40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the owner or operator of the disposal facility shall prepare a Certificate of Disposal for the PCBs and PCB...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Bolinsky, J.
1989-08-02
The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less
Code of Federal Regulations, 2010 CFR
2010-01-01
.... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...
Technical and design update in the AUBE French low-level radioactive waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marque, Y.
1989-01-01
Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 761.213 - Use of manifest-Commercial storage and disposal facility requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.213... or disposal facility receives PCB waste accompanied by a manifest, the owner, operator or his/her... discrepancy space. (2) If a commercial storage or disposal facility receives an off-site shipment of PCB waste...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
10 CFR 62.11 - Filing and distribution of a determination request.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste disposal facilities, to the Compact Commissions with operating regional low-level radioactive waste disposal facilities, and to the Governors of the States in the Compact Commissions with... ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
Remote-Handled Low-Level Waste Disposal Project Code of Record
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, S. L.; Guillen, L. E.; McKnight, C. W.
2015-04-01
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.L. Austad, P.E.; L.E. Guillen, P.E.; C. W. McKnight, P.E.
The Remote-Handled Low-Level Waste (LLW) Disposal Project addresses an anticipated shortfall in remote-handled LLW disposal capability following cessation of operations at the existing facility, which will continue until it is full or until it must be closed in preparation for final remediation of the Subsurface Disposal Area (approximately at the end of Fiscal Year 2017). Development of a new onsite disposal facility will provide necessary remote-handled LLW disposal capability and will ensure continuity of operations that generate remote-handled LLW. This report documents the Code of Record for design of a new LLW disposal capability. The report is owned by themore » Design Authority, who can authorize revisions and exceptions. This report will be retained for the lifetime of the facility.« less
ICD Complex Operations and Maintenance Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibson, P. L.
2007-06-25
This Operations and Maintenance (O&M) Plan describes how the Idaho National Laboratory (INL) conducts operations, winterization, and startup of the Idaho CERCLA Disposal Facility (ICDF) Complex. The ICDF Complex is the centralized INL facility responsible for the receipt, storage, treatment (as necessary), and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation waste.
NASA Astrophysics Data System (ADS)
Thompson, W. T.; Stinton, L. H.
1980-04-01
Compliance with the latest regulatory requirements addressing disposal of radioactive, hazardous, and sanitary solid waste criteria in the selection, design, and operation of solid waste management facilities. Due to the state of flux of these regulatory requirements from EPA and NRC, several waste management options were of solid waste. The current regulatory constraints and the design and operational requirements for construction of both storage and disposal facilities for use in management of DOE-ORO solid waste are highlighted. Capital operational costs are included for both disposal and storage options.
40 CFR 300.510 - State assurances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... assure the availability of hazardous waste treatment or disposal facilities which: (i) Have adequate... subdivision thereof at the time of disposal of hazardous substances therein and a remedial action is... was publicly operated at the time of the disposal of hazardous substances. For other facilities...
LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS
2000-09-01
The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less
The status of LILW disposal facility construction in Korea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan
2013-07-01
In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less
Facility design, construction, and operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
France has been disposing of low-level radioactive waste (LLW) at the Centre de Stockage de la Manche (CSM) since 1969 and now at the Centre de Stockage de l`Aube (CSA) since 1992. In France, several agencies and companies are involved in the development and implementation of LLW technology. The Commissariat a l`Energie Atomic (CEA), is responsible for research and development of new technologies. The Agence National pour la Gestion des Dechets Radioactifs is the agency responsible for the construction and operation of disposal facilities and for wastes acceptance for these facilities. Compagnie Generale des Matieres Nucleaires provides fuel services, includingmore » uranium enrichment, fuel fabrication, and fuel reprocessing, and is thus one generator of LLW. Societe pour les Techniques Nouvelles is an engineering company responsible for commercializing CEA waste management technology and for engineering and design support for the facilities. Numatec, Inc. is a US company representing these French companies and agencies in the US. In Task 1.1 of Numatec`s contract with Martin Marietta Energy Systems, Numatec provides details on the design, construction and operation of the LLW disposal facilities at CSM and CSA. Lessons learned from operation of CSM and incorporated into the design, construction and operating procedures at CSA are identified and discussed. The process used by the French for identification, selection, and evaluation of disposal technologies is provided. Specifically, the decisionmaking process resulting in the change in disposal facility design for the CSA versus the CSM is discussed. This report provides` all of the basic information in these areas and reflects actual experience to date.« less
NASA Astrophysics Data System (ADS)
Setiawan, B.; Prihastuti, S.; Moersidik, S. S.
2018-02-01
The operational of near surface disposal facility during waste packages loading activity into the facility, or in a monitoring activity around disposal facility at Karawang area is predicted to give a radiological risk to radiation workers. The thickness of disposal facility cover system affected the number of radiological risk of workers. Due to this reason, a radiological risk estimation needs to be considered. RESRAD onsite code is applied for this purpose by analyse the individual accepted dose and radiological risk data of radiation workers. The obtained results and then are compared with radiation protection reference in accordance with national regulation. In this case, the data from the experimental result of Karawang clay as host of disposal facility such as Kd value of 137Cs was used. Results showed that the thickness of the cover layer of disposal facility affected to the radiological risk which accepted by workers in a near surface disposal facility.
Construction, Startup and Operation of a New LLRW Disposal Facility in Andrews County, Texas - 12151
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Vliet, James A.
2012-07-01
During this last year, Waste Control Specialists LLC (WCS) completed construction and achieved start of operations of a new low level radioactive waste (LLRW) disposal facility in Andrews County Texas. Disposal operations are underway for commercial LLRW, and start up evolutions are in progress for disposal of Department of Energy (DOE) LLRW. The overall approach to construction and start up are presented as well as some of the more significant challenges and how they were addressed to achieve initial operations of the first new commercial low level radioactive waste disposal facility in more than 30 years. The WCS disposal facilitymore » consists of two LLRW disposal cells, one for Texas Compact waste, and a separate disposal cell for DOE waste. Both disposal cells have very robust and unique designs. The cells themselves are constructed entirely in very low permeability red bed clay. The cell liners include a 0.91 meter thick clay liner meeting unprecedented permeability limits, 0.3 meter thick reinforced concrete barriers, as well as the standard geo-synthetic liners. Actions taken to meet performance criteria and install these liners will be discussed. Consistent with this highly protective landfill design, WCS chose to install a zero discharge site water management system. The considerations behind the design and construction of this system will be presented. Other activities essential to successful start of LLRW disposal operations included process and procedure development and refinement, staffing and staff development, and training. Mock ups were built and used for important evolutions and functions. Consistent with the extensive regulation of LLRW operations, engagement with the Texas Commission on Environmental Quality (TCEQ) was continuous and highly interactive. This included daily activity conference calls, weekly coordination calls and numerous topical conference calls and meetings. TCEQ staff and consultants frequently observed specific construction evolutions, such as geological feature mapping of designated excavation faces, disposal cell clay liner installation, disposal cell concrete barrier construction, etc. (author)« less
Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mohamed, Yasser T.
The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less
Lessons Learned from Radioactive Waste Storage and Disposal Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esh, David W.; Bradford, Anna H.
2008-01-15
The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collard, L.B.
2000-09-26
This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hayes, D.F.; Schroeder, P.R.
This technical note documents the SETTLE computer program which facilitates the design of a confined disposal facility (CDF) to retain solids, provide initial storage, and meet effluent discharge limitations for suspended solids during a dredged matenal disposal operation. Detailed information can be found in Engineer Manual 1110-2-5027, Confined Dredged Material Disposal. SETTLE is a part of the Automated Dredging and Disposal Alternatives Management System (ADDAMS).
Report of foreign travel to Paris, France, June 1, 1990--June 12, 1990
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Hoesen, S.D.; Jones, L.S.
1990-07-01
The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Central Waste Management Division, participated in a technology exchange program on French --- US low-level radioactive waste (LLW) management facility design, construction, and operation. Visits were made to the new French LLW disposal facility currently under construction, the Centre de Stockage de l'Aube (CSA), to the La Hague reprocessing facility to visit LLW conditioning and storage facilities, and to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM). A meeting was also held with representatives of the Agence National pour lamore » Gestion des Dechets Radioactifs (ANDRA) to discuss overall French and Oak Ridge LLW disposal facility development programs and to review the status of the efforts being conducted under the current subcontract with NUMATEC/Societe General pour les Techniques Nouvelles (SGN)/ANDRA.« less
Hanford facility dangerous waste permit application, general information portion. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnichsen, J.C.
1997-08-21
For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less
NASA Astrophysics Data System (ADS)
Tynan, M. C.; Russell, G. P.; Perry, F.; Kelley, R.; Champenois, S. T.
2017-12-01
This global survey presents a synthesis of some notable geotechnical and engineering information reflected in four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies, sites, or disposal facilities; 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding deep underground "facilities", history, activities, and plans. In general, the interactive maps and database [http://gis.inl.gov/globalsites/] provide each facility's approximate site location, geology, and engineered features (e.g.: access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not all encompassing, it is a comprehensive review of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development as a communication tool applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-15
... Hours of Operation: 7 a.m.-9 p.m. Facility Fee: $5.00 Vessel Size: 50' Disposal/Treatment: Holding Tank...' Disposal/Treatment: Holding Tank Name: Chazy Yacht Club Inc Phone Number: 518-298-2866 Lat/Long: 44.934336... p.m. Facility Fee: $ 5.00 Vessel Size: 50' Disposal/Treatment: Holding Tank Name: Gilbert Brook...
Performance assessment for continuing and future operations at solid waste storage area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-09-01
This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.
10 CFR 61.43 - Protection of individuals during operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 61.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.43 Protection of individuals during operations. Operations at the land disposal facility must be conducted in compliance with the standards for radiation protection...
10 CFR 61.43 - Protection of individuals during operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 61.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.43 Protection of individuals during operations. Operations at the land disposal facility must be conducted in compliance with the standards for radiation protection...
10 CFR 61.43 - Protection of individuals during operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 61.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.43 Protection of individuals during operations. Operations at the land disposal facility must be conducted in compliance with the standards for radiation protection...
10 CFR 61.43 - Protection of individuals during operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 61.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.43 Protection of individuals during operations. Operations at the land disposal facility must be conducted in compliance with the standards for radiation protection...
10 CFR 61.43 - Protection of individuals during operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 61.43 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.43 Protection of individuals during operations. Operations at the land disposal facility must be conducted in compliance with the standards for radiation protection...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
40 CFR 761.218 - Certificate of disposal.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.218 Certificate of disposal. (a) For each shipment of manifested PCB waste that the owner or operator of a disposal facility accepts by signing the manifest, the... certifying the fact of disposal of the identified PCB waste, including the date(s) of disposal, and...
Boedeker, Berthold; Goldstein, Adam; Mahajan, Ekta
2017-11-04
The availability and use of pre-sterilized disposables has greatly changed the methods used in biopharmaceuticals development and production, particularly from mammalian cell culture. Nowadays, almost all process steps from cell expansion, fermentation, cell removal, and purification to formulation and storage of drug substances can be carried out in disposables, although there are still limitations with single-use technologies, particularly in the areas of pretesting and quality control of disposables, bag and connections standardization and qualification, extractables and leachables (E/L) validation, and dependency on individual vendors. The current status of single-use technologies is summarized for all process unit operations using a standard mAb process as an example. In addition, current pros and cons of using disposables are addressed in a comparative way, including quality control and E/L validation.The continuing progress in developing single-use technologies has an important impact on manufacturing facilities, resulting in much faster, less expensive and simpler plant design, start-up, and operation, because cell culture process steps are no longer performed in hard-piped unit operations. This leads to simpler operations in a lab-like environment. Overall it enriches the current landscape of available facilities from standard hard-piped to hard-piped/disposables hybrid to completely single-use-based production plants using the current segregation and containment concept. At the top, disposables in combination with completely and functionally closed systems facilitate a new, revolutionary design of ballroom facilities without or with much less segregation, which enables us to perform good manufacturing practice manufacturing of different products simultaneously in unclassified but controlled areas.Finally, single-use processing in lab-like shell facilities is a big enabler of transferring and establishing production in emergent countries, and this is described in more detail in 7. Graphical Abstract.
Siting, design and operational controls for snow disposal sites.
Wheaton, S R; Rice, W J
2003-01-01
The Municipality of Anchorage (MOA), at 61 degrees north latitude, ploughs and hauls snow from urban streets throughout the winter, incorporating grit and chloride applied to street surfaces for traffic safety. Hauled snow is stored at snow disposal facilities, where it melts at ambient spring temperatures. MOA studies performed from 1998 through 2001 show that disposal site melt processes can be manipulated, through site design and operation practices, to control chloride and turbidity in meltwater. An experimental passive "V-swale" pad configuration tested by MOA investigators reduced site meltwater turbidity by an order of magnitude (to about 50 NTU from the 500 NTU typical of more conventional planar pad geometry). The MOA has developed new siting, design and operational criteria for snow disposal facilities to conform to the tested V-swale pad configuration.
40 CFR 435.70 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... disposal or treatment and disposal, provided: (i) If an Oil and Gas facility, operator or its agent or... AND GAS EXTRACTION POINT SOURCE CATEGORY General Provisions § 435.70 Applicability. (a) Purpose. This subpart is intended to prevent oil and gas facilities, for which effluent limitations guidelines and...
Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danny Anderson
2014-07-01
As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less
Panorama, section 2 of 3, note the Operations Building (Facility ...
Panorama, section 2 of 3, note the Operations Building (Facility 294) in the center of facility, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Fischer, Jeffrey M.
1992-01-01
A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
26 CFR 1.142(a)(6)-1 - Exempt facility bonds: solid waste disposal facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... biological, engineering, industrial, or technological method. (1) Final disposal process. The term final... solid material derived from any agricultural, commercial, consumer, governmental, or industrial... industrial operation or activity, or a component of any such product or activity, and that has been used...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahs, W.R.; Haisfield, M.F.
1991-12-31
Since the 1982 promulgation of regulations for the land disposal of low-level radioactive waste (LLW), requirements have been in place to control transfers of LLW intended for disposal at licensed land disposal facilities. These requirements established a manifest tracking system and defined processes to control transfers of LLW intended for disposal at a land disposal facility. Because the regulations did not specify the format for the LLW shipment manifests, it was not unexpected that the two operators of the three currently operating disposal sites should each have developed their own manifest forms. The forms have many similarities and the collectedmore » information, in many cases, is identical; however, these manifests incorporate unique operator preferences and also reflect the needs of the Agreement State regulatory authority in the States where the disposal sites are located. Since Agreement State regulations must be compatible with, but need not always be identical to, those of the Nuclear Regulatory Commission (NRC), the possibility of a proliferation of different manifest forms containing variations in collected information could be envisioned. If these manifests were also to serve a shipping paper purpose, effective integration of the Department of Transportations` (DOT) requirements would also have to be addressed. This wide diversity in uses of manifest information by Federal and State regulatory authorities, other State or Compact entities, and disposal site operators, suggested a single consolidated approach to develop a uniform manifest format with a baseline information content and to define recordkeeping requirements. The NRC, in 1989, had embarked on a rulemaking activity to establish a base set of manifest information needs for regulatory purposes. In response to requests from State and Regional Compact organizations who are attempting to design, develop and operate LLW disposal facilities, and with the general support of Agreement State regulatory authorities, this original data base rulemaking was expanded to include development of a uniform low-level radioactive waste manifest.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
..., Landfill, and Surface Disposal in EPA Region 8 AGENCY: Environmental Protection Agency (EPA). ACTION... operations that generate, treat, and/or use/ dispose of sewage sludge by means of land application, landfill... application, landfill, and surface disposal in the States of CO, MT, ND, and WY and in Indian country in the...
NASA Technical Reports Server (NTRS)
1979-01-01
The safety of NASA's in house microelectronics facility is addressed. Industrial health standards, facility emission control requirements, operation and safety checklists, and the disposal of epitaxial vent gas are considered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tynan, Mark C.; Russell, Glenn P.; Perry, Frank V.
These associated tables, references, notes, and report present a synthesis of some notable geotechnical and engineering information used to create four interactive layer maps for selected: 1) deep mines and shafts; 2) existing, considered or planned radioactive waste management deep underground studies or disposal facilities 3) deep large diameter boreholes, and 4) physics underground laboratories and facilities from around the world. These data are intended to facilitate user access to basic information and references regarding “deep underground” facilities, history, activities, and plans. In general, the interactive maps and database provide each facility’s approximate site location, geology, and engineered features (e.g.:more » access, geometry, depth, diameter, year of operations, groundwater, lithology, host unit name and age, basin; operator, management organization, geographic data, nearby cultural features, other). Although the survey is not comprehensive, it is representative of many of the significant existing and historical underground facilities discussed in the literature addressing radioactive waste management and deep mined geologic disposal safety systems. The global survey is intended to support and to inform: 1) interested parties and decision makers; 2) radioactive waste disposal and siting option evaluations, and 3) safety case development applicable to any mined geologic disposal facility as a demonstration of historical and current engineering and geotechnical capabilities available for use in deep underground facility siting, planning, construction, operations and monitoring.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-24
... Request Submitted to OMB for Review and Approval; Comment Request; Solid Waste Disposal Facility Criteria... Protection Agency has submitted an information collection request (ICR), Solid Waste Disposal Facility... 40 CFR Part 258 on a State level, owners/operators of municipal solid waste landfills have to comply...
Effects from past solid waste disposal practices.
Johnson, L J; Daniel, D E; Abeele, W V; Ledbetter, J O; Hansen, W R
1978-01-01
This paper reviews documented environmental effects experience from the disposal of solid waste materials in the U.S. Selected case histories are discussed that illustrate waste migration and its actual or potential effects on human or environmental health. Principal conclusions resulting from this review were: solid waste materials do migrate beyond the geometric confines of the initial placement location; environmental effects have been experienced from disposal of municipal, agricultural, and toxic chemical wastes; and utilization of presently known science and engineering principles in sitting and operating solid waste disposal facilities would make a significant improvement in the containment capability of shallow land disposal facilities. PMID:367769
Emery, Robert J
2012-11-01
Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.16 - Other information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61.16 Other information. Depending upon the nature of the wastes to be disposed of, and the design and proposed operation of the land disposal facility, additional information may be requested by the Commission...
10 CFR 61.52 - Land disposal facility operation and disposal site closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...
10 CFR 61.52 - Land disposal facility operation and disposal site closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...
10 CFR 61.52 - Land disposal facility operation and disposal site closure.
Code of Federal Regulations, 2010 CFR
2010-01-01
... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...
10 CFR 61.52 - Land disposal facility operation and disposal site closure.
Code of Federal Regulations, 2011 CFR
2011-01-01
... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...
10 CFR 61.52 - Land disposal facility operation and disposal site closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... meters below the top surface of the cover or must be disposed of with intruder barriers that are designed... mapped by means of a land survey. Near-surface disposal units must be marked in such a way that the boundaries of each unit can be easily defined. Three permanent survey marker control points, referenced to...
Code of Federal Regulations, 2010 CFR
2010-01-01
... geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN GEOLOGIC REPOSITORIES Technical Criteria Design Criteria for the Geologic Repository Operations Area § 60.132 Additional design criteria for surface facilities in...
Support of the Iraq nuclear facility dismantlement and disposal program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, Roger; Cochran, John; Danneels, Jeff
2007-07-01
Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDsmore » Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)« less
Craney Island Disposal Area. Site Operations and Monitoring Report, 1980-1987
1990-07-01
STCFITE nmpyv FMISCELLANEOUS PAPER EL-90-10 * * *CRANEY ISLAND DISPOSAL AREA SITE OPERATIONS AND MONITORING REPORT, 1980-1987 N by Michael R. Palermo...4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S) Miscellaneous Paper EL-90-0 0 So. M OF :RFRMING ORGANIZATION...area is a 2,500-acre confined dredged material disposal facility located near Norfolk, VA. In 1981, the Craney Island Management Plan ( CIMP ) was
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camper, Larry W.; Michalak, Paul; Cohen, Stephen
Community Water Systems (CWSs) are required to remove uranium from drinking water to meet EPA standards. Similarly, mining operations are required to remove uranium from their dewatering discharges to meet permitted surface water discharge limits. Ion exchange (IX) is the primary treatment strategy used by these operations, which loads uranium onto resin beads. Presently, uranium-loaded resin from CWSs and mining operations can be disposed as a waste product or processed by NRC- or Agreement State-licensed uranium recovery facilities if that licensed facility has applied for and received permission to process 'alternate feed'. The disposal of uranium-loaded resin is costly andmore » the cost to amend a uranium recovery license to accept alternate feed can be a strong disincentive to commercial uranium recovery facilities. In response to this issue, the NRC issued a Regulatory Issue Summary (RIS) to clarify the agency's policy that uranium-loaded resin from CWSs and mining operations can be processed by NRC- or Agreement State-licensed uranium recovery facilities without the need for an alternate feed license amendment when these resins are essentially the same, chemically and physically, to resins that licensed uranium recovery facilities currently use (i.e., equivalent feed). NRC staff is clarifying its current alternate feed policy to declare IX resins as equivalent feed. This clarification is necessary to alleviate a regulatory and financial burden on facilities that filter uranium using IX resin, such as CWSs and mine dewatering operations. Disposing of those resins in a licensed facility could be 40 to 50 percent of the total operations and maintenance (O and M) cost for a CWS. Allowing uranium recovery facilities to treat these resins without requiring a license amendment lowers O and M costs and captures a valuable natural resource. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander
2013-07-01
This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less
Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberger, Kent H.
2013-07-01
The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-06-01
This project constitutes Phase 2 of the Sound Waste Management Plan and created waste oil collection and disposal facilities, bilge water collection and disposal facilities, recycling storage, and household hazardous waste collection and storage, and household hazardous waste collection and storage facilities in Prince William Sound. A wide range of waste streams are generated within communities in the Sound including used oil generated from vehicles and vessels, and hazardous wastes generated by households. This project included the design and construction of Environmental Operations Stations buildings in Valdez, Cordova, Whittier, Chenega Bay and Tatitlek to improve the overall management of oilymore » wastes. They will house new equipment to facilitate oily waste collection, treatment and disposal. This project also included completion of used oil management manuals.« less
Bedinger, Marion S.; Stevens, Peter R.
1990-01-01
In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.
40 CFR 261.142 - Cost estimate.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements if he can demonstrate that on-site disposal capacity will exist at all times over the life of the... section. (d) The owner or operator must keep the following at the facility during the operating life of... this section at the point when the extent and manner of the facility's operation would make these...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that on-site disposal capacity will exist at all times over the life of the facility. (3) The closure...) The owner or operator must keep the following at the facility during the operating life of the... PERMIT Financial Requirements § 267.142 Cost estimate for closure. (a) The owner or operator must have at...
40 CFR 261.142 - Cost estimate.
Code of Federal Regulations, 2011 CFR
2011-07-01
... requirements if he can demonstrate that on-site disposal capacity will exist at all times over the life of the... section. (d) The owner or operator must keep the following at the facility during the operating life of... this section at the point when the extent and manner of the facility's operation would make these...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that on-site disposal capacity will exist at all times over the life of the facility. (3) The closure...) The owner or operator must keep the following at the facility during the operating life of the... PERMIT Financial Requirements § 267.142 Cost estimate for closure. (a) The owner or operator must have at...
7 CFR 1980.313 - Site and building requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... surface. (c) Water and water/waste disposal system. A nonfarm tract on which a loan is to be made must have an adequate water and water/waste disposal system and other related facilities. Water and water... site is served by a privately owned and centrally operated water and water/waste disposal system, the...
40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).
Code of Federal Regulations, 2010 CFR
2010-07-01
... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
10 CFR 61.54 - Alternative requirements for design and operations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.54 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.54 Alternative requirements for... other than those set forth in §§ 61.51 through 61.53 for the segregation and disposal of waste and for...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
40 CFR 264.31 - Design and operation of facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
....31 Section 264.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which...
GUIDE TO SEPTAGE TREATMENT AND DISPOSAL
This guide presents information on the handling, treatment, and disposal of septage in a format easily used by administrators of waste management programs, septage haulers, and managers or operators of septage handling facilities. The guide does not provide detailed engineering d...
Andraski, Brian J.; Fisher, Jeffrey M.; Prudic, David E.; Trask, N.J.; Stevens, P.R.
1991-01-01
A low-level radioactive-waste disposal facility in the Amargosa Desert of Nevada, about 17 km southeast of Beatty and 169 km northwest of Las Vegas, has been operating since 1962. This was the first commercially operated radioactive waste disposal facility in the United States. Wastes at the facility are emplaced in 2 to 15-m deep trenches and covered by backfilling with previously excavated materials. Annual precipitation in the area averages about 112 mm. Vegetation is sparse with creosote bush (Larrea tridentata) being the dominant species. Soils in the area are skeletal and are underlain by more than 170 m of unconsolidated alluvial-fan, fluvial, and ephemeral-lake deposits. Depth to water is about 85 m.Initial field investigations (1976-1980) included monitoring of soil-water content and water potential in an unvegetated soil profile, and collection of meteorological data at the disposal facility. Design of additional hydrogeologic investigations and long-term studies of soil-water movement in a vegetated soil profile began in 1982 and field data collection has been ongoing since 1984. Studies to evaluate the modifying effects of trench construction on the natural site environment and to determine changes in trench structural stability began in 1987. Design of studies to measure gas and vapor movement in the trenches at the facility began in 1989.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... Means of Land Application, Landfill, and Surface Disposal in the EPA Region 8 AGENCY: Environmental..., treat, and/or use/dispose of sewage sludge by means of land application, landfill, and surface disposal... landfill. The purpose is to require agronomic soil sampling for calculating the proper amount of sewage...
Final closure of a low level waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potier, J.M.
1995-12-31
The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less
40 CFR 264.220 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments... that use surface impoundments to treat, store, or dispose of hazardous waste except as § 264.1 provides...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
40 CFR 264.270 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264... treat or dispose of hazardous waste in land treatment units, except as § 264.1 provides otherwise. ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anastas, M.
1984-01-01
A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at du Pont de Nemours and Company (SIC-2800), Deepwater, New Jersey in November 1981. Hazardous wastes generated at the facility were disposed of by incineration, wastewater and thermal treatment, and landfilling. Engineering controls for the incineration process and at the landfill were noted. At the landfill, water from a tank trailer was sprayed periodically to suppress dust generation. Vapor control devices, such as spot scrubbers, were used during transfer of organic wastes from trailers and drums to storage prior to incineration. Wastes were also recirculatedmore » to prevent build up of grit in the strainers. The company conducted area monitoring for nitrobenzene (98953) and amines at the landfill and personal monitoring for chloramines at the incinerator. Half mask dust respirators were worn by landfill operators. Operators who unloaded and emptied drums at the incinerator were required to wear face masks, rubber gloves, and boots. The author concludes that disposal of hazardous wastes at the facility is state of the art. An in depth survey is recommended.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crandall, M.S.
1983-08-01
A walk through survey was conducted to assess control technology for hazardous wastes disposal operations at Olin Chemicals Group (SIC-2800, SIC-2812, SIC-2819), Charleston, Tennessee in May 1982. Hazardous wastes generated at the facility included brine sludge, thick mercury (7439954) (Hg) butter, and calcium-hypochlorite (7778543). An estimated 8500 tons of waste were disposed of annually. The Hg waste underwent a retorting process that recycled the Hg. The final detoxified waste was land filled. Brine sludge and calcium-hypochlorite were also land filled. No controls beyond those normally used at such sites were found at the landfills. Periodic monitoring of Hg vapor concentrationsmore » was conducted by the company. Medical monitoring of urine for Hg exposure was conducted. Specific limits were set for urinary Hg concentrations. When these limits were exceeded the workers were removed from exposure. Personal protective equipment consisted of hard hats, safety glasses, and spirators specially designed for Hg exposure. The author concludes that the hazardous waste disposal and treatment operations at the facility are well controlled.« less
Special Analysis: Disposal Plan for Pit 38 at Technical Area 54, Area G
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Rob
2012-06-26
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research; environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a mannermore » that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on- and off-site exposure scenarios. The assessments are based on existing site and disposal facility data, and on assumptions about future rates and methods of waste disposal. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, disposal operations have been confined to MDA G and are scheduled to continue in that region until MDA G undergoes final closure at the end of 2013. Given its impending closure, efforts have been made to utilize the remaining disposal capacity within MDA G to the greatest extent possible. One approach for doing this has been to dispose of low-activity waste from cleanup operations at LANL in the headspace of selected disposal pits. Waste acceptance criteria (WAC) for the material placed in the headspace of pits 15, 37, and 38 have been developed (LANL, 2010) and the impacts of placing waste in the headspace of these units has been evaluated (LANL, 2012a). The efforts to maximize disposal efficiency have taken on renewed importance because of the disposal demands placed on MDA G by the large volumes of waste that are being generated at LANL by cleanup efforts. For example, large quantities of waste were recently generated by the retrieval of waste formerly disposed of at TA-21, MDA B. A portion of this material has been disposed of in the headspace of pit 38 in compliance with the WAC developed for that disposal strategy; a large amount of waste has also been sent to off-site facilities for disposal. Nevertheless, large quantities of MDA B waste remain that require disposal. An extension of pit 38 was proposed to provide the disposal capacity that will be needed to dispose of institutional waste and MDA B waste through 2013. A special analysis was prepared to evaluate the impacts of the pit extension (LANL, 2012b). The analysis concluded that the disposal unit could be extended with modest increases in the exposures projected for the Area G performance assessment and composite analysis, as long as limits were placed on the radionuclide concentrations in the waste that is placed in the headspace of the pit. Based, in part, on the results of the special analysis, the extension of pit 38 was approved and excavation of the additional disposal capacity was started in May 2012. The special analysis presented here uses performance modeling to identify a disposal plan for the placement of waste in pit 38. The modeling uses a refined design of the disposal unit and updated radionuclide inventories to identify a disposal configuration that promotes efficient utilization of the pit and ensures continued compliance with DOE Order 435.1 performance objectives. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3. The disposal plan for pit 38 is provided in Section 4 and the conclusions of the investigation are provided in Section 5. Throughout the report, pit 38 is used to refer to the entire disposal unit, including the existing pit and the extension that is currently under construction. Where a distinction between the two portions of the pit is necessary, the existing unit is referred to as pit 38 proper and the new portion of the pit as the pit 38 extension or, more simply, the extension.« less
15 CFR 971.606 - Onshore information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... environment of port, transport, processing and waste disposal facilities and associated facilities (e.g., maps... to enable NOAA to function as lead agency in preparing permit site-specific environmental impact... construction and operation of the facilities, including waste characteristics and toxicity; (3) Any mitigating...
15 CFR 971.606 - Onshore information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... environment of port, transport, processing and waste disposal facilities and associated facilities (e.g., maps... to enable NOAA to function as lead agency in preparing permit site-specific environmental impact... construction and operation of the facilities, including waste characteristics and toxicity; (3) Any mitigating...
Hazardous Waste Cleanup: Bridgeport Disposal, L.L.C. in Bridgeport, New Jersey
The Bridgeport Disposal, LLC, formerly known as Safety Kleen Bridgeport Incorporated facility, is located on US Route 322 & I 295 in Bridgeport, New Jersey. This site consists of approximately 600 acres; however, the operational portion occupies only 78 ac
Aquifer disposal of carbon dioxide for greenhouse effect mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N.; Naymik, T.G.; Bergman, P.
1998-07-01
Deep aquifer sequestration of carbon dioxide (CO{sup 2}), generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less
Aquifer disposal of carbon dioxide for greenhouse effect mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, N.; Naymik, T.G.; Bergman, P.
1998-04-01
Deep aquifer sequestration of carbon dioxide (CO{sub 2}) generated from power plant and other industrial emissions, is being evaluated as one of the potential options for the reduction of atmospheric greenhouse gas emissions. The major advantages of using deep aquifers are that the disposal facilities may be located close to the sources, thus reducing the CO{sub 2} transport costs. The potential capacity is much larger than the projected CO{sub 2} emissions over the next century, and it is a long-term/permanent sequestration option, because a large portion of the injected CO{sub 2} may be fixed into the aquifer by dissolution ormore » mineralization. The major limitations include the potentially high cost, the risk of upward migration, and the public perception of risk. Most of the cost is due to the need to separate CO{sub 2} from other flue gases, rather than the actual cost of disposal. Hazardous liquid waste and acid gas disposal in deep sedimentary formations is a well-established practice. There are also numerous facilities for storage of natural gases in depleted oil and gas reservoirs. The only current facility for aquifer disposal of CO{sub 2} is the offshore injection well at Sleipner Vest in the North Sea in Norway operated by Statoil. Exxon and Pertamina are planning an offshore aquifer disposal facility at Natuna gas field in Indonesia. A major evaluation of the feasibility of CO{sub 2} disposal in the European Union and Norway has been conducted under project Joule II. The data and experience obtained from the existing deep-waste disposal facilities and from the Sleipner Vest site form a strong foundation for further research and development on CO{sub 2} sequestration. Federal Energy Technology Center (FETC) is currently leading a project that uses data from an existing hazardous waste disposal facility injecting in the Mt. Simon Sandstone aquifer in Ohio to evaluate hydrogeologic, geochemical, and social issues related to CO{sub 2} disposal.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-05-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-01-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
French, Sean B.; Shuman, Robert
2012-04-17
The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requiresmore » that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were developed for Revision 4 of the performance assessment and composite analysis. The approach used to characterize the FY 2008 through 2011 waste is generally the same as that used to characterize the inventory for the Revision 4 analyses (Shuman, 2008). This methodology is described in Section 2. The results of the disposal receipt review are presented in Section 3 and discussed in terms of their significance to the Area G analyses.« less
Diamantis, Vasileios; Erguder, Tuba H; Aivasidis, Alexandros; Verstraete, Willy; Voudrias, Evangelos
2013-10-15
The present paper focuses on a largely unexplored field of landfill-site valorization in combination with the construction and operation of a centralized olive mill wastewater (OMW) treatment facility. The latter consists of a wastewater storage lagoon, a compact anaerobic digester operated all year round and a landfill-based final disposal system. Key elements for process design, such as wastewater pre-treatment, application method and rate, and the potential effects on leachate quantity and quality, are discussed based on a comprehensive literature review. Furthermore, a case-study for eight (8) olive mill enterprises generating 8700 m(3) of wastewater per year, was conceptually designed in order to calculate the capital and operational costs of the facility (transportation, storage, treatment, final disposal). The proposed facility was found to be economically self-sufficient, as long as the transportation costs of the OMW were maintained at ≤4.0 €/m(3). Despite that EU Landfill Directive prohibits wastewater disposal to landfills, controlled application, based on appropriately designed pre-treatment system and specific loading rates, may provide improved landfill stabilization and a sustainable (environmentally and economically) solution for effluents generated by numerous small- and medium-size olive mill enterprises dispersed in the Mediterranean region. Copyright © 2013 Elsevier Ltd. All rights reserved.
40 CFR 761.211 - Manifest system-Transporter requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...
40 CFR 761.211 - Manifest system-Transporter requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
...) TOXIC SUBSTANCES CONTROL ACT POLYCHLORINATED BIPHENYLS (PCBs) MANUFACTURING, PROCESSING, DISTRIBUTION IN COMMERCE, AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.211 Manifest system—Transporter... storage or disposal facility owned or operated by the generator of the PCB waste. (2) [Reserved] (b...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2011 CFR
2011-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2013 CFR
2013-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2012 CFR
2012-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2014 CFR
2014-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2010 CFR
2010-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
10 CFR 61.40 - General requirement.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false General requirement. 61.40 Section 61.40 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.40 General requirement. Land disposal facilities must be sited, designed, operated, closed...
25 CFR 171.420 - Can I dispose of sewage, trash, or other refuse on a BIA irrigation project?
Code of Federal Regulations, 2010 CFR
2010-04-01
... 25 Indians 1 2010-04-01 2010-04-01 false Can I dispose of sewage, trash, or other refuse on a BIA... AND WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Facilities § 171.420 Can I dispose of sewage, trash, or other refuse on a BIA irrigation project? No. Sewage, trash, or other refuse are considered...
EnergySolution's Clive Disposal Facility Operational Research Model - 13475
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nissley, Paul; Berry, Joanne
2013-07-01
EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2003-09-30
This Annual Site Environmental Report (ASER) for 2002 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing' s Santa Susana Field Laboratory (SSFL)). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations at ETEC included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities at ETEC involved the operation of large-scale liquid metal facilities that were used for testing liquid metal fast breeder components. All nuclear work was terminated in 1988, and,more » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2002 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property ( land, structures, waste), and recycling. All radioactive w astes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes are released into the environment, and no structural debris from buildings w as transferred to municipal landfills or recycled in 2002.« less
43 CFR 3164.1 - Onshore Oil and Gas Orders.
Code of Federal Regulations, 2011 CFR
2011-10-01
.... 27, 1989, new facilities greater than 200 MCF production; Aug. 23, 1989, existing facility greater than 200 MCF production; Feb. 26, 1990, existing facility less than 200 MCF production 54 FR 8100 None. 6. Hydrogen sulfide operations Jan. 22, 1991 55 FR 48958 None. 7. Disposal of produced water October...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan R. Dutton; H. Seay Nance
2003-06-01
Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study onmore » abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned CCDD sites; site assessments and remedial feasibility studies are ongoing in each State. Remediation alternatives addressed physical hazards and potential for groundwater transport of dissolved salt and petroleum hydrocarbons that might be leached from wastes. Remediation options included excavation of wastes and contaminated adjacent soils followed by removal to permitted disposal facilities or land farming if sufficient on-site area were available.« less
Code of Federal Regulations, 2014 CFR
2014-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2014-01-01 2014-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2012 CFR
2012-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2012-01-01 2012-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2013 CFR
2013-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2013-01-01 2013-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Code of Federal Regulations, 2011 CFR
2011-01-01
... conversion to a form suitable for disposal at an alternative site in accordance with any regulations that are... 10 Energy 2 2011-01-01 2011-01-01 false Additional design criteria for surface facilities in the geologic repository operations area. 60.132 Section 60.132 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED...
Research reactor decommissioning experience - concrete removal and disposal -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Mark R.; Gardner, Frederick W.
1990-07-01
Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less
Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stevens, Patrice Ann; Baumer, Andrew Ronald
Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less
Hazardous Waste Cleanup: Clean Harbors BTD, LLC in Clarence, New York
The Clean Harbors BDT, LLC site was a commercial treatment, storage, and disposal facility that treated reactive hazardous wastes, pressurized waste, pharmaceutical and packaged laboratory chemicals. The facility was initially owned and operated by Wilson-
NASA Astrophysics Data System (ADS)
Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.
2011-04-01
The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 270.1 - Purpose and scope of these regulations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... hazardous waste, and owners or operators of hazardous waste treatment, storage, or disposal facilities may be required to file a notification of that activity under section 3010. Six months after the initial promulgation of the part 261 regulations, treatment, storage, or disposal of hazardous waste by any person who...
40 CFR 761.60 - Disposal requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... a disposal facility approved under this part. (5) Natural gas pipeline systems containing PCBs. The owner or operator of natural gas pipeline systems containing ≥50 ppm PCBs, when no longer in use, shall... the PCB concentrations in natural gas pipeline systems shall do so in accordance with paragraph (b)(5...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
... Activities; Proposed Collection; Comment Request; Recordkeeping and Reporting--Solid Waste Disposal...-- Solid Waste Disposal Facilities and Practices; ``(EPA ICR No. 1381.10, OMB Control No. 2050-0122) to the... on a State level, owners/operators of municipal solid waste landfills have to comply with the final...
Hanford immobilized low-activity tank waste performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, F.M.
1998-03-26
The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
Performance assessment for continuing and future operations at Solid Waste Storage Area 6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-02-01
This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less
40 CFR 264.194 - General operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....194 Section 264.194 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.194 General operating requirements. (a) Hazardous wastes or treatment reagents must...
Yasui, Shojiro
2014-01-01
The accident at the Fukushima Daiichi Atomic Power Plant that accompanied the Great East Japan Earthquake on March 11, 2011, released a large amount of radioactive material. To rehabilitate the contaminated areas, the government of Japan decided to carry out decontamination work and manage the waste resulting from decontamination. In the summer of 2013, the Ministry of the Environment planned to begin a full-scale process for waste disposal of contaminated soil and wastes removed as part of the decontamination work. The existing regulations were not developed to address such a large amount of contaminated wastes. The Ministry of Health, Labour and Welfare (MHLW), therefore, had to amend the existing regulations for waste disposal workers. The amendment of the general regulation targeted the areas where the existing exposure situation overlaps the planned exposure situation. The MHLW established the demarcation lines between the two regulations to be applied in each situation. The amendment was also intended to establish provisions for the operation of waste disposal facilities that handle large amounts of contaminated materials. Deliberation concerning the regulation was conducted when the facilities were under design; hence, necessary adjustments should be made as needed during the operation of the facilities.
Skatole biodegradation via isolates from swine manure
USDA-ARS?s Scientific Manuscript database
Animal waste disposal and odor control have become a major issue for animal production facilities. As an attempt to improve efficiency and profit margins, many livestock operations have become large concentrated rearing facilities. As a result, many concerns over potentially adverse environmental ...
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and operating requirements. 265.254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...
License restrictions at Barnwell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Autry, V.R.
1991-12-31
The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
40 CFR 264.273 - Design and operating requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
....273 Section 264.273 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.273 Design and operating requirements. The Regional Administrator will specify in...
49 CFR 599.201 - Identification of salvage auctions and disposal facilities.
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities. 599.201 Section 599.201 Transportation Other Regulations Relating to Transportation (Continued... and Disposal Facilities § 599.201 Identification of salvage auctions and disposal facilities. (a... disposal facility identified in paragraph (a)(2) or (a)(3) of this section. (2) A disposal facility listed...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, A.; Gordon, S.; Goldston, W.
2013-07-08
This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less
Wei, Zuoan; Yin, Guangzhi; Wang, J G; Wan, Ling; Li, Guangzhi
2013-01-01
Rapid development of China's economy demands for more mineral resources. At the same time, a vast quantity of mine tailings, as the waste byproduct of mining and mineral processing, is being produced in huge proportions. Tailings impoundments play an important role in the practical surface disposal of these large quantities of mining waste. Historically, tailings were relatively small in quantity and had no commercial value, thus little attention was paid to their disposal. The tailings were preferably discharged near the mines and few tailings storage facilities were constructed in mainland China. This situation has significantly changed since 2000, because the Chinese economy is growing rapidly and Chinese regulations and legislation require that tailings disposal systems must be ready before the mining operation begins. Consequently, data up to 2008 shows that more than 12 000 tailings storage facilities have been built in China. This paper reviews the history of tailings disposal in China, discusses three cases of tailings dam failures and explores failure mechanisms, and the procedures commonly used in China for planning, design, construction and management of tailings impoundments. This paper also discusses the current situation, shortcomings and key weaknesses, as well as future development trends for tailings storage facilities in China.
76 FR 10583 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-25
... No. 20110048, Draft EIS, DOE, 00, Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste, Proposed Development, Operation, and Long-Term Management of a Disposal Facility... Period Ends: 03/28/2011, Contact: Cody Wheeler 816-389-3739. EIS No. 20110051, Draft EIS, USN, CA, Marine...
40 CFR 122.28 - General permits (applicable to State NPDES programs, see § 123.25).
Code of Federal Regulations, 2010 CFR
2010-07-01
... operations; (B) Discharge the same types of wastes or engage in the same types of sludge use or disposal... AGENCY (CONTINUED) WATER PROGRAMS EPA ADMINISTERED PERMIT PROGRAMS: THE NATIONAL POLLUTANT DISCHARGE... or subcategories of discharges or sludge use or disposal practices or facilities described in the...
1991-01-01
aluminum foil-lined caps. Prior to use, glass jars and jugs for storage of PCB samples were washed with soap and water, rinsed with tap water, rinsed...technique used in this study. Because differences in solids-liquid separation techniques result in varying amounts of microparticles and/or organic
Installation-Restoration Program Preliminary Assessment, Naknek Recreational Camps, Alaska
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1989-04-01
The Hazardous Materials Technical Center (HMTC) was retained in January 1988 to conduct the Installation-Restoration Program (IRP) Preliminary Assessment of Naknek Recreational Camps, Alaska, DoD policy is to identify and fully evaluate suspected problems associated with past hazardous-material disposal sites on DoD facilities, control the migration of hazardous contamination from such facilities, and control hazards to health and welfare that may have resulted from these past operations. Past installation operations involved the use and disposal of materials and wastes that were subsequently categorized as hazardous. The major operations of Naknek Camp I and Camp II did not use or disposemore » of HM/HW; however, these camps were used by the Air Force as dump areas and landfills. Waste oils, fuels, and polychlorinated biphenyls (PCBs) were among the wastes disposed of during these dumping activities. Information obtained through interviews, records, and field observations resulted in the identification of three sites that are potentially contaminated with HM/HW. At each of the identified sites, the potential exists for contamination of surface water, soils, and/or ground water and subsequent contaminant migration.« less
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
40 CFR 257.3 - Criteria for classification of solid waste disposal facilities and practices.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities and Practices § 257.3 Criteria for classification of solid waste disposal facilities and practices. Solid waste disposal facilities or practices...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
1991-08-01
insert various jamming signals. The criterion for classifying radio equipment under test is the quality of transferred information , that is the SINAD...UNCLASSFED) This report describes a test facility for measuring the behaviour and quality of radio communication equipment in a simulated operational...formation FEL has the disposal of a facility to test the quality of radio equipment in a simulated operational situation. (Y .. ,. -’ , / " " ’ TNO mppon 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirro, G.A.
1997-02-01
This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
Criteria for Solid Waste Disposal Facilities: A Guide for Owners/Operators
EPA's continuing mission to establish the minimum national standards for landfill design, operation, and management that will enhance landfill safety and boost public confidence in landfills as a component of a workable integrated waste management system.
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
40 CFR 264.279 - Recordkeeping.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.279 Recordkeeping. The owner or operator must include hazardous waste application dates and rates in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uleck, R.B.; DeFino, C.V.
1991-12-31
The Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA) assigned States the responsibility to provide for disposal of commercial low-level radioactive waste (LLRW) by 1993. The LLRWPAA also required the US Nuclear Regulatory Commission (NRC) to establish procedures and develop the technical review capability to process license applications for new LLRW disposal facilities. Under the LLRWPAA, NRC is required, to the extent practicable, to complete its review of an LLRW disposal facility license application within 15 months of its submittal by a State. This provision of the LLRWPAA helps ensure that NRC, in addition to protecting public health andmore » safety and the environment, facilitates States` achievement of LLRWPAA milestones for new facility development. A timely NRC review is needed for States to accomplish their objective of having new disposal facilities in operation on the dates prescribed in the LLRWPAA. To help assure NRC and States` compliance with the provisions of the LLRWPAA, NRC has developed a licensing review strategy that includes: (1) the further development of regulatory guidance, (2) enhancement of licensing review capability, and (3) prelicensing regulatory consultation with potential applicants.« less
Pathways for Disposal of Commercially-Generated Tritiated Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halverson, Nancy V.
From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less
40 CFR 264.148 - Incapacity of owners or operators, guarantors, or financial institutions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., guarantors, or financial institutions. 264.148 Section 264.148 Protection of Environment ENVIRONMENTAL... TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.148 Incapacity of owners or operators, guarantors, or financial institutions. (a) An owner or operator must notify the Regional...
40 CFR 265.148 - Incapacity of owners or operators, guarantors, or financial institutions.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., guarantors, or financial institutions. 265.148 Section 265.148 Protection of Environment ENVIRONMENTAL... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.148 Incapacity of owners or operators, guarantors, or financial institutions. (a) An owner or operator must notify the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casbon, M. A.; Nichols, W. E.
DOE O 435.1, Radioactive Waste Management, and DOE M 435.1-1, Radioactive Waste Management Manual, require that a determination of continued adequacy of the performance assessment (PA), composite analysis (CA), and disposal authorization statement (DAS) be made on an annual basis, and it must consider the results of data collection and analysis from research, field studies, and monitoring. Annual summaries of low-level waste (LLW) disposal operations must be prepared with respect to the conclusions and recommendations of the PA and CA, and a determination of the need to revise the PA or CA must be made. The annual summary requirement providesmore » a structured approach for demonstrating the continued adequacy of the PA and CA in demonstrating a reasonable expectation that the performance objectives will be met. This annual summary addresses only the status of the Environmental Restoration Disposal Facility (ERDF) PA (CP-60089, Performance Assessment for the Environmental Restoration Disposal Facility, Hanford Site, Washington, formerly WCH-520 Rev. 1)1. The CA for ERDF is supported by DOE/RL-2016-62, Annual Status Report (FY 2016): Composite Analysis of Low Level Waste Disposal in the Central Plateau at the Hanford Site. The ERDF PA portion of the CA document is found in Section 3.1.4, and the ERDF operations portion is found in Section 3.3.3.2 of that document.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, M.A.
1991-12-31
In conducting a performance assessment for a low-level waste (LLW) disposal facility, one of the important considerations for determining the source term, which is defined as the amount of radioactivity being released from the facility, is the quantity of radioactive material present. This quantity, which will be referred to as the source inventory, is generally estimated through a review of historical records and waste tracking systems at the LLW facility. In theory, estimating the total source inventory for Department of Energy (DOE) LLW disposal facilities should be possible by reviewing the national data base maintained for LLW operations, the Solidmore » Waste Information Management System (SWIMS), or through the annual report that summarizes the SWIMS data, the Integrated Data Base (IDB) report. However, in practice, there are some difficulties in making this estimate. This is not unexpected, since the SWIMS and the IDB were not developed with the goal of developing a performance assessment source term in mind. The practical shortcomings using the existing data to develop a source term for DOE facilities will be discussed in this paper.« less
40 CFR 265.254 - Design and operating requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each new waste pile on which construction commences after January 29, 1992, each lateral expansion of a waste pile unit on which construction commences after July 29, 1992, and each such replacement of an...
SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
UNTERREINER BJ
2008-07-18
More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less
Petit-Berghem, Yves; Lemperiere, Guy
2012-03-01
The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.
An overview of ALARA considerations during Yankee Atomic`s Component Removal Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Granados, B.; Babineau, G.; Colby, B.
1995-03-01
In Februrary 1992, Yankee Atomic Electric Company (YAEC) permanently shutdown Yankee Nuclear Power Station in Rowe, Massachusetts, after thirty-two years of efficient operation. Yankee`s plan decommissioning is to defer dismantlement until a low level radioactive waste (LLRW) disposal facility is available. The plant will be maintained in a safe storage condition until a firm contract for the disposal of LLRW generated during decommissioning can be secured. Limited access to a LLRW disposal facility may occur during the safe storage period. Yankee intends to use these opportunities to remove components and structures. A Component Removal Project (CRP) was initiated in 1993more » to take advantage of one of these opportunities. A Componenet Removal Project (CRP) was initiated in 1993 to take advantage of one of these opportunities. The CRP includes removal of four steam generators, the pressurizer, and segmentation of reactor vessel internals and preparation of LLRW for shipment and disposal at Chem-Nuclear`s Barnwell, South Carolina facility. The CRP is projected to be completed by June 1994 at an estimated total worker exposure of less than 160 person-rem.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Black, S.C.; Townsend, Y.E.
1997-02-01
The Nevada Test Site (NTS), located in southern Nevada, has been the primary location for testing of nuclear explosives in the continental US. Testing began in 1951 and continued until the moratorium in 1992. Waste storage and disposal facilities for defense radioactive and mixed waste are located in Areas 3 and 5. At the Area 5 Radioactive Waste Management Site (RWMS-5), low-level wastes (LLW) from US Department of Energy (DOE) affiliated onsite and offsite generators are disposed of using standard shallow land disposal techniques. Transuranic wastes are retrievably stored at the RWMS-5 in containers on a surface pad, pending shipmentmore » to the Waste Isolation Pilot Plant facility in New Mexico. Nonradioactive hazardous wastes are accumulated at a special site before shipment to a licensed offsite disposal facility. Non-standard packages of LLW are buried in subsidence craters in the Area 3 RWMS. This report describes these activities on and around the NTS and includes a listing of the results obtained from environmental surveillance activities during the second calendar quarter of 1996.« less
Ammonium and skatole biodegradation by swine waste microflora in a flow-through bioreactor
USDA-ARS?s Scientific Manuscript database
Animal waste disposal and odor control have become a major issue for animal production facilities. As an attempt to improve efficiency and profit margins, many livestock operations have become large concentrated rearing facilities. As a result, many concerns over potentially adverse environmental im...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
40 CFR 265.402 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility.] ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Chemical, Physical, and Biological Treatment § 265.402 Waste analysis and trial tests...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Ning; Rutherford, Phil; Lenox, Art
2008-09-30
This Annual Site Environmental Report (ASER) for 2007 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequentmore » radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended until DOE completes the SSFL Area IV Environmental Impact Statement (EIS). The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2007 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2007.« less
Optimizing Anesthesia-Related Waste Disposal in the Operating Room: A Brief Report.
Hubbard, Richard M; Hayanga, Jeremiah A; Quinlan, Joseph J; Soltez, Anita K; Hayanga, Heather K
2017-10-01
Misappropriation of noncontaminated waste into regulated medical waste (RMW) containers is a source of added expense to health care facilities. The operating room is a significant contributor to RMW waste production. This study sought to determine whether disposing of anesthesia-related waste in standard waste receptacles before patient entry into the operating room would produce a reduction in RMW. A median of 0.35 kg of waste was collected from 51 cases sampled, with a potential annual reduction of 13,800 kg of RMW to the host institution, and a cost savings of $2200.
Report: landfill alternative daily cover: conserving air space and reducing landfill operating cost.
Haughey, R D
2001-02-01
Title 40, Part 258 of the Code of Federal Regulations, Solid Waste Disposal Facility Criteria, commonly referred to as Subtitle D, became effective on October 9, 1993. It establishes minimum criteria for solid waste disposal facility siting, design, operations, groundwater monitoring and corrective action, and closure and postclosure maintenance, while providing EPA-approved state solid waste regulatory programs flexibility in implementing the criteria. Section 258.21(a) [40 CFR 258.21(a)] requires owners or operators of municipal solid waste landfill (MSWLF) units to cover disposed solid waste with 30cm of earthen material at the end of the operating day, or at more frequent intervals, if necessary, to control disease vectors, fires, odours, blowing litter, and scavenging. This requirement is consistent with already existing solid waste facility regulations in many states. For many MSWLFs, applying daily cover requires the importation of soil which increases landfill operating costs. Daily cover also uses valuable landfill air space, reducing potential operating revenue and the landfill's operating life. 40 CFR 258.21 (b) allows the director of an approved state to approve alternative materials of an alternative thickness if the owner or operator demonstrates that the alternative material and thickness will control disease vectors, fires, odours, blowing litter, and scavenging without presenting a threat to human health and the environment. Many different types of alternative daily cover (ADC) are currently being used, including geosynthetic tarps, foams, garden waste, and auto shredder fluff. These materials use less air space than soil and can reduce operating costs. This paper discusses the variety of ADCs currently being used around the country and their applicability to different climates and operating conditions, highlighting the more unusual types of ADC, the types of demonstrations necessary to obtain approval of ADC, and the impact on landfill air space and operating costs of ADC use.
Operation Cleansweep in Florida: Extension's Role in an Environmentally Friendly Program Opportunity
ERIC Educational Resources Information Center
Fishel, Fred
2010-01-01
Operation Cleansweep is a free pesticide disposal program that has operated in Florida since 1995. The program is open to commercial facilities, including agricultural production establishments, golf course operators, and pest control companies. Since its inception, the program has had more than 1,700 participants and collected more than 1,000,000…
Operation Cleansweep in Florida: Extension's Role in an Environmental-Friendly Program Opportunity
ERIC Educational Resources Information Center
Fishel, Fred
2010-01-01
Operation Cleansweep is a free pesticide disposal program that has operated in Florida since 1995. The program is open to commercial facilities, including agricultural production establishments, golf course operators, and pest control companies. Since its inception, the program has had more than 1,700 participants and collected more than 1,000,000…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson
The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.
DOSE ASSESSMENTS FROM THE DISPOSAL OF LOW ...
Modeling the long-term performance of the RCRA-C disposal cell and potential doses to off-site receptors is used to derive maximum radionuclide specific concentrations in the wastes that would enable these wastes to be disposed of safely using the RCRA-C disposal cell technology. Modeling potential exposures to derive these waste acceptance concentrations involves modeling exposures to workers during storage, treatment and disposal of the wastes, as well as exposures to individuals after disposal operations have ceased. Post facility closure exposures can result from the slow expected degradation of the disposal cell over long time periods (one thousand years after disposal) and in advertent human intrusion. Provide a means of determining waste acceptance radionuclide concentrations for disposal of debris from radiological dispersal device incidents as well as low-activity wastes generated in commercial, medical and research activities, potentially serve as the technical basis for guidance on disposal of these materials.
Code of Federal Regulations, 2010 CFR
2010-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2014 CFR
2014-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2013 CFR
2013-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2012 CFR
2012-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Code of Federal Regulations, 2011 CFR
2011-01-01
... COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE General Provisions § 61.... Disposal site means that portion of a land disposal facility which is used for disposal of waste. It... facility means a land disposal facility in which radioactive waste is disposed of in or within the upper 30...
Korean Waste Management Law, Presidential Decree Number 13480, and Prime Minister Order Number 397
1994-06-01
radioactive waste or substances that are contaminated by radioactivity and medical waste (which is regulated by Medical Law), wastewater (which is regulated...be exceeded when the domestic waste is disposed a. In case where water polutant , pursuant to Table 1 of toe Enforcement Regulaton in the Water...combustion burner and extra burner * Normal operation of safety facilities • Normal operation of preventive facilities * Density of polutant out of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cummins, G.D.
This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resultingmore » from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).« less
Solid Waste Assurance Program Implementation Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irons, L.G.
1995-06-19
On June 6, 1995, a waiver to Hanford Site Solid Waste Acceptance Criteria, was approved by the US Department of Energy Richland Operations Office (RL) to replace the low-level, mixed, and transuranic (TRU) generator assessment programs with the Solid Waste Assurance Program (SWAP). This is associated with a waiver that was approved on March 16, 1995 to replace the Storage/Disposal Approval Record (SDAR) requirements with the Waste Specification System (WSS). This implementation plan and the SWAP applies to Solid Waste Disposal (SWD) functions, facilities, and personnel who perform waste acceptance, verification, receipt, and management functions of dangerous, radioactive, and mixedmore » waste from on- and off-site generators who ship to or within the Hanford Site for treatment, storage, and/or disposal (TSD) at SWD TSD facilities.« less
Nancarrow, D J; White, M M
2004-03-01
A short study has been carried out of the potential radioactive waste disposal issues associated with the proposed extension of Part IIA of the Environmental Protection Act 1990 to include radioactively contaminated land, where there is no other suitable existing legislation. It was found that there is likely to be an availability problem with respect to disposal at landfills of the radioactive wastes arising from remediation. This is expected to be principally wastes of high volume and low activity (categorised as low level waste (LLW) and very low level waste (VLLW)). The availability problem results from a lack of applications by landfill operators for authorisation to accept LLW wastes for disposal. This is apparently due to perceived adverse publicity associated with the consultation process for authorisation coupled with uncertainty over future liabilities. Disposal of waste as VLLW is limited both by questions over volumes that may be acceptable and, more fundamentally, by the likely alpha activity of wastes (originating from radium and thorium operations). Authorised on-site disposal has had little attention in policy and guidance in recent years, but may have a part to play, especially if considered commercially attractive. Disposal at BNFL's near surface disposal facility for LLW at Drigg is limited to wastes for which there are no practical alternative disposal options (and preference has been given to operational type wastes). Therefore, wastes from the radioactively contaminated land (RCL) regime are not obviously attractive for disposal to Drigg. Illustrative calculations have been performed based on possible volumes and activities of RCL arisings (and assuming Drigg's future volumetric disposal capacity is 950,000 m3). These suggest that wastes arising from implementing the RCL regime, if all disposed to Drigg, would not represent a significant fraction of the volumetric capacity of Drigg, but could have a significant impact on the radiological capacity with respect to 226Ra plus 232Th. The government's decision-making programme for managing solid radioactive wastes in the UK may possibly achieve a general consensus that the use of landfill for LLW from the RCL regime has a fundamental role to play. However, this is unlikely to change the situation within the next few years. No new national facility arising from this programme is likely to be available during the first decade of the operation of a new RCL regime. Hence it appears that Drigg will need to play an important role for some years to come.
Bird Mortality in Oil Field Wastewater Disposal Facilities
NASA Astrophysics Data System (ADS)
Ramirez, Pedro
2010-11-01
Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980’s. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.
Bird mortality in oil field wastewater disposal facilities.
Ramirez, Pedro
2010-11-01
Commercial and centralized oilfield wastewater disposal facilities (COWDFs) are used in the Western United States for the disposal of formation water produced from oil and natural gas wells. In Colorado, New Mexico, Utah, and Wyoming, COWDFs use large evaporation ponds to dispose of the wastewater. Birds are attracted to these large evaporation ponds which, if not managed properly, can cause wildlife mortality. The U.S. Fish and Wildlife Service (USFWS) and the U.S. Environmental Protection Agency (EPA) conducted 154 field inspections of 28 COWDFs in Wyoming from March 1998 through September 2008 and documented mortality of birds and other wildlife in 9 COWDFs. Of 269 bird carcasses recovered from COWDFs, grebes (Family Podicipedidae) and waterfowl (Anatidae) were the most frequent casualties. Most mortalities were attributed to oil on evaporation ponds, but sodium toxicity and surfactants were the suspected causes of mortality at three COWDFs. Although the oil industry and state and federal regulators have made much progress in reducing bird mortality in oil and gas production facilities, significant mortality incidents continue in COWDFs, particularly older facilities permitted in the early 1980's. Inadequate operation and management of these COWDFs generally results in the discharge of oil into the large evaporation ponds which poses a risk for birds and other wildlife.
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 265.225 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste analysis and trial test, or the documented information, in the operating record of the facility... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Surface Impoundments § 265.225 Waste analysis and trial tests. (a) In addition to the...
40 CFR 264.170 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 261.7. In that event, management of the container is exempt from the requirements of this subpart.] ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of...
40 CFR 264.170 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 261.7. In that event, management of the container is exempt from the requirements of this subpart.] ... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Use and Management of...
Risk assessment associated to possible concrete degradation of a near surface disposal facility
NASA Astrophysics Data System (ADS)
Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.
2013-07-01
This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.
Fuel conditioning facility electrorefiner start-up results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Vaden, D.
1996-05-01
At ANL-West, there are several thousand kilograms of metallic spent nuclear fuel containing bond sodium. This fuel will be treated in the Fuel Conditioning Facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The treatment operations will make use of an electrometallurgical process employing molten salts and liquid metals. The treatment equipment is presently undergoing testing with depleted uranium. Operations with irradiated fuel will commence when the environmental evaluation for FCF is complete.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Lee, Majelle
2001-09-01
This Annual Site Environmental Report (ASER) for 2000 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials, under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned company-operated, test facility within Area IV. All nuclear work was terminated in 1988, andmore » subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Large-scale D&D activities of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2000 continue to indicate no significant releases of radioactive material from Rocketdyne sites. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway.« less
Composite analysis E-area vaults and saltstone disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, J.R.
1997-09-01
This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2010 CFR
2010-01-01
... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...
76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-07
... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...
Code of Federal Regulations, 2013 CFR
2013-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
Code of Federal Regulations, 2014 CFR
2014-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
Code of Federal Regulations, 2012 CFR
2012-07-01
... OCEAN ENERGY MANAGEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE... activities (e.g., service bases and mud company docks). (1) Indicate whether the onshore support facilities... relevant National Pollution Discharge Elimination System (NPDES) permit. (d) Waste disposal. A description...
1980-01-01
Dwarf lake iris, threatened. Calypso bulbosa, Calypso or Fairy - slipper , threatened. Cypripedium aietinum, Ram’s head lady- slipper , rare. Orchis...rotundifolia, Round-leaved orchid , threatened. Agropyron dasystachyum, threatened. Beckmannia syzigachne, Slough grass, threatened. Bromus pumpellianus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birdsell, Kay Hanson; Stauffer, Philip H.; French, Sean B.
Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. This special analysis, SA 2017-001, evaluates the potential impacts of disposing of this waste in Pit 38 atmore » Area G based on the assumptions that form the basis of the Area G PA/CA. Section 2 describes the methods used to conduct the analysis; the results of the evaluation are provided in Section 3; and conclusions and recommendations are provided in Section 4.« less
Safety aspects of nuclear waste disposal in space
NASA Technical Reports Server (NTRS)
Rice, E. E.; Edgecombe, D. S.; Compton, P. R.
1981-01-01
Safety issues involved in the disposal of nuclear wastes in space as a complement to mined geologic repositories are examined as part of an assessment of the feasibility of nuclear waste disposal in space. General safety guidelines for space disposal developed in the areas of radiation exposure and shielding, containment, accident environments, criticality, post-accident recovery, monitoring systems and isolation are presented for a nuclear waste disposal in space mission employing conventional space technology such as the Space Shuttle. The current reference concept under consideration by NASA and DOE is then examined in detail, with attention given to the waste source and mix, the waste form, waste processing and payload fabrication, shipping casks and ground transport vehicles, launch site operations and facilities, Shuttle-derived launch vehicle, orbit transfer vehicle, orbital operations and space destination, and the system safety aspects of the concept are discussed for each component. It is pointed out that future work remains in the development of an improved basis for the safety guidelines and the determination of the possible benefits and costs of the space disposal option for nuclear wastes.
None
2017-12-09
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-05-21
In 1999, the National Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
49 CFR 599.201 - Identification of salvage auctions and disposal facilities.
Code of Federal Regulations, 2014 CFR
2014-10-01
... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...
49 CFR 599.201 - Identification of salvage auctions and disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-10-01
... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...
49 CFR 599.201 - Identification of salvage auctions and disposal facilities.
Code of Federal Regulations, 2013 CFR
2013-10-01
... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...
49 CFR 599.201 - Identification of salvage auctions and disposal facilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... on the Web site at http://www.cars.gov/disposal; or (3) A facility that disposes of vehicles in...) of this section, be currently listed on the Web site at http://www.cars.gov/disposal, as of the date.... (1) A disposal facility that qualifies as such by active membership in ELVS and that fails to...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
40 CFR 264.274-264.275 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
....274-264.275 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment §§ 264.274-264.275 [Reserved] ...
Evers, P; Schmitt, F; Albrecht, D R; Jardin, N
2005-01-01
The Ruhrverband, acting as a water association responsible for integrated water resources management within the entire natural river basin of the Ruhr, operates a network of 83 wastewater treatment plants (WWTPs) and connected sludge disposal facilities. According to German regulations, the disposal of sewage sludge containing more than 5% of organic dry solids will be prohibited as of 1 June 2005. In Germany, the only future alternative to incineration will be the agricultural utilization of sludge. However, this way of sludge disposal is presently the subject of critical discussions in Germany because of the organic and inorganic toxic substances, which may be contained in sewage sludge, despite the fact that very stringent standards are to be met by agricultural uses. On the other hand, application of sewage sludge to agricultural land is explicitly supported by the European Sewage Sludge Directive 86/278/EEC. In the face of this controversial situation the Ruhrverband has initiated, in 2000, the development of a comprehensive and sustainable sludge and waste disposal concept for all wastewater facilities it operates in the entire Ruhr River Basin. The concept includes de-central sludge digestion and dewatering and subsequent transport to two central sludge incineration plants. It is expected that in future not more than 5% of all sludges produced in Ruhrverband's WWTPs will be used in agriculture. That means, the major part of 95% will have to be incinerated.
FUEL-EFFICIENT SEWAGE SLUDGE INCINERATION
A study was performed to evaluate the status of incineration with low fuel use as a sludge disposal technology. The energy requirements, life-cycle costs, operation and maintenance requirements, and process capabilities of four sludge incineration facilities were evaluated. These...
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
10 CFR 61.81 - Tests at land disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Tests at land disposal facilities. 61.81 Section 61.81 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.81 Tests at land disposal facilities. (a) Each...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, D.W.; Yambert, M.W.; Kocher, D.C.
1994-12-31
A performance assessment of the operating Solid Waste Storage Area 6 (SWSA 6) facility for the disposal of low-level radioactive waste at the Oak Ridge National Laboratory has been prepared to provide the technical basis for demonstrating compliance with the performance objectives of DOE Order 5820.2A, Chapter 111.2 An analysis of the uncertainty incorporated into the assessment was performed which addressed the quantitative uncertainty in the data used by the models, the subjective uncertainty associated with the models used for assessing performance of the disposal facility and site, and the uncertainty in the models used for estimating dose and humanmore » exposure. The results of the uncertainty analysis were used to interpret results and to formulate conclusions about the performance assessment. This paper discusses the approach taken in analyzing the uncertainty in the performance assessment and the role of uncertainty in performance assessment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-06-30
This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988,more » and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.« less
Stanback, John; Otterness, Conrad; Bekiita, Martha; Nakayiza, Olivia; Mbonye, Anthony K
2011-03-01
Informal drug shops are the first line of health care in many poor countries. In Uganda, these facilities commonly sell and administer the injectable contraceptive depot medroxyprogesterone acetate (DMPA), even though they are prohibited by law from selling any injectable drugs. It is important to understand drug shop operators' current practices and their potential to provide DMPA to hard-to-reach populations. Between November 2007 and January 2008, 157 drug shops were identified in three rural districts of Uganda, and the operators of the 124 facilities that sold DMPA were surveyed. Data were analyzed with descriptive methods. Only 35% of operators reported that the facility in which they worked was a licensed drug shop and another 9% reported that the facility was a private clinic; all claimed to have some nursing, midwifery, or other health or medical qualification. Ninety-six percent administered DMPA in the shop. Operators gave a mean of 10 injections (including three of DMPA) per week. Forty-three percent of those who administered DMPA reported disposing of used syringes in sharps containers; in the previous 12 months, 24% had had a needle-stick injury and 17% had had a patient with an injection-related abscess. Eleven percent said they had ever reused a disposable syringe. Overall, contraceptive knowledge was low, and attitudes toward family planning reflected common traditional biases. Provision of DMPA is common in rural drug shops, but needs to be made safer. Absent stronger regulation and accreditation, drug shop operators can be trained as community-based providers to help meet the extensive unmet demand for family planning in rural areas.
Storage for greater-than-Class C low-level radioactive waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beitel, G.A.
1991-12-31
EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... facilities that receive trade-in vehicles under the CARS program. 599.401 Section 599.401 Transportation... facilities that receive trade-in vehicles under the CARS program. (a) The disposal facility must: (1) Not... or shredded, report the vehicle to NMVTIS as crushed or shredded. (b) The disposal facility may not...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.
Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time wasmore » Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)« less
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2011 CFR
2011-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2014 CFR
2014-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
9 CFR 3.125 - Facilities, general.
Code of Federal Regulations, 2013 CFR
2013-01-01
... the removal and disposal of animal and food wastes, bedding, dead animals, trash and debris. Disposal.... The disposal facilities and any disposal of animal and food wastes, bedding, dead animals, trash, and...
Code of Federal Regulations, 2010 CFR
2010-01-01
... design capacity license to operate an isotopic enrichment plant pursuant to part 50 of this chapter. (4... uranium enrichment facility. (11) Issuance of renewal of a license authorizing receipt and disposal of...
40 CFR 264.603 - Post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
....603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... treatment or storage unit has contaminated soils or ground water that cannot be completely removed or...
40 CFR 264.96 - Compliance period.
Code of Federal Regulations, 2011 CFR
2011-07-01
....96 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.96 Compliance period. (a) The Regional Administrator will...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2013 CFR
2013-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2010 CFR
2010-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2014 CFR
2014-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2011 CFR
2011-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
40 CFR 264.271 - Treatment program.
Code of Federal Regulations, 2012 CFR
2012-07-01
....271 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land... land treatment program that is designed to ensure that hazardous constituents placed in or on the...
Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Michael Marquand; Little, Bonnie Colleen
The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less
Janovics, R; Kelemen, D I; Kern, Z; Kapitány, S; Veres, M; Jull, A J T; Molnár, M
2016-03-01
Tree ring series were collected from the vicinity of a Hungarian radioactive waste treatment and disposal facility and from a distant control background site, which is not influenced by the radiocarbon discharge of the disposal facility but it represents the natural regional (14)C level. The (14)C concentration of the cellulose content of tree rings was measured by AMS. Data of the tree ring series from the disposal facility was compared to the control site for each year. The results were also compared to the (14)C data of the atmospheric (14)C monitoring stations at the disposal facility and to international background measurements. On the basis of the results, the excess radiocarbon of the disposal facility can unambiguously be detected in the tree from the repository site. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 11.5-acre Summit National Liquid Disposal Service site is a former liquid waste disposal facility in rural Deerfield Township, Ohio. The site contains two ponds, an inactive incinerator, and several vacant buildings. Surrounding the site are several residences, two landfills, light industries, and farmland. From 1973 to 1978, Summit National operated a solvent recycling and waste disposal facility onsite. The Record of Decision (ROD) amends a 1988 ROD that provided for remediation of contaminated soil, sediment, debris, ground water, and surface water. In both the 1990 proposed remedy for the ROD amendment and the 1988 ROD, the remedy for themore » most highly contaminated soil and sediment is excavation and treatment. The amended remedial action for the site includes expanding site boundaries to include contaminated areas along the site perimeters; excavating and incinerating onsite 24,000 cubic yards of soil excavated to a depth of 2 feet, 4,000 cubic yards of sediment from the site perimeter, drainage ditches and offsite ponds, and 900 to 1,600 buried drums.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, B.A.
1984-07-01
Since their inception, the DOE facilities on the Oak Ridge Reservation have been the source of a variety of airborne, liquid, and solid wastes which are characterized as nonhazardous, hazardous, and/or radioactive. The major airborne releases come from three primary sources: steam plant emissions, process discharge, and cooling towers. Liquid wastes are handled in various manners depending upon the particular waste, but in general, major corrosive waste streams are neutralized prior to discharge with the discharge routed to holding or settling ponds. The major solid wastes are derived from construction debris, sanitary operation, and radioactive processes, and the machining operationsmore » at Y-12. Nonradioactive hazardous wastes are disposed in solid waste storage areas, shipped to commercial disposal facilities, returned in sludge ponds, or sent to radioactive waste burial areas. The radioactive-hazardous wastes are treated in two manners: storage of the waste until acceptable disposal options are developed, or treatment of the waste to remove or destroy one of the components prior to disposal. 5 references, 4 figures, 13 tables.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Bill Walter; Chang, Fu-lin; Mattie, Patrick D.
2006-02-01
Sandia National Laboratories (SNL) and Taiwan's Institute for Nuclear Energy Research (INER) have teamed together to evaluate several candidate sites for Low-Level Radioactive Waste (LLW) disposal in Taiwan. Taiwan currently has three nuclear power plants, with another under construction. Taiwan also has a research reactor, as well as medical and industrial wastes to contend with. Eventually the reactors will be decomissioned. Operational and decommissioning wastes will need to be disposed in a licensed disposal facility starting in 2014. Taiwan has adopted regulations similar to the US Nuclear Regulatory Commission's (NRC's) low-level radioactive waste rules (10 CFR 61) to govern themore » disposal of LLW. Taiwan has proposed several potential sites for the final disposal of LLW that is now in temporary storage on Lanyu Island and on-site at operating nuclear power plants, and for waste generated in the future through 2045. The planned final disposal facility will have a capacity of approximately 966,000 55-gallon drums. Taiwan is in the process of evaluating the best candidate site to pursue for licensing. Among these proposed sites there are basically two disposal concepts: shallow land burial and cavern disposal. A representative potential site for shallow land burial is located on a small island in the Taiwan Strait with basalt bedrock and interbedded sedimentary rocks. An engineered cover system would be constructed to limit infiltration for shallow land burial. A representative potential site for cavern disposal is located along the southeastern coast of Taiwan in a tunnel system that would be about 500 to 800 m below the surface. Bedrock at this site consists of argillite and meta-sedimentary rocks. Performance assessment analyses will be performed to evaluate future performance of the facility and the potential dose/risk to exposed populations. Preliminary performance assessment analyses will be used in the site-selection process and to aid in design of the disposal system. Final performance assessment analyses will be used in the regulatory process of licensing a site. The SNL/INER team has developed a performance assessment methodology that is used to simulate processes associated with the potential release of radionuclides to evaluate these sites. The following software codes are utilized in the performance assessment methodology: GoldSim (to implement a probabilistic analysis that will explicitly address uncertainties); the NRC's Breach, Leach, and Transport - Multiple Species (BLT-MS) code (to simulate waste-container degradation, waste-form leaching, and transport through the host rock); the Finite Element Heat and Mass Transfer code (FEHM) (to simulate groundwater flow and estimate flow velocities); the Hydrologic Evaluation of Landfill performance Model (HELP) code (to evaluate infiltration through the disposal cover); the AMBER code (to evaluate human health exposures); and the NRC's Disposal Unit Source Term -- Multiple Species (DUST-MS) code (to screen applicable radionuclides). Preliminary results of the evaluations of the two disposal concept sites are presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.
2012-07-01
In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lowry, N.
Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generationmore » of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2009-07-29
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
None
2018-01-16
In 1999, the Nuclear Nuclear Security Administration (NNSA) signed a contract with a consortium, now called Shaw AREVA MOX Services, LLC to design, build, and operate a Mixed Oxide (MOX) Fuel Fabrication Facility. This facility will be a major component in the United States program to dispose of surplus weapon-grade plutonium. The facility will take surplus weapon-grade plutonium, remove impurities, and mix it with uranium oxide to form MOX fuel pellets for reactor fuel assemblies. These assemblies will be irradiated in commercial nuclear power reactors.
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... finds that the waste will pose a threat to human health and the environment when burned in an... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264...
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
EPA's mission to establish the minimum national standards for landfill design, operation, and management that will enhance landfill safety and boost public confidence in landfills as a component of a workable integrated waste management system.
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.93 - Hazardous constituents.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.93 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases... the ground-water quality; (vii) The potential for health risks caused by human exposure to waste...
40 CFR 264.95 - Point of compliance.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.95 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.95 Point of compliance. (a) The Regional Administrator will...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 264.72 - Manifest discrepancies.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 264.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Manifest... waste acid, or toxic constituents not reported on the manifest or shipping paper. (c) Upon discovering a...
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR 265.340 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...
40 CFR 264.230 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
... wastes. 264.230 Section 264.230 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.230 Special requirements for incompatible wastes...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
40 CFR 264.54 - Amendment of contingency plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... of hazardous waste or hazardous waste constituents, or changes the response necessary in an emergency...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.272 - Treatment demonstration.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.272 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.272 Treatment demonstration. (a) For each waste that will be applied to the...
40 CFR 264.50 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Applicability. 264.50 Section 264.50 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Contingency Plan and...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR CLASSIFICATION OF SOLID WASTE DISPOSAL FACILITIES AND PRACTICES Classification of Solid Waste Disposal Facilities... demolition (C&D) landfill means a solid waste disposal facility subject to the requirements of subparts A or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
Code of Federal Regulations, 2010 CFR
2010-04-01
... solid waste disposal facilities; temporary rules. 17.1 Section 17.1 Internal Revenue INTERNAL REVENUE... UNDER 26 U.S.C. 103(c) § 17.1 Industrial development bonds used to provide solid waste disposal... substantially all the proceeds of which are used to provide solid waste disposal facilities. Section 1.103-8(f...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell
The Al Tuwaitha nuclear complex near Baghdad contains a number of facilities from Saddam Hussan's nuclear weapons program. Past military operations, lack of upkeep and looting have created an enormous radioactive waste problem at the Al Tuwaitha complex, which contains various, uncharacterized radioactive wastes, yellow cake, sealed radioactive sources, and contaminated metals that must be constantly guarded. Iraq has never had a radioactive waste disposal facility and the lack of a disposal facility means that ever increasing quantities of radioactive material must be held in guarded storage. The Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) has beenmore » initiated by the U.S. Department of State (DOS) to assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials, while building human capacities so that the GOI can manage other environmental cleanups in their country. The DOS is funding the IAEA to provide technical assistance via Technical Cooperation projects. Program coordination will be provided by the DOS, consistent with GOI policies, and Sandia National Laboratories will be responsible for coordination of participants and waste management support. Texas Tech University will continue to provide in-country assistance, including radioactive waste characterization and the stand-up of the Iraq Nuclear Services Company. The GOI owns the problems in Iraq and will be responsible for implementation of the NDs Program.« less
The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voegele, Michael D.; Vieth, Donald
2013-07-01
The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less
Final Design Report for the RH LLW Disposal Facility (RDF) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, Stephanie Lee
2015-09-01
The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.
Final Design Report for the RH LLW Disposal Facility (RDF) Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austad, S. L.
2015-05-01
The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.
The use of NUREGs 1199 and 1200 in the Illinois LLW licensing program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klinger, J.G.; Harmon, D.F.
1991-12-31
This paper will describe how the LLW licensing staff of the Illinois Department of Nuclear Safety used NRC`s NUREG 1199, NUREG 1200, NUREG 1300 and Regulatory Guide 4.18 in its licensing program for reviewing and evaluating a LLW disposal facility license application. The paper will discuss how Illinois guidance documents were prepared based on modifications made to these NRC documents which were necessary to take into account site and facility specific considerations, as well as changes required by Illinois statutes and regulatory codes. The paper will review the recent revisions (January 1991) to NUREG 1199 and 1200 and the importancemore » of these revisions. The paper will also discuss recommended modifications to these NRC documents and provide an update on the status of the Department`s review and evaluation of an application for a license to site, construct and operate a LLW disposal facility in Illinois.« less
(Low-level waste disposal facility siting and site characterization)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mezga, L.J.; Ketelle, R.H.; Pin, F.G.
A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less
Decommissioning of the TRIGA mark II and III and radioactive waste management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doo Seong Hwang; Yoon Ji Lee; Gyeong Hwan Chung
2013-07-01
KAERI has carried out decommissioning projects for two research reactors (KRR-1 and 2). The decommissioning project of KRR-1 (TRIGA Mark II) and 2 (TRIGA Mark III) was launched in 1997 with a total budget of 23.25 million US dollars. KRR-2 and all auxiliary facilities were already decommissioned, and KRR-1 is being decommissioned now. Much more dismantled waste is generated than in any other operations of nuclear facilities. Thus, the waste needs to be reduced and stabilized through decontamination or treatment before disposal. This paper introduces the current status of the decommissioning projects and describes the volume reduction and conditioning ofmore » decommissioning waste for final disposal. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, Phil; Samuels, Sandy; Leee, Majelle
2002-09-01
This Annual Site Environmental Report (ASER) for 2001 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Boeing Rocketdyne Santa Susana Field Laboratory (SSFL). In the past, these operations included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials under the former Atomics International (AI) Division. Other activities included the operation of large-scale liquid metal facilities for testing of liquid metal fast breeder components at the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility within Area IV. All nuclear work was terminated in 1988,more » and subsequently, all radiological work has been directed toward decontamination and decommissioning (D&D) of the previously used nuclear facilities and associated site areas. Closure of the sodium test facilities began in 1996. Results of the radiological monitoring program for the calendar year of 2001 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. All radioactive wastes are processed for disposal at DOE disposal sites and other sites approved by DOE and licensed for radioactive waste. Liquid radioactive wastes are not released into the environment and do not constitute an exposure pathway. No structural debris from buildings, released for unrestricted use, was transferred to municipal landfills or recycled in 2001.« less
Hanford facility dangerous waste permit application, PUREX storage tunnels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haas, C. R.
1997-09-08
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to Part B permit application documentation submitted for individual, `operating` treatment, storage, and/or disposal units, such as the PUREX Storage Tunnels (this document, DOE/RL-90-24).
Hazardous Waste Cleanup: Heritage Environmental Services PR, LLC in Mayaguez, Puerto Rico
From August 2009 until October 2014, Heritage Environmental Services PR (“Heritage-PR”) owned and operated an environmental services facility for the treatment, storage and disposal (“TSD”) of hazardous wastes at 3080 Hostos Avenue in Mayaguez, Puerto Rico
7 CFR 1781.11 - Other considerations.
Code of Federal Regulations, 2011 CFR
2011-01-01
... department because the water is being polluted from an upstream or other source. (g) Environmental.... Facilities will be designed, installed and operated to prevent pollution of water in excess of established standards. Effluent disposal will conform with appropriate State and Federal Water Pollution Control...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.255 Section 264.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 264.255...
40 CFR 265.231 - Air emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...
40 CFR 265.231 - Air emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...
PROCESS DESIGN MANUAL FOR SLUDGE TREATMENT AND DISPOSAL
The purpose of this manual is to provide the engineering community and related industry with a new source of information to be used in the planning, design, and operation of present and future wastewater pollution control facilities. This manual supplements this existing knowledg...
40 CFR 265.231 - Air emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...
40 CFR 265.231 - Air emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.231 Section 265.231 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Surface Impoundments § 265.231 Air emission standards. The owner or operator shall...
40 CFR 264.340 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Incinerators § 264... waste incinerators (as defined in § 260.10 of this chapter), except as § 264.1 provides otherwise. (b...
40 CFR 264.4 - Imminent hazard action.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imminent hazard action. 264.4 Section 264.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.2 Section 264.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.2...
CXA La Paloma, LLC: UIC Class I Permit No.CA10710001
Documents related to La Paloma Generating Company, LLC's (LPGC) application for a UIC permit renewal (of permit #CA199000001) to operate a Class I injection well facility to dispose of non-hazardous wastewater from the La Paloma Generating Plant.
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.1059 - Standards: Delay of repair.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... infeasible without a hazardous waste management unit shutdown. In such a case, repair of this equipment shall...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.13 - General waste analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 264.13 Section 264.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.76 - Unmanifested waste report.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 264.76 Section 264.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.171 - Condition of containers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... waste is not in good condition (e.g., severe rusting, apparent structural defects) or if it begins to... Section 264.171 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2012 CFR
2012-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2011 CFR
2011-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false [Reserved] 264.277 Section 264.277 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2013 CFR
2013-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.282 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2014 CFR
2014-07-01
... wastes. 264.282 Section 264.282 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.282 Special requirements for incompatible wastes. The owner or...
40 CFR 264.1083 - Waste determination procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste determination procedures. 264... WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 264.1083 Waste...
40 CFR 265.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Use of a mechanism for financial... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.146 Use of a mechanism for financial assurance of both closure and post-closure care. An owner or operator...
Appraisal of Scientific Resources for Emergency Management.
1983-09-01
water, communications, computers, and oil refineries or storage facilities. In addition, the growth of the number of operative nuclear power plants ...one from a nuclear power plant accident); one involved hazardous waste disposal problems; and finally two involved wartime scenarios, one focusing on...pro- tection research, radiological protection from nuclear power plant accidents, concepts and operation of public shelters, and post attack
10 CFR 61.11 - General information.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2012 CFR
2012-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2011 CFR
2011-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2013 CFR
2013-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
10 CFR 61.11 - General information.
Code of Federal Regulations, 2014 CFR
2014-01-01
... REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Licenses § 61...) Plans for use of the land disposal facility for purposes other than disposal of radioactive wastes; and..., and first emplacement of waste at the proposed land disposal facility. ...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-19
... Monitoring Activities for the Saltstone Disposal Facility at the Savannah River Site, Revision 1 AGENCY... responsibilities for monitoring DOE's waste disposal activities at the Saltstone Disposal Facility (SDF) at the... Monitoring Disposal Actions Taken by the U.S. Department of Energy at the Savannah River Site Saltstone...
Fahrenfeld, N.L.; Reyes, Hannah Delos; Eramo, Alessia; Akob, Denise M.; Mumford, Adam; Cozzarelli, Isabelle M.
2017-01-01
Unconventional oil and gas (UOG) production produces large quantities of wastewater with complex geochemistry and largely uncharacterized impacts on surface waters. In this study, we assessed shifts in microbial community structure and function in sediments and waters upstream and downstream from a UOG wastewater disposal facility. To do this, quantitative PCR for 16S rRNA and antibiotic resistance genes along with metagenomic sequencing were performed. Elevated conductivity and markers of UOG wastewater characterized sites sampled downstream from the disposal facility compared to background sites. Shifts in overall high level functions and microbial community structure were observed between background sites and downstream sediments. Increases in Deltaproteobacteria and Methanomicrobia and decreases in Thaumarchaeota were observed at downstream sites. Genes related to dormancy and sporulation and methanogenic respiration were 18–86 times higher at downstream, impacted sites. The potential for these sediments to serve as reservoirs of antimicrobial resistance was investigated given frequent reports of the use of biocides to control the growth of nuisance bacteria in UOG operations. A shift in resistance profiles downstream of the UOG facility was observed including increases in acrB and mexB genes encoding for multidrug efflux pumps, but not overall abundance of resistance genes. The observed shifts in microbial community structure and potential function indicate changes in respiration, nutrient cycling, and markers of stress in a stream impacted by UOG waste disposal operations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-01-01
This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less
Commonwealth of Pennsylvania. [Establishment of hazardous waste facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Environmental Resources Secretary Arthur A. Davis and Commerce Secretary Raymond R. Christman have announced a joint initiative to establish commercial hazardous waste treatment and disposal facilities Pennsylvania. The state Hazardous Sites Cleanup Act, which Gov. Robert P. Casey signed into law last October, called for accelerated efforts in this regard. These included an expedited permitting process for facilities, requiring the Department of Environmental Resources (DER) to appoint a special sitting team to review permit applications, and designation of sitting coordinator within the Department of Commerce to identify potential developers of the facilities and encourage them to operate within Pennsylvania.
10 CFR 62.1 - Purpose and scope.
Code of Federal Regulations, 2010 CFR
2010-01-01
... (42 U.S.C. 2021) to any non-Federal or regional low-level radioactive waste (LLW) disposal facility or... regional or non-Federal low-level radioactive waste disposal facilities and who submit a request to the... LOW-LEVEL WASTE DISPOSAL FACILITIES General Provisions § 62.1 Purpose and scope. (a) The regulations...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-28
....regulations.gov . Title: Criteria for Classification of Solid Waste Disposal Facilities and Practices (Renewal... Classification of Solid Waste Disposal Facilities and Practices'' (40 CFR part 257) are self implementing.... Respondents/Affected Entities: Private Solid Waste Disposal Facilities, States. Estimated Number of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cochran, John Russell; Danneels, Jeffrey John
2009-03-01
Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraqmore » Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.« less
40 CFR 265.202 - Air emission standards.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...
40 CFR 265.202 - Air emission standards.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 265.202 - Air emission standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...
40 CFR 265.202 - Air emission standards.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Air emission standards. 265.202 Section 265.202 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... DISPOSAL FACILITIES Tank Systems § 265.202 Air emission standards. The owner or operator shall manage all...
This Innovative Technology Evaluation report summarizes the findings of an evaluation of the in situ Steam Enhanced Recovery Process (SERP) operated by Hughes Environmental Systems, Inc. at the Rainbow Disposal facility in Huntington Beach, California. he technology demonstration...
40 CFR 265.140 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this subpart applying to a regulated unit with alternative requirements for financial assurance set out... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial... Administrator: (1) Prescribes alternative requirements for the regulated unit under § 265.90(f) and/or 265.110(d...
40 CFR 264.149 - Use of State-required mechanisms.
Code of Federal Regulations, 2010 CFR
2010-07-01
....149 Section 264.149 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... where EPA is administering the requirements of this subpart but where the State has hazardous waste...
40 CFR 264.229 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2010 CFR
2010-07-01
... reactive waste. 264.229 Section 264.229 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Surface Impoundments § 264.229 Special requirements for ignitable or reactive...
40 CFR 264.224-264.225 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false [Reserved] 264.224-264.225 Section 264.224-264.225 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES...
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities...
40 CFR 264.190 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264... use tank systems for storing or treating hazardous waste except as otherwise provided in paragraphs (a... treat hazardous waste which contains no free liquids and are situated inside a building with an...
40 CFR 265.1089 - Inspection and monitoring requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...
40 CFR 265.1089 - Inspection and monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...
40 CFR 265.1089 - Inspection and monitoring requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...
40 CFR 265.1089 - Inspection and monitoring requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...
40 CFR 265.1089 - Inspection and monitoring requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Inspection and monitoring requirements..., STORAGE, AND DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1089 Inspection and monitoring requirements. (a) The owner or operator shall inspect and monitor...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2014 CFR
2014-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2012 CFR
2012-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2011 CFR
2011-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.281 - Special requirements for ignitable or reactive waste.
Code of Federal Regulations, 2013 CFR
2013-07-01
... reactive waste. 264.281 Section 264.281 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.281 Special requirements for ignitable or reactive waste...
Incinerator technology overview
NASA Astrophysics Data System (ADS)
Santoleri, Joseph J.
1993-03-01
Many of the major chemical companies in the U.S. who regarded a safe environment as their responsibility installed waste treatment and disposal facilities on their plant sites in the last two decades. Many of these plants elected to use incinerators as the treatment process. This was not always the most economical method, but in many cases it was the only method of disposal that provided a safe and sure method of maximum destruction. Environmental concern over contamination from uncontrolled land disposal sites, and the emergence of tougher regulations for land disposal provide incentives for industry to employ a wide variety of traditional and advanced technologies for managing hazardous wastes. Incineration systems utilizing proper design, operation, and maintenance provides the safest, and in the long run, the most economical avenue to the maximum level of destruction of organic hazardous wastes.
Scenario for the safety assessment of near surface radioactive waste disposal in Serpong, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Purnomo, A.S.
2007-07-01
Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The objective of radioactive waste disposal is to isolate waste so that it does not result in undue radiation exposure to humans and the environment. In near surface disposal, the disposal facility is located on or below themore » ground surface, where the protective covering is generally a few meters thick. These facilities are intended to contain low and intermediate level waste without appreciable quantities of long-lived radionuclides. Safety is the most important aspect in the applications of nuclear technology and the implementation of nuclear activities in Indonesia. This aspect is reflected by a statement in the Act Number 10 Year 1997, that 'The Development and use of nuclear energy in Indonesia has to be carried out in such away to assure the safety and health of workers, the public and the protection of the environment'. Serpong are one of the sites for a nuclear research center facility, it is the biggest one in Indonesia. In the future will be developed the first near surface disposal on site of the nuclear research facility in Serpong. The paper will mainly focus on scenario of the safety assessments of near-surface radioactive waste disposal is often important to evaluate the performance of the disposal system (disposal facility, geosphere and biosphere). It will give detail, how at the present and future conditions, including anticipated and less probable events in order to prevent radionuclide migration to human and environment. Refer to the geology characteristic and ground water table is enable to place something Near Surface Disposal on unsaturated zone in Serpong site. (authors)« less
Analysis of sludge management parameters resulting from the use of domestic garbage disposers.
Galil, N I; Yaacov, L
2001-01-01
The use of domestic garbage disposers may reduce the amounts and improve the solid waste composition, by lowering putrid matter and water content and by raising the caloric potential. However, additional loading on the sewerage systems might require increased investments and operation costs of the wastewater treatment facilities. This project analyses additional amounts of solids, biosolids and process requirements connected with wastewater treatment facilities resulting from the domestic use of garbage disposers, as well as the additional production of biogas. It was found that the use of the domestic garbage disposers in 60% of the households in a given urban area, is expected to reduce the weight, volume and water content of the solid waste by 7.0%, 3.3% and 4.4% for garbage characterized by low organic content, and by 18.7%, 11.0% and 13.3% for high organic content, respectively. The additional amounts of sludge are expected to be the lowest in case of biological treatment only, 24 to 38 g/capita/day, and the highest in case of primary chemical sedimentation followed by biotreatment, 67 to 100 g/capita/day. In these conditions the energy potential from biogas obtained in anaerobic digestion of sludge from wastewater collected from the same area, will increase by 50% to 70%, depending on the wastewater treatment sequence. The investment in wastewater treatment is estimated to increase by 23% to 27% and the annual costs for operation and maintenance are expected to increase by 26% to 30%.
Trulli, Ettore; Ferronato, Navarro; Torretta, Vincenzo; Piscitelli, Massimiliano; Masi, Salvatore; Mancini, Ignazio
2018-01-01
Landfill is still the main technological facility used to treat and dispose municipal solid waste (MSW) worldwide. In developing countries, final dumping is applied without environmental monitoring and soil protection since solid waste is mostly sent to open dump sites while, in Europe, landfilling is considered as the last option since reverse logistic approaches or energy recovery are generally encouraged. However, many regions within the European Union continue to dispose of MSW to landfill, since modern facilities have not been introduced owing to unreliable regulations or financial sustainability. In this paper, final disposal activities and pre-treatment operations in an area in southern Italy are discussed, where final disposal is still the main option for treating MSW and the recycling rate is still low. Mechanical biological treatment (MBT) facilities are examined in order to evaluate the organic stabilization practices applied for MSW and the efficiencies in refuse derived fuel production, organic waste stabilization and mass reduction. Implementing MBT before landfilling the environmental impact and waste mass are reduced, up to 30%, since organic fractions are stabilized resulting an oxygen uptake rate less than 1600 mgO 2 h -1 kg -1 VS , and inorganic materials are exploited. Based on experimental data, this work examines MBT application in contexts where recycling and recovery activities have not been fully developed. The evidence of this study led to state that the introduction of MBT facilities is recommended for developing regions with high putrescible waste production in order to decrease environmental pollution and enhance human healthy. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hladek, K.L.
1997-10-07
The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generatingmore » facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.« less
2005-05-24
of Intent to Dispose of Soil Contaminated by Virgin Petroleum or equivalent form would be completed. The proposed Wing HQ Facility would include the...quadrant of the base. The overhead feeder, which includes some underground segments , is operated as a closed double loop system and serves the...weekends, weather, and holidays ). Using data from the National Oceanic and Atmospheric Administration, the average soil percent moisture was estimated
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar contracts. 644.486 Section 644.486 National... Disposal of buildings and improvements constructed under emergency plant facilities (EPF) or similar...
NASA Astrophysics Data System (ADS)
Crowe, B.; Black, P.; Tauxe, J.; Yucel, V.; Rawlinson, S.; Colarusso, A.; DiSanza, F.
2001-12-01
The National Nuclear Security Administration, Nevada Operations Office (NNSA/NV) operates and maintains two active facilities on the Nevada Test Site (NTS) that dispose Department of Energy (DOE) defense-generated low-level radioactive (LLW), mixed radioactive, and classified waste in shallow trenches, pits and large-diameter boreholes. The operation and maintenance of the LLW disposal sites are self-regulated under DOE Order 435.1, which requires review of a Performance Assessment for four performance objectives: 1) all pathways 25 mrem/yr limit; 2) atmospheric pathways 10 mrem/yr limit; 3) radon flux density of 20 pCi/m2/s; and 4) groundwater resource protection (Safe Drinking Water Act; 4 mrem/yr limit). The inadvertent human intruder is protected under a dual 500- and 100-mrem limit (acute and chronic exposure). In response to the Defense Nuclear Facilities Safety Board Recommendation 92 2, a composite analysis is required that must examine all interacting sources for compliance against both 30 and 100 mrem/yr limits. A small component of classified transuranic waste is buried at intermediate depths in 3-meter diameter boreholes at the Area 5 LLW disposal facility and is assessed through DOE-agreement against the requirements of the Environmental Protection Agency (EPA)'s 40 CFR 191. The hazardous components of mixed LLW are assessed against RCRA requirements. The NTS LLW sites fall directly under three sets of federal regulations and the regulatory differences result not only in organizational challenges, but also in different decision objectives and technical paths to completion. The DOE regulations require deterministic analysis for a 1,000-year compliance assessment supplemented by probabilistic analysis under a long-term maintenance program. The EPA regulations for TRU waste are probabilistically based for a compliance interval of 10,000 years. Multiple steps in the assessments are strongly dependent on assumptions for long-term land use policies. Integrating the different requirements into coherent and consistent sets of conceptual models of the disposal setting, alternative scenarios, and system models of fate, transport and dose-based assessments is technically challenging. Environmental assessments for these sites must be broad-based and flexible to accommodate the multiple objectives.
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
40 CFR 761.215 - Exception reporting.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROHIBITIONS PCB Waste Disposal Records and Reports § 761.215 Exception reporting. (a) A generator of PCB waste... the designated PCB commercial storage or disposal facility within 35 days of the date the waste was... commitments or other factors affecting the facility's disposal capacity, the disposer of PCB waste could not...
10 CFR 61.82 - Commission inspections of land disposal facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Commission inspections of land disposal facilities. 61.82 Section 61.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.82 Commission inspections of land disposal...
10 CFR 61.82 - Commission inspections of land disposal facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Commission inspections of land disposal facilities. 61.82 Section 61.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.82 Commission inspections of land disposal...
10 CFR 61.82 - Commission inspections of land disposal facilities.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Commission inspections of land disposal facilities. 61.82 Section 61.82 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Records, Reports, Tests, and Inspections § 61.82 Commission inspections of land disposal...
40 CFR 265.309 - Surveying and recordkeeping.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Surveying and recordkeeping. 265.309... DISPOSAL FACILITIES Landfills § 265.309 Surveying and recordkeeping. The owner or operator of a landfill... location and dimensions, including depth, of each cell with respect to permanently surveyed benchmarks; and...
40 CFR 265.309 - Surveying and recordkeeping.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Surveying and recordkeeping. 265.309... DISPOSAL FACILITIES Landfills § 265.309 Surveying and recordkeeping. The owner or operator of a landfill... location and dimensions, including depth, of each cell with respect to permanently surveyed benchmarks; and...
40 CFR 265.309 - Surveying and recordkeeping.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Surveying and recordkeeping. 265.309... DISPOSAL FACILITIES Landfills § 265.309 Surveying and recordkeeping. The owner or operator of a landfill... location and dimensions, including depth, of each cell with respect to permanently surveyed benchmarks; and...
40 CFR 265.309 - Surveying and recordkeeping.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Surveying and recordkeeping. 265.309... DISPOSAL FACILITIES Landfills § 265.309 Surveying and recordkeeping. The owner or operator of a landfill... location and dimensions, including depth, of each cell with respect to permanently surveyed benchmarks; and...
40 CFR 264.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...
30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Saltwater disposal wells Volume or wells. Source water wells and supply systems Volume. Roads Wells..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...
30 CFR 1220.011 - Schedule of allowable direct and allocable joint costs and credits.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Saltwater disposal wells Volume or wells. Source water wells and supply systems Volume. Roads Wells..., installing, operating, repairing and maintaining communication systems, including radio, microwave facilities... contributions made to obtain information about the structure or other characteristics of the geology underlying...
40 CFR 264.140 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applying to a regulated unit with alternative requirements for financial assurance set out in the permit or... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial...) Prescribes alternative requirements for the regulated unit under § 264.90(f) and/or § 264.110(c); and (2...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1090... containers using Container Level 3 air emission controls in accordance with the requirements of § 265.1087 of... section when the tank, surface impoundment, or container is or would be operating at capacity or the...
40 CFR 265.1090 - Recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... DISPOSAL FACILITIES Air Emission Standards for Tanks, Surface Impoundments, and Containers § 265.1090... containers using Container Level 3 air emission controls in accordance with the requirements of § 265.1087 of... section when the tank, surface impoundment, or container is or would be operating at capacity or the...
3DD - Three Dimensional Disposal of Spent Nuclear Fuel - 12449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorakova, Marketa; Slovak, Jiri
2012-07-01
Three dimensional disposal is being considered as a way in which to store long-term spent nuclear fuel in underground disposal facilities in the Czech Republic. This method involves a combination of the two most common internationally recognised disposal methods in order to practically apply the advantages of both whilst, at the same time, eliminating their weaknesses; the method also allows easy removal in case of potential re-use. The proposed method for the disposal of spent nuclear fuel will reduce the areal requirements of future deep geological repositories by more than 30%. It will also simplify the container handling process bymore » using gravitational forces in order to meet requirements concerning the controllability of processes and ensuring operational and nuclear safety. With regard to the issue of the efficient potential removal of waste containers, this project offers an ingenious solution which does not disrupt the overall stability of the original disposal complex. (authors)« less
Gil-Cerezo, V; Domínguez-Vilches, E; González-Barrios, A J
2017-05-01
This paper presents the results of implementing an extrajudicial environmental mediation procedure in the socioenvironmental conflict associated with routine operation of the El Cabril Disposal Facility for low- and medium- activity radioactive waste (Spain). We analyse the socio-ethical perspective of this facility's operation with regard to its nearby residents, detailing the structure and development of the environmental mediation procedure through the participation of society and interested parties who are or may become involved in such a conflict. The research, action, and participation method was used to apply the environmental mediation procedure. This experience provides lessons that could help improve decision-making processes in nuclear or radioactive facility decommissioning projects or in environmental remediation projects dealing with ageing facilities or with those in which nuclear or radioactive accidents/incidents may have occurred. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-01-01
This hearing concerns the slow pace of EPA's actions to close and clean up most of the US hazardous waste land disposal facilities. Statements made personally to the subcommittee include Don R. Clay, Solid Waste and Emergency Response, EPA; Richard L. Hembra, Environmental Issues, Resources, Community, and Economic Development Division of the US General Accounting Office; Harold F. Reheis, Environmental Protection Division, Georgia Department of Natural Resources; Hon. Mike Synar, Chairman of the Subcommittee. Submitted for the record were 4 prepared documents from Don R. Clay, Richard L. Hembra; Sylvia Lowrance, Office of Solid Waste, EPA; Harold F. Reheis.
Solid rocket propellant waste disposal/ingredient recovery study
NASA Technical Reports Server (NTRS)
Mcintosh, M. J.
1976-01-01
A comparison of facility and operating costs of alternate methods shows open burning to be the lowest cost incineration method of waste propellant disposal. The selection, development, and implementation of an acceptable alternate is recommended. The recovery of ingredients from waste propellant has the probability of being able to pay its way, and even show a profit, when large consistent quantities of composite propellant are available. Ingredients recovered from space shuttle waste propellant would be worth over $1.5 million. Open and controlled burning are both energy wasteful.
Hazardous Waste Cleanup: CWM Chemical Services, LLC in Model City, New York
The CWM facility is located at 1550 Balmer Road in northwestern New York State in Model City (the towns of Lewiston and Porter.) The property has been operated as a hazardous waste disposal area since 1972. Prior to 1972, the site property was used for a
40 CFR 264.151 - Wording of the instruments.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Wording of the instruments. 264.151 Section 264.151 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.151 Wording o...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
40 CFR 264.101 - Corrective action for solid waste management units.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Corrective action for solid waste... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste Management Units § 264.101 Corrective action for...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-19
... Activities; Submission to OMB for Review and Approval; Comment Request; Solid Waste Disposal Facility.... For further information about the electronic docket, go to www.regulations.gov . Title: Solid Waste... include owners or operators of new municipal solid waste landfills (MSWLFs), existing MSWLFs, and lateral...
40 CFR 264.199 - Special requirements for incompatible wastes.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Tank Systems § 264.199 Special requirements for incompatible wastes. (a) Incompatible...(b) is complied with. (b) Hazardous waste must not be placed in a tank system that has not been...
40 CFR 264.97 - General ground-water monitoring requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General ground-water monitoring requirements. 264.97 Section 264.97 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Releases From Solid Waste...
40 CFR 265.34 - Access to communications or alarm system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Access to communications or alarm..., STORAGE, AND DISPOSAL FACILITIES Preparedness and Prevention § 265.34 Access to communications or alarm... involved in the operation must have immediate access to an internal alarm or emergency communication device...
Report #16-P-0104, March 11, 2016. Although the EPA’s overall inspection completion rate is high, the agency did not fully meet the legal requirement for inspecting 100 percent of operating TSDFs for fiscal year 2014.
Integrated Management of all Historical, Operational and Future Decomissioning Solid ILW at Dounreay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graham, D.
This paper describes major components of the Dounreay Site Restoration Plan, DSRP to deal with the site's solid intermediate level waste, ILW legacy. Historic solid ILW exists in the Shaft (disposals between 1959 and 1977), the Wet Silo (operated between 1973 and 1998), and in operating engineered drummed storage. Significant further arisings are expected from future operations, post-operations clean out and decommissioning through to the completion of site restoration, expected to be complete by about 2060. The raw waste is in many solid forms and also incorporates sludge, some fissile material and hazardous chemical components. The aim of the Solidmore » ILW Project is to treat and condition all this waste to make it passively safe and in a form which can be stored for a substantial period, and then transported to the planned U.K. national deep repository for ILW disposal. The Solid ILW Project involves the construction of head works for waste retrieval operations at the Shaft and Wet Silo, a Waste Treatment Plant and a Conditioned Waste Store to hold the conditioned waste until the disposal facilities become available. In addition, there are infrastructure activities to enable the new construction: contaminated ground remediation, existing building demolition, underground and overground services diversion, sea cliff stabilization, and groundwater isolation at the Shaft.« less
Financial Assurance Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities
The Resource Conservation and Recovery Act (RCRA) requires all treatment, storage and disposal facilities (TSDFs) to demonstrate that they will have the financial resources to properly close the facility
Annual Summary of the Integrated Disposal Facility Performance Assessment 2011
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehman, L. L.
2012-03-12
An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Programs
The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less
Study of alternate methods of disposal of propellants and gases at KSC
NASA Technical Reports Server (NTRS)
Moore, W. I.
1970-01-01
A comprehensive study was conducted at KSC launch support facilities to determine the nature and extent of potential hazards from propellant and gas releases to the environment. The results of the study, alternate methods for reducing or eliminating the hazards, and recommendations pertaining to these alternatives are presented. The operational modes of the propellant or hazardous gas systems considered include: system charging, system standby, system operation, and post-test operations. The results are outlined on an area-by-area basis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
Owners/operators of facilities that treat, store, or dispose of hazardous waste must obtain an operating permit, as required by Subtitle C of the Resource Conservation and Recovery Act (RCRA). The module presents an overview of the RCRA permitting process and the requirements that apply to TSDFs operating under interim status until a permit is issued. The regulations governing the permit process are found in 40 CFR Parts 124 through 270.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A.; Johnson, F.
Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yanochko, Ronald M.; Corcoran, Connie
The Hanford Waste Treatment and Immobilization Plant (WTP) will generate an off-gas treatment system secondary liquid waste stream [submerged bed scrubber (SBS) condensate], which is currently planned for recycle back to the WTP Low Activity Waste (LAW) melter. This SBS condensate waste stream is high in Tc-99, which is not efficiently captured in the vitrified glass matrix [1]. A pre-conceptual engineering study was prepared in fiscal year 2012 to evaluate alternate flow paths for melter off-gas secondary liquid waste generated by the WTP LAW facility [2]. This study evaluated alternatives for direct off-site disposal of this SBS without pre-treatment, whichmore » mitigates potential issues associated with recycling. This study [2] concluded that SBS direct disposal is a viable option to the WTP baseline. The results show: - Off-site transportation and disposal of the SBS condensate is achievable and cost effective. - Reduction of approximately 4,325 vitrified WTP Low Activity Waste canisters could be realized. - Positive WTP operational impacts; minimal WTP construction impacts are realized. - Reduction of mass flow from the LAW Facility to the Pretreatment Facility by 66%. - Improved Double Shell Tank (DST) space management is a benefit. (authors)« less
Network modeling for reverse flows of end-of-life vehicles.
Ene, Seval; Öztürk, Nursel
2015-04-01
Product recovery operations are of critical importance for the automotive industry in complying with environmental regulations concerning end-of-life products management. Manufacturers must take responsibility for their products over the entire life cycle. In this context, there is a need for network design methods for effectively managing recovery operations and waste. The purpose of this study is to develop a mathematical programming model for managing reverse flows in end-of-life vehicles' recovery network. A reverse flow is the collection of used products from consumers and the transportation of these products for the purpose of recycling, reuse or disposal. The proposed model includes all operations in a product recovery and waste management network for used vehicles and reuse for vehicle parts such as collection, disassembly, refurbishing, processing (shredding), recycling, disposal and reuse of vehicle parts. The scope of the network model is to determine the numbers and locations of facilities in the network and the material flows between these facilities. The results show the performance of the model and its applicability for use in the planning of recovery operations in the automotive industry. The main objective of recovery and waste management is to maximize revenue and minimize pollution in end-of-life product operations. This study shows that with an accurate model, these activities may provide economic benefits and incentives in addition to protecting the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Regulatory basis for the Waste Isolation Pilot Plant performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOWARD,BRYAN A.; CRAWFORD,M.B.; GALSON,D.A.
2000-05-22
The Waste Isolation Pilot Plant (WIPP) is the first operational repository designed for the safe disposal of transuranic (TRU) radioactive waste from the defense programs of the US Department of Energy (DOE). The US Environmental Protection Agency (EPA) is responsible for certifications and regulation of the WIPP facility for the radioactive components of the waste. The EPA has promulgated general radioactive waste disposal standards at 40 CFR Part 191. and WIPP-specific criteria to implement and interpret the generic disposal standards at 40 CFR Part 194. In October 1996. the DOE submitted its Compliance Certification Application (CCA) to the EPA tomore » demonstrate compliance with the disposal standards at Subparts B and C of 40 CFR Part 191. This paper summarizes the development of the overall legal framework for radioactive waste disposal at the WIPP, the parallel development of the WIPP performance assessment (PA), and how the EPA disposal standards and implementing criteria formed the basis for the CCA WIPP PA. The CCA resulted in a certification in May 1998 by the EPA of the WIPP'S compliance with the EPA's disposal standard, thus enabling the WIPP to begin radioactive waste disposal.« less
Liquid secondary waste. Waste form formulation and qualification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cozzi, A. D.; Dixon, K. L.; Hill, K. A.
The Hanford Site Effluent Treatment Facility (ETF) currently treats aqueous waste streams generated during Site cleanup activities. When the Hanford Tank Waste Treatment and Immobilization Plant (WTP) begins operations, a liquid secondary waste (LSW) stream from the WTP will need to be treated. The volume of effluent for treatment at the ETF will increase significantly. Washington River Protection Solutions is implementing a Secondary Liquid Waste Immobilization Technology Development Plan to address the technology needs for a waste form and solidification process to treat the increased volume of waste planned for disposal at the Integrated Disposal Facility IDF). Waste form testingmore » to support this plan is composed of work in the near term to demonstrate the waste form will provide data as input to a performance assessment (PA) for Hanford’s IDF.« less
Existing data on the 216-Z liquid waste sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owens, K.W.
1981-05-01
During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-14
... Activities; Submission to OMB for Review and Approval; Comment Request; NESHAP for Asbestos (Renewal). AGENCY... information about the electronic docket, go to www.regulations.gov . Title: NESHAP for Asbestos (Renewal) ICR... operators of demolition and renovation of facilities; the disposal of asbestos waste; asbestos milling...
10 CFR Appendix D to Subpart D of... - Classes of Actions that Normally Require EISs
Code of Federal Regulations, 2014 CFR
2014-01-01
... [Reserved] D7 Contracts, policies, and marketing and allocation plans for electric power D8 Import or export... operational change D10 Treatment, storage, and disposal facilities for high-level waste and spent nuclear fuel... Contracts, Policies, and Marketing and Allocation Plans for Electric Power Establishment and implementation...
40 CFR 264.3 - Relationship to interim status standards.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Relationship to interim status standards. 264.3 Section 264.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.3 Relationship to...
40 CFR 265.442 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...
Space and Missile Systems Center Standard: Systems Engineering Requirements and Products
2013-07-01
unique hazard classification and explosive ordnance disposal requirements. (2) Operational and maintenance facilities and equipment requirements. (3...PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 FOREWORD 1. This standard defines the Government’s requirements...49 4.3.14 Electromagnetic Interference and
40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Pt....
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.200 - Waste analysis and trial tests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... operator to place the results from each waste analysis and trial test, or the documented information, in... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Waste analysis and trial tests. 265... DISPOSAL FACILITIES Tank Systems § 265.200 Waste analysis and trial tests. In addition to performing the...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L
2013-10-01
Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.
The role of organic complexants and microparticulates in the facilitated transport of radionuclides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilk, A.J.; Robertson, D.E.; Abel, K.H.
1996-12-01
This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less
Depleted uranium startup of spent-fuel treatment operations at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goff, K.M.; Mariani, R.D.; Bonomo, N.L.
1995-12-31
At Argonne National Laboratory-West (ANL-West) there are several thousand kilograms of Experimental Breeder Reactor II (EBR-II) spent nuclear fuel. This fuel will be treated using an electrometallurgical process in the fuel conditioning facility (FCF) at ANL-West to produce stable waste forms for storage and disposal. The process equipment is undergoing testing with depleted uranium in preparation for irradiated fuel operations during the summer of 1995.
20. VIEW OF THE INTERIOR OF THE ADVANCED SIZE REDUCTION ...
20. VIEW OF THE INTERIOR OF THE ADVANCED SIZE REDUCTION FACILITY USED TO CUT PLUTONIUM CONTAMINATED GLOVE BOXES AND MISCELLANEOUS LARGE EQUIPMENT DOWN TO AN EASILY PACKAGED SIZE FOR DISPOSAL. ROUTINE OPERATIONS WERE PERFORMED REMOTELY, USING HOISTS, MANIPULATOR ARMS, AND GLOVE PORTS TO REDUCE BOTH INTENSITY AND TIME OF RADIATION EXPOSURE TO THE OPERATOR. (11/6/86) - Rocky Flats Plant, Plutonium Fabrication, Central section of Plant, Golden, Jefferson County, CO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bench, T.R.
1997-05-01
This paper details how the Bettis Atomic Power Laboratory modified and utilized a commercially available, solid carbon dioxide (CO{sub 2}) pellet, non-destructive cleaning system to support the disposition and disposal of radioactive waste from shielded hot cells. Some waste materials and equipment accumulated in the shielded hot cells cannot be disposed directly because they are contaminated with transuranic materials (elements with atomic numbers greater than that of uranium) above waste disposal site regulatory limits. A commercially available CO{sub 2} pellet non-destructive cleaning system was extensively modified for remote operation inside a shielded hot cell to remove the transuranic contaminants frommore » the waste and equipment without generating any secondary waste in the process. The removed transuranic contaminants are simultaneously captured, consolidated, and retained for later disposal at a transuranic waste facility.« less
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.
2006-11-01
The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.
Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carilli, Jhon T.; Krenzien, Susan K.
2013-07-01
The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherwood, C.B.; Loar, J.M.
1987-01-01
Oak Ridge National Laboratory (ORNL) is located in the White Oak Creek (WOC) watershed, which drains approximately 16.8 km/sup 2/ (6.5 mile/sup 2/). The waters of WOC are impounded by White Oak Dam at WOC's intersection with White Wing Road (State Route 95), 1.0 km (0.6 mile) upstream from the Clinch River. The resulting White Oak Lake (WOL) is a small, shallow impoundment, whose water level is controlled by a vertical sluice gate that remains in a fixed position during normal operations. White Oak Creek has been utilized for the discharge of treated and untreated wastes from routine operations sincemore » the Laboratory's inception. In addition, most of the more recent (1954 to date) liquid and solid low-level-waste disposal operations have been located in the drainage area of WOC. As a federally owned facility, ORNL is required to comply with all existing federal, state, and local environmental regulations regarding waste management. On July 15, 1985, the US Environmental Protection Agency published final rules to incorporate changes in the Resource Conservation and Recovery Act of 1976 that resulted from the passage of the Hazardous and Solid Waste Amendments of 1984. As a part of the rule changes, a new Sect. 3004(u) was added. The new section requires that any facility permit issued after November 8, 1984, include planned corrective actions for all continuing releases of hazardous waste or constituents from any disposal unit at the facility, regardless of when the waste was placed at the disposal unit. This report was prepared to compile existing information on the content and quantity of hazardous substances (both radioactive and nonradioactive) in the WOC/WOL watershed and to provide background information on the geology, hydrology, and ecology of the site for use in planning future remedial actions. 109 refs., 45 figs., 33 tabs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger; Phifer, Mark; Suttora, Linda
2015-03-17
On-site disposal cells are in use and being considered at several USDOE sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These disposal cells are typically regulated by States and/or the USEPA in addition to having to comply with requirements in DOE Order 435.1, Radioactive Waste Management. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical andmore » policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. One task completed by the working group addressed approaches for considering the performance of covers and liners/leachate collection systems in the context of a performance assessment (PA). A document has been prepared which provides recommendations for a general approach to address covers and liners/leachate collection systems in a PA and how to integrate assessments with defense-in-depth considerations such as design, operations and waste acceptance criteria to address uncertainties. Specific information and references are provided for details needed to address the evolution of individual components of cover and liner/leachate collection systems. This information is then synthesized into recommendations for best practices for cover and liner system design and examples of approaches to address the performance of covers and liners as part of a performance assessment of the disposal system.« less
75 FR 74000 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-30
... 306C Water & Waste Disposal (WWD) Loans & Grants. OMB Control Number: 0572-0109. Summary of Collection... access to or are not served by adequate affordable water supply systems or waste disposal facilities. The loans and grants will be available to provide water and waste disposal facilities and services to these...
Design and Installation of a Disposal Cell Cover Field Test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benson, C.H.; Waugh, W.J.; Albright, W.H.
2011-02-27
The U.S. Department of Energy’s Office of Legacy Management (LM) initiated a cover assessment project in September 2007 to evaluate an inexpensive approach to enhancing the hydrological performance of final covers for disposal cells. The objective is to accelerate and enhance natural processes that are transforming existing conventional covers, which rely on low-conductivity earthen barriers, into water balance covers, that store water in soil and release it as soil evaporation and plant transpiration. A low conductivity cover could be modified by deliberately blending the upper layers of the cover profile and planting native shrubs. A test facility was constructed atmore » the Grand Junction, Colorado, Disposal Site to evaluate the proposed methodology. The test cover was constructed in two identical sections, each including a large drainage lysimeter. The test cover was constructed with the same design and using the same materials as the existing disposal cell in order to allow for a direct comparison of performance. One test section will be renovated using the proposed method; the other is a control. LM is using the lysimeters to evaluate the effectiveness of the renovation treatment by monitoring hydrologic conditions within the cover profile as well as all water entering and leaving the system. This paper describes the historical experience of final covers employing earthen barrier layers, the design and operation of the lysimeter test facility, testing conducted to characterize the as-built engineering and edaphic properties of the lysimeter soils, the calibration of instruments installed at the test facility, and monitoring data collected since the lysimeters were constructed.« less
Medical waste treatment and disposal methods used by hospitals in Oregon, Washington, and Idaho.
Klangsin, P; Harding, A K
1998-06-01
This study investigated medical waste practices used by hospitals in Oregon, Washington, and Idaho, which includes the majority of hospitals in the U.S. Environmental Protection Agency's (EPA) Region 10. During the fall of 1993, 225 hospitals were surveyed with a response rate of 72.5%. The results reported here focus on infectious waste segregation practices, medical waste treatment and disposal practices, and the operating status of hospital incinerators in these three states. Hospitals were provided a definition of medical waste in the survey, but were queried about how they define infectious waste. The results implied that there was no consensus about which agency or organization's definition of infectious waste should be used in their waste management programs. Confusion around the definition of infectious waste may also have contributed to the finding that almost half of the hospitals are not segregating infectious waste from other medical waste. The most frequently used practice of treating and disposing of medical waste was the use of private haulers that transport medical waste to treatment facilities (61.5%). The next most frequently reported techniques were pouring into municipal sewage (46.6%), depositing in landfills (41.6%), and autoclaving (32.3%). Other methods adopted by hospitals included Electro-Thermal-Deactivation (ETD), hydropulping, microwaving, and grinding before pouring into the municipal sewer. Hospitals were asked to identify all methods they used in the treatment and disposal of medical waste. Percentages, therefore, add up to greater than 100% because the majority chose more than one method. Hospitals in Oregon and Washington used microwaving and ETD methods to treat medical waste, while those in Idaho did not. No hospitals in any of the states reported using irradiation as a treatment technique. Most hospitals in Oregon and Washington no longer operate their incinerators due to more stringent regulations regarding air pollution emissions. Hospitals in Idaho, however, were still operating incinerators in the absence of state regulations specific to these types of facilities.
Controlling changes - lessons learned from waste management facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, B.M.; Koplow, A.S.; Stoll, F.E.
This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less
1991-06-01
commercial products . The D-series of reports includes publications of the Environmental Effects of Dredging Programs: Dredging Operations Technical Support...insufficient data are available, areas for future productive research are recommended. The major amount of information available is for the upland area, where...Conse- quently, the upland, wetland, and aquatic areas that appear either as an end product or transiently at all CDFs are permanently established
DWPF Safely Dispositioning Liquid Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-01-05
The only operating radioactive waste glassification plant in the nation, the Defense Waste Processing Facility (DWPF) converts the liquid radioactive waste currently stored at the Savannah River Site (SRS) into a solid glass form suitable for long-term storage and disposal. Scientists have long considered this glassification process, called “vitrification,” as the preferred option for treating liquid radioactive waste.
40 CFR 264.572 - Design and installation of new drip pads.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 264.572 Section 264.572 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads § 264.572 Design...
Bible, J; Emery, R J; Williams, T; Wang, S
2006-11-01
Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to assess, and perhaps enhance in a reasonable fashion, the security of their interim storage operations. Aspects of the assessment tool can also be applied to other activities involving the protection of sources of radiation as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seitz, Roger R.; Suttora, Linda C.; Phifer, Mark
On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectationsmore » for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.« less
LLRW disposal facility siting approaches: Connecticut`s innovative volunteer approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Forcella, D.; Gingerich, R.E.; Holeman, G.R.
1994-12-31
The Connecticut Hazardous Waste Management Service (CHWMS) has embarked on a volunteer approach to siting a LLRW disposal facility in Connecticut. This effort comes after an unsuccessful effort to site a facility using a step-wise, criteria-based site screening process that was a classic example of the decide/announce/defend approach. While some of the specific features of the CHWMS` volunteer process reflect the unique challenge presented by the state`s physical characteristics, political structure and recent unsuccessful siting experience, the basic elements of the process are applicable to siting LLRW disposal facilities in many parts of the United States. The CHWMS` volunteer processmore » is structured to reduce the {open_quotes}outrage{close_quotes} dimension of two of the variables that affect the public`s perception of risk. The two variables are the degree to which the risk is taken on voluntarily (voluntary risks are accepted more readily than those that are imposed) and the amount of control one has over the risk (risks under individual control are accepted more readily than those under government control). In the volunteer process, the CHWMS will only consider sites that have been been voluntarily offered by the community in which they are located and the CHWMS will share control over the development and operation of the facility with the community. In addition to these elements which have broad applicability, the CHWMS has tailored the volunteer approach to take advantage of the unique opportunities made possible by the earlier statewide site screening process. Specifically, the approach presents a {open_quotes}win-win{close_quotes} situation for elected officials in many communities if they decide to participate in the process.« less
Code of Federal Regulations, 2013 CFR
2013-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2014 CFR
2014-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2011 CFR
2011-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2010 CFR
2010-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Code of Federal Regulations, 2012 CFR
2012-10-01
... automobile for purposes other than resale. Disposal facility means a facility listed on http://www.cars.gov... under the National Vehicle Mercury Switch Recovery Program for the collection, recycling and disposal of...
Application countermeasures of non-incineration technologies for medical waste treatment in China.
Chen, Yang; Ding, Qiong; Yang, Xiaoling; Peng, Zhengyou; Xu, Diandou; Feng, Qinzhong
2013-12-01
By the end of 2012, there were 272 modern, high-standard, centralized medical waste disposal facilities operating in various cities in China. Among these facilities nearly 50% are non-incineration treatment facilities, including the technologies of high temperature steam, chemical disinfection and microwave. Each of the non-incineration technologies has its advantages and disadvantages, and any single technology cannot offer a panacea because of the complexity of medical waste disposal. Although non-incineration treatment of medical waste can avoid the release of polychlorinated dibenzo-p-dioxins/dibenzofurans, it is still necessary to decide how to best meet the local waste management needs while minimizing the impact on the environment and public health. There is still a long way to go to establish the sustainable application and management mode of non-incineration technologies. Based on the analysis of typical non-incineration process, pollutant release, and the current tendency for technology application and development at home and abroad, this article recommends the application countermeasures of non-incineration technologies as the best available techniques and best environmental practices in China.
10 CFR 62.13 - Contents of a request for emergency access: Alternatives.
Code of Federal Regulations, 2011 CFR
2011-01-01
... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...
The Vapor Plume at Material Disposal Are C in Relation to Pajarito Corridor Facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Masse, William B.
2012-04-02
A vapor plume made up of volatile organic compounds is present beneath Material Disposal Area C (MDA C) at Los Alamos National Laboratory (LANL). The location and concentrations within the vapor plume are discussed in relation to existing and planned facilities and construction activities along Pajarito Road (the 'Pajarito Corridor') and in terms of worker health and safety. This document provides information that indicates that the vapor plume does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of proposed facilities along Pajarito Road. The Los Alamos National Laboratorymore » (LANL or the Laboratory) monitors emissions, effluents, and environmental media to meet environmental compliance requirements, determine actions to protect the environment, and monitor the long-term health of the local environment. LANL also studies and characterizes 'legacy' waste from past Laboratory operations to make informed decisions regarding eventual corrective actions and the disposition of that waste. Starting in 1969, these activities have been annually reported in the LANL Environmental Report (formerly Environmental Surveillance Report), and are detailed in publicly accessible technical reports meeting environmental compliance requirements. Included among the legacy sites being investigated are several formerly used material disposal areas (MDAs) set aside by the Laboratory for the general on-site disposal of waste from mission-related activities. One such area is MDA C located in Technical Area 50 (TA-50), which was used for waste disposal between 1948 and 1974. The location of TA-50 is depicted in Figure 1. The present paper uses a series of maps and cross sections to address the public concerns raised about the vapor plume at MDA C. As illustrated here, extensive sampling and data interpretation indicate that the vapor plume at MDA C does not pose a threat to the health of LANL workers nor will it pose a threat to workers during construction of the proposed facilities and utility trenches. The public cannot be directly exposed to the vapor plume beneath MDA C because Pajarito Road is closed to the public.« less
10 CFR 61.50 - Disposal site suitability requirements for land disposal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.50 - Disposal site suitability requirements for land disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 10 Energy 2 2013-01-01 2013-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 10 Energy 2 2012-01-01 2012-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
10 CFR 61.50 - Disposal site suitability requirements for land disposal.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 10 Energy 2 2014-01-01 2014-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...
10 CFR 61.50 - Disposal site suitability requirements for land disposal.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...
10 CFR 61.50 - Disposal site suitability requirements for land disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site suitability requirements for land disposal. 61.50 Section 61.50 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.50 Disposal site...
10 CFR 61.51 - Disposal site design for land disposal.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Disposal site design for land disposal. 61.51 Section 61.51 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.51 Disposal site design for land...
Site Selection for the Disposal of LLW in Taiwan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chuang, W.S.; Chi, L.M.; Tien, N.C.
2006-07-01
This paper presents the implementation status of the low-level radioactive waste (LLW) disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes and preliminary disposal concepts. The first phase of site selection for low-level radioactive waste final disposal in Taiwan was implemented between 1992 and 2002. The site selection process adopted a Geographic Information System (GIS), Hierarchical Analysis System, Expert Evaluation System, and site reconnaissance. An incentive program for voluntary sites was also initiated. After a series of evaluations and discussion of 30 potentialmore » candidate sites, including 8 recommended sites, 5 qualified voluntary townships, and several remote uninhabited small islets, Hsiao-chiou islet was selected as the first priority candidate site in February 1998. The geological investigation work in Hsiao-chiou was conducted from March 1999 through October 2000. An Environmental Impact Statement Report (EIS) and the Investment Feasibility Study Report (IFS) were submitted to the Environmental Protection Agency (EPA) in November 2000 and to the Ministry of Economic Affairs (MOEA) in June 2001, respectively. Unfortunately, the site investigation was discontinued in 2002 due to political and public acceptance consideration. After years of planning, the second phase of the site selection process was launched in August 2004 and will be conducted through 2008. It is planned that a repository will be constructed in early 2009 and start to operate in 2014. The site selection process for the second phase is based on the earlier work and four potential candidate sites were selected for evaluation until 2005. A near surface disposal concept is proposed for a site located in the Taiwan strait, and cavern disposal concepts are proposed for three other sites located on the main island. This paper presents the implementation status of the LLW disposal program in Taiwan, including the disposal facility regulations, status of waste management, final disposal program, licensing procedures, waste acceptance criteria, site selection criteria and processes, and preliminary disposal concepts 'NIMBY' (Not in my backyard) is a critical problem for implementation of the final disposal project. Resistance from local communities has been continuously received during site characterization. To overcome this, an incentive program to encourage community acceptance has been approved by the Government. Programs for community promotion are being proposed and negotiations are also underway. (authors)« less
Feasibility study for a transportation operations system cask maintenance facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rennich, M.J.; Medley, L.G.; Attaway, C.R.
The US Department of Energy (DOE), Office of Civilian Radioactive Waste Management (OCRWM) is responsible for the development of a waste management program for the disposition of spent nuclear fuel (SNF) and high-level waste (HLW). The program will include a transportation system for moving the nuclear waste from the sources to a geologic repository for permanent disposal. Specially designed casks will be used to safely transport the waste. The cask systems must be operated within limits imposed by DOE, the Nuclear Regulatory Commission (NRC), and the Department of Transportation (DOT). A dedicated facility for inspecting, testing, and maintaining the caskmore » systems was recommended by the General Accounting Office (in 1979) as the best means of assuring their operational effectiveness and safety, as well as regulatory compliance. In November of 1987, OCRWM requested a feasibility study be made of a Cask Maintenance Facility (CMF) that would perform the required functions. 46 refs., 16 figs., 13 tabs.« less