary Installations, Decontamination and Demolition. Phase 4 - Environmental Restoration. Phase 2, is currently ongoing (50% completed). To manage the diverse aspects of decommissioning operations, Enresa uses an internally developed computerized project management tool. The tool, based on knowledge gathered from other Enresa projects, can process operations management, maintenance operations, materials, waste, storage areas, procedures, work permits, operator dose management and records. Enresa considers that communication is important for both internal and external stakeholder relations and can be used to inform, to neutralize negative opinions and attitudes, to remove false expectations and for training. Enresa has created a new multi-purpose area (exhibition/visitor centre) and encourages visits from the public, local schools, local and

  20. Decommissioning Project of Bohunice A1 NPP

    SciTech Connect

    Stubna, M.; Pekar, A.; Moravek, J.; Spirko, M.

    2002-02-26

    1977 to terminate plant operation. The decision on the A1 plant decommissioning was issued in 1979.

  1. DEVELOPMENT, VALIDATION AND FIELD USE OF NOVEL METHOD FOR EXTRACTING AND ANALYZING ORGANOPHOSPHATE (OP) AND PYRETHROID PESTICIDE METABOLITES AND CREATININE FROM COMMERCIALLY AVAILABLE DISPOSABLE DIAPERS

    EPA Science Inventory

    The ability to efficiently extract urine from disposable diapers ensures an easy to use urine collection protocol and ready compliance for caregivers of very young children. The use of disposable diapers is also desirable because of their high capacity- urine is retained effecti...

  2. Tank Waste Disposal Program redefinition

    SciTech Connect

    Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H.; Holton, L.K.; Hunter, V.L.; Triplett, M.B.

    1991-10-01

    The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

  3. 26 CFR 1.468A-5 - Nuclear decommissioning fund qualification requirements; prohibitions against self-dealing...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... taxpayer for decommissioning costs of the nuclear power plant to which the nuclear decommissioning fund... premiums on a policy to pay for the nuclear decommissioning costs of a nuclear power plant. Such term also... decommissioning costs of the nuclear power plant to which the nuclear......

  4. 26 CFR 1.468A-5 - Nuclear decommissioning fund qualification requirements; prohibitions against self-dealing...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... taxpayer for decommissioning costs of the nuclear power plant to which the nuclear decommissioning fund... premiums on a policy to pay for the nuclear decommissioning costs of a nuclear power plant. Such term also... decommissioning costs of the nuclear power plant to which the nuclear......

  5. 26 CFR 1.468A-5 - Nuclear decommissioning fund qualification requirements; prohibitions against self-dealing...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... taxpayer for decommissioning costs of the nuclear power plant to which the nuclear decommissioning fund... premiums on a policy to pay for the nuclear decommissioning costs of a nuclear power plant. Such term also... decommissioning costs of the nuclear power plant to which the nuclear......

  6. 26 CFR 1.468A-5 - Nuclear decommissioning fund qualification requirements; prohibitions against self-dealing...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... taxpayer for decommissioning costs of the nuclear power plant to which the nuclear decommissioning fund... premiums on a policy to pay for the nuclear decommissioning costs of a nuclear power plant. Such term also... decommissioning costs of the nuclear power plant to which the nuclear......

  7. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  8. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  9. 10 CFR 72.130 - Criteria for decommissioning.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Criteria for decommissioning. 72.130 Section 72.130 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR THE INDEPENDENT STORAGE OF SPENT NUCLEAR FUEL, HIGH-LEVEL RADIOACTIVE WASTE, AND REACTOR-RELATED GREATER THAN CLASS C WASTE General...

  10. 77 FR 8751 - Guidance for Decommissioning Planning During Operations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-15

    ... Planning During Operations AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide; re... Commission (NRC) re-issued Draft Regulatory Guide, DG-4014, ``Decommissioning Planning During Operations'' in... Planning Rule. DATES: Submit comments by March 30, 2012. Comments received after this date will...

  11. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 1 2012-04-01 2012-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  12. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 1 2013-04-01 2013-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  13. 18 CFR 2.24 - Project decommissioning at relicensing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Project decommissioning at relicensing. 2.24 Section 2.24 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY GENERAL RULES GENERAL POLICY AND INTERPRETATIONS Statements of...

  14. A modified method for COD determination of solid waste, using a commercial COD kit and an adapted disposable weighing support.

    PubMed

    André, L; Pauss, A; Ribeiro, T

    2017-03-01

    The chemical oxygen demand (COD) is an essential parameter in waste management, particularly when monitoring wet anaerobic digestion processes. An adapted method to determine COD was developed for solid waste (total solids >15%). This method used commercial COD tubes and did not require sample dilution. A homemade plastic weighing support was used to transfer the solid sample into COD tubes. Potassium hydrogen phthalate and glucose used as standards showed an excellent repeatability. A small underestimation of the theoretical COD value (standard values around 5% lower than theoretical values) was also observed, mainly due to the intrinsic COD of the weighing support and to measurement uncertainties. The adapted COD method was tested using various solid wastes in the range of 1-8 mgCOD, determining the COD of dried and ground cellulose, cattle manure, straw and a mixed-substrate sample. This new adapted method could be used to monitor and design dry anaerobic digestion processes.

  15. Medications at School: Disposing of Pharmaceutical Waste

    ERIC Educational Resources Information Center

    Taras, Howard; Haste, Nina M.; Berry, Angela T.; Tran, Jennifer; Singh, Renu F.

    2014-01-01

    Background: This project quantified and categorized medications left unclaimed by students at the end of the school year. It determined the feasibility of a model medication disposal program and assessed school nurses' perceptions of environmentally responsible medication disposal. Methods: At a large urban school district all unclaimed…

  16. Technology, safety, and costs of decommissioning a reference large irradiator and reference sealed sources

    SciTech Connect

    Haffner, D.R.; Villelgas, A.J.

    1996-01-01

    This report contains the results of a study sponsored by the US Nuclear Regulatory Commission (NRC) to examine the decommissioning of large radioactive irradiators and their respective facilities, and a broad spectrum of sealed radioactive sources and their respective devices. Conceptual decommissioning activities are identified, and the technology, safety, and costs (in early 1993 dollars) associated with decommissioning the reference large irradiator and sealed source facilities are evaluated. The study provides bases and background data for possible future NRC rulemaking regarding decommissioning, for evaluation of the reasonableness of planned decommissioning actions, and for determining if adequate funds are reserved by the licensees for decommissioning of their large irradiator or sealed source facilities. Another purpose of this study is to provide background and information to assist licensees in planning and carrying out the decommissioning of their sealed radioactive sources and respective facilities.

  17. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    SciTech Connect

    M.E. Lumia; C.A. Gentile

    2002-01-18

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  18. Decommissioning of the BR3 reactor: status and perspectives

    SciTech Connect

    Noynaert, L.; Verstraeten, I.

    2007-07-01

    The BR3 plant at Mol in Belgium built at the end of the fifties was the first PWR plant built outside the USA. The reactor had a small net power output (10 MWe) but comprised all the loops and features of a commercial PWR plant. The BR3 plant was operated with the main objective of testing advanced PWR fuels under irradiation conditions similar to those encountered in large commercial PWR plants. The reactor was started in 1962 and shut down in 1987 after 25 years of continuous operation. Since 1989, SCK.CEN is decommissioning the BR3 PWR research reactor. The dismantling of the metallic components including reactor pressure vessel and internals is completed and extensively reported in the literature. The dismantling of auxiliary components and the decontamination of parts of the infrastructure are now going on. The decommissioning progress is continuously monitored and costs and strategy are regularly reassessed. The first part of the paper describes the main results and lessons learned from the reassessment exercises performed in 1994, 1999, 2004 and 2007. Impacts of changes in legal framework on the decommissioning costs will be addressed. These changes concern e.g. licensing aspects, clearance levels, waste management... The middle part of the paper discusses the management of activated and/or contaminated concrete. The costing exercise performed in 1995 highlighted that the management of activated and contaminated concrete is the second main cost item after the dismantling of the reactor pressure vessel and internals. Different possible solutions were studied. These are evacuation as radioactive waste with or without supercompaction, recycling this 'radioactive' grout or concrete for conditioning of radioactive waste e.g. conditioning of metallic waste. The paper will give the results of the cost-benefit analysis made to select the solution retained. The last part of the paper will discuss the end goal of the decommissioning of the BR3. In the final

  19. Decommissioning of U.S. uranium production facilities

    SciTech Connect

    Not Available

    1995-02-01

    From 1980 to 1993, the domestic production of uranium declined from almost 44 million pounds U{sub 3}O{sub 8} to about 3 million pounds. This retrenchment of the U.S. uranium industry resulted in the permanent closing of many uranium-producing facilities. Current low uranium prices, excess world supply, and low expectations for future uranium demand indicate that it is unlikely existing plants will be reopened. Because of this situation, these facilities eventually will have to be decommissioned. The Uranium Mill Tailings and Radiation Control Act of 1978 (UMTRCA) vests the U.S. Environmental Protection Agency (EPA) with overall responsibility for establishing environmental standards for decommissioning of uranium production facilities. UMTRCA also gave the U.S. Nuclear Regulatory Commission (NRC) the responsibility for licensing and regulating uranium production and related activities, including decommissioning. Because there are many issues associated with decommissioning-environmental, political, and financial-this report will concentrate on the answers to three questions: (1) What is required? (2) How is the process implemented? (3) What are the costs? Regulatory control is exercised principally through the NRC licensing process. Before receiving a license to construct and operate an uranium producing facility, the applicant is required to present a decommissioning plan to the NRC. Once the plan is approved, the licensee must post a surety to guarantee that funds will be available to execute the plan and reclaim the site. This report by the Energy Information Administration (EIA) represents the most comprehensive study on this topic by analyzing data on 33 (out of 43) uranium production facilities located in Colorado, Nebraska, New Mexico, South Dakota, Texas, Utah, and Washington.

  20. Atmospheric discharges from nuclear facilities during decommissioning: German experiences

    SciTech Connect

    Braun, H.; Goertz, R.; Weil, L.

    1997-08-01

    In Germany, a substantial amount of experience is available with planning, licensing and realization of decommissioning projects. In total, a number of 18 nuclear power plants including prototype facilities as well as 6 research reactors and 3 fuel cycle facilities have been shut down finally and are at different stages of decommissioning. Only recently the final {open_quotes}green field{close_quotes} stage of the Niederaichbach Nuclear Power Plant total dismantlement project has been achieved. From the regulatory point of view, a survey of the decommissioning experience in Germany is presented highlighting the aspects of production and retention of airborne radioactivity. Nuclear air cleaning technology, discharge limits prescribed in licences and actual discharges are presented. As compared to operation, the composition of the discharged radioactivity is different as well as the off-gas discharge rate. In practically all cases, there is no significant amount of short-lived radionuclides. The discussion further includes lessons learned, for example inadvertent discharges of radionuclides expected not to be in the plants inventory. It is demonstrated that, as for operation of nuclear power plants, the limits prescribed in the Ordinance on Radiological Protection can be met using existing air cleaning technology, Optimization of protection results in public exposures substantially below the limits. In the frame of the regulatory investigation programme a study has been conducted to assess the airborne radioactivity created during certain decommissioning activities like decontamination, segmentation and handling of contaminated or activated parts. The essential results of this study are presented, which are supposed to support planning for decommissioning, for LWRs, Co-60 and Cs-137 are expected to be the dominant radionuclides in airborne discharges. 18 refs., 2 figs., 1 tab.

  1. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect

    Michael R. Kruzic

    2008-06-01

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100

  2. Drilling fluid disposal

    SciTech Connect

    Nesbitt, L.E.; Sander, J.A.

    1981-01-01

    This paper attempts to review the effect of the regulatory process on the selection and handling of drilling fluids for proper disposal. It is shown that a maze of regulations and regulatory agencies coupled with uncertainty in interpretation of environmental data and an evolving system of disposal engineering will require industry action to monitor the area and derive a solid engineering basis for disposal of spent drilling fluid. 16 refs.

  3. Disposables in downstream processing.

    PubMed

    Gottschalk, Uwe

    2009-01-01

    Disposable equipment has been used for many years in the downstream processing industry, but mainly for filtration and buffer/media storage. Over the last decade, there has been increasing interest in the use of disposable concepts for chromatography, replacing steel and glass fixed systems with disposable plastic modules that can be discarded once exhausted, fouled or contaminated. These modules save on cleaning and validation costs, and their reduce footprints reduce buffer consumption, water for injection, labor and facility space, contributing to an overall reduction in expenditure that lowers the cost of goods. This chapter examines the practical and economic benefits of disposable modules in downstream processing.

  4. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, November 1, 1985--March 31, 1986

    SciTech Connect

    Blake, R.; Revis, N.

    1986-12-31

    This progress report contains an account of recent research efforts carried out at the Oak Ridge Research Institute, to raise antibodies in New Zealand White Rabbits which are specific for various strains of Thiobacillus ferrooxidans bacteria. It is then intended to use the antibodies, in a subsequent phase of the project, to develop one or more ELISAs, which would be used to analyze, both in the laboratory and in the field, the numbers and extent of dispersion of these microorganisms at acid mine drainage sites. This is important because it is the metabolic consequences of unrestricted dissemination of these bacteria which are responsible in large measure for the environmentally damaging acid run-off. Efforts to control the proliferation of these microorganisms have been relatively unfocused up to the present, because of the lack of suitably discriminating methods of assaying the effects of treatment. In this report, the authors describe the work carried out in the first section of the project, which has been concerned with the raising of the antibodies to the Thiobacillus ferrooxidans cultures. They given an account of how the various cultures were grown, how they were treated before being injected into rabbits, the injection protocol, how the animals were bled, and how the formation of IgG and its degree of specificity was assessed. Finally, they describe how large quantities of the various IgG fractions were prepared, and how and where they were stored.

  5. Methods for environmental monitoring of DOE waste disposal and storage sites. Semiannual progress report, April 1, 1988--September 30, 1988

    SciTech Connect

    Hadden, C.T.; Benson, S.B.; Osborne, T.R.; Revis, N.W.

    1988-12-31

    Perchloroethylene (PCE) is a persistent environmental contaminant whose chemical stability and hydrophobicity have made it difficult to remove from contaminated groundwater. PCE is also toxic and has been implicated as a carcinogen. This study was aimed at assessing methods for biological degradation of PCE. As a part of the study, the authors have characterized possible products of the degradation of PCE, and have determined the effects of detergents and solvents on the water solubility of PCE and on the toxic effects of PCE on bacteria. The authors have also isolated PCE-resistant microorganisms from monitoring wells at Y-12. To date all of the PCE-resistant bacteria isolated from the monitoring wells have been of the genus Bacillus. One of these isolates appears to be able to degrade PCE, as indicated by the disappearance of PCE from cultures of growing cells. The organism does not grow on PCE as the sole carbon source, so degradation of the solvent must occur by cometabolism.

  6. NuFab{trademark} anti-contamination suit - OST reference No. 1855. Deactivation and decommissioning focus area

    SciTech Connect

    1998-02-01

    Radiation workers at all US Department of Energy (DOE) sites require some form of protective clothing when performing radiological work. A large number of contaminated facilities at DOE site are currently or will eventually undergo some form of decontamination and decommissioning (D&D), requiring some type of protective clothing, often in multiple layers. Protective clothing that does not allow perspiration to escape causes heat stress, which lowers worker comfort and productivity. This report describes the NuFab{trademark} anti-contamination. The suit is a one-piece, disposable, breathable, waterproof coverall with a single front zipper. Constructed of tri-laminated composite material using spun-bonded polypropylene and microporous film layers, the suit is certified as incineratorable.

  7. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    SciTech Connect

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-control and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.

  8. Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup

    SciTech Connect

    Ivan R. Thomas

    2010-07-01

    INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge

  9. Responding To Changes in the Decommissioning Plans for Demolition of a Former Active Handling Building at The United Kingdom Atomic Energy Establishment Winfrith

    SciTech Connect

    Brown, N.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2006-07-01

    novel hot-cutting technique used to remove steel coatings from sections of each block was also instrumental in assisting with achieving this objective. Finally, the paper sets out the plans that have been developed for the sequenced demolition of the building structure, the two heavily reinforced concrete cave lines and the base slab. This will include details of the means by which residually contaminated and partly inaccessible items will be recovered for disposal during the demolition process. The decommissioning programme remains on schedule and has been achieved by the employment of a non-adversarial team working approach between client and contractor. This has greatly assisted in developing cost-effective and safe solutions to a number of problems that have arisen during the programme, demonstrating the worth of adopting this co-operative approach for mutual benefit. (authors)

  10. Deep sea waste disposal

    SciTech Connect

    Kester, D.R.; Burt, W.V.; Capuzzo, J.M.; Park, P.K.; Ketchum, B.W.; Duedall, I.W.

    1985-01-01

    The book presents papers on the marine disposal of wastes. Topics considered include incineration at sea, the modelling and biological effects of industrial wastes, microbial studies of ocean dumping, deep-sea mining wastes, the chemical analysis of ferromanganese nodules, and economic aspects of deep-sea disposal.

  11. Disposable Diapers Are OK.

    ERIC Educational Resources Information Center

    Poore, Patricia

    1992-01-01

    A personal account of measuring the pros and cons of disposable diaper usage leads the author to differentiate between a garbage problem and environmental problem. Concludes the disposable diaper issue is a political and economic issue with a local environmental impact and well within our abilities to manage. (MCO)

  12. Treatment and geological disposal of waste from NET pre-design

    NASA Astrophysics Data System (ADS)

    Brodén, Karin; Aggeryd, Ingrid; Lindberg, Maria; Olsson, Gunnar

    1993-06-01

    Within the European Fusion Technology programs Studsvik RadWaste AB has performed studies on fusion waste treatment and disposal for several years. This paper deals with the treatment and geological disposal of radioactive waste from NET operation and decommissioning. Results from calculations on radioactive waste fluxes for the operation and decommissioning of NET are reported. The calculations are based on the NET predesign report published 1993 and include results for the exchangeable in-vessel and external parts of the machine as well as permanent reactor components. Different aspects of treatment, packaging, transportation, and interim storage of the waste are discussed. The volumes of waste conditioned for final disposal are preliminarily quantified, according to German and Swedish scenarios for radioactive waste disposal. A total repository volume of approximately 45,000 m3 is required in the German Scenario and 35,000 m3 is required in the Swedish Scenario. Results from dose rate calculations for NET waste in final repositories are presented for the Swedish Scenario. This work was financially supported by the Swedish Natural Science Research Council (NFR) and the European Atomic Energy Community, under an association contract between Euratom and Sweden.

  13. A completely noninvasive method of dissolved oxygen monitoring in disposable small-scale cell culture vessels based on diffusion through permeable vessel walls.

    PubMed

    Gupta, Priyanka A; Ge, Xudong; Kostov, Yordan; Rao, Govind

    2014-01-01

    Disposable cell culture vessels are extensively used at small scales for process optimization and validation, but they lack monitoring capabilities. Optical sensors that can be easily adapted for use in small-scale vessels are commercially available for pH, dissolved oxygen (DO), and dissolved carbon dioxide (DCO2 ). However, their use has been limited due to the contamination and compatibility issues. We have developed a novel solution to these problems for DO monitoring. Oxygen diffusion through permeable vessel wall can be exploited for noninvasive monitoring. An optical oxygen sensor can be placed outside the oxygen permeable vessel wall thereby allowing oxygen diffusing through the vessel wall to be detected by the sensor. This way the sensor stays separate from the cell culture and there are no concerns about contaminants or leachants. Here we implement this method for two cell culture devices: polystyrene-made T-75 tissue culture flask and fluorinated ethylene propylene (FEP)-made Vuelife(®) cell culture bag. Additionally, mammalian and microbial cell cultures were performed in Vuelife(®) cell culture bags, proving that a sensor placed outside can be used to track changes in cell cultures. This approach toward noninvasive monitoring will help in integrating cell culture vessels with sensors in a seamless manner.

  14. Developing biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Progress report, November 1, 1984-March 31, 1985

    SciTech Connect

    Not Available

    1985-01-01

    The purposed projects are under study to: (1) develop cost effective methods to monitor pollutant discharge from waste storage and disposal sites; (2) assess the effects of pollutant discharge on the terrestrial microbiological environment; and (3) develop microbial strains that can concentrate and/or metabolize pollutants. To achieve these goals we are isolating bacteria from various sites polluted with heavy metals, radionuclides, and/or organic compounds. We are characterizing the microbial activities of these polluted sites to provide clues to both indicators of pollution and alterations caused by the pollutants. In addition we are developing systems for the biological precipitation or transformation of pollutants or for bioconcentration, with the ultimate goal of being able to detoxify the pollutants or to reduce the volume of contaminated material significantly. To date we have isolated a variety of soil bacteria, actinomycetes, and fungi. Many of them have been identified, and experiments are under way to characterize their responses to pollutants including heavy metals and halogenated hydrocarbons. The results of these studies are summarized below. 1 fig., 6 tabs.

  15. Tritium waste disposal technology in the US

    SciTech Connect

    Albenesius, E.L.; Towler, O.A.

    1983-01-01

    Tritium waste disposal methods in the US range from disposal of low specific activity waste along with other low-level waste in shallow land burial facilities, to disposal of kilocurie amounts in specially designed triple containers in 65' deep augered holes located in an aird region of the US. Total estimated curies disposed of are 500,000 in commercial burial sites and 10 million curies in defense related sites. At three disposal sites in humid areas, tritium has migrated into the ground water, and at one arid site tritium vapor has been detected emerging from the soil above the disposal area. Leaching tests on tritium containing waste show that tritium in the form of HTO leaches readily from most waste forms, but that leaching rates of tritiated water into polymer impregnated concrete are reduced by as much as a factor of ten. Tests on improved tritium containment are ongoing. Disposal costs for tritium waste are 7 to 10 dollars per cubic foot for shallow land burial of low specific activity tritium waste, and 10 to 20 dollars per cubic foot for disposal of high specific activity waste. The cost of packaging the high specific activity waste is 150 to 300 dollars per cubic foot. 18 references.

  16. Future trends which will influence waste disposal.

    PubMed Central

    Wolman, A

    1978-01-01

    The disposal and management of solid wastes are ancient problems. The evolution of practices naturally changed as populations grew and sites for disposal became less acceptable. The central search was for easy disposal at minimum costs. The methods changed from indiscriminate dumping to sanitary landfill, feeding to swine, reduction, incineration, and various forms of re-use and recycling. Virtually all procedures have disabilities and rising costs. Many methods once abandoned are being rediscovered. Promises for so-called innovations outstrip accomplishments. Markets for salvage vary widely or disappear completely. The search for conserving materials and energy at minimum cost must go on forever. PMID:570105

  17. Disposal Of Irradiated Cadmium Control Rods From The Plumbrook Reactor Facility

    SciTech Connect

    Posivak, E.J.; Berger, S.R.; Freitag, A.A.

    2008-07-01

    Innovative mixed waste disposition from NASA's Plum Brook Reactor Facility was accomplished without costly repackaging. Irradiated characteristic hardware with contact dose rates as high as 8 Sv/hr was packaged in a HDPE overpack and stored in a Secure Environmental Container during earlier decommissioning efforts, awaiting identification of a suitable pathway. WMG obtained regulatory concurrence that the existing overpack would serve as the macro-encapsulant per 40CFR268.45 Table 1.C. The overpack vent was disabled and the overpack was placed in a stainless steel liner to satisfy overburden slumping requirements. The liner was sealed and placed in shielded shoring for transport to the disposal site in a US DOT Type A cask. Disposition via this innovative method avoided cost, risk, and dose associated with repackaging the high dose irradiated characteristic hardware. In conclusion: WMG accomplished what others said could not be done. Large D and D contractors advised NASA that the cadmium control rods could only be shipped to the proposed Yucca mountain repository. NASA management challenged MOTA to find a more realistic alternative. NASA and MOTA turned to WMG to develop a methodology to disposition the 'hot and nasty' waste that presumably had no path forward. Although WMG lead a team that accomplished the 'impossible', the project could not have been completed with out the patient, supportive management by DOE-EM, NASA, and MOTA. (authors)

  18. Carbon-14 bioassay for decommissioning of Hanford reactors.

    PubMed

    Carbaugh, Eugene H; Watson, David J

    2012-05-01

    The production reactors at the U.S. Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for ¹⁴C radiobioassay of workers was identified. Technical issues associated with ¹⁴C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S ¹⁴C anticipated to be encountered. However, the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of ¹⁴C are not credible, thus rendering moot the need for such bioassay.

  19. Decontamination and Decommissioning activities photobriefing book FY 1997

    SciTech Connect

    1998-04-01

    The Decontamination and Decommissioning (D and D) Program at Argonne National Laboratory-East (ANL-E) is dedicated to the safe and cost effective D{ampersand}D of surplus nuclear facilities. There is currently a backlog of more than 7,000 contaminated US Department of Energy facilities nationwide. Added to this are 110 licensed commercial nuclear power reactors operated by utilities learning to cope with deregulation and an aging infrastructure that supports the commercial nuclear power industry, as well as medical and other uses of radioactive materials. With this volume it becomes easy to understand the importance of addressing the unique issues and objectives associated with the D{ampersand}D of surplus nuclear facilities. This photobriefing book summarizes the decontamination and decommissioning projects and activities either completed or continuing at the ANL-E site during the year.

  20. Carbon-14 Bioassay for Decommissioning of Hanford Reactors

    SciTech Connect

    Carbaugh, Eugene H.; Watson, David J.

    2012-05-01

    The old production reactors at the US Department of Energy Hanford Site used large graphite piles as the moderator. As part of long-term decommissioning plans, the potential need for 14C radiobioassay of workers was identified. Technical issues associated with 14C bioassay and worker monitoring were investigated, including anticipated graphite characterization, potential intake scenarios, and the bioassay capabilities that may be required to support the decommissioning of the graphite piles. A combination of urine and feces sampling would likely be required for the absorption type S 14C anticipated to be encountered. However the concentrations in the graphite piles appear to be sufficiently low that dosimetrically significant intakes of 14C are not credible, thus rendering moot the need for such bioassay.

  1. Disposal of Vessels at Sea

    EPA Pesticide Factsheets

    Vessel disposal general permits are issued by the EPA under the Marine Protection, Research and Sanctuaries Act. Information is provided for vessel disposal permit applicants and where to dispose a vessel.

  2. Nuclear reactor decommissioning: an analysis of the regulatory environments

    SciTech Connect

    Cantor, R.

    1986-08-01

    In the next several decades, the electric utility industry will be faced withthe retirement of 50,000 megawatts (mW) of nuclear capacity. Responsibility for the financial and technical burdens this activity entails has been delegated to the utilities operating the reactors. However, the operators will have to perform the tasks of reactor decommissioning within the regulatory environment dictated by federal, state and local regulations. The purpose of this study was to highlight some of the current and likely trends in regulations and regulatory practices that will significantly affect the costs, technical alternatives and financing schemes encountered by the electric utilities and their customers. To identify significant trends and practices among regulatory bodies and utilities, a reviw of these factors was undertaken at various levels in the regulatory hierarchy. The technical policies were examined in reference to their treatment of allowed technical modes, restoration of the plant site including any specific recognition of the residual radioactivity levels, and planning requirements. The financial policies were examined for specification of acceptable financing arrangements, mechanisms which adjust for changes in the important parameters used to establish the fund, tax and rate-base treatments of the payments to and earnings on the fund, and whether or not escalation and/or discounting were considered in the estimates of decommissioning costs. The attitudes of regulators toward financial risk, the tax treatment of the decommissioning fund, and the time distribution of the technical mode were found to have the greatest effect on the discounted revenue requirements. Under plausible assumptions, the cost of a highly restricted environment is about seven times that of the minimum revenue requirement environment for the plants that must be decommissioned in the next three decades.

  3. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-12-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness.

  4. TECHNOLOGY REQUIREMENTS FOR IN SITU DECOMMISSIONING WORKSHOP REPORT

    SciTech Connect

    Jannik, T.; Lee, P.; Gladden, J.; Langton, C.; Serrato, M.; Urland, C.; Reynolds, E.

    2009-06-30

    In recognition of the increasing attention being focused on In Situ Decommissioning (ISD or entombment) as an acceptable and beneficial decommissioning end state, the Department of Energy's (DOE) Office of Environmental Management (EM) is developing guidance for the implementation of ISD of excess facilities within the DOE complex. Consistent with the overarching DOE goals for increased personnel and environmental safety, reduced technical uncertainties and risks, and overall gains in efficiencies and effectiveness, EM's Office of Deactivation and Decommissioning and Facility Engineering (EM-23) initiated efforts to identify the technical barriers and technology development needs for the optimal implementation of ISD. Savannah River National Laboratory (SRNL), as the EM Corporate Laboratory, conducted an ISD Technology Needs Workshop to identify the technology needs at DOE sites. The overall goal of the workshop was to gain a full understanding of the specific ISD technical challenges, the technologies available, and those needing development. The ISD Workshop was held December 9-10, 2008 in Aiken, SC. Experienced decommissioning operations personnel from Richland Operations Office (RL), Idaho National Laboratory (INL) and Savannah River Site (SRS) along with scientists and engineers specific expertise were assembled to identify incremental and 'game changing' solutions to ISD technology challenges. The workshop and follow-up activities yielded 14 technology needs statements and the recommendation that EM-23 prioritize and pursue the following specific technology development and deployment actions. For each action, the recommended technology acquisition mechanisms (competitive solicitation (CS) or direct funding (TCR)) are provided. Activities that are time critical for ISD projects, or require unique capabilities that reside in the DOE Laboratory system will be funded directly to those institutions. Activities that have longer lead times and where the private

  5. Reducing environmental risk associated with laboratory decommissioning and property transfer.

    PubMed Central

    Dufault, R; Abelquist, E; Crooks, S; Demers, D; DiBerardinis, L; Franklin, T; Horowitz, M; Petullo, C; Sturchio, G

    2000-01-01

    The need for more or less space is a common laboratory problem. Solutions may include renovating existing space, leaving or demolishing old space, or acquiring new space or property for building. All of these options carry potential environmental risk. Such risk can be the result of activities related to the laboratory facility or property (e.g., asbestos, underground storage tanks, lead paint), or the research associated with it (e.g., radioactive, microbiological, and chemical contamination). Regardless of the option chosen to solve the space problem, the potential environmental risk must be mitigated and the laboratory space and/or property must be decommissioned or rendered safe prior to any renovation, demolition, or property transfer activities. Not mitigating the environmental risk through a decommissioning process can incur significant financial liability for any costs associated with future decommissioning cleanup activities. Out of necessity, a functioning system, environmental due diligence auditing, has evolved over time to assess environmental risk and reduce associated financial liability. This system involves a 4-phase approach to identify, document, manage, and clean up areas of environmental concern or liability, including contamination. Environmental due diligence auditing includes a) historical site assessment, b) characterization assessment, c) remedial effort and d) final status survey. General practice standards from the American Society for Testing and Materials are available for conducting the first two phases. However, standards have not yet been developed for conducting the third and final phases of the environmental due diligence auditing process. Individuals involved in laboratory decommissioning work in the biomedical research industry consider this a key weakness. PMID:11121365

  6. A volumetric radiological standard for the unrestricted release to commerce of decommissioned and decontaminated radioactive metals

    SciTech Connect

    Hyde, J.M.; Lillian, D.

    1997-12-31

    It has been estimated that 1.2 million tons of radioactive scrap metal (RSM) will be available for recycling over the course of the next 30 years from the decontamination and decommissioning (D and D) of the US Department of Energy (DOE) nuclear weapons complex. Several options exist for the disposition of this RSM, including disposal as radioactive waste, recycling by decontamination and free-release for unrestricted use, or recycling for controlled-release and restricted reuse inside a DOE-controlled area. The Office of Environmental Restoration (EM-40) is leading the effort to develop a consistent policy (Recycle 2000) to support recycling RSM both by decontamination and free release and by recycling for restricted reuse. Studies conducted under the Recycle 2000 program have shown that recycling RSM can be environmentally safe and cost effective on a large scale. Several successful demonstration projects have shown that there are no technological barriers to RSM recycling. The barriers to effective, large-scale radioactive scrap metal (RSM) recycling are primarily economic.

  7. A survey of commercially available manipulators, end-effectors, and delivery systems for reactor decommissioning activities

    SciTech Connect

    Henley, D.R.; Litka, T.J.

    1996-05-01

    Numerous nuclear facilities owned by the U.S. Department of Energy (DOE) are under consideration for decommissioning. Currently, there are no standardized, automated, remote systems designed to dismantle and thereby reduce the size of activated reactor components and vessels so that they can be packaged and shipped to disposal sites. Existing dismantling systems usually consist of customized, facility-specific tooling that has been developed to dismantle a specific reactor system. Such systems have a number of drawbacks. Generally, current systems cannot be disassembled, moved, and reused. Developing and deploying the tooling for current systems is expensive and time-consuming. In addition, the amount of manual work is significant because long-handled tools must be used; as a result, personnel are exposed to excessive radiation. A standardized, automated, remote system is therefore needed to deliver the tooling necessary to dismantle nuclear facilities at different locations. Because this system would be reusable, it would produce less waste. The system would also save money because of its universal design, and it would be more reliable than current systems.

  8. Clean up standards for decontamination and decommissioning of the West Valley Demonstration Project

    SciTech Connect

    Sullivan, D.; Szalinski, S.; Gramling, J.; Westcott, D.

    1995-12-31

    The purpose of this paper is to describe the process for developing decontamination and decommissioning (D and D) criteria for the West Valley Demonstration Project (WVDP). The WVDP is a project being conducted to demonstrate solidification techniques that can be used for preparing high-level radioactive waste (HLW) for disposal. The D and D criteria for the WVDP is being developed in a unique and evolving regulatory environment. The basis for the development of the D and D criteria for the WVDP is the assumption that NRC will execute its responsibilities for the WVDP in a manner consistent with its rules, regulations, and licensing processes, even though DOE is not subject to NRC licensing requirements. This is a reasonable assumption because upon completion of the WVDP, the DOE will turn over operational responsibility to New York State Energy Research and Development Authority (NYSERDA), the licensee. NYSERDA will then be subject to the NRC license requirements. Within the licensing context there are four options: (1) license termination and unrestricted release of the facility, (2) license conversions (3) amending the existing license, and (4) rulemaking. These options are evaluated to address a means for the DOE to satisfy its commitments in completing the WVDP and to then turn operational responsibility for the site back to NYSERDA.

  9. The Decontamination, Decommissioning, and Demolition of the Engineering Test Reactor at the Idaho Cleanup Project

    SciTech Connect

    Coyne, D.W.

    2008-07-01

    In September 2007, CH2M-WG Idaho completed the decontamination, decommissioning and demolition (D and D) of the Engineering Test Reactor (ETR) facility. The 50-year-old research reactor, located at the Idaho National Laboratory site, posed significant challenges involving regulations governing the demolition of a historical facility, the removal of a large amount of hazardous materials as well as issues associated with the removal and disposal of the 112-ton reactor vessel. Prior to commencing full scale D and D, hazardous constituents were removed including cadmium, PCB oils and electrical components, lead, asbestos and mercury among others. The reactor required isolation in order to be removed. Due to activated metal within the reactor vessel, dose rates in the core region were approximately 1100 R/hr. Subsequent dose rates outside the vessel varied from 60 mR to greater than 2 R. Due to the dose rates, the project team decided to fill the reactor vessel with grout to a level above the core region and below the discharge to the canal. To remove the reactor, access to the 17 mounting shoes was required. These shoes were encased in the high density concrete biological shield approximately 8 feet below grade. The project team used explosives to remove the biological shield. The demolition had to be controlled to prevent damaging the reactor vessel and to limit the seismic impact on a nearby operating reactor. Upon completion of the blast, the concrete was removed exposing the support shoes for the vessel. The reactor building was then demolished to accommodate the twin gantry system used to lift the reactor vessel. In September, the reactor vessel was lifted and placed onto a multi-axle trailer for transport to an onsite disposal facility. (authors)

  10. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    SciTech Connect

    Jackson, P.K.; Freemerman, R.L.

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  11. Evaluating alternatives for decommissioning California's offshore oil and gas platforms.

    PubMed

    Bernstein, Brock B

    2015-10-01

    This paper introduces a series of 6 additional papers in this issue that describe an in-depth analysis of options for decommissioning oil and gas platforms offshore southern California. Although current leases require lessees in both state and federal waters to completely remove all production facilities and restore the seafloor to its pre-platform condition, other options have emerged since these leases were signed. Laws and regulations in other jurisdictions (particularly in federal waters) have evolved to allow a number of other uses such as aquaculture, alternative energy production, and artificial reefing. In response, the California Natural Resources Agency initiated an effort to investigate the issues associated with these and other decommissioning alternatives. The papers in this series are the result of the second phase in this process, a broad investigation of the engineering, economic, and environmental costs and benefits of the most feasible and likely options. In addition to the project's final report, the authors produced an interactive mathematical decision model, PLATFORM, that enables users to explore the implications of different decommissioning projects and options, as well as the effects of different approaches to valuing the associated costs and benefits.

  12. Aroma potential of oak battens prepared from decommissioned oak barrels.

    PubMed

    Li, Sijing; Crump, Anna M; Grbin, Paul R; Cozzolino, Daniel; Warren, Peter; Hayasaka, Yoji; Wilkinson, Kerry L

    2015-04-08

    During barrel maturation, volatile compounds are extracted from oak wood and impart aroma and flavor to wine, enhancing its character and complexity. However, barrels contain a finite pool of extractable material, which diminishes with time. As a consequence, most barrels are decommissioned after 5 or 6 years. This study investigated whether or not decommissioned barrels can be "reclaimed" and utilized as a previously untapped source of quality oak for wine maturation. Oak battens were prepared from staves of decommissioned French and American oak barrels, and their composition analyzed before and after toasting. The oak lactone glycoconjugate content of untoasted reclaimed oak was determined by liquid chromatography-tandem mass spectrometry, while the concentrations of cis- and trans-oak lactone, guaiacol, 4-methlyguaiacol, vanillin, eugenol, furfural, and 5-methylfurfural present in toasted reclaimed oak were determined by gas chromatography-mass spectrometry. Aroma potential was then evaluated by comparing the composition of reclaimed oak with that of new oak. Comparable levels of oak lactone glycoconjugates and oak volatiles were observed, demonstrating the aroma potential of reclaimed oak and therefore its suitability as a raw material for alternative oak products, i.e., chips or battens, for the maturation of wine. The temperature profiles achieved during toasting were also measured to evaluate the viability of any yeast or bacteria present in reclaimed oak.

  13. The Regulatory Challenges of Decommissioning Nuclear Power Plants in Korea - 13101

    SciTech Connect

    Lee, Jungjoon; Ahn, Sangmyeon; Choi, Kyungwoo; Kim, Juyoul; Kim, Juyub

    2013-07-01

    As of 2012, 23 units of nuclear power plants are in operation, but there is no experience of permanent shutdown and decommissioning of nuclear power plant in Korea. It is realized that, since late 1990's, improvement of the regulatory framework for decommissioning has been emphasized constantly from the point of view of International Atomic Energy Agency (IAEA)'s safety standards. And it is known that now IAEA prepare the safety requirement on decommissioning of facilities, its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework for decommissioning should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became also important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we identify the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is to be established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. After dealing with it, it is expected that the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  14. The regulatory framework for safe decommissioning of nuclear power plants in Korea

    SciTech Connect

    Sangmyeon Ahn; Jungjoon Lee; Chanwoo Jeong; Kyungwoo Choi

    2013-07-01

    We are having 23 units of nuclear power plants in operation and 5 units of nuclear power plants under construction in Korea as of September 2012. However, we don't have any experience on shutdown permanently and decommissioning of nuclear power plants. There are only two research reactors being decommissioned since 1997. It is realized that improvement of the regulatory framework for decommissioning of nuclear facilities has been emphasized constantly from the point of view of IAEA's safety standards. It is also known that IAEA will prepare the safety requirement on decommissioning of facilities; its title is the Safe Decommissioning of Facilities, General Safety Requirement Part 6. According to the result of IAEA's Integrated Regulatory Review Service (IRRS) mission to Korea in 2011, it was recommended that the regulatory framework should require decommissioning plans for nuclear installations to be constructed and operated and these plans should be updated periodically. In addition, after the Fukushima nuclear disaster in Japan in March of 2011, preparedness for early decommissioning caused by an unexpected severe accident became important issues and concerns. In this respect, it is acknowledged that the regulatory framework for decommissioning of nuclear facilities in Korea need to be improved. First of all, we focus on identifying the current status and relevant issues of regulatory framework for decommissioning of nuclear power plants compared to the IAEA's safety standards in order to achieve our goal. And then the plan is established for improvement of regulatory framework for decommissioning of nuclear power plants in Korea. It is expected that if the things will go forward as planned, the revised regulatory framework for decommissioning could enhance the safety regime on the decommissioning of nuclear power plants in Korea in light of international standards. (authors)

  15. Optimizing High Level Waste Disposal

    SciTech Connect

    Dirk Gombert

    2005-09-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  16. Disposal requirements for PCB waste

    SciTech Connect

    1994-12-01

    Polychlorinated biphenyls (PCBs) are a class of organic chemicals that had become widely used in industrial applications due to their practical physical and chemical properties. Historical uses of PCBs include dielectric fluids (used in utility transformers, capacitors, etc.), hydraulic fluids, and other applications requiring stable, fire-retardant materials. Due to findings that PCBs may cause adverse health effects and due to their persistence and accumulation in the environment, the Toxic Substances Control Act (TSCA), enacted on october 11, 1976, banned the manufacture of PCBs after 1978 [Section 6(e)]. The first PCB regulations, promulgated at 40 CFR Part 761, were finalized on February 17, 1978. These PCB regulations include requirements specifying disposal methods and marking (labeling) procedures, and controlling PCB use. To assist the Department of Energy (DOE) in its efforts to comply with the TSCA statute and implementing regulations, the Office of Environmental Guidance has prepared the document ``Guidance on the Management of Polychlorinated Biphenyls (PCBs).`` That document explains the requirements specified in the statute and regulations for managing PCBs including PCB use, storage, transport, and disposal. PCB materials that are no longer in use and have been declared a waste must be disposed of according to the requirements found at 40 CFR 761.60. These requirements establish disposal options for a multitude of PCB materials including soil and debris, liquid PCBs, sludges and slurries, containers, transformers, capacitors, hydraulic machines, and other electrical equipment. This Information Brief supplements the PCB guidance document by responding to common questions concerning disposal requirements for PCBs. It is one of a series of Information Briefs pertinent to PCB management issues.

  17. A Plutonium Finishing Plant Model for the Cercla Removal Action and Decommissioning Construction Final Report

    SciTech Connect

    Hopkins, A.

    2008-07-01

    The joint policy between the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE) for decommissioning buildings at DOE facilities documents an agreement between the agencies to perform decommissioning activities including demolition under the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The use of removal actions for decommissioning integrates EPA oversight authority, DOE lead agency responsibility, and state authority for decommissioning activities. Once removal actions have been performed under CERCLA, a construction completion report is required to document the completion of the required action. Additionally, a decommissioning report is required under DOE guidance. No direct guidance was found for documenting completion of decommissioning activities and preparing a final report that satisfies the CERCLA requirements and the DOE requirements for decommissioning. Additional guidance was needed for the documentation of construction completion under CERCLA for D and D projects undertaken under the joint policy that addresses the requirements of both agencies. A model for the construction completion report was developed to document construction completion for CERCLA D and D activities performed under the joint EPA/DOE policy at the Plutonium Finishing Plant (PFP). The model documentation report developed at PFP integrates the DOE requirements for establishing decommissioning end-points, documenting end-point completion and preparing a final decommissioning report with the CERCLA requirements to document completion of the action identified in the Action Memorandum (AM). The model includes the required information on health and safety, data management, cost and schedule and end-points completion. (authors)

  18. Evaluation of nuclear facility decommissioning projects: summary report. Plum Brook Reactor Facility

    SciTech Connect

    Doerge, D.H.; Miller, R.L.

    1984-02-01

    This document summarizes information concerning the decommissioning of the Plum Brook Reactor Facility, which was placed in a Nuclear Regulatory Commission (NRC) approved safe storage configuration. The data were placed in a computerized information retrieval/manipulation system which permits future utilization of this information in decommissioning of similar facilities. The information is presented both in computer output form and a manually assembled summarization. Complete cost data were not readily available and decommissioning activities did not in all cases conform with current criteria for the SAFSTOR decommissioning mode, therefore no cost comparisons were made.

  19. DECOMMISSIONING THE PHYSICS LABORATORY, BUILDING 777-10A, AT THE SAVANNAH RIVER SITE (SRS)

    SciTech Connect

    Musall, J; Cathy Sizemore, C

    2007-01-17

    SRS recently completed a four-year mission to decommission {approx}250 excess facilities. As part of that effort, SRS decommissioned a 48,000 ft{sup 2} laboratory that housed four low-power test reactors, formerly used by SRS to determine reactor physics. This paper describes and reviews the decommissioning, with a focus on component segmentation and handling (i.e. hazardous material removal, demolition, and waste handling). The paper is intended to be a resource for engineers, planners, and project managers who face similar decommissioning challenges.

  20. [Composting of poultry carcasses as an alternative method for disposal in case of an outbreak of an epizootic disease: first results].

    PubMed

    Schwarzlose, I; Gerdes, U; Gerlach, G F; Runge, M; Thalmann, G; Nöckler, A; Klarmann, D; Behr, K P; Neumann, U; Seedorf, J; Hartung, J; Jeske, C

    2008-04-01

    Composting of poultry carcasses represents an alternative method for disposal in case of an outbreak of an epizootic disease. Two composting experiments, each with a different construction of the compost pile, were carried out in a stable. In the first experiment two layers of turkey carcasses were formed. This compost pile covered with straw was directly built on the ground. In the second experiment no layers of carcasses were formed, and it was assembled on straw bales covered with plastic foil. One part of this compost pile was covered with straw, the other one was additionally covered with plastic foil. In the first experiment in the upper layers of the compost pile temperatures of up to 54.9 degrees C were reached and the decomposition of carcasses was very advanced with no soft tissues remaining after 30 days. In contrast temperatures of only 45.2 degrees C were reached in the lower layers and decomposition was far less advanced. This difference in decomposition was most likely caused by the temperature difference observed. In the second experiment the near complete decomposition seen in the upper layers of the compost pile at the first trial, was not achieved. Decomposition was more advanced in the straw covered part of this compost pile than in the part covered with straw and plastic foil. On the other hand, higher temperatures of up to 48.4 degrees C were measured in the lower layers of this compost pile most likely as a result of the increased heat insulation in particular to the ground.

  1. Designing open water disposal for dredged muddy sediments

    NASA Astrophysics Data System (ADS)

    McAnally, William H.; Adamec, Stephen A.

    1987-11-01

    Open water disposal of muddy sediments in the estuarine environment is practiced to minimize dredging costs and to preserve contained disposal site capacity. Open water sites are usually either dispersive or retentive. Dispersive sites are used in the expectation that disposed sediments will not remain there, but will be transported out of the site, leaving room for additional disposal. Retentive sites are designed to ensure that disposed sediments mostly remain within the site. Choice of one of these approaches depends on the site character, sediment character, and disposal quantities. Design of disposal management plans for both site types is accomplished by use of field observations, laboratory tests, and numerical modeling. Three disposal site studies illustrate the methods used. At the Alcatraz site in San Francisco Bay, a dispersive condition is maintained by use of constraints on dredged mud characteristics that were developed from laboratory tests on erosion rates and from numerical modeling of the dump process. Field experiments were designed to evaluate the management procedure. In Corpus Christi Bay a numerical model was used to determine how much disposed sediment returns to the navigation channel, and to devise a location for disposal that will minimize that return. In Puget Sound a model has been used to ensure that most of the disposed material remains in the site. New techniques, including a piped disposal through 60 m of water, were investigated.

  2. Mined Geologic Disposal System Requirements Document. Revision 1

    SciTech Connect

    Not Available

    1994-03-01

    This Mined Geologic Disposal System Requirements Document (MGDS-RD) describes the functions to be performed by, and the requirements for, a Mined Geologic Disposal System (MGDS) for the permanent disposal of spent nuclear fuel (SNF) (including SNF loaded in multi-purpose canisters (MPCs)) and commercial and defense high-level radioactive waste (HLW) in support of the Civilian Radioactive Waste Management System (CRWMS). The purpose of the MGDS-RD is to define the program-level requirements for the design of the Repository, the Exploratory Studies Facility (ESF), and Surface Based Testing Facilities (SBTF). These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MGDS. The document also presents an overall description of the MGDS, its functions (derived using the functional analysis documented by the Physical System Requirements (PSR) documents as a starting point), its segments as described in Section 3.1.3, and the requirements allocated to the segments. In addition, the program-level interfaces of the MGDS are identified. As such, the MGDS-RD provides the technical baseline for the design of the MGDS.

  3. Geophysical investigation using resistivity and GPR methods: a case study of a lubricant oil waste disposal area in the city of Ribeirão Preto, São Paulo, Brazil

    NASA Astrophysics Data System (ADS)

    Lago, Alexandre Lisboa; Elis, Vagner Roberto; Borges, Welitom Rodrigues; Penner, Giovanni Chaves

    2009-07-01

    Geophysics has been shown to be effective in identifying areas contaminated by waste disposal, contributing to the greater efficiency of soundings programs and the installation of monitoring wells. In the study area, four trenches were constructed with a total volume of about 25,000 m3. They were almost totally filled with re-refined lubricating oil waste for approximately 25 years. No protection liners were used in the bottoms and laterals of the disposal trenches. The purpose of this work is to evaluate the potential of the resistivity and ground penetrating radar (GPR) methods in characterizing the contamination of this lubricant oil waste disposal area in Ribeirão Preto, SP, situated on the geological domain of the basalt spills of the Serra Geral Formation and the sandstones of the Botucatu Formation. Geophysical results were shown in 2D profiles. The geophysical methods used enabled the identification of geophysical anomalies, which characterized the contamination produced by the trenches filled with lubricant oil waste. Conductive anomalies (smaller than 185 Ωm) immediately below the trenches suggest the action of bacteria in the hydrocarbons, as has been observed in several sites contaminated by hydrocarbons in previously reported cases in the literature. It was also possible to define the geometry of the trenches, as evidenced by the GPR method. Direct sampling (chemical analysis of the soil and the water in the monitoring well) confirmed the contamination. In the soil analysis, low concentrations of several polycyclic aromatic hydrocarbons (PAHs) were found, mainly naphthalene and phenanthrene. In the water samples, an analysis verified contamination of the groundwater by lead (Pb). The geophysical methods used in the investigation provided an excellent tool for environmental characterization in this study of a lubricant oil waste disposal area, and could be applied in the study of similar areas.

  4. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    SciTech Connect

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  5. TN International and ITS operational feedback regarding the decommissioning of obsolete casks dedicated to the transport and/or storage of nuclear raw materials, fuel and used fuel

    SciTech Connect

    Blachet, L.; Bimet, F.; Rennesson, N.

    2008-07-01

    Within the AREVA group, TN International is a major actor regarding the design of casks and transportation for the nuclear cycle. In the early 2005, TN International has started the project of decommissioning some of its own equipment and was hence the first company ever in the AREVA Group to implement this new approach. In order to do so, TN International has based this project by taking into account the AREVA Sustainable Development Charter, the French regulatory framework, the ANDRA (Agence Nationale pour la Gestion des Dechets Radioactifs - National Agency for the radioactive waste management) requirements and has deployed a step by step methodology such as radiological characterization following a logical route. The aim was to define a standardized process with optimized solutions regarding the diversity of the cask's fleet. As a general matter, decommissioning of nuclear casks is a brand new field as the nuclear field is more familiar with the dismantling of nuclear facilities and/or nuclear power plant. Nevertheless existing workshops, maintenance facilities, measurements equipments and techniques have been exploited and adapted by TN International in order to turn an ambitious project into a permanent and cost-effective activity. The decommissioning of the nuclear casks implemented by TN International regarding its own needs and the French regulatory framework is formalized by several processes and is materialized for instance by the final disposal of casks as they are or in ISO container packed with cut-off casks and big bags filled with crushed internal cask equipments, etc. The first part of this paper aims to describe the history of the project that started with a specific environmental analysis which took into account the values of AREVA as regards the Sustainable Development principles that were at the time and are still a topic of current concern in the world. The second part will deal with the definition, the design and the implementation of the

  6. 76 FR 3540 - Proposed Generic Communications Reporting for Decommissioning Funding Status Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... Funding Status Reports AGENCY: Nuclear Regulatory Commission. ACTION: Proposed generic communication... information that they should use and present to the NRC in the Decommissioning Funding Status reports to... . The Draft Regulatory Issue Summary 2010-XXX, ``10 CFR 50-75, Reporting for Decommissioning...

  7. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 6 2013-04-01 2013-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. §...

  8. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 6 2014-04-01 2014-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. §...

  9. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 6 2011-04-01 2011-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. §...

  10. 26 CFR 1.468A-0 - Nuclear decommissioning costs; table of contents.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 6 2012-04-01 2012-04-01 false Nuclear decommissioning costs; table of contents...-0 Nuclear decommissioning costs; table of contents. This section lists the paragraphs contained in.... (b) Definitions. (c) Special rules applicable to certain experimental nuclear facilities. §...

  11. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to determine what technical and environmental reviews are needed. (b) You will likely have to revise your SAP... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require...

  12. 30 CFR 285.907 - How will MMS process my decommissioning application?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... compare your decommissioning application with the decommissioning general concept in your approved SAP... to revise your SAP, COP, or GAP, and MMS will begin the appropriate NEPA analysis and other... a significant change in the impacts previously identified and evaluated in your SAP, COP, or GAP;...

  13. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning application with the decommissioning general concept in your approved SAP, COP, or GAP to determine what technical and environmental reviews are needed. (b) You will likely have to revise your SAP... change in the impacts previously identified and evaluated in your SAP, COP, or GAP; (2) Require...

  14. 30 CFR 585.907 - How will BOEM process my decommissioning application?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Environmental and Safety Management, Inspections, and Facility Assessments for Activities Conducted Under SAPs... your decommissioning application with the decommissioning general concept in your approved SAP, COP, or... revise your SAP, COP, or GAP, and BOEM will begin the appropriate NEPA analysis and other...

  15. Identification and evaluation of facilitation techniques for decommissioning light water power reactors

    SciTech Connect

    LaGuardia, T.S.; Risley, J.F.

    1986-06-01

    This report describes a study sponsored by the US Nuclear Regulatory Commission to identify practical techniques to facilitate the decommissioning of nuclear power generating facilities. The objective of these ''facilitation techniques'' is to reduce the radioactive exposures and/or volumes of waste generated during the decommissioning process. The report presents the possible facilitation techniques identified during the study and discusses the corresponding facilitation of the decommissioning process. Techniques are categorized by their applicability of being implemented during the three stages of power reactor life: design/construction, operation, or decommissioning. Detailed cost-benefit analyses were performed for each technique to determine the anticipated exposure and/or radioactive waste reduction; the estimated costs for implementing each technique were then calculated. Finally, these techniques were ranked by their effectiveness in facilitating the decommissioning process. This study is a part of the Nuclear Regulatory Commission's evaluation of decommissioning policy and its modification of regulations pertaining to the decommissioning process. The findings can be used by the utilities in the planning and establishment of activities to ensure that all objectives of decommissioning will be achieved.

  16. 10 CFR 72.30 - Financial assurance and recordkeeping for decommissioning.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the decontamination and decommissioning of the ISFSI or MRS at the end of its useful life will provide... design features of the ISFSI or MRS that facilitate its decontamination and decommissioning at the end of... plan containing information on how reasonable assurance will be provided that funds will be...

  17. 10 CFR 50.75 - Reporting and recordkeeping for decommissioning planning.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... funds accumulated to the end of the calendar year preceding the date of the report; a schedule of the... of decommissioning funds accumulated to the end of the calendar year preceding the date of the report... provide reasonable assurance that funds will be available for the decommissioning process. For...

  18. 30 CFR 550.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What decommissioning information must accompany the DPP or DOCD? 550.255 Section 550.255 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... brief description of how you intend to decommission your wells, platforms, pipelines, and...

  19. 30 CFR 550.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 2 2012-07-01 2012-07-01 false What decommissioning information must accompany the DPP or DOCD? 550.255 Section 550.255 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... brief description of how you intend to decommission your wells, platforms, pipelines, and...

  20. 30 CFR 550.255 - What decommissioning information must accompany the DPP or DOCD?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What decommissioning information must accompany the DPP or DOCD? 550.255 Section 550.255 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT... brief description of how you intend to decommission your wells, platforms, pipelines, and...

  1. Waste management for Shippingport Station Decommissioning Project: Extended summary

    SciTech Connect

    Mullee, G.R.; Schulmeister, A.R.

    1987-01-01

    The Shippingport Station (SSDP) is demonstrating that the techniques and methodologies of waste management, which are currently employed by the nuclear industry, provide adequate management and control of waste activities for the decommissioning of a large scale nuclear plant. The SSDP has some unique aspects in that as part of the objective to promote technology transfer, multiple subcontractors are being utilized in the project. The interfaces resulting from multiple subcontractors require additional controls. Effective control has been accomplished by the use of a process control and inventory system, coupled with personnel training in waste management activities. This report summarizes the waste management plan and provides a status of waste management activities for SSDP.

  2. Remote machine engineering applications for nuclear facilities decommissioning

    SciTech Connect

    Toto, G.; Wyle, H.R.

    1983-01-01

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines.

  3. ANSYS analyses on the Shippingport Station Decommissioning Project

    SciTech Connect

    DeSantis, P.V.; McNamee, H.G.

    1987-01-01

    The nuclear reactor vessel from the Shippingport Station, located in Shippingport, Pennsylvania, will be removed as part of the overall Decommissioning Project. The reactor vessel along with a specially designed lifting beam and skirt were modelled to examine the stresses and behavior of the combined structure. Both the PC/Linear Version of ANSYS and the Cray Version were used in the two phases of the analysis. This paper describes the modelling and analytical techniques used to evaluate the design of this one-of-a-kind structure. The combination of the two versions of ANSYS provided the design team with excellent results in a timely and cost effective manner.

  4. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application...

  5. 30 CFR 585.902 - What are the general requirements for decommissioning for facilities authorized under my SAP, COP...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... decommissioning for facilities authorized under my SAP, COP, or GAP? 585.902 Section 585.902 Mineral Resources... authorized under my SAP, COP, or GAP? (a) Except as otherwise authorized by BOEM under § 585.909, within 2... decommissioning the facilities under your SAP, COP, or GAP, you must submit a decommissioning application...

  6. Nuclear Waste Disposal

    SciTech Connect

    Gee, Glendon W.; Meyer, Philip D.; Ward, Andy L.

    2005-01-12

    Nuclear wastes are by-products of nuclear weapons production and nuclear power generation, plus residuals of radioactive materials used by industry, medicine, agriculture, and academia. Their distinctive nature and potential hazard make nuclear wastes not only the most dangerous waste ever created by mankind, but also one of the most controversial and regulated with respect to disposal. Nuclear waste issues, related to uncertainties in geologic disposal and long-term protection, combined with potential misuse by terrorist groups, have created uneasiness and fear in the general public and remain stumbling blocks for further development of a nuclear industry in a world that may soon be facing a global energy crisis.

  7. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    SciTech Connect

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  8. Characterisation of radioactive waste products associated with plant decommissioning.

    PubMed

    Sejvar, J; Fero, A H; Gil, C; Hagler, R J; Santiago, J L; Holgado, A; Swenson, R

    2005-01-01

    The inventory of radioactivity that must be considered in the decommissioning of a typical 1000 MWe Spanish pressurised water reactor (PWR) was investigated as part of a generic plant decommissioning study. Analyses based on DORT models (in both R-Z and R-theta geometries) were used with representative plant operating history and core power distribution data in defining the expected neutron environment in regions near the reactor core. The activation analyses were performed by multiplying the DORT scalar fluxes by energy-dependent reaction cross sections (based on ENDF/B-VI data) to generate reaction rates on a per atom basis. The results from the ORIGEN2 computer code were also used for determining the activities associated with certain nuclides where multi-group cross section data were not available. In addition to the bulk material activation of equipment and structures near the reactor, the activated corrosion-product (or 'crud') deposits on system and equipment surfaces were considered. The projected activities associated with these sources were primarily based on plant data and experience from operating PWR plants.

  9. Radiological characterization of a vitrification facility for decommissioning

    SciTech Connect

    Asou, M.

    2007-07-01

    Cleanup operations in the Marcoule Vitrification Facility (AVM) will start in 2007. This plant includes 20 highly irradiating storage tanks for high-level liquid waste before vitrification. The objective of the cleanup phase is to significantly decrease the amount of highly radioactive waste resulting from dismantling. A comprehensive radiological survey of the plant was initiated in 2000. Most of the tanks were characterized using advanced technologies: gamma imaging, CdZnTe gamma spectroscopy, dose rate measurements and 3D calculations codes. At the same time, inspections were conducted to develop 3D geometrical models of the tanks. The techniques used and the main results obtained are described as well as lessons learned from these operations. The rinsing program was defined in 2006. Decontamination operations are expected to begin in 2007, and radiological surveys will be followed up to monitor the efficiency of the decontamination process. Specific rinsing of all tanks and equipment will be carried out from 2007 to 2009. Concentrated liquid solutions will be vitrified between 2008 and 2010; the decommissioning of AVM will be delayed until the end of 2010. This strategy aims at producing less than 5% 'B' type (long-lived intermediate-level) waste from the decommissioning operations, as well as reducing the dose rate and risks by simplified remote dismantling. The paper reviews the main options selected for decontamination, as well as the radiological characterization strategy. Some cost-related aspects will also be analyzed. (authors)

  10. The AVR (HTGR) decommissioning project with new strategy

    SciTech Connect

    Sterner, Hakan; Rittscher, Dieter

    2007-07-01

    The 15-MWel prototype pilot reactor AVR is a pebble bed HTGR. It was designed in the late 50's and was connected to the grid end of 1967. After 21 y of successful operation the reactor was shut down end of 1988. In 1994 the first decommissioning license was granted and work with defueling, dismantling and preparation of a Safe Enclosure started. The primary system is contaminated with the fission products Sr{sup 90} and Cs{sup 137} and the activation products are Co{sup 60}, C{sup 14} and H{sup 3}. Due to the large amounts of Sr and Cs bound to graphite dust, the dismantling of systems connected to the pressure vessel is very tedious. In 2003 the AVR company was restructured and the strategy of the decommissioning was changed from safe enclosure to green field, i.e. the complete direct dismantling of all facilities and clean up of the site. The highlight during the dismantling is the removal of the reactor vessel (diameter ca. 7.6 m and length ca. 26 m) in one piece. Before handling the reactor vessel it will be filled with low density cellular concrete. Subsequently the reactor building will be cut open and the reactor vessel (total weight ca. 2100 Mg) lifted out and transported to an interim store. (authors)

  11. Decommissioning of the high flux beam reactor at Brookhaven Lab

    SciTech Connect

    Hu, J.P.; Reciniello, R.N.; Holden, N.E.

    2011-07-01

    The high-flux beam reactor (HFBR) at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on Oct. 31, 1965. It operated at a power level of 40 megawatts. An equipment upgrade in 1982 allowed operations at 60 megawatts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 megawatts. The HFBR was shut down in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of groundwater from wells located adjacent to the reactor's spent fuel pool. The reactor remained shut down for almost three years for safety and environmental reviews. In November 1999 the United States Dept. of Energy decided to permanently shut down the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome, which still contains the irradiated reactor vessel, is presently under 24/7 surveillance for safety. Detailed dosimetry performed for the HFBR decommissioning during 1996-2009 is described in the paper. (authors)

  12. Waste disposal package

    DOEpatents

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  13. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  14. Radioactive waste disposal package

    DOEpatents

    Lampe, Robert F.

    1986-01-01

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  15. Nanomaterial disposal by incineration

    EPA Science Inventory

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  16. Plumbing and Sewage Disposal.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  17. Alternative Trench Disposal Concepts

    SciTech Connect

    Wilhite, E.

    2001-09-05

    During Fiscal Year 2000, a number of activities were conducted to expand the use of trenches for disposal of low-level waste in the E-Area Low-Level Waste Facility (LLWF). This document presents a summary and interpretation of these activities in the context of future work.

  18. Large-scale decontamination and decommissioning technology demonstration project at a former uranium metal production facility

    SciTech Connect

    Martineit, R.A.; Borgman, T.D.; Peters, M.S.; Stebbins, L.L.

    1997-03-05

    The Department of Energy`s (DOE) Office of Science and Technology Decontamination and Decommissioning (D&D) Focus Area, led by the Federal Energy Technology Center, has been charged with improving upon baseline D&D technologies with the goal of demonstrating and validating more cost-effective and safer technologies to characterize, deactivate, survey, decontaminate, dismantle, and dispose of surplus structures, buildings, and their contents at DOE sites. The D&D Focus Area`s approach to verifying the benefits of the improved D&D technologies is to use them in large-scale technology demonstration (LSTD) projects at several DOE sites. The Fernald Environmental Management Project (FEMP) was selected to host one of the first three LSTD`s awarded by the D&D Focus Area. The FEMP is a DOE facility near Cincinnati, Ohio, that was formerly engaged in the production of high quality uranium metal. The FEMP is a Superfund site which has completed its RUFS process and is currently undergoing environmental restoration. With the FEMP`s selection to host an LSTD, the FEMP was immediately faced with some challenges. The primary challenge was that this LSTD was to be integrated into the FEMP`s Plant 1 D&D Project which was an ongoing D&D Project for which a firm fixed price contract had been issued to the D&D Contractor. Thus, interferences with the baseline D&D project could have significant financial implications. Other challenges include defining and selecting meaningful technology demonstrations, finding/selecting technology providers, and integrating the technology into the baseline D&D project. To date, twelve technologies have been selected, and six have been demonstrated. The technology demonstrations have yielded a high proportion of {open_quotes}winners.{close_quotes} All demonstrated, technologies will be evaluated for incorporation into the FEMP`s baseline D&D strategy.

  19. Disposal of Some Problem Chemicals.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1978

    1978-01-01

    Describes procedures for the disposal of chemicals commonly used in secondary school chemistry laboratories. Special reference is given to inorganic salts. It is suggested that cyanides and other highly toxic salts should be disposed of by experts. (MA)

  20. Excel Automatic Locking Scaffold. Deactivation and Decommissioning Focus Area. OST Reference #2320

    SciTech Connect

    None, None

    1999-09-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for decontamination and decommissioning (D&D) of nuclear facilities. To this end, the Deactivation and Decommissioning Focus Area (DDFA) of the DOE’s Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE’s projects and to others in the D&D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D&D tasks. Although not addressed explicitly, the use of scaffolds is needed in several of the listed needs, including characterization, demolition, and asbestos abatement. In these areas, scaffold towers are used to access areas that are not accessible using mechanical methods such as manlifts or mechanical platforms. In addition, the work requires more mobility than what can be achieved using ladders. Because of the wide use of scaffold on D&D projects, a need exists for a safer to use, faster to set up, and overall cheaper scaffold system. This demonstration investigated the feasibility of using the Excel Automatic Locking Scaffold (innovative technology) to access areas where tube and clamp scaffold (baseline) is currently being used on D&D activities. Benefits expected from using the innovative technology include: Decreased exposure to radiation, chemical, and/or physical hazards during scaffold erection and dismantlement; Increased safety; Easier use; Shorten D&D Schedule; Reduced cost of operation; Excel Scaffold is compatible with tube and clamp scaffold. This report

  1. Ecological and political issues surrounding decommissioning of offshore oil facilities in the Southern California Bight

    USGS Publications Warehouse

    Schroeder, Donna M.; Love, Milton S.

    2004-01-01

    To aid legislators, resource managers, and the general public, this paper summarizes and clarifies some of the issues and options that the federal government and the state of California face in decommissioning offshore oil and gas production platforms, particularly as these relate to platform ecology. Both local marine ecology and political climate play a role in decommissioning offshore oil production platforms. Compared to the relatively supportive political climate in the Gulf of Mexico for “rigs-to-reefs” programs, conflicting social values among stakeholders in Southern California increases the need for understanding ecological impacts of various decommissioning alternatives (which range from total removal to allowing some or all of platform structure to remain in the ocean). Additional scientific needs in the decommissioning process include further assessment of platform habitat quality, estimation of regional impacts of decommissioning alternatives to marine populations, and determination of biological effects of any residual contaminants. The principal management need is a ranking of environmental priorities (e.g. species-of-interest and marine habitats). Because considerable numbers of economically important species reside near oil platforms, National Oceanic and Atmospheric Administration Fisheries should consider the consequences of decommissioning alternatives in their overall management plans. Management strategies could include designating reefed platforms as marine protected areas. The overarching conclusion from both ecological and political perspectives is that decommissioning decisions should be made on a case-by-case basis.

  2. DASAO: software tool for the management of safeguards, waste and decommissioning

    SciTech Connect

    Noynaert, Luc; Verwaest, Isi; Libon, Henri; Cuchet, Jean-Marie

    2013-07-01

    Decommissioning of nuclear facilities is a complex process involving operations such as detailed surveys, decontamination and dismantling of equipment's, demolition of buildings and management of resulting waste and nuclear materials if any. This process takes place in a well-developed legal framework and is controlled and followed-up by stakeholders like the Safety Authority, the Radwaste management Agency and the Safeguards Organism. In the framework of its nuclear waste and decommissioning program and more specifically the decommissioning of the BR3 reactor, SCK-CEN has developed different software tools to secure the waste and material traceability, to support the sound management of the decommissioning project and to facilitate the control and the follow-up by the stakeholders. In the case of Belgium, it concerns the Federal Agency for Nuclear Control, the National Agency for radioactive waste management and fissile material and EURATOM and IAEA. In 2005, Belgonucleaire decided to shutdown her Dessel MOX fuel fabrication plant and the production stopped in 2006. According to the final decommissioning plan ('PDF') approved by NIRAS, the decommissioning works should start in 2008 at the earliest. In 2006, the management of Belgonucleaire identified the need for an integrated database and decided to entrust SCK-CEN with its development, because SCK-CEN relies on previous experience in comparable applications namely already approved by authorities such as NIRAS, FANC and EURATOM. The main objectives of this integrated software tool are: - simplified and updated safeguards; - waste and material traceability; - computerized documentation; - support to project management; - periodic and final reporting to waste and safety authorities. The software called DASAO (Database for Safeguards, Waste and Decommissioning) was successfully commissioned in 2008 and extensively used from 2009 to the satisfaction of Belgonucleaire and the stakeholders. SCK-CEN is now implementing

  3. Asset Decommissioning Risk Metrics for Floating Structures in the Gulf of Mexico.

    PubMed

    Kaiser, Mark J

    2015-08-01

    Public companies in the United States are required to report standardized values of their proved reserves and asset retirement obligations on an annual basis. When compared, these two measures provide an aggregate indicator of corporate decommissioning risk but, because of their consolidated nature, cannot readily be decomposed at a more granular level. The purpose of this article is to introduce a decommissioning risk metric defined in terms of the ratio of the expected value of an asset's reserves to its expected cost of decommissioning. Asset decommissioning risk (ADR) is more difficult to compute than a consolidated corporate risk measure, but can be used to quantify the decommissioning risk of structures and to perform regional comparisons, and also provides market signals of future decommissioning activity. We formalize two risk metrics for decommissioning and apply the ADR metric to the deepwater Gulf of Mexico (GOM) floater inventory. Deepwater oil and gas structures are expensive to construct, and at the end of their useful life, will be expensive to decommission. The value of proved reserves for the 42 floating structures in the GOM circa January 2013 is estimated to range between $37 and $80 billion for future oil prices between 60 and 120 $/bbl, which is about 10 to 20 times greater than the estimated $4.3 billion to decommission the inventory. Eni's Allegheny and MC Offshore's Jolliet tension leg platforms have ADR metrics less than one and are approaching the end of their useful life. Application of the proposed metrics in the regulatory review of supplemental bonding requirements in the U.S. Outer Continental Shelf is suggested to complement the current suite of financial metrics employed.

  4. Diaper area and disposable diapers.

    PubMed

    Erasala, G N; Romain, C; Merlay, I

    2011-01-01

    Since the 1960s, cloth diapers have been replaced by disposable diapers. The evolution of healthier skin in the diaper area has been demonstrated in parallel to that of disposable diapers. The improvements of disposable diapers--fit, dryness, comfort--have been based on the understanding of factors playing a role in the development of diaper dermatitis.

  5. Disposal of oil field wastes into salt caverns: Feasibility, legality, risk, and costs

    SciTech Connect

    Veil, J.A.

    1997-10-01

    Salt caverns can be formed through solution mining in the bedded or domal salt formations that are found in many states. Salt caverns have traditionally been used for hydrocarbon storage, but caverns have also been used to dispose of some types of wastes. This paper provides an overview of several years of research by Argonne National Laboratory on the feasibility and legality of using salt caverns for disposing of oil field wastes, the risks to human populations from this disposal method, and the cost of cavern disposal. Costs are compared between the four operating US disposal caverns and other commercial disposal options located in the same geographic area as the caverns. Argonne`s research indicates that disposal of oil field wastes into salt caverns is feasible and legal. The risk from cavern disposal of oil field wastes appears to be below accepted safe risk thresholds. Disposal caverns are economically competitive with other disposal options.

  6. TWRS privatization: Phase I monitoring well engineering study and decommissioning plan

    SciTech Connect

    Williams, B.A.

    1996-09-11

    This engineering study evaluates all well owners and users, the status or intended use of each well, regulatory programs, and any future well needs or special purpose use for wells within the TWRS Privatization Phase I demonstration area. Based on the evaluation, the study recommends retaining 11 of the 21 total wells within the demonstration area and decommissioning four wells prior to construction activities per the Well Decommissioning Plan (WHC-SD-EN-AP-161, Rev. 0, Appendix I). Six wells were previously decommissioned.

  7. Improving surface coal refuse disposal site inspections

    SciTech Connect

    Meister, R.A.; Hoffman, R.L.

    1980-06-01

    The study on improving surface coal refuse disposal site inspections included surface inspections of 15 refuse disposal sites. Monthly aerial photos were taken of the sites and computer methods were used to determine elevation changes. Photogrammetric techniques that were used are described in detail. A comparison of the results of each of these inspection techniques is included. A detailed evaluation of the photogrammetric techniques was made and conclusions were drawn concerning the advantages and disadvantages of using aerial photography and photogrammetry as part of the inspection procedure. Operators' opinions of the aerial photography methods are included.

  8. Environmental and safety assessment for nuclear waste disposal - the canadian approach

    SciTech Connect

    Lyon, R.B.

    1981-01-01

    The Canadian concept for nuclear fuel waste disposal involves immobilization and emplacement in a crystalline rock formation in the Canadian Shield. The assessments are divided into two parts: the pre-closure assessment and the post-closure assessment. For the pre-closure phase the total impact of transportation, immobilization, emplacement and decommissioning is considered. The object of the post-closure studies is to predict how radioactive material might escape from a disposal vault and migrate through the geosphere and biosphere to cause radiation dose to man. Detailed computer programs are being developed and applied for hydrogeological and chemical modeling. A ''systems variability analysis'' code integrates the total system and samples data. The resulting output is a histogram of consequence (dose to man) versus probability, indicating the most probable consequence of the project, and other consequence estimates, together with their probability of occurrence.

  9. Safety Assessment for VLLW Disposal at the National Radioactive Waste Repository Mochovce in Slovakia - 13508

    SciTech Connect

    Biurrun, E.; Haverkamp, B.; Lazaro, A.; Miralles, A.

    2013-07-01

    Recent developments in the Slovak Republic have prompted the need to introduce the new category of very low level waste (VLLW) in the operation of the country's repository for low and intermediate level radioactive waste (LILW). By doing this, significant savings are expected to be achieved while disposing the waste resulting from early decommissioning of older, Soviet type reactors. To study the feasibility and the likely impact of such introduction, a project was launched and assigned in international competition to a German-Spanish consortium. The study confirmed by means of a safety assessment the feasibility of this waste category in the specific context of the Slovakian repository. Moreover, the advantages that such new waste category would render were stressed and the best option for enlargement of the repository, the construction of a module for LILW disposal within the limits of the existing repository, was identified. (authors)

  10. Space disposal of nuclear wastes

    NASA Technical Reports Server (NTRS)

    Priest, C. C.; Nixon, R. F.; Rice, E. E.

    1980-01-01

    The DOE has been studying several options for nuclear waste disposal, among them space disposal, which NASA has been assessing. Attention is given to space disposal destinations noting that a circular heliocentric orbit about halfway between Earth and Venus is the reference option in space disposal studies. Discussion also covers the waste form, showing that parameters to be considered include high waste loading, high thermal conductivity, thermochemical stability, resistance to leaching, fabrication, resistance to oxidation and to thermal shock. Finally, the Space Shuttle nuclear waste disposal mission profile is presented.

  11. How Does Decommissioning Forest Roads Effect Hydrologic and Geomorphic Risk?

    NASA Astrophysics Data System (ADS)

    Black, T.; Luce, C.; Cissel, R. M.; Nelson, N.; Staab, B.

    2010-12-01

    The US Forest Service is investigating road decommissioning projects to understand how treatments change hydrologic and geomorphic risks. Road treatment effect was measured using a before after control impact design (BACI), using the Geomorphic Road Analysis and Inventory Package (http://www.fs.fed.us/GRAIP). This suite of inventory and analysis tools evaluates: road-stream hydrologic connectivity, fine sediment production and delivery, shallow landslide risk, gully initiation risk, and risks associated with stream crossing failures. The Skokomish River study site is steep and wet and received a high intensity treatment including the removal of stream crossing pipes and fills, all ditch relief pipes and a full hillslope recontouring. Road to stream hydrologic connectivity was reduced by 70%. The treatments reduced fine sediment delivery by 21.8 tons or 81%. The removal of the stream crossing culverts and large associated road fills eliminated the risk of pipe plugging related failures and the eventual erosion of over 4,000 m3 of fill. The slope stability risk was assessed using a modified version of SINMAP (Pack et al, 2005). Risk below drain point locations on the original road was reduced as water was redistributed across the hillslope to waterbars and diffuse drainage. It is unclear; however, if landslide risk was reduced across the entire treated road length because treatments slightly increased risk in some areas where new concentrated drainage features were added above steep slopes. Similarly, values of a gully index ESI (Istanbulluoglu et al, 2003), were reduced at many of the original drainage points, however some new drainage was added. ESI values still exceed a predicted conservative initiation thresholds at some sites, therefore it is uncertain if gully risk will be changed. Mann Creek occupies a moderately steep mid-elevation site in Southern Idaho. The high intensity treatments removed all constructed road drainage features including stream crossing

  12. Decontamination and decommissioning experience at the Savannah River Site

    SciTech Connect

    Monson, R.W.

    1994-07-01

    A continuing concern within the DOE complex is how to address the retirement contains special of a facility which nuclear material (SNM). When the life expectancy of a facility has been reached, decisions must be made pertaining to (1) rial from the facility, removing the mate (2) accounting for the material and (3) final disposition of the material. This paper will discuss such a decontamination and decommissioning (D&D) process which we are presently dealing with at the Savannah River Site. The process must follow DOE Order 5633.3A as well as internal Company procedures regarding MC&A. In some D&D cases the material can be exempt from the DOE Order when all of the following criteria are met: (1) the material has been declared waste, (2) the material has been written off the MC&A books, and (3) the material is under the control of a waste management organization.

  13. A preliminary evaluation of alternatives for disposal of INEL low-level waste and low-level mixed waste

    SciTech Connect

    Smith, T.H.; Roesener, W.S.; Jorgenson-Waters, M.J.

    1993-07-01

    The Mixed and Low-Level Waste Disposal Facility (MLLWDF) project was established in 1992 by the US Department of Energy Idaho Operations Office to provide enhanced disposal capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This Preliminary Evaluation of Alternatives for Disposal of INEL Low-Level Waste and Low-Level Mixed Waste identifies and evaluates-on a preliminary, overview basis-the alternatives for disposal of that waste. Five disposal alternatives, ranging from of no-action`` to constructing and operating the MLLWDF, are identified and evaluated. Several subalternatives are formulated within the MLLWDF alternative. The subalternatives involve various disposal technologies as well as various scenarios related to the waste volumes and waste forms to be received for disposal. The evaluations include qualitative comparisons of the projected isolation performance for each alternative, and facility, health and safety, environmental, institutional, schedule, and rough order-of-magnitude life-cycle cost comparisons. The performance of each alternative is evaluated against lists of ``musts`` and ``wants.`` Also included is a discussion of other key considerations for decisionmaking. The analysis of results indicated further study is necessary to obtain the best estimate of long-term future waste volume and characteristics from the INEL Environmental Restoration activities and the expanded INEL Decontamination and Decommissioning Program.

  14. Overcoming decommissioning challenges through client/laboratory co-operation

    SciTech Connect

    Wharton, Mike; Gray, Lesley

    2007-07-01

    Available in abstract form only. Full text of publication follows: Accelerated decommissioning projects of the type underway at the former gaseous diffusion plant at BNG Capenhurst, UK, involve characterisation and radiochemical fingerprinting of a variety of unusual materials derived from legacy wastes. The project management and technical challenges that can occur during such a program can be successfully surmounted if a close working relationship between the client and the analytical laboratory is achieved. The Capenhurst Integrated Decommissioning Program (IDP) is an example of how such co-operation can reduce costs and time scales by providing the analytical laboratory with key sample and technical information prior to the shipping of the samples to the lab. This ensures that challenges associated with unusual sample matrices can be anticipated and dealt with at an early stage in the project. Gamma spectrometry is the most common analytical technique when analysing samples for radioactive content as it is non-destructive, relatively inexpensive and fast. However, accurate measurement generally requires samples of a known density to be counted in calibrated geometries. This becomes a challenge as many legacy wastes comprise materials of uneven geometry and/or varying density, as has been the case during the Capenhurst IDP. Liaising with the client to ensure a representative sub-sample of the material is taken on-site, and a series of additional checks when analysing the sample ensure that accurate results are obtained even for non-routine materials. Often it is only one or two radionuclides that dominate the radioactive inventory for legacy wastes. (authors)

  15. Sensor Network Demonstration for In Situ Decommissioning - 13332

    SciTech Connect

    Lagos, L.; Varona, J.; Awwad, A.; Rivera, J.; McGill, J.

    2013-07-01

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the

  16. Waste minimization value engineering workshop for the Los Alamos National Laboratory Omega West Reactor Decommissioning Project

    SciTech Connect

    Hartnett, S.; Seguin, N.; Burns, M.

    1995-12-31

    The Los Alamos National Laboratory Pollution Prevention Program Office sponsored a Value Engineering (VE) Workshop to evaluate recycling options and other pollution prevention and waste minimization (PP/WMin) practices to incorporate into the decommissioning of the Omega West Reactor (OWR) at the laboratory. The VE process is an organized, systematic approach for evaluating a process or design to identify cost saving opportunities, or in this application, waste reduction opportunities. This VE Workshop was a facilitated process that included a team of specialists in the areas of decontamination, decommissioning, PP/WMin, cost estimating, construction, waste management, recycling, Department of Energy representatives, and others. The uniqueness of this VE Workshop was that it used an interdisciplinary approach to focus on PP/WMin practices that could be included in the OWR Decommissioning Project Plans and specifications to provide waste reduction. This report discusses the VE workshop objectives, summarizes the OWR decommissioning project, and describes the VE workshop activities, results, and lessons learned.

  17. 75 FR 13568 - MMS Information Collection Activity: 1010-0142, Decommissioning Activities, Extension of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-22

    ... Minerals Management Service MMS Information Collection Activity: 1010-0142, Decommissioning Activities, Extension of a Collection; Comment Request AGENCY: Minerals Management Service (MMS), Interior. ACTION... comments to the Department of the Interior; Minerals Management Service; Attention: Cheryl Blundon;...

  18. 76 FR 8785 - ABB Inc.; License Amendment Request for Decommissioning of the ABB Inc., Combustion Engineering...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-15

    ...--Resident Farmer Thorium and Radium. August 2010. ML102310548. 5. ABB, Inc. Decommissioning Plan Revision 2.... ABB, Inc. Derivation of the Site Specific Soil DCGLs, Addendum, Soil DCGLs for thorium and...

  19. 78 FR 49553 - Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-14

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Three Mile Island, Unit 2; Post Shutdown Decommissioning Activities Report AGENCY: Nuclear...) for Three Mile Island, Unit 2 (TMI-2). The PSDAR provides an overview of GPUN's...

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  1. 75 FR 54363 - BOEMRE Information Collection Activity: 1010-0142, Decommissioning Activities, Extension of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... information. SUPPLEMENTARY INFORMATION: Title: 30 CFR 250, subpart Q, Decommissioning Activities. OMB Control... prevent or minimize the likelihood of blowouts, loss of well control, fires, spillages, physical... equipment and subsea protective covering; or other departures. Subtotal 50 responses 150...

  2. 30 CFR 250.1751 - How do I decommission a pipeline in place?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... to be decommissioned; and (4) Length (feet) of segment remaining. (b) Pig the pipeline, unless the Regional Supervisor determines that pigging is not practical; (c) Flush the pipeline; (d) Fill the...

  3. An Analysis of Decommissioning Costs for the AFRRI TRIGA Reactor Facility

    DTIC Science & Technology

    1989-12-01

    Laboratory, as provided in U.S. Nuclear Regulatory Commission publication NUREG /CR-1756. The data in this study were adapted to reflect the decommissioning requirements of the AFRRI TRIGA reactor facility.

  4. Applying and adapting the Swedish regulatory system for decommissioning to nuclear power reactors - The regulator's perspective.

    PubMed

    Amft, Martin; Leisvik, Mathias; Carroll, Simon

    2017-03-16

    Half of the original 13 Swedish nuclear power reactors will be shut down by 2020. The decommissioning of these reactors is a challenge for all parties involved, including the licensees, the waste management system, the financing system, and the Swedish Radiation Safety Authority (SSM). This paper presents an overview of the Swedish regulations for decommissioning of nuclear facilities. It describes some of the experiences that SSM has gained from the application of these regulations. The focus of the present paper is on administrative aspects of decommissioning, such as SSM's guidelines, the definition of fundamental concepts in the regulatory framework, and a proposed revision of the licensing process according to the Environmental Act. These improvements will help to streamline the administration of the commercial nuclear power plant decommissioning projects that are anticipated to commence in Sweden in the near future.

  5. DECOMMISSIONING OF SHIELDED FACILITIES AT WINFRITH USED FOR POST IRRADIATION EXAMINATION OF NUCLEAR FUELS & OTHER ACTIVE ITEMS

    SciTech Connect

    Miller, K.D.; Parkinson, S.J.; Cornell, R.M.; Staples, A.T.

    2003-02-27

    This paper describes the approaches used in the clearing, cleaning, decontamination and decommissioning of a very large suite of seven concrete shielded caves and other facilities used by UKAEA at Winfrith Technology Centre, England over a period of about 30 years for the postirradiation examination (PIE) of a wide range of nuclear fuels and other very active components. The basic construction of the facilities will first be described, setting the scene for the major challenges that 1970s' thinking posed for decommissioning engineers. The tendency then to use large and heavy items of equipment supported upon massive steel bench structures produced a series of major problems that had to be overcome. The means of solving these problems by utilization of relatively simple and inexpensive equipment will be described. Later, a further set of challenges was experienced to decontaminate the interior surfaces to allow man entries to be undertaken at acceptable dose rates. The paper will describe the types of tooling used and the range of complementary techniques that were employed to steadily reduce the dose rates down to acceptable levels. Some explanations will also be given for the creation of realistic dose budgets and the methods of recording and continuously assessing the progress against these budgets throughout the project. Some final considerations are given to the commercial approaches to be adopted throughout this major project by the decommissioning engineers. Particular emphasis will be given to the selection of equipment and techniques that are effective so that the whole process can be carried out in a cost-effective and timely manner. The paper also provides brief complementary information obtained during the decommissioning of a plutonium-contaminated facility used for a range of semi-experimental purposes in the late 1970s. The main objective here was to remove the alpha contamination in such a manner that the volume of Plutonium Contaminated Materials (P

  6. Engineering Evaluation/Cost Analysis for Decommissioning of the Engineering Test Reactor Complex

    SciTech Connect

    A. B. Culp

    2006-10-01

    Preparation of this Engineering Evaluation/Cost Analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, which establishes the Comprehensive Environmental Response, Compensation, and Liability Act non-time-critical removal action (NTCRA) process as an approach for decommissioning.

  7. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  8. Magnesite disposal of carbon dioxide

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1997-08-01

    In this paper we report our progress on developing a method for carbon dioxide disposal whose purpose it is to maintain coal energy competitive even is environmental and political pressures will require a drastic reduction in carbon dioxide emissions. In contrast to most other methods, our approach is not aiming at a partial solution of the problem, or at buying time for phasing out fossil energy. Instead, its purpose is to obtain a complete and economic solution of the problem, and thus maintain access to the vast fossil energy reservoir. A successful development of this technology would guarantee energy availability for many centuries even if world economic growth the most optimistic estimates that have been put forward. Our approach differs from all others in that we are developing an industrial process which chemically binds the carbon dioxide in an exothermic reaction into a mineral carbonate that is thermodynamically stable and environmentally benign.

  9. Municipal solid wastes and their disposal.

    PubMed Central

    Stone, R

    1978-01-01

    A brief overview is given of the sources, characteristics, and toxic constituents of municipal solid wastes. Several methods are presented for handling, treating, and disposal of solid wastes. Monitoring the landfill site is necessary; there has been a trend to recognize that municipal solid wastes may be hazardous and to provide separate secure handling, treatment, and disposal for their dangerous constituents. Under current state and Federal regulations, permits are being required to assure that proper handling of conventional solid wastes and more hazardous constituents are carefully managed. PMID:738240

  10. Reusable acoustic tweezers for disposable devices

    PubMed Central

    Guo, Feng; Xie, Yuliang; Li, Sixing; Lata, James; Ren, Liqiang; Mao, Zhangming; Ren, Baiyang; Wu, Mengxi; Ozcelik, Adem

    2015-01-01

    We demonstrate acoustic tweezers used for disposable devices. Rather than forming an acoustic resonance, we locally transmitted standing surface acoustic waves into a removable, independent polydimethylsiloxane (PDMS)-glass hybridized microfluidic superstrate device for micromanipulation. By configuring and regulating the displacement nodes on a piezoelectric substrate, cells and particles were effectively patterned and transported into said superstrate, accordingly. With the label-free and contactless nature of acoustic waves, the presented technology could offer a simple, accurate, low-cost, biocompatible, and disposable method for applications in the fields of point-of-care diagnostics and fundamental biomedical studies. PMID:26507411

  11. Radioactive waste material disposal

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  12. Radioactive waste material disposal

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1995-10-24

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

  13. Opportunities for Cost Effective Disposal of Radioactively Contaminated Solid Waste on the Oak Ridge Reservation, Oak Ridge, TN - 13045

    SciTech Connect

    DeMonia, Brian; Dunning, Don; Hampshire John

    2013-07-01

    Department of Energy (DOE) requirements for the release of non-real property, including solid waste, containing low levels of residual radioactive materials are specified in DOE Order 458.1 and associated guidance. Authorized limits have been approved under the requirements of DOE Order 5400.5, predecessor to DOE Order 458.1, to permit disposal of solid waste containing low levels of residual radioactive materials at solid waste landfills located within the DOE Oak Ridge Reservation (ORR). Specifically, volumetric concentration limits for disposal of solid waste at Industrial Landfill V and at Construction/Demolition Landfill VII were established in 2003 and 2007, respectively, based on the requirements in effect at that time, which included: an evaluation to ensure that radiation doses to the public would not exceed 25 mrem/year and would be as low as reasonably achievable (ALARA), with a goal of a few mrem/year or less (in fact, these authorized limits actually were derived to meet a dose constraint of 1 mrem/year); an evaluation of compliance with groundwater protection requirements; and reasonable assurance that the proposed disposal is not likely to result in a future requirement for remediation of the landfill. Prior to approval as DOE authorized limits, these volumetric concentration limits were coordinated with the Tennessee Department of Environment and Conservation (TDEC) and documented in a Memorandum of Understanding (MOU) between the TDEC Division of Radiological Health and the TDEC Division of Solid Waste Management. These limits apply to the disposal of soil and debris waste generated from construction, maintenance, environmental restoration, and decontamination and decommissioning (D and D) activities on the DOE Oak Ridge Reservation. The approved site-specific authorized limits were incorporated in the URS/CH2M Oak Ridge LLC (UCOR) waste profile system that authorizes disposal of special wastes at either of the RCRA Subtitle D landfills. However, a

  14. Deactivation and Decommissioning Planning and Analysis with Geographic Information Systems

    SciTech Connect

    Bollinger, James S.; Koffman, Larry D.; Austin, William E.

    2008-01-15

    From the mid-1950's through the 1980's, the U.S. Department of Energy's Savannah River Site produced nuclear materials for the weapons stockpile, for medical and industrial applications, and for space exploration. Although SRS has a continuing defense-related mission, the overall site mission is now oriented toward environmental restoration and management of legacy chemical and nuclear waste. With the change in mission, SRS no longer has a need for much of the infrastructure developed to support the weapons program. This excess infrastructure, which includes over 1000 facilities, will be decommissioned and demolished over the forthcoming years. Dis-positioning facilities for decommissioning and deactivation requires significant resources to determine hazards, structure type, and a rough-order-of-magnitude estimate for the decommissioning and demolition cost. Geographic information systems (GIS) technology was used to help manage the process of dis-positioning infrastructure and for reporting the future status of impacted facilities. Several thousand facilities of various ages and conditions are present at SRS. Many of these facilities, built to support previous defense-related missions, now represent a potential hazard and cost for maintenance and surveillance. To reduce costs and the hazards associated with this excess infrastructure, SRS has developed an ambitious plan to decommission and demolish unneeded facilities in a systematic fashion. GIS technology was used to assist development of this plan by: providing locational information for remote facilities, identifying the location of known waste units adjacent to buildings slated for demolition, and for providing a powerful visual representation of the impact of the overall plan. Several steps were required for the development of the infrastructure GIS model. The first step involved creating an accurate and current GIS representation of the infrastructure data. This data is maintained in a Computer Aided Design

  15. Application of Robotics in Decommissioning and Decontamination - 12536

    SciTech Connect

    Banford, Anthony; Kuo, Jeffrey A.; Bowen, R.A.; Szilagyi, Andrew; Kirk, Paula

    2012-07-01

    Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure. However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better

  16. Final report on decommissioning of wells, boreholes, and tiltmeter sites, Gulf Coast Interior Salt Domes of Louisiana

    SciTech Connect

    Not Available

    1989-07-01

    In the late 1970s, test holes were drilled in northern Louisiana in the vicinity of Vacherie and Rayburn`s Salt Domes as part of the Department of Energy`s (DOE) National Waste Terminal Storage (NWTS) (rename the Civilian Radioactive Waste Management (CRWM)) program. The purpose of the program was to evaluate the suitability of salt domes for long term storage or disposal of high-level nuclear waste. The Institute for Environmental Studies at Louisiana State University (IES/LSU) and Law Engineering Testing Company (LETCo) of Marietta, Georgia performed the initial field studies. In 1982, DOE awarded a contract to the Earth Technology Corporation (TETC) of Long Beach, California to continue the Gulf Coast Salt Dome studies. In 1986, DOE deferred salt domes from further consideration as repository sites. This report describes test well plugging and site abandonment activities performed by SWEC in accordance with Activity Plan (AP) 1--3, Well Plugging and Site Restoration of Work Sites in Louisiana. The objective of the work outlined in this AP was to return test sites to as near original condition as possible by plugging boreholes, removing equipment, regrading, and seeding. Appendices to this report contain forms required by State of Louisiana, used by SWEC to document decommissioning activities, and pertinent documentation related to lease/access agreements.

  17. Investigation of induced radioactivity in the Linac-Adone accelerator complex for the management of the decommissioned material.

    PubMed

    Mora, Juan Carlos; Bedogni, Roberto; Esposito, Adolfo; Cancio, David

    2007-03-01

    The LINAC-ADONE accelerator complex of the INFN-LNF Frascati National Laboratories, operating for 27 y prior to the commissioning of DAPhiNE, was dismantled in 1993. The scraps resulting from the decommissioning of LINAC-ADPhiNE have been temporarily stored in the same Frascati laboratory, waiting for definitive disposal. Relying on recommendations of the IAEA, European Commission and Italian committees, an experimental characterization study of the LNF repository was performed. The main objective was a classification of the scraps on the basis of internationally recognized "clearance levels," which are 0.1 Bq g(-1) for the isotopes of interest for this work. Secondly, a measurement of the materials suspected to be above 0.1 Bq g(-1) was planned. Activation isotopes were expected from the aluminum, copper, steel, and iron of the LINAC and the ADONE ring sections. For screening purposes, the repository area has been divided into zones, where in-situ measurements with a portable HP-Ge detector have been performed. In addition, small samples have been cut from a representative number of pieces, and accurate laboratory measurements have been made with a low background HP-Ge spectrometer. The experimental results are in good agreement with other studies and show that a large part of the material is below the mentioned specific activity level.

  18. Technology, safety and costs of decommissioning a Reference Boiling Water Reactor Power Station. Main report. Volume 1

    SciTech Connect

    Oak, H.D.; Holter, G.M.; Kennedy, W.E. Jr.; Konzek, G.J.

    1980-06-01

    Technology, safety and cost information is given for the conceptual decommissioning of a large (1100MWe) boiling water reactor (BWR) power station. Three approaches to decommissioning, immediate dismantlement, safe storage with deferred dismantlement and entombment, were studied to obtain comparisons between costs, occupational radiation doses, potential dose to the public and other safety impacts. It also shows the sensitivity of decommissioning safety and costs to the power rating of a BWR in the range of 200 to 1100 MWe.

  19. Nuclear Waste Management under Approaching Disaster: A Comparison of Decommissioning Strategies for the German Repository Asse II.

    PubMed

    Ilg, Patrick; Gabbert, Silke; Weikard, Hans-Peter

    2016-06-14

    This article compares different strategies for handling low- and medium-level nuclear waste buried in a retired potassium mine in Germany (Asse II) that faces significant risk of uncontrollable brine intrusion and, hence, long-term groundwater contamination. We survey the policy process that has resulted in the identification of three possible so-called decommissioning options: complete backfilling, relocation of the waste to deeper levels in the mine, and retrieval. The selection of a decommissioning strategy must compare expected investment costs with expected social damage costs (economic, environmental, and health damage costs) caused by flooding and subsequent groundwater contamination. We apply a cost minimization approach that accounts for the uncertainty regarding the stability of the rock formation and the risk of an uncontrollable brine intrusion. Since economic and health impacts stretch out into the far future, we examine the impact of different discounting methods and rates. Due to parameter uncertainty, we conduct a sensitivity analysis concerning key assumptions. We find that retrieval, the currently preferred option by policymakers, has the lowest expected social damage costs for low discount rates. However, this advantage is overcompensated by higher expected investment costs. Considering all costs, backfilling is the best option for all discounting scenarios considered.

  20. Progress on the decommissioning of Zion nuclear generating station

    SciTech Connect

    Moloney, B. P.; Hess, J.

    2013-07-01

    The decommissioning of the twin 1040 MWe PWRs at Zion, near Chicago USA is a ground breaking programme. The original owner, Exelon Nuclear Corporation, transferred the full responsibility for reactor dismantling and site license termination to a subsidiary of EnergySolutions. The target end state of the Zion site for return to Exelon will be a green field with the exception of the dry fuel storage pad. In return, ZionSolutions has access to the full value of the decommissioning trust fund. There are two potential attractions of this model: lower overall cost and significant schedule acceleration. The Zion programme which commenced in September 2010 is designed to return the cleared site with an Independent Spent Fuel Storage Installation (ISFSI) pad in 2020, 12 years earlier than planned by Exelon. The overall cost, at $500 M per full size power reactor is significantly below the long run trend of $750 M+ per PWR. Implementation of the accelerated programme has been underway for nearly three years and is making good progress. The programme is characterised by numerous projects proceeding in parallel. The critical path is defined by the inspection and removal of fuel from the pond and transfer into dry fuel storage casks on the ISFSI pad and completion of RPV segmentation. Fuel loading is expected to commence in mid- 2013 with completion in late 2014. In parallel, ZionSolutions is proceeding with the segmentation of the Reactor Vessel (RV) and internals in both Units. Removal of large components from Unit 1 is underway. Numerous other projects are underway or have been completed to date. They include access openings into both containments, installation of heavy lift crane capacity, rail upgrades to support waste removal from the site, radiological characterization of facilities and equipment and numerous related tasks. As at February 2013, the programme is just ahead of schedule and within the latest budget. The paper will provide a fuller update. The first two

  1. Household hazardous waste disposal in Benton County, Oregon

    SciTech Connect

    McEvoy, J.W. ); Rossignol, A.M.

    1993-10-01

    Residents of Benton County, Oregon were studied to assess current and recent disposal practices for hazardous household wastes (HHW), plan for future HHW disposal programs, and guide educational and informational resource strategies that foster the safe disposal of HHW. The study results indicate that many Benton County residents dispose of their HHW by methods that may not protect human health and the environment. These methods include landfilling HHW, pouring HHW on the ground or into sewer/septic systems, and burning HHW. The study suggests that the most viable disposal system for HHW in Benton County is a permanent collection site within easy access (fewer than 10 miles) to potential users and funded by user fees.

  2. NWTS program criteria for mined geologic disposal of nuclear waste: repository performance and development criteria. Public draft

    SciTech Connect

    1982-07-01

    This document, DOE/NWTS-33(3) is one of a series of documents to establish the National Waste Terminal Storage (NWTS) program criteria for mined geologic disposal of high-level radioactive waste. For both repository performance and repository development it delineates the criteria for design performance, radiological safety, mining safety, long-term containment and isolation, operations, and decommissioning. The US Department of Energy will use these criteria to guide the development of repositories to assist in achieving performance and will reevaluate their use when the US Nuclear Regulatory Commission issues radioactive waste repository rules.

  3. Feasibility study for the United Nuclear Corporation Disposal Site at the Oak Ridge Y-12 plant, Oak Ridge, Tennessee

    SciTech Connect

    Not Available

    1991-02-01

    In July 1990, the US Environmental Protection Agency (EPA) directed the Department of Energy Oak Ridge Operations to comply with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the remediation of the United Nuclear Corporation (UNC) Disposal Site located at the Y-12 Plant, Oak Ridge, Tennessee. EPA, Waste Management Branch, had approved a closure plan in December 1989 for the UNC Disposal Site. This feasibility study (FS) is a fully satisfy the National Oil and Hazardous Substances Contingency Plan (NCP) requirements for support of the selection of a remedial response for closure of the UNC Disposal Site. For two years the UNC Disposal Site accepted and disposed of waste from the decommissioning of a UNC uranium recovery facility in Wood River Junction, Rhode Island. Between June 1982 and November 1984, the UNC Disposal Site received 11,000 55-gal drums of sludge fixed in cement, 18,000 drums of contaminated soil, and 288 wooden boxes of contaminated building and process demolition materials. The FS assembles a wide range of remedial technologies so the most appropriate actions could be selected to remediate potential contamination to below MCLs and/or to below the maximum level of acceptable risk. Technologies were evaluated based on technical effectiveness, ease of implementation, and costs. Applicable technologies were then selected for alternative development. 33 refs., 9 figs., 27 tabs.

  4. Oak Ridge National Laboratory Technology Logic Diagram. Volume 2, Technology Logic Diagram: Part A, Decontamination and Decommissioning

    SciTech Connect

    Not Available

    1993-09-01

    This report documents activities of decontamination and decommissioning at ORNL. Topics discussed include general problems, waste types, containment, robotics automation and decontamination processes.

  5. Military nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Robb, David W.

    1984-04-01

    A National Research Council (NRC) panel has endorsed a plan for a proposed underground military nuclear waste disposal facility located on a site near Carlsbad, N.M. The Department of Energy (DOE) asked NRC to evaluate the geologic suitability of the site.The NRC panel, chaired by Frank L. Parker of Vanderbilt University, concluded in its final report that “the important issues about the geology of the site have been resolved…” Those issues include the purity and volume of salt, the absence of brine pockets at the repository horizon in the areas excavated, the absence of breccia pipes and of toxic gases, and the nearly horizontal bedding of the salt. Thick underground salt beds have long been considered prime candidates for nuclear waste repositories. The existence of salt beds is believed to indicate long-term stability. In addition, the salt is flexible and will seal cracks and discontinuities over time.

  6. Radioactive mixed waste disposal

    SciTech Connect

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

  7. Geophysics: Building E5375 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.; Thompson, M.D.

    1992-08-01

    Building E5375 was one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Several anomalies wear, noted: (1) An underground storage tank located 25 ft east of Building E5375 was identified with magnetic, resistivity, and GPR profiling. (2) A three-point resistivity anomaly, 12 ft east of the northeast comer of Building E5374 (which borders Building E5375) and 5 ft south of the area surveyed with the magnetometer, may be caused by another underground storage tank. (3) A 2,500-gamma magnetic anomaly near the northeast corner of the site has no equivalent resistivity anomaly, although disruption in GPR reflectors was observed. (4) A one-point magnetic anomaly was located at the northeast comer, but its source cannot be resolved. A chaotic reflective zone to the east represents the radar signature of Building E5375 construction fill.

  8. Geophysics: Building E5282 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-08-01

    This report discusses Building E5282 which was one of 10 potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. Magnetic surveys identified small, complicated, multiple anomalies west, north, and northeast of the building that may be caused by construction fill. Two underground storage tanks, at the northeast and southeast corners, were identified. A large magnetic anomaly complex east of the building was caused by aboveground pipes and unexploded ordnance fragments scattered at the surface. Electrical resistivity profiling showed a broad, conductive terrain superimposed over magnetic anomalies on the north and west. A broad, high-resistivity, nonmagnetic area centered 25 ft east of the building has an unknown origin, but it may be due to nonconductive organic liquids, construction fill, or a buried concrete slab; GPR imaging showed this area as a highly reflective zone at a depth of about 5 ft. The GPR data also showed a small-diameter pipe oriented north-south located east of the building.

  9. Assessment of strippable coatings for decontamination and decommissioning

    SciTech Connect

    Ebadian, M.A.

    1998-01-01

    Strippable or temporary coatings were developed to assist in the decontamination of the Three Mile Island (TMI-2) reactor. These coatings have become a viable option during the decontamination and decommissioning (D and D) of both US Department of Energy (DOE) and commercial nuclear facilities to remove or fix loose contamination on both vertical and horizontal surfaces. A variety of strippable coatings are available to D and D professionals. However, these products exhibit a wide range of performance criteria and uses. The Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU) was commissioned to perform a 2-year investigation into strippable coatings. This investigation was divided into four parts: (1) identification of commercially available strippable coating products; (2) survey of D and D professionals to determine current uses of these coatings and performance criteria; (3) design and implementation of a non-radiological testing program to evaluate the physical properties of these coatings; and (4) design and implementation of a radiological testing program to determine decontamination factors and effects of exposure to ionizing radiation. Activities during fiscal year 1997 are described.

  10. Ecological risk assessment of a decommissioned military base

    SciTech Connect

    Starodub, M.E.; Feniak, N.A.; Willes, R.F.; Moore, C.E.; Mucklow, L.; Marshall, L.

    1995-12-31

    The ecological health risks to selected terrestrial animals at a decommissioned military base in Atlantic Canada have been assessed. Areas of the base varied in terms of terrain, ground cover, as well as types and extent of contamination, dependent on former uses of the sites. Analysis of surficial soils, sediments, water and fish tissue at the base indicated contamination by metals, PCBs, and various petroleum products and their constituents. Identification of chemicals of concern was based on these analyses, in conjunction with detailed chemical selection procedures. Exposures to chemicals of concern for ecological receptors were assessed in one of two ways. The exposures of moose, snowshoe hare and meadow vole were estimated in areas with surficial contamination, based on expected exposures to environmental media via oral inhalation, and dermal routes of exposure. For two top predators (mink and bald-headed eagle), exposures to bioaccumulative chemicals (cadmium, lead, mercury and PCBs) via transport through the aquatic and/or terrestrial foodchain were estimated. A toxicological assessment was conducted for the chemicals of concern, to yield exposure limits derived from governmental regulations or developed based on no-observed-effect-levels (NOELs) reported in scientifically sound toxicological assays in relevant species. The risk evaluation of each chemical of concern was conducted as a comparison of the estimated total exposures to the exposure limits derived for the selected ecological receptors.

  11. Geophysics: Building E5190 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Miller, S.F.; Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.

    1992-07-01

    Building E5190 is one of ten potentially contaminated sites in the Canal Creek area of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. A noninvasive geophysical survey, including the complementary technologies of magnetics, electrical resistivity, and ground-penetrating radar, was conducted around the perimeter as a guide to developing a sampling and monitoring program prior to decommissioning and dismantling the building. The magnetics surveys indicated that multistation, positive magnetic sources are randomly distributed north and west of the building. Two linear trends were noted: one that may outline buried utility lines and another that is produced by a steel-covered trench. The resistivity profiling indicated three conductive zones: one due to increased moisture in a ditch, one associated with buried utility lines, and a third zone associated with the steel-covered trench. Ground-penetrating radar imaging detected two significant anomalies, which were correlated with small-amplitude magnetic anomalies. The objectives of the study -- to detect and locate objects and to characterize a located object were achieved.

  12. Decommissioning of the High Flux Beam Reactor at Brookhaven Lab

    SciTech Connect

    Hu, J. P.; Reciniello, R. N.; Holden, N. E.

    2011-05-27

    The High Flux Beam Reactor at the Brookhaven National Laboratory was a heavy water cooled and moderated reactor that achieved criticality on October 31, 1965. It operated at a power level of 40 mega-watts. An equipment upgrade in 1982 allowed operations at 60 mega-watts. After a 1989 reactor shutdown to reanalyze safety impact of a hypothetical loss of coolant accident, the reactor was restarted in 1991 at 30 mega-watts. The HFBR was shutdown in December 1996 for routine maintenance and refueling. At that time, a leak of tritiated water was identified by routine sampling of ground water from wells located adjacent to the reactor’s spent fuel pool. The reactor remained shutdown for almost three years for safety and environmental reviews. In November 1999 the United States Department of Energy decided to permanently shutdown the HFBR. The decontamination and decommissioning of the HFBR complex, consisting of multiple structures and systems to operate and maintain the reactor, were complete in 2009 after removing and shipping off all the control rod blades. The emptied and cleaned HFBR dome which still contains the irradiated reactor vessel is presently under 24/7 surveillance for safety. Details of the HFBR cleanup conducted during 1999-2009 will be described in the paper.

  13. UK contractors' experience of management of tritium during decommissioning projects

    SciTech Connect

    Green, Tommy; Stevens, Keith; Heaney, John; Murray, Alan; Warwick, Phil; Croudace, Ian

    2007-07-01

    Available in abstract form only. Full text of publication follows: This paper provides an account of the tritium management experience of a UK decommissioning and remediation contracting organisation (NUKEM Limited), supported by a specialist radio-analysis organisation (GAU-Radioanalytical). This experience was gained during the execution of projects which involved the characterisation and remediation of facilities which had previously been used for tritium work and were contaminated with tritium. The emphasis of the paper is on the characterisation (sampling and analysis) of tritium. An account is given of the development of a methodology to improve the accuracy of tritium characterisation. The improved methodology evolved from recognition of the need to minimise tritium losses during sampling, storage, transport and preparation for analysis. These improvements were achieved in a variety of ways, including use of cold and dry sampling techniques in preference to hot or wet ones and freezing relevant samples during storage and transport. The major benefit was an improvement in the accuracy and reliability of the analyses results, essential for proper categorisation, sentencing and future management of tritiated waste. (authors)

  14. Geophysics: Building E5440 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    McGinnis, L.D.; Miller, S.F.; Thompson, M.D.; McGinnis, M.G.

    1992-11-01

    Building E5440 was one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar (GPR), were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The results show several complex geophysical signatures. Isolated, one-point, magnetic anomalies surrounding the building may be associated with construction fill. A 10-ft-wide band of strongly magnetic positive anomalies bordering the north side of the building obliterates small magnetic sources that might otherwise be seen. A prominent magnetic nose'' extending northward from this band toward a standpipe at 100N,63E may be connected to an underground tank. The southeast corner of the site is underlain by a rectangular, magnetized source associated with strong radar images. A magnetic lineament extending south from the anomaly may be caused by a buried pipe; the anomaly itself may be caused by subsurface equipment associated with a manhole or utility access pit. A 2,500-gamma, positive magnetic anomaly centered at 0N,20E, which is also the location of a 12 [Omega]-m resistivity minimum, may be caused by a buried vault. It appears on radar imaging as a strong reflector.

  15. Geophysics: Building E5481 decommissioning, Aberdeen Proving Ground

    SciTech Connect

    Thompson, M.D.; McGinnis, M.G.; McGinnis, L.D.; Miller, S.F.

    1992-11-01

    Building E5481 is one of ten potentially contaminated sites in the Canal Creek and Westwood areas of the Edgewood section of Aberdeen Proving Ground examined by a geophysical team from Argonne National Laboratory in April and May of 1992. Noninvasive geophysical surveys, including magnetics, electrical resistivity, and ground-penetrating radar, were conducted around the perimeter of the building to guide a sampling program prior to decommissioning and dismantling. The building is located on the northern margin of a landfill that was sited in a wetland. The large number of magnetic sources surrounding the building are believed to be contained in construction fill that had been used to raise the grade. The smaller anomalies, for the most part, are not imaged with ground radar or by electrical profiling. A conductive zone trending northwest to southeast across the site is spatially related to an old roadbed. Higher resistivity areas in the northeast and east are probably representive of background values. Three high-amplitude, positive, rectangular magnetic anomalies have unknown sources. The features do not have equivalent electrical signatures, nor are they seen with radar imaging.

  16. Lessons Learned in the Decommissioning of the Stardust Spacecraft

    NASA Technical Reports Server (NTRS)

    Larson, Timothy W.

    2012-01-01

    The Stardust spacecraft completed its prime mission in 2006, returning samples from the coma of comet Wild 2 to earth in the sample return capsule. Still healthy, and in a heliocentric orbit, the Stardust spacecraft was repurposed for a new mission - Stardust NExT. This new mission would take the veteran spacecraft to a 2011 encounter with comet Tempel 1, providing a new look at the comet visited in 2005 by the Deep Impact mission. This extended mission for Stardust would push it to the limits of its fuel reserves, prompting several studies aimed at determining the actual remaining fuel on board. The results were used to plan mission events within the constraints of this dwindling resource. The team tracked fuel consumption and adjusted the mission plans to stay within the fuel budget. This effort intensified toward the end of the mission, when a final assessment showed even less remaining fuel than previously predicted, triggering a delay in the start of comet imaging during the approach phase. The flyby of comet Tempel 1 produced spectacular up close views of this comet, imaging previously seen areas as well as new territory, and providing clear views of the location of the 2005 impact. The spacecraft was decommissioned about a month after the flyby, revealing that the fuel tank was now empty after having flown successfully for 12 years, returned comet dust samples to earth, and flown by an asteroid and two comets.

  17. DECOMMISSIONING OF NUCLEAR FACILITIES IN GERMANY - STATUS AT BMBF SITES

    SciTech Connect

    Papp, R.; Komorowski, K.

    2002-02-25

    In a period of approximately 40 years prior to 1994, the German Federal Government had spent about {approx} 15 billion to promote nuclear technology. These funds were earmarked for R&D projects as well as demonstration facilities which took up operation between 1960 and 1980. These BMBF (Federal Ministry for Research) facilities were mainly located at the sites of the federal research centers at Juelich and Karlsruhe (the research reactors AVR, FR2, FRJ-1, KNK, and MZFR, the pilot reprocessing plant WAK) but included also the pilot plants SNR-300 and THTR-300 for fast breeder and high-temperature gas-cooled reactor development, respectively, and finally the salt mine Asse which had been used for waste emplacement prior to conversion into an underground research laboratory. In the meantime, almost all of these facilities were shut down and are now in a state of decommissioning and dismantling. This is mainly due to the facts that R&D needs are satisfied or do not exist any more and that, secondly, the lack of political consensus led to the cancellation of advanced nuclear technology.

  18. Method for Implementing Subsurface Solid Derived Concentration Guideline Levels (DCGL) - 12331

    SciTech Connect

    Lively, J.W.

    2012-07-01

    . This paper describes the concepts and basis used by MACTEC to develop the dose-based subsurface soil DCGL method. The paper will show how MACTEC's method can be used to demonstrate that higher concentrations of residual radioactivity in subsurface soils (as compared with surface soils) can meet the NRC's dose-based regulations. MACTEC's method has been used successfully to obtain the NRC's radiological release at a site with known radiological impacts to subsurface soils exceeding the surface soil DCGL, saving both time and cost. Having considered the current NRC guidance for consideration of residual radioactivity in subsurface soils during decommissioning, MACTEC has developed a technically based approach to the derivation of and demonstration of compliance with subsurface soil DCGLs for radionuclides. In fact, the process uses the already accepted concepts and metrics approved for surface soils as the foundation for deriving scaling factors used to calculate subsurface soil DCGLs that are at least equally protective of the decommissioning annual dose standard. Each of the elements identified for consideration in the current NRC guidance is addressed in this proposed method. Additionally, there is considerable conservatism built into the assumptions and techniques used to arrive at subsurface soil scaling factors and DCGLs. The degree of conservatism embodied in the approach used is such that risk managers and decision makers approving and using subsurface soil DCGLs derived in accordance with this method can be confident that the future exposures will be well below permissible and safe levels. The technical basis for the method can be applied to a broad variety of sites with residual radioactivity in subsurface soils. Given the costly nature of soil surveys, excavation, and disposal of soils as low-level radioactive waste, MACTEC's method for deriving and demonstrating compliance with subsurface soil DCGLs offers the possibility of significant cost savings over the

  19. Summary of the Hanford Site decontamination, decommissioning, and cleanup, FY 1974--FY 1990

    SciTech Connect

    Wahlen, R.K.

    1991-08-01

    At the end of World War II, the demand for more production along with process and military surveillance changes at the Hanford Site caused a continuing cycle of building and obsolescence. This trend continued until 1964, when the cutback in plutonium production began. The cutback caused the shutdown of excess production facilities. The last of eight reactors was shut down in 1971. Since that time, N Reactor has been the only production reactor that has operated. In addition, changes in the method of separating plutonium caused a number of excess facilities in the 200 Areas. Before 1973, no structured program existed for the disposal of unusable facilities or for general cleanup. Following a plant-wide safety and housekeeping inspection in 1973, a program was developed for the disposal of all surplus facilities. Since the start of FY 1974, a total of 46 radioactively contaminated sites have been demolished and disposed of. In addition, 28 buildings have been decontaminated for in situ disposal or for reuse, 21 contaminated sites have been stabilized, 131 clean structures have been removed, and 93 clean sites have received special remedial action to eliminate potential safety and/or environmental hazards. This report summarizes these activities. 3 refs, 1 fig., 18 tabs.

  20. The Windscale Advanced Gas Cooled Reactor (WAGR) Decommissioning Project A Close Out Report for WAGR Decommissioning Campaigns 1 to 10 - 12474

    SciTech Connect

    Halliwell, Chris

    2012-07-01

    The reactor core of the Windscale Advanced Gas-Cooled Reactor (WAGR) has been dismantled as part of an ongoing decommissioning project. The WAGR operated until 1981 as a development reactor for the British Commercial Advanced Gas cooled Reactor (CAGR) power programme. Decommissioning began in 1982 with the removal of fuel from the reactor core which was completed in 1983. Subsequently, a significant amount of engineering work was carried out, including removal of equipment external to the reactor and initial manual dismantling operations at the top of the reactor, in preparation for the removal of the reactor core itself. Modification of the facility structure and construction of the waste packaging plant served to provide a waste route for the reactor components. The reactor core was dismantled on a 'top-down' basis in a series of 'campaigns' related to discrete reactor components. This report describes the facility, the modifications undertaken to facilitate its decommissioning and the strategies employed to recognise the successful decommissioning of the reactor. Early decommissioning tasks at the top of the reactor were undertaken manually but the main of the decommissioning tasks were carried remotely, with deployment systems comprising of little more than crane like devices, intelligently interfaced into the existing structure. The tooling deployed from the 3 tonne capacity (3te) hoist consisted either purely mechanical devices or those being electrically controlled from a 'push-button' panel positioned at the operator control stations, there was no degree of autonomy in the 3te hoist or any of the tools deployed from it. Whilst the ATC was able to provide some tele-robotic capabilities these were very limited and required a good degree of driver input which due to the operating philosophy at WAGR was not utilised. The WAGR box proved a successful waste package, adaptable through the use of waste box furniture specific to the waste-forms generated throughout

  1. DECOMMISSIONING THE HIGH PRESSURE TRITIUM LABORATORY AT LOS ALAMOS NATIONAL LABORATORY

    SciTech Connect

    Peifer, M.J.; Rendell, K.; Hearnsberger, D.W.

    2003-02-27

    In May 0f 2000, the Cerro Grande wild land fire burned approximately 48,000 acres in and around Los Alamos. In addition to the many buildings that were destroyed in the town site, many structures were also damaged and destroyed within the 43 square miles that comprise the Los Alamos National Laboratory (LANL). A special Act of Congress provided funding to remove Laboratory structures that were damaged by the fire, or that could be threatened by subsequent catastrophic wild land fires. The High Pressure Tritium Laboratory (HPTL) is located at Technical Area (TA) 33, building 86 in the far southeast corner of the Laboratory property. It is immediately adjacent to Bandelier National Park. Because it was threatened by both the Cerro Grande fire in 2000, and the 16,000- acre Dome fire in 1996, the former tritium processing facility was placed on the list of facilities scheduled for Decontamination and Decommissioning under the Cerro Grande Rehabilitation Project. The work was performed through the Facilities and Waste Operations (FWO) Division and is integrated with other Laboratory D&D efforts. The primary demolition contractor was Clauss Construction of San Diego, California. Earth Tech Global Environmental Services of San Antonio, Texas was sub-contracted to Clauss Construction, and provided radiological decontamination support to the project. Although the forty-seven year old facility had been in a state of safe-shutdown since operations ceased in 1990, a significant amount of tritium remained in the rooms where process systems were located. Tritium was the only radiological contaminant associated with this facility. Since no specific regulatory standards have been set for the release of volumetrically contaminated materials, concentration guidelines were derived in order to meet other established regulatory criteria. A tritium removal system was developed for this project with the goal of reducing the volume of tritium concentrated in the concrete of the building

  2. Disposable diapers: safe and effective.

    PubMed

    Singh, Namita; Purthi, P K; Sachdev, Anupam; Gupta, Suresh

    2003-09-01

    Nappy rash is a common problem in infants due to their thinner skin, wetness, heat and friction under cloth nappy, fecal enzymes and alkaline urine. The disposable diapers containing Super Absorbent Material (SAM) reduce the incidence of nappy rash. SAM quickly absorbs urine and keeps the skin dry. Also disposable diapers prevent fecal contamination by absorbing the urine and containing stools.

  3. Nuclear waste disposal in space

    NASA Technical Reports Server (NTRS)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  4. Melter Disposal Strategic Planning Document

    SciTech Connect

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  5. Chemical Waste Management and Disposal.

    ERIC Educational Resources Information Center

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  6. A Disposable Blood Cyanide Sensor

    PubMed Central

    Tian, Yong; Dasgupta, Purnendu K.; Mahon, Sari B.; Ma, Jian; Brenner, Matthew; Wang, Jian-Hua; Boss, Gerry R.

    2013-01-01

    Deaths due to smoke inhalation in fires are often due to poisoning by HCN. Rapid administration of antidotes can result in complete resuscitation of the patient but judicious dosing requires the knowledge of the level of cyanide exposure. Rapid sensitive means for blood cyanide quantitation are needed. Hydroxocyanocobinamide (OH(CN)Cbi) reacts with cyanide rapidly; this is accompanied by a large spectral change. The disposable device consists of a pair of nested petri dish bottoms and a single top that fits the outer bottom dish. The top cover has a diametrically strung porous polypropylene membrane tube filled with aqueous OH(CN)Cbi. One end of the tube terminates in an amber (583 nm) light emitting diode; the other end in a photodiode via an acrylic optical fiber. An aliquot of the blood sample is put in the inner dish, the assembly covered and acid is added through a port in the cover. Evolved HCN diffuses into the OH(CN)Cbi solution and the absorbance in the long path porous membrane tube cell is measured within 160s. The LOD was 0.047, 1.0, 0.15, 5.0 and 2.2 μM, respectively, for water (1 mL), bovine blood (100 μL, 1 mL), and rabbit blood (20μL, 50 μL). RSDs were < 10% in all cases and the linear range extended from 0.5 to 200 μM. The method was validated against a microdiffusion approach and applied to the measurement of cyanide in rabbit and human blood. The disposable device permits field measurement of blood cyanide in < 4 min. PMID:23473259

  7. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi; Cochran, John R.

    2013-07-01

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning

  8. The Integration of the 241-Z Building Decontamination and Decommissioning Under Cercla with RCRA Closure at the Plutonium Finishing Plant

    SciTech Connect

    Mattlin, E.; Charboneau, S.; Johnston, G.; Hopkins, A.; Bloom, R.; Skeels, B.; Klos, D.B.

    2007-07-01

    The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z

  9. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  10. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  11. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  12. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  13. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  14. 30 CFR 816.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-SURFACE MINING ACTIVITIES § 816.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  15. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  16. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  17. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  18. 30 CFR 817.73 - Disposal of excess spoil: Durable rock fills.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Disposal of excess spoil: Durable rock fills...-UNDERGROUND MINING ACTIVITIES § 817.73 Disposal of excess spoil: Durable rock fills. The regulatory authority may approve the alternative method of disposal of excess durable rock spoil by gravity placement...

  19. Lime FGD system and sludge disposal case study. Final report

    SciTech Connect

    Smith, E.O.; Morgan, W.E.; Noland, J.W.; Quinlan, R.T.; Stresewski, J.E.; Swenson, D.O.

    1980-11-01

    Selecting and installing a flue gas desulfurization (FGD) system and a sludge disposal system at a utility electric generation plant is no easy task. Approximately 21,000 MW of FGD and sludge disposal systems are presently operating with another 28,000 MW of FGD and sludge disposal systems under construction or planned. With the new EPA regulations requiring an FGD system on essentially every new coal-fired utility electric generation unit, the ability to decide on the most advantageous FGD and sludge disposal systems which are technically, economically, and environmentally acceptable can result in savings of $7.40/kW to the utility. This case study describes the step-by-step design decisions and equipment selections for a hypothetical lime FGD and sludge disposal system for a new 500 MW coal-fired electric generation unit. The hypothetical FGD and sludge disposal systems are based on actual installations. This case study demonstrates the methods by which utility personnel can effectively utilize the information contained in the Lime FGD Systems Data Book (FP-1030) and the FGD Sludge Disposal Manual (FP-977) to select the most advantageous lime FGD and sludge disposal systems.

  20. Russian low-level waste disposal program

    SciTech Connect

    Lehman, L.

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.