Science.gov

Sample records for dissimilar metal welding

  1. Hybrid welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Samigullin, A. D.; Bashmakov, D. A.; Israphilov, I. Kh; Turichin, G. A.

    2017-01-01

    The article addresses issues laser - plasma welding (LPW) dissimilar metals and the results of metallographic studies of the microstructure of welds ferrite - 40 steel and molybdenum - steel 40. Increasing potential opportunities the high-energy processing is carried out by integration the laser radiation (LR) and plasma, which allows you to create the desired spatial distribution of the energy flow for technological processes (TP) of laser-plasma heat treatment (LPT) of metals. The distribution of the thermal field is determined by the density distribution of energy flow LR and plasma exposure time, and the thermal characteristics of the treated metal. The most interesting is the treatment of details with ring flow of plasma and LR axial impact.

  2. Welding dissimilar metal microwires by Joule heating

    NASA Astrophysics Data System (ADS)

    Sunagawa, Takuya; Tohmyoh, Hironori

    2015-06-01

    In this paper we report on the Joule heat welding of dissimilar metal microwires. The current required for successful welding was investigated. Various combinations of 25 µm diameter Cu, Au and Al microwires were welded together using this technique. The welded dissimilar metal wire systems were then cut by supplying a higher current, and it was found that the position at which the wires cut was not at the midpoint, i.e., the position of the weld, of the wire system. This is because the temperature distributions formed in the dissimilar metal systems were asymmetrical. The positions at which the wires cut were in good agreement with those predicted by a heat conduction model. The lower limit for successful welding of the dissimilar metal microwire system was found to be determined by the lower of the two currents required to cut microwires of the individual materials.

  3. Femtosecond fiber laser welding of dissimilar metals.

    PubMed

    Huang, Huan; Yang, Lih-Mei; Bai, Shuang; Liu, Jian

    2014-10-01

    In this paper, welding of dissimilar metals was demonstrated for the first time, to the best of our knowledge, by using a high-energy high-repetition-rate femtosecond fiber laser. Metallurgical and mechanical properties were investigated and analyzed under various processing parameters (pulse energy, repetition rate, and welding speed). Results showed that the formation of intermetallic brittle phases and welding defects could be effectively reduced. Strong welding quality with more than 210 MPa tensile strength for stainless steel-aluminum and 175 MPa tensile strength for stainless steel-magnesium has been demonstrated. A minimal heat affected zone and uniform and homogenous phase transformation in the welding region have been demonstrated. This laser-welding technique can be extended for various applications in semiconductor, automobile, aerospace, and biomedical industries.

  4. Joining of Dissimilar Metals By Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Firouzdor, Vahid

    The use of friction stir welding (FSW) as a new process for joining dissimilar metals has been studied frequently recently. The present study investigated dissimilar-metal FSW between Al and Mg alloys using the widely used alloys 6061 Al and AZ31B Mg. It focused on the issue of how the joint strength is affected by the welding conditions, including the positions of Al and Mg with respect to the welding tool, the tool travel speed and the tool rotation speed. In spite of studies conducted by many other investigators, understanding of this fundamental issue is still rather limited. Unlike those studies, the present study: (1) determined the heat input by torque and temperature measurements during welding and used it to explain the effect of the welding conditions on the joint strength, (2) used color metallography with Al, Mg, Al3Mg2 and Al12Mg17 shown in different colors to clearly revealed the effect of the welding conditions on the formation of intermetallic compounds and material flow, which are affected by the heat input and which in turn affect the joint strength, and (3) determined the windows for selecting the travel and rotation speeds to optimize the joint strength for various material positions. Furthermore, conventional lap FSW was modified and the joint strength and ductility of the resultant welds were both increased significantly. The modified lap FSW was applied subsequently to Al-to-Cu FSW. The intermetallic compounds in Al-Mg and Al-Cu welds were identified.

  5. A study of weld quality in ultrasonic spot welding of similar and dissimilar metals

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.

    2012-08-01

    Several difficulties are faced in joining thinner sheets of similar and dissimilar materials from fusion welding processes such as resistance welding and laser welding. Ultrasonic metal welding overcomes many of these difficulties by using high frequency vibration and applied pressure to create a solid-state weld. Ultrasonic metal welding is an effective technique in joining small components, such as in wire bonding, but is also capable of joining thicker sheet, depending on the control of welding conditions. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal welding device. The ultrasonic welding horn is modelled using finite element analysis and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. Control of the vibration amplitude profile through the weld cycle is used to enhance weld strength and quality, providing an opportunity to reduce part marking. Optical microscopic examination and scanning electron microscopy (SEM) were employed to investigate the weld quality. The results show how the weld quality is particularly sensitive to the combination of clamping force and vibration amplitude of the welding tip.

  6. Thermal Recovery of Plastic Deformation in Dissimilar Metal Weld

    SciTech Connect

    Qiao, Dongxiao; Yu, Xinghua; Zhang, Wei; Crooker, Paul; David, Stan A.; Feng, Zhili

    2014-05-23

    Stainless steel has been widely used in challenging environments typical to nuclear power plant structures, due its excellent corrosion resistance. Nickel filler metals containing high chromium concentration, including Alloy 82/182, are used for joining stainless steel to carbon steel components to achieve similar high resistance to stress corrosion cracking. However, the joint usually experience weld metal stress corrosion cracking (SCC), which affects the safety and structural integrity of light water nuclear reactor systems. A primary driving force for SCC is the high tensile residual stress in these welds. Due to large dimension of pressure vessel and limitations in the field, non-destructive residual stress measurement is difficult. As a result, finite element modeling has been the de facto method to evaluate the weld residual stresses. Recent studies on this subject from researchers worldwide report different residual stress value in the weldments [5]. The discrepancy is due to the fact that most of investigations ignore or underestimate the thermal recovery in the heat-affect zone or reheated region in the weld. In this paper, the effect of heat treatment on thermal recovery and microhardness is investigated for materials used in dissimilar metal joint. It is found that high equivalent plastic strains are predominately accumulated in the buttering layer, the root pass, and the heat affected zone, which experience multiple welding thermal cycles. The final cap passes, experiencing only one or two welding thermal cycles, exhibit less plastic strain accumulation. Moreover, the experimental residual plastic strains are compared with those predicted using an existing weld thermo-mechanical model with two different strain hardening rules. The importance of considering the dynamic strain hardening recovery due to high temperature exposure in welding is discussed for the accurate simulation of weld residual stresses and plastic strains. In conclsuion, the

  7. Numerical investigation of electromagnetic pulse welded interfaces between dissimilar metals

    SciTech Connect

    Xu, Wei; Sun, Xin

    2016-05-11

    Electromagnetic pulse welding (EMPW), an innovative high-speed joining technique, is a potential method for the automotive industry in joining and assembly of dissimilar lightweight metals with drastically different melting temperatures and other thermal physical properties, such as thermal conductivity and thermal expansion coefficients. The weld quality of EMPW is significantly affected by a variety of interacting physical phenomena including large plastic deformation, materials mixing, localized heating and rapid cooling, possible localized melting and subsequent diffusion and solidification, micro-cracking and void, etc. In the present study, a thermo-mechanically coupled dynamic model has been developed to quantitatively resolve the high-speed impact joining interface characteristics as well as the process-induced interface temperature evolution, defect formation and possible microstructural composition variation. Reasonably good agreement has been obtained between the predicted results and experimental measurements in terms of interfacial morphology characteristics. The modeling framework is expected to provide further understanding of the hierarchical interfacial features of the non-equilibrium material joining process and weld formation mechanisms involved in the EMPW operation, thus accelerating future development and deployment of this advanced joining technology.

  8. Ultrasonic Evaluation of Two Dissimilar Metal Weld Overlay Specimens

    SciTech Connect

    Crawford, Susan L.; Cinson, Anthony D.; Prowant, Matthew S.; Moran, Traci L.; Anderson, Michael T.

    2012-06-30

    Two dissimilar metal weld (DMW) pipe-to-nozzle specimens were implanted with thermal fatigue cracks in the 13% to 90% through-wall depth range. The specimens were ultrasonically evaluated with phased-array probes having center frequencies of 0.8, 1.0, 1.5, and 2.0 megahertz (MHz). An Alloy 82/182 weld overlay (WOL) was applied and the specimens were ultrasonically re-evaluated for flaw detection and characterization. The Post-WOL flaw depths were approximately 10% to 56% through-wall. This study has shown the effectiveness of ultrasonic examinations of Alloy 82/182 overlaid DMW specimens. Phased-array probes with center frequency in the 0.8- to 1.0-MHz range provide a strong coherent signal but the greater ultrasonic wavelength and larger beam spot size prevent the reliable detection of small flaws. These small flaws had nominal through-wall depths of less than 15% and length in the 50-60 mm (2-2.4 in.) range. Flaws in the 19% and greater through-wall depth range were readily detected with all four probes. At the higher frequencies, the reflected signals are less coherent but still provide adequate signal for flaw detection and characterization. A single inspection at 2.0 MHz could provide adequate detection and sizing information but a supplemental inspection at 1.0 or 1.5 MHz is recommended.

  9. Numerical modeling of electron-beam welding of dissimilar metals

    NASA Astrophysics Data System (ADS)

    Krektuleva, R. A.; Cherepanov, O. I.; Cherepanov, R. O.

    2016-11-01

    This paper is devoted to numerical modeling of heat transfer processes and estimation of thermal stresses in weld seams created by electron beam welding of heterogeneous metals. The mathematical model is based on a system of equations that includes the Lagrange's variational equation of theory of plasticity and variational equation of M. Biot's principle to simulate the heat transfer processes. The two-dimensional problems (plane strain and plane stress) are considered for estimation of thermal stresses in welds considering differences of mechanical properties of welded materials. The model is developed for simulation of temperature fields and stresses during electron beam welding.

  10. Hydrogen-induced cracking along the fusion boundary of dissimilar metal welds

    SciTech Connect

    Rowe, M.D.; Nelson, T.W.; Lippold, J.C.

    1999-02-01

    Presented here are the results from a series of experiments in which dissimilar metals welds were made using the gas tungsten arc welding process with pure argon or argon-6% hydrogen shielding gas. The objective was to determine if cracking near the fusion boundary of dissimilar metal welds could be caused by hydrogen absorbed during welding and to characterize the microstructures in which cracking occurred. Welds consisted of ER308 and ER309LSi austenitic stainless steel and ERNiCr-3-nickel-based filler metals deposited on A36 steel base metal. Cracking was observed in welds made with all three filler metals. A ferrofluid color metallography technique revealed that cracking was confined to regions in the weld metal containing martensite. Microhardness indentations indicated that martensitic regions in which cracking occurred had hardness values from 400 to 550 HV. Cracks did not extend into bulk weld metal with hardness less than 350 HV. Martensite formed near the fusion boundary in all three filler metals due to regions of locally increased base metal dilution.

  11. Optimization of Laser Keyhole Welding Strategies of Dissimilar Metals by FEM Simulation

    NASA Astrophysics Data System (ADS)

    Garcia Navas, Virginia; Leunda, Josu; Lambarri, Jon; Sanz, Carmen

    2015-07-01

    Laser keyhole welding of dissimilar metals has been simulated to study the effect of welding strategies (laser beam displacements and tilts) and combination of metals to be welded on final quality of the joints. Molten pool geometry and welding penetration have been studied but special attention has been paid to final joint material properties, such as microstructure/phases and hardness, and especially to the residual stress state because it greatly conditions the service life of laser-welded components. For a fixed strategy (laser beam perpendicular to the joint) austenitic to carbon steel laser welding leads to residual stresses at the joint area very similar to those obtained in austenitic to martensitic steel welding, but welding of steel to Inconel 718 results in steeper residual stress gradients and higher area at the joint with detrimental tensile stresses. Therefore, when the difference in thermo-mechanical properties of the metals to be welded is higher, the stress state generated is more detrimental for the service life of the component, and consequently more relevant is the optimization of welding strategy. In laser keyhole welding of austenitic to martensitic stainless steel and austenitic to carbon steel, the optimum welding strategy is displacing the laser beam 1 mm toward the austenitic steel. In the case of austenitic steel to Inconel welding, the optimum welding strategy consists in setting the heat source tilted 45 deg and moved 2 mm toward the austenitic steel.

  12. Precipitation of Niobium Boride Phases at the Base Metal/Weld Metal Interface in Dissimilar Weld Joints

    NASA Astrophysics Data System (ADS)

    Výrostková, Anna; Kepič, Ján; Homolová, Viera; Falat, Ladislav

    2015-07-01

    In this work, the analysis of failure mechanism in the heat affected zone is described in dissimilar weld joints between advanced martensitic steel T92 and Ni-base weld metal. The joints were treated with two different post-weld heat treatments and tested. For the creep, tensile, and Charpy impact tests, the samples with interfacially located notch were used. Moreover long term aging at 625 °C was applied before the tensile and notch toughness tests. Decohesion fractures ran along carbides at the T92 BM/WM interfaces in case of the modified PWHT, whereas type IV cracking was the prevailing failure mechanism after the classical PWHT in the creep test. In the notch tensile and Charpy impact tests, with the notch at T92 base metal/weld metal interface, fractures ran along the interface with a hard phase on the fracture surface along with the ductile dimple and brittle quasi-cleavage fracture. The phase identified as niobium boride (either NbB and/or Nb3B2) was produced during welding at the end of the solidification process. It was found in the welds regardless of the post-weld heat treatment and long-term aging.

  13. Hydrogen Assisted Crack in Dissimilar Metal Welds for Subsea Service under Cathodic Protection

    NASA Astrophysics Data System (ADS)

    Bourgeois, Desmond

    Dissimilar metal welds (DMWs) are routinely used in the oil and gas industries for structural joining of high strength steels in order to eliminate the need for post weld heat treatment (PWHT) after field welding. There have been reported catastrophic failures in these DMWs, particularly the AISI 8630 steel - Alloy 625 DMW combination, during subsea service while under cathodic protection (CP). This is due to local embrittlement that occurs in susceptible microstructures that are present at the weld fusion boundary region. This type of cracking is known as hydrogen assisted cracking (HAC) and it is influenced by base/filler metal combination, and welding and PWHT procedures. DMWs of two material combinations (8630 steel -- Alloy 625 and F22 steel -- Alloy 625), produced with two welding procedures (BS1 and BS3) in as welded and PWHT conditions were investigated in this study. The main objectives included: 1) evaluation of the effect of materials composition, welding and PWHT procedures on the gradients of composition, microstructure, and properties in the dissimilar transition region and on the susceptibility to HAC; 2) investigation of the influence of microstructure on the HAC failure mechanism and identification of microstructural constituents acting as crack nucleation and propagation sites; 3) assessment of the applicability of two-step PWHT to improve the resistance to HAC in DMWs; 4) establishment of non-failure criterion for the delayed hydrogen cracking test (DHCT) that is applicable for qualification of DMWs for subsea service under cathodic protection (CP).

  14. Investigation of dissimilar metal welds by energy-resolved neutron imaging

    PubMed Central

    Tremsin, Anton S.; Ganguly, Supriyo; Meco, Sonia M.; Pardal, Goncalo R.; Shinohara, Takenao; Feller, W. Bruce

    2016-01-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al–steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption. PMID:27504075

  15. Investigation of dissimilar metal welds by energy-resolved neutron imaging.

    PubMed

    Tremsin, Anton S; Ganguly, Supriyo; Meco, Sonia M; Pardal, Goncalo R; Shinohara, Takenao; Feller, W Bruce

    2016-08-01

    A nondestructive study of the internal structure and compositional gradient of dissimilar metal-alloy welds through energy-resolved neutron imaging is described in this paper. The ability of neutrons to penetrate thick metal objects (up to several cm) provides a unique possibility to examine samples which are opaque to other conventional techniques. The presence of Bragg edges in the measured neutron transmission spectra can be used to characterize the internal residual strain within the samples and some microstructural features, e.g. texture within the grains, while neutron resonance absorption provides the possibility to map the degree of uniformity in mixing of the participating alloys and intermetallic formation within the welds. In addition, voids and other defects can be revealed by the variation of neutron attenuation across the samples. This paper demonstrates the potential of neutron energy-resolved imaging to measure all these characteristics simultaneously in a single experiment with sub-mm spatial resolution. Two dissimilar alloy welds are used in this study: Al autogenously laser welded to steel, and Ti gas metal arc welded (GMAW) to stainless steel using Cu as a filler alloy. The cold metal transfer variant of the GMAW process was used in joining the Ti to the stainless steel in order to minimize the heat input. The distributions of the lattice parameter and texture variation in these welds as well as the presence of voids and defects in the melt region are mapped across the welds. The depth of the thermal front in the Al-steel weld is clearly resolved and could be used to optimize the welding process. A highly textured structure is revealed in the Ti to stainless steel joint where copper was used as a filler wire. The limited diffusion of Ti into the weld region is also verified by the resonance absorption.

  16. Effect of Shoulder Size on Weld Properties of Dissimilar Metal Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Akinlabi, E. T.

    2012-07-01

    This article reports a research study that shows the effect of shoulder diameter size on the resulting weld properties of dissimilar friction stir welds between 5754 aluminum alloy (AA) and C11000 copper (Cu). Welds were produced using three different shoulder diameter tools: 15, 18, and 25 mm by varying the rotational speed between 600 and 1200 rpm and the traverse speed between 50 and 300 mm/min to achieve the best result. Each parameter combination was chosen to represent different heat input conditions (low, intermediates and high). The welds were characterized through microstructural evaluation, tensile testing, microhardness measurements, x-ray diffraction analysis, and electrical resistivity. Microstructural evaluation of the welds revealed that the welds produced consisted of all the friction stir welding (FSW) microstructure zones with organized flow lines comprising mixture layers of aluminum (Al) and copper (Cu) at the Stir Zones. The average Ultimate Tensile Strength (UTS) of the welds considered ranged from 178 to 208 MPa. Higher Vickers microhardness values were measured at the joint interfaces of all the welds because of the presence of intermetallic compounds in these regions. The x-ray diffraction analysis revealed the presence of Al4Cu9 and Al2Cu intermetallics at the interfacial regions, and low electrical resistivities were obtained at the joint interfaces. An optimized parameter setting for FSW of Al and Cu was obtained at the weld produced at 950 rpm and 50 mm/min with the 18-mm shoulder diameter tool.

  17. TEM Observation of Martensite Layer at the Weld Interface of an A508III to Inconel 82 Dissimilar Metal Weld Joint

    NASA Astrophysics Data System (ADS)

    Chen, Z. R.; Lu, Y. H.

    2015-12-01

    A lenticular martensite layer at the weld interface in an A508III/Inconel 82 dissimilar metal weld (DMW) joint was studied by TEM. The martensite/weld metal boundary was observed as the fusion boundary. There was a K-S orientation relationship between martensite and weld metal. The formation of the martensite was mainly determined by the distribution of alloy elements. The martensite was responsible for the hardness peak in the DMW.

  18. Ultrasonic Phased Array Technique for Accurate Flaw Sizing in Dissimilar Metal Welds

    SciTech Connect

    Jonathan D Buttram

    2005-03-11

    Described is a manual,portable non-destructive technique to determine the through wall height of cracks present in dissimilar metal welds used in the primary coolling systems of pressure water and boiler light water reactors. Current manual methods found in industry have proven not to exhibit the sizing accuracy required by ASME inspection requirement. The technique described demonstrated an accuracy approximately three times that required to ASME Section XI, Appendix 8 qualification.

  19. Resistance Spot Welding of AA5052 Sheet Metal of Dissimilar Thickness

    NASA Astrophysics Data System (ADS)

    Mat Din, N. A.; Zuhailawati, H.; Anasyida, A. S.

    2016-02-01

    Resistance spot welding of dissimilar thickness of AA5052 aluminum alloy was performed in order to investigate the effect of metal thickness on the weldment strength. Resistance spot welding was done using a spot welder machine available in Coraza Systems Sdn Bhd using a hemispherical of chromium copper electrode tip with radius of 6.00 mm under 14 kA of current and 0.02 bar of pressure for all thickness combinations. Lap joint configuration was produced between 2.0 mm thick sheet and 1.2 - 3.2 mm thick sheet, respectively. Microstructure of joint showed asymmetrical nugget shape that was larger on the thicker side indicating larger molten metal volume. Joint 2.0 mm x 3.2 mm sheets has the lowest hardness in both transverse direction and through thickness direction because less heat left in the weld nugget. The microstructure shows that this joint has coarse grains of HAZ. As thickness of sheet metal increased, the failure load of the joints increased. However, there was no linear correlation established between joint strength and metal thickness due to different shape of fusion zone in dissimilar thickness sheet metal.

  20. Effect of Thermal and Diffusion Processes on Formation of the Structure of Weld Metal in Laser Welding of Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Turichin, G. A.; Klimova, O. G.; Babkin, K. D.; Pevzner, Ya. B.

    2014-01-01

    The thermal and diffusion processes in laser welding of dissimilar materials are simulated. The active LaserCAD model for welding of dissimilar materials is amended. The developed model is verified for the Fe - Cu system. The microstructure of a weld of tin bronze and low-carbon steel is studied and the elements in the diffusion zone are analyzed. The computed and experimental data for laser and electron-beam welding are shown to agree well.

  1. Phased array ultrasonic testing of dissimilar metal welds using geometric based referencing delay law technique

    NASA Astrophysics Data System (ADS)

    Han, Taeyoung; Schubert, Frank; Hillmann, Susanne; Meyendorf, Norbert

    2015-03-01

    Phased array ultrasonic testing (PAUT) techniques are widely used for the non-destructive testing (NDT) of austenitic welds to find defects like cracks. However, the propagation of ultrasound waves through the austenitic material is intricate due to its inhomogeneous and anisotropic nature. Such a characteristic leads beam path distorted which causes the signal to be misinterpreted. By employing a reference block which is cutout from the mockup of which the structure is a dissimilar metal weld (DMW), a new method of PAUT named as Referencing Delay Law Technique (RDLT) is introduced. With the RDLT, full matrix capture (FMC) was used for data acquisition. To reconstruct the images, total focusing method (TFM) was used. After the focal laws were calculated, PAUT was then performed. As a result, the flaws are more precisely positioned with significantly increased signal-to-noise ratio (SNR).

  2. Effects of thermal aging on microstructures of low alloy steel-Ni base alloy dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Kim, Jong Jin; Lee, Bong Ho; Bahn, Chi Bum; Kim, Ji Hyun

    2013-10-01

    In this study, the advanced instrumental analysis has been performed to investigate the effect of long-term thermal aging on the microstructural evolution in the fusion boundary region between weld metal and low alloy steel in dissimilar metal welds. A representative dissimilar weld mock-up made of Alloy 690-Alloy 152-A533 Gr. B was fabricated and aged at 450 °C for 2750 h. The micro- and nano-scale characterization were conducted mainly near in a weld root region by using optical microscopy, scanning electron microscopy, transmission electron microscopy, and three dimensional atom probe tomography. It was observed that the weld root was generally divided into several regions including dilution zone in the Ni-base alloy weld metal, fusion boundary, and heat-affected zone in the low alloy steel. A steep gradient was shown in the chemical composition profile across the interface between A533 Gr. B and Alloy 152. The precipitation of carbides was also observed along and near the fusion boundary of as-welded and aged dissimilar metal joints. It was also found that the precipitation of Cr carbides was enhanced by the thermal aging near the fusion boundary.

  3. Influence of tool speeds on dissimilar friction stir spot welding characteristics of bulk metallic glass/Mg alloy

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; Jung, Yoon-Chul; Lee, Jin-Kyu

    2012-08-01

    A small-scale joining technique of dissimilar friction stir spot welding (FSSW) between bulk metallic glass and Mg alloy sheet has been tried using an apparatus which was devised with a CNC milling machine to give a precise control of tool speeds. The influence of tool speeds on the joining characteristics during FSSW was investigated. As a result, it was found that the rotation speed and plunge speed of a tool during FSSW significantly influenced the welding performance of dissimilar FSSW between bulk metallic glasses and Mg alloy.

  4. Evaluation of joint interface of friction stir welding between dissimilar metals using HTS-SQUID gradiometer

    NASA Astrophysics Data System (ADS)

    Mashiko, Y.; Hatsukade, Y.; Yasui, T.; Takenaka, H.; Todaka, Y.; Fukumoto, M.; Tanaka, S.

    2010-11-01

    In this study, we investigated conductive properties of joint interfaces of friction stir welding (FSW) between dissimilar metals, stainless steel SUS304 and aluminum A6063, using a SQUID nondestructive evaluation (NDE) system. With current injection method, the current maps above the FSW specimens jointed under various conditions were measured by a HTS-SQUID gradiometer. The conductivities of the joint interfaces, which were estimated from the current maps, differed between the joint conditions. By destructive tests using optical microscope, large voids were observed on the joint interfaces with low welding speed that generated excess heating. In case of one specimen, which was welded with welding speed of 500 and 200 mm/min, the conductivity of the former was higher than that of the latter, although the inside voids in the respective regions were not much different. From these results, it is suggested that the current maps were influenced not only by the conductivity of the joint interface but also by inside voids. By hardness test on the SUS boards near the interfaces, only the SUS jointed with 200 mm/min was about half softer than its matrix.

  5. Carbon migration in 5Cr-0.5Mo/21Cr-12Ni dissimilar metal welds

    NASA Astrophysics Data System (ADS)

    Huang, M. L.; Wang, L.

    1998-12-01

    The carbon migration between a ferritic steel and an austenitic steel was studied in submerged arc-welded 5Cr-0.5Mo/21Cr-12Ni dissimilar metal welds (DMWs) after aging at 500°C for various times and after long-term service in technical practice. The distribution of carbon, chromium, nickel, and iron in the areas around the weld interface was determined by electron probe microanalysis, and the microstructural aspect in the carbon-depleted/enriched zone was characterized by optical microscopy and transmission electron microscopy (TEM). Furthermore, the precipitation sequences and composition characteristics of the carbides were identified by diffraction pattern microanalysis and energy-dispersive X-ray (EDX) microanalysis. It was found (1) that there exists a coherent relationship between intracrystalline M23C6 and the austenitic matrix; (2) that the composition of M23C6 in the carbon-enriched zone is independent of the duration of aging and service; (3) that the maximum carbon concentration is determined by the carbide type, the composition characteristic of precipitated carbides, and the concentration of carbide-forming Cr adjacent to the weld interface in the carbon-enriched zone; and (4) that the carbon migration in the 5Cr-0.5Mo/21Cr-12Ni DMWs can be described by a diffusion model.

  6. Friction Buttering: A New Technique for Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-06-01

    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  7. Friction Buttering: A New Technique for Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Karthik, G. M.; Mastanaiah, P.; Janaki Ram, G. D.; Kottada, Ravi Sankar

    2017-02-01

    This work offers a fresh perspective on buttering, a technique often considered for fusion welding of dissimilar metals. For the first time, buttering was attempted in solid state using friction deposition. Using this new "friction buttering" technique, fusion welding of two different dissimilar metal pairs (austenitic stainless steel/borated stainless steel and Al-Cu-Mg/Al-Zn-Mg-Cu) was successfully demonstrated. The results show that friction buttering can simplify a tough dissimilar welding problem into a routine fusion welding task.

  8. Fusion boundary precipitation in thermally aged dissimilar metal welds studied by atom probe tomography and nanoindentation

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Kim, Taeho; Yoo, Seung Chang; Kim, Seunghyun; Lee, Jae Hyuk; Kim, Ji Hyun

    2016-04-01

    In this study, microstructural and mechanical characterizations were performed to investigate the effect of long-term thermal aging on the fusion boundary region between low-alloy steel and Nickel-based weld metal in dissimilar metal welds used in operating power plant systems. The effects of thermal aging treatment on the low-alloy steel side near the fusion boundary were an increase in the ratio of Cr constituents and Cr-rich precipitates and the formation and growth of Cr23C6. Cr concentrations were calculated using atom probe tomography. The accuracy of simulations of thermal aging effects of heat treatment was verified, and the activation energy for Cr diffusion in the fusion boundary region was calculated. The mechanical properties of fusion boundary region changed based on the distribution of Cr-rich precipitates, where the material initially hardened with the formation of Cr-rich precipitates and then softened because of the reduction of residual strain or coarsening of Cr-rich precipitates.

  9. Review on electromagnetic welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Shanthala, K.; Sreenivasa, T. N.

    2016-12-01

    Electromagnetic welding (EMW) is a highspeed joining technique that is used to join similar or dissimilar metals, as well as metals to non-metals. This technique uses electromagnetic force to mainly join conductive materials. Unlike conventional joining processes, the weld interface does not melt, thus keeping the material properties intact. Extremely high velocity and strain rate involved in the process facilitate extending the EMW technique for joining several materials. In this paper, the research and progress in electromagnetic welding are reviewed from various perspectives to provide a basis for further research.

  10. Review of Dissimilar Metal Welding for the NGNP Helical-Coil Steam Generator

    SciTech Connect

    John N. DuPont

    2010-03-01

    The U.S. Department of Energy (DOE) is currently funding research and development of a new high temperature gas cooled reactor (HTGR) that is capable of providing high temperature process heat for industry. The steam generator of the HTGR will consist of an evaporator economizer section in the lower portion and a finishing superheater section in the upper portion. Alloy 800H is expected to be used for the superheater section, and 2.25Cr 1Mo steel is expected to be used for the evaporator economizer section. Dissimilar metal welds (DMW) will be needed to join these two materials. It is well known that failure of DMWs can occur well below the expected creep life of either base metal and well below the design life of the plant. The failure time depends on a wide range of factors related to service conditions, welding parameters, and alloys involved in the DMW. The overall objective of this report is to review factors associated with premature failure of DMWs operating at elevated temperatures and identify methods for extending the life of the 2.25Cr 1Mo steel to alloy 800H welds required in the new HTGR. Information is provided on a variety of topics pertinent to DMW failures, including microstructural evolution, failure mechanisms, creep rupture properties, aging behavior, remaining life estimation techniques, effect of environment on creep rupture properties, best practices, and research in progress to improve DMW performance. The microstructure of DMWs in the as welded condition consists of a sharp chemical concentration gradient across the fusion line that separates the ferritic and austenitic alloys. Upon cooling from the weld thermal cycle, a band of martensite forms within this concentration gradient due to high hardenability and the relatively rapid cooling rates associated with welding. Upon aging, during post weld heat treatment (PWHT), and/or during high temperature service, C diffuses down the chemical potential gradient from the ferritic 2.25Cr 1Mo steel

  11. Changes in Precipitate Distributions and the Microstructural Evolution of P24/P91 Dissimilar Metal Welds During PWHT

    NASA Astrophysics Data System (ADS)

    Dawson, Karl E.; Tatlock, Gordon J.; Chi, Kuangnan; Barnard, Peter

    2013-11-01

    The effect of post-weld heat treatments (PWHTs) on the evolution of precipitate phases in dissimilar metal welds made between 9 pct Cr P91 alloy and 2.25 pct Cr T/P24-type weld metal has been investigated. Sections of multi-pass fusion welds were analyzed in their as welded condition and after PWHTs of 2 and 8 hour duration at 1003 K (730 °C). Thin foil specimens and carbon extraction replicas have been examined in transmission electron microscopes in order to identify precipitate phases and substantiate their distributions in close proximity to the fusion line. The findings of these studies confirm that a carbon-depleted region develops in the lower alloyed weld material, adjacent to the weld interface, during thermal processing. A corresponding carbon enriched region is formed, simultaneously, in the coarse grain heat affected zone of the P91 parent alloy. It has been demonstrated that carbon depletion from the weld alloy results in the dissolution of M7C3 and M23C6 chromium carbides. However, micro-alloying additions of vanadium and niobium which are made to both the P24 and P91 alloys facilitate the precipitation of stable, nano-scale, MX carbonitride particles. This work demonstrates that these particles, which are of key importance to the strength of ferritic creep resistant alloys, are retained in carbon-depleted regions. The microstructural stability which is conferred by their retention means that the pernicious effects of recrystallization are largely avoided.

  12. Investigation of welding crack in micro laser welded NiTiNb shape memory alloy and Ti6Al4V alloy dissimilar metals joints

    NASA Astrophysics Data System (ADS)

    Yuhua, Chen; Yuqing, Mao; Weiwei, Lu; Peng, He

    2017-06-01

    Dissimilar metals of NiTiNb shape memory alloy and Ti6Al4V alloy with a same thickness of 0.2 mm were joined by micro laser welding. The effect of laser power on crack sensitivity of the weld was investigated. The results show that full penetrated welds are obtained when the laser power of 7.2 W is used, many cracks are observed in the weld. With increasing the laser power to 12 W, the number of all cracks and cracking width first increase and then decrease. By XRD analysis, three different kinds of Ti2Ni, NbNi3 and AlNbTi2 intermetallic compounds are found in the weld. According to the formation enthalpy and binary phase diagram, brittle Ti2Ni phase with more contents is existed in the weld due to final solidification, and which is the main reason of crack formation along with large stress concentration. Moreover, the welding cracks like the weld center longitudinal solidification cracks, weld metal toe transversal liquid cracks, heat-affected-zone hot cracks and crater cracks are classified in the laser welded joints. A brittle cleavage fracture with cleavage planes and river patterns in the joints is presented from the fracture surface.

  13. Steam generator conceptual design for the modular HTGR - Dissimilar metal weld considerations

    SciTech Connect

    Spring, A.H.; Basol, M.

    1987-01-01

    The steam generator for the current Modular High Temperature Gas-Cooled Reactor (MHTGR) has evolved from a technology basis developed in U.S. and European gas-cooled reactor programs. The MHTGR steam generator is a vertically-oriented, counterflow, shell-and-tube, once-through, non-reheat, helical heat exchanger with helium on the shell side and water/steam in the tubes. In the MHTGR applications, the normal operating temperatures of the steam generator tubes can be as high as 638/sup 0/C (1180/sup 0/F). Concerns such as cost, creep strength, steam side scaling and stress corrosion cracking often lead to a design decision to use two different tube materials, one for the evaporating portion and another for the superheating portion of the steam generator. The current MHTGR steam generator design utilizes 2 1/4 CR - 1 Mo material for the economizer/evaporator/initial superheater tube section and Alloy 800H material for the finishing superheat tube section. Therefore, a dissimilar metal weld (DMW) is incorporated in each tube circuit. This feature of the design imposes certain important constraints on the steam generator designer. This paper presents an overview of the MHTGR steam generator conceptual design, and then focuses on the DMW considerations and how these have influenced the design configuration.

  14. STRESS CORROSION CRACK GROWTH RESPONSE FOR ALLOY 152/52 DISSIMILAR METAL WELDS IN PWR PRIMARY WATER

    SciTech Connect

    Toloczko, Mychailo B.; Olszta, Matthew J.; Overman, Nicole R.; Bruemmer, Stephen M.

    2015-08-15

    As part of ongoing research into primary water stress corrosion cracking (PWSCC) susceptibility of alloy 690 and its welds, SCC tests have been conducted on alloy 152/52 dissimilar metal (DM) welds with cracks positioned with the goal to assess weld dilution and fusion line effects on SCC susceptibility. No increased crack growth rate was found when evaluating a 20% Cr dilution zone in alloy 152M joined to carbon steel (CS) that had not undergone a post-weld heat treatment (PWHT). However, high SCC crack growth rates were observed when the crack reached the fusion line of that material where it propagated both on the fusion line and in the heat affected zone (HAZ) of the carbon steel. Crack surface and crack profile examinations of the specimen revealed that cracking in the weld region was transgranular (TG) with weld grain boundaries not aligned with the geometric crack growth plane of the specimen. The application of a typical pressure vessel PWHT on a second set of alloy 152/52 – carbon steel DM weld specimens was found to eliminate the high SCC susceptibility in the fusion line and carbon steel HAZ regions. PWSCC tests were also performed on alloy 152-304SS DM weld specimens. Constant K crack growth rates did not exceed 5x10-9 mm/s in this material with post-test examinations revealing cracking primarily on the fusion line and slightly into the 304SS HAZ.

  15. Effects of thermal aging on the microstructure of Type-II boundaries in dissimilar metal weld joints

    NASA Astrophysics Data System (ADS)

    Yoo, Seung Chang; Choi, Kyoung Joon; Bahn, Chi Bum; Kim, Si Hoon; Kim, Ju Young; Kim, Ji Hyun

    2015-04-01

    In order to investigate the effects of long-term thermal aging on the microstructural evolution of Type-II boundary regions in the weld metal of Alloy 152, a representative dissimilar metal weld was fabricated from Alloy 690, Alloy 152, and A533 Gr.B. This mock-up was thermally aged at 450 °C to accelerate the effects of thermal aging in a nuclear power plant operation condition (320 °C). The microstructure of the Type-II boundary region of the weld root, which is parallel to and within 100 μm of the fusion boundary and known to be more susceptible to material degradation, was then characterized after different aging times using a scanning electron microscope equipped with an energy dispersive X-ray spectroscope for micro-compositional analysis, electron backscattered diffraction detector for grain and grain boundary orientation analysis, and a nanoindenter for measurement of mechanical properties. Through this, it was found that a steep compositional gradient and high grain average misorientation is created in the narrow zone between the Type-II and fusion boundaries, while the concentration of chromium and number of low-angle grain boundaries increases with aging time. A high average hardness was also observed in the same region of the dissimilar metal welds, with hardness peaking with thermal aging simulating an operational time of 15 years.

  16. A residual stress study in similar and dissimilar welds

    DOE PAGES

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; ...

    2016-04-01

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength ofmore » the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.« less

  17. A residual stress study in similar and dissimilar welds

    SciTech Connect

    Eisazadeh, Hamid; Goldak, John A.; Aidun, Daryush K.; Coules, Harry E.; Bunn, Jeffrey R; Achuthan, A.

    2016-04-01

    Residual strain distributions in similar and dissimilar welds were measured using neutron diffraction (ND) method. Then, using three strain components, three-dimensional stress states were calculated. The results were used to determine the effect of the martensitic phase transformation and material properties on residual stress (RS) distribution. It was observed that smaller longitudinal RS was induced in the low carbon steel side of dissimilar weld when compared to its similar weld. Also, it was found that the transverse RS near and within the weld zone (WZ) in dissimilar weld exhibited a distinctive trend, with tensile mode reaching the yield strength of the base metal (BM). In order to characterize the WZ in dissimilar weld, we deployed optical microscopy, hardness, and energy dispersive X-ray spectroscopy (EDAX). This study not only provides further insight into the RS state in similar and dissimilar welds; it also delivers important consequences of phase transformation in the latter case.

  18. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  19. Welding for testability: An approach aimed at improving the ultrasonic testing of thick-walled austenitic and dissimilar metal welds

    SciTech Connect

    Wagner, Sabine; Dugan, Sandra; Barth, Martin; Schubert, Frank; Köhler, Bernd

    2014-02-18

    Austenitic and dissimilar welds in thick walled components show a coarse grained, dendritic microstructure. Therefore, ultrasonic testing has to deal with beam refraction, scattering and mode conversion effects. As a result, the testing techniques typically applied for isotropic materials yield dissatisfying results. Most approaches for improvement of ultrasonic testing have been based on modeling and improved knowledge of the complex wave propagation phenomena. In this paper, we discuss an alternative approach: is it possible to use a modified welding technology which eliminates the cause of the UT complications, i.e. the large-grained structure of the weld seams? Various modification parameters were tested, including: TIG current pulsing, additional DC and AC magnetic fields, and also additional external vibrations during welding. For all welds produced under different conditions, the grain structure of the weld seam was characterized by optical and GIUM microstructure visualizations on cross sections, wave field propagation measurements, and ultrasonic tests of correct detectability of flaws. The mechanical properties of the welds were also tested.

  20. Welding for testability: An approach aimed at improving the ultrasonic testing of thick-walled austenitic and dissimilar metal welds

    NASA Astrophysics Data System (ADS)

    Wagner, Sabine; Dugan, Sandra; Barth, Martin; Schubert, Frank; Köhler, Bernd

    2014-02-01

    Austenitic and dissimilar welds in thick walled components show a coarse grained, dendritic microstructure. Therefore, ultrasonic testing has to deal with beam refraction, scattering and mode conversion effects. As a result, the testing techniques typically applied for isotropic materials yield dissatisfying results. Most approaches for improvement of ultrasonic testing have been based on modeling and improved knowledge of the complex wave propagation phenomena. In this paper, we discuss an alternative approach: is it possible to use a modified welding technology which eliminates the cause of the UT complications, i.e. the large-grained structure of the weld seams? Various modification parameters were tested, including: TIG current pulsing, additional DC and AC magnetic fields, and also additional external vibrations during welding. For all welds produced under different conditions, the grain structure of the weld seam was characterized by optical and GIUM microstructure visualizations on cross sections, wave field propagation measurements, and ultrasonic tests of correct detectability of flaws. The mechanical properties of the welds were also tested.

  1. Evaluation of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Doctor, Steven R.

    2012-06-01

    During a recent inservice inspection (ISI) of a dissimilar metal weld (DMW) in an inlet (hot leg) steam generator nozzle at North Anna Power Station Unit 1, several axially oriented flaws went undetected by the licensee's manual ultrasonic testing (UT) technique. The flaws were subsequently detected as a result of outside diameter (OD) surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the DMW. Further ultrasonic tests were then performed, and a total of five axially oriented flaws, classified as primary water stress corrosion cracking (PWSCC), were detected in varied locations around the weld circumference.

  2. Nature and evolution of the fusion boundary in ferritic-austenitic dissimilar weld metals. Part 1 -- Nucleation and growth

    SciTech Connect

    Nelson, T.W.; Lippold, J.C.; Mills, M.J.

    1999-10-01

    A fundamental investigation of fusion boundary microstructure evolution in dissimilar-metal welds (DMWs) between ferritic base metals and a face-centered-cubic (FCC) filler metal was conducted. The objective of the work presented here was to characterize the nature and character of the elevated-temperature fusion boundary to determine the nucleation and growth characteristics of DMWs. Type 409 ferritic stainless steel and 1080 pearlitic steel were utilized as base metal substrates, and Monel (70Ni-30Cu) was used as the filler metal. The Type 409 base metal provided a fully ferritic or body-centered-cubic (BCC) substrate at elevated temperatures and exhibited no on-cooling phase transformations to mask or disguise the original character of the fusion boundary. The 1080 pearlitic steel was selected because it is austenitic at the solidus temperature, providing an austenite substrate at the fusion boundary. The weld microstructure generated with each of the base metals in combination with Monel was fully austenitic. In the Type 409/Monel system, there was no evidence of epitaxial nucleation and growth as normally observed in homogeneous weld metal combinations. The fusion boundary in this system exhibited random grain boundary misorientations between the heat-affected zone (HAZ) and weld metal grains. In the 1080/Monel system, evidence of normal epitaxial growth was observed at the fusion boundary, where solidification and HAZ grain boundaries converged. The fusion boundary morphologies are a result of the crystal structure present along the fusion boundary during the initial stages of solidification. Based on the results of this investigation, a model for heterogeneous nucleation along the fusion boundary is proposed when the base and weld metals exhibit ferritic (BCC) and FCC crystal structures, respectively.

  3. Analysis of a Defected Dissimilar Metal Weld in a PWR Power Plant

    SciTech Connect

    Efsing, P.; Lagerstrom, J.

    2002-07-01

    During the refueling outage 2000, inspections of the RC-loops of one of the Ringhals PWR-units, Ringhals 4, indicated surface breaking defects in the axial direction of the piping in a dissimilar weld between the Low alloy steel nozzle and the stainless safe end in the hot leg. In addition some indications were found that there were embedded defects in the weld material. These defects were judged as being insignificant to the structural integrity. The welds were inspected in 1993 with the result that no significant indications were found. The weld it self is a double U weld, where the thickness of the material is ideally 79,5 mm. Its is constructed by Inconel 182 weld material. At the nozzle a buttering was applied, also by Inconel 182. The In-service inspection, ISI, of the object indicated four axial defects, 9-16 mm deep. During fabrication, the areas where the defects are found were repaired at least three times, onto a maximum depth of 32 mm. To evaluate the defects, 6 boat samples from the four axial defects were cut from the perimeter and shipped to the hot-cell laboratory for further examination. This examination revealed that the two deep defects had been under sized by the ISI outside the requirement set by the inspection tolerances, while the two shallow defects were over sized, but within the tolerances of the detection system. When studying the safety case it became evident that there were several missing elements in the way this problems is handled with respect to the Swedish safety evaluation code. Among these the most notable at the beginning was the absence of reliable fracture mechanical data such as crack growth laws and fracture toughness at elevated temperature. Both these questions were handled by the project. The fracture mechanical evaluation has focused on a fit for service principal. Thus defects both in the unaffected zones and the disturbed zones, boat sample cutouts, of the weld have been analyzed. With reference to the Swedish safety

  4. Stress Corrosion Cracking and Non-Destructive Examination of Dissimilar Metal Welds and Alloy 600

    SciTech Connect

    Jackson, Deborah A.

    2002-07-01

    The United States Nuclear Regulatory Commission (USNRC) has conducted research since 1977 in the areas of environmentally assisted cracking and assessment and reliability of non-destructive examination (NDE). Recent occurrences of cracking in Alloy 82/182 welds and Alloy 600 base metal at several domestic and overseas plants have raised several issues relating to both of these areas of NRC research. The occurrences of cracking were identified by the discovery of boric acid deposits resulting from through-wall cracking in the primary system pressure boundary. Analyses indicate that the cracking has occurred due to primary water stress corrosion cracking (PWSCC) in Alloy 82/182 welds. This cracking has occurred in two different locations: in hot leg nozzle-to-safe end welds and in control rod drive mechanism (CRDM) nozzle welds. The cracking associated with safe-end welds is important due to the potential for a large loss of reactor coolant inventory, and the cracking of CRDM nozzle base metal and welds, particularly circumferential cracking of CRDM nozzle base metal, is important due to the potential for a control rod to eject resulting in a loss of coolant accident. The industry response in the U.S. to this cracking is being coordinated through the Electric Power Research Institute's Materials Reliability Project (EPRI-MRP) in a comprehensive, multifaceted effort. Although the industry program is addressing many of the issues raised by these cracking occurrences, confirmatory research is necessary for the staff to evaluate the work conducted by industry groups. Several issues requiring additional consideration regarding the generic implications of these isolated events have been identified. This paper will discuss the recent events of significant cracking in domestic and foreign plants, discuss the limitations of NDE in detecting SCC, identify deficiencies in information available in this area, discuss the USNRC approach to address these issues, and discuss the

  5. A study on detection of micro-cracks in the dissimilar metal weld through ultrasound infrared thermography

    NASA Astrophysics Data System (ADS)

    Park, Heesang; Choi, Manyong; Park, Jeounghak; Kim, Wontae

    2014-01-01

    This study was conducted to investigate a possibility of detecting stress corrosion crack defects in a pipe welded with dissimilar metals (STS304 and SA106 Gr. b) through infrared ultrasound thermography and lock-in phase method. The ultrasound generator was set as 250 W in output and 19.8 kHz in frequency. With experiment results, this study could detect, cracks located inside the dissimilar metal weld pipe through lock-in infrared thermography and compare thermography images obtained from both the inside and the outside when the ultrasound vibration was applied to the outer part of the pipe. Besides, after cutting off the pipe in the axial direction, this study conducted PT inspection. As a result, it was found there existed more than a single crack in a certain range inside the pipe, which made hot spots appear in a wide range on the thermography image. Moreover, through ultrasound infrared thermography and lock-in phase method this study verified the possibility of detecting micro-sized shattered cracks through ultrasound thermography, which were not easy to detect with the existing techniques.

  6. The electron beam welding of dissimilar materials - case study

    NASA Astrophysics Data System (ADS)

    Munteanu, A.

    2016-11-01

    The modalities to realize the welding workpieces are multiple. The electron beam welding is one of them. One can weld two different types of materials that give the possibility to reduce the cost of workpiece, if the active part is realised of rich materials welded on components with inferior phisico-mecanical characteristics. The procedure provides great flexibility to the product designs through efficient use of each type of material. So this aspects lead to the necessity to join dissimilar metals. Different tables are given in the specific literature regarding the possible combination. Conflicts may arise by the compromises required for to the optimum heat control of the two dissimilar materials used. But nowadays, more and more frequently are meet the welding of dissimilar metals, thus, the objective of this article is to provide information regarding the particular case of welding between stainless steel and copper without the filler material use.

  7. Summary of Dissimilar Metal Joining Trials Conducted by Edison Welding Institute

    SciTech Connect

    MJ Lambert

    2005-11-18

    Under the direction of the NASA-Glenn Research Center, the Edison Welding Institute (EWI) in Columbus, OH performed a series of non-fusion joining experiments to determine the feasibility of joining refractory metals or refractory metal alloys to Ni-based superalloys. Results, as reported by EWI, can be found in the project report for EWI Project 48819GTH (Attachment A, at the end of this document), dated October 10, 2005. The three joining methods used in this investigation were inertia welding, magnetic pulse welding, and electro-spark deposition joining. Five materials were used in these experiments: Mo-47Re, T-111, Hastelloy X, Mar M-247 (coarse-grained, 0.5 mm to several millimeter average grain size), and Mar M-247 (fine-grained, approximately 50 {micro}m average grain size). Several iterative trials of each material combination with each joining method were performed to determine the best practice joining method. Mo-47Re was found to be joined easily to Hastelloy X via inertia welding, but inertia welding of the Mo-alloy to both Mar M-247 alloys resulted in inconsistent joint strength and large reaction layers between the two metals. T-111 was found to join well to Hastelloy X and coarse-grained Mar M-247 via inertia welding, but joining to fine-grained Mar M-247 resulted in low joint strength. Magnetic pulse welding (MPW) was only successful in joining T-111 tubing to Hastelloy X bar stock. The joint integrity and reaction layer between the metals were found to be acceptable. This single joining trial, however, caused damage to the electromagnetic concentrators used in this process. Subsequent design efforts to eliminate the problem resulted in a loss of power imparted to the accelerating work piece, and results could not be reproduced. Welding trials of Mar M-247 to T-111 resulted in catastrophic failure of the bar stock, even at lower power. Electro-spark deposition joining of Mo-47Re, in which the deposited material was Hastelloy X, did not have a

  8. Phased Array Ultrasonic Examination of Reactor Coolant System (Carbon Steel-to-CASS) Dissimilar Metal Weld Mockup Specimen

    SciTech Connect

    Crawford, S. L.; Cinson, A. D.; Diaz, A. A.; Anderson, M. T.

    2015-11-23

    In the summer of 2009, Pacific Northwest National Laboratory (PNNL) staff traveled to the Electric Power Research Institute (EPRI) NDE Center in Charlotte, North Carolina, to conduct phased-array ultrasonic testing on a large bore, reactor coolant pump nozzle-to-safe-end mockup. This mockup was fabricated by FlawTech, Inc. and the configuration originated from the Port St. Lucie nuclear power plant. These plants are Combustion Engineering-designed reactors. This mockup consists of a carbon steel elbow with stainless steel cladding joined to a cast austenitic stainless steel (CASS) safe-end with a dissimilar metal weld and is owned by Florida Power & Light. The objective of this study, and the data acquisition exercise held at the EPRI NDE Center, were focused on evaluating the capabilities of advanced, low-frequency phased-array ultrasonic testing (PA-UT) examination techniques for detection and characterization of implanted circumferential flaws and machined reflectors in a thick-section CASS dissimilar metal weld component. This work was limited to PA-UT assessments using 500 kHz and 800 kHz probes on circumferential flaws only, and evaluated detection and characterization of these flaws and machined reflectors from the CASS safe-end side only. All data were obtained using spatially encoded, manual scanning techniques. The effects of such factors as line-scan versus raster-scan examination approaches were evaluated, and PA-UT detection and characterization performance as a function of inspection frequency/wavelength, were also assessed. A comparative assessment of the data is provided, using length-sizing root-mean-square-error and position/localization results (flaw start/stop information) as the key criteria for flaw characterization performance. In addition, flaw signal-to-noise ratio was identified as the key criterion for detection performance.

  9. Effects of aging temperature on microstructural evolution at dissimilar metal weld interfaces

    NASA Astrophysics Data System (ADS)

    Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Taeho; Bahn, Chi Bum; Kim, Ji Hyun

    2015-07-01

    From the earlier study which characterized the region of a fusion boundary between a low-alloy steel (LAS) and a Ni-based weld metal of as-welded and aged samples at 450 °C for a 30-y-equivalent time, it was observed in the microstructure that the aging treatment induced the formation and growth of Cr precipitates in the fusion boundary region because of the thermodynamic driving force. Now, this research extends the text matrix and continues the previous study by compiling all the test data, with an additional aging heat treatment conducted at 400 °C for 15- and 30-y-equivalent times (6450 and 12,911 h, respectively). The results for the extended test matrix primarily represent the common features of and disparities in the effects of thermal aging on the aged samples at two different heat-treatment temperatures (400 and 450 °C). Although no difference was expected between the samples, because the heat treatment conditions simulate thermal aging effects during the same service time of 30 y, the sample aged at 450 °C exhibited slightly more severe effects of thermal aging than the sample aged at 400 °C. Nevertheless, the trends for these effects are similar and the simulation of thermal aging effects for a light-water reactor appears to be reliable. However, according to a simulation of the same degree of thermal aging effects, it appears that the activation energy for Cr diffusion should be larger than the numerical value used in this study.

  10. Comparison of Residual Stress Distributions of Similar and Dissimilar Thick Butt-Weld Plates

    NASA Astrophysics Data System (ADS)

    Suzuki, Hiroshi; Katsuyama, Jinya; Morii, Yukio

    Residual stress distributions of 35 mm thick dissimilar metal butt-weld between A533B ferritic steel and Type 304 austenitic stainless steel (304SS) with Ni alloy welds and similar metal butt-weld of 304SS were measured using neutron diffraction. Effects of differences in thermal expansion coefficients (CTEs) and material strengths on the weld residual stress distributions were discussed by comparison of the residual stress distributions between the similar and dissimilar metal butt-welds. Residual stresses in the similar metal butt-weld exhibited typical distributions found in a thick butt-weld and they were distributed symmetrically on either side of the weld line. Meanwhile, asymmetric residual stress distributions were observed near the root of the dissimilar metal butt-weld, which was caused by differences in CTEs and yield strengths among both parent materials and weld metals. Transverse residual stress distribution of the dissimilar metal butt-weld was similar trend to that of the similar metal butt-weld, since effect of difference in CTEs were negligible, while magnitude of the transverse residual stress near the root depended on the yield strengths of each metal. In contrast, the normal and longitudinal residual stresses in the dissimilar metal butt-weld distributed asymmetrically on either side of weld line due to influence of differences in CTEs.

  11. Developing a dissimilar metal foil-to-substrate resistance welding process.

    SciTech Connect

    Knorovsky, Gerald Albert

    2010-10-01

    Materials changes occurring upon redesign caused redevelopment of the multiple spot resistance weld procedure employed to join a 23 micrometer thick foil of 15-7PH to a thick substrate and (at a separate location) a second, smaller thermal mass substrate. Both substrates were 304L. To avoid foil wrinkling, minimal heat input was used. The foil/thick substrate weld was solid-state, though the foil/small substrate weld was not. Metallographic evidence indicated occasional separation of the solid-state weld, hence a fusion weld was desired at both locations. In the redesign, a Co-Cr-Fe-Ni alloy was substituted for the foil, and a Ni-Cr-Mo alloy was evaluated for the small substrate. Both materials are substantially more resistive than their predecessors. This study reports development of weld schedules to accommodate the changes, yet achieve the fusion weld goal. Thermal analysis was employed to understand the effects caused by the various weld schedule parameters, and guide their optimization.

  12. Friction stir welding tool and process for welding dissimilar materials

    DOEpatents

    Hovanski, Yuri; Grant, Glenn J; Jana, Saumyadeep; Mattlin, Karl F

    2013-05-07

    A friction stir welding tool and process for lap welding dissimilar materials are detailed. The invention includes a cutter scribe that penetrates and extrudes a first material of a lap weld stack to a preselected depth and further cuts a second material to provide a beneficial geometry defined by a plurality of mechanically interlocking features. The tool backfills the interlocking features generating a lap weld across the length of the interface between the dissimilar materials that enhances the shear strength of the lap weld.

  13. Effect of Welding Current on the Structure and Properties of Resistance Spot Welded Dissimilar (Austenitic Stainless Steel and Low Carbon Steel) Metal Joints

    NASA Astrophysics Data System (ADS)

    Shawon, M. R. A.; Gulshan, F.; Kurny, A. S. W.

    2015-04-01

    1.5 mm thick sheet metal coupons of austenitic stainless steel and plain low carbon steel were welded by resistance spot welding technique. The effects of welding current in the range 3-9 kA on the structure and mechanical properties of welded joint were investigated. The structure was studied by macroscopic, microscopic and scanning electron microscopy techniques. Mechanical properties were determined by tensile testing and microhardness measurements. Asymmetrical shape weld nugget was found to have formed in the welded joint which increased in size with an increase in welding current. The fusion zone showed cast structure with coarse columnar grain and dendritic with excess delta ferrite in austenitic matrix. Microhardness of the weld nugget was maximum because of martensite formation. An increase in welding current also increased tensile strength of the weld coupon. An attempt has also been made to relate the mode of fracture with the welding current.

  14. Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal

    SciTech Connect

    Falat, Ladislav; Svoboda, Milan; Vyrostkova, Anna; Petryshynets, Ivan; Sopko, Martin

    2012-10-15

    This paper deals with characterization of microstructure and creep behavior of dissimilar weldment between the tempered martensitic steel T91 and the non-stabilized austenitic steel TP316H with Ni-based weld metal (Ni WM). Microstructure analyses were performed using light microscopy, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. The martensitic part of the welded joint exhibited a wide heat-affected zone (HAZ) with typical microstructural gradient from its coarse-grained to the fine-grained/intercritical region. In contrast, the HAZ of austenitic steel was limited to only a narrow region with coarsened polygonal grains. The microstructure of Ni WM was found to be very heterogeneous with respect to the size, morphology and distribution of grain boundaries and MC-type precipitates as a result of strong weld metal dilution effects and fast non-equilibrium solidification. Cross-weld creep tests were carried out in a temperature range from 600 to 650 Degree-Sign C at applied stresses from 60 to 140 MPa. The obtained values of apparent stress exponents and creep activation energies indicate thermally activated dislocation glide to be the governing creep deformation mechanism within the range of used testing conditions. The creep samples ruptured in the T91 intercritical HAZ region by the 'type IV cracking' failure mode and the creep fracture mechanism was identified to be the intergranular dimple tearing by microvoid coalescence at grain boundaries. The TEM observations revealed pronounced microstructural differences between the critical HAZ region and the T91 base material before as well as after the creep exposure. - Highlights: Black-Right-Pointing-Pointer Phase transformations affect the microstructures of T91 and TP316H HAZ regions. Black-Right-Pointing-Pointer High weld metal dilution results in heterogeneous microstructure with MC carbides. Black-Right-Pointing-Pointer Creep behavior of the studied weldment is controlled

  15. Dynamic Strength Evaluations for Self-Piercing Rivets and Resistance Spot Welds Joining Similar and Dissimilar Metals

    SciTech Connect

    Sun, Xin; Khaleel, Mohammad A.

    2007-10-01

    This paper summarizes the dynamic joint strength evaluation procedures and the measured dynamic strength data for thirteen joint populations of self-piercing rivets (SPR) and resistance spot welds (RSW) joining similar and dissimilar metals. A state-of-the-art review of the current practice for conducting dynamic tensile/compressive strength tests in different strain rate regimes is first presented, and the generic issues associated with dynamic strength test are addressed. Then, the joint strength testing procedures and fixture designs used in the current study are described, and the typical load versus displacement curves under different loading configurations are presented. Uniqueness of the current data compared with data in the open literature is discussed. The experimental results for all the joint populations indicate that joint strength increases with increasing loading rate. However, the strength increase from 4.47m/s (10mph) to 8.94m/s (20mph) is not as significant as the strength increase from static to 4.47m/s. It is also found that with increasing loading velocity, displacement to failure decreases for all the joint samples. Therefore, “brittleness” of the joint sample increases with impact velocity. Detailed static and dynamic strength data and the associated energy absorption levels for all the samples in the thirteen joint populations are also included.

  16. Study on nondestructive inspection using HTS-SQUID for friction stir welding between dissimilar metals

    NASA Astrophysics Data System (ADS)

    Hatsukade, Y.; Takahashi, T.; Yasui, T.; Tsubaki, M.; Fukumono, M.; Tanaka, S.

    2007-10-01

    We have developed an SQUID-NDI technique for evaluation of friction stir welding (FSW) between aluminum alloy A6063 and stainless steel SUS304 from the electric conductivities in board specimens bonded by FSW. A SQUID-NDI system employing an HTS-SQUID gradiometer was constructed to measure current distribution in the FSW specimens by applying voltage to the specimen. By measuring field gradients dBz/dy and dBz/dx above the FSW specimens made with various FSW conditions and then converting them to current vector Jx and Jy, conductivities of FSW areas were estimated. Due to the difference in the FSW conditions, the conductivity distributions varied dramatically. From these results, it was suggested that the conductivities in FSW areas should be varied due to the temperature heated by the friction between the milling tool and the materials.

  17. Study on weld pool behaviors and ripple formation in dissimilar welding under pulsed laser

    NASA Astrophysics Data System (ADS)

    Liang, Rong; Luo, Yu

    2017-08-01

    A three-transient numerical model is developed to study the dissimilar metal welding under pulsed laser. The melting, resolidification and vaporization inducing recoil pressure are considered in this model. Their effects on molten pool dynamic and the weld bead formation are studied. The similar metal welding and dissimilar metal welding under pulsed laser are respectively simulated by using this model. It is found that surface ripples are caused mainly by the periodical laser and molten pool solidification. In the first, this model is validated by the weld bead geometry comparison between the simulated and experimental results in similar metal welding. Then, this model is applied to simulate the dissimilar metal welding under pulsed laser. The results show that the distributions of the temperature, melt-flow velocity and surface ripples are asymmetric due to the differences in physical properties of the materials. The higher pulse overlapping factor decreases the solidification rate, leading to the more uniform penetration depths and the finer ripples. Good agreements between the experimental observations and simulation results are obtained by the proposed model.

  18. Microstructure and high temperature properties of the dissimilar weld between ferritic stainless steel and carbon steel

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Kil; Hong, Seung Gab; Kang, Ki Bong; Kang, Chung Yun

    2009-10-01

    Dissimilar joints between STS441, a ferritic stainless steel, and SS400, a carbon steel, were welded by GMAW (Gas Metal Arc Welding) using STS430LNb as a welding wire. The fracture behavior of the dissimilar weld was analyzed by a microstructural observation and thermo-mechanical tests. Martensite was formed at the region between SS400 and the weld metal because the Cr and Nb content in this region decreased due to the dilution of SS400 carbon steel during welding. According to results from a high temperature tensile test with a specimen aged at 900 °C, it was found that the tensile strength of the dissimilar weld at high temperature was equal to that of STS441 base metal and the formation of martensite had little influence on tensile strength of the dissimilar weld at high temperature. However, in the case of thermal fatigue resistance, the dissimilar weld had an inferior thermal fatigue life to STS441 because of the presence of martensite and the softened region around the interface between the dissimilar weld metal and SS400.

  19. Final Assessment of Manual Ultrasonic Examinations Applied to Detect Flaws in Primary System Dissimilar Metal Welds at North Anna Power Station

    SciTech Connect

    Anderson, Michael T.; Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Prowant, Matthew S.; Doctor, Steven R.

    2014-03-24

    PNNL conducted a technical assessment of the NDE issues and protocols that led to missed detections of several axially oriented flaws in a steam generator primary inlet dissimilar metal weld at North Anna Power Station, Unit 1 (NAPS-1). This particular component design exhibits a significant outside-diameter (OD) taper that is not included as a blind performance demonstration mock-up within the industry’s Performance Demonstration Initiative, administered by EPRI. For this reason, the licensee engaged EPRI to assist in the development of a technical justification to support the basis for a site-specific qualification. The service-induced flaws at NAPS-1 were eventually detected as a result of OD surface machining in preparation for a full structural weld overlay. The machining operation uncovered the existence of two through-wall flaws, based on the observance of primary water leaking from the dissimilar metal weld. A total of five axially oriented flaws were detected in varied locations around the weld circumference. The field volumetric examination that was conducted at NAPS-1 was a non-encoded, real-time manual ultrasonic examination. PNNL conducted both an initial assessment, and subsequently, a more rigorous technical evaluation (reported here), which has identified an array of NDE issues that may have led to the subject missed detections. These evaluations were performed through technical reviews and discussions with NRC staff, EPRI NDE Center personnel, industry and ISI vendor personnel, and ultrasonic transducer manufacturers, and laboratory tests, to better understand the underlying issues at North Anna.

  20. Microstructural characterization of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint

    SciTech Connect

    Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu Han, En-Hou; Ke, Wei

    2014-11-15

    The microstructure of an SA508–309L/308L–316L domestic dissimilar metal welded safe-end joint was characterized in this work by optical microscopy, scanning electron microscopy (with electron back scattering diffraction) and micro-hardness testing. Epitaxial growth and competitive growth are evident in the 308L–316L fusion boundary regions. A martensite layer, carbon-depleted zones, and type-II and type-I boundaries are found in the SA508–309L fusion boundary regions, while only martensite and austenite mixed zones are observed in the SA508–308L fusion boundary regions. The microstructure near the fusion boundary and the microstructure transition in the SA508 heat affected zone are quite complex. Both for SA508–309L/308L and 308L–316L, the highest residual strain is located on the outside of the weldment. The residual strain and the grain boundary character distribution change with increasing distance from the fusion boundary in the heat affected zone of 316L. Micro-hardness measurements also reveal non-uniform mechanical properties across the weldment. - Highlights: • The microstructure of SA508 HAZ, especially near the FB, is very complex. • The outside of the dissimilar metal welded joint has the highest residual. • The micro-hardness distributions along the DMWJ are non-uniform.

  1. Laser Welding Dissimilar Reflective Alloys

    NASA Technical Reports Server (NTRS)

    Mccay, M. H.; Gopinathan, S.; Kahlen, F.; Speigel, L.

    1993-01-01

    This project, jointly sponsored by Rocketdyne and CSTAR, involves the development of laser joining of materials which have heretofore been impractical to bond. Of particular interest are joints between stainless steel and copper and also aluminum 6061 to aluminum 2219. CSTAR has a unique opportunity in this area since both the process and development and diagnostics are of interest to industry. Initial results using the pulse tailored laser welding technique developed in CLA for joining crack sensitive materials have proven promising for the aluminum joints based upon metallurgical and electronic microprobe analysis. A declaration of success requires additional mechanical testing. A CW technique has been applied to the stainless-copper joining with some preliminary success. These joints are of significant interest for aeronautics and rocket propulsion applications and the project is expected to continue.

  2. Laser welding dissimilar reflective alloys

    NASA Astrophysics Data System (ADS)

    McCay, M. H.; Gopinathan, S.; Kahlen, F.; Speigel, L.

    1993-01-01

    This project, jointly sponsored by Rocketdyne and CSTAR, involves the development of laser joining of materials which have heretofore been impractical to bond. Of particular interest are joints between stainless steel and copper and also aluminum 6061 to aluminum 2219. CSTAR has a unique opportunity in this area since both the process and development and diagnostics are of interest to industry. Initial results using the pulse tailored laser welding technique developed in CLA for joining crack sensitive materials have proven promising for the aluminum joints based upon metallurgical and electronic microprobe analysis. A declaration of success requires additional mechanical testing. A CW technique has been applied to the stainless-copper joining with some preliminary success. These joints are of significant interest for aeronautics and rocket propulsion applications and the project is expected to continue.

  3. Environmentally-assisted cracking behaviour in the transition region of an Alloy182/SA 508 Cl.2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment

    NASA Astrophysics Data System (ADS)

    Seifert, H. P.; Ritter, S.; Shoji, T.; Peng, Q. J.; Takeda, Y.; Lu, Z. P.

    2008-08-01

    The stress corrosion cracking (SCC) and corrosion fatigue behaviour perpendicular and parallel to the fusion line in the transition region between the Alloy 182 Nickel-base weld metal and the adjacent SA 508 Cl.2 low-alloy reactor pressure vessel (RPV) steel of a simulated dissimilar metal weld joint was investigated under boiling water reactor normal water chemistry conditions. A special emphasis was placed to the question whether a fast growing interdendritic SCC crack in the highly susceptible Alloy 182 weld metal can easily cross the fusion line and significantly propagate into the adjacent low-alloy RPV steel. Cessation of interdendritic SCC crack growth was observed in high-purity or sulphate-containing oxygenated water under constant or periodical partial unloading conditions for those parts of the crack front, which reached the fusion line. In chloride containing water, on the other hand, the interdendritic SCC crack in the Alloy 182 weld metal very easily crossed the fusion line and further propagated with a very high rate as a transgranular crack into the heat-affected zone and base metal of the adjacent low-alloy steel. The observed SCC cracking behaviour at the interface correlates excellently with the field experience of such dissimilar metal weld joints, where SCC cracking was usually confined to the Alloy 182 weld metal.

  4. In situ Raman spectroscopic analysis of surface oxide films on Ni-base alloy/low alloy steel dissimilar metal weld interfaces in high-temperature water

    NASA Astrophysics Data System (ADS)

    Kim, Jongjin; Choi, Kyung Joon; Bahn, Chi Bum; Kim, Ji Hyun

    2014-06-01

    In situ Raman spectroscopy has been applied to analyze the surface oxide films formed on dissimilar metal weld (DMW) interfaces of nickel-base alloy/low alloy steel under hydrogenated high-temperature water condition. For the analysis of the oxide films under high temperature/pressure aqueous conditions, an in situ Raman spectroscopy system was developed by constructing a hydrothermal cell where the entire optics including the excitation laser and the Raman light collection system were located at the nearest position to the specimen by means of immersion optics. In situ Raman spectra of the DMW interfaces were collected in hydrogenated water condition at different temperatures up to 300 °C. The measured in situ Raman spectra showed peaks of Cr2O3, NiCr2O4 and Fe3O4 at the DMW interface. It is considered that differences in the oxide chemistry originated from the chemical element distribution inside of the DMW interface region.

  5. Microstructure and Ductility-Dip Cracking Susceptibility of Circumferential Multipass Dissimilar Weld Between 20MND5 and Z2CND18-12NS with Ni-Base Filler Metal 52

    NASA Astrophysics Data System (ADS)

    Qin, Renyao; Duan, Zhaoling; He, Guo

    2013-10-01

    The large circumferential multipass dissimilar weld between 20MND5 steel and Z2CND18-12NS stainless steel welded with FM52 filler material was investigated in terms of the diluted composition, the grain boundary precipitation, and the ductility-dip cracking (DDC) susceptibility of the weld. The diluted composition of the weld is composed of 37 to 47 pct Ni, 21 to 24 pct Cr, and 28 to 40 pct Fe, which are inhomogeneous along the depth and over the width of the deep weld. The carbon content has a distribution in the region of the surface weld from a high level (~0.20 pct) in the zone near 20MND5 steel to a normal level (~0.03 pct) in the zone near Z2CND18-12NS stainless steel. The carbon distribution is corresponding to the grain boundary carbides. The minimum threshold strains for DDC occur in the temperature range of 1223 K to 1323 K (950 °C to 1050 °C), which are 0.5, 0.35, and 0.4 pct for the root weld, middle region, and the surface weld, respectively. The dissimilar weld has the largest susceptibility to the DDC compared to the filler metal 52 and the Inconel 690.

  6. Primary Water Stress Corrosion Cracks in Nickel Alloy Dissimilar Metal Welds: Detection and Sizing Using Established and Emerging Nondestructive Examination Techniques

    SciTech Connect

    Braatz, Brett G.; Cumblidge, Stephen E.; Doctor, Steven R.; Prokofiev, Iouri

    2012-12-31

    The U.S. Nuclear Regulatory Commission has established the Program to Assess the Reliability of Emerging Nondestructive Techniques (PARENT) as a follow-on to the international cooperative Program for the Inspection of Nickel Alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive evaluation (NDE) techniques to detect and characterize surface-breaking primary water stress corrosion cracks in dissimilar-metal welds (DMW) in bottom-mounted instrumentation (BMI) penetrations and small-bore (≈400-mm diameter) piping components. A series of international blind round-robin tests were conducted by commercial and university inspection teams. Results from these tests showed that a combination of conventional and phased-array ultrasound techniques provided the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in BMIs by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field. The goal of PARENT is to continue the work begun in PINC and apply the lessons learned to a series of open and blind international round-robin tests that will be conducted on a new set of piping components including large-bore (≈900-mm diameter) DMWs, small-bore DMWs, and BMIs. Open round-robin testing will engage universities and industry worldwide to investigate the reliability of emerging NDE techniques to detect and accurately size flaws having a wide range of lengths, depths, orientations, and locations. Blind round-robin testing will invite testing organizations worldwide, whose inspectors and procedures are certified by the standards for the nuclear industry in their respective countries, to investigate the ability of established NDE techniques to detect and size flaws whose characteristics range from easy to very difficult to detect and size. This paper presents highlights of PINC and reports on the plans and progress for

  7. Field Evaluations of Low-Frequency SAFT-UT on Cast Stainless Steel and Dissimilar Metal Weld Components

    SciTech Connect

    Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.

    2008-11-01

    This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).

  8. Technical Letter Report, An Evaluation of Ultrasonic Phased Array Testing for Reactor Piping System Components Containing Dissimilar Metal Welds, JCN N6398, Task 2A

    SciTech Connect

    Diaz, Aaron A.; Cinson, Anthony D.; Crawford, Susan L.; Anderson, Michael T.

    2009-11-30

    Research is being conducted for the U.S. Nuclear Regulatory Commission at the Pacific Northwest National Laboratory to assess the effectiveness and reliability of advanced nondestructive examination (NDE) methods for the inspection of light-water reactor components. The scope of this research encom¬passes primary system pressure boundary materials including dissimilar metal welds (DMWs), cast austenitic stainless steels (CASS), piping with corrosion-resistant cladding, weld overlays, inlays and onlays, and far-side examinations of austenitic piping welds. A primary objective of this work is to evaluate various NDE methods to assess their ability to detect, localize, and size cracks in steel components that challenge standard and/or conventional inspection methodologies. This interim technical letter report provides a summary of a technical evaluation aimed at assessing the capabilities of phased-array (PA) ultrasonic testing (UT) methods as applied to the inspection of small-bore DMW components that exist in the reactor coolant systems (RCS) of pressurized water reactors (PWRs). Operating experience and events such as the circumferential cracking in the reactor vessel nozzle-to-RCS hot leg pipe at V.C. Summer nuclear power station, identified in 2000, show that in PWRs where primary coolant water (or steam) are present under normal operation, Alloy 82/182 materials are susceptible to pressurized water stress corrosion cracking. The extent and number of occurrences of DMW cracking in nuclear power plants (domestically and internationally) indicate the necessity for reliable and effective inspection techniques. The work described herein was performed to provide insights for evaluating the utility of advanced NDE approaches for the inspection of DMW components such as a pressurizer surge nozzle DMW, a shutdown cooling pipe DMW, and a ferritic (low-alloy carbon steel)-to-CASS pipe DMW configuration.

  9. Ultrasonic spot welding of dissimilar materials: characterization of welded joints and parametric optimization

    NASA Astrophysics Data System (ADS)

    Satpathy, M. P.; Sahoo, S. K.

    2016-02-01

    Material joining is one of the key manufacturing processes used to assemble metallic and non-metallic parts for several applications. But the industries are facing many difficulties in joining of thin sheets of dissimilar metals by the conventional welding process because of their differences in chemical composition, physical and mechanical properties. Thus, ultrasonic welding is a solid state joining process used for joining of small elements in microelectronics industries. In this process, acoustic horn and booster are the important assets. The accuracy and strength of the welding depend mainly on their geometry. This proposed work deals with the design and modelling of an acoustic stepped sonotrode with booster using finite element analysis (FEA). From this analysis, the actual length of the horn is obtained by gradually decreasing its theoretical length. The quality of the weld is reckoned by its weld strength and the combinations of different process parameters. These are examined using the principal components coupled with grey relational analysis approach which is showing good agreement between the predicted values with experimental results. Fractographic examination of weld zone and hardness are also used to explore the weld quality.

  10. Effect of welding process on the microstructure and properties of dissimilar weld joints between low alloy steel and duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Lu, Min-xu; Zhang, Lei; Chang, Wei; Xu, Li-ning; Hu, Li-hua

    2012-06-01

    To obtain high-quality dissimilar weld joints, the processes of metal inert gas (MIG) welding and tungsten inert gas (TIG) welding for duplex stainless steel (DSS) and low alloy steel were compared in this paper. The microstructure and corrosion morphology of dissimilar weld joints were observed by scanning electron microscopy (SEM); the chemical compositions in different zones were detected by energy-dispersive spectroscopy (EDS); the mechanical properties were measured by microhardness test, tensile test, and impact test; the corrosion behavior was evaluated by polarization curves. Obvious concentration gradients of Ni and Cr exist between the fusion boundary and the type II boundary, where the hardness is much higher. The impact toughness of weld metal by MIG welding is higher than that by TIG welding. The corrosion current density of TIG weld metal is higher than that of MIG weld metal in a 3.5wt% NaCl solution. Galvanic corrosion happens between low alloy steel and weld metal, revealing the weakness of low alloy steel in industrial service. The quality of joints produced by MIG welding is better than that by TIG welding in mechanical performance and corrosion resistance. MIG welding with the filler metal ER2009 is the suitable welding process for dissimilar metals jointing between UNS S31803 duplex stainless steel and low alloy steel in practical application.

  11. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  12. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  13. Elevated-temperature tensile and creep-rupture behavior of alloy 800H/ERNiCr-3 weld metal/2 1/4 Cr-1 Mo steel dissimilar-metal weldments

    SciTech Connect

    Klueh, R L; King, J F

    1982-11-01

    Tensile tests at room temperature, 510, and 566{sup 0}C and creep-rupture tests at 510{sup 0}C were made on specimens taken from dissimilar-metal welds made on isothermally annealed 2 1/4 Cr-1 Mo steel and mill-annealed alloy 800H plates joined with ERNiCr-3 filler metal. The specimens were machined so that the gage length contained all three alloys; the weld metal was in the center of the gage section. The weldments were tested under several postweld heat treatment (PWHT) and aging conditions. Ductile cup-cone tensile failures occurred in the 2 1/4 Cr-1 Mo steel base metal well removed from the weld fusion line, as expected from the relative base metal properties. For creep at 510{sup 0}C and rupture lifetimes of up to about 2000 h, failure also occurred in the 2 1/4 Cr-1 Mo steel base metal. Three low-stress tests failed in the 2 1/4 Cr-1 Mo steel with low ductility in over 7500 h within 10 {mu}m of the fusion line. Metallographic studies showed that the interface-type failures resulted by a previously proposed mechanism that involves the formation of a chromium-depleted region parallel to the fusion line.

  14. Dissimilar Al/steel friction stir welding lap joints for automotive applications

    NASA Astrophysics Data System (ADS)

    Campanella, D.; Spena, P. Russo; Buffa, G.; Fratini, L.

    2016-10-01

    A widespread usage of aluminum alloys for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with automotive steel grades. Dissimilar welding of aluminum alloys and steel grades poses some issues concerning the formation of brittle intermetallic compounds, difference in physical and chemical properties of the parent metals, and poor wetting behavior of aluminum. Friction stir welding is considered to be a reasonable solution to obtain sound aluminum/steel joints. A study on the join quality of dissimilar lap joints of steel and aluminum alloy sheets after friction stir welding is proposed here. A low carbon steel is joined with AA6016 aluminum alloy to study preliminarily the feasibility to assembly car-body parts. The joints, welded with tool rotation and feed rate varying in a wide range, have been studied from a visual examination and microstructural point of view. Optical microscopy has been used to characterize the microstructure of the examined sheets in as-received and welded conditions. Micro-hardness measurements have been carried out to quantitatively analyze the local hardness of the welded joints. Set welding process parameters are identified to assemble without the presence of macroscopic defects the examined steel and aluminum welded parts.

  15. Procedure for Computing Residual Stresses from Neutron Diffraction Data and its Application to Multi-Pass Dissimilar Weld

    SciTech Connect

    Zhang, Wei; Feng, Zhili; Crooker, Paul

    2011-01-01

    Neutron diffraction is a powerful tool for non-destructive measurement of internal residual stresses of welded structures. The conventional approach for determination of residual stresses requires the knowledge of stress-free lattice spacing a priori. For multiple-pass dissimilar metal welds common to nuclear reactor pipeline systems, the stress-free lattice parameter is a complex function of position due to the chemistry inhomogeneity in the weld region and can be challenging to determine experimentally. This paper presents a new approach to calculate the residual stress field in dissimilar welds without the use of stress-free lattice parameter. The theoretical basis takes advantage of the fact that the normal component of welding residual stresses is typically small for thin plate or pipe welds. The applicability of the new approach is examined and justified in a multi-pass dissimilar metal weld consisting of a stainless steel plate and a nickel alloy filler metal. The level of uncertainties associated with this new approach is assessed. Neutron diffraction experiment is carried out to measure the lattice spacing at various locations in the dissimilar weld. A comb-shaped specimen, electro-discharge machined from a companion weld, is used to determine the stress-free lattice spacing. The calculated results from the new approach are consistent with those from the conventional approach. The new approach is found to be a practical method for determining the two in-plane residual stress components in thin plate or pipe dissimilar metal welds.

  16. Weldability of A7075-T651 and AZ31B dissimilar alloys by MIG welding method based on welding appearances

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Islam, M. R.

    2014-04-01

    It is not recommended to weld aluminium and magnesium dissimilar alloys using fusion welding method because of the formation of AlmMgn type intermetallic brittle compounds like Mg2Al3, Mg17Al12 etc. in the welding joint. These brittle compounds deteriorate the mechanical properties of the joint. But so far, insufficient researches have been attempted to stop the formation of AlmMgn type intermetallic brittle compounds in fusion welding method. The aim of this research work was to investigate on the weldability between A7075-T651 and AZ31B dissimilar alloys based on welding appearances and study the formation of intermetallic brittle compounds at the joint. In this research, A7075-T651 and AZ31B alloys were welded using ER5356 filler wire in MIG welding method in butt configuration. 100% argon was used as shielding gas. The results showed that, most of the welding appearances were moderate. The macroscopic investigation at all welding cross section showed that a lot of AlmMgn intermetallic brittle compounds were formed at the interface between weld seam and AZ31B parent metal side which caused macro cracks. A good number of macro pores were also observed at AZ31B parent metal side. These cracks and pores could easily cause the failure of the joint at very low stress.

  17. Picosecond laser welding of similar and dissimilar materials.

    PubMed

    Carter, Richard M; Chen, Jianyong; Shephard, Jonathan D; Thomson, Robert R; Hand, Duncan P

    2014-07-01

    We report picosecond laser welding of similar and dissimilar materials based on plasma formation induced by a tightly focused beam from a 1030 nm, 10 ps, 400 kHz laser system. Specifically, we demonstrate the welding of fused silica, borosilicate, and sapphire to a range of materials including borosilicate, fused silica, silicon, copper, aluminum, and stainless steel. Dissimilar material welding of glass to aluminum and stainless steel has not been previously reported. Analysis of the borosilicate-to-borosilicate weld strength compares well to those obtained using similar welding systems based on femtosecond lasers. There is, however, a strong requirement to prepare surfaces to a high (10-60 nm Ra) flatness to ensure a successful weld.

  18. The effect of interlayers on dissimilar friction weld properties

    NASA Astrophysics Data System (ADS)

    Maldonado-Zepeda, Cuauhtemoc

    The influence of silver interlayers on the metallurgical and mechanical properties of dissimilar aluminium alloy/stainless steel friction welds are investigated. An elastic contact model is proposed that explains the conditions at and close to the contact surface, which produce Al2O3 particle fracture in dissimilar MMC/AISI 304 stainless steel friction welds. Intermixed (IM) and particle dispersed (PD) regions are formed in Ag-containing dissimilar friction welds. These regions form very early in the joining operation and both contain Ag3Al. Therefore, an interlayer (Ag) introduced with the specific aim of preventing FexAly compound formation in MMC/AISI 304 stainless steel friction welds promotes the formation of another intermetallic phase at the bondline. Since IM and PD regions are progressively removed as the friction welding operation proceeds thinner intermetallic layers are produced when long friction welding times are applied. This type of behavior is quite different from that observed in silver-free dissimilar MMC/AISI 304 stainless steel welds. Nanoparticles of silver are formed in dissimilar MMC/Ag/AISI 304 stainless steel welds produced using low friction pressures. Nanoparticle formation in dissimilar friction welds has never been previously observed or investigated. The introduction of silver interlayers decreases heat generation during welding, produces narrower softened zone regions and improved notch tensile strength properties. All research to-date has assumed per se that joint mechanical properties wholly depend on the mechanical properties and width of the intermetallic layer formed at the dissimilar joint interface. However, it is shown in this thesis that the mechanical properties of MMC/AISI 304 stainless steel joints are determined by the combined effects of intermetallic formation at the bondline and softened zone formation in MMC base material immediately adjacent to the joint interface. A methodology for calculating the notch tensile

  19. Hot-cracking mechanism in CO/sub 2/ laser beam welds of dissimilar metals involving PH martensitic stainless steels

    SciTech Connect

    Cieslak, M.J.

    1987-02-01

    Autogenous CO/sub 2/ laser beam welds were made between Alloy HP 9-4-20 and both 15-5 PH and PH 13-8 Mo stainless steel. Small scale circular-patch test specimens revealed that the combination involving the Nb-bearing alloy, 15-5 PH, was far more crack susceptible than the combination involving the Nb-free alloy, PH 13-8 Mo. Analytical electron microscopy was used to identify an NbC/austenite eutectic-like constituent as being responsible for the cracking phenomenon.

  20. Influence of high-temperature exposure on the microstructure and mechanical properties of dissimilar metal welds between modified 9Cr-1Mo steel and alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Sundaresan, S.

    2005-06-01

    Transition joints between ferritic steel and austenitic stainless steel are commonly encountered in high-temperature components of power plants. Service failures in these are known to occur as a result, mainly, of thermal stresses due to expansion coefficient differentials. In order to mitigate the problem, a trimetallic configuration involving an intermediate piece of a material such as Alloy 800 between the ferritic and austenitic steels has been suggested. In our work, modified 9Cr-1Mo steel and 316LN stainless steel are used as the ferritic and austenitic components and the thermal behavior of the joints between modified 9Cr-1Mo steel and Alloy 800 is described in this article. The joints, made using the nickel-base filler material INCONEL 82/182 (INCONEL 82 for the root pass by gas-tungsten arc welding and INCONEL 182 for the filler passes by shielded-metal arc welding), were aged at 625 °C for periods up to 5000 hours. The microstructural changes occurring in the weld metal as well as at the interfaces with the two parent materials are characterized in detail. Results of across-the-weld hardness surveys and cross-weld tension tests and weld metal Charpy impact tests are correlated with the structural changes observed. Principally, the results show that (1) the tendency for carbon to diffuse from the ferritic steel into the weld metal is much less pronounced than when 2.25Cr-1Mo steel is used as the ferritic part; and (2) intermetallic precipitation occurs in the weld metal for aging durations longer than 2000 hours, but the weld metal toughness still remains adequate in terms of the relevant specification.

  1. Thermal treatment of dissimilar steels' welded joints

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Denisova, A. S.; Gradusov, I. N.; Ryabinkina, P. A.; Rushkovets, M. V.

    2016-04-01

    In this paper combinations of chrome-nickel steel and high-carbon steel, produced by flash butt welding after heat treatment, are investigated. Light and electron microscopic studies show that the welded joints after heat treatment have a complex structure consisting of several phases as initial welded joints. A martensite structure in welded joints after thermal treatment at 300... 800 °C has been found.

  2. Investigation and Analysis of Weld Induced Residual Stresses in Two Dissimilar Pipes by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Nadimi, S.; Khoushehmehr, R. J.; Rohani, B.; Mostafapour, A.

    In the present study, Manual Metal Arc Welding (MMAW) of austenitic stainless steel to carbon steel were studied. The Schaeffler diagram were used in determining suitable filler metal for this process and then the finite element analysis of residual stresses in butt welding of two dissimilar pipes is performed with the commercial software ANSYS, which includes moving heat source, material deposit, temperature dependant material properties, metal plasticity and elasticity, transient heat transfer and mechanical analysis. The residual stresses distribution and magnitude in the hoop and axial directions in the inner and outer surfaces of two dissimilar pipes were obtained. Welding simulation considered as a sequentially coupled thermo-mechanical analysis and the element birth and death technique was employed for simulation of filler metal deposition.

  3. Explosively Joining Dissimilar Metal Tubes.

    DTIC Science & Technology

    1979-11-01

    both steel, photograph (7), and the Ni-Cu specimen, photograph (8) , showed considerable pitting corrosion in the aluminum . 4. The paint was then...for 6061 -T6 aluminum and are: collision angle 5 - 200, collision velocity 270 - 350 m/sec, with an impact pressure of at least 27 Kbar (391 Kpsi...Welded Aluminum Alloy 1 .. 5 rn-i (P0 -I Op. 2si 11 6W TABLE I Explosive2 Cladder Metal Base Metal Explosive Loading (gins/in2 6061 -T6 Al 304 SS TSE- 1004

  4. Microstructural Characterizations with EDAX Analysis of Dissimilar Friction Stir Welds

    NASA Astrophysics Data System (ADS)

    Ravikumar, S.; Rao, V. S.

    2013-10-01

    This paper reports the microstructural characteristics of dissimilar friction stir welds with AA7075T651 and AA6061T651. Dissimilar friction stir welds between AA7075T651 and AA6061T651 were produced by varying the rotational speeds between 800 and 1,000 rpm and the welding speeds between 90 and 110 mm/min. The welds were characterized through optical microscope and scanning electron microscope (SEM). Three different tool profiles (taper cylindrical threaded, taper square threaded and simple square) were used for this investigation and in that taper cylindrical threaded tool with process parameters 900 rpm and 100 mm/min were found to have maximum tensile strength of 205 MPa for the dissimilar butt joints. The SEM with energy-dispersive X-ray spectroscopy analysis reveals the metallurgical bonding achieved at the joint interfaces of the welds produced. The good mixing of both the materials joined was obtained at lower welding and higher rotational speed while the tunnel defect was found to be common in the welds produced irrespective of the tool pin profiles and process parameters due to insufficient axial load with 0° tilt angle.

  5. Welded joints integrity analysis and optimization for fiber laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Liu, Wei

    2016-11-01

    Dissimilar materials welded joints provide many advantages in power, automotive, chemical, and spacecraft industries. The weld bead integrity which is determined by process parameters plays a significant role in the welding quality during the fiber laser welding (FLW) of dissimilar materials. In this paper, an optimization method by taking the integrity of the weld bead and weld area into consideration is proposed for FLW of dissimilar materials, the low carbon steel and stainless steel. The relationships between the weld bead integrity and process parameters are developed by the genetic algorithm optimized back propagation neural network (GA-BPNN). The particle swarm optimization (PSO) algorithm is taken for optimizing the predicted outputs from GA-BPNN for the objective. Through the optimization process, the desired weld bead with good integrity and minimum weld area are obtained and the corresponding microstructure and microhardness are excellent. The mechanical properties of the optimized joints are greatly improved compared with that of the un-optimized welded joints. Moreover, the effects of significant factors are analyzed based on the statistical approach and the laser power (LP) is identified as the most significant factor on the weld bead integrity and weld area. The results indicate that the proposed method is effective for improving the reliability and stability of welded joints in the practical production.

  6. Investigation on Mechanical Properties of 9%Cr/CrMoV Dissimilar Steels Welded Joint

    NASA Astrophysics Data System (ADS)

    Liu, Xia; Lu, Fenggui; Yang, Renjie; Wang, Peng; Xu, Xiaojin; Huo, Xin

    2015-04-01

    Advanced 9%Cr steel with good heat resistance and CrMoV with good toughness were chosen as candidate materials to fabricate combined rotor for steam turbine operating at over 620 °C. But the great difference in base metals properties presents a challenge in achieving sound defect-free joint with optimal properties in dissimilar welded rotor. In this paper, appropriate selection of filler metal, welding parameters, and post-weld heat treatment was combined to successfully weld 1100-mm-diameter 9%Cr/CrMoV dissimilar experimental rotor through ultra-narrow gap submerge arc welding. Some properties such as hardness, low-cycle fatigue (LCF), and high-cycle fatigue (HCF) combined with microstructural characterization qualify the integrity of the weld. Microstructural analysis indicated the presence of high-temperature tempered martensite as the phase responsible for the improved properties obtained in the weld. The Coffin-Manson parameters were obtained by fitting the data in LCF test, while the conditional fatigue strength was derived from the HCF test based on S-N curve. Analysis of hardness profile showed that the lowest value occurred at heat-affected zone adjacent to base metal which represents the appropriate location of fracture for the samples after LCF and HCF tests.

  7. The use of dissimilar metals in surgery.

    PubMed

    Mears, D C

    1975-07-01

    Previously, the use of dissimilar metals for the construction of surgical implants has been strongly discouraged because the combination of metals was likely to provoke more rapid corrosion of one metal. With the passive alloys that are in present and future application, however, a reconsideration of the use of dissimilar metals is required. Presently available electrochemical tests allow accurate prediction of safe and unsafe combinations of metals. The use of dissimilar metals would permit selection of the alloy of appropriate mechanical properties for each part of an implant and would allow improved corrosion resistance that certain alloys can convey to other alloys with which they are in contact.

  8. Modeling of the Thermal Field in Dissimilar Alloy Ultrasonic Welding

    NASA Astrophysics Data System (ADS)

    Jedrasiak, P.; Shercliff, H. R.; Chen, Y. C.; Wang, L.; Prangnell, P.; Robson, J.

    2015-02-01

    This paper describes a finite element model for predicting the temperature field in high power ultrasonic welding aluminum AA6111 to two dissimilar alloys, magnesium AZ31, and low carbon steel DC04. Experimental thermocouple and other evidence are used to infer the magnitude and distribution of the heat input to the workpiece, as a function of time, for each of the material combinations welded. The resulting temperature histories are used to predict the growth of intermetallic phases at the interface in Al-Mg welds. The microstructural model successfully predicts the thickness of the intermetallic layer, but the sensitivity of the results to temperature is demonstrated.

  9. Microstructural characterization of dissimilar welds between Incoloy 800H and 321 Austenitic Stainless Steel

    SciTech Connect

    Sayiram, G. Arivazhagan, N.

    2015-04-15

    In this work, the microstructural character of dissimilar welds between Incoloy 800H and 321 Stainless Steel has been discussed. The microscopic examination of the base metals, fusion zones and interfaces was characterized using an optical microscope and scanning electron microscopy. The results revealed precipitates of Ti (C, N) in the austenitic matrix along the grain boundaries of the base metals. Migration of grain boundaries in the Inconel 82 weld metal was very extensive when compared to Inconel 617 weldment. Epitaxial growth was observed in the 617 weldment which increases the strength and ductility of the weld metal. Unmixed zone near the fusion line between 321 Stainless Steel and Inconel 82 weld metal was identified. From the results, it has been concluded that Inconel 617 filler metal is a preferable choice for the joint between Incoloy 800H and 321 Stainless Steel. - Highlights: • Failure mechanisms produced by dissimilar welding of Incoloy 800H to AISI 321SS • Influence of filler wire on microstructure properties • Contemplative comparisons of metallurgical aspects of these weldments • Microstructure and chemical studies including metallography, SEM–EDS • EDS-line scan study at interface.

  10. Evaluation of Laser Braze-welded Dissimilar Al-Cu Joints

    NASA Astrophysics Data System (ADS)

    Schmalen, Pascal; Plapper, Peter

    The thermal joining of Aluminum and Copper is a promising technology towards automotive battery manufacturing. The dissimilar metals Al-Cu are difficult to weld due to their different physicochemical characteristics and the formation of intermetallic compounds (IMC), which have reduced mechanical and electric properties. There is a critical thickness of the IMCs where the favored mechanical properties of the base material can be preserved. The laser braze welding principle uses a position and power oscillated laser-beam to reduce the energy input and the intermixture of both materials and therefore achieves minimized IMCs thickness. The evaluation of the weld seam is important to improve the joint performance and enhance the welding process. This paper is focused on the characterization and quantification of the IMCs. Mechanical, electrical and metallurgical methods are presented and performed on Al1050 and SF-Cu joints and precise weld criteria are developed.

  11. Material Characterization of Dissimilar Friction Stir Spot Welded Aluminium and Copper Alloy

    NASA Astrophysics Data System (ADS)

    Sanusi, K. O.; Akinlabi, E. T.

    2017-08-01

    In this research study, material characterization of dissimilar friction stir spot welded Aluminium and Copper was evaluated. Rotational speeds of 800 rpm and transverse speeds of 50 mm/min, 150 mm/min and 250 mm/min were used. The total numbers of samples evaluated were nine altogether. The spot welds were characterised by microstructure characterization using optical microscope (OEM) and scanning electron microscopy technique (SEM) by observing the evolution of the microstructure across the weld’s cross-section. lap-shear test of the of the spot weld specimens were also done. From the results, it shows that welding of metals and alloys using Friction stir spot welding is appropriate and can be use in industrial applications.

  12. Evaluation of near-surface stress distributions in dissimilar welded joint by scanning acoustic microscopy.

    PubMed

    Kwak, Dong Ryul; Yoshida, Sanichiro; Sasaki, Tomohiro; Todd, Judith A; Park, Ik Keun

    2016-04-01

    This paper presents the results from a set of experiments designed to ultrasonically measure the near surface stresses distributed within a dissimilar metal welded plate. A scanning acoustic microscope (SAM), with a tone-burst ultrasonic wave frequency of 200 MHz, was used for the measurement of near surface stresses in the dissimilar welded plate between 304 stainless steel and low carbon steel. For quantitative data acquisition such as leaky surface acoustic wave (leaky SAW) velocity measurement, a point focus acoustic lens of frequency 200 MHz was used and the leaky SAW velocities within the specimen were precisely measured. The distributions of the surface acoustic wave velocities change according to the near-surface stresses within the joint. A three dimensional (3D) finite element simulation was carried out to predict numerically the stress distributions and compare with the experimental results. The experiment and FE simulation results for the dissimilar welded plate showed good agreement. This research demonstrates that a combination of FE simulation and ultrasonic stress measurements using SAW velocity distributions appear promising for determining welding residual stresses in dissimilar material joints.

  13. Microstructure/property relationships in dissimilar welds between duplex stainless steels and carbon steels

    SciTech Connect

    Barnhouse, E.J.; Lippold, J.C.

    1998-12-01

    The metallurgical characteristics, toughness and corrosion resistance of dissimilar welds between duplex stainless steel Alloy 2205 and carbon steel A36 have been evaluated. Both duplex stainless steel ER2209 and Ni-based Alloy 625 filler metals were used to join this combination using a multipass, gas tungsten arc welding (GTAW) process. Defect-free welds were made with each filler metal. The toughness of both the 625 and 2209 deposits were acceptable, regardless of heat input. A narrow martensitic region with high hardness was observed along the A36/2209 fusion boundary. A similar region was not observed in welds made with the 625 filler metal. The corrosion resistance of the welds made with 2209 filler metal improved with increasing heat input, probably due to higher levels of austenite and reduced chromium nitride precipitation. Welds made with 625 exhibited severe attack in the root pass, while the bulk of the weld was resistant. This investigation has shown that both filler metals can be used to joint carbon steel to duplex stainless steels, but that special precautions may be necessary in corrosive environments.

  14. Microstructural characterization of dissimilar welds between alloy 800 and HP heat-resistant steel

    SciTech Connect

    Dehmolaei, R.; Shamanian, M. Kermanpur, A.

    2008-10-15

    In this study, dissimilar welds between HP heat-resistant steel and Incoloy 800 were made with four different filler materials including: 309 stainless steel and nickel-based Inconel 82, 182 and 617. The microstructure of the base metals, weld metals and their interfaces were characterized by utilizing optical and scanning electron microscopy. Grain boundaries migration in the weld metals was studied. It was found that the migration of grain boundaries in the Inconel 82 weld metal was very extensive. Precipitates of TiC and M{sub 23}C{sub 6} (M = Cr and Mo) in the Inconel 617 weld metal are identified. The necessary conditions for the formation of cracks close to the fusion line of the 309-HP joints are described. Furthermore unmixed zone near the fusion line between HP steel base metal and Inconel 82 weld metal is discussed. An epitaxial growth is characterized at the fusion line of the 309-Alloy 800 and Inconel 617-Alloy 800 joints.

  15. Some recent studies on laser cladding and dissimilar welding

    NASA Astrophysics Data System (ADS)

    Kaul, Rakesh; Ganesh, P.; Paul, C. P.; Albert, S. K.; Mudali, U. Kamachi; Nath, A. K.

    2006-01-01

    Indigenous development of high power CO II laser technology and industrial application of lasers represent two important mandates of the laser program, being pursued at Centre for Advanced Technology (CAT), India. The present paper describes some of the important laser material processing studies, involving cladding and dissimilar welding, performed in authors' laboratory. The first case study describes how low heat input characteristics of laser cladding process has been successfully exploited for suppressing dilution in "Colmonoy6" (a nickel-base hardfacing alloy) deposits on austenitic stainless steel components. Crack free hardfaced deposits were obtained by controlling heating and cooling rates associated with laser treatment. The results show significant advantage over Colmonoy 6 deposits made by GTAW, where a 2.5 mm thick region of dilution (with reduced hardness) develops next to substrateiclad interface. The next work involves laser-assisted deposition of graded "Stellite6" (a Co-base hardfacing alloy) with smooth transition in chemical composition and hardness for enhanced resistance against cracking, esp. under thermal cycling conditions. The following two case studies demonstrate significant improvement in corrosion properties of type 304L stainless steel by laser surface alloying, achieved through cladding route. The following case study demonstrates engineering of fusion zone microstructure of end plug dissimilar weld (between alloy D9 and type 3 16M stainless steel) by controlled preferential displacement of focused laser beam, which, in-turn, enhanced its resistance against solidification cracking. Crater appearing at the termination point of laser weld is also eliminated by ramping of laser power towards the end of laser welding. The last case study involves engineering of fusion zone microstructure of dissimilar laser weld between type 304 austenitic stainless steel and stabilized 17%Cr ferritic stainless steel by controlling welding parameters.

  16. Simulation model of Al-Ti dissimilar laser welding-brazing and its experimental verification

    NASA Astrophysics Data System (ADS)

    Behúlová, M.; Babalová, E.; Nagy, M.

    2017-02-01

    Formation of dissimilar weld joints of light metals and alloys including Al-Ti joints is interesting mainly due to demands on the weight reduction and corrosion resistance of components and structures in automotive, aircraft, aeronautic and other industries. Joining of Al-Ti alloys represents quite difficult problem. Generally, the fusion welding of these materials can lead to the development of different metastable phases and formation of brittle intermetallic compounds. The paper deals with numerical simulation of the laser welding-brazing process of titanium Grade 2 and EN AW 5083 aluminum alloy sheets using the 5087 aluminum filler wire. Simulation model for welding-brazing of testing samples with the dimensions of 50 × 100 × 2 mm was developed in order to perform numerical experiments applying variable welding parameters and to design proper combination of these parameters for formation of sound Al-Ti welded-brazed joints. Thermal properties of welded materials in the dependence on temperature were computed using JMatPro software. The conical model of the heat source was exploited for description of the heat input to the weld due to the moving laser beam source. The sample cooling by convection and radiation to the surrounding air and shielding argon gas was taken into account. Developed simulation model was verified by comparison of obtained results of numerical simulation with the temperatures measured during real experiments of laser welding-brazing by the TruDisk 4002 disk laser.

  17. Cracking behavior in a dissimilar weld between high silicon nodular cast iron and ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Kim, Sanghoon; Lee, Sangchul; Han, Kyutae; Hong, Seunggab; Lee, Changhee

    2010-06-01

    In this work, the microstructural evolution and cracking behavior of a dissimilar weld between high silicon nodular cast iron and ferritic stainless steel was investigated. An austenitic filler metal (Y309) was employed to produce the dissimilar weld. Microstructural analysis revealed that cracking formed at the unmixed zone (UMZ) and propagated into the partially melted zone (PMZ) in the bond line between the cast iron and the Y309, with hard layers formed around the bond line. The cracking behavior was strongly related to the difference in the melting points of cast iron and the Y309 filler metal, the local liquation of the laves phase, and the constitutional liquation between the graphite and austenite phases in the PMZ.

  18. Dissimilar Arc Welding of Advanced High-Strength Car-Body Steel Sheets

    NASA Astrophysics Data System (ADS)

    Russo Spena, P.; D'Aiuto, F.; Matteis, P.; Scavino, G.

    2014-11-01

    A widespread usage of new advanced TWIP steel grades for the fabrication of car-body parts is conditional on the employment of appropriate welding methods, especially if dissimilar welding must be performed with other automotive steel grades. Therefore, the microstructural features and the mechanical response of dissimilar butt weld seams of TWIP and 22MnB5 steel sheets after metal-active-gas arc welding are examined. The microstructural and mechanical characterization of the welded joints was carried out by optical metallography, microhardness and tensile testing, and fractographic examination. The heat-affected zone on the TWIP side was fully austenitic and the only detectable effect was grain coarsening, while on the 22MnB5 side it exhibited newly formed martensite and tempered martensite. The welded tensile specimens exhibited a much larger deformation on the TWIP steel side than on the 22MnB5. The fracture generally occurred at the interface between the fusion zone and the heat-affected zones, with the fractures surfaces being predominantly ductile. The ultimate tensile strength of the butt joints was about 25% lower than that of the TWIP steel.

  19. Characterization of microstructures and mechanical properties of Inconel 617/310 stainless steel dissimilar welds

    SciTech Connect

    Shah Hosseini, H. Shamanian, M.; Kermanpur, A.

    2011-04-15

    The microstructure and mechanical properties of Inconel 617/310 austenitic stainless steel dissimilar welds were investigated in this work. Three types of filler materials, Inconel 617, Inconel 82 and 310 austenitic stainless steels were used to obtain dissimilar joint using the gas tungsten arc welding process. Microstructural observations showed that there was no evidence of any possible cracking in the weldments achieved by the nickel-base filler materials. The welds produced by 617 and 310 filler materials displayed the highest and the lowest ultimate tensile strength and total elongation, respectively. The impact test results indicated that all specimens exhibited ductile fracture. Among the fillers, Inconel 617 exhibited superlative fracture toughness (205 J). The mechanical properties of the Inconel 617 filler material were much better than those of other fillers. - Research Highlights: {yields} A fine dendritic structure was seen for the Inconel 617 weld metal. {yields} A number of cracks were initiated when the 310 SS filler metal was used. {yields} All welded samples showed ductile fracture. {yields} The Inconel 617 filler material presents the optimum mechanical properties.

  20. Mechanical properties of a dissimilar aluminum alloy joint welded by hybrid laser-MIG welding

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Chen, Hui; Zhu, Zongtao; Cui, Yunlong

    2017-07-01

    Two dissimilar Al alloys, 5083-H111 and 6005A-T6, were joined by hybrid laser-MIG welding method. Mechanical properties of the welded joint were investigated and compared. The results show that the tensile strength of the dissimilar joint is 219.8 MPa, 11.7% higher than that of 6005A-T5 joint. After statistical analysis of the fatigue data, the P-S-N curves of the dissimilar joint were obtained. The mean fatigue strength at Nf = 107 of the dissimilar joint is 112.5 MPa. The fatigue strength at Nf = 107 of the dissimilar joint for a given 10% probability of failure, at a confidence level of 95%, is 101.4 MPa. The fatigue strength at Nf = 107 of the dissimilar joint is almost same as that of the 6005A-T6 joint. In welded structure designing, different P-S-N curves should be chosen according to the different service conditions and reliability requirements.

  1. Low Cycle and Thermo-Mechanical Fatigue of Friction Welded Dissimilar Superalloys Joint

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Motoki; Sano, Atsushi; Tran, Tra Hung; Okazaki, Masakazu; Sekihara, Masaru

    The high temperature strengths of the dissimilar friction welded superalloys joint between the cast polycrystalline Mar-M247 and the forged IN718 alloys have been investigated under low cycle and thermo-mechanical fatigue loadings, in comparison with those of the base metals. The experiments showed that the lives of the dissimilar joints were significantly influenced by the test conditions and loading modes. Not only the lives themselves but also the failure positions and mechanisms were sensitive to the loading mode. The fracture behaviors depending on the loading modes and test conditions were discussed, based on the macroscopic elastic follow-up mechanism and the microstructural inhomogeneity in the friction weld joint.

  2. Combining dissimilar metals in orthopaedic implants: revisited.

    PubMed

    Zartman, Kevin C; Berlet, Gregory C; Hyer, Christopher F; Woodard, Joseph R

    2011-10-01

    The use of metals as implant materials has become common practice in the field of orthopaedics. A wide variety of conditions are treated with metallic implants, and designers have used an assortment of materials to meet the unique mechanical demands of each application. The majority of implants used today, whether pins, plates, screws, or total joints, are made of cobalt-chrome alloy, stainless steel, or titanium. Common metallurgic wisdom cautions against bonding dissimilar metals in a biologically active environment. Surgeons have therefore shied away from combining dissimilar metal implants because of the fear of inciting corrosion that could potentially compromise the implants and lead to aseptic loosening, implant failure, or adverse biological reaction in host tissue. As surgical reconstruction and arthroplasty options expand with the advent of newer implants and expanded operative techniques, the orthopaedic surgeon will increasingly be faced with weighing the risks and benefits of combining implants made of dissimilar metals in a patient. Here, the authors examine the origins of the concern over using mixed metals, discuss mechanisms of corrosion as they relate to surgical implants, and review both in vitro and in vivo studies concerning the most common combinations of dissimilar metals in order to guide the surgeon in choosing implants.

  3. Microstructural, mechanical and weldability assessments of the dissimilar welds between γ′- and γ″-strengthened nickel-base superalloys

    SciTech Connect

    Naffakh Moosavy, Homam; Aboutalebi, Mohammad-Reza; Seyedein, Seyed Hossein; Mapelli, Carlo

    2013-08-15

    Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys has been investigated to identify the relationship between the microstructure of the welds and the resultant mechanical and weldability characteristics. γ′-Strengthened nickel-base Alloy 500 and γ″-strengthened nickel-base Alloy 718 were used for dissimilar welding. Gas tungsten arc welding operations were utilized for performing the autogenous dissimilar welding. Alloy 500 and Alloy 718 base metals showed various types of phases, carbides, intermetallics and eutectics in their microstructure. The results for Alloy 500 weld metal showed severe segregation of titanium to the interdendritic regions. The Alloy 718 weld metal compositional analysis confirmed the substantial role of Nb in the formation of low-melting eutectic-type morphologies which can reduce the weldability. The microstructure of dissimilar weld metal with dilution level of 65% wt.% displayed semi-developed dendritic structure. The less segregation and less formation of low-melting eutectic structures caused to less susceptibility of the dissimilar weld metal to the solidification cracking. This result was confirmed by analytic modeling achievements. Dissolution of γ″-Ni{sub 3}Nb precipitations took place in the Alloy 718 heat-affected zone leading to sharp decline of the microhardness in this region. Remelted and resolidified regions were observed in the partially-melted zone of Alloy 500 and Alloy 718. Nevertheless, no solidification and liquation cracking happened in the dissimilar welds. Finally, this was concluded that dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys can successfully be performed. - Highlights: • Dissimilar welding of γ′- and γ″-strengthened nickel-base superalloys is studied. • Microstructural, mechanical and weldability aspects of the welds are assessed. • Microstructure of welds, bases and heat-affected zones is characterized in detail. • The type

  4. Weld Metallurgy and Mechanical Properties of High Manganese Ultra-high Strength Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Dahmen, Martin; Lindner, Stefan; Monfort, Damien; Petring, Dirk

    The increasing demand for ultra-high strength steels in vehicle manufacturing leads to the application of new alloys. This poses a challenge on joining especially by fusion welding. A stainless high manganese steel sheet with excellent strength and deformation properties stands in the centre of the development. Similar and dissimilar welds with a metastable austenitic steel and a hot formed martensitic stainless steel were performed. An investigation of the mixing effects on the local microstructure and the hardness delivers the metallurgical features of the welds. Despite of carbon contents above 0.4 wt.% none of the welds have shown cracks. Mechanical properties drawn from tensile tests deliver high breaking forces enabling a high stiffness of the joints. The results show the potential for the application of laser beam welding for joining in assembly of structural parts.

  5. Microstructures and electrochemical behaviors of the friction stir welding dissimilar weld.

    PubMed

    Shen, Changbin; Zhang, Jiayan; Ge, Jiping

    2011-06-01

    By using optical microscope, the microstructures of 5083/6082 friction stir welding (FSW) weld and parent materials were analyzed. Meanwhile, at ambient temperature and in 0.2 mol/L NaHS03 and 0.6 mol/L NaCl solutionby gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation, the electrochemical behavior of 5083/6082 friction stir welding weld and parent materials were comparatively investigated by gravimetric test, potentiodynamic polarization curve test, electrochemical impedance spectra (EIS) and scanning electron microscope (SEM) observation. The results indicated that at given processing parameters, the anti-corrosion property of the dissimilar weld was superior to those of the 5083 and 6082 parent materials. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  6. Development of temper-bead technique applied to dissimilar welded joints of nuclear pressure vessels

    SciTech Connect

    Higuchi, Makoto; Umemoto, Tadahiro; Matsusita, Akitake; Shiraiwa, Takanori

    1996-06-01

    When nuclear pressure vessels made of low-alloy steel (P-3 Group 3) need repair or modification, technical standards for welding of electrical structures should be applied, and then postweld heat treatment (PWHT) should be done. However, cases in which PWHT is impractical are theoretically possible due to a variety of restrictions. To deal with such a problem, there is a regulation for repair weld technique, without PWHT, in accordance with ASME B and PV Code. This method is called temper-bead technique, which gives the weldments sufficient toughness by tempering the hardened zone of the heat-affected zone on the first layer of the base metal using the heat of the following weld beads. Because there is no regulation in Japan covering this method, a procedure is required to perform it under a special license, after a verification test has been passed. An attempt has been made to develop a method, on the supposition that the temper-bead technique is adopted for replacement of what is called dissimilar welded joints, so that a nickel base alloy is buildup welded at the tip of the nozzle of the low-alloy steel pressure vessel, and a stainless steel pipe is butt welded.

  7. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys.

    PubMed

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-02-28

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83-98 J·mm(-1). Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl₂ due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl₃ layer close to FZ and a thin TiAl₂ layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties.

  8. Microstructure and Tensile Behavior of Laser Arc Hybrid Welded Dissimilar Al and Ti Alloys

    PubMed Central

    Gao, Ming; Chen, Cong; Gu, Yunze; Zeng, Xiaoyan

    2014-01-01

    Fiber laser-cold metal transfer arc hybrid welding was developed to welding-braze dissimilar Al and Ti alloys in butt configuration. Microstructure, interface properties, tensile behavior, and their relationships were investigated in detail. The results show the cross-weld tensile strength of the joints is up to 213 MPa, 95.5% of same Al weld. The optimal range of heat input for accepted joints was obtained as 83–98 J·mm−1. Within this range, the joint is stronger than 200 MPa and fractures in weld metal, or else, it becomes weaker and fractures at the intermetallic compounds (IMCs) layer. The IMCs layer of an accepted joint is usually thin and continuous, which is about 1μm-thick and only consists of TiAl2 due to fast solidification rate. However, the IMCs layer at the top corner of fusion zone/Ti substrate is easily thickened with increasing heat input. This thickened IMCs layer consists of a wide TiAl3 layer close to FZ and a thin TiAl2 layer close to Ti substrate. Furthermore, both bead shape formation and interface growth were discussed by laser-arc interaction and melt flow. Tensile behavior was summarized by interface properties. PMID:28788533

  9. Inertia Friction Welding of Dissimilar Superalloys Mar-M247 and LSHR

    NASA Astrophysics Data System (ADS)

    Senkov, Oleg N.; Mahaffey, David W.; Semiatin, S. Lee; Woodward, Christopher

    2014-11-01

    The solid state inertia friction welding (IFW) process was used for the first time to join two dissimilar Ni-based superalloys, LSHR, a powder metallurgy alloy, and Mar-M247, a directionally solidified alloy. Extensive studies of the microstructure, phase composition, re-distribution of the alloying elements between the welded alloys, microhardness, and welding defects were conducted at different distances from the weld interface, and the results were correlated with the loading and friction conditions during IFW. Possible reasons leading to the formation of the welding defects were discussed and directions for the further improvement of the quality of the IFW of these two dissimilar alloys were outlined.

  10. Fusion welding studies using laser on Ti-SS dissimilar combination

    NASA Astrophysics Data System (ADS)

    Shanmugarajan, B.; Padmanabham, G.

    2012-11-01

    Laser welding investigations were carried out on dissimilar Ti-SS combination. The study is aimed to improve the weld strength and ductility by minimizing harmful intermetallics and taking advantage of high cooling rates in laser welding. Results of continuous wave 3.5 kW CO2 laser welding of totally dissimilar combination of Titanium and stainless steel (304) have been discussed. Bead on plate welding experiments were conducted to identify the laser welding parameters using depth of penetration as criteria. The welding of dissimilar combination has been attempted both autogenously and with interlayers such as Vanadium (V) and Tantalum (Ta) in the form of laser cladding as well as strip. Autogenous welds were carried out by varying the laser power, welding speed and position of the laser beam with respect to the joint centre. The resultant welds are characterized by macrostructure analysis, SEM/EDAX and XRD and as welded tensile test in UTM. The autogenous welds have exhibited extensive cracking even when welded at high speeds or by manipulating the beam position with respect to the joint. Similarly Vandaium as interlayer could not achieve crack free joint. A joint with 40 MPa strength could be made with Ta as interlayer. Results and analysis of these variants of laser welded joints are reported and discussed.

  11. Grain boundary defects initiation at the outer surface of dissimilar welds: Corrosion mechanism studies

    SciTech Connect

    Bouvier, O. De; Yrieix, B.

    1995-12-31

    Dissimilar welds located on the primary coolant system of the French PWR plants exhibit grain boundary defects in the true austenitic zones of the first buttering layer. If grain boundaries reach the interface, they can extend to the martensitic band. Those defects are filled with compact oxides. In addition, the ferritic base metal presents some pits along the interface. Nowadays, three mechanisms are proposed to explain the initiation of those defects: stress corrosion cracking, intergranular corrosion and high temperature intergranular oxidation. This paper is dealing with the study of the mechanisms involved in the corrosion phenomenon. Intergranular corrosion tests performed on different materials show that only the first buttering layer, even with some {delta} ferrite, is sensitized. The results of stress corrosion cracking tests in water solutions show that intergranular cracking is possible on a bulk material representative of the first buttering layer. It is unlikely on actual dissimilar welds where the ferritic base metal protects the first austenitic layer by galvanic coupling. Therefore, the stress corrosion cracking assumption cannot explain the initiation of the defects in aqueous environment. The results of the investigations and of the corrosion studies led to the conclusion that the atmosphere could be the only possible aggressive environment. This conclusion is based on natural atmospheric exposure and accelerated corrosion tests carried out with SO{sub 2} additions in controlled atmosphere. They both induce a severe intergranular corrosion on true sensitized austenitic materials.

  12. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  13. Finite Element Based Thermal Modeling of Friction Welding of Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Nagaraj, P.; Selvaraj, R. Meby

    Friction welding is a solid state joining process of joining either similar or dissimilar materials. Joining of ceramic/metal joints by friction welding has opened up new possibilities in many engineering applications. In the present work, thermal modeling of friction welding process has been carried out. Using Finite Element Approach (FEA), analytical solutions were arrived for different ceramic/metal combinations. The temperature distributions of cylindrical surfaces of the alumina and the metals are found by means of 1D heat transfer assumption considering the effect of convection. In the thermal analysis, interfacial temperature and thermal conductivity of the material play a significant role. Based on the obtained temperature distribution the graphs are plotted between the length of the joint and the temperatures. Thus the knowledge of the temperature joint distribution could be helpful in predicting the thermal cycle of the process, microstructure evolution and residual stress formation. Thus the obtained graph helps to study and predict the temperature distribution of both the materials.

  14. Dissimilar welding of nickel-based Alloy 690 to SUS 304L with Ti addition

    NASA Astrophysics Data System (ADS)

    Lee, H. T.; Jeng, S. L.; Yen, C. H.; Kuo, T. Y.

    2004-10-01

    This study investigates the effects of Ti addition on the weldability, microstructure and mechanical properties of a dissimilar weldment of Alloy 690 and SUS 304L. Shielding metal arc welding (SMAW) is employed to butt-weld two plates with three welding layers, where each layer is deposited in a single pass. To investigate the effects of Ti addition, the flux coatings of the electrodes used in the welding process are modified by varying additions of either a Ti-Fe compound or a Ti powder. The results indicate that the microstructure of the fusion zone (FZ) is primarily dendritic. With increasing Ti content, it is noted that the microstructure changes from a columnar dendritic to an equiaxed dendritic, in which the primary dendrite arm spacing (PDAS) becomes shorter. Furthermore, it is observed that the amount of Al-Ti oxide phase increases in the inter-dendritic region, while the amount of Nb-rich phase decreases. Moreover, the average hardness of the FZ increases slightly. The results indicate that Ti addition prompts a significant increase in the elongation of the weldment (i.e. 36.5%, Ti: 0.41 wt%), although the tensile strength remains relatively unchanged. However, at an increased Ti content of 0.91 wt%, an obvious reduction in the tensile strength is noted, which can be attributed to a general reduction in the weldability of the joint.

  15. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys.

    PubMed

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-05-08

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg₂Al₃. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research.

  16. A Review of Dissimilar Welding Techniques for Magnesium Alloys to Aluminum Alloys

    PubMed Central

    Liu, Liming; Ren, Daxin; Liu, Fei

    2014-01-01

    Welding of dissimilar magnesium alloys and aluminum alloys is an important issue because of their increasing applications in industries. In this document, the research and progress of a variety of welding techniques for joining dissimilar Mg alloys and Al alloys are reviewed from different perspectives. Welding of dissimilar Mg and Al is challenging due to the formation of brittle intermetallic compound (IMC) such as Mg17Al12 and Mg2Al3. In order to increase the joint strength, three main research approaches were used to eliminate or reduce the Mg-Al intermetallic reaction layer. First, solid state welding techniques which have a low welding temperature were used to reduce the IMCs. Second, IMC variety and distribution were controlled to avoid the degradation of the joining strength in fusion welding. Third, techniques which have relatively controllable reaction time and energy were used to eliminate the IMCs. Some important processing parameters and their effects on weld quality are discussed, and the microstructure and metallurgical reaction are described. Mechanical properties of welds such as hardness, tensile, shear and fatigue strength are discussed. The aim of the report is to review the recent progress in the welding of dissimilar Mg and Al to provide a basis for follow-up research. PMID:28788646

  17. Effect of Austenitic and Austeno-Ferritic Electrodes on 2205 Duplex and 316L Austenitic Stainless Steel Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.

    2016-11-01

    This study addresses the effect of different types of austenitic and austeno-ferritic electrodes (E309L, E309LMo and E2209) on the relationship between weldability, microstructure, mechanical properties and corrosion resistance of shielded metal arc welded duplex/austenitic (2205/316L) stainless steel dissimilar joints using the combined techniques of optical, scanning electron microscope, energy-dispersive spectrometer and electrochemical. The results indicated that the change in electrode composition led to microstructural variations in the welds with the development of different complex phases such as vermicular ferrite, lathy ferrite, widmanstatten and intragranular austenite. Mechanical properties of welded joints were diverged based on compositions and solidification modes; it was observed that ferritic mode solidified weld dominated property wise. However, the pitting corrosion resistance of all welds showed different behavior in chloride solution; moreover, weld with E2209 was superior, whereas E309L exhibited lower resistance. Higher degree of sensitization was observed in E2209 weld, while lesser in E309L weld. Optimum ferrite content was achieved in all welds.

  18. Characterization of disk-laser dissimilar welding of titanium alloy Ti-6Al-4V to aluminum alloy 2024

    NASA Astrophysics Data System (ADS)

    Caiazzo, Fabrizia; Alfieri, Vittorio; Cardaropoli, Francesco; Corrado, Gaetano; Sergi, Vincenzo

    2013-02-01

    Both technical and economic reasons suggest to join dissimilar metals, benefiting from the specific properties of each material in order to perform flexible design. Adhesive bonding and mechanical joining have been traditionally used although adhesives fail to be effective in high-temperature environments and mechanical joining are not adequate for leak-tight joints. Friction stir welding is a valid alternative, even being difficult to perform for specific joint geometries and thin plates. The attention has therefore been shifted to laser welding. Interest has been shown in welding titanium to aluminum, especially in the aviation industry, in order to benefit from both corrosive resistance and strength properties of the former, and low weight and cost of the latter. Titanium alloy Ti-6Al-4V and aluminum alloy 2024 are considered in this work, being them among the most common ones in aerospace and automotive industries. Laser welding is thought to be particularly useful in reducing the heat affected zones and providing deep penetrative beads. Nevertheless, many challenges arise in welding dissimilar metals and the aim is further complicated considering the specific features of the alloys in exam, being them susceptible to oxidation on the upper surface and porosity formation in the fused zone. As many variables are involved, a systematic approach is used to perform the process and to characterize the beads referring to their shape and mechanical features, since a mixture of phases and structures is formed in the fused zone after recrystallization.

  19. Residual stress in laser welded dissimilar steel tube-to-tube joints

    SciTech Connect

    Sun, Zheng . Lab. of Production Engineering)

    1993-09-01

    Austenitic-ferritic dissimilar steel joints are widely used in power generation systems. Their utilization has proved to be efficient in terms of satisfactory properties and the economics. These types of joints have usually been produced using conventional welding processes, such as tungsten inert gas (TIG) welding. With the rapid development of high power lasers, laser welding has received considerable attention. Laser welding offers many advantages over conventional welding processes, e.g. low heat input, small heat-affected zone (HAZ), small distortion, and welding in an exact and reproducible manner. Residual stress distribution in laser welds may also differ from those made by conventional welding processes due to its special features. Residual stress, particularly tensile residual stress in the weld, can be very important factor in controlling the quality and service life of the welded structure. The formation of tensile residual stress in the weld may result in the initiation of fatigue cracking, stress corrosion cracking or other types of fractures. It is useful, therefore, to understand the distribution of residual stress in austenitic-ferritic laser welds, and thus evaluate the quality of the joints. Although residual stress distribution in the welded joints has been extensively investigated, little data are available for the residual stress distribution in laser welds. The aim of the work was to examine residual stress distribution along laser welds of dissimilar steel tube-to-tube joints, which were made by both autogeneous welding and welding with filler wire. The results were also compared with the joints made by plasma arc and TIG welding.

  20. Integrity assessment of the ferritic / austenitic dissimilar weld joint between intermediate heat exchanger and steam generator in fast reactor

    SciTech Connect

    Jayakumar, T.; Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, S.; Kumar, J. G.; Mathew, M. D.

    2012-07-01

    Integrity of the modified 9Cr-1Mo / alloy 800 dissimilar joint welded with Inconel 182 electrodes has been assessed under creep condition based on the detailed analysis of microstructure and stress distribution across the joint by finite element analysis. A hardness peak at the ferritic / austenitic weld interface and a hardness trough at the inter-critical heat affected zone (HAZ) in ferritic base metal developed. Un-tempered martensite was found at the ferritic / austenitic weld interface to impart high hardness in it; whereas annealing of martensitic structure of modified 9Cr-1Mo steel by inter-critical heating during welding thermal cycle resulted in hardness tough in the inter-critical HAZ. Creep tests were carried out on the joint and ferritic steel base metal at 823 K over a stress range of 160-320 MPa. The joint possessed lower creep rupture strength than its ferritic steel base metal. Failure of the joint at relatively lower stresses occurred at the ferritic / austenitic weld interface; whereas it occurred at inter-critical region of HAZ at moderate stresses. Cavity nucleation associated with the weld interface particles led to premature failure of the joint. Finite element analysis of stress distribution across the weld joint considering the micro-mechanical strength inhomogeneity across it revealed higher von-Mises and principal stresses at the weld interface. These stresses induced preferential creep cavitation at the weld interface. Role of precipitate in enhancing creep cavitation at the weld interface has been elucidated based on the FE analysis of stress distribution across it. (authors)

  1. Characterization of low alloy ferritic steel–Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET

    SciTech Connect

    Wang, Siyan; Ding, Jie; Ming, Hongliang; Zhang, Zhiming; Wang, Jianqiu

    2015-02-15

    The interface region of welded A508–Alloy 52 M is characterized by scanning probe microscope (SPM) techniques, scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM)/Energy Dispersive Spectroscopy (EDS) and scanning vibrate electrode technique (SVET). The regions along the welded A508–Alloy 52 M interface can be categorized into two types according to their different microstructures. In the type-I interface region, A508 and Alloy 52 M are separated by the fusion boundary, while in the type-II interface region, A508 and Alloy 52 M are separated by a martensite zone. A508, martensite zone and grain boundaries in Alloy 52 M are ferromagnetic while the Alloy 52 M matrix is paramagnetic. The Volta potentials measured by scanning Kelvin probe force microscopy (SKPFM) of A508, martensite zone and Alloy 52 M follow the order: V{sub 52} {sub M} > V{sub A508} > V{sub martensite}. The corrosion behavior of A508–Alloy 52 M interface region is galvanic corrosion, in which Alloy 52 M is cathode while A508 is anode. The martensite dissolves faster than Alloy 52 M, but slower than A508 in the test solution. - Highlights: • The A508–Alloy 52 M interface regions can be categorized into two types. • The chromium depleted region is observed along the Alloy 52 M grain boundary. • The Alloy 52 M grain boundaries which are close to the interface are ferromagnetic. • Martensite zone has lower Volta potential but higher corrosion resistance than A508.

  2. Local fracture properties and dissimilar weld integrity in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Wang, Guozhen; Wang, Haitao; Xuan, Fuzhen; Tu, Shantung; Liu, Changjun

    2013-09-01

    In this paper, the local fracture properties in a Alloy52M dissimilar metal welded joint (DMWJ) between A508 ferritic steel and 316 L stainless steel in nuclear power plants were investigated by using the single-edge notched bend (SENB) specimens, and their use in integrity assessment of DMWJ structures was analyzed. The results show that the local fracture resistance in the DMWJ is determined by local fracture mechanism, and which is mainly related to the microstructures and local strength mismatches of materials at the crack locations. The initial cracks always grow towards the materials with lower strength, and the crack path deviation is mainly controlled by the local strength mismatch. If the local fracture properties could not be used for cracks in the heat affected zones (HAZs), interface and near interface zones, the use of the fracture properties ( J-resistance curves) of base metals or weld metals following present codes will unavoidably produce non-conservative (unsafe) or excessive conservative assessment results. In most cases, the assessment results will be potentially unsafe. Therefore, it is recommended to obtain and use local mechanical and fracture properties in the integrity assessment of DMWJs.

  3. An insight to the mechanism of weld penetration in dissimilar pulsed laser welding of niobium and Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Torkamany, M. J.; Malek Ghaini, F.; Poursalehi, R.

    2016-05-01

    In laser welding of Ti-6Al-4V to niobium, the interaction of laser with the two metals is such that at the investigated laser conditions there will be conduction mode on the Nb side and keyhole on the Ti side. Thus the weld pool is not developed symmetrically as there will not be sufficient penetration in the higher melting point higher conductivity niobium side. The mechanisms of energy absorption and effective melting in dissimilar laser welding are analyzed. It is shown that more penetration into niobium is obtained when the laser energy is absorbed by Ti-6Al-4V and then the molten Ti-6Al-4V dissolves the niobium metal.

  4. Investigation on the Effect of Friction Welding Parameters on Impact Strength in Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Shanjeevi, C.; Arputhabalan, J. Jeswin; Dutta, Rohan; Pradeep

    2017-05-01

    Due to increase in demand of joining dissimilar material combinations in applications such as cryogenic fluids, power generation industries and reactor cooling systems, the solid state welding is most suitable in the current scenario. In this study, the experiment is undergone to evaluate the impact strength on the friction welded joint of copper and AISI 430 ferritic stainless steel material in the weld interface. The experiment is conducted by varying the input parameters such as friction pressure, upset pressure, burn-off length and rotational speed using Taguchi’s L9 orthogonal array. The welded joints were examined under scanning electron microscopy (SEM) and type of failure mode is discussed.

  5. Microstructures and microhardness at fusion boundary of 316 stainless steel/Inconel 182 dissimilar welding

    SciTech Connect

    Wang, Wei; Lu, Yonghao; Ding, Xianfei; Shoji, Tetsuo

    2015-09-15

    Microstructures and microhardness at fusion boundary of a weld joint were investigated in a 316 stainless steel/Inconel 182 dissimilar weldment. The results showed that there were two alternately distributed typical fusion boundaries, a narrow random boundary (possessed 15% in length) with a clear sharp interface and an epitaxial fusion one with (100){sub BM}//(100){sub WM} at the joint interface. The composition transition, microstructure and hardness across the fusion boundary strongly depended on the type of the fusion boundary. For the random boundary, there was a clear sharp interface and the composition transition with a width of 100 μm took place symmetrically across the grain boundary. For the epitaxial fusion one, however, there were Type-I and Type-II grain boundaries perpendicular and parallel to the epitaxial fusion boundary, respectively. The composition transition took place in the Inconel 182 weld side. Σ3 boundaries in the HAZ of 316SS side and Σ5 grain boundaries in weld metal were usually observed, despite the type of fusion boundary, however the former was much more in epitaxial fusion boundary. Microhardness was continuously decreased across the random fusion boundary from the side of Inconel 182 to 316SS, but a hardening phenomenon appeared in the epitaxial fusion boundary zone because of its fine cellular microstructure. - Highlights: • Two typical fusion boundaries alternately distributed in the fusion interface • The microstructure, composition and hardness across fusion boundary depended on its type. • Different regions in welded joint have different special CSL value boundaries. • Hardening phenomenon only appeared in the epitaxial fusion boundary.

  6. Multiphysical Modeling of Transport Phenomena During Laser Welding of Dissimilar Steels

    NASA Astrophysics Data System (ADS)

    Métais, A.; Matteï, S.; Tomashchuk, I.; Gaied, S.

    The success of new high-strength steels allows attaining equivalent performances with lower thicknesses and significant weight reduction. The welding of new couples of steel grades requires development and control of joining processes. Thanks to high precision and good flexibility, laser welding became one of the most used processes for joining of dissimilar welded blanks. The prediction of the local chemical composition in the weld formed between dissimilar steels in function of the welding parameters is essential because the dilution rate and the distribution of alloying elements in the melted zone determines the final tensile strength of the weld. The goal of the present study is to create and to validate a multiphysical numerical model studying the mixing of dissimilar steels in laser weld pool. A 3D modelling of heat transfer, turbulent flow and transport of species provides a better understanding of diffusion and convective mixing in laser weld pool. The present model allows predicting the weld geometry and element distribution. The model has been developed based on steady keyhole approximation and solved in quasi-stationary form in order to reduce the computation time. Turbulent flow formulation was applied to calculate velocity field. Fick law for diluted species was used to simulate the transport of alloying elements in the weld pool. To validate the model, a number of experiments have been performed: tests using pure 100 μm thick Ni foils like tracer and weld between a rich and poor manganese steels. SEM-EDX analysis of chemical composition has been carried out to obtain quantitative mapping of Ni and Mn distributions in the melted zone. The results of simulations have been found in good agreement with experimental data.

  7. Environmentally assisted cracking behavior of dissimilar metal weldments in simulated BWR coolant environments

    NASA Astrophysics Data System (ADS)

    Huang, J. Y.; Chiang, M. F.; Jeng, S. L.; Huang, J. S.; Kuo, R. C.

    2013-01-01

    The environmentally assisted cracking behavior of dissimilar metal (DM) welds, including Alloy 52-A 508 and Alloy 82-A508, under simulated BWR coolant conditions was studied. Effects of postweld heat treatment and sulfur content of the base metal on the corrosion fatigue and SCC growth rates of DM welds were evaluated. The crack growth rates for the DM weld heat-treated at 621 °C for 24 h were observed to be faster than those for the as-welded. But the DM weld heat-treated at 621 °C for 8 h + 400 °C for 200 h showed better SCC resistance than the as-welded. The longer the heat treatment at 621 °C, the higher the chromium carbides density along the grain boundary was observed. Sulfur could diffuse out of the base metal and segregate along the grain boundaries of the dilution zone, leading to weakening the grain boundary strength and the SCC resistance of the Alloy 52-A508 weld.

  8. Welding of dissimilar alloys for high temperature heat exchangers for SOFC

    SciTech Connect

    Wilson, R.D.; Hatem, J.; Dogan, O.N.; King, P.E.

    2006-10-01

    Reduction in the cost of balance of plant applications is one of the top priority focus areas for the successful implementation of solid oxide fuel cell technology. High temperature heat exchangers are employed to heat cathode air utilizing either hot gases coming from the anode side of the stack or other hot gases generated by external processes. In order to reduce the cost of heat exchangers, it may be necessary to apply several different materials, each in a different temperature zone, for the construction of the heat exchanger. This technique would require the joining of dissimilar materials in the construction. In this work, welding of commercial candidate dissimilar materials is explored. Filler materials were identified using equilibrium phase diagrams and thermodynamic simulation software. Autogenous welding was performed and the welding defects were characterized. Finally, experimental weld microstructures were compared to phases predicted by the simulations.

  9. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-05-22

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x10{sup 17} m{sup −3} is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with

  10. Improvement of bonding properties of laser transmission welded, dissimilar thermoplastics by plasma surface treatment

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Sooriyapiragasam, S.; Behm, H.; Dahlmann, R.

    2015-05-01

    Compared to different welding methods such as ultrasonic welding, laser transmission welding is a relatively new technology to join thermoplastic parts. The most significant advantages over other methods are the contactless energy input which can be controlled very precisely and the low mechanical loads on the welded parts. Therefore, laser transmission welding is used in various areas of application, for example in medical technology or for assembling headlights in the automotive sector. However, there are several challenges in welding dissimilar thermoplastics. This may be due to different melting points on the one hand and different polarities on the other hand. So far these problems are faced with the intermediate layer technique. In this process a layer bonding together the two components is placed between the components. This means that an additional step in the production is needed to apply the extra layer. To avoid this additional step, different ways of joining dissimilar thermoplastics are investigated. In this regard, the improvement in the weldability of the dissimilar thermoplastics polyamide 6 (PA 6) and polypropylene (PP) by means of plasma surface modification and contour welding is examined. To evaluate the influence of the plasma surface modification process on the subsequent welding process of the two dissimilar materials, the treatment time as well as the storage time between treatment and welding are varied. The treatment time in pulsed micro wave excited oxygen plasmas with an electron density of about 1x1017 m-3 is varied from 0.5 s to 120 s and the time between treatment and welding is varied from a few minutes up to a week. As reference, parts being made of the same polymer (PP and PA 6) are welded and tested. For the evaluation of the results of the welding experiments, short-time tensile tests are used to determine the bond strength. Without plasma treatment the described combination of PA 6/PP cannot be welded with sufficient bond

  11. Microstructural Characteristics of a Stainless Steel/Copper Dissimilar Joint Made by Laser Welding

    NASA Astrophysics Data System (ADS)

    Chen, Shuhai; Huang, Jihua; Xia, Jun; Zhang, Hua; Zhao, Xingke

    2013-08-01

    The microstructures and its formation mechanism of a stainless steel/copper dissimilar joint by laser welding were investigated. It was found that the two modes of joining, i.e., welding-brazing and fusion welding, depend on different processing parameters. In the welding-brazing mode, the interface between copper and the fusion zone has scraggy morphology because the molten pool is frozen by solid copper with high thermal conductivity. The interdiffusion of elements occurs in the neighborhood of the interface, which leads to the metallurgy bond of the mode. In the fusion welding mode, the liquid phase in the fusion zone undergoes not only primary but also secondary liquid separation due to the high cooling rate and high supercooling level of laser welding. Some microcracks generated in the fusion zone by thermal stress mismatch are healed by liquid copper filling.

  12. Metal Working and Welding Operations.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  13. A numerical and experimental study of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    Al-Sarraf, Z.; Lucas, M.; Harkness, P.

    2012-12-01

    Ultrasonic metal welding has been the subject of ongoing research and development, most recently concentrating on metal joining in miniature devices, for example to allow solder-free wire bonding. As well as at the small scale, there are also opportunities to research the joining of thicker sheet metals and to widen the range of similar and dissimilar materials that can be successfully joined using this technology. This study presents the design, characterisation and test of a lateral-drive ultrasonic metal spot welding device. The ultrasonic metal spot welding horn is modelled using finite element analysis (FEA) and its vibration behaviour is characterised experimentally to ensure ultrasonic energy is delivered effectively to the weld coupon. The welding stack and fixtures are then designed and mounted on a test machine to allow a series of experiments to be conducted for various welding and ultrasonic parameters. Weld strength is subsequently analysed using tensile-shear tests. The results show how the weld strength is particularly sensitive to the combination of clamping force and ultrasonic vibration amplitude of the welding tip, but there are optimal combinations of these and also limits that must be clearly identified.

  14. Reinforcement of Aluminum Castings with Dissimilar Metals

    SciTech Connect

    Han, Q

    2004-01-07

    The project ''Reinforcement of Aluminum Casting with Dissimilar Metal'' was a Cooperative Research and Development Agreements (CRADAs) between Oak Ridge National Laboratory (ORNL) and Cummins Inc. This project, technologies have been developed to reinforce aluminum castings with steel insert. Defect-free bond between the steel insert and the aluminum casting has been consistently obtained. The push-out experiment indicated that the bond strength is higher than that of the Al-Fin method. Two patents have been granted to the project team that is comprised of Cummins Inc. and ORNL. This report contains four sections: the coating of the steel pins, the cast-in method, microstructure characterization, and the bond strength. The section of the coating of the steel pins contains coating material selection, electro-plating technique for plating Cu and Ni on steel, and diffusion bonding of the coatings to the steel. The section of cast-in method deals with factors that affecting the quality of the metallurgical bond between the coated steel and the aluminum castings. The results of microstructure characteristics of the bonding are presented in the microstructure characterization section. A push-out experiment and the results obtained using this method is described in the section of bond strength/mechanical property.

  15. Growth of lamellar pearlite in the weld zone between dissimilar steels

    NASA Astrophysics Data System (ADS)

    Nikulina, A. A.; Smirnov, A. I.; Bataev, I. A.; Bataev, A. A.; Popelyukh, A. I.

    2016-01-01

    Transmission electron microscopy is used to study the welds between high-carbon pearlitic and chromium-nickel austenitic steel workpieces performed by flash butt welding. It has been established that lamellar pearlite colonies alloyed with chromium and nickel are formed in the weld zones between dissimilar steels. Thin austenite interlayers have been detected in the center of ferrite plates. The structure formed presents the C-F-A-F-C-F-A-F (and so on) sequence of three plate-shaped phases. The ferrite-cementite structure in alloyed-pearlite colonies is finer than that in unalloyed pearlite.

  16. [Effect of different heat treatment on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys].

    PubMed

    Liang, Rui-ying; Li, Chang-yi; Han, Ya-jing; Hu, Xin; Zhang, Lian-yun

    2008-11-01

    To evaluate the effect of heat treatment and porcelain-fused-to-metal (PFM) processing on mechanical properties and microstructure of laser welding CoCr-NiCr dissimilar alloys. Samples of CoCr-NiCr dissimilar alloys with 0.5 mm thickness were laser-welded single-side under the setting parameters of 280 V, 10 ms pulse duration. After being welded, samples were randomly assigned to three groups, 10 each. Group1 and 2 received heat treatment and PFM processing, respectively. Group 3 was control group without any treatment. Tensile strength, microstructure and element distribution of samples in the three groups were tested and observed using tensile test, metallographic examinations, scanning electron microscope (SEM), and energy dispersive spectroscopy (EDS) analysis. After heat treatment and PFM processing, tensile strength of the samples were (537.15 +/- 43.91) MPa and (534.58 +/- 48.47) MPa respectively, and elongation rates in Group 1 and 2 were (7.65 +/- 0.73)% and (7.40 +/- 0.45)%. Ductile structure can be found on tensile fracture surface of samples and it was more obvious in heat treatment group than in PFM group. The results of EDS analysis indicated that certain CoCr alloy diffused towards fusion zone and NiCr side after heat treatment and PFM processing. Compared with PFM processing group, the diffusion in the heat treatment group was more obvious. Heat treatment and PFM processing can improve the mechanical properties and microstructure of welded CoCr-NiCr dissimilar alloy to a certain degree. The improvements are more obvious with heat treatment than with porcelain treatment.

  17. A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels

    NASA Astrophysics Data System (ADS)

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, Sunil; Mathew, M. D.

    2012-04-01

    Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.

  18. Structure-property relationships of dissimilar friction stir welded aluminum alloys

    NASA Astrophysics Data System (ADS)

    Quinones, Rogie Irwin Rodriguez

    In this work, the relationship between microstructure and mechanical properties of dissimilar friction stir welded AA6061-to-AA7050 aluminum alloys were evaluated. Experimental results from this study revealed that static strength increased with the tool rotational speed and was correlated with the material intermixing. Fully-reversed low cycle fatigue experimental results showed an increase in the strain hardening properties as well as the number of cycles-to-failure as the tool rotational speed was increased. Furthermore, under both static and cyclic loading, fracture of the joint was dominated by the AA6061 alloy side of the weld. In addition, inspection of the fatigue surfaces revealed that cracks initiated from intermetallic particles located near the surface. In order to determine the corrosion resistance of the dissimilar joint, corrosion defects were produced on the crown surface of the weld by static immersion in 3.5% NaCl for various exposure times. Results revealed localized corrosion damage in the thermo-mechanically affected and heat affected zones. Results demonstrated a decrease in the fatigue life, with evidence of crack initiation at the corrosion defects; however, the fatigue life was nearly independent of the exposure time. This can be attributed to total fatigue life dominated by incubation time. Furthermore, two types of failure were observed: fatigue crack initiation in the AA6061 side at high strain amplitudes (>0.3%); and fatigue crack initiation in the AA7050 side at low strain amplitudes (<0.2%). Lastly, a microstructure-sensitive model based on a multi-stage fatigue damage concept was extended to the dissimilar friction stir welded joints in order to capture the crack initiation and propagation in as-welded and pre-corroded conditions. Good correlation between experimental fatigue results and the model was achieved based on the variation in the initial defect size, microstructure, and mechanical properties of the dissimilar friction stir

  19. Laser welding of dissimilar materials for lightweight construction and special applications

    NASA Astrophysics Data System (ADS)

    Schimek, Mitja; Springer, André; Pfeifer, Ronny; Kaierle, Stefan

    2013-02-01

    Against the background of climate objectives and the desired reduction of CO2-emissions, optimization of existing industrial products is needed. To counter rising raw material costs, currently used materials are substituted. This will places new requirements on joining technologies for dissimilar material classes. The main difficulty lies in joining these materials cohesively without changing the properties of the base materials. Current research work at the LZH on joining dissimilar materials is being carried out for the automotive sector and for solar absorbers. For the automotive industry, a laser welding process for joining steel and aluminum without using additives is being investigated, equipped with a spectroscopic welding depth control to increase tensile strength. With a specially constructed laser processing head, it is possible to regulate welding penetration depth in the aluminum sheet, reducing the formation of intermetallic phases. Flat plate solar collectors are favorable devices for generating heat from solar energy. The solar absorber is the central part of a collector, consisting of an aluminum sheet and a copper tube which is attached to the aluminum sheet. Research on new laser welding processes aims at reducing the amount of energy required for production of these solar absorbers. In the field of joining dissimilar materials, laser joining processes, especially for special applications, will complement established joining techniques.

  20. Welding of Very Dissimilar Materials (Fe-Al)

    NASA Astrophysics Data System (ADS)

    Schneider, Judy; Radzilowski, Ron

    2014-10-01

    Designers of transportation vehicles (air, land, or sea) continually seek ways to reduce vehicle weight in response to increasing fuel economy mandates, mission requirements, or other competitive pressures. One way to do this is by the selection of material types and their properties based on functional and structural requirements. While these material changes can help meet performance mandates, their implementation in a production environment relies on retaining economic competitiveness. This article traces the history of the various joining processes relevant to the current challenge in joining the very dissimilar families of steel (Fe) and aluminum (Al) alloys.

  1. Laser beam welding of any metal.

    SciTech Connect

    Leong, K. H.

    1998-10-01

    The effect of a metal's thermophysical properties on its weldability are examined. The thermal conductivity, melting point, absorptivity and thermal diffusivity of the metal and the laser beam focused diameter and welding speed influence the minimum beam irradiance required for melting and welding. Beam diameter, surface tension and viscosity of the molten metal affect weld pool stability and weld quality. Lower surface tension and viscosity increases weld pool instability. With larger beam diameters causing wider welds, dropout also increases. Effects of focused beam diameter and joint fitup on weldability are also examined. Small beam diameters are sensitive to beam coupling problems in relation to fitup precision in addition to beam alignment to the seam. Welding parameters for mitigating weld pool instability and increasing weld quality are derived from the above considerations. Guidelines are presented for the tailoring of welding parameters to achieve good welds. Weldability problems can also be anticipated from the properties of a metal.

  2. Dissimilar Friction Stir Welding Between UNS S31603 Austenitic Stainless Steel and UNS S32750 Superduplex Stainless Steel

    NASA Astrophysics Data System (ADS)

    Theodoro, Maria Claudia; Pereira, Victor Ferrinho; Mei, Paulo Roberto; Ramirez, Antonio Jose

    2015-02-01

    In order to verify the viability of dissimilar UNS S31603 austenitic and UNS S32750 superduplex stainless steels joined by friction stir welding, 6-mm-thick plates were welded using a PCBN-WRe tool. The welded joints were performed in position control mode at rotational speeds of 100 to 300 rpm and a feed rate of 100 mm/min. The joints performed with 150 and 200 rpm showed good appearance and no defects. The metallographic analysis of both joints showed no internal defects and that the material flow pattern is visible only in the stirred zone (SZ) of the superduplex steel. On the SZ top, these patterns are made of regions of different phases (ferrite and austenite), and on the bottom and central part of the SZ, these patterns are formed by alternated regions of different grain sizes. The ferrite grains in the superduplex steel are larger than those in the austenitic ones along the SZ and thermo-mechanically affected zone, explained by the difference between austenite and ferrite recrystallization kinetics. The amount of ferrite islands present on the austenitic steel base metal decreased near the SZ interface, caused by the dissolving of the ferrite in austenitic matrix. No other phases were found in both joints. The best weld parameters were found to be 200 rpm rotation speed, 100 mm/min feed rate, and tool position control.

  3. Microstructure and Mechanical Properties of Laser-Welded Joints of Ti-22Al-25Nb/TA15 Dissimilar Titanium Alloys

    NASA Astrophysics Data System (ADS)

    Li, Dalong; Hu, Shengsun; Shen, Junqi; Zhang, Hao; Bu, Xianzheng

    2016-05-01

    Laser beam welding (LBW) was applied to join 1-mm-thick dissimilar titanium alloys, Ti-22Al-25Nb (at.%) and TA15, and the microstructure and mechanical properties of the welded joints were systematically analyzed. Defect-free joints were obtained, and the fusion zone mainly consisted of B2 and martensitic α' phases because of the uneven distribution of the β phase stabilizer and rapid cooling rate of LBW. The phase compositions of the heat-affected zone varied with the different thermal cycles during the welding process. The different microstructures of the dissimilar titanium alloys led to an unsymmetrical hardness profile, with the welded seam exhibiting the lowest value of 271 HV. In room-temperature tensile tests, the fractures all occurred preferentially in the fusion zone. The strengths of the joints were close to those of the base metal but with prominently decreasing ductility. In tensile tests performed at 550 °C, all the joints fractured in the TA15 base metal, and the strength and plasticity of the welds were equivalent to those of the TA15 base metal.

  4. Joining of dissimilar AZ31B magnesium alloy and SS400 mild steel by hybrid gas tungsten arc friction stir welding

    NASA Astrophysics Data System (ADS)

    Joo, SungMin

    2013-11-01

    The joining of dissimilar materials, magnesium alloy (AZ31B) and mild steel (SS400), was performed using a hybrid gas tungsten arc-friction stir welding (HGTAFSW) method that applied a preceding gas tungsten arc welding (GTAW) preheating heat source to a mild steel plate surface during friction stir welding (FSW). The mechanical and microstructural characteristics of the HGTAFS welds were evaluated and compared to those of FS welds to confirm the effect of the additional GTAW preheating heat source. The tensile strength of the HGTAFS welds was approximately 91% of that of the magnesium alloy base metal but higher than that of the FS welds. This was attributed to the enhanced material plastic flow and partial annealing effect in the magnesium alloy and mild steel materials by GTAW reheating of the mild steel side, which induced a significant increase in the elongation of the welds. The concentration profiles indicated that no intermetallic FeAl and FeAl3 compounds had formed according to the phase diagram, which led to a decrease in joint strength. Overall, the use of HGTAFSW by applying a GTAW preheating heat source to a mild steelplate surface resulted in a mechanically sounder and metallurgically defect-free welds compared to FSW.

  5. Tensile and Fatigue Properties of Single and Multiple Dissimilar Welded Joints of DP980 and HSLA

    NASA Astrophysics Data System (ADS)

    Cui, Q. L.; Parkes, D.; Westerbaan, D.; Nayak, S. S.; Zhou, Y.; Saha, D. C.; Liu, D.; Goodwin, F.; Bhole, S.; Chen, D. L.

    2017-01-01

    The present study focused on single and multiple dissimilar joints between DP980 and high-strength low-alloy (HSLA) galvanized steels. The tensile properties of the dissimilar joint between the strong DP980 and the relatively soft HSLA reflected only the properties of HSLA with plastic deformation, and final fracture took place entirely in HSLA. The fatigue properties of the dissimilar joints were more intriguing, with the strong DP980 outperforming at high stress amplitude and the ductile HSLA outperforming at low stress amplitude. For different load amplitudes, fatigue failure occurred in different materials and at different locations. The fatigue strength of DP980 was more negatively impaired by weld defects than that of HSLA.

  6. Tensile and Fatigue Properties of Single and Multiple Dissimilar Welded Joints of DP980 and HSLA

    NASA Astrophysics Data System (ADS)

    Cui, Q. L.; Parkes, D.; Westerbaan, D.; Nayak, S. S.; Zhou, Y.; Saha, D. C.; Liu, D.; Goodwin, F.; Bhole, S.; Chen, D. L.

    2017-02-01

    The present study focused on single and multiple dissimilar joints between DP980 and high-strength low-alloy (HSLA) galvanized steels. The tensile properties of the dissimilar joint between the strong DP980 and the relatively soft HSLA reflected only the properties of HSLA with plastic deformation, and final fracture took place entirely in HSLA. The fatigue properties of the dissimilar joints were more intriguing, with the strong DP980 outperforming at high stress amplitude and the ductile HSLA outperforming at low stress amplitude. For different load amplitudes, fatigue failure occurred in different materials and at different locations. The fatigue strength of DP980 was more negatively impaired by weld defects than that of HSLA.

  7. High-Temperature Deformation Constitutive Law for Dissimilar Weld Residual Stress Modeling: Effect of Thermal Load on Strain Hardening

    SciTech Connect

    Yu, Xinghua; Wang, Yanli; Crooker, Paul; Feng, Zhili

    2015-01-01

    Weld residual stress is one of the primary driving forces for primary water stress corrosion cracking in dissimilar metal welds (DMWs). To mitigate tensile residual stress in DMWs, it is critical to understand residual stress distribution by modeling techniques. Recent studies have shown that weld residual stress prediction using today s DMW residual stress models strongly depends on the strain-hardening constitutive model chosen. The commonly used strain-hardening models (isotropic, kinematic, and mixed) are all time-independent and inadequate to account for the time-dependent (viscous) plastic deformation at the elevated temperatures experienced during welding. For materials with profound strain-hardening, such as stainless steels and nickel-based alloys that are widely used in nuclear reactor and piping systems, the equivalent plastic strain the determinate factor of the flow stress can be highly dependent on the recovery and recrystallization processes. These processes are in turn a strong function of temperature, time, and deformation rate. Recently, the authors proposed a new temperature- and time-dependent strain-hardening constitutive model: the dynamic strain-hardening constitutive model. The application of such a model has resulted in improved weld residual stress prediction compared to the residual stress measurement results from the contour and deep-hole drilling methods. In this study, the dynamic strain-hardening behavior of Type 304 stainless steel and Alloy 82 used in pressure vessel nozzle DMWs is experimentally determined. The kinetics of the recovery and recrystallization of flow stress are derived from experiments, resulting in a semi-empirical equation as a function of pre-strain, time, and temperature that can be used for weld residual stress modeling. The method used in this work also provides an approach to study the kinetics of recovery and recrystallization of other materials with significant strain-hardening.

  8. Evaluation of Microstructure, Mechanical Properties and Corrosion Resistance of Friction Stir-Welded Aluminum and Magnesium Dissimilar Alloys

    NASA Astrophysics Data System (ADS)

    Verma, Jagesvar; Taiwade, Ravindra V.; Sapate, Sanjay G.; Patil, Awanikumar P.; Dhoble, Ashwinkumar S.

    2017-09-01

    Microstructure, mechanical properties and corrosion resistance of dissimilar friction stir-welded aluminum and magnesium alloys were investigated by applying three different rotational speeds at two different travel speeds. Sound joints were obtained in all the conditions. The microstructure was examined by an optical and scanning electron microscope, whereas localized chemical information was studied by energy-dispersive spectroscopy. Stir zone microstructure showed mixed bands of Al and Mg with coarse and fine equiaxed grains. Grain size of stir zone reduced compared to base metals, indicated by dynamic recrystallization. More Al patches were observed in the stir zone as rotational speed increased. X-ray diffraction showed the presence of intermetallics in the stir zone. Higher tensile strength and hardness were obtained at a high rotational speed corresponding to low travel speed. Tensile fractured surface indicated brittle nature of joints. Dissimilar friction stir weld joints showed different behaviors in different corrosive environments, and better corrosion resistance was observed at a high rotational speed corresponding to low travel speed (FW3) in a sulfuric and chloride environments. Increasing travel speed did not significantly affect on microstructure, mechanical properties and corrosion resistance as much as the rotational speed.

  9. Microstructural and Mechanical Characterization of a Dissimilar Friction Stir-Welded AA5083-AA7B04 Butt Joint

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Ding, Hua; Cai, Zhihui; Zhao, Jingwei; Li, Jizhong

    2017-02-01

    Friction stir welding (FSW) has been used for joining AA5083 and AA7B04 alloy sheets with the aim of studying the microstructure and the mechanical properties of dissimilar FSW joints obtained by varying the initial base metal state of AA7B04 alloy. The results show that the initial base metal state has a significant impact on the material flow during dissimilar FSW. As compared with the joints placing hard alloy (artificially aged AA7B04-AA or naturally aged AA7B04-NA) on the retreating side, it becomes easier transporting AA5083 from advancing side to retreating side when soft alloy (annealed AA7B04-O) is placed on the retreating side. The atomic diffusion does not occur at the interface between AA5083 and AA7B04, indicating that the mixing of the two materials is merely mechanical. Grain refinement is observed in the stir zone. The failure location during tensile tests is different depending on the initial base metal state. The joints (AA5083/AA7B04-AA and AA5083/AA7B04-O) fail in the base metal on the soft material side which corresponds to the minimum values in hardness profiles. Differently, the joints (AA5083/AA5083 and AA5083/AA7B04-O) fail in the stir zone due to the presence of defects including "zigzag line," kissing bond and discontinuous voids.

  10. Microstructural and Mechanical Characterization of a Dissimilar Friction Stir-Welded AA5083-AA7B04 Butt Joint

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Ding, Hua; Cai, Zhihui; Zhao, Jingwei; Li, Jizhong

    2016-12-01

    Friction stir welding (FSW) has been used for joining AA5083 and AA7B04 alloy sheets with the aim of studying the microstructure and the mechanical properties of dissimilar FSW joints obtained by varying the initial base metal state of AA7B04 alloy. The results show that the initial base metal state has a significant impact on the material flow during dissimilar FSW. As compared with the joints placing hard alloy (artificially aged AA7B04-AA or naturally aged AA7B04-NA) on the retreating side, it becomes easier transporting AA5083 from advancing side to retreating side when soft alloy (annealed AA7B04-O) is placed on the retreating side. The atomic diffusion does not occur at the interface between AA5083 and AA7B04, indicating that the mixing of the two materials is merely mechanical. Grain refinement is observed in the stir zone. The failure location during tensile tests is different depending on the initial base metal state. The joints (AA5083/AA7B04-AA and AA5083/AA7B04-O) fail in the base metal on the soft material side which corresponds to the minimum values in hardness profiles. Differently, the joints (AA5083/AA5083 and AA5083/AA7B04-O) fail in the stir zone due to the presence of defects including "zigzag line," kissing bond and discontinuous voids.

  11. Oil-Ash Corrosion Resistance of Dissimilar T22/T91 Welded Joint of Super Heater Tubes

    NASA Astrophysics Data System (ADS)

    Mittal, Rutash; Sidhu, Buta Singh

    2015-02-01

    The studies on the high temperature corrosion of the dissimilar metal weldment are necessary for longer service of the weldments in corrosive medium. This paper reports the performance of microstructurally different regions, namely heat-affected zone (HAZ), weld metal (WM), and base metal (BM) of dissimilar metal weldment of T22/T91 in the molten salt (Na2SO4-60%V2O5) environment under cyclic studies. The T22 HAZ, WM, and T91 HAZ were observed to oxidize at higher rates and develop more scale thickness than other regions in the weldment. Microstructures and elemental analysis indicate lesser availability of Cr in T22 HAZ and T91 HAZ due to formation of Cr-rich phases, which ultimately causes the difference in oxidation behavior of different regions. The presence of chromium carbides and intermetallics in un-oxidized T22 HAZ region and martensitic structure with the presence of delta ferrites in un-oxidized T91 HAZ region was observed to be the major cause behind the weak corrosion resistance of the respective HAZs. The higher oxidation rate of T22 HAZ may be attributed to the absence of protective scale of Cr2O3 and presence of Fe3O4 phases. Similarly higher oxidation rate of T91 HAZ region can be attributed to lesser availability of Cr due to the propensity of development of delta ferrite in martensitic structure.

  12. Three-Dimensional Thermomechanical Simulation and Experimental Validation on Failure of Dissimilar Material Welds

    NASA Astrophysics Data System (ADS)

    Santosh, R.; Das, S. K.; Das, G.; Korody, J.; Kumar, S.; Singh, P. K.; Ghosh, M.

    2016-07-01

    Dissimilar material weld joints, consisting of low-alloy steel and 304LN austenitic stainless steel (SS), have critical application in boiling water reactors in the nuclear industry. It was predicted that phase transformation adjacent to the fusion boundary and stress distribution across the transition joint play a key role in the structural degeneration of these welds. Quantitatively, to evaluate their contribution, two different joints were considered. One was fabricated with buttering material 309L SS (M/S Mishra Dhatu Nigam Limited, Hyderabad, India), and the other was produced with buttering material IN182 (M/S Mishra Dhatu Nigam Limited, Hyderabad, India). Base materials remained the same for both. Thermomechanical simulation on dissimilar material welds was performed using finite-element modeling to predict the thermal effect and stress prone area. Temperature-dependent thermal and structural properties were considered for simulation. Simulation results were compared with microstructural characteristics, and data were obtained from the in-situ tensile test. Simulation results exhibited that stress was at maximum in the buttering material and made the zone weaker with respect to adjacent areas. During the validation of results, it was observed that failure occurred through buttering material and endorsed the inference. The variation in mechanical properties of the two welds was explained considering the effect of thermal state and stress distribution.

  13. Effect of Peculiarities of Heat Transfer, Diffusion and Phase Transformation on Joint Formation During Welding of Dissimilar Materials by High Power Fiber Laser

    NASA Astrophysics Data System (ADS)

    Turichin, Gleb; Klimova, Olga; Valdaytseva, Ekaterina

    The article describes mathematical models of diffusion and thermal processes for welding of dissimilar materials and kinetic model of diffusion-controlled deposition and growth of intermetallic inclusions in the weld. Developed models were combined and implemented in the model of weld joint formation for dissimilar materials. To verify a model the microstructure analysis of weld joints and elemental analysis in the diffusion zone by SEM has been made for welding of systems Fe-Cu, Al-Ti, Fe-Al. The good agreement between calculated and experimental data has been obtained. Examples of developed technologies of welding of dissimilar materials using high-power fiber lasers were discussed also.

  14. Ultrasonic metal welding with a vibration source using longitudinal and torsional vibration transducers

    NASA Astrophysics Data System (ADS)

    Asami, Takuya; Tamada, Yosuke; Higuchi, Yusuke; Miura, Hikaru

    2017-07-01

    Conventional ultrasonic metal welding for joining dissimilar metals uses a linear vibration locus, although this method suffers from problems such as low overall weld strength. Our previous studies have shown that ultrasonic welding with a planar vibration locus improves the weld strength. However, the vibration source in our previous studies had problems in longitudinal-torsional vibration controllability and small welding tip. Therefore, the study of the optimal shape of the vibration locus was difficult. Furthermore, improvement of weld strength cannot be expected. We have developed a new ultrasonic vibration source that can control the longitudinal-torsional vibration and can connect to a large welding tip. In this study, we clarified the longitudinal-torsional vibration controllability of the developed ultrasonic vibration source. Moreover, we clarified that using the planar locus of the developed vibration source produced a higher weld strength than our previous studies, and clarified the optimal shape of the vibration locus.

  15. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    DOE PAGES

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    2017-01-01

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld centermore » line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.« less

  16. Numerical and neutron diffraction measurement of residual stress distribution in dissimilar weld

    SciTech Connect

    Eisazadeh, Hamid; Bunn, Jeffrey R.; Aidun, Daryush K.

    2017-01-01

    In this study, a model considering an asymmetric power heat distribution, temperature-dependent material properties, strain hardening and phase transformation was developed to predict temperature field and residual stress distribution in GTA dissimilar weld between austenitic stainless steel (304) and low carbon steel (1018). The effect of martensite formation on longitudinal and transverse residual stress distributions were investigated using both FE model and neutron diffraction measurement. The results indicate that martensitic phase has a significant influence on both residual stress components, i.e., transverse and longitudinal, and it not only can change the distribution shape of residual stress near the weld center line but, also, can alter the peak value of the residual stresses. The calculated temperature and weld zone profile were in agreement with the experimental results. Favorable general agreement was also found between the calculated residual stress distribution and residual stress measurements by the neutron diffraction method.

  17. Process modeling and parameter optimization using radial basis function neural network and genetic algorithm for laser welding of dissimilar materials

    NASA Astrophysics Data System (ADS)

    Ai, Yuewei; Shao, Xinyu; Jiang, Ping; Li, Peigen; Liu, Yang; Yue, Chen

    2015-11-01

    The welded joints of dissimilar materials have been widely used in automotive, ship and space industries. The joint quality is often evaluated by weld seam geometry, microstructures and mechanical properties. To obtain the desired weld seam geometry and improve the quality of welded joints, this paper proposes a process modeling and parameter optimization method to obtain the weld seam with minimum width and desired depth of penetration for laser butt welding of dissimilar materials. During the process, Taguchi experiments are conducted on the laser welding of the low carbon steel (Q235) and stainless steel (SUS301L-HT). The experimental results are used to develop the radial basis function neural network model, and the process parameters are optimized by genetic algorithm. The proposed method is validated by a confirmation experiment. Simultaneously, the microstructures and mechanical properties of the weld seam generated from optimal process parameters are further studied by optical microscopy and tensile strength test. Compared with the unoptimized weld seam, the welding defects are eliminated in the optimized weld seam and the mechanical properties are improved. The results show that the proposed method is effective and reliable for improving the quality of welded joints in practical production.

  18. Silver plating ensures reliable diffusion bonding of dissimilar metals

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Dissimilar metals are reliably joined by diffusion bonding when the surfaces are electroplated with silver. The process involves cleaning and etching, anodization, silver striking, and silver plating with a conventional plating bath. It minimizes the formation of detrimental intermetallic phases and provides greater tolerance of processing parameters.

  19. Metal Transfer in Gas Metal Arc Welding

    DTIC Science & Technology

    1989-09-30

    detaching drops can have significant effects on the consequent weld quality and production rate. In naval ship construction a greater percentage of the...Appendix A of present report (part)) explored the effects of welding p~rameters on metal transfer phonom"a in GMkW. Droplet sizes were measured by...time scales estimates showed that viscous effects are expected to be unimportant unless Marangoni (thermocapillary) convention is significant. As shown

  20. Formation of a diffusion-based intermetallic interface layer in friction stir welded dissimilar Al-Cu lap joints

    NASA Astrophysics Data System (ADS)

    Marstatt, R.; Krutzlinger, M.; Luderschmid, J.; Zaeh, M. F.; Haider, F.

    2017-03-01

    The joining of dissimilar metals is an important issue in modern lightweight design. Friction Stir Welding (FSW) is suitable for this task since the solidus temperature is usually not exceeded during the process. As a consequence, dissimilar joints can be produced with a minimum of deteriorating intermetallic phases. The latest studies showed the formation of intermetallic layers at the bonding interface with no significant negative influence on the seam quality. In this study, those intermetallic nanolayers at the interface of aluminium / copper lap joints were analysed. For the experiments, the commercially pure alloys EN AW-1050 and CW008A were chosen. The process temperature changed with respect to the parameter setup and was measured at different locations of the seam. The intermetallic layers at the interface were analysed by scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The experiments show that the thickness of the interlayer clearly correlates with the process temperature using an Arrhenius equation. It is supposed, that the rotating probe removes the oxide layers of the metal surfaces and a metallic bonding between the Al- and the Cu-phase is formed. Due to the elevated temperature after the probe has passed, the intermetallic layer has emerged by interdiffusion.

  1. Mechanics and mechanisms of ultrasonic metal welding

    NASA Astrophysics Data System (ADS)

    de Vries, Edgar

    During ultrasonic welding of sheet metal, normal and shear forces act on the parts to be welded and the weld interface. These forces are a result of the ultrasonic vibrations of the tool, pressed onto the parts to be welded. Furthermore they determine the weld quality and the power that is needed to produce the weld. The main goal in this study is to measure and calculate the tangential forces during ultrasonic metal welding that act on the parts and the weld interface and correlate them to weld quality. In this study a mechanics based model was developed which included a model for the temperature generation during welding and its effect on the mechanical material properties. This model was then used to calculate the interface forces during welding. The model results were in good agreement with the experimental results, which included the measured shear force during welding. With the knowledge of the forces that act at the interface it might be possible to control weld quality (strength) and avoid sonotrode welding (sticking of the sonotrode to the parts). Without a solution to these two problems USMW will never be applicable to large scale automated production use, despite its advantages. In the experiments the influence of part dimensions, friction coefficient, normal force and vibration amplitude on weld quality and sonotrode adhesion were examined. The presented model is capable of predicting and explaining unfavorable welding conditions, therefore making it possible to predetermine weld locations on larger parts or what surface preparation of the parts to be welded would lead to an improved welding result. Furthermore shear force at the anvil measured during welding could be correlated to changing welding conditions. This is a new approach of explaining the process of USMW, because it is based on mechanical considerations. The use of a shear force measuring anvil has the potential to be implemented into welding systems and the shear force would provide an

  2. Intermediate temperature joining of dissimilar metals

    SciTech Connect

    Hosking, F.M.; Stephens, J.J.; Rejent, J.A.

    1999-04-01

    Duplex stainless steel and silver-nickel-silver laminate were jointed to copper with a gold-germanium filler metal. Test joints were processed at, or below, 450 C (842 F) to assure meeting minimum base metal yield strength requirements. Creep and tensile properties of the bulk filler metal candidates, including a gold-indium alloy, were measured. A constitutive model, based on the Garofalo sinh equation, was developed from the creep data for use in predicting residual stresses in actual joints. Wetting behavior, interfacial reactions and joint microstructures were investigated, with samples processed in a vacuum between 400 to 550 C. Prototype joints were tested in shear. The Au-12 Ge filler metal offered the best alternative to the higher melting braze alloys. The alloy exhibited excellent wetting and creep behavior, with low contact angles, generally less than 20 deg, and good creep relaxation under typical loading conditions. As-fabricated shear test specimens yielded average joint strengths of 160 MPa (23 ksi).

  3. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  4. Gas Metal Arc Welding. Welding Module 5. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in gas metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety and testing, gas metal arc…

  5. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, H.B.; Einerson, C.J.; Watkins, A.D.

    1987-08-10

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections. 3 figs., 1 tab.

  6. Method for controlling gas metal arc welding

    DOEpatents

    Smartt, Herschel B.; Einerson, Carolyn J.; Watkins, Arthur D.

    1989-01-01

    The heat input and mass input in a Gas Metal Arc welding process are controlled by a method that comprises calculating appropriate values for weld speed, filler wire feed rate and an expected value for the welding current by algorithmic function means, applying such values for weld speed and filler wire feed rate to the welding process, measuring the welding current, comparing the measured current to the calculated current, using said comparison to calculate corrections for the weld speed and filler wire feed rate, and applying corrections.

  7. A parameter governing the melting induced at the micrometer level in a dissimilar metal wire system by Joule heating

    NASA Astrophysics Data System (ADS)

    Tohmyoh, Hironori; Sunagawa, Takuya

    2015-06-01

    In this paper, we deal with the phenomenon of melting at the point of contact between dissimilar metals by Joule heating. A heat conduction model for this dissimilar metal wire system is considered and the current required to sever the wire system by Joule heating is determined. The position at which the wire system severs depends on the ratio of the lengths of the two wires. Whereas this dependency is discontinuous, the current required to sever the wire is found to be continuous with respect to the ratio of the wire lengths, and the behaviors of the position and the current for severing the wire system are found to be classified into three regions. Based on these findings, a parameter that governs the melting phenomenon at the micrometer level for different ratios of wire lengths is proposed. Attempts were made to weld 25 μm thick Cu and Al wires of various lengths together by Joule heating. Moreover, the conditions for stably welding dissimilar metal wires together can be found quantitatively using the parameter proposed in this paper. It is noted that the welding condition described by the proposed parameter is independent with respect to the ratio of the lengths of the two wires in the respective regions.

  8. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    SciTech Connect

    Yousef, Adel K. M.; Taha, Ziad A.; Shehab, Abeer A.

    2011-01-17

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied.Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  9. Building A Simulation Model For The Prediction Of Temperature Distribution In Pulsed Laser Spot Welding Of Dissimilar Low Carbon Steel 1020 To Aluminum Alloy 6061

    NASA Astrophysics Data System (ADS)

    Yousef, Adel K. M.; Taha, Ziad. A.; Shehab, Abeer A.

    2011-01-01

    This paper describes the development of a computer model used to analyze the heat flow during pulsed Nd: YAG laser spot welding of dissimilar metal; low carbon steel (1020) to aluminum alloy (6061). The model is built using ANSYS FLUENT 3.6 software where almost all the environments simulated to be similar to the experimental environments. A simulation analysis was implemented based on conduction heat transfer out of the key hole where no melting occurs. The effect of laser power and pulse duration was studied. Three peak powers 1, 1.66 and 2.5 kW were varied during pulsed laser spot welding (keeping the energy constant), also the effect of two pulse durations 4 and 8 ms (with constant peak power), on the transient temperature distribution and weld pool dimension were predicated using the present simulation. It was found that the present simulation model can give an indication for choosing the suitable laser parameters (i.e. pulse durations, peak power and interaction time required) during pulsed laser spot welding of dissimilar metals.

  10. EFFECT OF TOOL FEATURE ON THE JOINT STRENGTH OF DISSIMILAR FRICTION STIR LAP WELDS

    SciTech Connect

    Jana, Saumyadeep; Hovanski, Yuri; Grant, Glenn J.; Mattlin, Karl F.

    2011-04-25

    Several variations of friction stir tools were used to investigate the effects on the joint strengths of dissimilar friction stir lap welds. In the present lap weld configuration the top sheet was a 2.32 mm thick Mg (AZ 31) alloy. The bottom sheet consisted of two different steels, a (i) 0.8 mm thick electro-galvanized (EG) mild steel, or a (ii) 1.5 mm thick hot dip galvanized (HDG) high strength low alloy (HSLA) steel. Initially the tool shape was modified to accommodate the material, at which point the tool geometry was fixed. With a fixed tool geometry an additional feature was added to the pin bottom on one of the tools by incorporating a short hard insert, which would act as a stronger bottom sheet cutter. The effects of such modification on the unguided lap shear strength, and associated microstructural changes are discussed in this study.

  11. On the Critical Technological Issues of Friction Stir Welding T-Joints of Dissimilar Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Astarita, A.; Squillace, A.; Scala, A.; Prisco, A.

    2012-08-01

    In this article, friction stir welded T-joints of innovative dissimilar aluminum alloys have been produced and tested with the aim to investigate the feasibility of using this joining technique, in this configuration, in the aerospace field with the final aim to save weight. The introduction of both this new welding technique and innovative alloys, such as AA 2198 and AA 6056, could allow making lighter and stronger structures. Some experiments, carried out previously, have shown that the fixturing device, the tool geometry, and the tilt angle play a significant role in the joint soundness. A wide experimental characterization has been carried out on FSW T-joints of AA 6056 T4 extrudes to AA 2198 T3 rolled plates. The results attained allow to put in evidence some critical issues on the investigated configuration and can be considered as a further acquired knowledge in the understanding and the design of friction stir processes.

  12. Weld-bead profile and costs optimisation of the CO 2 dissimilar laser welding process of low carbon steel and austenitic steel AISI316

    NASA Astrophysics Data System (ADS)

    Ruggiero, A.; Tricarico, L.; Olabi, A. G.; Benyounis, K. Y.

    2011-02-01

    The dissimilar full depth laser-butt welding of low carbon steel and austenitic steel AISI 316 was investigated using CW 1.5 kW CO 2 laser. The effect of laser power (1.1-1.43 kW), welding speed (25-75 cm/min) and focal point position (-0.8 to -0.2 mm) on the weld-bead geometry (i.e. weld-bead area, A; upper width, Wu; lower width, Wl and middle width, Wm) and on the operating cost C was investigated using response surface methodology (RSM). The experimental plan was based on Box-Behnken design; linear and quadratic polynomial equations for predicting the weld-bead widthness references were developed. The results indicate that the proposed models predict the responses adequately within the limits of welding parameters being used. The regression equations were used to find optimum welding conditions for the desired geometric criteria.

  13. A Numerical Simulation for Dissimilar Aluminum Alloys Joined by Friction Stir Welding

    NASA Astrophysics Data System (ADS)

    Hamilton, Carter; Kopyściański, Mateusz; Węglowska, Aleksandra; Dymek, Stanisław; Pietras, Adam

    2016-09-01

    Dissimilar aluminum alloy sheets of 2017A-T451 and 7075-T651 (6 mm thickness) were friction stir welded in a butt weld configuration. A numerical simulation of the joining process was developed to visualize the material flow patterns and temperature distribution and to correlate the microstructure to the hardness behavior. Due to the complementary downward flow of surface material into the workpiece thickness and upward flow of mid-plane and bottom-plane material, the weld nugget is composed of alternating layers of 7075 and 2017A. These layers have unique temperature histories depending on the material's initial location within the cross section; therefore, they also have distinctive precipitate distributions. Supersaturated surface material flows into the process zone and forms a core in which GP zones reprecipitate upon cooling. Mid-plane and bottom-plane material flow toward the workpiece surface and encompass the surface material core. Within this region, the weld temperatures overage the equilibrium θ phase in 2017A, decreasing the hardness, and at the same time, dissolve the equilibrium η/ T phase in the 7075, leading to reprecipitation of GP zones upon cooling and a hardness recovery.

  14. Numerical Simulation of the Inertia Friction Welding Process of Dissimilar Materials

    NASA Astrophysics Data System (ADS)

    El-Hadek, Medhat A.

    2014-12-01

    Three-dimensional axisymmetric finite element analyses have been performed to analyze the coupled thermo-mechanical oscillatory transient problem of friction welding of two dissimilar hollow cylinders. The analysis included the effect of conduction and convection heat transfer implementing three independent variables specifically the welding time, the rotational velocity, and the thrust pressure. Experimental evaluation of the non-linear copper and Aluminum 6061 stress-strain responses, the thermal conductivities, and the specific heat coefficients were conducted using an environmental-controlled compartment for at least four different temperatures. These results were incorporated in the finite element model calculating a real joint transient temperature distribution and a full field view of the residual stresses in weldment. Variables of angular rotational velocity of (200, 400, and 600 rpm), thrust pressure of (10E5, 10E6, and 10E7 Pa), and total welding time of (1, 2, and 4 seconds) were used in the model simulation. The optimum welding conditions were selected using Taguchi method. Finally, the deformation shape predicted by the finite element simulations was compared to the deformations obtained by the experimental results.

  15. Effect of Structural Heterogeneity on In Situ Deformation of Dissimilar Weld Between Ferritic and Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Santosh, R.; Das, S. K.; Das, G.; Mahato, B.; Korody, J.; Kumar, S.; Singh, P. K.

    2015-08-01

    Low-alloy steel and 304LN austenitic stainless steel were welded using two types of buttering material, namely 309L stainless steel and IN 182. Weld metals were 308L stainless steel and IN 182, respectively, for two different joints. Cross-sectional microstructure of welded assemblies was investigated. Microhardness profile was determined perpendicular to fusion boundary. In situ tensile test was performed in scanning electron microscope keeping low-alloy steel-buttering material interface at the center of gage length. Adjacent to fusion boundary, low-alloy steel exhibited carbon-depleted region and coarsening of matrix grains. Between coarse grain and base material structure, low-alloy steel contained fine grain ferrite-pearlite aggregate. Adjacent to fusion boundary, buttering material consisted of Type-I and Type-II boundaries. Within buttering material close to fusion boundary, thin cluster of martensite was formed. Fusion boundary between buttering material-weld metal and weld metal-304LN stainless steel revealed unmixed zone. All joints failed within buttering material during in situ tensile testing. The fracture location was different for various joints with respect to fusion boundary, depending on variation in local microstructure. Highest bond strength with adequate ductility was obtained for the joint produced with 309L stainless steel-buttering material. High strength of this weld might be attributed to better extent of solid solution strengthening by alloying elements, diffused from low-alloy steel to buttering material.

  16. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by super duplex filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    In the present paper, microstructural changes across an as-welded dissimilar austenitic/duplex stainless steel couple welded by a super duplex stainless steel filler metal using gas tungsten arc welding process is characterized with optical microscopy and electron back-scattered diffraction techniques. Accordingly, variations of microstructure, texture, and grain boundary character distribution of base metals, heat affected zones, and weld metal were investigated. The results showed that the weld metal, which was composed of Widmanstätten austenite side-plates and allotriomorphic grain boundary austenite morphologies, had the weakest texture and was dominated by low angle boundaries. The welding process increased the ferrite content but decreased the texture intensity at the heat affected zone of the super duplex stainless steel base metal. In addition, through partial ferritization, it changed the morphology of elongated grains of the rolled microstructure to twinned partially transformed austenite plateaus scattered between ferrite textured colonies. However, the texture of the austenitic stainless steel heat affected zone was strengthened via encouraging recrystallization and formation of annealing twins. At both interfaces, an increase in the special character coincident site lattice boundaries of the primary phase as well as a strong texture with <100> orientation, mainly of Goss component, was observed. - Graphical abstract: Display Omitted - Highlights: • Weld metal showed local orientation at microscale but random texture at macroscale. • Intensification of <100> orientated grains was observed adjacent to the fusion lines. • The austenite texture was weaker than that of the ferrite in all duplex regions. • Welding caused twinned partially transformed austenites to form at SDSS HAZ. • At both interfaces, the ratio of special CSL boundaries of the primary phase increased.

  17. Simulation on friction taper plug welding of AA6063-20Gr metal matrix composite

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Nithin, Abeyram M.

    2016-05-01

    Friction taper plug welding a variant of friction welding is useful in welding of similar and dissimilar materials. It could be used for joining of composites to metals in sophisticated aerospace applications. In the present work numerical simulation of friction taper plug welding process is carried out using finite element based software. Graphite reinforced AA6063 is modelled using the software ANSYS 15.0 and temperature distribution is predicted. Effect of friction time on temperature distribution is numerically investigated. When the friction time is increased to 30 seconds, the tapered part of plug gets detached and fills the hole in the AA6063 plate perfectly.

  18. Analysis of interface solid-state reaction on dissimilar ultrasonic spot welding of Al-Mg alloys

    NASA Astrophysics Data System (ADS)

    Shin, Hyung-Seop; de Leon, Michael

    2017-05-01

    The solid-state joining nature of the ultrasonic spot welding (USW) process has been proven useful in the fields where joining applications involve dissimilar lightweight materials. This study focused on the USW of challenging dissimilar aluminum (Al)-magnesium (Mg) alloys to gain a better understanding of the dominant factors of joint performance with particular emphasis on proper lap-joint positioning. Weld qualities of dissimilar ultrasonic spot welds, classified through a series of experiments, were determined. Process parameters effects, such as failure load and fracture morphologies, showed distinctions between two dissimilar welds based on lap-joint position. Characteristic distinctions between welding process parameters and material combinations (lap-positioning) were found. Incomplete deformation zones were found during USW of Mg/Al combination, yet they were noticeable and almost the same size as the horn diameter. It can be found that proper lap-positioning of the top part of the specimen is important for efficient utilization of the USW process.

  19. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  20. Shielded Metal Arc Welding. Welding Module 4. Instructor's Guide.

    ERIC Educational Resources Information Center

    Missouri Univ., Columbia. Instructional Materials Lab.

    This guide is intended to assist vocational educators in teaching an eight-unit module in shielded metal arc welding. The module is part of a welding curriculum that has been designed to be totally integrated with Missouri's Vocational Instruction Management System. The following topics are covered in the module: safety; theory, power sources, and…

  1. Microstructural characterization in dissimilar friction stir welding between 304 stainless steel and st37 steel

    SciTech Connect

    Jafarzadegan, M.; Feng, A.H.; Abdollah-zadeh, A.; Saeid, T.; Shen, J.; Assadi, H.

    2012-12-15

    In the present study, 3 mm-thick plates of 304 stainless steel and st37 steel were welded together by friction stir welding at a welding speed of 50 mm/min and tool rotational speed of 400 and 800 rpm. X-ray diffraction test was carried out to study the phases which might be formed in the welds. Metallographic examinations, and tensile and microhardness tests were used to analyze the microstructure and mechanical properties of the joint. Four different zones were found in the weld area except the base metals. In the stir zone of the 304 stainless steel, a refined grain structure with some features of dynamic recrystallization was evidenced. A thermomechanically-affected zone was characterized on the 304 steel side with features of dynamic recovery. In the other side of the stir zone, the hot deformation of the st37 steel in the austenite region produced small austenite grains and these grains transformed to fine ferrite and pearlite and some products of displacive transformations such as Widmanstatten ferrite and martensite by cooling the material after friction stir welding. The heat-affected zone in the st37 steel side showed partially and fully refined microstructures like fusion welding processes. The recrystallization in the 304 steel and the transformations in the st37 steel enhanced the hardness of the weld area and therefore, improved the tensile properties of the joint. - Highlights: Black-Right-Pointing-Pointer FSW produced sound welds between st37 low carbon steel and 304 stainless steel. Black-Right-Pointing-Pointer The SZ of the st37 steel contained some products of allotropic transformation. Black-Right-Pointing-Pointer The material in the SZ of the 304 steel showed features of dynamic recrystallization. Black-Right-Pointing-Pointer The finer microstructure in the SZ increased the hardness and tensile strength.

  2. Effect of Intermetallic Compound Phases on the Mechanical Properties of the Dissimilar Al/Cu Friction Stir Welded Joints

    NASA Astrophysics Data System (ADS)

    Khodir, S. A.; Ahmed, M. M. Z.; Ahmed, Essam; Mohamed, Shaymaa M. R.; Abdel-Aleem, H.

    2016-11-01

    Types and distribution of intermetallic compound phases and their effects on the mechanical properties of dissimilar Al/Cu friction stir welded joints were investigated. Three different rotation speeds of 1000, 1200 and 1400 rpm were used with two welding speeds of 20 and 50 mm/min. The results show that the microstructures inside the stir zone were greatly affected by the rotation speed. Complex layered structures that containing intermetallic compound phases such as CuAl2, Al4Cu9 were formed in the stir zone. Their amount found to be increased with increasing rotation speed. However, the increasing of the rotation speed slightly lowered the hardness of the stir zone. Many sharp hardness peaks in the stir zones were found as a result of the intermetallic compounds formed, and the highest peaks of 420 Hv were observed at a rotation speed of 1400 rpm. The joints ultimate tensile strength reached a maximum value of 105 MPa at the rotation speed of 1200 rpm and travel speed of 20 mm/min with the joint efficiency ranged between 88 and 96% of the aluminum base metal. At the travel speed of 50 mm/min, the maximum value of the ultimate tensile strength was 96 MPa at rotation speed of 1400 rpm with the joint efficiency ranged between 79 and 90%. The fracture surfaces of tensile test specimens showed no evidence for the effect of the brittle intermetallic compounds in the stir zones on the tensile strength of the joints.

  3. Nickel-based alloy/austenitic stainless steel dissimilar weld properties prediction on asymmetric distribution of laser energy

    NASA Astrophysics Data System (ADS)

    Zhou, Siyu; Ma, Guangyi; Chai, Dongsheng; Niu, Fangyong; Dong, Jinfei; Wu, Dongjiang; Zou, Helin

    2016-07-01

    A properties prediction method of Nickel-based alloy (C-276)/austenitic stainless steel (304) dissimilar weld was proposed and validated based on the asymmetric distribution of laser energy. Via the dilution level DC-276 (the ratio of the melted C-276 alloy), the relations between the weld properties and the energy offset ratio EC-276 (the ratio of the irradiated energy on the C-276 alloy) were built, and the effects of EC-276 on the microstructure, mechanical properties and corrosion resistance of dissimilar welds were analyzed. The element distribution Cweld and EC-276 accorded with the lever rule due to the strong convention of the molten pool. Based on the lever rule, it could be predicted that the microstructure mostly consists of γ phase in each weld, the δ-ferrite phase formation was inhibited and the intermetallic phase (P, μ) formation was promoted with the increase of EC-276. The ultimate tensile strength σb of the weld joint could be predicted by the monotonically increasing cubic polynomial model stemming from the strengthening of elements Mo and W. The corrosion potential U, corrosion current density I in the active region and EC-276 also met the cubic polynomial equations, and the corrosion resistance of the dissimilar weld was enhanced with the increasing EC-276, mainly because the element Mo could help form a steady passive film which will resist the Cl- ingress.

  4. Laser-Arc Hybrid Welding of Dissimilar Titanium Alloy and Stainless Steel Using Copper Wire

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Chen, Cong; Wang, Lei; Wang, Zemin; Zeng, Xiaoyan

    2015-05-01

    Laser-arc hybrid welding with Cu3Si filler wire was employed to join dissimilar Ti6Al4V titanium alloy and AISI316 stainless steel (316SS). The effects of welding parameters on bead shape, microstructure, mechanical properties, and fracture behavior were investigated in detail. The results show that cross-weld tensile strength of the joints is up to 212 MPa. In the joint, obvious nonuniformity of the microstructure is found in the fusion zone (FZ) and at the interfaces from the top to the bottom, which could be improved by increasing heat input. For the homogeneous joint, the FZ is characterized by Fe67- x Si x Ti33 dendrites spreading on α-Cu matrix, and the two interfaces of 316SS/FZ and FZ/Ti6Al4V are characterized by a bamboo-like 316SS layer and a CuTi2 layer, respectively. All the tensile samples fractured in the hardest CuTi2 layer at Ti6Al4V side of the joints. The fracture surface is characterized by river pattern revealing brittle cleavage fracture. The bead formation mechanisms were discussed according to the melt flow and the thermodynamic calculation.

  5. Site-Dependent Tension Properties of Inertia Friction-Welded Joints Made From Dissimilar Ni-based Superalloys

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.; Woodward, C.

    2015-03-01

    Microstructure, tensile properties, and fracture behavior of the inertia friction weld joints of dissimilar superalloys, cast Mar-M247 and wrought LSHR, were studied to assess the weld quality. Tensile tests were conducted at 23 and 704 °C on the samples containing different areas of the weld interface of the same welded material. The stress-strain curves were registered at different axial distances from the weld interface. In all tested samples, plastic deformation was localized on Mar-M247 side, outside the heat-affected zone (HAZ), and the resistance to plastic deformation of Mar-M247 increased with a decrease in the distance from the weld interface inside HAZ. Only elastic deformation occurred on the LSHR side. Fracture occurred on the Mar-M247 side, outside HAZ, or at the weld interface. In the latter case, welding defects in the form of clusters of nanometer-sized oxide and carbide particles were observed at the fracture surfaces. These results revealed that the IFW process is capable of producing the weld joints between Mar-M247 and LSHR with the fracture strength higher than that of Mar-M247. However, optimization of the IFW processing parameters is required to minimize clustering of oxide/carbide particles at the weld interface in this alloy pair.

  6. Local mechanical properties of Alloy 82/182 dissimilar weld joint between SA508 Gr.1a and F316 SS at RT and 320 °C

    NASA Astrophysics Data System (ADS)

    Kim, Jin Weon; Lee, Kyoungsoo; Kim, Jong Sung; Byun, Thak Sang

    2009-02-01

    The distributions of mechanical and microstructural properties were investigated for the dissimilar metal weld joints between SA508 Gr.1a ferritic steel and F316 austenitic stainless steel with Alloy 82/182 filler metal using small-size tensile specimens. The material properties varied significantly in different zones while those were relatively uniform within each material. In particular, significant gradient of the mechanical properties were observed near the both heat-affected zones (HAZs) of F316 SS and SA508 Gr.1a. Thus, the yield stress (YS) was under-matched with respect to the both HAZs, although, the YS of the weld metal was over-matched with respect to both base metals. The minimum ductility occurred in the HAZ of SA508 Gr.1a at both test temperatures. The plastic instability stress also varied considerably across the weld joints, with minimum values occurring in the SA508 Gr.1a base metal at RT and in the HAZ of F316 SS at 320 °C. The transmission electron micrographs showed that the strengthening in the HAZ of F316 SS was attributed to the strain hardening, induced by a strain mismatch between the weldment and the base metal, which was evidenced by high dislocation density in the HAZ of F316 SS.

  7. Characterization of microstructure and texture across dissimilar super duplex/austenitic stainless steel weldment joint by austenitic filler metal

    SciTech Connect

    Eghlimi, Abbas; Shamanian, Morteza; Eskandarian, Masoomeh; Zabolian, Azam; Szpunar, Jerzy A.

    2015-08-15

    The evolution of microstructure and texture across an as-welded dissimilar UNS S32750 super duplex/UNS S30403 austenitic stainless steel joint welded by UNS S30986 (AWS A5.9 ER309LMo) austenitic stainless steel filler metal using gas tungsten arc welding process was evaluated by optical micrography and EBSD techniques. Due to their fabrication through rolling process, both parent metals had texture components resulted from deformation and recrystallization. The weld metal showed the highest amount of residual strain and had large austenite grain colonies of similar orientations with little amounts of skeletal ferrite, both oriented preferentially in the < 001 > direction with cub-on-cube orientation relationship. While the super duplex stainless steel's heat affected zone contained higher ferrite than its parent metal, an excessive grain growth was observed at the austenitic stainless steel's counterpart. At both heat affected zones, austenite underwent some recrystallization and formed twin boundaries which led to an increase in the fraction of high angle boundaries as compared with the respective base metals. These regions showed the least amount of residual strain and highest amount of recrystallized austenite grains. Due to the static recrystallization, the fraction of low degree of fit (Σ) coincident site lattice boundaries, especially Σ3 boundaries, was increased in the austenitic stainless steel heat affected zone, while the formation of subgrains in the ferrite phase increased the content of < 5° low angle boundaries at that of the super duplex stainless steel. - Graphical abstract: Display Omitted - Highlights: • Extensive grain growth in the HAZ of austenitic stainless steel was observed. • Intensification of < 100 > orientated grains was observed adjacent to both fusion lines. • Annealing twins with Σ3 CSL boundaries were formed in the austenite of both HAZ. • Cub-on-cube OR was observed between austenite and ferrite in the weld metal.

  8. Effects of laser power density on static and dynamic mechanical properties of dissimilar stainless steel welded joints

    NASA Astrophysics Data System (ADS)

    Wei, Yan-Peng; Li, Mao-Hui; Yu, Gang; Wu, Xian-Qian; Huang, Chen-Guang; Duan, Zhu-Ping

    2012-10-01

    The mechanical properties of laser welded joints under impact loadings such as explosion and car crash etc. are critical for the engineering designs. The hardness, static and dynamic mechanical properties of AISI304 and AISI316 L dissimilar stainless steel welded joints by CO2 laser were experimentally studied. The dynamic strain-stress curves at the strain rate around 103 s-1 were obtained by the split Hopkinson tensile bar (SHTB). The static mechanical properties of the welded joints have little changes with the laser power density and all fracture occurs at 316 L side. However, the strain rate sensitivity has a strong dependence on laser power density. The value of strain rate factor decreases with the increase of laser power density. The welded joint which may be applied for the impact loading can be obtained by reducing the laser power density in the case of welding quality assurance.

  9. Wiping Metal Transfer in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Much evidence suggests that as the friction stir pin-tool moves along a weld seam the displacement of metal takes place by a wiping action at the surface of a plug of metal that rotates with the tool. The wiping model is explained and some consequences for the friction stir welding process are drawn.

  10. Fatigue Behaviors of Self-Piercing Rivets Joining Similar and Dissimilar Sheet Metals

    SciTech Connect

    Sun, Xin; Stephens, Elizabeth V.; Khaleel, Mohammad A.

    2007-01-01

    This paper summarizes the fatigue test results of self-piercing rivet (SPR) joints between similar and dissimilar sheet metals. The influences of material grades, material thickness, piercing direction and the use of structural adhesive on the rivet samples’ fatigue behaviors were investigated. Fatigue test results indicate that SPR joints have superior fatigue strength than resistance spot weld (RSW) joints for the same material combinations. The application of structure adhesive also significantly enhances the fatigue strength of the joint samples; this is particularly true for the lap shear loading configuration. In addition, different piercing directions for SPR joints have a noticeable effect on the static and fatigue strength of the joints. The joint fatigue results presented in this paper can offer design engineers with the durability data for SPR joints with these material combinations. Moreover, it will provide manufacturing engineers with some insights on the effects of different manufacturing parameters on the strength and durability of these joints.

  11. Precipitation behavior of σ phase in fusion zone of dissimilar stainless steel welds during multi-pass GTAW process

    NASA Astrophysics Data System (ADS)

    Hsieh, Chih-Chun; Chang, Tao-Chih; Lin, Dong-Yih; Chen, Ming-Che; Wu, Weite

    2007-10-01

    The purpose of this study is to investigate the precipitation characteristics of σ phase in the fusion zone of stainless steel welds at various welding passes during a tungsten are welding (GTAW) process. The morphology, quantity, and chemical composition of the δ-ferrite and σ phase were analyzed using optical microscopy (OM), a ferritscope (FS), a X-ray diffractometer (XRD), scanning electron microscopy (SEM), an electron probe micro-analyzer (EPMA), and a wavelength dispersive spectrometer (WDS), respectively. Massive δ-ferrite was observed in the fusion zone of the first pass welds during welding of dissimilar stainless steels. The σ phase precipitated at the inner δ-ferrite particles and decreased δ-ferrite content during the third pass welding. The σ and δ phases can be stabilized by Si element, which promoted the phase transformation of σ→ϱ+λ2 in the fusion zone of the third pass welds. It was found that the σ phase was a Fe-Cr-Si intermetallic compound found in the fusion zone of the third pass welds during multi-pass welding.

  12. Evaluation of weld metal 82 and weld metal 152 stress corrosion cracking susceptibility

    SciTech Connect

    Psaila-Dombrowski, M.J.; Sarver, J.M.; Doherty, P.E.; Schneider, W.G.

    1995-12-31

    Welds are often an area of concern in steam generators (SG) because of the different materials in the welds, the residual stresses which result from the welding process and subsequent operational stresses. In general a weld is composed of a base metal, weld metal and the heat affected zone (HAZ). This study investigated the corrosion performance of welds connecting the divider plate to the weld buildup in a welded-in divider plate (WIDP) design. The materials of interest were Alloy 690 plate, Weld Metals (WM) 82 and WM 152. Weld test samples were fabricated in a manner that is consistent with SG fabrication practices in which WM 152 is used to attach the Alloy 690 plate to the WM 82 weld buildup. Round tensile specimens were used to evaluate WIDP welds. Specimens were manufactured parallel to the weld fusion lines, hence, the gauge length of each specimen contained either the base metal or a metal and a HAZ. Use of specimens of this orientation permitted evaluation of all the materials contained in the specimen for stress corrosion cracking (SCC) susceptibility, not just the weakest materials. Constant extension rate tests were performed in Pressurized Water Reactor (PWR) primary water chemistry and faulted primary water chemistry at 343 C and a strain rate of 1 {times} 10{sup {minus}6} sec{sup {minus}1}. No SCC was found in any specimen in either environment.

  13. Sensors control gas metal arc welding

    SciTech Connect

    Siewert, T.A.; Madigan, R.B.; Quinn, T.P.

    1997-04-01

    The response time of a trained welder from the time a weld problem is identified to the time action is taken is about one second--especially after a long, uneventful period of welding. This is acceptable for manual welding because it is close to the time it takes for the weld pool to solidify. If human response time were any slower, manual welding would not be possible. However, human response time is too slow to respond to some weld events, such as melting of the contact tube in gas metal arc welding (GMAW), and only automated intelligent control systems can react fast enough to correct or avoid these problems. Control systems incorporate welding knowledge that enables intelligent decisions to be made about weld quality and, ultimately, to keep welding parameters in the range where only high-quality welds are produced. This article discusses the correlation of electrical signals with contact-tube wear, changes in shielding gas, changes in arc length, and other weld process data.

  14. Dissimilar Materials Micro Welding between Stainless Steel and Plastics by Using Pulse YAG Laser

    NASA Astrophysics Data System (ADS)

    Miyashita, Yukio; Takahashi, Masaru; Takemi, Masashi; Oyama, Kosei; Mutoh, Yoshiharu; Tanaka, Hironori

    Direct joint of dissimilar materials between SUS304 stainless steel and plastics, PET (Polyethylene Terephthalate) or PC (Polycarbonate), was studied by using pulse YAG laser. Welding configuration was lap joint. Weldability and shear-tensile strength were investigated for the joints. It was possible to make a joint for both combination of materials, SUS304/PET and SUS304/PC. Weldable condition range was wider in case of SUS304/PET joint compared to that in case of SUS304/PC joint. The difference in the weldability may be due to difference in glass transition temperature of the plastics. Pores were observed in plastics near the interface of the joint for both combinations of the materials when the joint welded with higher heat input. Sear-tensile test was carried out for the joints. SUS304/PET joint shows higher strength compared to SUS304/PC joint. Higher strength was observed for the joint which includes pores near the interface in plastics. However, if large size and number of pores are existing near the interface in plastics, the pores play as a defect and causes degradation of the strength.

  15. Microstructure evolution and material flow behavior in friction-stir welded dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Gonser, Matthew J.

    The purpose of this study was to friction-stir weld dissimilar titanium alloys together and to investigate how macroscopic flow in the stir zone and the resulting weld microstructure affect mechanical properties. Welds were produced with travel speeds from 50 to 100 mm/min and tool rotation speeds of 2000 to 3500 revolutions per minute (RPM). Thermal analysis showed that super transus temperatures were reached in the stir zone and both near-HAZ regions of the weld. Cooling rate data was consistent with the formation of basketweave and colony alpha phase in the prior-beta grains on the Ti-6Al-4V side of the stir zone and near-HAZ. The Timetal 21S region of the stir zone consisted of refined (approximately 18 mum in diameter) metastable-beta grains compared to 30 mum diameter grains in the Timetal 21S base material. Metallurgical mixing between the two alloys resulted in a unique alpha-beta microstructure in the stir zone. The amount of metallurgical mixing was found to be dependent on which alloy was placed on the retreating side of the weld. With the FSW tool centered between the two materials, placement of the Ti-6Al-4V alloy on the retreating side increased the amount of metallurgical mixing between the two alloys by 40% compared to when the Timetal 21S was placed on the retreating side. Electron back-scatter diffraction (EBSD) clearly showed the presence of a TMAZ adjacent to the stir zone on the Timetal 21S side of the weld. This was confirmed by the large number of low angle subgrains (misorientation angle<10°) within the deformed metastable-beta matrix. The stir zone was shown to have fewer subgrains due to the recrystallization of new grains which consume the recovered metastable-beta matrix. A series of aging and solution treatment plus aging heat treatments was given to select as-welded samples to investigate the change in microstructure and properties. The peak hardness for all regions was obtained for the 500°C-8 hour heat treatment, while the 600°C-8

  16. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L. ); Waddoups, M.A. )

    1992-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  17. Sensing the gas metal arc welding process

    SciTech Connect

    Carlson, N.M.; Johnson, J.A.; Smartt, H.B.; Watkins, A.D.; Larsen, E.D.; Taylor, P.L.; Waddoups, M.A.

    1992-10-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-bypass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  18. Sensing the gas metal arc welding process

    NASA Technical Reports Server (NTRS)

    Carlson, N. M.; Johnson, J. A.; Smartt, H. B.; Watkins, A. D.; Larsen, E. D.; Taylor, P. L.; Waddoups, M. A.

    1994-01-01

    Control of gas metal arc welding (GMAW) requires real-time sensing of the process. Three sensing techniques for GMAW are being developed at the Idaho National Engineering Laboratory (INEL). These are (1) noncontacting ultrasonic sensing using a laser/EMAT (electromagnetic acoustic transducer) to detect defects in the solidified weld on a pass-by-pass basis, (2) integrated optical sensing using a CCD camera and a laser stripe to obtain cooling rate and weld bead geometry information, and (3) monitoring fluctuations in digitized welding voltage data to detect the mode of metal droplet transfer and assure that the desired mass input is achieved.

  19. Measurement of the Casimir force between dissimilar metals.

    PubMed

    Decca, R S; López, D; Fischbach, E; Krause, D E

    2003-08-01

    The first precise measurement of the Casimir force between dissimilar metals is reported. The attractive force, between a Cu layer evaporated on a microelectromechanical torsional oscillator and an Au layer deposited on an Al2O3 sphere, was measured dynamically with a noise level of 6 fN/sqrt[Hz]. Measurements were performed for separations in the 0.2-2 micro m range. The results agree to better than 1% in the 0.2-0.5 micro m range with a theoretical model that takes into account the finite conductivity and roughness of the two metals. The observed discrepancies, which are much larger than the experimental precision, can be attributed to a lack of a complete characterization of the optical properties of the specific samples used in the experiment.

  20. Quantitative ultrasonic testing of acoustically anisotropic materials with verification on austenitic and dissimilar weld joints

    NASA Astrophysics Data System (ADS)

    Boller, C.; Pudovikov, S.; Bulavinov, A.

    2012-05-01

    "Gradient Constant Descent Method" (GECDM), an iterative algorithm, is implemented, which is essential for examination of inhomogeneous anisotropic media having unknown properties (elastic constants). The Sampling Phased Array technique with Reverse Phase Matching extended by GECDM-technique determines unknown elastic constants and provides reliable and efficient quantitative flaw detection in the austenitic welds. The validation of ray-tracing algorithm and GECDM-method is performed by number of experiments on test specimens with artificial as well as natural material flaws. A mechanized system for ultrasonic testing of stainless steel and dissimilar welds is developed. The system works on both conventional and Sampling Phased Array techniques. The new frontend ultrasonic unit with optical data link allows the 3D visualization of the inspection results in real time.

  1. Investigations on Laser Beam Welding of Different Dissimilar Joints of Steel and Aluminum Alloys for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Seffer, Oliver; Pfeifer, Ronny; Springer, André; Kaierle, Stefan

    Due to the enormous potential of weight saving, and the consequential reduction of pollutant emissions, the use of hybrid components made of steel and aluminum alloys is increasing steadily, especially concerning automotive lightweight construction. However, thermal joining of steel and aluminum is still being researched, due to a limited solubility of the binary system of iron and aluminum causing the formation of hard and brittle intermetallic phases, which decrease the strength and the formability of the dissimilar seam. The presented results show the investigation of laser beam welding for joining different dissimilar hybrid components of the steel materials HX220LAD+Z100, 22MnB5+AS150 and 1.4301, as well as the aluminum alloy AA6016-T4 as a lap joint. Among other things, the influences of the energy per unit length, the material grade, the sheet thickness t, the weld type (lap weld, fillet weld) and the arrangement of the base materials in a lap joint (aluminum-sided irradiation, steel-sided irradiation) on the achievable strengths are analyzed. The characterization of the dissimilar joints includes tensile shear tests and metallographic analyses, depending on the energy per unit length.

  2. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  3. Welding.

    ERIC Educational Resources Information Center

    South Carolina State Dept. of Education, Columbia. Office of Vocational Education.

    This curriculum guide is designed for use by South Carolina vocational education teachers as a continuing set of lesson plans for a two-year course on welding. Covered in the individual sections of the guide are the following topics: an orientation to welding, oxyacetylene welding, advanced oxyacetylene welding, shielded metal arc welding, TIG…

  4. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    DOE PAGES

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtainedmore » when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.« less

  5. Effect of tool pin features on process response variables during friction stir welding of dissimilar aluminum alloys

    SciTech Connect

    Rabby, Reza; Tang, Wei; Reynolds, A. P.

    2015-05-13

    In this article, the effect of pin features and orientation/placement of the materials on advancing side were investigated for friction stir welding (FSW) of dissimilar aluminum alloys AA2050 and AA6061. Pins for FSW were produced with a 2.12 mm pitch thread having three flats/flutes. Three sets of rotational speed/welding speed were used to perform a series of welds in a butt joint arrangement. The results show that, joint quality, process response variables and welding temperature are highly affected by pin features and material orientation in FSW. Defect free joints with effective material transportation in the weld nugget zone were obtained when welding was performed with AA2050 on the advancing side. The tool also encounters less in-plane reaction force for welding with 2050 on the advancing side. Pin with thread+3 flats produces quality welds at low rotational and travel speed regardless of the location of alloys on advancing or retreating side.

  6. Tungsten Carbide Grain Size Computation for WC-Co Dissimilar Welds

    NASA Astrophysics Data System (ADS)

    Zhou, Dongran; Cui, Haichao; Xu, Peiquan; Lu, Fenggui

    2016-06-01

    A "two-step" image processing method based on electron backscatter diffraction in scanning electron microscopy was used to compute the tungsten carbide (WC) grain size distribution for tungsten inert gas (TIG) welds and laser welds. Twenty-four images were collected on randomly set fields per sample located at the top, middle, and bottom of a cross-sectional micrograph. Each field contained 500 to 1500 WC grains. The images were recognized through clustering-based image segmentation and WC grain growth recognition. According to the WC grain size computation and experiments, a simple WC-WC interaction model was developed to explain the WC dissolution, grain growth, and aggregation in welded joints. The WC-WC interaction and blunt corners were characterized using scanning and transmission electron microscopy. The WC grain size distribution and the effects of heat input E on grain size distribution for the laser samples were discussed. The results indicate that (1) the grain size distribution follows a Gaussian distribution. Grain sizes at the top of the weld were larger than those near the middle and weld root because of power attenuation. (2) Significant WC grain growth occurred during welding as observed in the as-welded micrographs. The average grain size was 11.47 μm in the TIG samples, which was much larger than that in base metal 1 (BM1 2.13 μm). The grain size distribution curves for the TIG samples revealed a broad particle size distribution without fine grains. The average grain size (1.59 μm) in laser samples was larger than that in base metal 2 (BM2 1.01 μm). (3) WC-WC interaction exhibited complex plane, edge, and blunt corner characteristics during grain growth. A WC ( { 1 {bar{{1}}}00} ) to WC ( {0 1 1 {bar{{0}}}} ) edge disappeared and became a blunt plane WC ( { 10 1 {bar{{0}}}} ) , several grains with two- or three-sided planes and edges disappeared into a multi-edge, and a WC-WC merged.

  7. Microstructure-dependent fracture toughness (JIC) variations in dissimilar pipe welds for pressure vessel system of nuclear plants

    NASA Astrophysics Data System (ADS)

    Rathod, Dinesh W.; Pandey, Sunil; Singh, P. K.; Kumar, Suranjit

    2017-09-01

    In present study, dissimilar metal weld (DMW) joints between SA508Gr.3cl.1 ferritic steel and SS304LN pipes were prepared using Inconel 82/182, and Inconel 52/152 consumables. Metallurgical properties and their influence on fracture toughness of weldment regions and interfacial regions could play a significant role in integrity assessment of these joints. Ni-based consumables exhibit complex metallurgical properties at interfacial regions. The metallurgical characterization and fracture toughness studies of Inconel 82/182 and Inconel 52/152 joints have been carried out for determining the optimum consumable for DMW joint requirements and the effect of microstructure on fracture toughness in weldment regions. The present codes and procedures for integrity assessment of DMW joints have not given due considerations of metallurgical properties. The requirements for metallurgical properties by considering their effect on fracture toughness properties in integrity assessment have been discussed for reliable analysis. Inconel 82/182 is preferred over Inconel 52/152 joints owing to favorable metallurgical and fracture toughness properties across the interfacial and weldment regions.

  8. Studies on Similar and Dissimilar Metal EBW Joints of Fe-31Ni-5Co and Co-20Cr-15W-10Ni Alloys

    NASA Astrophysics Data System (ADS)

    Gupta, R. K.; Anil Kumar, V.

    2017-05-01

    Superinvar Fe-31Ni-5Co alloy (SI) and Co-20Cr-15W-10Ni superalloy (SA) are used in space applications. Similar metal (SI-SI and SA-SA) joints as well as dissimilar metal (SA-SI) joints of these alloys have been made using electron beam welding (EBW) technique. Extensive characterization of these weldments has been carried out using optical and electron microscopy, microhardness measurements and tensile testing at ambient and cryogenic temperatures. It has been observed that weld efficiency is 100% for similar metal joints, whereas it is governed by base metal properties of the alloy having lower strength for dissimilar metal joint. Weld efficiency of SA-SI/EBW joint is comparable with base metal of lower strength indicating no detrimental formation of intermetallic/brittle phase. Microhardness of the SA-SI/EBW joint is found to be representative of the respective base metal properties with no sudden variation across the SA/SI interface in the weldment indicating good dilution in the weld. This has been confirmed through energy-dispersive spectrum using x-rays (EDX) showing the presence of Fe near the superalloy weldment interface and the presence of Cr and W near the superinvar weldment interface. Increase in strength and decrease in ductility of base metals are observed for all types of joints when tested at cryogenic temperature (77 K) vis-à-vis at ambient temperature. Fracture features of the failed surface of SA-SI/EBW joint are found to be similar to that of the SI-SI/EBW joint. Microhardness, mechanical properties and fracture analysis confirm that failure of dissimilar metal joint takes place toward lower strength base metal, i.e., superinvar.

  9. Metal Flow in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Nunes, Arthur C., Jr.

    2006-01-01

    The plastic deformation field in Friction Stir Welding (FSW) is compared to that in metal cutting. A shear surface around the FSW tool analogous to the metal cutting shear plane is identified and comprises the basis of the "rotating plug" flow field model and the "wiping" model of tool interaction with weld metal. Within the context of these models: The FSW shear rate is estimated to be comparable to metal cutting shear rates. The effect of tool geometry on the FSW shear surface is discussed and related to published torque measurements. Various FS W structural features are explained, including a difference in structure of bimetallic welds when alloys on the advancing and retreating sides of the weld seam are exchanged. The joining mechanism and critical parameters of the FSW process are made clear.

  10. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    NASA Astrophysics Data System (ADS)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  11. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    DOE PAGES

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; ...

    2017-04-05

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Finally, although the frictionmore » stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.« less

  12. Enabling Dissimilar Material Joining Using Friction Stir Scribe Technology

    NASA Astrophysics Data System (ADS)

    Hovanski, Yuri; Upadyay, Piyush; Kleinbaum, Sarah; Carlson, Blair; Boettcher, Eric; Ruokolainen, Robert

    2017-04-01

    One challenge in adapting welding processes to dissimilar material joining is the diversity of melting temperatures of the different materials. Although the use of mechanical fasteners and adhesives have mostly paved the way for near-term implementation of dissimilar material systems, these processes only accentuate the need for low-cost welding processes capable of impartially joining dissimilar material components regardless of alloy, properties, or melting temperature. Friction stir scribe technology was developed to overcome the challenges of joining dissimilar material components where melting temperatures vary greatly, and properties and/or chemistry are not compatible with more traditional welding processes. Although the friction stir scribe process is capable of joining dissimilar metals and metal/polymer systems, a more detailed evaluation of several aluminum/steel joints is presented herein to demonstrate the ability to both chemically and mechanically join dissimilar materials.

  13. Microstructure characteristics and mechanical properties of laser-TIG hybrid welded dissimilar joints of Ti-22Al-27Nb and TA15

    NASA Astrophysics Data System (ADS)

    Zhang, Kezhao; Lei, Zhenglong; Chen, Yanbin; Liu, Ming; Liu, Yang

    2015-10-01

    Laser-TIG-hybrid-welding (TIG - tungsten inert gas) process was successfully applied to investigate the microstructure and tensile properties of Ti-22Al-27Nb/TA15 dissimilar joints. The HAZ of the arc zone in Ti-22Al-27Nb was characterized by three different regions: single B2, B2+α2 and B2+α2+O, while the single B2 phase region was absent in the HAZ of the laser zone. As for the HAZ in TA15 alloy, the microstructure mainly contained acicular α‧ martensites near the fusion line and partially remained the lamellar structure near the base metal. The fusion zone consisted of B2 phase due to the relatively high content of β phase stabilizing elements and fast cooling rate during the welding process. The tensile strength of the welds was higher than that of TA15 alloy because of the fully B2 microstructure in the fusion zone, and the fracture preferentially occurred on the base metal of TA15 alloy during the tensile tests at room temperature and 650 °C.

  14. Trends in microstructure modeling in weld metals

    SciTech Connect

    David, S.A.; Babu, S.S.; Vitek, J.M.

    1996-12-31

    Various physical processes, such as thermochemical reactions in liquid, solidification, and solid state transformations, control the microstructure development in weld metals. Some fundamental knowledge of the effects of these physical processes on weld microstructure development already exists. However, generalized and integrated models encompassing the current understanding are just evolving. Such models are needed in the design of successful welding procedures for new alloy systems and advanced materials. The principles, methodology, and future directions of modeling weld microstructure development are described in this paper, with examples in low-alloy steel, stainless steel, and Ni-base superalloys. In low alloy steels, the nucleation and growth of oxide inclusions in the melt was modeled as a function of the welding process and composition. This inclusion model has been recently coupled with solidification and numerical heat and mass transfer models. Recent advances in theoretical and physical modeling of the solidification process will be reviewed in this paper with regard to predicting the solidification modes, grain structure development, segregation effects, and nonequilibrium solidification in welds. In nickel-base superalloy welds, the effects of solidification and solid state transformations on microstructure development will be described. In these welds, the final microstructure was found to be dependent on the cooling rates and solidification modes. The weld microstructure was investigated with the help of advanced analytical techniques such as atom-probe field-ion microscopy. The result addresses the importance of advanced analytical techniques in modeling the solid state transformation.

  15. Interfacial and Mechanical Behavior of AA5456 Filling Friction-Stir-Welded Lap Joints Using Similar and Dissimilar Pins

    NASA Astrophysics Data System (ADS)

    Behmand, Saleh Alaei; Mirsalehi, Seyyed Ehsan; Omidvar, Hamid; Safarkhanian, Mohammad Ali

    2016-10-01

    In this article, filling friction stir welding (FFSW) of the remaining exit holes of AA5456 alloy friction-stir-welded lap joints was studied. For this purpose, the influences of different rotating speeds, holding times, and pin materials, AA5456 and AA2024, on the metallurgical structure and joint strength were investigated. The observations showed that defect-free lap joints are successfully obtainable by this method using similar and dissimilar consumable pins. The results indicated that the higher rotating speed and holding time adversely affect the weld performance. The best result was achieved for 30 seconds holding time, 500 rpm rotating speed, and AA2024 consumable pin. In this condition, a lap shear strength of 10 pct higher than that of the nonfilled joint, equivalent to about 94 pct of the original defect-free FSW joint, was obtained, whereas the GTAW filled joint showed only approximately 87 pct of the continuous FSW joint strength.

  16. Direct welding of glass and metal by 1  kHz femtosecond laser pulses.

    PubMed

    Zhang, Guodong; Cheng, Guanghua

    2015-10-20

    In the welding process between similar or dissimilar materials, inserting an intermediate layer and pressure assistance are usually thought to be necessary. In this paper, the direct welding between alumina-silicate glass and metal (aluminum, copper, and steel), under exposure from 1 kHz femtosecond laser pulses without any auxiliary processes, is demonstrated. The micron/nanometer-sized metal particles induced by laser ablation were considered to act as the adhesive in the welding process. The welding parameters were optimized by varying the pulse energy and the translation velocity of the sample. The shear joining strength characterized by a shear force testing equipment was as high as 2.34 MPa. This direct bonding technology has potential for applications in medical devices, sensors, and photovoltaic devices.

  17. Direct bonding for dissimilar metals assisted by carboxylic acid vapor

    NASA Astrophysics Data System (ADS)

    Song, Jenn-Ming; Huang, Shang-Kun; Akaike, Masatake; Suga, Tadatomo

    2015-03-01

    This study developed a low-temperature low-vacuum direct bonding process for dissimilar metals via surface modification with formic acid vapor. Robust Cu/Ag and Cu/Zn bonding with a shear strength higher than 25 MPa can be achieved by thermal compression at 275 and 300 °C, respectively. CuZn5 and Cu5Zn8 formed at the interface of Cu/Zn joints, while no distinct interdiffusion layers appeared at the Cu/Ag interface. At elevated temperatures, the shear strength of Cu/Zn joints decreased significantly and turned to be weaker than Cu/Ag at 250 °C due to the softening of Zn. All the joints performed well subjected to thermal cycling up to 1000 times. However, compared with Cu/Ag joints with stable mechanical performance suffering aging at 250 °C, the shear strength of Cu/Zn degraded drastically up to 200 h, and after that it remained almost constant, which can be ascribed to the competitive growth between CuZn5 and Cu5Zn8, resulting in collapse and oxidation of CuZn5.

  18. Intraoral metal laser welding: a case report.

    PubMed

    Fornaini, Carlo; Vescovi, Paolo; Merigo, Elisabetta; Rocca, Jean-Paul; Mahler, Patrick; Bertrand, Caroline; Nammour, Samir

    2010-03-01

    The possibility of laser welding of dental prostheses offers great advantages: first, the operator has the possibility of welding on the master model, which decreases the number of passages and thus the possibility of errors and damage, and secondly, the patient attends only a few sessions, and, due to the possibility of fixing the damaged prostheses, there is no need to resort to the technician's laboratory. In a previous study we described the experimental phases of intraoral welding, from the in vitro model on animal jaws with evaluations of the temperature variations during welding through thermal chamber and type K thermocouples. In this study we describe the intraoral welding in vivo on human subjects by using, as in the previous study, a fibre-delivered neodymium:yttrium-aluminum-garnet (Nd:YAG) laser. The in vivo phase allowed a restored prosthesis to be positioned and intraorally welded in the upper central sector with optimal results both in patient's comfort and in aesthetic effects. This first in vivo test confirmed that the use of a laser technique for the intraoral welding of metal prostheses is possible, with no particular problems and risks for the biological structures close to the welding zone.

  19. Understanding metal vaporizaiton from laser welding.

    SciTech Connect

    DebRoy, Tarasankar; Fuerschbach, Phillip William; He, Xiuli; Norris, Jerome T.

    2003-09-01

    The production of metal vapor as a consequence of high intensity laser irradiation is a serious concern in laser welding. Despite the widespread use of lasers in manufacturing, little fundamental understanding of laser/material interaction in the weld pool exists. Laser welding experiments on 304 stainless steel have been completed which have advanced our fundamental understanding of the magnitude and the parameter dependence of metal vaporization in laser spot welding. Calculations using a three-dimensional, transient, numerical model were used to compare with the experimental results. Convection played a very important role in the heat transfer especially towards the end of the laser pulse. The peak temperatures and velocities increased significantly with the laser power density. The liquid flow is mainly driven by the surface tension and to a much less extent, by the buoyancy force. Heat transfer by conduction is important when the liquid velocity is small at the beginning of the pulse and during weld pool solidification. The effective temperature determined from the vapor composition was found to be close to the numerically computed peak temperature at the weld pool surface. At very high power densities, the computed temperatures at the weld pool surface were found to be higher than the boiling point of 304 stainless steel. As a result, vaporization of alloying elements resulted from both total pressure and concentration gradients. The calculations showed that the vaporization was concentrated in a small region under the laser beam where the temperature was very high.

  20. Microstructural characterization and mechanical properties of high power ultrasonic spot welded aluminum alloy AA6111–TiAl6V4 dissimilar joints

    SciTech Connect

    Zhang, C.Q. Robson, J.D.; Ciuca, O.; Prangnell, P.B.

    2014-11-15

    Aluminum alloy AA6111 and TiAl6V4 dissimilar alloys were successfully welded by high power ultrasonic spot welding. No visible intermetallic reaction layer was detected in as-welded AA6111/TiAl6V4 welds, even when transmission electron microscopy was used. The effects of welding time and natural aging on peak load and fracture energy were investigated. The peak load and fracture energy of welds increased with an increase in welding time and then reached a plateau. The lap shear strength (peak load) can reach the same level as that of similar Al–Al joints. After natural aging, the fracture mode of welds transferred from ductile fracture of the softened aluminum to interfacial failure due to the strength recovery of AA6111. - Highlights: • Dissimilar Al/Ti welds were produced by high power ultrasonic spot welding. • No visible intermetallic reaction layer was detected on weld interface. • The lap shear strength can reach the same level as that of similar Al–Al joints. • The fracture mode becomes interfacial failure after natural aging.

  1. Refractory metals welded or brazed with tungsten inert gas equipment

    NASA Technical Reports Server (NTRS)

    Wisner, J. P.

    1965-01-01

    Appropriate brazing metals and temperatures facilitate the welding or brazing of base metals with tungsten inert gas equipment. The highest quality bond is obtained when TIG welding is performed in an inert atmosphere.

  2. Extended electrode technique. [gas metal arc welding of metal plates

    NASA Technical Reports Server (NTRS)

    Schaper, V. D.; Pollack, A.

    1972-01-01

    The extended electrode technique is a unique welding process which utilizes manual gas-metal-arc (GMAW) semi-automatic equipment and close, square butt joints to effectively produce a weld. The technique takes advantage of the resistance heating of the electode extension to effect the root pass. Weldments as large as 72-X30-X2-inch have been fabricated with this technique under normal shipyard welding conditions. Mechanical properties and explosion bulge tests indicate that satisfactory results are obtained with this process. Potential savings of approximately 50 percent can be achieved in flat welding and repair of heavy structural steel members.

  3. High Strength Steel Weldment Reliability: Weld Metal Hydrogen Trapping.

    DTIC Science & Technology

    1998-02-01

    additions to welding consumables to control weld metal hydrogen and thus reduce susceptibility to cold cracking in high strength steel weldments. 14...applying weld metal hydrogen trapping to improve the resistance to hydrogen cracking in welding of high strength steels . Hydrogen cracking in high...requirements which are necessary to prevent hydrogen cracking in high strength steel welding. Common practices to prevent hydrogen cracking in steel

  4. Influence of Filler Metals in Welding Wires on the Phase and Chemical Composition of Weld Metal

    NASA Astrophysics Data System (ADS)

    Kozyrev, N. A.; Osetkovskiy, I. V.; Kozyreva, O. A.; Zernin, E. A.; Kartsev, D. S.

    2016-04-01

    The influence of filler metals used in welding wires on the phase and chemical composition of the metal, which is surfaced to mining equipment exposed to abrasive wear, has been investigated. Under a laboratory environment, samples of Mo-V-B and Cr-Mn-Mo-V wires were made. The performed experiments have revealed that fillers of the Cr-Mn-Mo-V system used in powder wire show better wear resistance of the weld metal than that of the Mn-Mo-V-B system; the absence of boron, which promotes grain refinement in the Mn-Mo-V-B system, significantly reduces wear resistance; the Mn-Mo-V-B weld metal has a finer structure than the Cr-Mn-Mo-V weld metal.

  5. Automatic laser welding of metal bellows with precision seam tracker

    SciTech Connect

    Chang, D.U.

    1996-12-31

    Metal bellows were laser edge-welded satisfactorily with the aid of a precision seam tracking system. The welding speed was five to ten times faster than conventional arc welding. The weld quality was excellent and the cost savings are expected to be substantial.

  6. A micromechanical image-based model for the featureless zone of a Fe-Ni dissimilar weld

    NASA Astrophysics Data System (ADS)

    Barrera, O.; Tarleton, E.; Cocks, A. C. F.

    2014-04-01

    This paper deals with the constitutive modelling of the 'featureless' region located on the Nickel side of a AISI8630/IN625 dissimilar weld interface. Fractography of failed weld interfaces show that cracks propagate in this carbides (?)-rich region in the presence of hydrogen. In this paper, TEM images of the carbide-rich region are converted into a finite element mesh through an image-based mesh generation scheme. Simulations of the response of these structures show that in areas where the hydrogen content is high the matrix surrounding the carbides softens and plastic flow is localized. Moreover, the presence of hydrogen lowers the cohesive strength, giving rise to microcrack formation at the carbide-matrix interface. The amount of deformation then increases in a localized region adjacent to the region where (a) hydrogen content is high and (b) the carbide/matrix interface has debonded. As deformation proceeds the microcracks grow and link to form macrocracks, which generates the failure surface.

  7. Welding technologies in art processing of metal

    NASA Astrophysics Data System (ADS)

    Kukhta, M.; Sokolov, A.; Pelevin, E.

    2014-10-01

    The article presents a comparative analysis of modern welding techniques which can be applied in the artistic machining of metals. Features of designing of art objects are defined and methods for their manufacture are offered. including stages of prototyping and full-scale modeling. Factors influencing the shaping of metal art objects are revealed. Practical application of the proposed recommendations is shown in the example of manufacturing of openwork metal mannequin.

  8. Effect of Welding Heat Input on the Corrosion Resistance of Carbon Steel Weld Metal

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Xu, Lianyong

    2016-02-01

    The corrosion resistance of carbon steel weld metal with three different microstructures has been systematically evaluated using electrochemical techniques with the simulated produced water containing CO2 at 90 °C. Microstructures include acicular ferrite, polygonal ferrite, and a small amount of pearlite. With welding heat input increasing, weld metal microstructure becomes more uniform. Electrochemical techniques including potentiodynamic polarization curve, linear polarization resistance, and electrochemical impedance spectroscopy were utilized to characterize the corrosion properties on weld joint, indicating that the best corrosion resistance corresponded to the weld metal with a polygonal ferrite microstructure, whereas the weld metal with the acicular ferrite + polygonal ferrite microstructure showed the worst corrosion resistance. The samples with high welding heat input possessed better corrosion resistance. Results were discussed in terms of crystal plane orientation, grain size, and grain boundary type found in each weld metal by electron backscatter diffraction test.

  9. Wet underwater welding trials with commercial manual metal arc electrodes

    SciTech Connect

    Abson, D.J.; Cooper, M.J.

    1996-12-01

    Six commercial wet underwater welding manual metal arc electrodes were evaluated in trials which simulated repairs to structures in shallow water. Welding was carried out both vertically down and overhead, at a depth of approximately 5 meters. One of the electrodes was an austenitic stainless steel, and the remainder were ferritic steel, containing low levels of carbon and manganese. Two weld configurations were employed in 8 mm thick C-Mn steel plate. Each weld was radiographed, sectioned, and examined metallographically. Tensile, Charpy and hardness testing were carried out. The trials revealed significant differences in the handleability of the six commercial electrodes. Handleability was better when welding vertically than when welding overhead, and was also better for fillet welds than for butt welds. Worm-holes and porosity were common in the latter. Extensive cracking occurred in the panels welded with the stainless steel electrode, preventing the extraction of mechanical test specimens from them. For the weld metal of the ferritic steel butt welds, strength and hardness increased with increasing alloying. Weld metal Charpy toughness varied widely between the different deposits. HAZ toughness was higher than that of the weld metal, but followed the trend of the weld metal data. On the patch plates, failure occurred in the parent steel on cross weld tensile specimens for the ferritic consumables, and in weld metal for the panels welded with the stainless steel electrodes. Viewed overall, two of the ferritic electrodes gave the best handleability and mechanical properties. However, fine-scale cracking was observed in the vertical butt weld deposited with one of them, and thus the other ferritic electrode gave the best all-round behavior. The remaining electrodes showed poorer handleability and a higher incidence of weld defects, including the extensive cracking observed in the butt welds produced with the stainless steel electrode.

  10. Heat input and dilution effects in microalloyed steel weld metals

    SciTech Connect

    Hunt, A.C. ); Kluken, A.O. . Div. of Metallurgy); Edwards, G.R. . Center for Welding and Joining Research)

    1994-01-01

    The sensitivity of weld metal microstructure and mechanical properties to variations in both heat input (i.e., cooling rate) and weld dilution in submerged arc (SA) welding of microalloyed steel was examined. Weldments were prepared with weld metal dilutions of approximately 40% and 70% at heat inputs of 2.0, 3.3, 4.6, and 5.3 kJ/mm, using two commercial welding wires and a basic commercial flux. The high dilution welds, which were ordinary bead-on-plate welds, resulted in microstructures that ranged from ferrite with aligned second phase at low heat inputs to acicular ferrite at high heat inputs. Special over-welding techniques were used to make the low dilution welds, allowing use of the same welding parameters as those for the high dilution welds. The technique involved remelting of weld metal to simulate the effect of multipass welding. The microstructure of these welds was predominantly acicular ferrite, independent of heat input. As a consequence, the low dilution welds had superior toughness compared to the high dilution welds.

  11. [Clinical analysis of laser welding on porcelain bonded metal surface].

    PubMed

    Weng, Jia-wei; Dai, Wen-an; Wu, Xue-ying

    2011-02-01

    To evaluate the clinical effect of laser-welded crowns and bridges. Two hundred defective crowns and bridges were welded by using Heraplus laser welding machine, and then restored by porcelain. After being welded ,those defective crowns and bridges of different materials fit well and their marginal areas were also satisfactory. During the follow up period of one year, no fractured porcelain and crack were found at welding spots. The technology of laser welding has no direct effect on welding spots between metal and porcelain and could be used to deal with the usual problems of the crowns and bridges.

  12. Apparatus For Metal/Inert-Gas Welding In Vacuum

    NASA Technical Reports Server (NTRS)

    Stocks, C. O.

    1994-01-01

    Metal/inert-gas welding-torch assembly operates in vacuum. Plasma generated in interior chamber and focused onto workpiece in vacuum. Pinch rollers feed wire to weld puddle. Controlled flow of plasma reduces dispersal in vacuum, preventing extinction.

  13. The effect of weld metal matching on girth weld performance. Volume 2, Experimental investigation: Final report

    SciTech Connect

    Denys, R.M.

    1993-01-24

    This report provides an experimental study of the failure behavior of 11.6 mm (0.457 in) pipe segments taken from 36 inch diameter pipes containing defects in the girth weld using small scale and fatigue pre-cracked curved wide plate test specimens. The focal points of the evaluations were: to study the effect of the relative difference between pipe and weld metal yield strengths on girth weld performance; to verify the assumption that the CTOD (Crack Tip Opening Displacement) test is a reliable indicator of girth weld performance; and to evaluate the usefulness of the Charpy V notch test for predicting girth weld failure behavior. The investigations have demonstrated that it would be highly desirable to require weld metal yield strength overmatching for preventing the situation where a weak weld would have to take the applied deformations and to develop a reliable testing procedure for the determination of weld metal yield strength.

  14. Effect of laser beam offset on microstructure and mechanical properties of pulsed laser welded BTi-6431S/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Hu, Shengsun; Shen, Junqi; Li, Dalong; Bu, Xianzheng

    2015-11-01

    Laser beam welding was used to weld dissimilar joints in BTi-6431S/TA15 titanium alloys. The effect of laser beam offset on microstructural characterizations and mechanical properties of the joints were investigated. Microstructural evolution of the joints was characterized by optical microscopy (OM) and X-ray diffraction (XRD). Tensile testing was conducted at room temperature and at 550 °C. The results demonstrated that with the exception of some porosity, a good quality joint could be achieved. Martensite α' and acicular α structures were present in the fusion zone (FZ). The amount of martensite α' present with the -0.2 mm beam offset was less than that with the 0.2 mm beam offset. Acicular α and martensite α' transformations occurred in the high temperature heat-affected zone (HT-HAZ) of both the BTi-6431S and TA15 alloys. In the low-temperature heat-affected zone (LT-HAZ), the BTi-6431S and TA15 alloy microstructures exhibited a mixture of secondary α, primary α, and prior β phases. The microhardness values in the FZ followed the order: -0.2 mm> 0 mm> 0.2 mm. Tensile testing at room temperature and at 550 °C resulted in fracture of the TA15 alloy base metal. The fracture morphology exhibited a ductile dimple feature.

  15. Thermal insulation of wet shielded metal arc welds

    NASA Astrophysics Data System (ADS)

    Keenan, Patrick J.

    1993-06-01

    Computational and experimental studies were performed to determine the effect of static thermal insulation on the quality of wet shielded metal arc welds (SMAW). A commercially available heat flow and fluid dynamics spectral-element computer program was used to model a wet SMAW and to determine the potential effect on the weld cooling rate of placing thermal insulation adjacent to the weld line. Experimental manual welds were made on a low carbon equivalent (0.285) mild steel and on a higher carbon equivalent (0.410) high tensile strength steel, using woven fabrics of alumina-boria-silica fibers to insulate the surface of the plate being welded. The effect of the insulation on weld quality was evaluated through the use of post-weld Rockwell Scale hardness measurements on the surface of the weld heat affected zones (HAZ's) and by visual inspection of sectioned welds at 10 X magnification. The computational simulation demonstrated a 150% increase in surface HAZ peak temperature and a significant decrease in weld cooling rate with respect to uninsulated welds, for welds in which ideal insulation had been placed on the base plate surface adjacent to the weld line. Experimental mild steel welds showed a reduction in surface HAZ hardness attributable to insulation at a 77% significance level. A visual comparison of the cross-sections of two welds made in 0.410 carbon equivalent steel-with approximately equivalent heat input-revealed underbead cracking in the uninsulated weld but not in the insulated weld.

  16. Dissimilar friction stir welds in AA5083-AA6082. Part I: Process parameter effects on thermal history and weld properties

    NASA Astrophysics Data System (ADS)

    Peel, M. J.; Steuwer, A.; Withers, P. J.; Dickerson, T.; Shi, Q.; Shercliff, H.

    2006-07-01

    The aim of this study was to explore the so-called processing window, within which good-quality welds can be produced, for the friction stir welding of AA5083 to AA6082. To that end a systematic set of nine instrumented welds were made using rotation speeds of 280, 560, and 840 rpm and traverse speeds of 100, 200, and 300 mm/min with AA5083 on the advancing side and another nine with the materials reversed. For comparison a smaller series of AA5083-AA5083 and AA6082-AA6082 welds were also made. Thermocouple measurements, tool torque, extent of material mixing, and macrostructural observations all indicate that the temperature under the tool is more strongly dependent on the rotation than the traverse speed. It was found that in the current case, the power (energy/s) and heat input (energy/mm) do not correlate simply with the weld temperature. As a result, such metrics may not be suitable for characterizing the conditions under which welds are produced.

  17. Electrode formulation to reduce weld metal hydrogen and porosity

    SciTech Connect

    Liu, S.; Olson, D.L.; Ibarra, S.

    1994-12-31

    Residual weld metal hydrogen is a major concern in high strength steel welding, especially when the weld is performed under high cooling rate conditions. In the case of underwater wet welding, weld metal porosity is also of importance because of the water environment. The control of both problems can be achieved by means of pyrochemical reactions in the weld pool. The hydrogen-oxygen reaction and carbon-oxygen reaction are fundamental in the control of residual hydrogen in the weld metal and the amount of gas pores entrapped. A simple model was proposed to estimate weld metal residual hydrogen content by monitoring the weld pool deoxidation reactions. Potent deoxidizers such as aluminum will first react with oxygen in the liquid weld pool, followed by other elements present such as silicon and manganese. Carbon and hydrogen will be the last ones to react with oxygen prior to the iron atoms. The Ellingham-Richardson diagram frequently applied in describing steel and iron making processes was used in the modeling. Following the sequence of deoxidation, the chemical make-up of the gas pores and the amount of each chemical species in the pores could be estimated. Carbon monoxide and hydrogen were determined to be the major components in the weld pores. To minimize the amount of weld metal porosity and residual hydrogen content, specially designed consumables that will control the oxygen potential of the weld pool must be developed.

  18. Plutonium metal and oxide container weld development and qualification

    SciTech Connect

    Fernandez, R.; Horrell, D.R.; Hoth, C.W.; Pierce, S.W.; Rink, N.A.; Rivera, Y.M.; Sandoval, V.D.

    1996-01-01

    Welds were qualified for a container system to be used for long-term storage of plutonium metal and oxide. Inner and outer containers are formed of standard tubing with stamped end pieces gas-tungsten-arc (GTA) welded onto both ends. The weld qualification identified GTA parameters to produce a robust weld that meets the requirements of the Department of Energy standard DOE-STD-3013-94, ``Criteria for the Safe Storage of Plutonium Metals and Oxides.``

  19. Experimental Investigation of Three-Dimensional (3-D) Material Flow Pattern in Thick Dissimilar 2050 Friction-Stir Welds

    NASA Astrophysics Data System (ADS)

    Avettand-Fènoël, Marie-Noëlle; Taillard, Roland; Laye, Julien; Odièvre, Thierry

    2014-02-01

    The current microstructural investigation performed at various scales deals with the three-dimensional (3-D) material flow in thick dissimilar Airware™ 2050 friction-stir butt welds (Airware, Newport Beach, CA) because of the scarcity of the results obtained with thicker than 8 mm joints and the lack of detailed interpretation of features in the longitudinal direction. An additional originality consists in the study of material flow under the probe tip. In the current case of thick plates, the variation of local temperature along the weld depth is of key importance for the material flow. Indeed, it governs the slight difference of local mechanical behavior between both materials and therefore the shift of the interface, which was clearly put into evidence by means of a difference of Mn content as small as 0.3 pct between both alloys. This importance of temperature for the malleability also entails the pear shape of the nugget as well as a change of grains orientation along the depth in the thermomechanically affected zone. Due to the modification of tool-material adhesion with temperature, a new phenomenological model of material flow for thick friction-stir welds is proposed. In accordance with their difference of origin, the coexistence of onion rings and serrated interface is also highlighted.

  20. Effect of Traverse and Rotational Speeds on the Tensile Behavior of the Underwater Dissimilar Friction Stir Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bijanrostami, Kh.; Barenji, R. Vatankhah; Hashemipour, M.

    2017-02-01

    The tensile behavior of the underwater dissimilar friction stir welded AA6061 and AA7075 aluminum alloy joints was investigated for the first time. For this aim, the joints were welded at different conditions and tensile test was conducted for measuring the strength and elongation of them. In addition, the microstructure of the joints was characterized by means of optical and transmission electron microscopes. Scanning electron microscope was used for fractography of the joints. Furthermore, the process parameters and tensile properties of the joints were correlated and optimized. The results revealed that the maximum tensile strength of 237.3 MPa and elongation of 41.2% could be obtained at a rotational speed 1853 rpm and a traverse speed of 50 mm/min. In comparison with the optimum condition, higher heat inputs caused grain growth and reduction in dislocation density and hence led to lower strength. The higher elongations for the joints welded at higher heat inputs were due to lower dislocation density inside the grains, which was consistent with a more ductile fracture of them.

  1. Effect of Traverse and Rotational Speeds on the Tensile Behavior of the Underwater Dissimilar Friction Stir Welded Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    Bijanrostami, Kh.; Barenji, R. Vatankhah; Hashemipour, M.

    2017-01-01

    The tensile behavior of the underwater dissimilar friction stir welded AA6061 and AA7075 aluminum alloy joints was investigated for the first time. For this aim, the joints were welded at different conditions and tensile test was conducted for measuring the strength and elongation of them. In addition, the microstructure of the joints was characterized by means of optical and transmission electron microscopes. Scanning electron microscope was used for fractography of the joints. Furthermore, the process parameters and tensile properties of the joints were correlated and optimized. The results revealed that the maximum tensile strength of 237.3 MPa and elongation of 41.2% could be obtained at a rotational speed 1853 rpm and a traverse speed of 50 mm/min. In comparison with the optimum condition, higher heat inputs caused grain growth and reduction in dislocation density and hence led to lower strength. The higher elongations for the joints welded at higher heat inputs were due to lower dislocation density inside the grains, which was consistent with a more ductile fracture of them.

  2. Chemical composition variations in shielded metal arc welds

    SciTech Connect

    Bracarense, A.Q.; Liu, S. . Center for Welding and Joining Research)

    1993-12-01

    The use of shielded metal arc (SMA) welding can result in chemical composition variations along the weld length. Manganese and silicon, commonly found in low-carbon steel welds, change in composition with weld position. This research was performed to better characterize the composition variations observed in structural steel welds and to understand the controlling factors that determine the extent of these composition changes. Single bead-on-plate and multipass welds were performed and analyzed. Manganese, silicon, and oxygen contents showed significant variation along the weld length. To determine the cause of such composition variations, additional experiments were carried out with the welding arc established between the electrode and a water-cooled copper pipe. The individual metal droplets were collected in water and processed using standard particulate materials processing techniques to remove the slag covering. The droplet size distribution was determined and related to the composition variation and position along the weld length.

  3. Metal Transfer in Gas Metal Arc Welding

    DTIC Science & Technology

    1988-03-17

    their measurements. Predictions can also be compared to integral measurements as by Halmoy [1980] for melting rate and by Ueguri, Hara and Komura ...10 No. 3. Ue-,uri, S., K. Hara and H. Komura , 1985. Welding J., 64 pp. 242s-250s. van Doormaal, J.P. and G.D. Raithby, 1985. ASME paper 85-HT-9

  4. A Study on the Welding Characteristics of Tailor Welded Blank Metal Sheets Using GTAW and Laser Welding

    NASA Astrophysics Data System (ADS)

    Thasanaraphan, Pornsak

    In this study, a computational and experimental effort was carried out to qualitatively understand the weld pool shape, distortion and residual stress for continuous laser welding and manual pulsed gas metal arc welding. For all the welding simulations given in this dissertation, a welding specific finite element package, SYSWELD, is used. This research focuses on the welding behavior observed in light-weight metal structures known as the tailor-welded blanks, TWBs. They are a combination of two or more metal sheets with different thickness and/or different materials that are welded together in a single plane prior to forming, e.g., stamping. They made from the low carbon steel. As laser welding experiment results show, the weld pool shape at the top and bottom surface, is strongly influenced by surface tension, giving it a characteristic hourglass shape. In order to simulate the hourglass shape, a new volumetric heat source model was developed to predict the transient temperature profile and weld pool shape, including the effect of surface tension. Tailor welded blanks with different thicknesses were examined in the laser welding process. All major physical phenomena such as thermal conduction, heat radiation and convection heat losses are taken into account in the model development as well as temperature-dependant thermal and mechanical material properties. The model is validated for the case of butt joint welding of cold rolled steel sheets. The results of the numerical simulations provide temperature distributions representing the shape of the molten pool, distortion and residual stress with varying laser beam power and welding speed. It is demonstrated that the finite element simulation results are in good agreement with the experiment results. This includes the weld pool shape and sheet metal distortion. While there is no experimental data to compare directly with residual stress results, the distorted shape provides an indirect measure of the welding

  5. Characteristics comparison of weld metal zones welded to cast and forged steels for piston crown material

    NASA Astrophysics Data System (ADS)

    Moon, Kyung-Man; Kim, Yun-Hae; Lee, Myeong-Hoon; Baek, Tae-Sil

    2015-03-01

    An optimum repair welding for the piston crown which is one of the engine parts exposed to the combustion chamber is considered to be very important to prolong the engine lifetime from an economical point of view. In this study, two types of filler metals such as 1.25Cr-0.5Mo, 0.5Mo were welded with SMAW method and the other two types of filler metals such as Inconel 625 and 718 were welded with GTAW method, respectively, and the used base metals were the cast and forged steels of the piston crown material. The weld metal zones welded with Inconel 625 and 718 filler metals exhibited higher corrosion resistance compared to 1.25Cr-0.5Mo and 0.5Mo filler metals. In particular, the weld metal zone welded with Inconel 718 and 0.5Mo, filler metals indicated the best and worst corrosion resistance, respectively. Consequently, it is suggested that the corrosion resistance of the weld metal zone surely depends on the chemical components of each filler metal and welding method irrespective of the types of piston crown material.

  6. Laser-welded Dissimilar Steel-aluminum Seams for Automotive Lightweight Construction

    NASA Astrophysics Data System (ADS)

    Schimek, M.; Springer, A.; Kaierle, S.; Kracht, D.; Wesling, V.

    By reducing vehicle weight, a significant increase in fuel efficiency and consequently a reduction in CO 2 emissions can be achieved. Currently a high interest in the production of hybrid weld seams between steel and aluminum exists. Previous methods as laser brazing are possible only by using fluxes and additional materials. Laser welding can be used to join steel and aluminum without the use of additives. With a low penetration depth increases in tensile strength can be achieved. Recent results from laser welded overlap seams show that there is no compromise in strength by decreasing penetration depth in the aluminum.

  7. Microstructure and Mechanical Properties of Dissimilar Friction Stir Spot Welding Between St37 Steel and 304 Stainless Steel

    NASA Astrophysics Data System (ADS)

    Khodadadi, Ali; Shamanian, Morteza; Karimzadeh, Fathallah

    2017-05-01

    In the present study, St37 low-carbon steel and 304 stainless steel were welded successfully, with the thickness of 2 mm, by a friction stir spot welding process carried out at the tool dwell time of 6 s and two different tool rotational speeds of 630 and 1250 rpm. Metallographic examinations revealed four different zones including SZ and HAZ areas of St37 steel and SZ and TMAZ regions of 304 stainless steel in the weld nugget, except the base metals. X-ray diffraction and energy-dispersive x-ray spectroscopy experiments were used to investigate the possible formation of such phases as chromium carbide. Based on these experiments, no chromium carbide precipitation was found. The recrystallization of the weld nugget in the 304 steel and the phase transformations of the weld regions in the St37 steel enhanced the hardness of the weld joint. Hardness changes of joint were acceptable and approximately uniform, as compared to the resistance spot weld. In this research, it was also observed that the tensile/shear strength, as a crucial factor, was increased with the rise in the tool rotational speed. The bond length along the interface between metals, as an effective parameter to increase the tensile/shear strength, was also determined. At higher tool rotational speeds, the bond length was found to be improved, resulting in the tensile/shear strength of 6682 N. Finally, two fracture modes were specified through the fracture mode analysis of samples obtained from the tensile/shear test consisting of the shear fracture mode and the mixed shear/tensile fracture mode.

  8. Comparison of single-beam and dual-beam laser welding of Ti-22Al-25Nb/TA15 dissimilar titanium alloys

    NASA Astrophysics Data System (ADS)

    Shen, Junqi; Li, Bo; Hu, Shengsun; Zhang, Hao; Bu, Xianzheng

    2017-08-01

    Laser beam welding (LBW) was used to join Ti-22Al-25Nb/TA15 dissimilar titanium alloys. The microstructure and mechanical properties of the welded joints under single and dual beam welding were analyzed and compared. In the mode of single laser beam, the fusion zone only consisted of B2 phase because of existence of β-phase stabilizer and rapid cooling rate of LBW. However, O phase was formed in the fusion zone while applying dual-beam laser welding due to decrease of the cooling rate. The microhardness distribution of the welded joint in dual-beam welding mode was consistent with that in single mode, but the hardness of the weld under dual laser beam was higher than that of single laser beam. In room-temperature tensile tests, the fractures all occurred in the weld, but the morphology exhibited a quasi-cleavage feature in single mode while the morphology was dimple fracture in the mode of dual laser beam. The tensile strength and elongation were both increased under dual-beam laser welding compared with those under single-beam laser welding.

  9. Creep-Fatigue Cracking Near the Welded Interface in Friction Welding Dissimilar Superalloys INCONEL 718 and MAR-M247

    NASA Astrophysics Data System (ADS)

    Tra, Tran Hung; Okazaki, Masakazu

    2017-08-01

    A forged INCONEL 718 and a cast MAR-M247 alloy were joined by a friction welding process. The creep-fatigue strength of this joint was investigated. The life of the joint was significantly shorter than that of the base alloys. The joint failed near the interface of the INCONEL 718 side, although the life of INCONEL 718 was longer than that of MAR-M247. To understand this behavior, the stress field in the welding was numerically analyzed using a visco-elastic model. The results suggested that triaxiality in the stress state could be promoted near the welded interface and lead to an acceleration of creep-fatigue crack nucleation.

  10. Oxygen effect on low-alloy steel weld metal properties

    SciTech Connect

    Potapov, N.N. . Welding Dept.)

    1993-08-01

    It is shown that the weld metal oxygen content in submerged arc low-alloy steel welds, as well as in low-carbon steel welds is dependent on the concentration of oxides decomposed at low temperatures in a weld pool slag phase. The oxygen is mainly in the form of fine dispersed oxide inclusions of less than 0.03 [mu]m. Differentiated evaluation of silicon reduction effects in submerged arc welded low-alloy steels revealed that weld metal brittle fracture strength depends to a considerable degree on total weld metal oxide inclusion content than on silicon increment in the weld. Therefore, the increase of weld metal brittle fracture susceptibility with the growth of weld oxide inclusion content is important to know. Welds with lowered oxygen content [0] [<=] 0.02% also display the tendency to decrease in plasticity because (1) the ferritic-pearlitic matrix of improved purity is likely to generate unbalanced structures on cooling and, (2) when there are no oxide inclusions, the shape of sulfur and phosphor precipitation from the melt changes from globular to film-like. Optimal low-alloy steel weld metal oxygen content is defined in the range of 0.02-0.035.

  11. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  12. Microstructure and Mechanical Properties of Dissimilar Welded Ti3Al/Ni-Based Superalloy Joint Using a Ni-Cu Filler Alloy

    NASA Astrophysics Data System (ADS)

    Chen, Bing-Qing; Xiong, Hua-Ping; Guo, Shao-Qing; Sun, Bing-Bing; Chen, Bo; Tang, Si-Yi

    2015-02-01

    Dissimilar welding of a Ti3Al-based alloy and a Ni-based superalloy (Inconel 718) was successfully carried out using gas tungsten arc welding technology in this study. With a Ni-Cu alloy as filler material, sound joints have been obtained. The microstructure evolution along the cross section of the dissimilar joint has been revealed based on the results of scanning electron microscopy and X-ray energy dispersive spectroscopy as well as X-ray diffractometer. It is found that the weld/Ti3Al interface is composed of Ti2AlNb matrix dissolved with Ni and Cu, Al(Cu, Ni)2Ti, (Cu, Ni)2Ti, (Nb, Ti) solid solution, and so on. The weld and In718/weld interface mainly consist of (Cu, Ni) solid solutions. The weld exhibits higher microhardness than the two base materials. The average room-temperature tensile strength of the joints reaches 242 MPa and up to 73.6 pct of the value can be maintained at 873 K (600 °C). The brittle intermetallic phase of Ti2AlNb matrix dissolved with Ni and Cu at the weld/Ti3Al interface is the weak link of the joint.

  13. A Bottom-Up Optimization Approach for Friction Stir Welding Parameters of Dissimilar AA2024-T351 and AA7075-T651 Alloys

    NASA Astrophysics Data System (ADS)

    Anil Kumar, K. S.; Murigendrappa, S. M.; Kumar, Hemantha

    2017-07-01

    In the present study, optimum friction stir weld parameters such as plunge depth, tool rotation speed and traverse speed for butt weld of dissimilar aluminum alloy plates, typically 2024-T351 and 7075-T651, are investigated using a bottom-up approach. In the approach, optimum FSW parameters are achieved by varying any one parameter for every trial while remaining parameters are kept constant. The specimens are extracted from the friction stir-welded plates for studying the tensile, hardness and microstructure properties. Optimum friction stir weld individual parameters are selected based on the highest ultimate tensile strength of the friction stir-welded butt joint specimens produced by varying in each case one parameter and keeping the other two constant. The microstructure samples were investigated for presence of defects, grain refinement at the weld nugget (WN), bonding between the two materials and interface of WN, TMAZ (thermomechanically affected zone) of both advancing and retreating sides of the dissimilar joints using optical microscopy and scanning electron microscopy analyses. In the experimental investigations, the optimum FSW parameters such as plunge depth, 6.2 mm, rotation speed, 650 rpm and traverse speed of 150 mm/min result in ultimate tensile strength, 435 MPa, yield strength, 290 MPa, weld joint efficiency, 92% and maximum elongation, 13%. The microstructure of optimized sample in the WN region revealed alternate lamellae material flow pattern with better metallurgical properties, defect free and very fine equiaxed grain size of about 3-5 µm.

  14. Welding of HSLA-100 steel using ultra low carbon bainitic weld metal to eliminate preheating

    SciTech Connect

    Devletian, J.H.; Singh, D.; Wood, W.E.

    1996-12-31

    Advanced high strength steels such as the Navy`s HSLA-100 and HSLA-80 contain sufficiently low carbon levels to be weldable without preheating. Unfortunately, commercial filler metals specifically designed to weld these steels without costly preheating have not yet been developed. The objective of this paper is to show that the Navy`s advanced steels can be welded by gas metal-arc (GMAW) and gas tungsten-arc welding (GTAW) without preheating by using filler metal compositions that produce weld metal with an ultra-low carbon bainitic (ULCB) microstructure. Filler metals were fabricated from vacuum induction melted (VIM) ingots containing ultra-low levels of C, O and N. HSLA-100 plate and plate from the VIM ingots were welded by both GMAW and GTAW with Ar-5% CO{sub 2} shielding gas using welding conditions to achieve cooling times from 800 to 500 C (t{sub 8-5}) from 35 to 14 sec. Weld metal tensile, hardness and CVN impact toughness testing as well as microstructural studies using transmission electron microscopy were conducted. The ULCB weld metal was relatively insensitive to cooling rate, resulting in good strength and toughness values over a wide range of t{sub 8-5} cooling times. Filler metal compositions which met the mechanical property requirements for HSLA-100, HSLA-80 and HSLA-65 weld metal were developed.

  15. Microstructure Improvement in Weld Metal under the Ultrasonic Application

    SciTech Connect

    Cui, Yan; Xu, Cailu; Han, Qingyou

    2007-01-01

    When considering the operational performance of weldments in the engineering projects, the most important issues to be considered are weld metal mechanical properties, integrity of the welded joint, and weldability 1 . These issues are closely related to the microstructure of the weld metal. A significant amount of research has been carried out to alter the process variables and to use external devices to obtain microstructure control of the weldments. It has been reported that grain refined microstructure not only reduces cracking behavior of alloys including solidification cracking, cold cracking and reheat cracking, 2 - 5 but also improves the mechanical properties of the weld metal, such as toughness, ductility, strength, and fatigue life. 6, 7 Weld pool stirring, 8 arc oscillation, 9, 10 arc pulsation, 11 , and magnetic arc oscillator 12, 13 have been applied to fusion welding to refine the microstructures. This article describes initial experimental results on the use of power ultrasonic vibration to refine the microstructure of weld metals.

  16. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  17. Shielded Metal Arc Pipe Welding. Teacher Edition. Second Edition.

    ERIC Educational Resources Information Center

    Fortney, Clarence; And Others

    This second edition of the shielded metal arc pipe welding curriculum guide presents both basic and advanced pipe welding skills. All specifications for procedure and welder qualification are presented according to national standards. The standards also include the test position for both groove and fillet pipe welding. The guide contains three…

  18. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Pattee, F. M.; Masubuchi, K.

    1974-01-01

    Finite element computer programs were developed to determine thermal stresses and metal movement during butt welding of flat plates and bead-on-plate welding along the girth of a cylindrical shell. Circular cylindrical shells of 6061 aluminum alloy were used for the tests. Measurements were made of changes in temperature and thermal strains during the welding process.

  19. Analysis and Comparison of Aluminum Alloy Welded Joints Between Metal Inert Gas Welding and Tungsten Inert Gas Welding

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Guan, Yingchun; Wang, Qiang; Cong, Baoqiang; Qi, Bojin

    2015-09-01

    Surface contamination usually occurs during welding processing and it affects the welds quality largely. However, the formation of such contaminants has seldom been studied. Effort was made to study the contaminants caused by metal inert gas (MIG) welding and tungsten inert gas (TIG) welding processes of aluminum alloy, respectively. SEM, FTIR and XPS analysis was carried out to investigate the microstructure as well as surface chemistry. These contaminants were found to be mainly consisting of Al2O3, MgO, carbide and chromium complexes. The difference of contaminants between MIG and TIG welds was further examined. In addition, method to minimize these contaminants was proposed.

  20. Development of plasma MIG brazing process for dissimilar metal joining of aluminum to steel

    NASA Astrophysics Data System (ADS)

    Tashiro, Shinichi; Tanaka, Manabu

    2014-08-01

    This study aims to develop a new brazing process employing plasma MIG. Because the energy density of the plasma produced by the plasma electrode is low, the base metal can be heated extensively without melting of the base metal, consequently improving the wettability of bead. This paper discussed the dissimilar metal joining of aluminum to steel by plasma MIG brazing process. Fracture occurred at the HAZ in the aluminum plate at 80 MPa.

  1. Shielding gas oxygen equivalent in weld metal microstructure optimization

    SciTech Connect

    Onsoeien, M.I.; Liu, S.; Olson, D.L.

    1996-07-01

    One of the compositional variables that strongly influence low-carbon structural steel weld metal microstructure and mechanical properties is the weld metal oxygen content. As the weld metal oxygen content varies, a change in microstructure occurs. At low concentrations of oxygen, ferrite with aligned or nonaligned second phases may become predominant, slightly higher oxygen levels may result in the formation of the desired acicular ferrite, and further increases in the oxygen content to promote the formation of grain boundary ferrite. The start of austenite decomposition and ferrite nucleation are very sensitive to variations in the amount of oxygen present in the weld metal. Thus, in gas metal arc welding, adjusting the shielding gas oxygen potential provides a means of controlling the weld metal oxygen content. Bead-in-groove gas metal arc welding experiments were performed on HSLA steel coupons using three different welding wires and two heat inputs. A total of 17 different argon-based oxygen and carbon dioxide shielding gas mixtures was used. Complete metallographic and chemical analyses were carried out to evaluate the weld specimens. Sub-size Charpy V-notch toughness testing was performed on selected welds.

  2. Metallurgical And Mechanical Analyses Of Dissimilar Friction Weldments Of Ferrous And Non-Ferrous Metals For Lightweight Components

    NASA Astrophysics Data System (ADS)

    Figala, G.; Taschauer, M.; Wallner, S.; Buchmayr, B.

    2011-05-01

    The multi-material approach as quite often applied in the automotive and aircraft industry follows the idea of choosing the best performing material combination under specific service requirements. For metal-matrix composites, friction welding is a quite attractive technology, which can provide more insight into the property determining phenomena and processing parameters. A special rotational friction apparatus using a servo motor without brake system was built for the production of dissimilar weldments. The friction welding process was analysed using FEM to describe temperature history, material flow and forging force. By metallographic and mechanical testing, the microstructure and mechanical behaviour in the various subzones of the heat affected zone (HAZ) were determined. In addition, the strain distribution within the HAZ was measured by an optical device in order to characterize the weakest subzone and to study the local hardening behaviour. By variation of the main influencing parameters optimal component performance could be achieved. The fundamental understanding could be also applied for other technologies, like roll bonding.

  3. High-power Laser Welding of Thick Steel-aluminum Dissimilar Joints

    NASA Astrophysics Data System (ADS)

    Lahdo, Rabi; Springer, André; Pfeifer, Ronny; Kaierle, Stefan; Overmeyer, Ludger

    According to the Intergovernmental Panel on Climate Change (IPCC), a worldwide reduction of CO2-emissions is indispensable to avoid global warming. Besides the automotive sector, lightweight construction is also of high interest for the maritime industry in order to minimize CO2-emissions. Using aluminum, the weight of ships can be reduced, ensuring lower fuel consumption. Therefore, hybrid joints of steel and aluminum are of great interest to the maritime industry. In order to provide an efficient lap joining process, high-power laser welding of thick steel plates (S355, t = 5 mm) and aluminum plates (EN AW-6082, t = 8 mm) is investigated. As the weld seam quality greatly depends on the amount of intermetallic phases within the joint, optimized process parameters and control are crucial. Using high-power laser welding, a tensile strength of 10 kN was achieved. Based on metallographic analysis, hardness tests, and tensile tests the potential of this joining method is presented.

  4. Effect of Pulse Parameters on Weld Quality in Pulsed Gas Metal Arc Welding: A Review

    NASA Astrophysics Data System (ADS)

    Pal, Kamal; Pal, Surjya K.

    2011-08-01

    The weld quality comprises bead geometry and its microstructure, which influence the mechanical properties of the weld. The coarse-grained weld microstructure, higher heat-affected zone, and lower penetration together with higher reinforcement reduce the weld service life in continuous mode gas metal arc welding (GMAW). Pulsed GMAW (P-GMAW) is an alternative method providing a better way for overcoming these afore mentioned problems. It uses a higher peak current to allow one molten droplet per pulse, and a lower background current to maintain the arc stability. Current pulsing refines the grains in weld fusion zone with increasing depth of penetration due to arc oscillations. Optimum weld joint characteristics can be achieved by controlling the pulse parameters. The process is versatile and easily automated. This brief review illustrates the effect of pulse parameters on weld quality.

  5. Process Modeling of Ti-6Al-4V Linear Friction Welding (LFW)

    DTIC Science & Technology

    2012-10-01

    surfaces; (c) suitability for joining difficult-to- weld , high- performance, and dissimilar (metallic) materials (e.g., joining of the aircraft-engine blades...Element Modeling of the Inertia Friction Welding Process Between Dissimilar Materials, J. Mater. Process. Technol., 2002, 125–126(9), p 387–391 15. M.R...Ruge, and K. Thomas, Temperature Determination During the Friction Welding of Dissimilar Materials in Cylindrical Form- Measurement and Calculation

  6. Welding, bonding, and sealing of refractory metals by vapor deposition

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Plating process welds, bonds, and seals refractory metals without weakening or changing the structure of the base metals. A metal halide compound in the vapor phase is decomposed to deposit filler metal on the base metal. The resulting bond is a true metal-to-metal bond.

  7. Laser-driven flyer application in thin film dissimilar materials welding and spalling

    NASA Astrophysics Data System (ADS)

    Wang, Huimin; Wang, Yuliang

    2017-10-01

    This paper applied a low cost method to pack and drive laser-driven flyer in the applications of welding and spalling. The laser system has the maximum energy of 3.1 J, which is much lower than that used in the previous study. The chemical release energy from the ablative layer was estimated as 3.7 J. The flying characteristic of laser-driven flyer was studied by measuring the flyer velocity at different locations with photonic Doppler velocimetry (PDV). The application of laser-driven flyer in welding Al and Cu was investigated at different laser spot size. Weld strength was measured with the peel test. Weld interface was characterized with optical microscopy (OM) and scanning electron microscopy (SEM). The study of application of laser-driven flyer in spalling was carried out for both brittle and ductile materials. The impact pressure was calculated based on the Hugoniot data. The amount of spalling was not only related to the impact pressure but also related to the duration of impact pressure. The fractography of spalled fracture surface was studied and revealed that the fracture mode was related to the strain rate. The spall strength of Cu 110, Al 1100 and Ni 201was measured and was consistent with the literature data.

  8. Friction Stir-Welded Dissimilar Aluminum Alloys: Microstructure, Mechanical Properties, and Physical State

    NASA Astrophysics Data System (ADS)

    Ghosh, M.; Husain, Md. M.; Kumar, K.; Kailas, S. V.

    2013-12-01

    A356 and 6061 aluminum alloys were joined by friction stir welding at constant tool rotational rate with different tool-traversing speeds. Thermomechanical data of welding showed that increment in tool speed reduced the pseudo heat index and temperature at weld nugget (WN). On the other hand, volume of material within extrusion zone, strain rate, and Zenner Hollomon parameter were reduced with decrease in tool speed. Optical microstructure of WN exhibited nearly uniform dispersion of Si-rich particles, fine grain size of 6061 Al alloy, and disappearance of second phase within 6061 Al alloy. With enhancement in welding speed, matrix grain size became finer, yet size of Si-rich particles did not reduce incessantly. Size of Si-rich particles was governed by interaction time between tool and substrate. Mechanical property of WN was evaluated. It has been found that the maximum joint efficiency of 116% with respect to that of 6061 alloy was obtained at an intermediate tool-traversing speed, where matrix grain size was significantly fine and those of Si-rich particles were substantially small.

  9. Diagnostics of metal inert gas and metal active gas welding processes

    NASA Astrophysics Data System (ADS)

    Uhrlandt, D.

    2016-08-01

    The paper gives a review on studies on metal inert gas (MIG) and metal active gas (MAG) welding processes with the focus on diagnostics of the arc, the material transfer, and the temporal process behaviour in welding experiments. Recent findings with respect to an improved understanding of the main mechanisms in the welding arc and the welding process are summarized. This is linked to actual developments in welding arc and welding process modelling where measurements are indispensable for validation. Challenges of forthcoming studies are illustrated by means of methods under development for welding process control as well as remaining open questions with respect to arc-surface interaction and arc power balance.

  10. Friction stir welding joint of dissimilar materials between AZ31B magnesium and 6061 aluminum alloys: Microstructure studies and mechanical characterizations

    SciTech Connect

    Mohammadi, J.; Behnamian, Y.; Mostafaei, A.; Izadi, H.; Saeid, T.; Kokabi, A.H.; Gerlich, A.P.

    2015-03-15

    Friction stir welding is an efficient manufacturing method for joining dissimilar alloys, which can dramatically reduce grain sizes and offer high mechanical joint efficiency. Lap FSW joints between dissimilar AZ31B and Al 6061 alloy sheets were made at various tool rotation and travel speeds. Rotation and travel speeds varied between 560–1400 r/min and 16–40 mm/min respectively, where the ratio between these parameters was such that nearly constant pitch distances were applied during welding. X-ray diffraction pattern (XRD), optical microscopy images (OM), electron probe microanalysis (EPMA) and scanning electron microscopy equipped with an energy-dispersive X-ray spectroscopy (SEM-EDS) were used to investigate the microstructures of the joints welded. Intermetallic phases including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β) were detected in the weld zone (WZ). For different tool rotation speeds, the morphology of the microstructure in the stir zone changed significantly with travel speed. Lap shear tensile test results indicated that by simultaneously increasing the tool rotation and travel speeds to 1400 r/min and 40 mm/min, the joint tensile strength and ductility reached a maximum. Microhardness measurements and tensile stress–strain curves indicated that mechanical properties were affected by FSW parameters and mainly depended on the formation of intermetallic compounds in the weld zone. In addition, a debonding failure mode in the Al/Mg dissimilar weld nugget was investigated by SEM and surface fracture studies indicated that the presence of intermetallic compounds in the weld zone controlled the failure mode. XRD analysis of the fracture surface indicated the presence of brittle intermetallic compounds including Al{sub 12}Mg{sub 17} (γ) and Al{sub 3}Mg{sub 2} (β). - Highlights: • Dissimilar Al/Mg joint was obtained by lap friction stir welding technique. • Effect of rotation and travel speeds on the formation of intermetallic

  11. Towards predicting weld metal microstructure from fundamentals of transport phenomena

    SciTech Connect

    Mundra, K.; DebRoy, T.; Babu, S.S.; David, S.A.; Paul, A.J.

    1995-06-01

    Heat transfer and fluid flow during manual metal arc welding Of low alloy steels were investigated by solving the equations of conservation of mass, momentum and energy in three dimensions. Calculated cooling rates were coupled with an existing phase transformation model to predict the microstructure in low alloy steel welds. The computed results were found to be in good agreement with experimentally observed microstructures. The agreement indicates significant promise for predicting spatial distribution of weld metal microstructure from the fundamentals of transport phenomena.

  12. Effect of electrode heating on weld metal chemistry control in shielded metal arc welding

    SciTech Connect

    Bracarense, A.Q.; Liu, S.

    1994-12-31

    During welding with the shielded metal arc welding (SMAW) process, the electrode experiences an increase in temperature because of Joule heating and the heat from the arc conducted though the molten droplet to the solid wire. Heating of the electrode and temperature distribution along the electrode length will depend on the welding parameters as well as the ingredients of the flux coating. Thermal properties such as heat capacity and dissociation temperature of these ingredients can affect the heat transport through the electrode. A mathematical model taking into consideration the heat transport conditions in the electrode nd carbonate decomposition in the flux coating was developed to better understand and predict the increase in temperature in the core rod and coating of the electrode. Knowing the welding parameters and the physical properties of the flux ingredients, it was possible to estimate the temperature distribution along the length of the electrode, the location along the electrode length, above the arc where ingredients such as CaCO{sub 3} will start to dissociate and the oxygen potential of the shielding gas generated. To validate the model, the temperature of the core rod and the coating were monitored during actual welding. Experimental E7018 type electrodes with varying carbonate content were used. The remarkable conclusion of this research is that the stability of the flux ingredients and the welding parameters can be used to predict the thermal history along the electrode length and the oxygen potential in the arc environment during welding. The proposed mathematical model and thermodynamic data of the flux ingredients make it possible to control the chemical composition along the weld length.

  13. Ultrasonic Welding of Hybrid Joints

    NASA Astrophysics Data System (ADS)

    Wagner, Guntram; Balle, Frank; Eifler, Dietmar

    2012-03-01

    A central research field of the Institute of Materials Science and Engineering at the University of Kaiserslautern (WKK), Germany, is the realization of innovative hybrid joints by ultrasonic metal welding. This article gives an overview of suitable ultrasonic welding systems as well as of essential machine and material parameters, which influence the quality of the welds. Besides the ultrasonic welding of dissimilar metals such as Al to Cu or Al to steels, the welds between newly developed materials like aluminum foam sandwiches or flat flexible cables also can be realized. Moreover, the joining of glass and ceramic to sheet metals is a point of interest at the WKK. By using the ultrasonic metal welding process, it is possible to realize metal/glass welds with tensile shear strengths of 50 MPa. For metal/ceramic joints, the shear strengths values up to 150 MPa were measured. Finally, selected results about the occurring bonding mechanisms will be discussed.

  14. Application of laser in seam welding of dissimilar steel to aluminium joints for thick structural components

    NASA Astrophysics Data System (ADS)

    Meco, S.; Pardal, G.; Ganguly, S.; Williams, S.; McPherson, N.

    2015-04-01

    Laser welding-brazing technique, using a continuous wave (CW) fibre laser with 8000 W of maximum power, was applied in conduction mode to join 2 mm thick steel (XF350) to 6 mm thick aluminium (AA5083-H22), in a lap joint configuration with steel on the top. The steel surface was irradiated by the laser and the heat was conducted through the steel plate to the steel-aluminium interface, where the aluminium melts and wets the steel surface. The welded samples were defect free and the weld micrographs revealed presence of a brittle intermetallic compounds (IMC) layer resulting from reaction of Fe and Al atoms. Energy Dispersive Spectroscopy (EDS) analysis indicated the stoichiometry of the IMC as Fe2Al5 and FeAl3, the former with maximum microhardness measured of 1145 HV 0.025/10. The IMC layer thickness varied between 4 to 21 μm depending upon the laser processing parameters. The IMC layer showed an exponential growth pattern with the applied specific point energy (Esp) at a constant power density (PD). Higher PD values accelerate the IMC layer growth. The mechanical shear strength showed a narrow band of variation in all the samples (with the maximum value registered at 31.3 kN), with a marginal increase in the applied Esp. This could be explained by the fact that increasing the Esp results into an increase in the wetting and thereby the bonded area in the steel-aluminium interface.

  15. Metal Flow During Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Guerra, M.; Schmidt, C.; McClure, J. C.; Murr, L. E.; Nunes, A. C.; Munafo, Paul M. (Technical Monitor)

    2001-01-01

    The flow of metal during Friction Stir Welding is clarified using a faying surface tracer and a nib frozen in place during welding. It is shown that material is transported by two processes. The first is a wiping of material from the advancing front side of the nib onto a plug of material that rotates and advances with the nib. The material undergoes a helical motion within the plug that both rotates and advances with the plug and descends in the wash of the threads on the nib and rises on the outer part of the plug. After one or more rotations, this material is sloughed off the plug in its wake, primarily on the advancing side. The second process is an entrainment of material from the front retreating side of the nib that fills in between the sloughed off pieces from the advancing side. These two processes produce material with different mechanical properties and the strength of a weld should depend on the relative importance of the processes.

  16. Effects of flux modifications on high strength steel weld metal

    SciTech Connect

    Franke, G.L.

    1994-12-31

    The performance of high strength steel welds is sensitive to the weld metal chemistry, and that, in turn, is dependent on the composition of the welding consumables. In the case of submerged arc welding, the flux plays an important role in determining the chemistry of the resulting weld metal. The u.S. Navy is conducting a program to gain a basic understanding of fluxes used for welding high strength steels in an effort to be able to better select the appropriate flux, or design a new flux, for a given application. The objective of the present work is to analyze the effects of a systematic chance in flux composition on weld metal chemistry and properties The dry mix of a commercial flux was modified with additions of MnO to produce a series of four experimental flux mixes with target MnO levels from 1 wt% to 4 wt%. A fifth experimental flux mix was produced with an addition of 1/2 wt% CeO{sub 2} to examine the effect of rare earth additions to the flux. Tensile and impact properties and weld metal chemistry were tested for each weldment, and correlations were made with flux composition. Weld metal Mn levels from 1.37 wt% (0.76 wt% flux MnO) to 1.75 wt% (4.26 wt% flux MnO) were achieved with the MnO-added fluxes.The small CeO{sub 2} addition appeared to improve weld metal impact performance it was concluded that a more basic knowledge of welding fluxes can be used in selecting or designing appropriate fluxes for Navy applications. Further work is required to characterize the specific effects of other flux constituents and their interactions on weld metal performance.

  17. Solidification Behavior and Weldability of Dissimilar Welds Between a Cr-Free, Ni-Cu Welding Consumable and Type 304L Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sowards, Jeffrey W.; Liang, Dong; Alexandrov, Boian T.; Frankel, Gerald S.; Lippold, John C.

    2012-04-01

    The solidification behavior of a Cr-free welding consumable based on the Ni-Cu system was evaluated in conjunction with Type 304L stainless steel. The weld metal microstructure evolution was evaluated with optical and secondary electron microscopy, energy dispersive spectroscopy, X-ray diffraction, button melting, and thermodynamic (CALPHAD-based) modeling. Solidification partitioning patterns showed that higher dilutions of the filler metal by Type 304L increased segregation of Ti, Cu, and Si to interdendritic regions. Button melting experiments showed a widening of the solidification temperature range with increasing dilution because of the expansion of the austenite solidification range and formation of Ti(C,N) via a eutectic reaction. The model predictions showed good correlation with button melting experiments and were used to evaluate the nature of the Ti(C,N) precipitation reaction. Solidification cracking susceptibility of the weld metal was shown to increase with dilution of 304L stainless steel based on testing conducted with the cast pin tear test. The increase in cracking susceptibility is associated with expansion of the solidification temperature range and the presence of eutectic liquid at the end of solidification that wets solidification grain boundaries.

  18. Carbide-Free Bainitic Weld Metal: A New Concept in Welding of Armor Steels

    NASA Astrophysics Data System (ADS)

    Krishna Murthy, N.; Janaki Ram, G. D.; Murty, B. S.; Reddy, G. M.; Rao, T. J. P.

    2014-12-01

    Carbide-free bainite, a fine mixture of bainitic ferrite and austenite, is a relatively recent development in steel microstructures. Apart from being very strong and tough, the microstructure is hydrogen-tolerant. These characteristics make it well-suited for weld metals. In the current work, an armor-grade quenched and tempered steel was welded such that the fusion zone developed a carbide-free bainitic microstructure. These welds showed very high joint efficiency and ballistic performance compared to those produced, as per the current industrial practice, using austenitic stainless steel fillers. Importantly, these welds showed no vulnerability to cold cracking, as verified using oblique Y-groove tests. The concept of carbide-free bainitic weld metal thus promises many useful new developments in welding of high-strength steels.

  19. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    N. Jerred; L. Zirker; I. Charit; J. Cole; M. Frary; D. Butt; M. Meyer; K. L. Murty

    2010-10-01

    Pressure Resistance Welding (PRW) is a solid state joining process used for various high temperature metallic materials (Oxide dispersion strengthened alloys of MA957, MA754; martensitic alloy HT-9, tungsten etc.) for advanced nuclear reactor applications. A new PRW machine has been installed at the Center for Advanced Energy Studies (CAES) in Idaho Falls for conducting joining research for nuclear applications. The key emphasis has been on understanding processing-microstructure-property relationships. Initial studies have shown that sound joints can be made between dissimilar materials such as MA957 alloy cladding tubes and HT-9 end plugs, and MA754 and HT-9 coupons. Limited burst testing of MA957/HT-9 joints carried out at various pressures up to 400oC has shown encouraging results in that the joint regions do not develop any cracking. Similar joint strength observations have also been made by performing simple bend tests. Detailed microstructural studies using SEM/EBSD tools and fatigue crack growth studies of MA754/HT-9 joints are ongoing.

  20. Localized weld metal corrosion in stainless steel water tanks

    SciTech Connect

    Strum, M.J.

    1995-05-25

    The rapidly developed leaks within the TFC and TFD tanks (LLNL groundwater treatment facilities) were caused by localized corrosion within the resolidified weld metal. The corrosion was initiated by the severe oxidation of the backsides of the welds which left the exposed surfaces in a condition highly susceptible to aqueous corrosion. The propagation of surface corrosion through the thickness of the welds occurred by localized corrosive attack. This localized attack was promoted by the presence of shielded aqueous environments provided by crevices at the root of the partial penetration welds. In addition to rapid corrosion of oxidized surfaces, calcium carbonate precipitation provided an additional source of physical shielding from the bulk tank environment. Qualification testing of alternate weld procedures showed that corrosion damage can be prevented in 304L stainless steel GTA welds by welding from both sides while preventing oxidation of the tank interior through the use of an inert backing gas such as argon. Corrosion resistance was also satisfactory in GMA welds in which oxidized surfaces were postweld cleaned by wire brushing and chemically passivated in nitric acid. Further improvements in corrosion resistance are expected from a Mo-containing grade of stainless steel such as type 316L, although test results were similar for type 304L sheet welded with type 308L filler metal and type 316L sheet welded with type 316L filler metal.

  1. Effects of surface active elements on weld pool fluid flow and weld penetration in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Tsai, H. L.

    2001-06-01

    This article presents a mathematical model simulating the effects of surface tension (Maragoni effect) on weld pool fluid flow and weld penetration in spot gas metal arc welding (GMAW). Filler droplets driven by gravity, electromagnetic force, and plasma arc drag force, carrying mass, thermal energy, and momentum, periodically impinge onto the weld pool. Complicated fluid flow in the weld pool is influenced by the droplet impinging momentum, electromagnetic force, and natural convection due to temperature and concentration gradients, and by surface tension, which is a function of both temperature and concentration of a surface active element (sulfur in the present study). Although the droplet impinging momentum creates a complex fluid flow near the weld pool surface, the momentum is damped out by an “up-and-down” fluid motion. A numerical study has shown that, depending upon the droplet’s sulfur content, which is different from that in the base metal, an inward or outward surface flow of the weld pool may be created, leading to deep or shallow weld penetration. In other words, it is primarily the Marangoni effect that contributes to weld penetration in spot GMAW.

  2. Assessment of the Biological Effects of Welding Fumes Emitted From Metal Active Gas and Manual Metal Arc Welding in Humans.

    PubMed

    Dewald, Eva; Gube, Monika; Baumann, Ralf; Bertram, Jens; Kossack, Veronika; Lenz, Klaus; Reisgen, Uwe; Kraus, Thomas; Brand, Peter

    2015-08-01

    Emissions from a particular welding process, metal inert gas brazing of zinc-coated steel, induce an increase in C-reactive protein. In this study, it was investigated whether inflammatory effects could also be observed for other welding procedures. Twelve male subjects were separately exposed to (1) manual metal arc welding fumes, (2) filtered air, and (3) metal active gas welding fumes for 6 hours. Inflammatory markers were measured in serum before, and directly, 1 and 7 days after exposure. Although C-reactive protein concentrations remained unchanged, neutrophil concentrations increased directly after exposure to manual metal arc welding fumes, and endothelin-1 concentrations increased directly and 24 hours after exposure. After exposure to metal active gas and filtered air, endothelin-1 concentrations decreased. The increase in the concentrations of neutrophils and endothelin-1 may characterize a subclinical inflammatory reaction, whereas the decrease of endothelin-1 may indicate stress reduction.

  3. Effects of Initial Temper Condition and Postweld Heat Treatment on the Properties of Dissimilar Friction-Stir-Welded Joints between AA7075 and AA6061 Aluminum Alloys

    NASA Astrophysics Data System (ADS)

    İpekoğlu, Güven; Çam, Gürel

    2014-06-01

    In this study, dissimilar AA7075-O/6061-O and AA7075-T6/6061-T6 butt joints were produced by friction stir welding (FSW), and postweld heat treatment (PWHT) was applied to the joints obtained. The effects of initial temper condition and PWHT on the microstructure and mechanical properties of the dissimilar joints were thus investigated. It was demonstrated that sound dissimilar joints can be produced for both temper conditions. A hardness increase in the joint area ( i.e., strength overmatching) was obtained in the joints produced in the O-temper condition, whereas a hardness loss was observed in the joint area of the joints obtained in the T6 temper condition. It was also well demonstrated that PWHT could be used in order to improve the joint properties for both O and T6 joints provided that the joint is defect-free prior to subsequent heat treatment.

  4. Dissimilar laser welding of NiTi shape memory alloy and copper

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Panton, B.; Oliveira, J. P.; Han, A.; Zhou, Y. N.

    2015-12-01

    This work is the first investigation of joining NiTi and copper. The successful Nd:YAG laser welding of NiTi to copper achieved in this work enables new methods of connecting shape memory alloys to electro-mechanical systems. Joints made with an optimum peak power of 2.2 kW accommodated pseudoelastic deformation of NiTi, proving their use with high strength actuators. Fracture occurred through the cross section of these defect-free joints. A lower peak power of 1.8 kW created weak joints with limited weld penetration of the copper sheet. This lack of bonding resulted in fracture occurring across the small disconnected joint areas. Joints made with a higher peak power of 2.6 kW had significant cracking in the fusion zone. Two regions of distinct Cu composition were found in the fusion zone, and cracking occurred at the interface between these regions because of their different physical properties. Failure initiated at this cracking and propagated through the fusion zone that had been embrittled by mixing with over 20 at.% Cu.

  5. Weld Metal Cooling Rate Indicator System.

    DTIC Science & Technology

    rate of change of weld temperature at the predetermined weld temperature. A range of...provided so that the rate of change of weld temperatures at the predetermined weld temperature can be compared with this range. A device is then provided...which is responsive to the comparing information for indicating whether the rate of change of weld temperature is within, above, or below the range

  6. Nuclear Technology. Course 28: Welding Inspection. Module 28-2, Shielded Metal Arc and Oxyacetylene Welding.

    ERIC Educational Resources Information Center

    Espy, John; Selleck, Ben

    This second in a series of ten modules for a course titled Welding Inspection describes the key features of the oxyacetylene and shielded metal arc welding process. The apparatus, process techniques, procedures, applications, associated defects, and inspections are presented. The module follows a typical format that includes the following…

  7. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    SciTech Connect

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought base metal levels.

  8. The dissimilar brazing of Kovar alloy to SiCp/Al composites using silver-based filler metal foil

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Xu, Dongxia; Zhai, Yahong; Niu, Jitai

    2017-09-01

    Aluminum metal matrix composites with high SiC content (60 vol.% SiCp/Al MMCs) were surface metallized with a Ni-P alloy coating, and vacuum brazing between the composites and Kovar alloy were performed using rapidly cooled Ag-22.0Cu-15.9In-10.86Sn-1.84Ti (wt%) foil. The effects of Ni-P alloy coating and brazing parameters on the joint microstructures and properties were researched by SEM, EDS, and single lap shear test, respectively. Results show that Ag-Al intermetallic strips were formed in the 6063Al matrix and filler metal layer because of diffusion, and they were arranged regularly and accumulated gradually as the brazing temperature was increased ( T/°C = 550-600) or the soaking time was prolonged ( t/min = 10-50). However, excessive strips would destroy the uniformity of seams and lead to a reduced bonding strength (at most 70 MPa). Using a Ni-P alloy coating, void free joints without those strips were obtained at 560 °C after 20 min soaking time, and a higher shear strength of 90 MPa was achieved. The appropriate interface reaction ( 2 μm transition layer) that occurred along the Ni-P alloy coating/filler metal/Kovar alloy interfaces resulted in better metallurgical bonding. In this research, the developed Ag-based filler metal was suitable for brazing the dissimilar materials of Ni-P alloy-coated SiCp/Al MMCs and Kovar alloy, and capable welding parameters were also broadened.

  9. Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel

    DTIC Science & Technology

    2013-06-01

    most of the commercially available metallic materials, in particular steels (including stainless steels ), super alloys, aluminum alloys, etc., can...REPORT Gas Metal Arc Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel 14. ABSTRACT 16...Welding Process Modeling and Prediction of Weld Microstructure in MIL A46100 Armor-Grade Martensitic Steel Report Title ABSTRACT A conventional gas metal

  10. Pulmonary responses to welding fumes: role of metal constituents.

    PubMed

    Antonini, James M; Taylor, Michael D; Zimmer, Anthony T; Roberts, Jenny R

    2004-02-13

    It is estimated that more than 1 million workers worldwide perform some type of welding as part of their work duties. Epidemiology studies have shown that a large number of welders experience some type of respiratory illness. Respiratory effects seen in full-time welders have included bronchitis, siderosis, asthma, and a possible increase in the incidence of lung cancer. Pulmonary infections are increased in terms of severity, duration, and frequency among welders. Inhalation exposure to welding fumes may vary due to differences in the materials used and methods employed. The chemical properties of welding fumes can be quite complex. Most welding materials are alloy mixtures of metals characterized by different steels that may contain iron, manganese, chromium, and nickel. Animal studies have indicated that the presence and combination of different metal constituents is an important determinant in the potential pneumotoxic responses associated with welding fumes. Animal models have demonstrated that stainless steel (SS) welding fumes, which contain significant levels of nickel and chromium, induce more lung injury and inflammation, and are retained in the lungs longer than mild steel (MS) welding fumes, which contain mostly iron. In addition, SS fumes generated from welding processes using fluxes to protect the resulting weld contain elevated levels of soluble metals, which may affect respiratory health. Recent animal studies have indicated that the lung injury and inflammation induced by SS welding fumes that contain water-soluble metals are dependent on both the soluble and insoluble fractions of the fume. This article reviews the role that metals play in the pulmonary effects associated with welding fume exposure in workers and laboratory animals.

  11. Process Simulation of Gas Metal Arc Welding Software

    SciTech Connect

    Murray, Paul E.

    2005-09-06

    ARCWELDER is a Windows-based application that simulates gas metal arc welding (GMAW) of steel and aluminum. The software simulates the welding process in an accurate and efficient manner, provides menu items for process parameter selection, and includes a graphical user interface with the option to animate the process. The user enters the base and electrode material, open circuit voltage, wire diameter, wire feed speed, welding speed, and standoff distance. The program computes the size and shape of a square-groove or V-groove weld in the flat position. The program also computes the current, arc voltage, arc length, electrode extension, transfer of droplets, heat input, filler metal deposition, base metal dilution, and centerline cooling rate, in English or SI units. The simulation may be used to select welding parameters that lead to desired operation conditions.

  12. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-03-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  13. Effect of Continuous and Pulsed Current Gas Tungsten Arc Welding on Dissimilar Weldments Between Hastelloy C-276/AISI 321 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Sharma, Sumitra; Taiwade, Ravindra V.; Vashishtha, Himanshu

    2017-02-01

    In the present investigation, an attempt has been made to join Hastelloy C-276 nickel-based superalloy and AISI 321 austenitic stainless steel using ERNiCrMo-4 filler. The joints were fabricated by continuous and pulsed current gas tungsten arc welding processes. Experimental studies to ascertain the structure-property co-relationship with or without pulsed current mode were carried out using an optical microscope and scanning electron microscope. Further, the energy-dispersive spectroscope was used to evaluate the extent of microsegregation. The microstructure of fusion zone was obtained as finer cellular dendritic structure for pulsed current mode, whereas columnar structure was formed with small amount of cellular structure for continuous current mode. The scanning electron microscope examination witnessed the existence of migrated grain boundaries at the weld interfaces. Moreover, the presence of secondary phases such as P and μ was observed in continuous current weld joints, whereas they were absent in pulsed current weld joints, which needs to be further characterized. Moreover, pulsed current joints resulted in narrower weld bead, refined morphology, reduced elemental segregation and improved strength of the welded joints. The outcomes of the present investigation would help in obtaining good quality dissimilar joints for industrial applications and AISI 321 ASS being cheaper consequently led to cost-effective design also.

  14. Interdiffusion behavior of tungsten or rhenium and group 5 and 6 elements and alloys of the periodic table, part 1. [at dissimilar metal joints

    NASA Technical Reports Server (NTRS)

    Arcella, F. G.

    1974-01-01

    Arc cast W, CVD W, CVD Re, and powder metallurgy Re materials were hot isostatically pressure welded to ten different refractory metals and alloys (Cb, Cb-1Zr, Ta, Ta-10W, T-111, ASTAR-811C, W-25Re, Mo-50Re, W-30Re-20Mo, ect.) and thermally aged at 10 to the minus 8th power torr at 1200, 1500, 1630, 1800, and 2000 C for 100 to 2000 hours. Electron beam microprobe analysis was used to characterize the interdiffusion zone width of each couple system as a function of age time and temperature. Extrapolations of interdiffusion zone thickness to 10,000 hours were made. Classic interdiffusion analysis was performed for several of the systems by Boltzmann-Matano analysis. A method of inhibiting Kirkendall voids from forming during thermal ageing of dissimilar metal junctions was devised and experimentally demonstrated. An electron beam weld study of Cb-1Zr to Re and W-25Re demonstrated the limited acceptability of these welds.

  15. The importance of spatter formed in shielded metal arc welding

    SciTech Connect

    Molleda, F. Mora, J.; Molleda, J.R.; Mora, E.; Mellor, B.G.

    2007-10-15

    Spatter results when droplets of liquid metal that have been ejected from the weld pool by the impact of small droplets from the covered electrode solidify and weld to the surface of the base material. The present paper studies spatter and reveals why these small droplets do not oxidise during their short trajectory and accounts for why they arrive with sufficient heat to weld to the adjacent base material. Welds were thus performed on mild steel using covered electrodes (rutile type) to obtain spatter on the adjacent base material. Scanning electron microscopy and X-ray mapping were used to study the above mentioned phenomena.

  16. Microstructural Development in HSLA-100 Steel Weld Metals

    DTIC Science & Technology

    1991-01-01

    AD-A2 3 7 931 MICROSTRUCTURAL DEVELOPMENT IN HSLA-100 STEEL WELD METALS A*.t - AI* Final Report Grant No. N00014-89-J-1958 -. .o, Submitted by j Paul...on pages 30-32. The microstructures that develop in the coarse-grained heat affected zone (CG- HAZ) of the welds are discussed on page 21 and figures...stringent welding procedures as well as reduce the mechanical property deterioration from welding operations. The development of the ultra low carbon

  17. Weld seam tracking and lap weld penetration monitoring using the optical spectrum of the weld plume

    SciTech Connect

    Mueller, R.E.; Hopkins, J.A.; Semak, V.V.; McCay, M.H.

    1996-12-31

    Joining of dissimilar materials is a long standing problem in manufacturing, with many tricks and special techniques developed to successfully join specific pairs of materials. Often, these special techniques impose stringent requirements on the process such as precise control of process parameters to achieve the desired joint characteristics. Laser welding is one of the techniques which has had some success in welding dissimilar metal alloys, and appears to be a viable process for these materials. Minimal heat input limits differential thermal expansion, and the small weld pool allows precise control of alloy mixing in the fusion zone. Obtaining optimal weld performance requires accurate monitoring and control of absorbed laser power and weld focus position. In order to monitor the laser welding process, the authors have used a small computer controlled optical spectrometer to observe the emission from the weld plume. Absorbed laser power can be related to the temperature of the weld pool surface and the plume above the weld. Focus position relative to the joint can easily be seen by the proportion of elements from each material existing in the plume. This monitor has been used to observe and optimize the performance of butt and lap welds between dissimilar alloys, where each alloy contains at least one element not found in the other alloy. Results will be presented for a copper-steel butt joint and a lap weld between stainless and low alloy steels.

  18. Control of arc length during gas metal arc welding

    SciTech Connect

    Madigan, R.B.; Quinn, T.P.

    1994-12-31

    An arc-length control system has been developed for gas metal arc welding (GMAW) under spray transfer welding conditions. The ability to monitor and control arc length during arc welding allows consistent weld characteristics to be maintained and therefore improves weld quality. Arc length control has only been implemented for gas tungsten arc welding (GTAW), where an automatic voltage control (AVC) unit adjusts torch-to-work distance. The system developed here compliments the voltage- and current-sensing techniques commonly used for control of GMAW. The system consists of an arc light intensity sensor (photodiode), a Hall-effect current sensor, a personal computer and software implementing a data interpretation and control algorithms. Arc length was measured using both arc light and arc current signals. Welding current was adjusted to maintain constant arc length. A proportional-integral-derivative (PID) controller was used. Gains were automatically selected based on the desired welding conditions. In performance evaluation welds, arc length varied from 2.5 to 6.5 mm while welding up a sloped workpiece (ramp in CTWD) without the control. Arc length was maintained within 1 mm of the desired (5 mm ) with the control.

  19. The influence of oxygen on the impact toughness and microstructure of steel weld metal

    SciTech Connect

    Sato, Yoshihiro; Kuwana, Takeshi; Maie, Tsuyoshi

    1995-12-31

    A steel plate was welded in a low oxygen potential welding atmosphere. The weld metal obtained is classified in two groups on the oxygen content, very low oxygen content (less than 0.002 mass %) weld metal and relatively high oxygen content (over 0.015 mass%) weld metal. The effect of oxygen in steel weld metal on the Charpy v-notch impact values and the microstructure is investigated and discussed. Very low oxygen content steel weld metal shows superior impact toughness at 273 K as well as the well-known ``optimum oxygen`` containing steel weld metal. The very low oxygen weld metal has relatively large amounts of grain boundary ferrite and side plate ferrite microstructure, instead of upper bainite compared with the relatively high oxygen content weld metal.

  20. Analysis of features of stainless steels in dissimilar welded joints in chloride inducted corrosion

    NASA Astrophysics Data System (ADS)

    Topolska, S.; Łabanowski, J.

    2017-08-01

    Stainless steels of femtic-austenitic microstructure that means the duplex Cr-Ni-Mo steels, in comparison with austenitic steel includes less expensive nickel and has much better mechanical properties with good formability and corrosion resistance, even in environments containing chloride ions. Similar share of high chromium ferrite and austenite, which is characterized by high ductility, determines that the duplex steels have good crack resistance at temperatures up to approximately -40°C. The steels containing approximately 22% Cr, 5% Ni, 3% Mo and 0.2% N crystallizes as a solid solution δ, partially transforming from the temperature of about 1200°C to 850°C into the phase α. The stable structure of considered steels, at temperatures above 850°C, is ferrite, and at lower temperatures the mixture of phase γ+α +σ. The two-phase structure α+γ the duplex steel obtains after hyperquenching at the temperature of stability of the mixture of α+γ phases, and the share of the phases depends on the hyper quenching attributes. Hyperquenching in water, with a temperature close to 1200°C, ensures the instance in the microstructure of the steel a large share of ferrite and a small share of the high chromium austenite. This causes the increase of strength properties and reducing the plasticity of the steel and its resistance ability to cracking and corrosion. Slower cooling from the mentioned temperature, for example in the air, enables the partial transformation of the a phase into the γ one (α → γ) and increasing the share of austenite in the steel structure. It leads to improvement of plasticity properties. In the paper are presented the results of investigations of heteronymous welded joints of duplex steel and austenitic one. The results include the relation between the chemical composition of steels and their weldability.

  1. Discontinuity Detection in the Shield Metal Arc Welding Process

    PubMed Central

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-01-01

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors—a microphone and piezoelectric—that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system’s high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries. PMID:28489045

  2. Discontinuity Detection in the Shield Metal Arc Welding Process.

    PubMed

    Cocota, José Alberto Naves; Garcia, Gabriel Carvalho; da Costa, Adilson Rodrigues; de Lima, Milton Sérgio Fernandes; Rocha, Filipe Augusto Santos; Freitas, Gustavo Medeiros

    2017-05-10

    This work proposes a new methodology for the detection of discontinuities in the weld bead applied in Shielded Metal Arc Welding (SMAW) processes. The detection system is based on two sensors-a microphone and piezoelectric-that acquire acoustic emissions generated during the welding. The feature vectors extracted from the sensor dataset are used to construct classifier models. The approaches based on Artificial Neural Network (ANN) and Support Vector Machine (SVM) classifiers are able to identify with a high accuracy the three proposed weld bead classes: desirable weld bead, shrinkage cavity and burn through discontinuities. Experimental results illustrate the system's high accuracy, greater than 90% for each class. A novel Hierarchical Support Vector Machine (HSVM) structure is proposed to make feasible the use of this system in industrial environments. This approach presented 96.6% overall accuracy. Given the simplicity of the equipment involved, this system can be applied in the metal transformation industries.

  3. Application of welding science to welding engineering: A lumped parameter gas metal arc welding dynamic process model

    SciTech Connect

    Murray, P.E.; Smartt, H.B.; Johnson, J.A.

    1997-12-31

    We develop a model of the depth of penetration of the weld pool in gas metal arc welding (GMAW) which demonstrates interaction between the arc, filler wire and weld pool. This model is motivated by the observations of Essers and Walter which suggest a relationship between droplet momentum and penetration depth. A model of gas metal arc welding was augmented to include an improved model of mass transfer and a simple model of accelerating droplets in a plasma jet to obtain the mass and momentum of impinging droplets. The force of the droplets and depth of penetration is correlated by a dimensionless linear relation used to predict weld pool depth for a range of values of arc power and contact tip to workpiece distance. Model accuracy is examined by comparing theoretical predictions and experimental measurements of the pool depth obtained from bead on plate welds of carbon steel in an argon rich shielding gas. Moreover, theoretical predictions of pool depth are compared to the results obtained from the heat conduction model due to Christensen et al. which suggest that in some cases the momentum of impinging droplets is a better indicator of the depth of the weld pool and the presence of a deep, narrow penetration.

  4. Recommend design of filler metal to minimize carbon steel weld metal preferential corrosion in CO2-saturated oilfield produced water

    NASA Astrophysics Data System (ADS)

    Lu, Yongxin; Jing, Hongyang; Han, Yongdian; Feng, Zhicao; Xu, Lianyong

    2016-12-01

    The paper proposes a recommend design for the alloying elements in the filler metal to minimize preferential weld corrosion of carbon steel. The tensile and corrosion resistance properties of the weld metal are considerably improved by using a filler metal containing alloying elements according to the recommended design. Analysis of the morphology and composition of corrosion products on weld metals showed that the common weld metal suffered severe localized corrosion, whereas the weld metal with the alloying elements exhibited uniform corrosion. Based on these results, a tentative mechanism of CO2 corrosion resistance for both weld metals has been proposed.

  5. Dissimilar Laser Welding/Brazing of 5754 Aluminum Alloy to DP 980 Steel: Mechanical Properties and Interfacial Microstructure

    NASA Astrophysics Data System (ADS)

    Yang, Jin; Li, Yulong; Zhang, Hua; Guo, Wei; Weckman, David; Zhou, Norman

    2015-11-01

    A diode laser welding/brazing technique was used for lap joining of 5754 aluminum alloy to DP 980 steel with Al-Si filler metal. The correlation between joint interfacial microstructure, wettability of filler metal, and mechanical properties was systematically investigated. At low laser power (1.4 kW), a layer of intermetallic compounds, composed of θ-Fe(Al,Si)3 and τ 5 -Al7.2Fe1.8Si, was observed at the interface between fusion zone and steel. Because of the poor wettability of filler metal on the steel substrate, the joint strength was very low and the joint failed at the FZ/steel interface. When medium laser power (2.0 kW) was applied, the wettability of filler metal was enhanced, which improved the joint strength and led to FZ failure. With further increase of laser power to 2.6 kW, apart from θ and τ 5, a new hard and brittle η-Fe2(Al,Si)5 IMC with microcracks was generated at the FZ/steel interface. The formation of η significantly degraded the joint strength. The failure mode changed back to interfacial failure.

  6. Laser Indirect Shock Welding of Fine Wire to Metal Sheet.

    PubMed

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-09-12

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent.

  7. Laser Indirect Shock Welding of Fine Wire to Metal Sheet

    PubMed Central

    Wang, Xiao; Huang, Tao; Luo, Yapeng; Liu, Huixia

    2017-01-01

    The purpose of this paper is to present an advanced method for welding fine wire to metal sheet, namely laser indirect shock welding (LISW). This process uses silica gel as driver sheet to accelerate the metal sheet toward the wire to obtain metallurgical bonding. A series of experiments were implemented to validate the welding ability of Al sheet/Cu wire and Al sheet/Ag wire. It was found that the use of a driver sheet can maintain high surface quality of the metal sheet. With the increase of laser pulse energy, the bonding area of the sheet/wire increased and the welding interfaces were nearly flat. Energy dispersive spectroscopy (EDS) results show that the intermetallic phases were absent and a short element diffusion layer which would limit the formation of the intermetallic phases emerging at the welding interface. A tensile shear test was used to measure the mechanical strength of the welding joints. The influence of laser pulse energy on the tensile failure modes was investigated, and two failure modes, including interfacial failure and failure through the wire, were observed. The nanoindentation test results indicate that as the distance to the welding interface decreased, the microhardness increased due to the plastic deformation becoming more violent. PMID:28895900

  8. Effect of cooling after welding on microstructure and mechanical properties of 12 Pct Cr steel weld metals

    NASA Astrophysics Data System (ADS)

    Cai, Guang-Jun; Andrén, Hans-Olof; Svensson, Lars-Erik

    1997-07-01

    The microstructure of three 12 pct cr steel weld metals with different nickel and nitrogen contents was studied in as-welded condition and after postweld heat treatment with and without intercooling. Tensile strength and impact toughness of the weld metals were investigated in different postweld heat treatment conditions. In weld metals heat treated without intercooling, austenite decomposed by a eutectoid reaction that resulted in M23C6 aggregates around retained δ-ferrite. Two morphologies of M2N and MN precipitates were found in a low-dislocation α-ferrite. It was concluded that these phases were also transformed from austenite. In weld metals heat treated with intercooling, M23C6 precipitates were smaller and more homogeneously distributed. Different MN precipitates were found in the tempered martensite. The fracture mode of the weld metals at room temperature was mainly transgranular cleavage with some fibrous fracture. Intercooling treatment improved Charpy impact toughness of the 12 pct Cr steel weld metals substantially. It was found that the important microstructural factors affecting the impact toughness of the weld metals which were heat treated without intercooling were the sizes of the α-ferrite grains, nonmetallic inclusions, and M23C6 aggregates. For the weld metals heat treated with intercooling, the factors which affect the toughness of the weld metals were the sizes of martensite packets and nonmetallic inclusions.

  9. Mechanical Behavior of Lithium-Ion Batteries and Fatigue Behavior of Ultrasonic Weld-Bonded Lap-Shear Specimens of Dissimilar Magnesium and Steel Sheets

    NASA Astrophysics Data System (ADS)

    Lai, Wei-Jen

    The mechanical behaviors of LiFePO4 battery cell and module specimens under in-plane constrained compression were investigated for simulations of battery cells, modules and packs under crush conditions. The experimental stress-strain curves were correlated to the deformation patterns of battery cell and module specimens. Analytical solutions were developed to estimate the buckling stresses and to provide a theoretical basis for future design of representative volume element cell and module specimens. A physical kinematics model for formation of kinks and shear bands in battery cells was developed to explain the deformation mechanism for layered battery cells under in-plane constrained compression. A small-scale module constrained punch indentation test was also conducted to benchmark the computational results. The computational results indicate that macro homogenized material models can be used to simulate battery modules under crush conditions. Fatigue behavior and failure modes of ultrasonic spot welds in lap-shear specimens of magnesium and steel sheets with and without adhesive were investigated. For ultrasonic spot welded lap-shear specimens, the failure mode changes from the partial nugget pullout mode under low-cycle loading conditions to the kinked crack failure mode under high-cycle loading conditions. For adhesive-bonded and weld-bonded lap-shear specimens, the test results show the near interface cohesive failure mode and the kinked crack failure mode under low-cycle and high-cycle loading conditions, respectively. Next, the analytical effective stress intensity factor solutions for main cracks in lap-shear specimens of three dissimilar sheets under plane strain conditions were developed and the solutions agreed well with the computational results. The analytical effective stress intensity factor solutions for kinked cracks were compared with the computational results at small kink lengths. The results indicate that the computational results approach to

  10. Effect of Dwell Time on Joint Interface Microstructure and Strength of Dissimilar Friction Stir Spot-Welded Al-5083 and St-12 Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Fereiduni, Eskandar; Movahedi, Mojtaba; Kokabi, Amir Hossein; Najafi, Hossein

    2017-04-01

    Joining of Al-5083 alloy sheet to St-12 steel sheet was performed using a new friction stir spot welding (FSSW) technique in which the tool pin tip did not enter lower steel sheet. Effect of dwell time on the microstructure and mechanical properties of the joints was studied by various methods including microhardness measurements, shear test, stereo and light microscopy as well as scanning and transmission electron microscopy (SEM and TEM). Results indicated that compared to the conventional FSSW process, stronger joints can be achieved by this FSSW technique. Cross-sectional observation of the failed specimens indicated the occurrence of final fracture from the circumference of the tool pin where the Al sheet thickness was decreased as a result of the tool pin penetration. However, microhardness measurements introduced these fracture locations as the hardest regions of the Al part of welds. In addition to the Al3Fe and Al5Fe2 intermetallic compounds reported in the literature to form at the interface of dissimilar Al/steel joints, a third layer of AlFe intermetallic compound was also identified adjacent to the steel side of welds. Enhancement of the dwell time from 5 to 15 seconds increased the intermetallic layer thickness from 1.7 to 3 µm and resulted in the formation of harder stirred zone. This consequently increased the strength of the weld.

  11. Segregation behavior of phosphorus in the heat-affected zone of an A533B/A182 dissimilar weld joint before and after simulated thermal aging

    NASA Astrophysics Data System (ADS)

    Zhai, Ziqing; Miyahara, Yuichi; Abe, Hiroshi; Watanabe, Yutaka

    2014-09-01

    The segregation behavior of phosphorus (P) in the heat-affected zone (HAZ) of an A533B/A182 dissimilar weld joint before and after step cooling was investigated with atom probe tomography. At grain/packet boundaries, the final P segregation level consisted of non-equilibrium segregation that occurred during cooling after welding and post-weld heat treatment (PWHT) and equilibrium segregation that occurred during step cooling. In both processes, higher P coverage was observed in the coarse-grained and intercritically reheated coarse-grained HAZ than in the fine-grained HAZ and base material. The cooling after welding and PWHT seemed to have a pronounced impact on P segregation in the subsequent aging process. In addition, P segregation also occurred at the precipitate/matrix interfaces of cementite, Mo2C and Al-Si rich precipitates. The evolution of P coverage at these two types of sites suggested increasing risks of embrittlement with an increase in aging time.

  12. Effect of Dwell Time on Joint Interface Microstructure and Strength of Dissimilar Friction Stir Spot-Welded Al-5083 and St-12 Alloy Sheets

    NASA Astrophysics Data System (ADS)

    Fereiduni, Eskandar; Movahedi, Mojtaba; Kokabi, Amir Hossein; Najafi, Hossein

    2017-01-01

    Joining of Al-5083 alloy sheet to St-12 steel sheet was performed using a new friction stir spot welding (FSSW) technique in which the tool pin tip did not enter lower steel sheet. Effect of dwell time on the microstructure and mechanical properties of the joints was studied by various methods including microhardness measurements, shear test, stereo and light microscopy as well as scanning and transmission electron microscopy (SEM and TEM). Results indicated that compared to the conventional FSSW process, stronger joints can be achieved by this FSSW technique. Cross-sectional observation of the failed specimens indicated the occurrence of final fracture from the circumference of the tool pin where the Al sheet thickness was decreased as a result of the tool pin penetration. However, microhardness measurements introduced these fracture locations as the hardest regions of the Al part of welds. In addition to the Al3Fe and Al5Fe2 intermetallic compounds reported in the literature to form at the interface of dissimilar Al/steel joints, a third layer of AlFe intermetallic compound was also identified adjacent to the steel side of welds. Enhancement of the dwell time from 5 to 15 seconds increased the intermetallic layer thickness from 1.7 to 3 µm and resulted in the formation of harder stirred zone. This consequently increased the strength of the weld.

  13. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    SciTech Connect

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-17

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  14. Effects of Post-Weld Heat Treatment on the Mechanical Properties of Similar- and Dissimilar-Alloy Friction Stir Welded Blanks

    NASA Astrophysics Data System (ADS)

    Zadpoor, Amir Abbas; Sinke, Jos

    2011-01-01

    Friction stir welding is a solid state joining process with relatively low welding temperatures. Nevertheless, the mechanical properties of friction stir welded blanks are degraded after welding. Indeed, both strength and ductility of the welds are decreased after welding. Often, the resulting friction stir welded blanks need to be formed to their final structural shape. Therefore, the formability of friction stir welded blanks is of primary importance in the manufacturing of structural parts. This paper studies how the mechanical properties and particularly formability of friction stir welded blanks can be improved by applying a post weld heat treatment. Two aluminum alloys from 2000 and 7000 series, namely 2024-T3 and 7075-T6, are selected for the study. The sheet thickness of both materials is 2,0 mm. The selected alloys are welded in three configurations: 2024-T3 and 2024-T3, 7075-T6 and 7075-T6, and 2024-T3 and 7075-T6. The resulting welds are naturally aged for a few months. Three sets of standard dog bone shape tensile test specimens are then machined from the welds. The first set of the specimens is tested without any heat treatment. The second set of the specimens is solution heat treated and quenched before testing. The third set of the specimens is solution heat treated, quenched, and naturally aged for a week before testing. The mechanical properties of the three different sets of specimens are compared with each other. It is shown that careful selection of post weld heat-treatment can greatly improve the formability of friction stir welded blanks.

  15. Electrical upsetting of metal sheet forms weld edge

    NASA Technical Reports Server (NTRS)

    Scherba, E. S.

    1966-01-01

    Electric gathering of sheet stock edges forms metal sheets in the shape of gore sections with heavier edge areas that can be welded without loss of strength. The edges are gathered by progressive resistance heating and upsetting, and are formed automatically. This process avoids disturbance of the metals internal structure.

  16. Cleavage fracture in high strength low alloy weld metal

    SciTech Connect

    Bose, W.W.; Bowen, P.; Strangwood, M.

    1996-12-31

    The present investigation gives an evaluation of the effect of microstructure on the cleavage fracture process of High Strength Low Alloy (HSLA) multipass weld metals. With additions of alloying elements, such as Ti, Ni, Mo and Cr, the microstructure of C-Mn weld metal changes from the classical composition, i.e., allotriomorphic ferrite with acicular ferrite and Widmanstaetten ferrite, to bainite and low carbon martensite. Although the physical metallurgy of some HSLA weld metals has been studied before, more work is necessary to correlate the effect of the microstructure on the fracture behavior of such weld metals. In this work detailed microstructural analysis was carried out using optical and electron (SEM and TEM) microscopy. Single edge notched (SEN) bend testpieces were used to assess the cleavage fracture stress, {sigma}{sub F}. Inclusions beneath the notch surface were identified as the crack initiators of unstable cleavage fracture. From the size of such inclusions and the value of tensile stress predicted at the initiation site, the effective surface energy for cleavage was calculated using a modified Griffth energy balance for a penny shape crack. The results suggest that even though inclusions initiate cleavage fracture, the local microstructure may play an important role in the fracture process of these weld metals. The implications of these observations for a quantitative theory of the cleavage fracture of ferritic steels is discussed.

  17. Strain aging and toughness characteristics of ferritic weld metals

    SciTech Connect

    Kocak, M.; Petrovski, B.; Evans, G.M.

    1994-12-31

    The effects of varying nitrogen, titanium, boron, and aluminum contents on the as-deposited, stress-relieved, and artificially strain-aged shielded metal arc weld (SMAW) metal properties have been studied. There are still uncertainties concerning the exact role of each element and interactions between these elements with respect to the weld metal microstructure, strain aging and fracture properties. Therefore, systematic additions of titanium (in the range of 5 ppm to 500 ppm), boron (5 ppm to 200 ppm), aluminum (5 ppm to 560 ppm) and nitrogen were made to obtain various amounts of acicular ferrite and different microstructures which lead to the varying fracture behaviors and sensitivity to the strain aging. Increasing boron content also leads to an increase of the Charpy-V transition temperature with varying sensitivity to nitrogen content. Results indicate that as toughness of the as-deposited weld metal containing 40 ppm boron s much more sensitive to nitrogen content than the weld deposits contain 160 ppm boron. A similar trend has also been seen with the addition of 160 ppm aluminum to the weld metal while a change of titanium content did not cause such a significant change. In summary, present paper rigorously reviews the results of this extensive research program to develop a mechanistic understanding of the microalloying system (Ti, B and Al) on the strain aging and fracture toughness properties (Charpy-V and CTOD) of the multipass ferritic weldments.

  18. Effects of flux composition on the element transfer and mechanical properties of weld metal in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Bang, Kook-soo; Park, Chan; Jung, Hong-chul; Lee, Jong-bong

    2009-06-01

    Submerged arc welding was performed using metal-cored wires and fluxes with different compositions. The effects of wire/flux combination on the chemical composition, tensile strength, and impact toughness of the weld metal were investigated and interpreted in terms of element transfer between the slag and the weld metal, i.e., Δ quantity. Both carbon and manganese show negative Δ quantity in most combinations, indicating the transfer of the elements from the weld metal to the slag during welding. The amount of transfer, however, is different depending on the flux composition. More basic fluxes yield less negative Δ C and Δ Mn through the reduction of oxygen content in the weld metal and presumably higher Mn activity in the slag, respectively. The transfer of silicon, however, is influenced by Al2O3, TiO2 and ZrO2 contents in the flux. Δ Si becomes less negative and reaches a positive value of 0.044 as the oxides contents increase. This is because Al, Ti, and Zr could replace Si in the SiO2 network, leaving more Si free to transfer from the slag to the weld metal. Accordingly, the Pcm index of weld metals calculated from chemical compositions varies from 0.153 to 0.196 depending on the wire/flux combination, and it almost has a linear relationship with the tensile strength of the weld metal.

  19. Electrochemical transport of manganese between the flux and the weld metal in submerged arc welding

    SciTech Connect

    Indacochea, J.E.; Blander, M.; Polar, A.

    1989-01-01

    Submerged arc welds were made using a SiO/sub 2/-CaO-CaF/sub 2/MnO flux containing 20 w/o MnO, 15 w/o CaF/sub 2/, and SiO/sub 2/ to CaO ratios that varied from 5.5 to 1.17; the slags formed from this flux system show good detachability and the welds produced have good bead morphology. The effect of dilution was eliminated by drawing the filler metal from the same material as the base plate. The welding parameters were the same for all welds and two polarities were used. The stability of the arc was also monitored and found to be stable, but more so for the reverse polarity welds. Chemical analyses were performed on flux, slag, and weld samples. The manganese content in the weld metal increases for all the fluxes, with the increases being larger the smaller the silica to calcium oxide ratio. This behavior can be explained by thermodynamically driven kinetic factors since, in this composition range, the activity of the manganese oxide increases with a decrease in the SiO/sub 2//CaO ratio. When the SiO/sub 2//CaO ratio is smaller than about 2.25, the manganese content in the welds made with reverse polarity is higher than those made with straight polarity. This difference in the manganese level is explained in terms of an electrochemical mechanism. 13 refs., 5 figs., 2 tabs.

  20. A theoretical model for gas metal arc welding and gas tungsten arc welding. I.

    NASA Astrophysics Data System (ADS)

    Haidar, J.

    1998-10-01

    A recently developed theory for predicting arc and electrode properties in gas metal arc welding (GMAW) has been generalized to include arc-electrode interfaces, variation of surface tension pressure with temperature, Marangoni forces and handling of weld pool development in stationary gas tungsten arc welding (GTAW). The new theory is a unified treatment of the arc, the anode, and the cathode, and includes a detailed account of sheath effects near the electrodes. The electrodes are included as dynamic entities and the volume of fluid method is used to handle the movement of the free surface of the molten metal at one electrode. Predictions can be made of the formation and shape of the welding droplets as a function of time in GMAW and also of weld pool development in GTAW, accounting for effects of surface tension, inertia, gravity, arc pressure, viscous drag force of the plasma, Marangoni effect and magnetic forces, and also for wire feed rate in GMAW. Calculations are made of current densities, electric potential, temperatures, pressures and velocities in two dimensions, both in the arc and also within the molten metal and solid electrodes. Calculations are presented for GMAW and GTAW for an arc in argon and the results are compared with experimental temperature measurements for the plasma and the electrodes.

  1. Optimization of Gas Metal Arc Welding Process Parameters

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Khurana, M. K.; Yadav, Pradeep K.

    2016-09-01

    This study presents the application of Taguchi method combined with grey relational analysis to optimize the process parameters of gas metal arc welding (GMAW) of AISI 1020 carbon steels for multiple quality characteristics (bead width, bead height, weld penetration and heat affected zone). An orthogonal array of L9 has been implemented to fabrication of joints. The experiments have been conducted according to the combination of voltage (V), current (A) and welding speed (Ws). The results revealed that the welding speed is most significant process parameter. By analyzing the grey relational grades, optimal parameters are obtained and significant factors are known using ANOVA analysis. The welding parameters such as speed, welding current and voltage have been optimized for material AISI 1020 using GMAW process. To fortify the robustness of experimental design, a confirmation test was performed at selected optimal process parameter setting. Observations from this method may be useful for automotive sub-assemblies, shipbuilding and vessel fabricators and operators to obtain optimal welding conditions.

  2. Influence of zirconium on microstructure and toughness of low-alloy steel weld metals

    NASA Astrophysics Data System (ADS)

    Trindade, V. B.; Mello, R. S. T.; Payão, J. C.; Paranhos, R. P. R.

    2006-06-01

    The influence of zirconium on microstructure and toughness of low-alloy steel weld metal was studied. Weld metals with different zirconium contents were obtained adding iron-zirconium alloy in the welding flux formulation. Weld metal chemical composition proved that zirconium was able to be transferred from the flux to the weld metal. The addition of zirconium refined the weld metal microstructure, increasing the acicular ferrite content. Weld metal toughness, determined by means of impact Charpy-V tests, showed that the zirconium addition is beneficial up to a content of 0.005 wt.%. Above this level, zirconium was not able to produce further microstructure refinement, although the toughness was reduced, possibly due to the formation of microconstituent such as the martensite-austenite constituent (M-A), which is considered to be deleterious to the weld metal toughness.

  3. Evaluation of Microstructure and Mechanical Properties in Dissimilar Austenitic/Super Duplex Stainless Steel Joint

    NASA Astrophysics Data System (ADS)

    Rahmani, Mehdi; Eghlimi, Abbas; Shamanian, Morteza

    2014-10-01

    To study the effect of chemical composition on microstructural features and mechanical properties of dissimilar joints between super duplex and austenitic stainless steels, welding was attempted by gas tungsten arc welding process with a super duplex (ER2594) and an austenitic (ER309LMo) stainless steel filler metal. While the austenitic weld metal had vermicular delta ferrite within austenitic matrix, super duplex stainless steel was mainly comprised of allotriomorphic grain boundary and Widmanstätten side plate austenite morphologies in the ferrite matrix. Also the heat-affected zone of austenitic base metal comprised of large austenite grains with little amounts of ferrite, whereas a coarse-grained ferritic region was observed in the heat-affected zone of super duplex base metal. Although both welded joints showed acceptable mechanical properties, the hardness and impact strength of the weld metal produced using super duplex filler metal were found to be better than that obtained by austenitic filler metal.

  4. Influence of PWHT on Toughness of High Chromium and Nickel Containing Martensitic Stainless Steel Weld Metals

    NASA Astrophysics Data System (ADS)

    Divya, M.; Das, Chitta Ranjan; Mahadevan, S.; Albert, S. K.; Pandian, R.; Kar, Sujoy Kumar; Bhaduri, A. K.; Jayakumar, T.

    2015-06-01

    Commonly used 12.5Cr-5Ni consumable specified for welding of martensitic stainless steels is compared with newly designed 14.5Cr-5Ni consumable in terms of their suitability for repair welding of 410 and 414 stainless steels by gas tungsten arc welding process. Changes in microstructure and austenite evolution were investigated using optical, scanning electron microscopy, X-ray diffraction techniques and Thermo-Calc studies. Microstructure of as-welded 12.5Cr-5Ni weld metal revealed only lath martensite, whereas as-welded 14.5Cr-5Ni weld metal revealed delta-ferrite, retained austenite, and lath martensite. Toughness value of as-welded 12.5Cr-5Ni weld metal is found to be significantly higher (216 J) than that of the 14.5Cr-5Ni weld metal (15 J). The welds were subjected to different PWHTs: one at 923 K (650 °C) for 1, 2, 4 hours (single-stage PWHT) and another one at 923 K (650 °C)/4 h followed by 873 K (600 °C)/2 h or 873 K (600 °C)/4 h (two-stage heat treatment). Hardness and impact toughness of the weld metals were measured for these weld metals and correlated with the microstructure. The study demonstrates the importance of avoiding formation of delta-ferrite in the weld metal.

  5. Slag-metal equilibrium during submerged arc welding

    NASA Astrophysics Data System (ADS)

    Chai, C. S.; Eagar, T. W.

    1981-09-01

    A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding is presented. As formulated, the model applies only to fused neutral fluxes containing less than 20 pct CaF2, however some results indicate that the model may be useful in more general cases as well. The model is shown to be capable of predicting the gain or loss of both Mn and Si over a wide range of baseplate, electrode and flux compositions. At large deviations from the predicted equilibrium, the experimental results indicate considerable variability in the amount of Mn or Si transferred between the slag and metal phases, while closer to the calculated equilibrium, the extent of metal transfer becomes more predictable. The variability in metal transfer rate at large deviations from equilibrium may be explained by variations between the bulk and the surface concentrations of Mn and Si in both metal and slag phases.

  6. Dissimilar Friction Stir Welds in Al5186-Al2024: The Effect of Process Parameters on Microstructures and Mechanical Properties

    SciTech Connect

    Mousavi, S. A. A. Akbari; ShamAbadi, S. H.

    2011-01-17

    The effect of tool traverse and rotation speeds on the microstructures and mechanical properties are quantified for welds between non-age-hardening Al5083 and age hardening Al2024 and compared to single alloy joints made from each of the two constituents. In this paper, we report the results of microstructural, mechanical property investigations of Al5186-Al2024 friction stir welds produced using various rotations and traveling speeds of the tool to investigate the effects of the welding parameters on the joint strength. Metallographic studies by optical microscopy, electron probe microscopy, and the utilization of the X-ray diffraction technique have been conducted. It was found that the weld properties were dominated by the thermal input rather than the mechanical deformation by the tool. In particular the larger stresses under the weld tool on the AA5186 side compared to the AA2024 side are related to a transient reduction in yield stress due to dissolution of the hardening precipitates during welding prior to natural aging after welding.

  7. Users manual for the laser welding code WELD2D

    SciTech Connect

    Russo, A.J.

    1984-04-01

    The two-dimensional laser welding code, WELD2D, was developed to model the conduction mode welding (weld pool motions are not considered) of common metals. For butt welded configurations two dissimilar materials may be used. Either Gaussian or uniform laser beam power distributions may be selected and insulated or conducting ends can be treated. Specification of the laser wavelength, energy per pulse, pulse duration and repetition rate is required as input and the temperature field and molten pool shape are calculated as functions of time. Currently material parameters for six metals, aluminum, nickel, steel, molybdenum, copper and silicon are included in the code; however, these may be modified or expanded easily with simple changes to data records. This report is a users manual for WELD2D and contains a description of the models employed, code usage, and sample calculations.

  8. Effect of rhenium on the structure and properties of the weld metal of a molybdenum alloy

    NASA Technical Reports Server (NTRS)

    Dyachenko, V. V.; Morozov, B. P.; Tylkina, M. A.; Savitskiy, Y. M.; Nikishanov, V. V.

    1984-01-01

    The structure and properties of welds made in molybdenum alloy VM-1 as a function of rhenium concentrations in the weld metal were studied. Rhenium was introduced into the weld using rhenium wire and tape or wires of Mo-47Re and Mo-52Re alloys. The properties of the weld metal were studied by means of metallographic techniques, electron microscopy, X-ray analysis, and autoradiography. The plasticity of the weld metal sharply was found to increase with increasing concentration of rhenium up to 50%. During welding, a decarburization process was observed which was more pronounced at higher concentrations of rhenium.

  9. Bonds between metals and nanocomposites created by explosion welding

    NASA Astrophysics Data System (ADS)

    Bondar', M. P.; Karpov, E. V.; Lukyanov, Ya. L.

    2016-09-01

    This paper describes the study of the influence of a microstructure characterized by directed or chaotic distribution of nanoinclusions and strain rate on the deformability of nanocomposites. It is revealed that, under identical loading conditions, cracks are formed in nanocomposites whose structural elements are mostly directed in the same way at lower strain rates than in nanocomposites with chaotic distribution of the reinforcer. It is shown that, as the strain rate increases, the influence of the structural order on the limiting deformation reduces due to transition from shear strain to rotational strain. No cracks are formed in the creation of bonds between metals and nanocomposites by explosion welding. The experimental results obtained in the study of transverse bending of two-layer welded beams and the structure in the vicinity of the weld reveal that the obtained metal-nanocomposite bond has a uniform structure retained in deformation, with fracture occurring in the nanocomposite.

  10. Gas tungsten arc and shielded metal arc welding of chromium-nickel steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-303-ASME-3 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and shielded metal arc welding of 300 Series Cr-Ni steels (P-8-1), in thickness range 0.25 to 2 in.; filler metals are ER3XX (F-6, A-8) (GTAW) and E3XX-15 (F-5, A-8); shielding gas for GTAW is argon.

  11. Gas tungsten arc and shielded metal arc welding of AISI 41XX steels. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.

    1985-08-01

    Procedure WPS-127 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and shielded metal arc welding of AISI 4130 and 4142 steels (ASTM A519) (P-No: None), 0.438-in. wall pipe; filler metal is AMS 6457, Class 4130 MC (F-, A-No; None) (GTAW) and E8018-B2L (F-4, A-3) (GMAW); shielding gas is argon (GTAW).

  12. Gas tungsten arc and low hydrogen shielded metal arc welding of carbon steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-128-ASME-1 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and low hydrogen shielded metal arc welding of carbon steels (P-1-1), in thickness range 0.25 to 2 inch; filler metals are ER70S-3 (F-6, A-1) (GTAW) and E7018 (F-4, A-1); shielding gas is argon (GTAW).

  13. Manual gas tungsten arc and semiautomatic gas metal arc welding of carbon steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-107-ASME-1 is qualified under Section IX of the ASME Boiler and Vessel Code for manual gas tungsten arc and semiautomatic gas metal arc welding of carbon steel (P-1-1), in thickness range 0.237 to 2.0 inch; filler metal is ER70S-3 (F-6, A-1); shielding gas for GTAW is argon, and for GMAW is 95-5 argon-oxygen.

  14. Welding procedure specification: gas tungsten arc and shielded metal arc welding of carbon steel

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-104-ASME-2 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and shielded metal arc welding of carbon steels (P-1-1), in thickness range 0.25 to 1 in.; filler metals are E70S-3 (F-6, A-1) (GTAW) and E6010 (F-3, A-1) (SMAW); shielding gas is argon (GTAW).

  15. Effect of Individual Layer Shape on the Mechanical Properties of Dissimilar Al Alloys Laminated Metal Composite Sheets

    NASA Astrophysics Data System (ADS)

    Chen, Zejun; Wu, Xia; Hu, Hongbo; Chen, Quanzhong; Liu, Qing

    2014-03-01

    For the dissimilar laminated metal composite sheets (LMCS) fabricated by roll bonding technology, the great differences of mechanical properties between the constituent metals lead to the non-uniform deformation and individual layer necking. The individual layer shape affects the mechanical properties and microstructure of dissimilar LMCS. The Al/Al alloy (1100/7075) LMCS with the same thickness and ratio of dissimilar metals, but different individual layer shapes, have been successfully fabricated by hot accumulative roll bonding in conjunction with cold rolling technology. Some effective methods (such as sheet crown, warp degree, and slant angle) were presented to quantitatively evaluate the individual layer shape and necking of constituent metals. The microstructure and mechanical properties of 1100/7075 LMCS with different individual layer shapes were investigated. The effects of bonding interface on the mechanical properties were obtained based on the assessment of individual layer shapes and necking. The strength and elongation of LMCS decrease with the increase of variation of individual layer shapes and necking when the number of layers keeps constant. The research results offer some theoretical guides and references for adjusting the control measures of compatibility deformation, optimizing the hot roll bonding technologies, and designing the novel high-performance dissimilar LMCS.

  16. Gas metal arc welding in refurbishment of cobalt base superalloys

    NASA Astrophysics Data System (ADS)

    Shahriary, M. S.; Miladi Gorji, Y.; Kolagar, A. M.

    2017-01-01

    Refurbishments of superalloys which are used in manufacturing gas turbine hot components usually consists of removing cracks and other defects by blending and then repair welding in order to reconstruct damaged area. In this study, the effects of welding parameters on repair of FSX-414 superalloy, as the most applicable cobalt base superalloy in order to manufacture gas turbine nozzles, by use of Gas Metal Arc Welding (GMAW) technic were investigated. Results then were compared by Gas Tungsten Arc Welding (GTAW). Metallographic and SEM studies of the microstructure of the weld and HAZ showed that there are no noticeable defects in the microstructure by use of GMAW. Also, chemical analysis and morphologies of carbide in both methods are similar. Hardness profile of the GM AW structure then also compared with GTAW and no noticeable difference was observed between the profiles. Also, proper tensile properties, compared with GTAW, can be achieved by use of optimum parameters that can be obtained by examining the current and welding speed. Tensile properties of optimized condition of the GMAW then were compared with GTAW. It was seen that the room and high temperature tensile properties of the GMAW structure is very similar and results confirmed that changing the technic did not have any significant influence on the properties.

  17. Characteristics of Dissimilar FSW Welds of Aluminum Alloys 2017A and 7075 on the Basis of Multiple Layer Research

    NASA Astrophysics Data System (ADS)

    Mroczka, Krzysztof; Wójcicka, Anna; Pietras, Adam

    2013-09-01

    This work is concerned with the structure of the FSW joint of 2017A/7075 aluminum alloys, which was analyzed on the basis of a number of longitudinal and cross-sectional sections. Various ways and degrees of alloy stirring were identified, depending on the distance from the face of the weld. Furthermore, considerable variation in the length of the weld microstructures was demonstrated, reflecting the variability of the welding process. Studies of mechanical properties are also presented—the distributions of hardness on individual layers. A significant effect of plastic deformation on the hardness of the alloy 7075, which strengthened in deformed areas and shows weakness in the heat-affected zone, was noticed. The influence of the weld structure on the fracture of the sample, which was broken in the static tensile test, was analyzed applying scanning electron microscopy. The presence of non-deformed areas was revealed within the ductile fracture of the sample.

  18. Fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing.

    PubMed

    Lin, Hsin-Yu; Chen, Hsiang-An; Lin, Heh-Nan

    2008-03-15

    We report a convenient method for the fabrication of a single metal nanowire connected with dissimilar metal electrodes and its application to chemical sensing. The method is based on a combination of atomic force microscopy nanomachining and conventional photolithography. The success of this integrated approach is confirmed by the linear current-voltage behavior of the created nanowires and comparable resistivities with those reported previously. The chemical sensing capability is demonstrated by the selective binding of a self-assembled monolayer onto a single Au nanowire connected with Ti electrodes and the subsequent resistance increase due to increased surface scattering effects after adsorption. It is found that the resistance increases by around 9% after the complete coverage of either octadecanethiol or dodecanethiol molecules onto a 20 nm thick Au nanowire. A theoretical explanation for the relationship between the resistance increase and the alkanethiol concentration is also given.

  19. Career Preparation Program Curriculum Guide for: Metal Fabrication, Welding.

    ERIC Educational Resources Information Center

    British Columbia Dept. of Education, Victoria. Curriculum Development Branch.

    This curriculum outline provides secondary and postsecondary instructors with detailed information on student learning outcomes for completion of the welding/metal fabrication program requirements. A program overview discusses the aims of education; secondary school philosophy; and career preparation programs and their goals, organization, and…

  20. Analysis of thermal stresses and metal movement during welding

    NASA Technical Reports Server (NTRS)

    Muraki, T.; Masubuchi, K.

    1973-01-01

    The research is reported concerning the development of a system of mathematical solutions and computer programs for one- and two-dimensional analyses for thermal stresses. Reports presented include: the investigation of thermal stress and buckling of tantalum and columbium sheet; and analysis of two dimensional thermal strains and metal movement during welding.

  1. Assessment of safety and availability of dissimilar weldments in the water-steam circuit of HTR plants

    NASA Astrophysics Data System (ADS)

    Schneider, Klaus; Gnirss, Günther; Grünling, Hermann

    1990-04-01

    A concept for the assessment of dissimilar weldments in HTR steam piping is described. A combination of experiments and calculation shows that dissimilar metal welds between the ferritic steel X 20 CrMoV 21 1 and the austenitic alloy X 10 NiCrAlTi 32 20 can be operated for the design life of the component. The combination of reliable manufacturing and nondestructive testing assures that defects in weld joints will show only negligible crack growth. The leak before break criterion is fulfilled. The concept of assessment of dissimilar weldments is verified by the component test MINERVA.

  2. The effect of weld stresses on weld quality. [stress fields and metal cracking

    NASA Technical Reports Server (NTRS)

    Chihoski, R. A.

    1972-01-01

    A narrow heat source raises the temperature of a spot on a solid piece of material like metal. The high temperature of the spot decreases with distance from the spot. This is true whether the heat source is an arc, a flame, an electron beam, a plasma jet, a laser beam, or any other source of intense, narrowly defined heat. Stress and strain fields around a moving heat source are organized into a coherent visible system. It is shown that five stresses act across the weld line in turn as an arc passes. Their proportions and positions are considerably altered by weld parameters or condition changes. These pushes and pulls affect the metallurgical character and integrity of the weld area even when there is no apparent difference between after-the-fact examples.

  3. Effect of Preheating on the Inertia Friction Welding of the Dissimilar Superalloys Mar-M247 and LSHR

    NASA Astrophysics Data System (ADS)

    Senkov, O. N.; Mahaffey, D. W.; Semiatin, S. L.

    2016-12-01

    Differences in the elevated temperature mechanical properties of cast Mar-M247 and forged LSHR make it difficult to produce sound joints of these alloys by inertia friction welding (IFW). While extensive plastic upset occurs on the LSHR side, only a small upset is typically developed on the Mar-M247 side. The limited plastic flow of Mar-M247 thus restricts the extent of "self-cleaning" and mechanical mixing of the mating surfaces, so that defects remain at the bond line after welding. In the present work, the effect of local preheating of Mar-M247 immediately prior to IFW on the welding behavior of Mar-M247/LSHR couples was determined. An increase in the preheat temperature enhanced the plastic flow of Mar-M247 during IFW, which resulted in extensive mechanical mixing with LSHR at the weld interface, the formation of extensive flash on both the Mar-M247 and LSHR sides, and a sound bond. Performed in parallel with the experimental work, finite-element-method (FEM) simulations showed that higher temperatures are achieved within the preheated sample during IFW relative to its non-preheated counterpart, and plastic flow is thus facilitated within it. Microstructure and post-weld mechanical properties of the welded samples were also established.

  4. Microhardness and Strain Field Characterization of Self-Reacting Friction Stir and Plug Welds of Dissimilar Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Horton, Karla Renee

    2011-01-01

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA 2014-T6 plate on the advancing side and an AA 2219-T87 plate on the retreating side and a SR-FSW (AA 2014-T6 to AA 2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures.

  5. Slag Metal Reactions during Submerged Arc Welding of Alloy Steels

    NASA Astrophysics Data System (ADS)

    Mitra, U.; Eagar, T. W.

    1984-01-01

    The transfer of Cr, Si, Mn, P, S, C, Ni, and Mo between the slag and the weld pool has been studied for submerged arc welds made with calcium silicate and manganese silicate fluxes. The results show a strong interaction between Cr and Si transfer but no interaction with Mn. The manganese silicate flux produces lower residual sulfur while the calcium silicate fluxes are more effective for removal of phosphorus. The effective oxygen reaction temperature lies between 1700 and 2000 °C for all elements studied. Evidence of Cr and Mn loss by metal vaporization is also presented.

  6. Shielded Metal Arc Welding Consumables for Advanced High Strength Steels

    DTIC Science & Technology

    1992-02-01

    100 ksi) depends on the availability of adequate welding consumables. In the case of shielded metal arc welding, the electrodes must provide...associated with the potassium silicate binder (K2 SiO3 .nH2 0). The fluxes were then crushed and sized to 14# Tyler mesh (1.7 mm screen aperture) to...determined that the hydrated potassium silicate binder (K2 SiO3 .nH20) used in this investi- gation was 50 wt. pct. potassium silicate (K 2SiO 3 ) and

  7. Stability of a pendant droplet in gas metal arc welding

    SciTech Connect

    Murray, P.E.

    1998-07-01

    The authors develop a model of metal transfer in gas metal arc welding and compute the critical mass of a pendant droplet in order to ascertain the size and frequency of droplets detaching from the consumable metal electrode. These results are used to predict the mode of metal transfer for a range of voltage and current encompassing free flight transfer, and the transition between globular and spray transfer. This model includes an efficient method to compute the stability of a pendant droplet and the location of the liquid bridge connecting the primary droplet and the residual liquid remaining after detachment of the primary droplet.

  8. Influences on ARC Stability in Welding of Aluminum Pin-Structures

    NASA Astrophysics Data System (ADS)

    Wittwer, Lukas; Jank, Nasrin; Bećirović, Almedin; Waldhör, Andreas; Enzinger, Norbert

    Pin structures offer an innovative way of joining dissimilar materials such as metals and plastics based on an additional geometric link. Therefore pins are placed on a metal sheet substrate by use of a special arc welding technique called cold metal transfer (CMT), developed by Fronius International. The key element of the CMT process is moving the wire back and forth during the welding process. This controlled movement combined with proper welding parameters allows a defined shaping of the pin.

  9. Control of Structure in Conventional Friction Stir Welds Through a Kinematic Theory of Metal Flow

    DTIC Science & Technology

    2009-02-01

    suggested a “chaotic-dynamic mixing” in the material [2]. Later tracer studies, using steel shot [3], aluminum shims [4], copper foil [5], bi-metallic...35812 Keywords: friction stir welding, AA2219, material flow Abstract In friction stir welding ( FSW ), a rotating pin is translated along a...welding, by a shoulder on the pin. In conventional FSW , the weld metal rests on an “anvil”, which supports the heavy “plunge” load on the tool. In

  10. Development of an Ultralight Pulse Gas Metal ARC Welding System for Shipyard Applications

    DTIC Science & Technology

    2007-07-27

    out aboard ship using the shielded metal arc welding ( SMAW ) process (“stick” welding). This manual process is relatively slow, discharges...using the shielded metal arc welding ( SMAW ) process (“stick” welding). This manual process is relatively slow, discharges considerable fume...process. However, in most cases it is only necessary to bring a single cable lead with no power supply to the job area, which makes the SMAW process

  11. Mechanical and structural properties of similar and dissimilar steel joints

    SciTech Connect

    Celik, A.; Alsaran, A.

    1999-11-01

    The mechanical properties of specimens from similar and dissimilar weld joints were examined. A ferritic steel (St37-2) and an austenitic stainless steel (AISI 304) were joined by the gas tungsten arc weld (GTAW) process using an austenitic filler metal. Mechanical and metallographic properties of the specimens were obtained by means of microhardness testing, tensile testing, bending fatigue testing, and light optical and scanning electron microscopy. The highest microhardness values were recorded on the ferritic-austenitic dissimilar weld joint, whereas the highest tensile strength and bending fatigue life were obtained with the austenitic-austenitic joints. Ferritic and pearlitic structures were observed in the microstructure of the ferritic-ferritic joint. The microstructures of austenitic-austenitic and austenitic-ferritic joints showed small recrystallization grains in addition to the typical austenitic and ferritic structures. Scanning electron microscopy was used to observe the fracture surfaces of the specimens and the origins of the fatigue cracks.

  12. Microhardness, strength and strain field characterization of self-reacting friction stir and plug welds of dissimilar aluminum alloys

    NASA Astrophysics Data System (ADS)

    Horton, Karla Renee

    Friction stir welding (FSW) is a solid state welding process with potential advantages for aerospace and automotive industries dealing with light alloys. Self-reacting friction stir welding (SR-FSW) is one variation of the FSW process being developed at the National Aeronautics and Space Administration (NASA) for use in the fabrication of propellant tanks. Friction plug welding is used to seal the exit hole that remains in a circumferential SR-FSW. This work reports on material properties and strain patterns developed in a SR-FSW with a friction plug weld. Specifically, this study examines the behavior of a SR-FSW formed between an AA2014-T6 plate on the advancing side and an AA2219-T87 plate on the retreating side and a SR-FSW (AA2014-T6 to AA2219-T87) with a 2219-T87 plug weld. This study presents the results of a characterization of the micro-hardness, joint strength, and strain field characterization of SR-FSW and FPW joints tested at room temperature and cryogenic temperatures. The initial weld microstructure analysis showed a nugget region with fine grains and a displaced weld seam from the advancing side past the thermo-mechanical affected zone (TMAZ) into the nugget region. The displaced material shared the same hardness as the parent material. Dynamic recrystallization was observed in the SR-FSW zone and the displaced weld seam region. The welds revealed a fine grain structure in the SR-FSW zone with a sharp demarcation seen on the advancing side and fairly diffuse flow observed on the retreating side. The parent material hardness is 145 HV700g with a drop in hardness starting at the HAZ to 130 HV700g. The hardness further drops in the TMAZ to118 HV700g with an increase representing a dispersed interface of AA2014-T6 material to 135 HV700g. The hardness then drops significantly within the nugget region to 85 HV700g followed by an increase through the retreating side TMAZ into the HAZ to 135 HV 700g. There was a sharp increase in the hardness value within

  13. Multiple exposure to metals in eight types of welding.

    PubMed

    Apostoli, P; Porru, S; Brunelli, E; Alessio, L

    1997-01-01

    This article evaluates multiple exposures to metals in different types of metal welding such as manual metal arc for mild and stainless steel, continuous wire, submerged arc, laser and brazing. Environmental monitoring was carried out in eight different occupational situations and the inductively coupled plasma mass spectrometry technique was adopted in order to characterize exposure to several elements simultaneously and with high accuracy. The results showed that up to 23 elements could be measured. The highest concentrations were found for Al, Mn, Fr, Ni, Cr, Cu and Zn. For some elements such as In, Nd, I, Rb the concentrations were very low. A qualitative and quantitative variation in fume composition was observed at a certain distance from the welding point, which should be to taken into account when evaluating indirect exposures. It would also be possible, with this technique, to identify specific elements in the mixture which could also be measured in biological fluids.

  14. Quantitative metal magnetic memory reliability modeling for welded joints

    NASA Astrophysics Data System (ADS)

    Xing, Haiyan; Dang, Yongbin; Wang, Ben; Leng, Jiancheng

    2016-03-01

    Metal magnetic memory(MMM) testing has been widely used to detect welded joints. However, load levels, environmental magnetic field, and measurement noises make the MMM data dispersive and bring difficulty to quantitative evaluation. In order to promote the development of quantitative MMM reliability assessment, a new MMM model is presented for welded joints. Steel Q235 welded specimens are tested along the longitudinal and horizontal lines by TSC-2M-8 instrument in the tensile fatigue experiments. The X-ray testing is carried out synchronously to verify the MMM results. It is found that MMM testing can detect the hidden crack earlier than X-ray testing. Moreover, the MMM gradient vector sum K vs is sensitive to the damage degree, especially at early and hidden damage stages. Considering the dispersion of MMM data, the K vs statistical law is investigated, which shows that K vs obeys Gaussian distribution. So K vs is the suitable MMM parameter to establish reliability model of welded joints. At last, the original quantitative MMM reliability model is first presented based on the improved stress strength interference theory. It is shown that the reliability degree R gradually decreases with the decreasing of the residual life ratio T, and the maximal error between prediction reliability degree R 1 and verification reliability degree R 2 is 9.15%. This presented method provides a novel tool of reliability testing and evaluating in practical engineering for welded joints.

  15. Characterization of Mg/Al butt joints welded by gas tungsten arc filling with Zn–29.5Al–0.5Ti filler metal

    SciTech Connect

    Liu, Fei; Wang, Hongyang; Liu, Liming

    2014-04-01

    The multivariate alloying design of a welding joint is used in the Mg to Al welding process. A Zn–29.5Al–0.5Ti alloy is added as filler metal in gas tungsten arc welding of Mg and Al alloy joint based on the analysis of Al and Mg alloy characteristics. The tensile strength, microstructure, and phase constitution of the weld seam are analyzed. The formation of brittle and hard Mg–Al intermetallic compounds is avoided because of the effects of Zn, Al, and Ti. The average tensile strength of the joint is 148 MPa. Al{sub 3}Ti is first precipitated and functions as the nucleus of heterogeneous nucleation during solidification. Moreover, the precipitated Al–MgZn{sub 2} hypoeutectic phase exhibited a feather-like structure, which enhances the property of the Mg–Al dissimilar joint. - Highlights: • Mg alloy AZ31B and Al alloy 6061 are butt welded by fusion welding. • The effect of Ti in filler metal is investigated. • The formation of Mg–Al intermetallic compounds is avoided.

  16. The effects of intermixed weld metal on mechanical properties. Part 1

    SciTech Connect

    Quintana, M.A.; Johnson, M.Q.

    1999-03-01

    It is common for individual weld joints to be fabricated using a combination of electrode types and welding processes. While this situation arises most often as a result of repair welding, it also can arise due to scheduled fabrication sequencing, which requires a change from one electrode and/or process to another within the same weld joint. When weld metals deriving their properties from different metallurgical mechanisms are intermixed in the same joint, the resulting properties of the combination have caused some concern. This work is the first in a series that examines the intermixing of conventional carbon-manganese weld metals with various self-shielded flux cored arc weld metals. In this case, two different shielded metal arc weld metals are combined with various self-shielded flux cored arc weld metals. The effects of dilution from the underlying self-shielded flux cored root layers on the mechanical properties of shielded metal arc weld metal are examined. Variations in both tensile and Charpy V-notch impact properties have been documented. The effect on tensile results is limited to relatively minor changes in ductility. Reductions in Charpy V-notch impact energies were noted in all cases. The results are evaluated in terms of the chemical composition gradients and weld microstructure variations that result from dilution. Possible mechanisms are discussed.

  17. Microstructure, Texture, and Mechanical Property Analysis of Gas Metal Arc Welded AISI 304 Austenitic Stainless Steel

    NASA Astrophysics Data System (ADS)

    Saha, Saptarshi; Mukherjee, Manidipto; Pal, Tapan Kumar

    2015-03-01

    The present study elaborately explains the effect of welding parameters on the microstructure, texture, and mechanical properties of gas metal arc welded AISI 304 austenitic stainless steel sheet (as received) of 4 mm thickness. The welded joints were prepared by varying welding speed (WS) and current simultaneously at a fixed heat input level using a 1.2-mm-diameter austenitic filler metal (AISI 316L). The overall purpose of this study is to investigate the effect of the variation of welding conditions on: (i) Microstructural constituents using optical microscope and transmission electron microscope; (ii) Micro-texture evolution, misorientation distributions, and grain boundaries at welded regions by measuring the orientation data from electron back scattered diffraction; and (iii) Mechanical properties such as hardness and tensile strength, and their correlation with the microstructure and texture. It has been observed that the higher WS along with the higher welding current (weld metal W1) can enhance weld metal mechanical properties through alternation in microstructure and texture of the weld metal. Higher δ-ferrite formation and high-angle boundaries along with the <101> + <001> grain growth direction of the weld metal W1 were responsible for dislocation pile-ups, SFs, deformation twinning, and the induced martensite with consequent strain hardening during tensile deformation. Also, fusion boundary being the weakest link in the welded structure, failure took place mainly at this region.

  18. Mathematical Modeling of Optical Radiation Emission as a Function of Welding Power during Gas Shielded Metal Arc Welding.

    PubMed

    Bauer, Stefan; Janßen, Marco; Schmitz, Martin; Ott, Günter

    2017-11-01

    Arc welding is accompanied by intense optical radiation emission that can be detrimental not only for the welder himself but also for people working nearby or for passersby. Technological progress advances continuously in the field of joining, so an up-to-date radiation database is necessary. Additionally, many literature irradiance data have been measured for a few welding currents or for parts of the optical spectral region only. Within this paper, a comprehensive study of contemporary metal active gas, metal inert gas, and cold metal transfer welding is presented covering optical radiation emission from 200 up to 2,700 nm by means of (spectro-) radiometric measurements. The investigated welding currents range from 70 to 350 A, reflecting values usually applied in industry. Based upon these new irradiance data, three mathematical models were derived in order to describe optical radiation emission as a function of welding power. The linear, exponential, and sigmoidal emission models depend on the process variant (standard or pulsed) as well as on the welding material (mild and stainless steel, aluminum). In conjunction with the corresponding exposure limit values for incoherent optical radiation maximum permissible exposure durations were calculated as a function of welding power. Typical times are shorter than 1 s for the ultraviolet spectral region and range from 1 to 10 s for visible radiation. For the infrared regime, exposure durations are of the order of minutes to hours. Finally, a validation of the metal active gas emission models was carried out with manual arc welding.

  19. Delta ferrite in the weld metal of reduced activation ferritic martensitic steel

    NASA Astrophysics Data System (ADS)

    Sam, Shiju; Das, C. R.; Ramasubbu, V.; Albert, S. K.; Bhaduri, A. K.; Jayakumar, T.; Rajendra Kumar, E.

    2014-12-01

    Formation of delta(δ)-ferrite in the weld metal, during autogenous bead-on-plate welding of Reduced Activation Ferritic Martensitic (RAFM) steel using Gas Tungsten Arc Welding (GTAW) process, has been studied. Composition of the alloy is such that delta-ferrite is not expected in the alloy; but examination of the weld metal revealed presence of delta-ferrite in the weld metal. Volume fraction of delta-ferrite is found to be higher in the weld interface than in the rest of the fusion zone. Decrease in the volume fraction of delta-ferrite, with an increase in preheat temperature or with an increase in heat input, is observed. Results indicate that the cooling rate experienced during welding affects the volume fraction of delta-ferrite retained in the weld metal and variation in the delta-ferrite content with cooling rate is explained with variation in the time that the weld metal spends in various temperature regimes in which delta-ferrite is stable for the alloy during its cooling from the liquid metal to the ambient temperature. This manuscript will discuss the effect of welding parameters on formation of delta-ferrite and its retention in the weld metal of RAFM steel.

  20. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, M.L.; Sikka, V.K.

    1998-03-10

    A filler metal alloy used as a filler for welding cast nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and cast in copper chill molds. 3 figs.

  1. Filler metal alloy for welding cast nickel aluminide alloys

    DOEpatents

    Santella, Michael L.; Sikka, Vinod K.

    1998-01-01

    A filler metal alloy used as a filler for welding east nickel aluminide alloys contains from about 15 to about 17 wt. % chromium, from about 4 to about 5 wt. % aluminum, equal to or less than about 1.5 wt. % molybdenum, from about 1 to about 4.5 wt. % zirconium, equal to or less than about 0.01 wt. % yttrium, equal to or less than about 0.01 wt. % boron and the balance nickel. The filler metal alloy is made by melting and casting techniques such as are melting the components of the filler metal alloy and east in copper chill molds.

  2. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    SciTech Connect

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-30

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  3. Fractal Analysis of Metal Transfer in Mig/mag Welding

    NASA Astrophysics Data System (ADS)

    Vieira, A. P.; Vasconcelos, H. H. M.; Gonçalves, L. L.; de Miranda, H. C.

    2009-03-01

    We apply techniques of fractal analysis in order to classify metal-transfer mode in MIG/MAG (metal inert/active gas) welding, which are among the most commonly employed arc-fusion processes for industrial applications. We work with voltage and current time series obtained during welding, and evaluate statistical fluctuations present in those series by Hurst, detrended-fluctuation, and detrended-cross-correlation analyses, for each of three different metal-transfer modes: short-circuiting, globular, and spray. For a given total timespan of each series, curves of fluctuation as a funtion of the time-window size are processed by using pattern-classification techniques, such as principal-component analysis and Karhunen-Loève expansions. We obtain near 100% success rate for the classification, with timespans as small as 100 miliseconds, with a processing time of the same order. This suggests that our set of tools can be incorporated into an industrial welding apparatus in order to guarantee automatic correction of a process requiring a single metal-transfer mode.

  4. Effect of Melt-to-Solid Insert Volume Ratio on Mg/Al Dissimilar Metals Bonding

    NASA Astrophysics Data System (ADS)

    Emami, S. M.; Divandari, M.; Arabi, H.; Hajjari, E.

    2013-01-01

    Compound casting is used as a process to join various similar and dissimilar metallic couples. The ratio of melt-to-solid volume is one of the main factors that can affect the contact time between melt and the solid insert. In this investigation, magnesium and aluminum metals (magnesium as the cast metal and aluminum as the solid insert) having melt-to-solid volume ratios ( V m/ V s) of 1.25, 3, and 5.25 were successfully bonded via compound casting. Results demonstrated that by increasing the ratio of V m/ V s from 1.25 to 5.25, the thickness of the reaction interface between Al and Mg varies within the range of 200 to 1800 μm. X-ray diffraction, scanning electron microscopy, and Vickers microhardness study of the bonding of these two metals showed that the interface consisted of three separate sub-layers within reaction layer. These sub-layers had higher hardness than those of the Al and Mg bulk metals. In all specimens, composition of the sub-layer adjacent to Al (layer I) was Al3Mg2 and that adjacent to Mg (layer III) was Al12Mg17/(Mg) eutectic structure. The intermediate layer composition (layer II) in specimens with volume ratio of 1.25 and 3 was a single-phase Al12Mg17, while for the case of volume ratio 5.25 this sub-layer consisted of Al12Mg17/(Mg) eutectic dispersed in Al12Mg17 intermetallic. The results of this research showed that in low melt/solid volume ratios, diffusion-reaction was the dominant mechanism for formation of Al-Mg intermetallic. However, when V m/ V s and the melt/solid insert contact time increased, the dominant mechanism of Al-Mg intermetallics changed to fusion-solidification due to increase in surface melting of the solid insert. Also the results of push-out tests showed that shear strengths of the interface decrease from 27.1 to 15.1 and 8.3 MPa for the Al/Mg couples prepared at 1.25, 3, and 5.25 V m/ V s respectively.

  5. Investigation of aluminum-steel joint formed by explosion welding

    NASA Astrophysics Data System (ADS)

    Kovacs-Coskun, T.; Volgyi, B.; Sikari-Nagl, I.

    2015-04-01

    Explosion welding is a solid state welding process that is used for the metallurgical joining of metals. Explosion cladding can be used to join a wide variety of dissimilar or similar metals [1]. This process uses the controlled detonation of explosives to accelerate one or both of the constituent metals into each other in such a manner as to cause the collision to fuse them together [2]. In this study, bonding ability of aluminum and steel with explosion welding was investigated. Experimental studies, microscopy, microhardness, tensile and bend test showed out that, aluminum and steel could be bonded with a good quality of bonding properties with explosion welding.

  6. Characterization of Steel-Ta Dissimilar Metal Builds Made Using Very High Power Ultrasonic Additive Manufacturing (VHP-UAM)

    NASA Astrophysics Data System (ADS)

    Sridharan, Niyanth; Norfolk, Mark; Babu, Sudarsanam Suresh

    2016-05-01

    Ultrasonic additive manufacturing is a solid-state additive manufacturing technique that utilizes ultrasonic vibrations to bond metal tapes into near net-shaped components. The major advantage of this process is the ability to manufacture layered structures with dissimilar materials without any intermetallic formation. Majority of the published literature had focused only on the bond formation mechanism in Aluminum alloys. The current work pertains to explain the microstructure evolution during dissimilar joining of iron and tantalum using very high power ultrasonic additive manufacturing and characterization of the interfaces using electron back-scattered diffraction and Nano-indentation measurement. The results showed extensive grain refinement at the bonded interfaces of these metals. This phenomenon was attributed to continuous dynamic recrystallization process driven by the high strain rate plastic deformation and associated adiabatic heating that is well below 50 pct of melting point of both iron and Ta.

  7. Approximate entropy—a new statistic to quantify arc and welding process stability in short-circuiting gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Cao, Biao; Xiang, Yuan-Peng; Lü, Xiao-Qing; Zeng, Min; Huang, Shi-Sheng

    2008-03-01

    Based on the phase state reconstruction of welding current in short-circuiting gas metal arc welding using carbon dioxide as shielding gas, the approximate entropy of welding current as well as its standard deviation has been calculated and analysed to investigate their relation with the stability of electric arc and welding process. The extensive experimental and calculated results show that the approximate entropy of welding current is significantly and positively correlated with arc and welding process stability, whereas its standard deviation is correlated with them negatively. A larger approximate entropy and a smaller standard deviation imply a more stable arc and welding process, and vice versa. As a result, the approximate entropy of welding current promises well in assessing and quantifying the stability of electric arc and welding process in short-circuiting gas metal arc welding.

  8. Control of Structure in Conventional Friction Stir Welds through a Kinematic Theory of Metal Flow

    NASA Technical Reports Server (NTRS)

    Rubisoff, H.A.; Schneider, J.A.; Nunes, A.C.

    2009-01-01

    In friction stir welding (FSW), a rotating pin is translated along a weld seam so as to stir the sides of the seam together. Metal is prevented from flowing up the pin, which would result in plowing/cutting instead of welding, by a shoulder on the pin. In conventional FSW, the weld metal rests on an "anvil", which supports the heavy "plunge" load on the tool. In this study, both embedded tungsten wires along and copper plating on the faying surfaces were used to trace the flow of AA2219 weld metal around the C-FSW tool. The effect of tool rotational speed, travel speed, plunge load, and pin thread pitch on the resulting weld metal flow was evaluated. Plan, longitudinal, and transverse section x-ray radiographs were examined to trace the metal flow paths. The results are interpreted in terms of a kinematic theory of metal flow in FSW.

  9. Effects of Dissimilar Metal Coupling, Potential Distribution, and Temper Condition on Galvanic Corrosion of 5086 Aluminum Alloy in Synthetic Seawater

    DTIC Science & Technology

    1978-01-01

    of corrosion product deposits on both anodic and cathodic surfaces. Coverage of the surface of the aluminm (anodic) member of couples with corrosion... products tends to promote the operation of local corrosion modes. Correlations have been imde between corrosion product distribution and the...brass > 1040 steel. The effect of dissimilar metal coupling decreases with time due to the formation cf corro0ion product deposits on both annuic and

  10. Monitoring and Control of the Hybrid Laser-Gas Metal-Arc Welding Process

    SciTech Connect

    Kunerth, D. C.; McJunkin, T. R.; Nichol, C. I.; Clark, D.; Todorov, E.; Couch, R. D.; Yu, F.

    2013-07-01

    Methods are currently being developed towards a more robust system real time feedback in the high throughput process combining laser welding with gas metal arc welding. A combination of ultrasonic, eddy current, electronic monitoring, and visual techniques are being applied to the welding process. Initial simulation and bench top evaluation of proposed real time techniques on weld samples are presented along with the concepts to apply the techniques concurrently to the weld process. Consideration for the eventual code acceptance of the methods and system are also being researched as a component of this project. The goal is to detect defects or precursors to defects and correct when possible during the weld process.

  11. The temporal nature of forces acting on metal drops in gas metal arc welding

    SciTech Connect

    Jones, L.A.; Eagar, T.W.; Lang, J.H.

    1996-12-31

    At moderate and high welding currents, the most important forces in gas metal arc welding acting on the molten electrode are magnetic forces arising from the interaction between the welding current and its own magnetic field. These forces drive the dynamic evolution of the drop and also depend on the instantaneous shape of the drop. In this paper, experimentally observed manifestations of magnetic forces are shown, and a technique for approximating the temporal evolution of these forces from experimentally measured drop shapes is reported. The technique provides quantitative data illustrating the large increase in the magnetic forces as a drop detaches from the electrode.

  12. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma

    SciTech Connect

    Ribic, B.; DebRoy, T.; Burgardt, P.

    2011-04-15

    During laser-arc hybrid welding, plasma properties affect the welding process and the weld quality. However, hybrid welding plasmas have not been systematically studied. Here we examine electron temperatures, species densities, and electrical conductivity for laser, arc, and laser-arc hybrid welding using optical emission spectroscopy. The effects of arc currents and heat source separation distances were examined because these parameters significantly affect weld quality. Time-average plasma electron temperatures, electron and ion densities, electrical conductivity, and arc stability decrease with increasing heat source separation distance during hybrid welding. Heat source separation distance affects these properties more significantly than the arc current within the range of currents considered. Improved arc stability and higher electrical conductivity of the hybrid welding plasma result from increased heat flux, electron temperatures, electron density, and metal vapor concentrations relative to arc or laser welding.

  13. Elements of arc welding

    SciTech Connect

    Not Available

    1993-07-01

    This paper looks at the following arc welding techniques: (1) shielded metal-arc welding; (2) submerged-arc welding; (3) gas metal-arc welding; (4) flux-cored arc welding; (5) electrogas welding; (6) gas tungsten-arc welding; and (7) plasma-arc welding.

  14. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  15. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  16. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  17. Effect of Mn Content on Microstructure and Mechanical Properties of Weld Metal During High Heat Input Welding Processes

    NASA Astrophysics Data System (ADS)

    Song, F. Y.; Shi, M. H.; Wang, P.; Zhu, F. X.; Misra, R. D. K.

    2017-05-01

    To elucidate the effect of Mn content on the microstructure and mechanical properties of weld metal, flux-cored wires with three different Mn contents were prepared to conduct high heat input welding experiments. Complex inclusions and Mn-depleted zones were observed in the weld metal with heat input of 85 kJ/cm. The study indicated that complex inclusions enabled nucleation of acicular ferrite with interlocking structure, leading to enhanced impact toughness. With decrease in Mn content, the number of complex inclusions with Mn-depleted zone and the volume fraction of acicular ferrite were both decreased. Additionally, the impact toughness of weld metal was significantly degraded with lower Mn content present in martensite-austenite (M-A) constituent and bainite.

  18. Metal flow of a tailor-welded blank in deep drawing process

    NASA Astrophysics Data System (ADS)

    Yan, Qi; Guo, Ruiquan

    2005-01-01

    Tailor welded blanks were used in the automotive industry to consolidate parts, reduce weight, and increase safety. In recent years, this technology was developing rapidly in China. In Chinese car models, tailor welded blanks had been applied in a lot of automobile parts such as rail, door inner, bumper, floor panel, etc. Concerns on the properties of tailor welded blanks had become more and more important for automobile industry. A lot of research had shown that the strength of the welded seam was higher than that of the base metal, such that the weld failure in the aspect of strength was not a critical issue. However, formability of tailor welded blanks in the stamping process was complex. Among them, the metal flow of tailor welded blanks in the stamping process must be investigated thoroughly in order to reduce the scrap rate during the stamping process in automobile factories. In this paper, the behavior of metal flow for tailor welded blanks made by the laser welding process with two types of different thickness combinations were studied in the deep drawing process. Simulations and experiment verification of the movement of weld line for tailor welded blanks were discussed in detail. Results showed that the control on the movement of welded seam during stamping process by taking some measures in the aspect of blank holder was effective.

  19. A comparative evaluation of low-cycle fatigue behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joint

    NASA Astrophysics Data System (ADS)

    Valsan, M.; Sundararaman, D.; Rao, K. Bhanu Sankara; Mannan, S. L.

    1995-05-01

    A comparative evaluation of the low-cycle fatigue (LCF) behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joints was carried out at 773 and 873 K. Total strain-controlled LCF tests were conducted at a constant strain rate of 3 × 10-3 s-1 with strain amplitudes in the range ±0.20 to ±1.0 pct. Weld pads with single V and double V configuration were prepared by the shielded metal-arc welding (SMAW) process using 316 electrodes for weld-metal and weld-joint specimens. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of the untested and tested samples were carried out to elucidate the deformation and the fracture behavior. The cyclic stress response of the base metal shows a very rapid hardening to a maximum stress followed by a saturated stress response. Weld metal undergoes a relatively short initial hardening followed by a gradual softening regime. Weld joints exhibit an initial hardening and a subsequent softening regime at all strain amplitudes, except at low strain amplitudes where a saturation regime is noticed. The initial hardening observed in base metal has been attributed to interaction between dislocations and solute atoms/complexes and cyclic saturation to saturation in the number density of slip bands. From TEM, the cyclic softening in weld metal was ascribed to the annihilation of dislocations during LCF. Type 316LN base metal exhibits better fatigue resistance than weld metal at 773 K, whereas the reverse holds true at 873 K. The weld joint shows the lowest life at both temperatures. The better fatigue resistance of weld metal is related to the brittle transformed delta ferrite structure and the high density of dislocations at the interface, which inhibits the growth rate of cracks by deflecting the crack path. The lower fatigue endurance of the weld joint was ascribed to the shortening of the crack initiation phase caused by surface intergranular crack initiation and to the poor

  20. Effect of PTA Hardfaced Interlayer Thickness on Ballistic Performance of Shielded Metal Arc Welded Armor Steel Welds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2013-03-01

    Ballistic performance of armor steel welds is very poor due to the usage of low strength and low hardness austenitic stainless steel fillers, which are traditionally used to avoid hydrogen induced cracking. In the present investigation, an attempt has been made to study the effect of plasma transferred arc hardfaced interlayer thickness on ballistic performance of shielded metal arc welded armor steel weldments. The usefulness of austenitic stainless steel buttering layer on the armor grade quenched and tempered steel base metal was also considered in this study. Joints were fabricated using three different thickness (4, 5.5, and 7 mm) hardfaced middle layer by plasma transferred arc hardfacing process between the top and bottom layers of austenitic stainless steel using shielded metal arc welding process. Sandwiched joint, in addition with the buttering layer served the dual purpose of weld integrity and ballistic immunity due to the high hardness of hardfacing alloy and the energy absorbing capacity of soft backing weld deposits. This paper will provide some insight into the usefulness of austenitic stainless steel buttering layer on the weld integrity and plasma transferred arc hardfacing layer on ballistic performance enhancement of armor steel welds.

  1. Multiscale Study of Interfacial Intermetallic Compounds in a Dissimilar Al 6082-T6/Cu Friction-Stir Weld

    NASA Astrophysics Data System (ADS)

    Avettand-Fenoël, M. N.; Taillard, R.; Ji, G.; Goran, D.

    2012-12-01

    The objective of this work was to characterize the Al x Cu y intermetallic compounds (IMCs) formed at the abutting interface during solid-state friction-stir welding (FSW) of 6082 aluminum alloy and pure copper. As IMCs are potential sources of flaws in case of mechanical loading of welds, their study is essential at various scale lengths. In the present case, they have been identified by neutron diffraction, electron backscattered diffraction, and transmission electron microscopy. Neutron diffraction analyses have shown that a shift of the tool from the interface, in particular towards the Cu part, generates an increase of the IMCs' volume fraction. In accordance with an exacerbation of its kinetics of formation by FSW, a 4- μm-thick layer has precipitated at the interface despite the shortness of the thermal cycle. This layer is composed of two sublayers with the Al4Cu9 and Al2Cu stoichiometry, respectively. Convergent beam electron diffraction analyses have, however, disclosed that the crystallography of the current Al2Cu compound does not comply with the usual tetragonal symmetry of this phase. The Al2Cu phase formation results from both the local chemical composition and thermodynamics, whereas the development of Al4Cu9 is rather due to both the local chemical composition and the shortness of the local FSW thermal cycle.

  2. A model-based approach to intelligent control of gas metal arc welding

    SciTech Connect

    Smartt, H.B.; Johnson, J.A.; Einerson, C.J.; Watkins, A.D.; Carlson, N.M.

    1990-01-01

    This paper discusses work on a model-based intelligent process controller for gas metal arc welding. Four sensors input to a neural network, which communicates to a reference model-based adaptive controller that controls process parameters. Reference model derivation and validation are discussed. The state of an arch weld is determined by the composition of the weld and base metal and the weld's thermomechanical history. The composition of the deposited weld metal depends primarily on the amount of filler metal dilution; heat input to the weld, comprising pre-heat and process heat, is the controlling factor in the thermal cycle. Thus, control of the arc welding process should focus on rational specification and in-process control of the heat and mass input to the weld. A control model has been developed in which the governing equations are solved for the process parameters as functions of the desired heat input (in terms of heat input unit weld length) and mass input (in terms of transverse reinforcement area) to the weld. The model includes resistive and arc heating of the electrode wire, characteristics of the welding power supply, and a volumetric heat balance on the electrode material, as well as latent and superheat of the electrode material. Extension of the model to include dynamics of individual droplet transfer events, based on incorporating a nonlinear, lumped parameter droplet analysis, is discussed. A major emphasis has been placed on computational simplicity; model solutions are required at the rate of about 10 Hz during welding. Finally, a process control scheme has been developed for the gas metal arc welding process using the above nonlinear model with a proportional-integral controller with adaptive coefficients to control the weld heat input and reinforcement area independently. Performance of the resulting control method is discussed. 10 refs., 5 figs.

  3. Systems and Methods for Fabricating Structures Including Metallic Glass-Based Materials Using Ultrasonic Welding

    NASA Technical Reports Server (NTRS)

    Hofmann, Douglas C. (Inventor); Roberts, Scott N. (Inventor)

    2017-01-01

    Systems and methods in accordance with embodiments of the invention fabricate objects including metallic glass-based materials using ultrasonic welding. In one embodiment, a method of fabricating an object that includes a metallic glass-based material includes: ultrasonically welding at least one ribbon to a surface; where at least one ribbon that is ultrasonically welded to a surface has a thickness of less than approximately 150.mu.m; and where at least one ribbon that is ultrasonically welded to a surface includes a metallic glass-based material.

  4. Metal arc welding and the risk of skin cancer.

    PubMed

    Heltoft, K N; Slagor, R M; Agner, T; Bonde, J P

    2017-08-01

    Arc welding produces the full spectrum of ultraviolet radiation and may be a contributory cause of skin cancer; however, there has been little research into this occupational hazard. The aim of this study is to explore if metal arc welding increases the risk of malignant melanoma and/or basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) on skin areas which may possibly be exposed (neck, head, and upper extremities). A Danish national company-based historic cohort of 4333 male metal arc welders was followed from 1987 through 2012 to identify the risk of skin cancer. An external reference group was established including all Danish skilled and unskilled male workers with similar age distribution. Occupational histories were gathered by questionnaires in 1986 and information about skin cancer diagnoses [BCC, SCC, cutaneous malignant melanoma (CMM), and precancerous conditions, actinic keratosis (AK)] were gathered from the Danish Cancer Registry supplemented by the data from the Danish Pathology Register. Hazard ratios (HRs) were calculated in the follow-up period from 1987 until 2012 using Cox regression analysis and adjusted for baseline data regarding age and social group. The adjusted HR and 95% confidence interval (CI) for skin cancer (all types) were 0.99 (CI 0.94-1.04) for welders. The adjusted HR for AK and BCC located only at neck was 2.49 (CI 1.03-5.99) for welders exposed >20 years (n = 5) and 2.46 (CI 1.02-5.94), respectively, for welders exposed >30 years (n = 5). No statistically significant difference was observed for SCC. The risk of CMM at the neck was also significantly elevated after 30 years of welding, but this is based upon only one exposed case. This study indicates that long-term exposure to metal arc welding may be related to increased risk of BCC and AK located exclusively at the neck. The study provides no support for the hypothesis that welding exposure increases the risk for skin cancer at other locations.

  5. Automatic Submerged ARC Welding With Metal Power Additions to Increase Productivity and Maintain Quality

    DTIC Science & Technology

    1986-06-01

    Manager of Welding Engineering PROPOSAL WELDING OF CARBON STEEL AND HY80 UTILIZING THE BULK WELDING PROCESS May 9, 1983 PREPARED BY: NEWPORT NEwS...12 joints with carbon steel and 12 with HY80 , utilizing three The joints will requirements of Benefits 1. Deposition times that different size double...of Joint Variations and Deposition Rates Filler Metal/Base Material Chemical Analyses; Carbon Steel /HIS Filler Metal/Base Material Chemical Analyses

  6. The effect of weld metal matching on girth weld performance: Volume III - an ECA analysis. Final report

    SciTech Connect

    Denys, R.M.; Martin, J.T.

    1995-02-01

    Modern pipeline standards contain alternative methodologies for determining the acceptable defect size in pipeline welds. Through the use of fracture mechanics and plastic collapse assessments, the mechanical and toughness properties of the defective region relate to the applied stress at the defect and defect geometry. The assumptions made in these methodologies are not always representative of the situation accurring in pipeline girth welds. To determine the effect of the various input parameters on acceptable defect size, The Welding Supervisory Committee of the American Gas Association commenced in 1990, in collaboration with the Laboratorium Soete of the University Gent, Belgium, a series of small scale (Charpy V impact and CTOD) and large scale (fatigue pre-cracked wide plate) tests. All the experimental investigations were intended to evaluate the effects of weld metal mis-match, temperature, defect size, defect type, defect interaction, pipe wall thickness and yield to tensile ratio on girth weld fracture behaviour. The aim of this report was to determine how weld metal yield strength overmatching or undermatching influences girth weld defect size prediction. A further analysis was conducted using the newly revised PD6493:1991 to provide a critical analysis with the objective of explaining the behaviour of the wide plate tests.

  7. The effect of welding parameters on high-strength SMAW all-weld-metal. Part 1: AWS E11018-M

    SciTech Connect

    Vercesi, J.; Surian, E.

    1996-06-01

    Three AWS A5.5-81 all-weld-metal test assemblies were welded with an E110180-M electrode from a standard production batch, varying the welding parameters in such a way as to obtain three energy inputs: high heat input and high interpass temperature (hot), medium heat input and medium interpass temperature (medium) and low heat input and low interpass temperature (cold). Mechanical properties and metallographic studies were performed in the as-welded condition, and it was found that only the tensile properties obtained with the test specimen made with the intermediate energy input satisfied the AWS E11018-M requirements. With the cold specimen, the maximal yield strength was exceeded, and with the hot one, neither the yield nor the tensile minimum strengths were achieved. The elongation and the impact properties were high enough to fulfill the minimal requirements, but the best Charpy-V notch values were obtained with the intermediate energy input. Metallographic studies showed that as the energy input increased the percentage of the columnar zones decreased, the grain size became larger, and in the as-welded zone, there was a little increment of both acicular ferrite and ferrite with second phase, with a consequent decrease of primary ferrite. These results showed that this type of alloy is very sensitive to the welding parameters and that very precise instructions must be given to secure the desired tensile properties in the all-weld-metal test specimens and under actual working conditions.

  8. Sheet metal welding using a pulsed Nd: YAG laser-robot

    NASA Astrophysics Data System (ADS)

    Huang, Qi; Kullberg, Gunnar; Skoog, Hans

    This paper presents a pulsed Nd: YAG laser-robot system for spot and seam welding of mild steel sheets. The study evaluates the laser beams behaviour for welding, and then investigates pulsed Nd: YAG laser spot and seam welding processes. High pulse power intensity is needed to initiate the key-hole welding process and a threshold pulse energy to reach full penetration. In seam welding, a weld consists of successive overlapping spots. Both high pulse energy and high average power are needed to keep the key-hole welding going. A 70% overlap is used to define overlapping spot welding as seam welding and to optimize process parameters because a high tensile strength joint compatible with the strength of the base material can be obtained when the overlap is ≥ 70%; at the same time a smooth seam with full penetration is obtained. In these cases, the joints in pulsed Nd: YAG laser welding are comparable in strength to those obtained with CO 2 laser welding. Robot positioning and motion accuracies can meet the demands of Nd: YAG laser sheet metal welding, but its cornering accuracy affects the welding processes. The purpose of the study is to evaluate the YAG laser-robot system for production in the automotive industry.

  9. Al/Cu Dissimilar Friction Stir Welding with Ni, Ti, and Zn Foil as the Interlayer for Flow Control, Enhancing Mechanical and Metallurgical Properties

    NASA Astrophysics Data System (ADS)

    Sahu, Prakash Kumar; Pal, Sukhomay; Pal, Surjya K.

    2017-07-01

    This research investigates the effects of Ni, Ti, and Zn foil as interlayer, inserted between the faying edges of Al and Cu plates, for controlled intermetallic compound (IMC) formation. The weld tensile strength with Ti and Zn as interlayer is superior to Al base metal strength. This is due to controlled flow of IMCs by diffused Ti interlayer and thin, continuous, and uniform IMC formation in the case of Zn interlayer. Improved flexural stress was observed with interlayer. Weld microhardness varied with different interlayers and purely depends on IMCs present at the indentation point, flow of IMCs, and interlayer hardness. Specimens with interlayer failed at the interface of the nugget and thermomechanical-affected zone (TMAZ) with complete and broken three-dimensional (3-D) grains, indicating transgranular fracture. Phase analysis revealed that Al/Cu IMCs are impeded by Ni and Ti interlayer. The minor binary and ternary IMC phases form adjacent to the interlayer due to diffusion of the material with Al/Cu. Line scan and elemental mapping indicate thin, continuous, and uniform IMCs with enhanced weld metallurgical and mechanical properties for the joints with Zn interlayer. Macrostructural analysis revealed IMC flow variations with and without interlayer. Variation in grain size at different zones is also observed for different interlayers.

  10. Study of issues in difficult-to-weld thick materials by hybrid laser arc welding

    NASA Astrophysics Data System (ADS)

    Mazar Atabaki, Mehdi

    There is a high interest for the high strength-to-weight ratio with good ductility for the welds of advanced alloys. The concern about the welding of thick materials (Advanced high strength steels (AHSS) and 5xxx and 6xxx series of aluminum alloys) has stimulated the development of manufacturing processes to overcome the associated issues. The need to weld the dissimilar materials (AHSS and aluminum alloys) is also required for some specific applications in different industries. Hence, the requirement in the development of a state-of-the-art welding procedure can be helpful to fulfill the constraints. Among the welding methods hybrid laser/arc welding (HLAW) has shown to be an effective method to join thick and difficult-to-weld materials. This process benefits from both advantages of the gas metal arc welding (GMAW) and laser welding processes. The interaction of the arc and laser can help to have enough penetration of weld in thick plates. However, as the welding of dissimilar aluminum alloys and steels is very difficult because of the formation of brittle intermetallics the present work proposed a procedure to effectively join the alloys. The reports showed that the explosively welded aluminum alloys to steels have the highest toughness, and that could be used as an "insert" (TRICLAD) for welding the thick plates of AHSS to aluminum alloys. Therefore, the HLAW of the TRICLAD-Flange side (Aluminum alloy (AA 5456)) to the Web side (Aluminum alloys (AA 6061 and AA 5456)) and the TRICLAD-Flange side (ASTM A516) to the Web side (AHSS) was studied in the present work. However, there are many issues related to HLAW of the dissimilar steels as well as dissimilar aluminum alloys that have to be resolved in order to obtain sound welds. To address the challenges, the most recent welding methods for joining aluminum alloys to steels were studied and the microstructural development, mechanical properties, and on-line monitoring of the welding processes were discussed as well

  11. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  12. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates the guide to remove references to outdated......

  13. Occupational asthma due to gas metal arc welding on mild steel.

    PubMed Central

    Vandenplas, O.; Dargent, F.; Auverdin, J. J.; Boulanger, J.; Bossiroy, J. M.; Roosels, D.; Vande Weyer, R.

    1995-01-01

    Occupational asthma has been documented in electric arc welders exposed to manual metal arc welding on stainless steel. A subject is described who developed late and dual asthmatic reactions after occupational-type challenge exposure to gas metal arc welding on uncoated mild steel. PMID:7597679

  14. Finite element based simulation on friction stud welding of metal matrix composites to steel

    NASA Astrophysics Data System (ADS)

    Hynes, N. Rajesh Jesudoss; Tharmaraj, R.; Velu, P. Shenbaga; Kumar, R.

    2016-05-01

    Friction welding is a solid state joining technique used for joining similar and dissimilar materials with high integrity. This new technique is being successfully applied to the aerospace, automobile, and ship building industries, and is attracting more and more research interest. The quality of Friction Stud Welded joints depends on the frictional heat generated at the interface. Hence, thermal analysis on friction stud welding of stainless steel (AISI 304) and aluminium silicon carbide (AlSiC) combination is carried out in the present work. In this study, numerical simulation is carried out using ANSYS software and the temperature profiles are predicted at various increments of time. The developed numerical model is found to be adequate to predict temperature distribution of friction stud weld aluminium silicon carbide/stainless steel joints.

  15. Liquid metal expulsion during laser spot welding of 304 stainless steel

    NASA Astrophysics Data System (ADS)

    He, X.; Norris, J. T.; Fuerschbach, P. W.; Roy, T. Deb

    2006-02-01

    During laser spot welding of many metals and alloys, the peak temperatures on the weld pool surface are very high and often exceed the boiling points of materials. In such situations, the equilibrium pressure on the weld pool surface is higher than the atmospheric pressure and the escaping vapour exerts a large recoil force on the weld pool surface. As a consequence, the molten metal may be expelled from the weld pool surface. The liquid metal expulsion has been examined both experimentally and theoretically for the laser spot welding of 304 stainless steel. The ejected metal droplets were collected on the inner surface of an open ended quartz tube which was mounted perpendicular to the sample surface and co-axial with the laser beam. The size range of the ejected particles was determined by examining the interior surface of the tube after the experiments. The temperature distribution, free surface profile of the weld pool and the initiation time for liquid metal expulsion were computed based on a three-dimensional transient heat transfer and fluid flow model. By comparing the vapour recoil force with the surface tension force at the periphery of the liquid pool, the model predicted whether liquid metal expulsion would take place under different welding conditions. Expulsion of the weld metal was also correlated with the depression of the liquid metal in the middle of the weld pool due to the recoil force of the vapourized material. Higher laser power density and longer pulse duration significantly increased liquid metal expulsion during spot welding.

  16. A comparative evaluation of low-cycle fatigue behavior of type 316LN base metal, 316 weld metal, and 316LN/316 weld joint

    SciTech Connect

    Valsan, M.; Sundararaman, D.; Sankara Rao, K.B.; Mannan, S.L.

    1995-05-01

    A comparative evaluation of the low-cycle fatigue (LCF) behavior of type 316LN base metal, carried out at 773 and 873 K. Total strain-controlled LCF tests were conducted at a constant strain rate of 3 {times} 10{sup {minus}3} s{sup {minus}1} with strain amplitudes in the range {+-}0.20 to {+-}1.0 pct. Weld pads with single V and double V configuration were prepared by the shielded metal-arc welding (SMAW) process using 316 electrodes for weld-metal and weld-joint specimens. Optical microscopy, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) of the untested and tested samples were carried out to elucidate the deformation and the fracture behavior. The cyclic stress response of the base metal shows a very rapid hardening to a maximum stress followed by a saturated stress response. Weld metal undergoes a relatively short initial hardening followed by a gradual softening regime. Weld joints exhibit an initial hardening and a subsequent softening regime at all strain amplitudes, except at low strain amplitudes where a saturation regime is noticed. The initial hardening observed in base metal has been attributed to interaction between dislocations and solute atoms/complexes and cyclic saturation to saturation in the number density of slip bands. The 18-8 group of austenitic stainless steels, such as AISI type 316, 304, and their modified grades, finds applications as structural material for various components of the liquid-metal-cooled fast breeder reactor (LMFBR).

  17. Metal cutting analogy for establishing Friction Stir Welding process parameters

    NASA Astrophysics Data System (ADS)

    Stafford, Sylvester Allen

    A friction stir weld (FSW) is a solid state joining operation whose processing parameters are currently determined by lengthy trial and error methods. To implement FSWing rapidly in various applications will require an approach for predicting process parameters based on the physics of the process. Based on hot working conditions for metals, a kinematic model has been proposed for calculating the shear strain and shear strain rates during the FSW process, validation of the proposed model with direct measuring is difficult however. Since the shear strain and shear strain rates predicted for the FSW process, are similar to those predicted in metal cutting, validation of the FSW algorithms with microstructural studies of metal chips may be possible leading to the ability to predict FSW processing parameters.

  18. Effects of shielding gas compositions on arc plasma and metal transfer in gas metal arc welding

    SciTech Connect

    Rao, Z. H.; Liao, S. M.; Tsai, H. L.

    2010-02-15

    This article presents the effects of shielding gas compositions on the transient transport phenomena, including the distributions of temperature, flow velocity, current density, and electromagnetic force in the arc and the metal, and arc pressure in gas metal arc welding of mild steel at a constant current input. The shielding gas considered includes pure argon, 75% Ar, 50% Ar, and 25% Ar with the balance of helium. It is found that the shielding gas composition has significant influences on the arc characteristics; droplet formation, detachment, transfer, and impingement onto the workpiece; and weld pool dynamics and weld bead profile. As helium increases in the shielding gas, the droplet size increases but the droplet detachment frequency decreases. For helium-rich gases, the current converges at the workpiece with a 'ring' shape which produces non-Gaussian-like distributions of arc pressure and temperature along the workpiece surface. Detailed explanations to the physics of the very complex but interesting transport phenomena are given.

  19. Manual gas tungsten arc (dc) and semiautomatic gas metal arc welding of 6XXX aluminum. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-1009 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc (DC) and semiautomatic gas metal arc (DC) welding of aluminum alloys 6061 and 6063 (P-23), in thickness range 0.187 to 2 in.; filler metal is ER4043 (F-23); shielding gases are helium (GTAW) and argon (GMAW).

  20. Designing shielded metal arc consumables for underwater wet welding in offshore applications

    SciTech Connect

    Sanchez-Osio, A.; Liu, S.; Olson, D.L.; Ibarra, S.

    1995-08-01

    The use of underwater wet welding for offshore repairs has been limited mainly because of porosity and low toughness in the resulting welds. With appropriate consumable design, however, it is possible to reduce porosity and to enhance weld metal toughness through microstructural refinement. New titanium and boron-based consumables have been developed with which high toughness acicular ferrite (AF) can be produced in underwater wet welds. Titanium, by means of oxide formation, promoted an increase in the amount of acicular ferrite in the weld metal, while boron additions decreased the amount of grain boundary ferrite (GBF), further improving the microstructure. Porosity reduction was possible through the addition of calcium carbonate at approximately 13 wt percent in the electrode coating. However, weld metal decarbonization also resulted with the addition of carbonate.

  1. Influence of weld metal alloying additions to extend the heat input range for the submerged arc welding of high strength steels. Final report

    SciTech Connect

    Liu, S.; Olson, D.L.; Ramirez, J.E.

    1993-12-16

    Weld metal microstructural development for high strength steels when welded with submerged arc welding process was investigated as a function of consumable composition and thermal experience. Of specific interest is the effect of systematic variations of microalloying additions on broadening of applicable heat input range. Controlled weld metal oxygen content, particularly in the range of 300 to 400 ppm, has been found to improve HY-130 steel weld metal toughness. Molybdenum additions was found to increase the strength of the HY-130 steel weld deposits. Copper additions up to 3.5 wt.pct. were found to strengthen the high strength steel weld metals, in particular, those of higher heat input, 3.6 kJ/mm. Niobium additions alone did not provide as powerful strengthening effect in the high heat input weld metals as the copper additions. In the case of copper-enriched welds, multi-pass welding induced both the precipitation and overaging of epsilon copper precipitates in the reheated weld metal which resulted in non-uniform mechanical properties. When added together, copper and niobium produced the synergistic effect of dual precipitation (Epsilon copper and niobium carbides) which provided the needed strength and thermal stability to the reheated weld metal even at high heat inputs. With this novel approach, the applicable heat input range to produce both adequate weld metal strength and toughness in high strength steels (Sigma y > 690 MPa) can be extended significantly. The optimal additions for copper and niobium were found to be 3.3 and up to 0. 1 wt. pct., Heat input, High strength steel, Precipitation strengthening, Copper, Niobium, Single and multi-pass welding.

  2. Effect of Laser Processing Parameters on the Formation of Intermetallic Compounds in Fe-Al Dissimilar Welding

    NASA Astrophysics Data System (ADS)

    Meco, Sonia; Ganguly, Supriyo; Williams, Stewart; McPherson, Norman

    2014-09-01

    Fusion welding of steel to aluminum is difficult due to formation of different types of Fe-Al intermetallics (IMs). In this work, 2 mm-thick steel was joined to 6 mm aluminum in overlap configuration using a 8 kW CW fiber laser. A defocused laser beam was used to control the energy input and allow melting of the aluminum alone and form the bond by wetting of the steel substrate. Experimentally, the process energy was varied by changing the power density (PD) and interaction time separately to understand the influence of each of these parameters on the IM formation. It was observed that the IM formation is a complex function of PD and interaction time. It was also found that the mechanical strength of such joint could not be simply correlated to the IM layer thickness but also depends on the area of wetting of the steel substrate by molten aluminum. In order to form a viable joint, PD needs to be over a threshold value where although IM growth will increase, the strength will be better due to increased wetting. Any increase in interaction time, with PD over the threshold, will have negative effect on the bond strength.

  3. A comparative evaluation of welding consumables for dissimilar weids between 316LN austenitic stainless steel and Alloy 800

    NASA Astrophysics Data System (ADS)

    Sireesha, M.; Albert, Shaju K.; Shankar, V.; Sundaresan, S.

    2000-03-01

    Transition joints in power plants between ferritic steels and austenitic stainless steels suffer from a mismatch in coefficients of thermal expansion (CTE) and the migration of carbon during service from the ferritic to the austenitic steel. To overcome these, nickel-based consumables are commonly used. The use of a trimetallic combination with an insert piece of intermediate CTE provides for a more effective lowering of thermal stresses. The current work envisages a trimetallic joint involving modified 9Cr-1Mo steel and 316LN austenitic stainless steel as the base materials and Alloy 800 as the intermediate piece. Of the two joints involved, this paper describes the choice of welding consumables for the joint between Alloy 800 and 316LN. Four consumables were examined: 316, 16-8-2, Inconel 82 and Inconel 182. The comparative evaluation was based on hot cracking tests and estimation of mechanical properties and coefficient of thermal expansion. While 16-8-2 exhibited highest resistance to solidification cracking, the Inconel filler materials also showed adequate resistance; additionally, the latter were superior from the mechanical property and coefficient of thermal expansion view-points. It is therefore concluded that for the joint between Alloy 800 and 316LN the Inconel filler materials offer the best compromise.

  4. Influence of Filler Alloy Composition and Process Parameters on the Intermetallic Layer Thickness in Single-Sided Cold Metal Transfer Welding of Aluminum-Steel Blanks

    NASA Astrophysics Data System (ADS)

    Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias

    2017-08-01

    Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.

  5. Fracture toughness of austenitic stainless steel weld metal at 4 K

    SciTech Connect

    Goodwin, G.M.

    1984-08-01

    Selection of the welding processess and weld filler metals for fabrication of a large toroidal superconducting magnet is described. Data available in the literature are collected and compared with data generated in this study for three welding processes, shielded metal arc (SMA), gas tungsten arc (GTA), and flux cored arc (FCA) welds had the highest fracture toughness as measured by K/sub Ic/ estimated from J/sub Ic/. The SMA and FCA welds had about the same toughness, below the GTA values but above the average from the literature. The fracture mode for all three processes was typified by ductile dimples. The fracture morphology of the FCA weld specimens was influenced by the solidification substructure, and small particles were found to be nucleation sites for void formation, especially for the GTA welds. All three welding processes were deemed adequate for the intended service and were used to fabricate the large magnet. A trunnion-type turning fixture eliminated the need for welding in the vertical and overhead positions. The GTA process was used for all root passes, and the horizontal welds were filled by the SMA process. Over 80% of the welds were done in the flat position with the FCA process, and its high deposition rate and ease of operation are credited with contributing greatly to the success of the effort.

  6. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  7. Welding.

    ERIC Educational Resources Information Center

    Lehigh County Area Vocational-Technical School, Schnecksville, PA.

    This curriculum guide provides materials for a 12-unit secondary course in welding. Purpose stated for the flexible entry and exit course is to help students master manipulative skills to develop successful welding techniques and to gain an understanding of the specialized tools and equipment used in the welding field. Units cover oxyacetylene…

  8. Reflection of illumination laser from gas metal arc weld pool surface

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoji; Zhang, Yu Ming

    2009-11-01

    The weld pool is the core of the welding process where complex welding phenomena originate. Skilled welders acquire their process feedback primarily from the weld pool. Observation and measurement of the three-dimensional weld pool surface thus play a fundamental role in understanding and future control of complex welding processes. To this end, a laser line is projected onto the weld pool surface in pulsed gas metal arc welding (GMAW) and an imaging plane is used to intercept its reflection from the weld pool surface. Resultant images of the reflected laser are analyzed and it is found that the weld pool surface in GMAW does specularly reflect the projected laser as in gas tungsten arc welding (GTAW). Hence, the weld pool surface in GMAW is also specular and it is in principle possible that it may be observed and measured by projecting a laser pattern and then intercepting and imaging the reflection from it. Due to high frequencies of surface fluctuations, GMAW requires a relatively short time to image the reflected laser.

  9. Submerged arc flux welding with CaF/sub 2/-CaO-SiO/sub 2/ fluxes: Possible electrochemical effects on weld metal

    SciTech Connect

    Shah, S.; Blander, M.; Indacochea, J.E.

    1987-01-01

    Compositional changes of weld metal from welds made by submerged arc flux welding of steel using CaF/sub 2/-CaO-SiO/sub 2/ fluxes are consistent with an electrochemical mechanism in which the filler wire is anodically oxidized to form oxides and fluorides, and metals are cathodically deposited at the weld pool-flux interface. This speculative mechanism, if proven by further detailed studies, could make it possible to predict fluxes which will improve the quality of welds. 10 refs., 3 figs., 3 tabs.

  10. Effect of Boric Acid Concentration on Viscosity of Slag and Property of Weld Metal Obtained from Underwater Wet Welding

    NASA Astrophysics Data System (ADS)

    Guo, Ning; Guo, Wei; Xu, Changsheng; Du, Yongpeng; Feng, Jicai

    2015-06-01

    Underwater wet welding is a crucial repair and maintenance technology for nuclear plant. A boric acid environment raises a new challenge for the underwater welding maintenance of nuclear plant. This paper places emphasis on studying the influence of a boric acid environment in nuclear plant on the underwater welding process. Several groups of underwater wet welding experiments have been conducted in boric acid aqueous solution with different concentration (0-35000 ppm). The viscosity of the welding slag and the mechanical properties of welds, such as the hardness, strength, and elongation, have been studied. The results show that with increasing boric acid concentration, the viscosity of the slag decreases first and then increases at a lower temperature (less than 1441 °C). However, when the temperature is above 1480 °C, the differences between the viscosity measurements become less pronounced, and the viscosity tends to a constant value. The hardness and ductility of the joints can be enhanced significantly, and the maximum strength of the weld metal can be reached at 2300 ppm.

  11. ARc Welding (Industrial Processing Series).

    DTIC Science & Technology

    ARC WELDING , *BIBLIOGRAPHIES), (*ARC WELDS, BIBLIOGRAPHIES), ALUMINUM ALLOYS, TITANIUM ALLOYS, CHROMIUM ALLOYS, METAL PLATES, SPOT WELDING , STEEL...INERT GAS WELDING , MARAGING STEELS, MICROSTRUCTURE, HEAT RESISTANT ALLOYS, HEAT RESISTANT METALS, WELDABILITY, MECHANICAL PROPERTIES, MOLYBDENUM ALLOYS, NICKEL ALLOYS, RESISTANCE WELDING

  12. Optimization of Gas Metal Arc Welding (GMAW) Process for Maximum Ballistic Limit in MIL A46100 Steel Welded All-Metal Armor

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.

    2015-01-01

    Our recently developed multi-physics computational model for the conventional gas metal arc welding (GMAW) joining process has been upgraded with respect to its predictive capabilities regarding the process optimization for the attainment of maximum ballistic limit within the weld. The original model consists of six modules, each dedicated to handling a specific aspect of the GMAW process, i.e., (a) electro-dynamics of the welding gun; (b) radiation-/convection-controlled heat transfer from the electric arc to the workpiece and mass transfer from the filler metal consumable electrode to the weld; (c) prediction of the temporal evolution and the spatial distribution of thermal and mechanical fields within the weld region during the GMAW joining process; (d) the resulting temporal evolution and spatial distribution of the material microstructure throughout the weld region; (e) spatial distribution of the as-welded material mechanical properties; and (f) spatial distribution of the material ballistic limit. In the present work, the model is upgraded through the introduction of the seventh module in recognition of the fact that identification of the optimum GMAW process parameters relative to the attainment of the maximum ballistic limit within the weld region entails the use of advanced optimization and statistical sensitivity analysis methods and tools. The upgraded GMAW process model is next applied to the case of butt welding of MIL A46100 (a prototypical high-hardness armor-grade martensitic steel) workpieces using filler metal electrodes made of the same material. The predictions of the upgraded GMAW process model pertaining to the spatial distribution of the material microstructure and ballistic limit-controlling mechanical properties within the MIL A46100 butt weld are found to be consistent with general expectations and prior observations.

  13. Fracture mechanics characterization of welds: Fatigue life analysis of notches at welds: J(sub Ic) fracture toughness tests for weld metal

    NASA Astrophysics Data System (ADS)

    Underwood, John H.

    1995-03-01

    In this report two methods of fracture analysis of welds will be emphasized, one addressing fatigue life testing and analysis of notches at welds, and the other addressing the final fracture of the welded component and the fracture toughness tests used to characterize final fracture. These fatigue and fracture methods will be described by referring to recent work from the technical literature and from the U.S. Army Armament Research, Development, and Engineering Center, primarily fracture case study and fracture test method development investigations. A brief general summary will be given of fatigue and fracture methods and concepts that have application to welded structures. Specific fatigue crack initiation tests and analysis methods will be presented, using example results from a welded stainless steel box beam of a cannon carriage. Recent improvements and simplifications in J.integral fracture toughness tests will be described, particularly those related to welds. Fracture toughness measurements for various stainless steel weld metals and heat treatments will also be described.

  14. Microstructures and Mechanical Properties of Weld Metal and Heat-Affected Zone of Electron Beam-Welded Joints of HG785D Steel

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Han, Jianmin; Tan, Caiwang; Yang, Zhiyong; Wang, Junqiang

    2016-12-01

    Vacuum electron beam welding (EBW) process was employed to butt weld 10-mm-thick HG785D high-strength steels. The penetration into the steel was adjusted by beam current. Microstructures at weld metal and heat-affected zone (HAZ) regions were comparatively observed. Mechanical properties of the EBWed joints including Vickers hardness, tensile and Charpy impact tests were evaluated. The results indicated that microstructures at the weld metal consisted of coarse lath martensite and a small amount of acicular martensite, while that in the HAZ was tempered sorbite and martensite. The grain size in the weld metal was found to be larger than that in the HAZ, and its proportion in weld metal was higher. The hardness in the weld metal was higher than the HAZ and base metal. The tensile strength and impact toughness in the HAZ was higher than that in the weld metal. All the behaviors were related to microstructure evolution caused by higher cooling rates and state of base metal. The fracture surfaces of tensile and impact tests on the optimized joint were characterized by uniform and ductile dimples. The results differed significantly from that obtained using arc welding process.

  15. Fusion and friction stir welding of aluminum-metal-matrix composites

    NASA Astrophysics Data System (ADS)

    Storjohann, D.; Barabash, O. M.; David, S. A.; Sklad, P. S.; Bloom, E. E.; Babu, S. S.

    2005-11-01

    Microstructure evolutions and degradations of aluminum-metal-matrix composites during fusion welding were studied and compared with thermodynamic calculations. In fusion welds of Al2O3-reinforced composites, the decomposition of Al2O3 was observed. In fusion welds of SiC whisker-reinforced composites, the decomposition of SiC to Al4C3+Si by reaction with molten aluminum occurred. These phenomena led to unacceptable fusion welds in aluminum metal-matrix composites. Successful welds were produced in the same composites by friction stir welding (FSW). Significant reorientation of SiC whiskers close to the boundary of the dynamically recrystallized and thermomechanically affected zone (TMAZ) was observed. The small hardening in the dynamically recrystallized region was attributed to the presence of dislocation tangles in between SiC whiskers.

  16. Interfacial microstructure and properties of copper clad steel produced using friction stir welding versus gas metal arc welding

    SciTech Connect

    Shen, Z.; Chen, Y.; Haghshenas, M.; Nguyen, T.; Galloway, J.; Gerlich, A.P.

    2015-06-15

    A preliminary study compares the feasibility and microstructures of pure copper claddings produced on a pressure vessel A516 Gr. 70 steel plate, using friction stir welding versus gas metal arc welding. A combination of optical and scanning electron microscopy is used to characterize the grain structures in both the copper cladding and heat affected zone in the steel near the fusion line. The friction stir welding technique produces copper cladding with a grain size of around 25 μm, and no evidence of liquid copper penetration into the steel. The gas metal arc welding of copper cladding exhibits grain sizes over 1 mm, and with surface microcracks as well as penetration of liquid copper up to 50 μm into the steel substrate. Transmission electron microscopy reveals that metallurgical bonding is produced in both processes. Increased diffusion of Mn and Si into the copper cladding occurs when using gas metal arc welding, although some nano-pores were detected in the FSW joint interface. - Highlights: • Cladding of steel with pure copper is possible using either FSW or GMAW. • The FSW yielded a finer grain structure in the copper, with no evidence of cracking. • The FSW joint contains some evidence of nano-pores at the interface of the steel/copper. • Copper cladding by GMAW contained surface cracks attributed to high thermal stresses. • The steel adjacent to the fusion line maintained a hardness value below 248 HV.

  17. Diffusion welding of a directionally solidified gamma/gamma prime - delta eutectic alloy

    NASA Technical Reports Server (NTRS)

    Moore, T. J.

    1977-01-01

    Hot-press diffusion welding parameters were developed for a directionally solidified, gamma/gamma prime-delta eutectic alloy. Based on metallography, a good diffusion weld was achieved at 1100 C under 34.5 MPa (5 ksi) pressure for 1 hour. In addition, a dissimilar metal weld between gamma/gamma prime-delta and IN-100 was successfully made at 1100 C under 20.7 MPa (3 ksi) pressure for 1 hour.

  18. The Concept of Electrically Assisted Friction Stir Welding (EAFSW) and Application to the Processing of Various Metals

    DTIC Science & Technology

    2008-09-01

    TZM) 2617 5.2 Good for Al, some success with mild steel , bronze & Ti- 6-4 Steel (SS, tool, mild) -1540 10-70 Good for aluminum alloys Tantalum 2996...lbs. This compares with forces of about 1000 lbs or so for conventional FSW welds in aluminum . With optimization of parameters, a higher weld speed...welding ( FSW ). Since 1991, friction stir welding provides an alternative to arc welding as a metal joining method in numerous applications. In FSW

  19. Characterization of Defocused Electron Beams and Welds in Stainless Steel and Refractory Metals using the Enhanced Modified Faraday Cup Diagnostic

    SciTech Connect

    Elmer, J W

    2009-01-23

    As the first part of a project to compare new generation, continuous wave, laser welding technology to traditional electron beam welding technology, electron beam welds were made on commercially pure vanadium refractory metal and 21-6-9 austenitic stainless steel. The electron beam welds were made while employing EB diagnostics to fully characterize the beams so that direct comparisons could be made between electron beam and laser beams and the welds that each process produces.

  20. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  1. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  2. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  3. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  4. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  5. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  6. 30 CFR 56.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Protective equipment or clothing for welding... METAL AND NONMETAL MINES Personal Protection § 56.15007 Protective equipment or clothing for welding... be worn when welding, cutting, or working with molten metal....

  7. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Protective equipment or clothing for welding... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  8. Influence of Alloy and Solidification Parameters on Grain Refinement in Aluminum Weld Metal due to Inoculation

    SciTech Connect

    Schempp, Philipp; Tang, Z.; Cross, Carl E.; Seefeld, T.; Pittner, A.; Rethmeier, M.

    2012-06-28

    The goals are: (1) Establish how much Ti/B grain refiner is need to completely refine aluminum weld metal for different alloys and different welding conditions; (2) Characterize how alloy composition and solidification parameters affect weld metal grain refinement; and (3) Apply relevant theory to understand observed behavior. Conclusions are: (1) additions of Ti/B grain refiner to weld metal in Alloys 1050, 5083, and 6082 resulted in significant grain refinement; (2) grain refinement was more effective in GTAW than LBW, resulting in finer grains at lower Ti content - reason is limited time available for equiaxed grain growth in LBW (inability to occlude columnar grain growth); (3) welding travel speed did not markedly affect grain size within GTAW and LBW clusters; and (4) application of Hunt CET analysis showed experimental G to be on the order of the critical G{sub CET}; G{sub CET} was consistently higher for GTAW than for LBW.

  9. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    DOE PAGES

    Squires, Lile; Lim, Yong Chae; Miles, Michael; ...

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its highermore » alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.« less

  10. Mechanical properties of dissimilar metal joints composed of DP 980 steel and AA 7075-T6

    SciTech Connect

    Squires, Lile; Lim, Yong Chae; Miles, Michael; Feng, Zhili

    2015-03-18

    In this study, a solid state joining process, called friction bit joining, was used to spot weld aluminium alloy 7075-T6 to dual phase 980 steel. Lap shear failure loads for specimens without adhesive averaged ~10kN, while cross-tension specimens averaged 2·8 kN. Addition of adhesive with a thickness up to 500 μm provided a gain of ~50% to lap shear failure loads, while a much thinner layer of adhesive increased cross-tension failure loads by 20%. Microstructures of the welds were martensitic, but the hardness of the joining bit portion was greater than that of the DP 980, owing to its higher alloy content. Softening in the heat affected zone of a welded joint appeared to be relatively small, though it was enough to cause nugget pullout failures in some lap shear tension specimens. Finally, other failures in lap shear tension were interfacial, while all of the failures in cross-tension were interfacial.

  11. Determinants of occupational exposure to metals by gas metal arc welding and risk management measures: a biomonitoring study.

    PubMed

    Persoons, Renaud; Arnoux, Damien; Monssu, Théodora; Culié, Olivier; Roche, Gaëlle; Duffaud, Béatrice; Chalaye, Denis; Maitre, Anne

    2014-12-01

    Welding fumes contain various toxic metals including chromium (Cr), nickel (Ni) and manganese (Mn). An assessment of the risk to health of local and systemic exposure to welding fumes requires the assessment of both external and internal doses. The aims of this study were to test the relevance in small and medium sized enterprises of a biomonitoring strategy based on urine spot-samples, to characterize the factors influencing the internal doses of metals in gas metal arc welders and to recommend effective risk management measures. 137 welders were recruited and urinary levels of metals were measured by ICP-MS on post-shift samples collected at the end of the working week. Cr, Ni and Mn mean concentrations (respectively 0.43, 1.69 and 0.27 μg/g creatinine) were well below occupational health guidance values, but still higher than background levels observed in the general population, confirming the absorption of metals generated in welding fumes. Both welding parameters (nature of base metal, welding technique) and working conditions (confinement, welding and grinding durations, mechanical ventilation and welding experience) were predictive of occupational exposure. Our results confirm the interest of biomonitoring for assessing health risks and recommending risk management measures for welders.

  12. Effect of Welding Consumables on Fatigue Performance of Shielded Metal Arc Welded High Strength, Q&T Steel Joints

    NASA Astrophysics Data System (ADS)

    Magudeeswaran, G.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2009-02-01

    Quenched and Tempered (Q&T) steels are widely used in the construction of military vehicles due to their high strength-to-weight ratio and high hardness. These steels are prone to hydrogen-induced cracking in the heat affected zone (HAZ) after welding. The use of austenitic stainless steel consumables to weld the above steel was the only remedy because of higher solubility for hydrogen in austenitic phase. Recent studies proved that high nickel steel and low hydrogen ferritic steel consumables can be used to weld Q&T steels, which can give very low hydrogen levels in the weld deposits. In this investigation an attempt has been made to study the effect of welding consumables on high cycle fatigue properties of high strength, Q&T steel joints. Three different consumables namely (i) austenitic stainless steel, (ii) low hydrogen ferritic steel, and (iii) high nickel steel have been used to fabricate the joints by shielded metal arc (SMAW) welding process. The joints fabricated using low hydrogen ferritic steel electrodes showed superior fatigue properties than other joints.

  13. Mechanisms of inclusion formation in Al-Ti-Si-Mn deoxidized steel weld metals

    NASA Astrophysics Data System (ADS)

    Kluken, A. O.; Grong, Ø.

    1989-08-01

    The present investigation is concerned with basic studies of the mechanisms of inclusion formation in submerged arc (SA), gas metal arc (GMA), and flux cored arc (FCA) steel weld metals. Theoretical models of deoxidation have been developed to establish a basis for quantitative predictions of important inclusion characteristics, such as volume fraction, size, and chemical composition from knowledge of weld metal chemistry and operating parameters. The relevance of these models has been tested against extensive inclusion data obtained from scanning electron microscope (SEM) and scanning transmission electron microscope (STEM) examinations of a large number of experimental welds containing various contents of aluminum, titanium, silicon, manganese, and oxygen.

  14. Atom-probe investigation of precipitation in 12% Cr steel weld metals

    NASA Astrophysics Data System (ADS)

    Cai, Guang-Jun; Lundin, Lars; Andrén, Hans-Olof; Svensson, Lars-Erik

    1994-03-01

    The microstructure of two types of 12% Cr steel weld metals, one with the composition of a common 12% Cr steel and the other with a higher nitrogen content, was studied using TEM (transmission electron microscopy) and APFIM (atom-probe field-ion microscopy) in post-weld heat-treated condition. The microstructure of the 12% Cr weld metals consisted of tempered martensite, retained δ-ferrite, an irregular low-dislocation α-ferrite and precipitates. Precipitates in the weld metals were dominantly M 23C 6 on different boundaries. Plate-like and fine cubic MN and M 2N were found inside the α-ferrite. APFIM analysis showed that M 23C 6 was almost a pure carbide and MN was almost a pure nitride. Carbon and nitrogen in the weld metals mainly existed in the precipitates. High nitrogen content did not change the composition of the precipitates, but increased the quantity of nitrides. Therefore, in the high nitrogen weld metal, the content of strong nitride-forming elements in the matrix decreased. These results are important in order to understand the strengthening mechanism of the high Cr steel weld metals, as well as of other high Cr heat-resistant steels.

  15. Metal ion release from silver soldering and laser welding caused by different types of mouthwash.

    PubMed

    Erdogan, Ayse Tuygun; Nalbantgil, Didem; Ulkur, Feyza; Sahin, Fikrettin

    2015-07-01

    To compare metal ion release from samples welded with silver soldering and laser welding when immersed into mouthwashes with different ingredients. A total of 72 samples were prepared: 36 laser welded and 36 silver soldered. Four samples were chosen from each subgroup to study the morphologic changes on their surfaces via scanning electron microscopy (SEM). Each group was further divided into four groups where the samples were submerged into mouthwash containing sodium fluoride (NaF), mouthwash containing sodium fluoride + alcohol (NaF + alcohol), mouthwash containing chlorhexidine (CHX), or artificial saliva (AS) for 24 hours and removed thereafter. Subsequently, the metal ion release from the samples was measured with inductively coupled plasma mass spectrometry (ICP-MS). The metal ion release among the solutions and the welding methods were compared. The Kruskal-Wallis and analysis of variance (ANOVA) tests were used for the group comparisons, and post hoc Dunn multiple comparison test was utilized for the two group comparisons. The level of metal ion release from samples of silver soldering was higher than from samples of laser welding. Furthermore, greater amounts of nickel, chrome, and iron were released from silver soldering. With regard to the mouthwash solutions, the lowest amounts of metal ions were released in CHX, and the highest amounts of metal ions were released in NaF + alcohol. SEM images were in accord with these findings. The laser welding should be preferred over silver soldering. CHX can be recommended for patients who have welded appliances for orthodontic reasons.

  16. Comparison of joint designs for laser welding of cast metal plates and wrought wires.

    PubMed

    Takayama, Yasuko; Nomoto, Rie; Nakajima, Hiroyuki; Ohkubo, Chikahiro

    2013-01-01

    The purpose of the present study was to compare joint designs for the laser welding of cast metal plates and wrought wire, and to evaluate the welded area internally using X-ray micro-focus computerized tomography (micro-CT). Cast metal plates (Ti, Co-Cr) and wrought wires (Ti, Co-Cr) were welded using similar metals. The specimens were welded using four joint designs in which the wrought wires and the parent metals were welded directly (two designs) or the wrought wires were welded to the groove of the parent metal from one or both sides (n = 5). The porosity and gap in the welded area were evaluated by micro-CT, and the maximum tensile load of the welded specimens was measured with a universal testing machine. An element analysis was conducted using an electron probe X-ray microanalyzer. The statistical analysis of the results was performed using Bonferroni's multiple comparisons (α = 0.05). The results included that all the specimens fractured at the wrought wire when subjected to tensile testing, although there were specimens that exhibited gaps due to the joint design. The wrought wires were affected by laser irradiation and observed to melt together and onto the filler metal. Both Mo and Sn elements found in the wrought wire were detected in the filler metal of the Ti specimens, and Ni was detected in the filler metal of the Co-Cr specimens. The four joint designs simulating the designs used clinically were confirmed to have adequate joint strength provided by laser welding.

  17. Microstructure and fatigue resistance of high strength dual phase steel welded with gas metal arc welding and plasma arc welding processes

    NASA Astrophysics Data System (ADS)

    Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo

    2013-09-01

    This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.

  18. Influence of Laser Power on the Microstructure and Mechanical Properties of a Laser Welded-Brazed Mg Alloy/Ni-Coated Steel Dissimilar Joint

    NASA Astrophysics Data System (ADS)

    Tan, Caiwang; Xiao, Liyuan; Liu, Fuyun; Chen, Bo; Song, Xiaoguo; Li, Liqun; Feng, Jicai

    2017-05-01

    In this work, we describe a method to improve the bonding of an immiscible Mg/steel system using Ni as an interlayer by coating it on the steel surface. Laser welding-brazing of AZ31B Mg alloy to Ni-coated Q235 steel using Mg-based filler was performed in a lap configuration. The influence of laser power on the weld characteristics, including joint appearance, formation of interfacial reaction layers and mechanical properties was investigated. The results indicated that the presence of the Ni-coating promoted the wetting of the liquid filler metal on the steel surface. A thermal gradient along the interface led to the formation of heterogeneous interfacial reaction layers. When using a low laser power of 1600 W, the reaction products were an FeAl phase in the direct laser irradiation zone, an AlNi phase close to the intermediate zone and mixtures of AlNi phase and an (α-Mg + Mg2Ni) eutectic structure near the interface at the seam head zone. For high powers of more than 2000 W, the FeAl phase grew thicker in the direct laser irradiation zone and a new Fe(Ni) transition layer formed at the interface of the intermediate zone and the seam head zone. However, the AlNi phase and (α-Mg + Mg2Ni) eutectic structure were scattered at the Mg seam. All the joints fractured at the fusion zone, indicating that the improved interface was not the weakest joint region. The maximum tensile-shear strength of the Mg/Ni-coated steel joint reached 190 N/mm, and the joint efficiency was 70% with respect to the Mg alloy base metal.

  19. Alloying Elements Transition Into the Weld Metal When Using an Inventor Power Source

    NASA Astrophysics Data System (ADS)

    Mamadaliev, R. A.; Kuskov, V. N.; Popova, A. A.; Valuev, D. V.

    2016-04-01

    The temperature distribution over the surface of the welded 12Kh18N10T steel plates using the inventor power source ARC-200 has been calculated. In order to imitate multipass welding when conducting the thermal analysis the initial temperature was changed from 298K up to 798K in 100K increments. It has been determined that alloying elements transition into the weld metal depends on temperature. Using an inventor power source facilitates a uniform distribution of alloying elements along the length and height of the weld seam.

  20. High power x-ray welding of metal-matrix composites

    DOEpatents

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1999-01-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10.sup.4 watts/cm.sup.2 and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  1. High power X-ray welding of metal-matrix composites

    SciTech Connect

    Rosenberg, Richard A.; Goeppner, George A.; Noonan, John R.; Farrell, William J.; Ma, Qing

    1997-12-01

    A method for joining metal-matrix composites (MMCs) by using high power x-rays as a volumetric heat source is provided. The method involves directing an x-ray to the weld line between two adjacent MMCs materials to create an irradiated region or melt zone. The x-rays have a power density greater than about 10{sup 4} watts/cm{sup 2} and provide the volumetric heat required to join the MMC materials. Importantly, the reinforcing material of the metal-matrix composites remains uniformly distributed in the melt zone, and the strength of the MMCs are not diminished. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys. In an alternate embodiment, high power x-rays are used to provide the volumetric heat required to weld metal elements, including metal elements comprised of metal alloys.

  2. Novel concepts in weld metal science: Role of gradients and composite structure

    SciTech Connect

    Matlock, D.K.; Olson, D.L.

    1991-12-01

    The effects of compositional and microstructural gradients on weld metal properties are being investigated. Crack propagation is solidified alloy structures is being characterized as to solidification orientation and the profile of the compositional variations. The effects of compositional gradients, are considered based on a thermodynamic analysis, referred to as the Cahn-Hillard analysis, which describes the degree to which a local surface energy is modified by the presence of a compositional gradient. The analysis predicts that both ductile and brittle fracture mechanisms are enhanced by the presence of a composition gradient. Special techniques to produce laboratory samples with microstructures which simulate the composition and microstructure gradients in solidified weld metal are used, along with appropriate mathematical models, to evaluate the properties of the composite weld metals. The composite modeling techniques are being applied to describe the effects of compositional and microstructural gradients on weld metal properties in Ni-Cu alloys. The development of metal matrix composition weld deposits on austenitic stainless steels has been studied. The particulate metal matrix composites were produced with ceramic or refractory metal powder filled cored wire, which was gas tungsten arc and gas metal arc welded.

  3. Development of welded metal bellows having minimum effective diameter change

    NASA Technical Reports Server (NTRS)

    Henschel, J. K.; Stevens, J. B.; Harvey, A. C.; Howland, J. S.; Rhee, S. S.

    1972-01-01

    A program of analysis, design, and fabrication was conducted to develop welded metal bellows having a minimum change in effective diameter for cryogenic turbomachinery face seal applications. Linear analysis of the principle types of bellows provided identification of concepts capable of meeting basic operation requirements. For the 6-inch (.152 m) mean diameter, 1.5-inch free length bellows studied, nonlinear analysis showed that opposed and nested toroidal bellows plates stiffened by means of alternating stiffener rings were capable of maintaining constant effective diameter within 0.3% and 0.1% respectively under the operating conditions of interest. Changes in effective diameter were due principally to bellows axial deflection with pressure differential having a lesser influence. Fabrication problems associated with joining the thin bellows plates to the relatively heavy stiffener rings were encountered and precluded assembly and testing of a bellows core. Fabrication problems are summarized and recommended fabrication methods for future effort are presented.

  4. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-01-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  5. Modeling of Fume Formation from Shielded Metal Arc Welding Process

    NASA Astrophysics Data System (ADS)

    Sivapirakasam, S. P.; Mohan, Sreejith; Santhosh Kumar, M. C.; Surianarayanan, M.

    2017-04-01

    In this study, a semi-empirical model of fume formation rate (FFR) from a shielded metal arc welding (SMAW) process has been developed. The model was developed for a DC electrode positive (DCEP) operation and involves the calculations of droplet temperature, surface area of the droplet, and partial vapor pressures of the constituents of the droplet to predict the FFR. The model was further extended for predicting FFR from nano-coated electrodes. The model estimates the FFR for Fe and Mn assuming constant proportion of other elements in the electrode. Fe FFR was overestimated, while Mn FFR was underestimated. The contribution of spatters and other mechanism in the arc responsible for fume formation were neglected. A good positive correlation was obtained between the predicted and experimental FFR values which highlighted the usefulness of the model.

  6. The Application of Stress-Relaxation Test to Life Assessment of T911/T22 Weld Metal

    NASA Astrophysics Data System (ADS)

    Cao, Tieshan; Zhao, Jie; Cheng, Congqian; Li, Huifang

    2016-03-01

    A dissimilar weld metal was obtained through submerged arc welding of a T911 steel to a T22 steel, and its creep property was explored by stress-relaxation test assisted by some conventional creep tests. The creep rate information of the stress-relaxation test was compared to the minimum and the average creep rates of the conventional creep test. Log-log graph showed that the creep rate of the stress-relaxation test was in a linear relationship with the minimum creep rate of the conventional creep test. Thus, the creep rate of stress-relaxation test could be used in the Monkman-Grant relation to calculate the rupture life. The creep rate of the stress-relaxation test was similar to the average creep rate, and thereby the rupture life could be evaluated by a method of "time to rupture strain." The results also showed that rupture life which was assessed by the Monkman-Grant relation was more accurate than that obtained through the method of "time to rupture strain."

  7. Role of heat equation in lap joint for welding process

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Rohit, Sooraj

    2017-07-01

    Welding is predominantly used in industrial purposes and growth in their industry, which gives exact welding and more efficient. The major advantage of using this welding technique at initial stage it takes very low heat to weld the portion and gives a good result of low distortion in modules. In this context, two dissimilar metals copper and nickel are chosen for analysis in tungsten inert gas welding (TIG) in which length is 300 mm and breadth is 100 mm thickness 15 mm welded at room temperature a welded portion zone is formed simulation analysis has done on CATIA® and ANSYS®and MATLAB® code is generated for calculating temperatures at each node to calculate temperature at each node a new technique is used tri-diagonal matrix algorithm is used (TDMA) Steady state one dimension heat is calculated results compared between simulation analysis and analytical analysis temperature at each node is calculated both the temperatures are equal with error.

  8. Manual gas tungsten arc and semiautomatic gas metal arc welding of chromium-nickel steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-306-ASME-6 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for manual gas tungsten arc and semiautomatic gas metal arc welding of 300 Series Cr-Ni steels (P-8-1), in thickness range 0.375 to 2 inch; filler metal is ER3XX (F-6, A-8); shielding gases are argon (GTAW) and 98-2 argon-oxygen.

  9. Machine gas tungsten arc and machine gas metal arc welding of chromium-nickel steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-309-ASME-0 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for machine gas tungsten arc and machine gas metal arc welding of 300 Series Cr-Ni steels (P-8-1), in thickness range 0.375 to 2 inch; filler metal is ER3XX (F-6,A-8); shielding gases are argon (GTAW) and 98-2 argon-oxygen (GMAW).

  10. Gas tungsten arc and shielded metal arc welding of carbon steel to chromium-nickel steel. Welding procedure specification

    SciTech Connect

    Wodtke, C.H.; Frizzell, D.R.; Plunkett, W.A.

    1985-08-01

    Procedure WPS-2103-ASME-1 is qualified under Section IX of the ASME Boiler and Pressure Vessel Code for gas tungsten arc and shielded metal arc welding of carbon steels (P-1-1) to 300 series Cr-Ni steels (P-8-1), in thickness range 0.25 to 2 in.; filler metals are ERNiCr-3 (F-43) (GTAW) and ENiCrFe-3 (F-43) (SMAW); shielding gas is argon (GTAW).

  11. Process Stability of Ultrasonic-Wave-Assisted Gas Metal Arc Welding

    NASA Astrophysics Data System (ADS)

    Fan, Chenglei; Xie, Weifeng; Yang, Chunli; Lin, Sanbao; Fan, Yangyang

    2017-10-01

    As a newly developed arc welding method, ultrasonic-wave-assisted arc welding successfully introduced power ultrasound into the arc and weld pool, during which the ultrasonic acts on the top of the arc in the coaxial alignment direction. The advanced process for molten metals can be realized by using an additional ultrasonic field. Compared with the conventional gas metal arc welding (GMAW), the welding arc is compressed, the droplet size is decreased, and the droplet transfer frequency is increased significantly in ultrasonic-wave-assisted GMAW (U-GMAW). However, the stability of the metal transfer has deep influence on the welding quality equally, and the ultrasonic wave effect on the stability of the metal transfer is a phenomenon that is not completely understood. In this article, the stabilities of the short-circuiting transfer process and globular transfer process are studied systematically, and the effect of ultrasonic wave on the metal transfer is analyzed further. The transfer frequency and process stability of the U-GMAW process are much higher than those of the conventional GMAW. Analytical results show that the additional ultrasonic wave is helpful for improving welding stability.

  12. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  13. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in Space

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.; Nunes, Arthur C., Jr.

    1998-01-01

    The safety issue has been raised with regards to potential molten metal detachments from the weld pool and cold filler wire during electron beam welding in space. This investigation was undertaken to evaluate if molten metal could detach and come in contact with astronauts and burn through the fabric of the astronauts' Extravehicular Mobility Unit (EMU) during electron beam welding in space. Molten metal detachments from either the weld/cut substrate or weld wire could present harm to a astronaut if the detachment was to burn through the fabric of the EMU. Theoretical models were developed to predict the possibility and size of the molten metal detachment hazards during the electron beam welding exercises at Low Earth Orbit (LEO). The primary molten metal detachment concerns were those cases of molten metal separation from the metal surface due to metal cutting, weld pool splashing, entrainment and release of molten metal due to filler wire snap-out from the weld puddle, and molten metal accumulation and release from the end of the weld wire. Some possible ways of obtaining molten metal drop detachments would include an impulse force, or bump, to the weld sample, cut surface, or filler wire. Theoretical models were developed for these detachment concerns from principles of impact and kinetic energies, surface tension, drop geometry, surface energies, and particle dynamics. The surface tension represents the force opposing the liquid metal drop from detaching whereas the weight of the liquid metal droplet represents a force that is tending to detach the molten metal drop. Theoretical calculations have indicated that only a small amount of energy is required to detach a liquid metal drop; however, much of the energy of an impact is absorbed in the sample or weld plate before it reaches the metal drop on the cut edge or surface. The tendency for detachment is directly proportional to the weld pool radius and metal density and inversely proportional to the surface

  14. Evaluating the Upset Protrusion Joining (UPJ) Method to Join magnesium Castings to Dissimilar Metals

    SciTech Connect

    Logan, Stephen D.

    2015-08-19

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparing performance results of the joints made with the UPJ process to those made with the SPR process.

  15. Microstructural development due to long-term aging and ion irradiation behavior in weld metals of austenitic stainless steel

    NASA Astrophysics Data System (ADS)

    Nakata, K.; Ikeda, S.; Hamada, S.; Hishinuma, A.

    1996-10-01

    In a candidate austenitic stainless steel (316F) for fusion reactor structural materials, irradiation behavior of the weld metal produced by electron-beam welding (containing 7.9 vol% δ-ferrite) was investigated in terms of microstructural development. The densities of interstitial clusters in the γ-phase of the weld metal irradiated with He-ions at 673 and 773 K were about four times larger than those in 316F. Voids were formed in the δ-ferrite of the weld irradiated at 773 K. The number of clusters decreased in the weld metal (γ-phase) aged at 773 to 973 K, compared with that in the as-welded metal. The change in cluster density could be attributed to a Ni concentration increase in the γ-phase of the weld metal during aging.

  16. 3D display and image processing system for metal bellows welding

    NASA Astrophysics Data System (ADS)

    Park, Min-Chul; Son, Jung-Young

    2010-04-01

    Industrial welded metal Bellows is in shape of flexible pipeline. The most common form of bellows is as pairs of washer-shaped discs of thin sheet metal stamped from strip stock. Performing arc welding operation may cause dangerous accidents and bad smells. Furthermore, in the process of welding operation, workers have to observe the object directly through microscope adjusting the vertical and horizontal positions of welding rod tip and the bellows fixed on the jig, respectively. Welding looking through microscope makes workers feel tired. To improve working environment that workers sit in an uncomfortable position and productivity we introduced 3D display and image processing. Main purpose of the system is not only to maximize the efficiency of industrial productivity with accuracy but also to keep the safety standards with the full automation of work by distant remote controlling.

  17. Welding Stainless Steels and Refractory Metals Using Diode-Pumped Continuous Wave Nd:YAG Lasers

    SciTech Connect

    Palmer, T A; Elmer, J W; Pong, R; Gauthier, M D

    2004-09-27

    This report provides an overview of a series of developmental welding studies performed on a 2.2 kW Rofin Sinar DY-022 Diode Pumped Continuous Wave (CW) Nd:YAG welder at Lawrence Livermore National Laboratory (LLNL). Several materials systems, ranging from refractory metals, such as commercially pure tantalum and vanadium, to austenitic stainless steels, including both 304L and 21-6-9 grades, are examined. Power input and travel speed are systematically varied during the welding of each materials system, and the width, depth, and cross sectional area of the resulting weld fusion zones are measured. These individual studies are undertaken in order to characterize the response of the welder to changes in these welding parameters for a range of materials and to determine the maximum depth of penetration of which this welder is capable in each materials system. The maximum weld depths, which are on the order of 5.4 mm, are observed in the 21-6-9 austenitic stainless steel at the maximum laser power setting (2200 W) and a slow travel speed (6.4 mm/sec). The next highest weld depth is observed in the 304L stainless steel, followed by that observed in the vanadium and, finally, in the tantalum. Porosity, which is attributed to the collapse of the keyhole during welding, is also observed in the welds produced in tantalum, vanadium, and 304L stainless steel. Only the 21-6-9 austenitic stainless steel welds displayed little or no porosity over the range of welding parameters. Comparisons with similar laser welding systems are also made for several of these same materials systems. When compared with the welds produced by these other systems, the LLNL system typically produces welds of an equivalent or slightly higher depth.

  18. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the guide to remove references to outdated standards and to remove an appendix......

  19. Microstructure evaluation in low alloy steel weld metal from convective heat transfer calculations in three dimensions

    SciTech Connect

    Mundra, K.; DebRoy, T.; Babu, S.S.; David, S.A.

    1995-12-31

    Heat transfer and fluid flow during manual metal arc welding of low alloy steels were investigated by solving the equations of conservation of mass, momentum, and energy in three dimensions. Cooling rates were calculated at various locations in the weldment. Calculated cooling rates were coupled with an existing phase transformation model to predict percentages of acicular, allotriomorphic, and Widmanstaetten ferrites in various low alloy steel welds containing different concentration of V and Mn. Computed microstructures were in good agreement with experiment, indicating promise for predicting weld metal microstructure from the fundamentals of transport phenomena.

  20. Improvement of charpy toughness of weld metal in circumferential SMAW of pipe

    SciTech Connect

    Abe, T.; Hara, N.; Sugino, T.; Naruse, S.; Kasai, N.

    1994-12-31

    Charpy toughness of weld metal made by low hydrogen and high cellulose electrodes for circumferential welding of API 5LX-60-X-70 grade of pipe is investigated. Improvements of charpy toughness was achieved by obtaining a fine microstructure through the adjustment of the quantity of alloying elements such as Mn and Ni and/or by the addition of an optimum range of micro-alloying elements like Ti and B for low hydrogen electrodes. It is reported that for high cellulose electrodes reducing the oxygen content in weld metal is also effective.

  1. Hydrogen Attack kinetics of 2.25 Cr-1 Mo steel weld metals

    NASA Astrophysics Data System (ADS)

    Parthasarathy, T. A.; Lopez, H. F.; Shewmon, P. G.

    1985-06-01

    The kinetics of Hydrogen Attack (HA) of the base metals and the weld metals of two Q&T 2.25 Cr-1 Mo steel weldments made by different techniques (SMAW and SAW) were studied in the temperature range 460 to 590°C (860 to 1094 °F) and 10 to 23 MPa of hydrogen. A sensitive dilatometer used to measure the rate of HA showed that the weld metals suffered HA at significantly higher rates than the base metals. The SMAW weld metal was inferior to the SAW weld metal and swelled nearly an order of magnitude faster than the base metal. This behavior is due to a significantly higher bubble density, and a resulting higher contribution of power law creep of the matrix. The SAW behavior was intermediate between those of the base metals and the SMAW. For the same hydrogen pressure the operating limit of the SMAW weld would be roughly 100°C lower than that of the base metals, and that of the SAW roughly 50°C lower.

  2. Welding Research

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Welding fabrication and welding processes were studied. The following research projects are reported: (1) welding fabrication; (2) residual stresses and distortion in structural weldments in high strength steels; (3) improvement of reliability of welding by in process sensing and control (development of smart welding machines for girth welding of pipes); (4) development of fully automated and integrated welding systems for marine applications; (5) advancement of welding technology; (6) research on metal working by high power laser (7) flux development; (8) heat and fluid flow; (9) mechanical properties developments.

  3. Real-time sensing and monitoring in robotic gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Gao, J. Q.; Hu, J. K.

    2007-01-01

    A real-time monitoring system is developed for detecting abnormal conditions in robotic gas metal arc welding. The butt-joint test pieces with simulated large gaps are used to intentionally introduce step disturbance of welding conditions. During the welding process, the welding voltage and current signals are sampled and processed on-line to extract the characteristic information reflecting the process quality. After the first statistical processing, it is found that seven statistical parameters (the mean, standard deviation, coefficient of variance and kurtosis of welding voltage; the mean, coefficient of variance and kurtosis of welding current) show variations during the step disturbance. Through the second statistical processing of the means of the welding voltage for subgroups of continuous measurement, the statistical control chart is obtained, and an SPC (statistical process control)-based on-line identifying method is developed. Ten robotic welding experiments are conducted to verify the real-time monitoring system. It is found that the correct identification rates for normal and abnormal welding conditions are 100% and 95%, respectively.

  4. A new technique for the strengthening of aluminum tungsten inert gas weld metals: using carbon nanotube/aluminum composite as a filler metal.

    PubMed

    Fattahi, M; Nabhani, N; Rashidkhani, E; Fattahi, Y; Akhavan, S; Arabian, N

    2013-01-01

    The effect of multi-walled carbon nanotube (MWCNT) on the mechanical properties of aluminum multipass weld metal prepared by the tungsten inert gas (TIG) welding process was investigated. High energy ball milling was used to disperse MWCNT in the aluminum powder. Carbon nanotube/aluminum composite filler metal was fabricated for the first time by hot extrusion of ball-milled powders. After welding, the tensile strength, microhardness and MWCNT distribution in the weld metal were investigated. The test results showed that the tensile strength and microhardness of weld metal was greatly increased when using the filler metal containing 1.5 wt.% MWCNT. Therefore, according to the results presented in this paper, it can be concluded that the filler metal containing MWCNT can serve as a super filler metal to improve the mechanical properties of TIG welds of Al and its alloys.

  5. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  6. The ways of reliability enhancement of welded metal structures for critical applications in the conditions of low climatic temperatures

    NASA Astrophysics Data System (ADS)

    Saraev, Yu. N.; Bezborodov, V. P.; Gladkovsky, S. V.; Golikov, N. I.

    2016-11-01

    The paper studies how the energy parameters of an effective welding technology based on adaptive pulse-arc welding method influence the microstructure, mechanical characteristics and fatigue strength of low carbon steel 09G2S welded joint. It is established that the application of the adaptive pulse-arc welding method with modulated current (CMW) as compared to the welding method with direct current (DCW) allows one to obtain a welded joint of this steel with high reserve impact strength, dynamic fracture toughness and fatigue strength of metallic structures at operation temperatures up to -60°C.

  7. Picosecond laser welding of optical to metal components

    NASA Astrophysics Data System (ADS)

    Carter, Richard M.; Troughton, Michael; Chen, Jinanyong; Elder, Ian; Thomson, Robert R.; Lamb, Robert A.; Esser, M. J. Daniel; Hand, Duncan P.

    2016-03-01

    We report on practical, industrially relevant, welding of optical components to themselves and aluminum alloy components. Weld formation is achieved through the tight focusing of a 5.9ps, 400kHz Trumpf laser operating at 1030nm. By selecting suitable surface preparation, clamping and laser parameters, the plasma can be confined, even with comparatively rough surfaces, by exploiting the melt properties of the glass. The short interaction time allows for a permanent weld to form between the two materials with heating limited to a region ~300 µm across. Practical application of these weld structures is typically limited due to the induced stress within the glass and, critically, the issues surrounding post-weld thermal expansion. We report on the measured strength of the weld, with a particular emphasis on laser parameters and surface preparation.

  8. Characterization of tool wear and weld optimization in the friction-stir welding of cast aluminum 359+20% SiC metal-matrix composite

    SciTech Connect

    Fernandez, G.J.; Murr, L.E

    2004-03-15

    Tool wear for threaded steel pin tools declines with decreasing rotation speed and increasing traverse or weld speeds for the friction-stir welding (FSW) of Al 359+20% SiC metal-matrix composite (MMC). Less than 10% tool wear occurs when the threaded tool erodes to a self-optimized shape resembling a pseudo-hour glass at weld traverse distances in excess of 3 m. There is only a 7% reduction in the SiC mean particle size in the weld zone for self-optimized pin tools with no threads as compared with a 25% variation for threaded tools wearing significantly at the start of welding. The weld zone becomes more homogeneous for efficient welding with self-optimized tools, and there is a reduction in the weld zone grain size due to dynamic recrystallization, which facilitates the solid-state flow. Transmission electron microscopy shows little difference in the dislocation density from the base material to the weld zone, but there is a propensity of dislocation loops in the weld zone. The weld zone is observed to harden by as much as 30%, in contrast to the base material, as a consequence of the recrystallized grain size reduction and the SiC particles distributed therein.

  9. The origin of acicular ferrite in gas metal arc and submerged arc welds

    NASA Astrophysics Data System (ADS)

    Brothers, Daniel G.

    1994-03-01

    The nature of weld metal inclusions in relation to the formation of acicular ferrite was investigated. Gas-metal arc welds (GMAW) on High Strength Low Alloy (HSLA) plate with varying amounts of oxygen and/or carbon dioxide added to the argon cover gas and submerged arc welds (SAW) on HY-100 plate with five different fluxes were analyzed. This analysis determined the effect of weld metal composition on non-metallic inclusion composition and the ultimate effects on the formation of acicular ferrite. Scanning and transmission electron microscopy with energy dispersive x-ray analysis were used to determine inclusion size distribution, concentration and composition. This investigation revealed that the inclusions were complex MnO-Al2O3-SiO2-TiO2 oxides which contain a titanium-rich compound, Pyrophanite (MnTiO3), existing as a faceted particle in those inclusions promoting acicular ferrite formation. From these results and the research of others such as Grong/Matlock and Ramsay/Matlock/Olson it is concluded that the formation of acicular ferrite does depend on non-metallic inclusion composition demonstrating the importance of weld wire composition for achieving welds with optimum mechanical properties.

  10. Repair of pipelines by direct deposition of weld metal. Final report

    SciTech Connect

    Bruce, W.A.; Mishier, H.D.; Kiefner, J.F.

    1993-06-08

    A study was made of the feasibility of repairing defects, especially corrosion-caused metal loss, by direct deposition of weld metal in pressurized pipelines without removing them from service. From experiments conducted to establish limiting parameters to avoid burnthrough, it appears feasible to carry out repair by means of weld metal deposition on remaining wall thicknesses as small as 0.125-in. (3.2-mm) with internal pressure levels as high as 800 psig (54.4 bar). This confirms the work of British Gas and others. Ability to do so safely seems enhanced by small-diameter electrodes [3/32-in. (2.4-MM)-diameter or less] with heat inputs not exceeding 15 kJ/in. (0.59 kJ/mm). Most effective technique involves a perimeter weld followed by consecutive parallel fill passes. This technique results in most consistent weld profile, least amount of welder-induced discontinuities and highest amount of tempering from subsequent passes. This tempering, combined with use of low-hydrogen electrodes and low level of restraint inherent with deposited weld metal repair, minimizes the risk of hydrogen cracking. Cyclic pressure and burst testing results indicate that repairs made by deposited weld metal are resistant to pressure cycles and restore strength of the pipe. It was also shown that surface finish, pressurizing medium during welding and repair extent/electrode size have no measurable effect on either the resistance to pressure cycles or the ability to restore the strength of the pipeline. It is concluded that repairs by deposited weld metal are feasible and should be permitted by various regulations and design codes.

  11. Possibility of Underwater Explosive Welding for Making Large-Sized Thin Metal Plate Clad by Overlapping Plates

    NASA Astrophysics Data System (ADS)

    Hokamoto, Kazuyuki; Mori, Akihisa; Fujita, Masahiro

    The authors have developed a new method of explosive welding using underwater shock wave for the welding of thin plate on a substrate. Considering the size limitation of the welding area in using the technique, the possibility of overlapping thin plates to make large-sized welding area is investigated. In general, the results for the welding of Inconel 600 on 304 stainless steel show a macroscopically successful weld, but the microstructure shows some melting spots caused due to the trapping of metal jet during the welding process when the welding condition is changed. The welding process is discussed based on the experimental results in comparison with some numerically simulated results obtained by AUTODYN-2D code.

  12. Repair of pipelines by direct deposition of weld metal further studies. Final report

    SciTech Connect

    Bruce, W.A.; Holdren, R.L.; Mohr, W.C.; Kiefner, J.F.

    1996-11-13

    The work described herein establishes the feasibility of repairing defects, especially corrosion-caused wall loss, by direct deposition of weld metal in pressurized pipelines without removing them from service. While this might seem inherently dangerous, past experience with {open_quotes}puddle welds{close_quotes} in corrosion pits and with repair and hot tap welding on relatively thin pipe materials suggests that it can be done safely. From the results of experiments conducted to establish the limiting parameters to avoid burnthrough, it appears that it is feasible to carry out repair by means of weld metal deposition on remaining wall thicknesses as small as 0.125 in. (3.2 mm) with internal pressure levels as high as 900 psig (6.2 MPa). This finding confirms the work of British Gas and others which also demonstrated that welding onto 0.125-in. (3.2-mm)-thick pipe was possible. The ability to do so safely is enhanced by the use of small-diameter electrodes (3/32-in. [2.4-mm] -diameter or less). Heat inputs limits were established as a function of remaining wall thickness and electrode diameter. The results of the previous work at EWI indicate that the most effective technique for making weld metal deposition repairs involves a series of perimeter welds followed by layers of consecutive parallel fill passes. This technique results in the most consistent weld profile, the least amount of welder-induced discontinuities and the highest amount of tempering from subsequent passes. This tempering, combined with the use of low-hydrogen electrodes and the low level of restraint inherent with deposited weld metal repair minimizes the risk of hydrogen cracking.

  13. 30 CFR 57.15007 - Protective equipment or clothing for welding, cutting, or working with molten metal.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., cutting, or working with molten metal. 57.15007 Section 57.15007 Mineral Resources MINE SAFETY AND HEALTH... equipment or clothing for welding, cutting, or working with molten metal. Protective clothing or equipment and face shields or goggles shall be worn when welding, cutting, or working with molten metal....

  14. Use of plasma arc welding process to combat hydrogen metallic disbonding of austenitic stainless steel claddings

    SciTech Connect

    Alexandrov, O.A. ); Steklov, O.I.; Alexeev, A.V. )

    1993-11-01

    A separation type crack, metallic disbonding, occurred between austenitic stainless steel weld metal cladding and 2 1/4Cr-1Mo base metal in the hydrodesulfurizing reactor of an oil refining plant. For stainless steel cladding, the submerged arc welding (SAW) process with a strip electrode is usually applied, but the authors experimented with the plasma arc welding (PAW) process with hot wire electrode for the cladding. The metallic disbonding is considered to be attributed to hydrogen accumulation at the transition zone and has been generally studied on a laboratory scale using an autoclave. The authors used a electrolytic hydrogen charging technique for the sake of experimental simplicity and made a comparison with the results for gaseous hydrogen charging. The main conclusions obtained were follows: The PAW stainless steel weld metal cladding is more resistant to metallic disbonding with the PAW process is explained by the desirable microstructure and properties of the first layer of weld metal at the transition zone. Electrolytic hydrogen charging pretty well reproduces the results of autoclave gas phase charging.

  15. Development of an intelligent system for cooling rate and fill control in GMAW. [Gas Metal Arc Welding (GMAW)

    SciTech Connect

    Einerson, C.J.; Smartt, H.B.; Johnson, J.A.; Taylor, P.L. ); Moore, K.L. )

    1992-01-01

    A control strategy for gas metal arc welding (GMAW) is developed in which the welding system detects certain existing conditions and adjusts the process in accordance to pre-specified rules. This strategy is used to control the reinforcement and weld bead centerline cooling rate during welding. Relationships between heat and mass transfer rates to the base metal and the required electrode speed and welding speed for specific open circuit voltages are taught to a artificial neural network. Control rules are programmed into a fuzzy logic system. TRADITOINAL CONTROL OF THE GMAW PROCESS is based on the use of explicit welding procedures detailing allowable parameter ranges on a pass by pass basis for a given weld. The present work is an exploration of a completely different approach to welding control. In this work the objectives are to produce welds having desired weld bead reinforcements while maintaining the weld bead centerline cooling rate at preselected values. The need for this specific control is related to fabrication requirements for specific types of pressure vessels. The control strategy involves measuring weld joint transverse cross-sectional area ahead of the welding torch and the weld bead centerline cooling rate behind the weld pool, both by means of video (2), calculating the required process parameters necessary to obtain the needed heat and mass transfer rates (in appropriate dimensions) by means of an artificial neural network, and controlling the heat transfer rate by means of a fuzzy logic controller (3). The result is a welding machine that senses the welding conditions and responds to those conditions on the basis of logical rules, as opposed to producing a weld based on a specific procedure.

  16. A Comparison of Weld-Repaired and Base Metal for Inconel 718 and CRES 321 at Cryogenic and Room Temperatures

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Smith, Stephen W.; Willard, Scott A.; Piascik, Robert S.

    2004-01-01

    Fatigue crack growth tests were conducted to characterize the performance of Inconel 718 and CRES 321 welds, weld heat-affect-zone and parent metal at room temperature laboratory air and liquid nitrogen (-196oC) environments. The results of this study were required to predict the damage tolerance behavior of proposed orbiter main engine hydrogen fuel liner weld repairs. Experimental results show that the room and cryogenic temperature fatigue crack growth characteristics of both alloys are not significantly degraded by the weld repair process. However, both Inconel 718 and CRES 321 exhibited lower apparent toughness within the weld repair region compared to the parent metal.

  17. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  18. Nuclear Technology. Course 28: Welding Inspection. Module 28-3, Tungsten Inert Gas (TIG), Metal Inert Gas (MIG) and Submerged Arc Welding.

    ERIC Educational Resources Information Center

    Espy, John

    This third in a series of ten modules for a course titled Welding Inspection presents the apparatus, process techniques, procedures, applications, associated defects, and inspection for the tungsten inert gas, metal inert gas, and submerged arc welding processes. The module follows a typical format that includes the following sections: (1)…

  19. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel.

    PubMed

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-09-30

    Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm(2) at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous.

  20. Hazard of ultraviolet radiation emitted in gas metal arc welding of mild steel

    PubMed Central

    Nakashima, Hitoshi; Utsunomiya, Akihiro; Takahashi, Jyunya; Fujii, Nobuyuki; Okuno, Tsutomu

    2016-01-01

    Objectives: Ultraviolet radiation (UVR) emitted during arc welding frequently causes keratoconjunctivitis and erythema in the workplace. The degree of hazard from UVR exposure depends on the welding method and conditions. Therefore, it is important to identify the UVR levels present under various conditions. Methods: We experimentally evaluated the UVR levels emitted in gas metal arc welding (GMAW) of mild steel. We used both a pulsed welding current and a non-pulsed welding current. The shielding gases were 80% Ar + 20% CO2 and 100% CO2. The effective irradiance defined in the American Conference of Governmental Industrial Hygienists guidelines was used to quantify the UVR hazard. Results: The effective irradiance measured in this study was in the range of 0.51-12.9 mW/cm2 at a distance of 500 mm from the arc. The maximum allowable exposure times at these levels are only 0.23-5.9 s/day. Conclusions: The following conclusions were made regarding the degree of hazard from UVR exposure during the GMAW of mild steel: (1) It is more hazardous at higher welding currents than at lower welding currents. (2) At higher welding currents, it is more hazardous when 80% Ar + 20% CO2 is used as a shielding gas than when 100% CO2 is used. (3) It is more hazardous for pulsed welding currents than for non-pulsed welding currents. (4) It appears to be very hazardous when metal transfer is the spray type. This study demonstrates that unprotected exposure to UVR emitted by the GMAW of mild steel is quite hazardous. PMID:27488036

  1. Toughness of 2,25Cr-1Mo steel and weld metal

    NASA Astrophysics Data System (ADS)

    Acarer, Mustafa; Arici, Gökhan; Acar, Filiz Kumdali; Keskinkilic, Selcuk; Kabakci, Fikret

    2017-09-01

    2,25Cr-1Mo steel is extensively used at elevated temperature structural applications in fossil fire power plants for steam pipes, nozzle chambers and petrochemical industry for hydrocracking unit due to its excellent creep resistance and good redundant to oxidation. Also they should have acceptable weldability and toughness. The steels are supplied in quenched and tempered condition and their welded components are subjected to post-weld heat treatment (PWHT). Tempering process is carried out at 690-710°C to improve toughness properties. However they are sensitive to reheat cracking and temper embrittlement. To measure temper embrittlement of the steels and their weld metal, temper embrittlement factor and formula (J factor - Watanabe and X formula- Bruscato) are used. Step cooling heat treatment is also applied to determine temper embrittlement. In this study, toughness properties of Cr Mo (W) steels were reviewed. Also transition temperature curves of 2,25Cr-1Mo steel and its weld metal were constructed before and after step cool heat treatment as experimental study. While 2,25Cr-1Mo steel as base metal was supplied, all weld metal samples were produced in Gedik Welding Company. Hardness measurements and microstructure evaluation were also carried out.

  2. Chemical composition effect on VVER-1000 RPV weld metal thermal aging

    NASA Astrophysics Data System (ADS)

    Gurovich, B. A.; Chernobaeva, A. A.; Erak, D. Yu; Kuleshova, E. A.; Zhurko, D. A.; Papina, V. B.; Skundin, M. A.; Maltsev, D. A.

    2015-10-01

    Temperature and fast neutron flux simultaneously affect the material of welded joints of reactor pressure vessels under irradiation. Understanding thermal aging effects on the weld metal allows for an explanation of the mechanisms that govern an increase in the ductile-to-brittle transition temperature of the reactor pressure vessel materials under long term irradiation at operation temperature. This paper reports on new results and reassessment of the VVER-1000 weld metal surveillance specimen database performed at the National Research Center "Kurchatov Institute". The current database of VVER-1000 weld metal thermal aging at 310-320 °C includes 50 transition temperature values with the maximum holding time of 208,896 h. The updated database completed with the information on intergranular fracture shear and phosphorous content in the grain boundaries has allowed us to propose a new mechanism of VVER-1000 weld materials thermal aging at 310-320 °C and develop models of ductile-to-brittle transition temperature shift for VVER-1000 weld metal during a long-term exposure at 310-320 °C.

  3. Tensile Behaviour of Welded Wire Mesh and Hexagonal Metal Mesh for Ferrocement Application

    NASA Astrophysics Data System (ADS)

    Tanawade, A. G.; Modhera, C. D.

    2017-08-01

    Tension tests were conducted on welded mesh and hexagonal Metal mesh. Welded Mesh is available in the market in different sizes. The two types are analysed viz. Ø 2.3 mm and Ø 2.7 mm welded mesh, having opening size 31.75 mm × 31.75 mm and 25.4 mm × 25.4 mm respectively. Tensile strength test was performed on samples of welded mesh in three different orientations namely 0°, 30° and 45° degrees with the loading axis and hexagonal Metal mesh of Ø 0.7 mm, having opening 19.05 × 19.05 mm. Experimental tests were conducted on samples of these meshes. The objective of this study was to investigate the behaviour of the welded mesh and hexagonal Metal mesh. The result shows that the tension load carrying capacity of welded mesh of Ø 2.7 mm of 0° orientation is good as compared to Ø2.3 mm mesh and ductility of hexagonal Metal mesh is good in behaviour.

  4. Fatigue crack growth properties of the base metal and weld metal of a 9% Ni steel for LNG storage tank

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kyun; Shim, Kyu-Taek; Kim, Jae-Hoon

    2009-07-01

    Newly developed heavy thick plates of 9% Ni steel for large capacity of LNG tank were fabricated to conduct a fatigue crack growth test. The weld metal specimens were also fabricated by taking the same weld procedures which are applied to actual LNG storage tank inner shell. The effect of changes in load ratio, R, and test temperature on the fatigue crack growth rate has been investigated. Separate fatigue crack growth experiments were performed at load ratio of 0.1 and 0.5 at -162°C and compared to the behavior at room temperature. The fatigue crack growth rates of weld metal were nearly the same as those of the base metal irrespective of load ratio change at room temperature. A decrease in temperature decreased the fatigue crack growth rates of base metal but in the case of weld metal only small scatters appeared in the fatigue crack growth rate compared with those of base metals. The fatigue crack growth rates were dominated by residual stress due to welding processes rather than temperature effects.

  5. Inspection of Nickel Alloy Welds: Results from Five-Year International Program

    NASA Astrophysics Data System (ADS)

    Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

    2011-06-01

    The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

  6. Inspection of Nickel Alloy Welds: Results from Five Year International Program

    SciTech Connect

    Prokofiev, Iouri; Cumblidge, Stephen E.; Doctor, Steven R.

    2011-06-23

    The U.S. Nuclear Regulatory Commission established and coordinated the international Program for the Inspection of Nickel alloy Components (PINC). The goal of PINC was to evaluate the capabilities of various nondestructive examination (NDE) techniques to detect and characterize primary water stress corrosion cracking (PWSCC) in dissimilar metal welds. Round-robin results showed that a combination of conventional and phased-array ultrasound provide the highest performance for flaw detection and depth sizing in dissimilar metal piping welds. The effective detection of flaws in bottom-mounted instrumentation penetrations by eddy current and ultrasound shows that it may be possible to reliably inspect these components in the field.

  7. Evaluating the Upset Protrusion Joining (UPJ) Method to Join Magnesium Castings to Dissimilar Metals

    SciTech Connect

    Logan, Stephen

    2016-02-24

    This presentation discusses advantages and best practices for incorporating magnesium in automotive component applications to achieve substantial mass reduction, as well as some of the key challenges with respect to joining, coating, and galvanic corrosion, before providing an introduction and status update of the U.S. Department of Energy and Department of Defense jointly sponsored Upset Protrusion Joining (UPJ) process development and evaluation project. This update includes sharing performance results of a benchmark evaluation of the self-pierce riveting (SPR) process for joining dissimilar magnesium (Mg) to aluminum (Al) materials in four unique coating configurations before introducing the UPJ concept and comparing performance results of the joints made with the UPJ process to those made with the SPR process. Key results presented include: • The benchmark SPR process can produce good joints in the MgAM60B-Al 6013 joint configuration with minimal cracking in the Mg coupons if the rivet is inserted from the Mg side into the Al side. • Numerous bare Mg to bare Al joints made with the SPR process separated after only 6-wks of accelerated corrosion testing due to fracture of the rivet as a result of hydrogen embrittlement • For the same joint configurations, UPJ demonstrated substantially higher pre-corrosion joint strengths and post-corrosion joint strengths, primarily because of the larger diameter protrusion compared to smaller SPR rivet diameter and reduced degradation due to accelerated corrosion exposure • As with the SPR process, numerous bare Mg to bare Al joints made with the UPJ process also separated after 6-wks of accelerated corrosion testing, but unlike the SPR experience, the UPJ joints experienced degradation of the boss and head because of galvanic corrosion of the Mg casting, not hydrogen embrittlement of the steel rivet. • In the configuration where both the Mg and Al were pretreated with Alodine 5200 prior to joining and the complete

  8. Achieving High Strength Joint of Pure Copper Via Laser-Cold Metal Transfer Arc Hybrid Welding

    NASA Astrophysics Data System (ADS)

    Chen, Yulong; Chen, Cong; Gao, Ming; Zeng, Xiaoyan

    2016-06-01

    Fiber laser-cold metal transfer arc hybrid welding of pure copper was studied. Weld porosity was tested by X-ray nondestructive testing. Microstructure and fracture features were observed by scanning electron microscopy. Mechanical properties were evaluated by cross weld tensile test. Full penetrated and continuous welds were obtained by hybrid welding once the laser power reached 2 kW, while they could not be obtained by laser welding alone, even though the laser power reached 5 kW. The ultimate tensile strength (UTS), the yield strength (YS), and the elongation of the best hybrid weld material were up to 227, 201 MPa, and 21.5 pct, respectively. The joint efficiencies in UTS and YS of hybrid weld were up to 84 and 80 pct of the BM, respectively. The fracture location changes from the fusion zone to the heat-affected zone with the increase of laser power. Besides, the mechanisms of process stability and porosity suppression were clarified by laser-arc interaction and pool behavior. The strengthening mechanism was discussed by microstructure characteristics.

  9. Microstructure of Ti6Al4V weld metal and simulated HAZ

    SciTech Connect

    Kivineva, E.; Hannerz, N.E.; Sjoeberg, R.

    1995-12-31

    TIG and plasma arc welding were performed on 3.2 mm thick plate of Ti6Al4V (ASTM Grade 5). The welds were studied for mechanical properties in the as welded as well as in the post weld heat treated condition. Plasma arc welding was conducted with and without external copper cooling devices. It appears that TIG-welding resulted in rather large {beta} grains the mean size being 830 {micro}m depending probably on the excessive heat input involved in the process. The smallest weld metal {beta}-grain size 375 {micro}m was obtained by plasma arc with water-cooled copper blocks. The heat affected zone grain size was studied by Gleeble simulation with peak temperature 1,400 C, The cooling time {Delta}t8/5 was permutated from 10 to 300 sec. The slowest cooling time {Delta}t8/5=300 see resulted in a {beta} grain size of 515 {micro}m. At the more rapid cooling times a martensitic structure in the large {beta} grains was obtained, but a Widmanstaetten substructure is also formed at slower cooling. Moreover grain boundary {alpha} is precipitated at the slowest cooling times {Delta}t8/5=300 sec. To obtain the desired toughness properties it appears that post weld heat treatment would be necessary unless a very low heat input is employed.

  10. Pressure Resistance Welding of High Temperature Metallic Materials

    SciTech Connect

    Larry Zirker; Craig Tyler

    2010-08-01

    Engineers from the Idaho National Laboratory (INL) have demonstrated an innovative method for seal or pinch welding stainless steel tubing. Sometimes a tube has fuel or contamination that must be contained, or the tube needs to be shortened or cut for handling, and the tube needs to have a guaranteed sealed weld that is both quick and easy. This technique was demonstrated in a laboratory using a resistance welding system with specially designed electrodes to ensure a tube end is seal welded or if a long tube is to be shortened, the severed ends are seal welded. The unique electrodes design is integral to achieving the sealed ends. This process could readily be adapted for robotic--remote handling or for contact handling in a glovebox or hood.

  11. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.

  12. Physical basis for the transition from globular to spray modes in gas metal arc welding

    NASA Astrophysics Data System (ADS)

    Lowke, J. J.

    2009-07-01

    In gas metal arc welding with argon gas, there is a fairly sudden transition current above which diameters of the molten metal drops detached from the welding wire change from being greater than the wire diameter in the 'globular' mode to less than the wire diameter in the 'spray' mode. It is concluded that the primary cause of this transition is that at higher currents the magnetic pinch pressure from current within the molten metal becomes larger than the pressure induced by the surface tension of the molten metal. A formula expressing this condition is I = 2π(γD/μ0)1/2, where I is the transition current, D is the diameter of the wire, γ is the surface tension coefficient of the molten metal and μ0 = 1.26 × 10-6 N A-2 is the permeability of free space. This formula predicts transition currents in fair agreement with previously published experimental results from various authors for both steel and aluminium, for wire diameters varying from 0.4 to 3.0 mm. The formula is not valid for carbon dioxide, helium or hydrogen where, unlike argon, there is arc constriction at the base of the welding wire. Nevertheless, the formula represents a useful approximation for the change in metal transfer modes using various welding wire materials if, as is usual, argon is the principal component of the welding gas.

  13. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  14. Microstructural Evolution of Inconel 625 and Inconel 686CPT Weld Metal for Clad Carbon Steel Linepipe Joints: A Comparator Study

    NASA Astrophysics Data System (ADS)

    Maltin, Charles A.; Galloway, Alexander M.; Mweemba, Martin

    2014-07-01

    Microstructural evolution of Inconel 625 and Inconel 686CPT filler metals, used for the fusion welding of clad carbon steel linepipe, has been investigated and compared. The effects of iron dilution from the linepipe parent material on the elemental segregation potential of the filler metal chemistry have been considered. The results obtained provide significant evidence to support the view that, in Inconel 686CPT weld metal, the segregation of tungsten is a function of the level of iron dilution from the parent material. The data presented indicate that the incoherent phase precipitated in the Inconel 686CPT weld metal has a morphology that is dependent on tungsten enrichment and, therefore, iron dilution. Furthermore, in the same weld metal, a continuous network of finer precipitates was observed. The Charpy impact toughness of each filler metal was evaluated, and the results highlighted the superior impact toughness of the Inconel 625 weld metal over that of Inconel 686CPT.

  15. Study on impact toughness of C-Mn multilayer weld metal at [minus]60 degrees

    SciTech Connect

    Chen, J.H.; Xia, T.D.; Yan, C. )

    1993-01-01

    A comparative study has been carried out on the toughness of specimens of the C-Mn multilayer weld steel and that of the specimens simulated with the various reheating cycles by using the weld thermal-restraint stress and strain cycle simulator. It proved that the region initiating the cleavage crack, i.e., the weakest fractured at [minus]60 C([minus]76 F), is just the region having the lowest toughness among various reheated zones. The toughness of weld metal depends upon the toughness value of this weakest region. Heat input and alloying elements, such as manganese, titanium and boron, affected the toughness of weld metal by changing the toughness of the weakest region in the multilayer weldment.

  16. Investigation of the Pyrometallurgical, Physical and Mechanical Behavior of Weld Metal

    DTIC Science & Technology

    1989-06-01

    has been used to make homogeneous high purity ceramic chemicals. The sol gel process has also been demonstrated to achieve properties of the welding...extremely cost effective in reducing cold cracking associated with high strenght steel weldments (see publication #12). 2.4 Aluminum Weld Metal Cracking...Al-Li-Cu alloys without sufficient grain refiners have a high susceptibility of hot tearing and inferior weldability. Additions of titanium and

  17. Study of the possibility of using solar radiant energy for welding and brazing metals

    NASA Technical Reports Server (NTRS)

    Dvernyakov, V. S.; Frantsevich, I. N.; Pasichnyy, V. V.; Shiganov, N. A.; Korunov, Y. I.; Kasich-Pilipenko, I. Y.

    1974-01-01

    The solar spectrum at the surface of the earth is analyzed. A facility for creating concentrated solar radiant energy flux is described, and data on its energetic capabilities are presented. The technology of solar welding by the fusion technique and joining by high-temperature brazing is examined. The use of concentrated solar radiant energy for welding and brazing metals and alloys is shown. The results of mechanical tests and microscopic and macroscopic studies are presented.

  18. Study of the possibility of using solar radiant energy for welding and brazing metals

    NASA Technical Reports Server (NTRS)

    Dvernyakov, V. S.; Frantsevich, I. N.; Pasichnyy, V. V.; Shiganov, N. A.; Korunov, Y. I.; Kasich-Pilipenko, I. Y.

    1974-01-01

    The solar spectrum at the surface of the earth is analyzed. A facility for creating concentrated solar radiant energy flux is described, and data on its energetic capabilities are presented. The technology of solar welding by the fusion technique and joining by high-temperature brazing is examined. The use of concentrated solar radiant energy for welding and brazing metals and alloys is shown. The results of mechanical tests and microscopic and macroscopic studies are presented.

  19. Gas Metal Arc Weld (GMAW) Qualification of 7020-T651 Aluminum

    DTIC Science & Technology

    2015-11-01

    filler metals, Al-magnesium ( Mg ) alloys AA5087, AA5556A, and Al-Mg6- Zr fusion welded with the gas metal arc weld (GMAW) pulse (P) and spray (S) methods...high strength levels of candidate Al structural and protection materials (e.g., Al-Zn- Mg 7020) for application to land vehicles. The 7020 alloy has...of the Al- Mg 5087, 5556A, and AlMg6- Zr filler metals, which were test evaluated by GMAW-P and -S processes in this study. The alloys range in

  20. An Assessment of Molten Metal Detachment Hazards During Electron Beam Welding in the Space Shuttle Bay at LEO for the International Space Welding Experiment

    NASA Technical Reports Server (NTRS)

    Fragomeni, James M.

    1996-01-01

    In 1997, the United States [NASA] and the Paton Electric Welding Institute are scheduled to cooperate in a flight demonstration on the U.S. Space Shuttle to demonstrate the feasibility of welding in space for a possible repair option for the International Space Station Alpha. This endeavor, known as the International Space Welding Experiment (ISWE), will involve astronauts performing various welding exercises such as brazing, cutting, welding, and coating using an electron beam space welding system that was developed by the E.O. Paton Electric Welding Institute (PWI), Kiev Ukraine. This electron beam welding system known as the "Universal Weld System" consists of hand tools capable of brazing, cutting, autogeneous welding, and coating using an 8 kV (8000 volts) electron beam. The electron beam hand tools have also been developed by the Paton Welding Institute with greater capabilities than the original hand tool, including filler wire feeding, to be used with the Universal Weld System on the U.S. Space Shuttle Bay as part of ISWE. The hand tool(s) known as the Ukrainian Universal Hand [Electron Beam Welding] Tool (UHT) will be utilized for the ISWE Space Shuttle flight welding exercises to perform welding on various metal alloy samples. A total of 61 metal alloy samples, which include 304 stainless steel, Ti-6AI-4V, 2219 aluminum, and 5456 aluminum alloys, have been provided by NASA for the ISWE electron beam welding exercises using the UHT. These samples were chosen to replicate both the U.S. and Russian module materials. The ISWE requires extravehicular activity (EVA) of two astronauts to perform the space shuttle electron beam welding operations of the 61 alloy samples. This study was undertaken to determine if a hazard could exist with ISWE during the electron beam welding exercises in the Space Shuttle Bay using the Ukrainian Universal Weld System with the UHT. The safety issue has been raised with regard to molten metal detachments as a result of several