Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures
NASA Astrophysics Data System (ADS)
Escobar de Obaldia, Enrique; Herrera, Steven; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2016-11-01
The remarkable mechanical properties observed in biological composite materials relative to those of their individual constituents distinguish them from common engineering materials. Some naturally occurring high-performance ceramics, like the external veneer of the Chiton (Cryptochiton stelleri) tooth, have been shown to have superior hardness and impressive abrasion resistance properties. The mechanical performance of the chiton tooth has been attributed to a hierarchical arrangement of nanostructured magnetite rods surrounded with organic material. While nanoindentation tests provide useful information about the overall performance of this biological composite, understanding the key microstructural features and energy dissipation mechanisms at small scales remains a challenging task. We present a combined experimental/numerical approach to elucidate the role of material deformation in the rods, debonding at the rod interfaces and the influence of energy dissipation mechanisms on the ability of the microstructure to distribute damage under extreme loading conditions. We employ a 3D finite element-based micromechanical model to simulate the nanoindentation tests performed in geological magnetite and cross-sections of the chiton tooth. This proposed model is capable of capturing the inelastic deformation of the rods and the failure of their interfaces, while damage, fracture and fragmentation of the mineralized rods is assessed using a probabilistic function. Our results show that these natural materials achieve their abrasion resistant properties by controlling the interface strength between rods, alleviating the tensile stress on the rods near the indentation tip and therefore decreasing the probability of catastrophic failure without significantly sacrificing resistance to penetration. The understanding of these competing energy dissipating mechanisms provides a path to the prediction of new combination of materials. In turns, these results suggest certain guidelines for abrasion resistance rod-like microstructures in composites with high volume fraction of brittle minerals or ceramics with tailored performance for specific applications.
Super-elastic and fatigue resistant carbon material with lamellar multi-arch microstructure
NASA Astrophysics Data System (ADS)
Gao, Huai-Ling; Zhu, Yin-Bo; Mao, Li-Bo; Wang, Feng-Chao; Luo, Xi-Sheng; Liu, Yang-Yi; Lu, Yang; Pan, Zhao; Ge, Jin; Shen, Wei; Zheng, Ya-Rong; Xu, Liang; Wang, Lin-Jun; Xu, Wei-Hong; Wu, Heng-An; Yu, Shu-Hong
2016-09-01
Low-density compressible materials enable various applications but are often hindered by structure-derived fatigue failure, weak elasticity with slow recovery speed and large energy dissipation. Here we demonstrate a carbon material with microstructure-derived super-elasticity and high fatigue resistance achieved by designing a hierarchical lamellar architecture composed of thousands of microscale arches that serve as elastic units. The obtained monolithic carbon material can rebound a steel ball in spring-like fashion with fast recovery speed (~580 mm s-1), and demonstrates complete recovery and small energy dissipation (~0.2) in each compress-release cycle, even under 90% strain. Particularly, the material can maintain structural integrity after more than 106 cycles at 20% strain and 2.5 × 105 cycles at 50% strain. This structural material, although constructed using an intrinsically brittle carbon constituent, is simultaneously super-elastic, highly compressible and fatigue resistant to a degree even greater than that of previously reported compressible foams mainly made from more robust constituents.
2008-10-01
provide adequate means for thermal heat dissipation and cooling. Thus electronic packaging has four main functions [1]: • Signal distribution which... dissipation , involving structural and materials consideration. • Mechanical, chemical and electromagnetic protection of components and... nature when compared to phenomenological models. Microelectronic packaging industry spends typically several months building and reliability
NASA Astrophysics Data System (ADS)
Serrano, Leonell; Marco, Yann; Le Saux, Vincent; Robert, Gilles; Charrier, Pierre
2017-09-01
Short-fiber-reinforced thermoplastics components for structural applications are usually very complex parts as stiffeners, ribs and thickness variations are used to compensate the quite low material intrinsic stiffness. These complex geometries induce complex local mechanical fields but also complex microstructures due to the injection process. Accounting for these two aspects is crucial for the design in regard to fatigue of these parts, especially for automotive industry. The aim of this paper is to challenge an energetic approach, defined to evaluate quickly the fatigue lifetime, on three different heterogeneous cases: a classic dog-bone sample with a skin-core microstructure and two structural samples representative of the thickness variations observed for industrial components. First, a method to evaluate dissipated energy fields from thermal measurements is described and is applied to the three samples in order to relate the cyclic loading amplitude to the fields of cyclic dissipated energy. Then, a local analysis is detailed in order to link the energy dissipated at the failure location to the fatigue lifetime and to predict the fatigue curve from the thermomechanical response of one single sample. The predictions obtained for the three cases are compared successfully to the Wöhler curves obtained with classic fatigue tests. Finally, a discussion is proposed to compare results for the three samples in terms of dissipation fields and fatigue lifetime. This comparison illustrates that, if the approach is leading to a very relevant diagnosis on each case, the dissipated energy field is not giving a straightforward access to the lifetime cartography as the relation between fatigue failure and dissipated energy seems to be dependent on the local mechanical and microstructural state.
NASA Astrophysics Data System (ADS)
Ellis, Brett; Zhou, Min; McDowell, David
2011-06-01
As part of a hierarchy-based computational materials design program, a fully dynamic 3D mesoscale model is developed to quantify the effects of energy storage and dissipation mechanisms in Fiber-Reinforced Ultra-High Performance Concretes (FRUHPCs) subjected to blast loading. This model accounts for three constituent components: reinforcement fibers, cementitious matrix, and fiber-matrix interfaces. Microstructure instantiations encompass a range of fiber volume fraction (0-2%), fiber length (10-15 mm), and interfacial bonding strength (1-100 MPa). Blast loading with scaled distances between 5 and 10 m/kg1/3 are considered. Calculations have allowed the delineation and characterization of the evolutions of kinetic energy, strain energy, work expended on interfacial damage and failure, frictional dissipation along interfaces, and bulk dissipation through granular flow as functions of microstructure, loading and constituent attributes. The relations obtained point out avenues for designing FRUHPCs with properties tailored for specific load environments and reveal trade-offs between various design scenarios.
Designing energy dissipation properties via thermal spray coatings
Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.
2016-12-14
The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributablemore » to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.« less
Designing energy dissipation properties via thermal spray coatings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brake, Matthew R. W.; Hall, Aaron Christopher; Madison, Jonathan D.
The coefficient of restitution is a measure of energy dissipation in a system across impact events. Often, the dissipative qualities of a pair of impacting components are neglected during the design phase. This research looks at the effect of applying a thin layer of metallic coating, using thermal spray technologies, to significantly alter the dissipative properties of a system. We studied the dissipative properties across multiple impacts in order to assess the effects of work hardening, the change in microstructure, and the change in surface topography. The results of the experiments indicate that any work hardening-like effects are likely attributablemore » to the crushing of asperities, and the permanent changes in the dissipative properties of the system, as measured by the coefficient of restitution, are attributable to the microstructure formed by the thermal spray coating. Furthermore, the microstructure appears to be robust across impact events of moderate energy levels, exhibiting negligible changes across multiple impact events.« less
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
Molecular- and Domain-level Microstructure-dependent Material Model for Nano-segregated Polyurea
2013-04-15
material subroutine VUMAT of ABAQUS /Explicit (Dassault Systems, 2010), a commercial finite element code. This subroutine is called by the ABAQUS solver...rate of change of the local internal thermal energy is equal to the corresponding rate of dissipative work. Critical assessment of this model identified...The model also takes into account the plastic expansion or contraction of voids and therefore the stresses are appropriately modified to account for
Gradient plasticity for thermo-mechanical processes in metals with length and time scales
NASA Astrophysics Data System (ADS)
Voyiadjis, George Z.; Faghihi, Danial
2013-03-01
A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.
Liu, Junjie; Zhu, Wenqing; Yu, Zhongliang; Wei, Xiaoding
2018-07-01
Lightweight and high impact performance composite design is a big challenge for scientists and engineers. Inspired from well-known biological materials, e.g., the bones, spider silk, and claws of mantis shrimp, artificial composites have been synthesized for engineering applications. Presently, the design of ballistic resistant composites mainly emphasizes the utilization of light and high-strength fibers, whereas the contribution from matrix materials receives less attention. However, recent ballistic experiments on fiber-reinforced composites challenge our common sense. The use of matrix with "low-grade" properties enhances effectively the impact performance. In this study, we establish a dynamic shear-lag model to explore the energy dissipation through viscous matrix materials in fiber-reinforced composites and the associations of energy dissipation characteristics with the properties and geometries of constituents. The model suggests that an enhancement in energy dissipation before the material integrity is lost can be achieved by tuning the shear modulus and viscosity of a matrix. Furthermore, our model implies that an appropriately designed staggered microstructure, adopted by many natural composites, can repeatedly activate the energy dissipation process and thus improve dramatically the impact performance. This model demonstrates the role of matrix in energy dissipation, and stimulates new advanced material design concepts for ballistic applications. Biological composites found in nature often possess exceptional mechanical properties that man-made materials haven't be able to achieve. For example, it is predicted that a pencil thick spider silk thread can stop a flying Boeing airplane. Here, by proposing a dynamic shear-lag model, we investigate the relationships between the impact performance of a composite with the dimensions and properties of its constituents. Our analysis suggests that the impact performance of fiber-reinforced composites could improve surprisingly with "low-grade" matrix materials, and discontinuities (often regarded as "defects") may play an important role in energy dissipation. Counter-intuitive as it may seem, our work helps understanding the secrets of the outstanding dynamic properties of some biological materials, and inspire novel ideas for man-made composites. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Energy Storage and Dissipation in Random Copolymers during Biaxial Loading
NASA Astrophysics Data System (ADS)
Cho, Hansohl; Boyce, Mary
2012-02-01
Random copolymers composed of hard and soft segments in a glassy and rubbery state at the ambient conditions exhibit phase-separated morphologies which can be tailored to provide hybrid mechanical behaviors of the constituents. Here, phase-separated copolymers with hard and soft contents which form co-continuous structures are explored through experiments and modeling. The mechanics of the highly dissipative yet resilient behavior of an exemplar polyurea are studied under biaxial loading. The hard phase governs the initially stiff response followed by a highly dissipative viscoplasticity where dissipation arises from viscous relaxation as well as structural breakdown in the network structure that still provides energy storage resulting in the shape recovery. The soft phase provides additional energy storage that drives the resilience in high strain rate events. Biaxial experiments reveal the anisotropy and loading history dependence of energy storage and dissipation, validating the three-dimensional predictive capabilities of the microstructurally-based constitutive model. The combination of a highly dissipative and resilient behavior provides a versatile material for a myriad of applications ranging from self-healing microcapsules to ballistic protective coatings.
Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Stimatze, Justin T.
We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.
After stress comes relax(ation)
NASA Astrophysics Data System (ADS)
Isa, Lucio
2015-11-01
Viscoelastic materials take a finite time to relax and dissipate stress and this time scale is directly connected to the microstructure of the material itself. In their paper, Gomez-Solano and Bechinger (2015 New J. Phys. 17 103032) perform ‘miniaturized’ mechanical tests on a range of viscoelastic materials by dragging a micron-sized bead across them using optical tweezers. Upon switching off all the external forces, they watch the bead recoil to its original position and by tracking its motion they pinpoint the relaxation time of the material. These experiments open up a new range of possibilities to characterize stress relaxation at the microscale just by watching it.
Continuum and crystal strain gradient plasticity with energetic and dissipative length scales
NASA Astrophysics Data System (ADS)
Faghihi, Danial
This work, standing as an attempt to understand and mathematically model the small scale materials thermal and mechanical responses by the aid of Materials Science fundamentals, Continuum Solid Mechanics, Misro-scale experimental observations, and Numerical methods. Since conventional continuum plasticity and heat transfer theories, based on the local thermodynamic equilibrium, do not account for the microstructural characteristics of materials, they cannot be used to adequately address the observed mechanical and thermal response of the micro-scale metallic structures. Some of these cases, which are considered in this dissertation, include the dependency of thin films strength on the width of the sample and diffusive-ballistic response of temperature in the course of heat transfer. A thermodynamic-based higher order gradient framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. The concept of the thermal activation energy, the dislocations interaction mechanisms, nonlocal energy exchange between energy carriers and phonon-electrons interactions are taken into consideration in proposing the thermodynamic potentials such as Helmholtz free energy and rate of dissipation. The same approach is also adopted to incorporate the effect of the material microstructural interface between two materials (e.g. grain boundary in crystals) into the formulation. The developed grain boundary flow rule accounts for the energy storage at the grain boundary due to the dislocation pile up as well as energy dissipation caused by the dislocation transfer through the grain boundary. Some of the abovementioned responses of small scale metallic compounds are addressed by means of the numerical implementation of the developed framework within the finite element context. In this regard, both displacement and plastic strain fields are independently discretized and the numerical implementation is performed in the finite element program ABAQUS/standard via the user element subroutine UEL. Using this numerical capability, an extensive study is conducted on the major characteristics of the proposed theories for bulk and interface such as size effect on yield and kinematic hardening, features of boundary layer formation, thermal softening and grain boundary weakening, and the effect of soft and stiff interfaces.
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2014-01-01
It is often advantageous to account for the microstructure of the material directly using multiscale modeling. For computational tractability, an idealized repeating unit cell (RUC) is used to capture all of the pertinent features of the microstructure. Typically, the RUC is dimensionless and depends only on the relative volume fractions of the different phases in the material. This works well for non-linear and inelastic behavior exhibiting a positive-definite constitutive response. Although, once the material exhibits strain softening, or localization, a mesh objective failure theories, such as smeared fracture theories, nodal and element enrichment theories (XFEM), cohesive elements or virtual crack closure technique (VCCT), can be utilized at the microscale, but the dimensions of the RUC must then be defined. One major challenge in multiscale progressive damage modeling is relating the characteristic lengths across the scales in order to preserve the energy that is dissipated via localization at the microscale. If there is no effort to relate the size of the macroscale element to the microscale RUC, then the energy that is dissipated will remain mesh dependent at the macroscale, even if it is regularized at the microscale. Here, a technique for mapping characteristic lengths across the scales is proposed. The RUC will be modeled using the generalized method of cells (GMC) micromechanics theory, and local failure in the matrix constituent subcells will be modeled using the crack band theory. The subcell characteristic lengths used in the crack band calculations will be mapped to the macroscale finite element in order to regularize the local energy in a manner consistent with the global length scale. Examples will be provided with and without the regularization, and they will be compared to a baseline case where the size and shape of the element and RUC are coincident (ensuring energy is preserved across the scales).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, S.; Barua, A.; Zhou, M., E-mail: min.zhou@me.gatech.edu
2014-05-07
Accounting for the combined effect of multiple sources of stochasticity in material attributes, we develop an approach that computationally predicts the probability of ignition of polymer-bonded explosives (PBXs) under impact loading. The probabilistic nature of the specific ignition processes is assumed to arise from two sources of stochasticity. The first source involves random variations in material microstructural morphology; the second source involves random fluctuations in grain-binder interfacial bonding strength. The effect of the first source of stochasticity is analyzed with multiple sets of statistically similar microstructures and constant interfacial bonding strength. Subsequently, each of the microstructures in the multiple setsmore » is assigned multiple instantiations of randomly varying grain-binder interfacial strengths to analyze the effect of the second source of stochasticity. Critical hotspot size-temperature states reaching the threshold for ignition are calculated through finite element simulations that explicitly account for microstructure and bulk and interfacial dissipation to quantify the time to criticality (t{sub c}) of individual samples, allowing the probability distribution of the time to criticality that results from each source of stochastic variation for a material to be analyzed. Two probability superposition models are considered to combine the effects of the multiple sources of stochasticity. The first is a parallel and series combination model, and the second is a nested probability function model. Results show that the nested Weibull distribution provides an accurate description of the combined ignition probability. The approach developed here represents a general framework for analyzing the stochasticity in the material behavior that arises out of multiple types of uncertainty associated with the structure, design, synthesis and processing of materials.« less
NASA Astrophysics Data System (ADS)
Grujicic, M.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Arakere, A.; Yen, C.-F.; Cheeseman, B. A.
2013-05-01
A fully coupled (two-way), transient, thermal-mechanical finite-element procedure is developed to model conventional gas metal arc welding (GMAW) butt-joining process. Two-way thermal-mechanical coupling is achieved by making the mechanical material model of the workpiece and the weld temperature-dependent and by allowing the potential work of plastic deformation resulting from large thermal gradients to be dissipated in the form of heat. To account for the heat losses from the weld into the surroundings, heat transfer effects associated with natural convection and radiation to the environment and thermal-heat conduction to the adjacent workpiece material are considered. The procedure is next combined with the basic physical-metallurgy concepts and principles and applied to a prototypical (plain) low-carbon steel (AISI 1005) to predict the distribution of various crystalline phases within the as-welded material microstructure in different fusion zone and heat-affected zone locations, under given GMAW-process parameters. The results obtained are compared with available open-literature experimental data to provide validation/verification for the proposed GMAW modeling effort.
NASA Technical Reports Server (NTRS)
Georgious, I. T.; Sun, C. T.
1992-01-01
The history of temperature rise due to internal dissipation of mechanical energy in insulated off-axis uniaxial specimens of the unidirectional thermoplastic composite (AS4/PEEK) has been measured. The experiment reveals that the rate of temperature rise is a polynomial function of stress amplitude: It consists of a quadratic term and a sixth power term. This fact implies that the specific heat of the composite depends on the stretching its microstructure undergoes during deformation. The Einstein theory for specific heat is used to explain the dependence of the specific heat on the stretching of the microstructure.
Ultrasonic fatigue of a high strength steel
NASA Astrophysics Data System (ADS)
Koster, M.; Wagner, G.; Eifler, D.
2010-07-01
At the Institute of Materials Science and Engineering at the University of Kaiserslautern an ultrasonic testing system for the fatigue assessment of metallic materials in the very high cycle fatigue (VHCF) regime was developed. The ultrasonic testing system allows to control the test and to measure detailed fatigue data. The achieved results can be used to describe the cyclic deformation behaviour of wheel steels at ultrasonic frequencies. In load increase tests (LIT), the critical stress amplitude can be determined, which leads to a defined change of process parameters like generator power, dissipated energy and specimen temperature. With SEM investigations it was proved that the change of the process parameters correlates with irreversible changes in the microstructure. It can be shown that the stress amplitude, leading to first irreversible changes in the microstructure, strongly depends on the depth position within the original wheel rim. New and basic results on the fatigue mechanisms of high strength steels in the VHCF-regime can be achieved.
Boron modified molybdenum silicide and products
Meyer, M.K.; Akinc, M.
1999-02-02
A boron-modified molybdenum silicide material is disclosed having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo{sub 5}Si{sub 3} phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi{sub 2} heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo{sub 5}Si{sub 3} for structural integrity. 7 figs.
Boron modified molybdenum silicide and products
Meyer, Mitchell K.; Akinc, Mufit
1999-02-02
A boron-modified molybdenum silicide material having the composition comprising about 80 to about 90 weight % Mo, about 10 to about 20 weight % Si, and about 0.1 to about 2 weight % B and a multiphase microstructure including Mo.sub.5 Si.sub.3 phase as at least one microstructural component effective to impart good high temperature creep resistance. The boron-modified molybdenum silicide material is fabricated into such products as electrical components, such as resistors and interconnects, that exhibit oxidation resistance to withstand high temperatures in service in air as a result of electrical power dissipation, electrical resistance heating elements that can withstand high temperatures in service in air and other oxygen-bearing atmospheres and can span greater distances than MoSi.sub.2 heating elements due to improved creep resistance, and high temperature structural members and other fabricated components that can withstand high temperatures in service in air or other oxygen-bearing atmospheres while retaining creep resistance associated with Mo.sub.5 Si.sub.3 for structural integrity.
High strain rate deformation of layered nanocomposites
NASA Astrophysics Data System (ADS)
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P.; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A.; Thomas, Edwin L.
2012-11-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
High strain rate deformation of layered nanocomposites.
Lee, Jae-Hwang; Veysset, David; Singer, Jonathan P; Retsch, Markus; Saini, Gagan; Pezeril, Thomas; Nelson, Keith A; Thomas, Edwin L
2012-01-01
Insight into the mechanical behaviour of nanomaterials under the extreme condition of very high deformation rates and to very large strains is needed to provide improved understanding for the development of new protective materials. Applications include protection against bullets for body armour, micrometeorites for satellites, and high-speed particle impact for jet engine turbine blades. Here we use a microscopic ballistic test to report the responses of periodic glassy-rubbery layered block-copolymer nanostructures to impact from hypervelocity micron-sized silica spheres. Entire deformation fields are experimentally visualized at an exceptionally high resolution (below 10 nm) and we discover how the microstructure dissipates the impact energy via layer kinking, layer compression, extreme chain conformational flattening, domain fragmentation and segmental mixing to form a liquid phase. Orientation-dependent experiments show that the dissipation can be enhanced by 30% by proper orientation of the layers.
Su, Xianli; Wei, Ping; Li, Han; Liu, Wei; Yan, Yonggao; Li, Peng; Su, Chuqi; Xie, Changjun; Zhao, Wenyu; Zhai, Pengcheng; Zhang, Qingjie; Tang, Xinfeng; Uher, Ctirad
2017-05-01
Considering only about one third of the world's energy consumption is effectively utilized for functional uses, and the remaining is dissipated as waste heat, thermoelectric (TE) materials, which offer a direct and clean thermal-to-electric conversion pathway, have generated a tremendous worldwide interest. The last two decades have witnessed a remarkable development in TE materials. This Review summarizes the efforts devoted to the study of non-equilibrium synthesis of TE materials with multi-scale structures, their transport behavior, and areas of applications. Studies that work towards the ultimate goal of developing highly efficient TE materials possessing multi-scale architectures are highlighted, encompassing the optimization of TE performance via engineering the structures with different dimensional aspects spanning from the atomic and molecular scales, to nanometer sizes, and to the mesoscale. In consideration of the practical applications of high-performance TE materials, the non-equilibrium approaches offer a fast and controllable fabrication of multi-scale microstructures, and their scale up to industrial-size manufacturing is emphasized here. Finally, the design of two integrated power generating TE systems are described-a solar thermoelectric-photovoltaic hybrid system and a vehicle waste heat harvesting system-that represent perhaps the most important applications of thermoelectricity in the energy conversion area. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
From brittle to ductile fracture of bone
NASA Astrophysics Data System (ADS)
Peterlik, Herwig; Roschger, Paul; Klaushofer, Klaus; Fratzl, Peter
2006-01-01
Toughness is crucial to the structural function of bone. Usually, the toughness of a material is not just determined by its composition, but by the ability of its microstructure to dissipate deformation energy without propagation of the crack. Polymers are often able to dissipate energy by viscoplastic flow or the formation of non-connected microcracks. In ceramics, well-known toughening mechanisms are based on crack ligament bridging and crack deflection. Interestingly, all these phenomena were identified in bone, which is a composite of a fibrous polymer (collagen) and ceramic nanoparticles (carbonated hydroxyapatite). Here, we use controlled crack-extension experiments to explain the influence of fibre orientation on steering the various toughening mechanisms. We find that the fracture energy changes by two orders of magnitude depending on the collagen orientation, and the angle between collagen and crack propagation direction is decisive in switching between different toughening mechanisms.
Analysis of compaction shock interactions during DDT of low density HMX
NASA Astrophysics Data System (ADS)
Rao, Pratap T.; Gonthier, Keith A.
2017-01-01
Deflagration-to-Detonation Transition (DDT) in confined, low density granular HMX occurs by a complex mechanism that involves compaction shock interactions within the material. Piston driven DDT experiments indicate that detonation is abruptly triggered by the interaction of a strong combustion-supported secondary shock and a piston-supported primary (input) shock, where the nature of the interaction depends on initial packing density and primary shock strength. These interactions influence transition by affecting dissipative heating within the microstructure during pore collapse. Inert meso-scale simulations of successive shock loading of low density HMX are performed to examine how dissipation and hot-spot formation are affected by the initial density, and the primary and secondary shock strengths. This information is used to formulate an ignition and burn model for low density HMX that accounts for the effect of shock densensitization on burn. Preliminary DDT predictions are presented that illustrate how primary shock strength affects the transition mechanism.
Dissipation consistent fabric tensor definition from DEM to continuum for granular media
NASA Astrophysics Data System (ADS)
Li, X. S.; Dafalias, Y. F.
2015-05-01
In elastoplastic soil models aimed at capturing the impact of fabric anisotropy, a necessary ingredient is a measure of anisotropic fabric in the form of an evolving tensor. While it is possible to formulate such a fabric tensor based on indirect phenomenological observations at the continuum level, it is more effective and insightful to have the tensor defined first based on direct particle level microstructural observations and subsequently deduce a corresponding continuum definition. A practical means able to provide such observations, at least in the context of fabric evolution mechanisms, is the discrete element method (DEM). Some DEM defined fabric tensors such as the one based on the statistics of interparticle contact normals have already gained widespread acceptance as a quantitative measure of fabric anisotropy among researchers of granular material behavior. On the other hand, a fabric tensor in continuum elastoplastic modeling has been treated as a tensor-valued internal variable whose evolution must be properly linked to physical dissipation. Accordingly, the adaptation of a DEM fabric tensor definition to a continuum constitutive modeling theory must be thermodynamically consistent in regards to dissipation mechanisms. The present paper addresses this issue in detail, brings up possible pitfalls if such consistency is violated and proposes remedies and guidelines for such adaptation within a recently developed Anisotropic Critical State Theory (ACST) for granular materials.
Hou, Yi; Wang, Zhen; Cai, Chao; Hao, Xi; Li, Dongdong; Zhao, Ning; Zhao, Yiping; Chen, Li; Ma, Hongwei; Xu, Jian
2018-02-01
Assembling nanoparticles (NPs) on various surfaces are intensively investigated for the construction of functional nanocoatings; however, it is still a challenge to fabricate conformal nanocoatings uniformly on surfaces having micro- or nanostructures. Herein, it is demonstrated that the negatively charged SiO 2 NPs and the positively charged silicon coupling agent can be assembled layer-by-layer on the microstructures based on the combination of electrostatic interaction and condensation reaction. Conformal nanocoatings with controllable thickness are formed on the microstructured surfaces with different compositions and morphologies. The formation mechanism is confirmed by using quartz crystal microbalance with dissipation (QCM-D) to study the assembly process in real time. The universality of this method is illustrated by using other reactive building blocks with opposite charge to build up the conformal nanocoatings. Application in the preparation of antireflective nanocoatings on nonplanar optical materials is demonstrated. This simple, versatile, and scalable strategy for the preparation of conformal nanocoatings is promising for practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Small-scale shear measurements during the Fine and Microstructure Experiment (Fame)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gargett, A.E.; Osborn, T.R.
1981-03-20
The turbulent kinetic energy dissipation rate e is estimated from measurements of small-scale shear taken with a vertical profiler during the Fine and Microstructure Experiment (Fame). Typical profiles of e are presented for the different oceanographic regions sampled, the Gulf Stream, a mid-Sargasso site, and locations withoutin and with the 100 fathom (approx.2000 m) contour about the island of Bermuda. Heavily averaged values of e are presented as a funtion of mean Vaeisaela frequency N-bar, a fundamental scaling parameter for the oceanic internal wave field. A dependence of e-barproportionalN-bar is found for an ensemble of stations near Bermuda: functional dependencemore » for an ensemble of stations at the mid-Sargasso site is less clear, with results exhibiting an undersirable sensitivity to infrequent large events. Dissipation is found to increase as the island of Bermuda is approached from any direction: the density of measurements is insufficient to determine any azimuthal variation resulting from the anisotropic mean flow field about the island at the time. A set of three profiles across the Gulf Stream suggests that this is not a region of abnormally high dissipation, a conclusion supported by previous and concurrent measurements of temperature finestructure and microstructure.« less
Linear elastic properties derivation from microstructures representative of transport parameters.
Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille
2014-06-01
It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.
NASA Astrophysics Data System (ADS)
Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.
2016-08-01
A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.
Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2016-10-01
We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.
Overcoming the brittleness of glass through bio-inspiration and micro-architecture.
Mirkhalaf, M; Dastjerdi, A Khayer; Barthelat, F
2014-01-01
Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of 'stamp holes'. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.
Overcoming the brittleness of glass through bio-inspiration and micro-architecture
NASA Astrophysics Data System (ADS)
Mirkhalaf, M.; Dastjerdi, A. Khayer; Barthelat, F.
2014-01-01
Highly mineralized natural materials such as teeth or mollusk shells boast unusual combinations of stiffness, strength and toughness currently unmatched by engineering materials. While high mineral contents provide stiffness and hardness, these materials also contain weaker interfaces with intricate architectures, which can channel propagating cracks into toughening configurations. Here we report the implementation of these features into glass, using a laser engraving technique. Three-dimensional arrays of laser-generated microcracks can deflect and guide larger incoming cracks, following the concept of ‘stamp holes’. Jigsaw-like interfaces, infiltrated with polyurethane, furthermore channel cracks into interlocking configurations and pullout mechanisms, significantly enhancing energy dissipation and toughness. Compared with standard glass, which has no microstructure and is brittle, our bio-inspired glass displays built-in mechanisms that make it more deformable and 200 times tougher. This bio-inspired approach, based on carefully architectured interfaces, provides a new pathway to toughening glasses, ceramics or other hard and brittle materials.
Acoustic and vibrational damping in porous solids.
Göransson, Peter
2006-01-15
A porous solid may be characterized as an elastic-viscoelastic and acoustic-viscoacoustic medium. For a flexible, open cell porous foam, the transport of energy is carried both through the sound pressure waves propagating through the fluid in the pores, and through the elastic stress waves carried through the solid frame of the material. For a given situation, the balance between energy dissipated through vibration of the solid frame, changes in the acoustic pressure and the coupling between the waves varies with the topological arrangement, choice of material properties, interfacial conditions, etc. Engineering of foams, i.e. designs built on systematic and continuous relationships between polymer chemistry, processing, micro-structure, is still a vision for the future. However, using state-of-the-art simulation techniques, multiple layer arrangements of foams may be tuned to provide acoustic and vibrational damping at a low-weight penalty. In this paper, Biot's modelling of porous foams is briefly reviewed from an acoustics and vibrations perspective with a focus on the energy dissipation mechanisms. Engineered foams will be discussed in terms of results from simulations performed using finite element solutions. A layered vehicle-type structure is used as an example.
The energy dissipative mechanisms of the particle-fiber interface in a textile composite
NASA Astrophysics Data System (ADS)
McAllister, Quinn Patrick
Impact resistant fabrics comprised of woven high performance fibers (e.g., Kevlar) have exhibited improved energy dissipative capability with the inclusion of nano- to micrometer sized particles. Upon impact, the particles embed and gouge adjacent fiber surfaces. While the particle-fiber interactions appear to be a primary mechanism for the increase in energy dissipation, the fundamentals of the nano- to micrometer sized gouging response of high performance fibers and the dissipation of energy due to particle gouging have not been studied previously. In this research, nanoindentation and nanoscratching techniques, which exploit probe sizes in the range of nano- to micrometers, were used to study the particle-fiber contact and develop nanoscale structure-property relationships of single Kevlar fibers. Atomic force microscopy based methods were used to create high resolution stiffness maps of fiber cross-sections, the results of which indicated that the stiffness of Kevlar 49 fibers is independent of radial position, while Kevlar KM2 fibers exhibit a reduced stiffness "shell" region (up to ˜300-350 nm thick). Instrumented indentation was used to evaluate the local response of Kevlar fibers with respect to orientation and contact size. For radial indentation, modifications to the traditional indentation analysis were developed to account for fiber curvature and finite size effects. A critical contact size was established above which the fiber response was independent of indenter size. This "homogeneous" response was used to estimate the local material properties of the Kevlar fibers through the application of an analytical model for indentation of a transversely isotropic material. The local properties of both fibers differed from their previously measured bulk properties, which was likely due, at least in part, to the deformation mechanisms of the fiber microstructure during indentation. Nanoindentation and nanoscratch tests were then conducted to study the deformation mechanisms of the fiber microstructure associated with a nano- to micrometer sized gouge of the fiber surface. Relationships between the observed mechanisms and the measured friction and energy were developed, resulting in new insights into the relevant energy dissipation processes of the particle-fiber interface. The level of apparent friction increased with increasing levels of strain imparted on the fiber surface, reaching values of up to ˜300% of the previously reported Kevlar yarn-yarn friction. Increased levels of friction during impact of a fabric have been shown to increase the energy required for the relative yarn translations, increasing the number of fibers strained and failed in tension. The energy of a single gouge made using probes exhibiting contact geometries similar to a particle-fiber contact was on the order of just 1% of the energy required to fail a fiber in tension (calculated based on a particle gouge and fiber tensile strain over one particle diameter). In the case of multiple particles distributed within a fabric, an impact event will involve energy dissipation from particle gouging, transverse fiber compression, and fiber tensile failure, where the ratio of the total energies associated with each of these processes was estimated to be on the order of 0.2:1:1 (assuming a limit at a transverse compressive strain of 0.3). Therefore, both the energy and the friction associated with particle gouging can increase the energy dissipative capabilities of a fabric, where the maximum contribution of the particle-fiber interface is likely related to the fabric's energy dissipative mechanisms that depend on friction.
NASA Astrophysics Data System (ADS)
Sheen, K. L.; Brearley, J. A.; Naveira Garabato, A. C.; Smeed, D. A.; Waterman, S.; Ledwell, J. R.; Meredith, M. P.; St. Laurent, L.; Thurnherr, A. M.; Toole, J. M.; Watson, A. J.
2013-06-01
The spatial distribution of turbulent dissipation rates and internal wavefield characteristics is analyzed across two contrasting regimes of the Antarctic Circumpolar Current (ACC), using microstructure and finestructure data collected as part of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES). Mid-depth turbulent dissipation rates are found to increase from O>(1×10-10Wkg -1>) in the Southeast Pacific to O>(1×10-
Measurements of turbulence and fossil turbulence near ampere seamount
NASA Astrophysics Data System (ADS)
Gibson, Carl H.; Nabatov, Valeriy; Ozmidov, Rostislav
1993-10-01
Measurements of temperature and velocity microstructure near and downstream of a shallow seamount are used to compare fossil turbulence versus non-fossil turbulence models for the evolution of turbulence microstructure patches in the stratified ocean. According to non-fossil oceanic turbulence models, all overturn length scales LT of the microstructure grow and collapse in constant proportion to each other and to the turbulence energy (Oboukov) scale LO and the inertial buoyancy (Ozmidov) scale L R≡(ɛ/N 3) 1/2 of the patches; that is, with LTrms ≈1.2 LR and viscous dissipation rate ɛ ≈ ɛ 0∗. According to the Gibson fossil turbulence model, all microstructure originates from completely active turbulence with ɛ ⩾ ɛ 0 ≈ 3L T2N 3(≈ 28ɛ 0∗) and L T/√6 ≈ L Trms, but this rapidly decays into a more persistent active-fossil state with ɛ0⩾ ɛ⩾ ɛF ≈ 30 vN2, where N is the buoyancy frequency and v is the kinematic viscosity and, without further energy supply, finally reaches a completely fossil turbulence hydrodynamic state of internal wave motions, with ɛ ⩽ ɛF. The last turbulence eddies, with ɛ ≈ ɛF, vanish at a buoyant-inertial-viscous (fossil Kolmogorov) scale LKF that is much smaller than the remnant overturn scales LT for large ɛ0/ ɛF ratios. These density, temperature, and salinity overturns with LT ≈ 0.6 LR0 ≫ 0.6 LR persist as turbulence fossils (by retaining the memory of ɛo) and collapse very slowly. In the near wake below the summit depth of Ampere seamount, a much larger proportion of completely active turbulence patches was found than is usually found in the ocean interior away from sources. Dissipation rates ɛ and turbulence activity coefficients A T ≡ (ɛ/ɛ 0) 1/2 of microstructure patches were found to decrease downstream, suggesting that the active turbulence indicated by the patches with AT ⩾ 1 was caused by the presence of the seamount as a turbulence source. Therefore, the turbulence and mixing processes of ocean layers far away from turbulence sources probably have been undersampled by microstructure data sets lacking any AT ⩾ 1 patches. This is because large fractions of the mixing and viscous dissipation of the patches occur in short-lived active turbulence regimes that are too brief to be detected. Consequently, large underestimates of the true space-time average turbulence fluxes and turbulence and scalar dissipation rates may result if non-fossil turbulence models are assumed in ocean microstructure data interpretation.
NASA Astrophysics Data System (ADS)
Chakravarthy, Sunada; Gonthier, Keith A.
2016-07-01
Variations in the microstructure of granular explosives (i.e., particle packing density, size, shape, and composition) can affect their shock sensitivity by altering thermomechanical fields at the particle-scale during pore collapse within shocks. If the deformation rate is fast, hot-spots can form, ignite, and interact, resulting in burn at the macro-scale. In this study, a two-dimensional finite and discrete element technique is used to simulate and examine shock-induced dissipation and hot-spot formation within low density explosives (68%-84% theoretical maximum density (TMD)) consisting of large ensembles of HMX (C4H8N8O8) and aluminum (Al) particles (size ˜ 60 -360 μm). Emphasis is placed on identifying how the inclusion of Al influences effective shock dissipation and hot-spot fields relative to equivalent ensembles of neat/pure HMX for shocks that are sufficiently strong to eliminate porosity. Spatially distributed hot-spot fields are characterized by their number density and area fraction enabling their dynamics to be described in terms of nucleation, growth, and agglomeration-dominated phases with increasing shock strength. For fixed shock particle speed, predictions indicate that decreasing packing density enhances shock dissipation and hot-spot formation, and that the inclusion of Al increases dissipation relative to neat HMX by pressure enhanced compaction resulting in fewer but larger HMX hot-spots. Ensembles having bimodal particle sizes are shown to significantly affect hot-spot dynamics by altering the spatial distribution of hot-spots behind shocks.
Espinosa, Horacio D; Juster, Allison L; Latourte, Felix J; Loh, Owen Y; Gregoire, David; Zavattieri, Pablo D
2011-02-01
Nacre, the iridescent material in seashells, is one of many natural materials employing hierarchical structures to achieve high strength and toughness from relatively weak constituents. Incorporating these structures into composites is appealing as conventional engineering materials often sacrifice strength to improve toughness. Researchers hypothesize that nacre's toughness originates within its brick-and-mortar-like microstructure. Under loading, bricks slide relative to each other, propagating inelastic deformation over millimeter length scales. This leads to orders-of-magnitude increase in toughness. Here, we use in situ atomic force microscopy fracture experiments and digital image correlation to quantitatively prove that brick morphology (waviness) leads to transverse dilation and subsequent interfacial hardening during sliding, a previously hypothesized dominant toughening mechanism in nacre. By replicating this mechanism in a scaled-up model synthetic material, we find that it indeed leads to major improvements in energy dissipation. Ultimately, lessons from this investigation may be key to realizing the immense potential of widely pursued nanocomposites.
Bioinspired Bouligand cellulose nanocrystal composites: a review of mechanical properties
NASA Astrophysics Data System (ADS)
Natarajan, Bharath; Gilman, Jeffrey W.
2017-12-01
The twisted plywood, or Bouligand, structure is the most commonly observed microstructural motif in natural materials that possess high mechanical strength and toughness, such as that found in bone and the mantis shrimp dactyl club. These materials are isotropically toughened by a low volume fraction of soft, energy-dissipating polymer and by the Bouligand structure itself, through shear wave filtering and crack twisting, deflection and arrest. Cellulose nanocrystals (CNCs) are excellent candidates for the bottom-up fabrication of these structures, as they naturally self-assemble into `chiral nematic' films when cast from solutions and possess outstanding mechanical properties. In this article, we present a review of the fabrication techniques and the corresponding mechanical properties of Bouligand biomimetic CNC nanocomposites, while drawing comparison to the performance standards set by tough natural composite materials. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.
Protection mechanisms of the iron-plated armor of a deep-sea hydrothermal vent gastropod
Yao, Haimin; Dao, Ming; Imholt, Timothy; Huang, Jamie; Wheeler, Kevin; Bonilla, Alejandro; Suresh, Subra; Ortiz, Christine
2010-01-01
Biological exoskeletons, in particular those with unusually robust and multifunctional properties, hold enormous potential for the development of improved load-bearing and protective engineering materials. Here, we report new materials and mechanical design principles of the iron-plated multilayered structure of the natural armor of Crysomallon squamiferum, a recently discovered gastropod mollusc from the Kairei Indian hydrothermal vent field, which is unlike any other known natural or synthetic engineered armor. We have determined through nanoscale experiments and computational simulations of a predatory attack that the specific combination of different materials, microstructures, interfacial geometries, gradation, and layering are advantageous for penetration resistance, energy dissipation, mitigation of fracture and crack arrest, reduction of back deflections, and resistance to bending and tensile loads. The structure-property-performance relationships described are expected to be of technological interest for a variety of civilian and defense applications. PMID:20133823
A novel approach to making microstructure measurements in the ice-covered Arctic Ocean.
NASA Astrophysics Data System (ADS)
Guthrie, J.; Morison, J.; Fer, I.
2014-12-01
As part of the 2014 Field Season of the North Pole Environmental Observatory, a 7-day microstructure experiment was performed. A Rockland Scientific Microrider with 2 FP07 fast response thermistors and 2 SBE-7 micro-conductivity probes was attached to a Seabird 911+ Conductivity-Temperature-Depth unit to allow for calibration of the microstructure probes against the highly accurate Seabird temperature and conductivity sensors. From a heated hut, the instrument package was lowered through a 0.75-m hole in the sea ice down to 350 m depth using a lightweight winch powered with a 3-phase, frequency-controlled motor that produced a smooth, controlled lowering speed of 25 cm s-1. Focusing on temperature and conductivity microstructure and using the special winch removed many of the complications involved with the use of free-fall microstructure profilers under the ice. The slow profiling speed permits calculation of Χ, the dissipation of thermal variance, without relying on fits to theoretical spectra to account for the unresolved variance. The dissipation rate of turbulent kinetic energy, ɛ, can then be estimated using the temperature gradient spectrum and the Ruddick et al. [2001] maximum likelihood method. Outside of a few turbulent patches, thermal diffusivity ranged between O(10-7) and O(10-6) m2s-1, resulting in negligible turbulent heat fluxes. Estimated ɛ was often at or below the noise level of most shear-based microstructure profilers. The noise level of Χ is estimated at O(10-11) °C2s-1, revealing the utility and applicability of this technique in future Arctic field work.
de Obaldia, Enrique Escobar; Jeong, Chanhue; Grunenfelder, Lessa Kay; Kisailus, David; Zavattieri, Pablo
2015-08-01
Many biomineralized organisms have evolved highly oriented nanostructures to perform specific functions. One key example is the abrasion-resistant rod-like microstructure found in the radular teeth of Chitons (Cryptochiton stelleri), a large mollusk. The teeth consist of a soft core and a hard shell that is abrasion resistant under extreme mechanical loads with which they are subjected during the scraping process. Such remarkable mechanical properties are achieved through a hierarchical arrangement of nanostructured magnetite rods surrounded with α-chitin. We present a combined biomimetic approach in which designs were analyzed with additive manufacturing, experiments, analytical and computational models to gain insights into the abrasion resistance and toughness of rod-like microstructures. Staggered configurations of hard hexagonal rods surrounded by thin weak interfacial material were printed, and mechanically characterized with a cube-corner indenter. Experimental results demonstrate a higher contact resistance and stiffness for the staggered alignments compared to randomly distributed fibrous materials. Moreover, we reveal an optimal rod aspect ratio that lead to an increase in the site-specific properties measured by indentation. Anisotropy has a significant effect (up to 50%) on the Young's modulus in directions parallel and perpendicular to the longitudinal axis of the rods, and 30% on hardness and fracture toughness. Optical microscopy suggests that energy is dissipated in the form of median cracks when the load is parallel to the rods and lateral cracks when the load is perpendicular to the rods. Computational models suggest that inelastic deformation of the rods at early stages of indentation can vary the resistance to penetration. As such, we found that the mechanical behavior of the system is influenced by interfacial shear strain which influences the lateral load transfer and therefore the spread of damage. This new methodology can help to elucidate the evolutionary designs of biomineralized microstructures and understand the tolerance to fracture and damage of chiton radular teeth. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sheen, K.; Naveira-Garabato, A. C.; Brearley, J. A.
2012-04-01
The principal objective of the Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean (DIMES) is to investigate the role of turbulent mixing in mediating the vertical and horizontal transport of water masses, which shape the overturning circulation. Here, microstructure and finestructure data, collected as part of this multi-component experiment, are presented. Direct observations of turbulent energy dissipation rates show that mid-depth diapycnal diffusivities increase progressively from O(10-5 m2s-1) in the Pacific sector of the Antarctic Circumpolar Current (ACC) to O(10-4 m2s-1) in the Scotia Sea. Analysis of coincident LADCP and CTD data demonstrates that enhanced turbulent dissipation rates are associated with a more energetic, less inertial internal wave field and increased upward energy propagation. Breaking lee waves, a process enhanced by stronger flow and rougher topography found in the eastern sections, is likely to be a key mechanism in determining the distribution of turbulent mixing in the ACC. Spatially varying discrepancies between the microstructure and finestructure mixing observations indicate regions where wave-wave interaction models break down and internal waves interact with the mean flow. An episodic enhancement of current velocities at 2000 m depth is observed in the northwest Scotia Sea in both LADCP and mooring data. Finestructure analysis indicates that this mid-depth jet has a profound impact of the internal wave field, causing both internal wave reflection and critical layer dissipation.
NASA Astrophysics Data System (ADS)
Ailianou, Artemis
New and promising treatments for coronary heart disease are enabled by vascular scaffolds made of poly(L-lactic acid) (PLLA), as demonstrated by Abbott Vascular's bioresorbable vascular scaffold. PLLA is a semicrystalline polymer whose degree of crystallinity and crystalline microstructure depend on the thermal and deformation history during processing. In turn, the semicrystalline morphology determines scaffold strength and biodegradation time. However, spatially-resolved information about the resulting material structure (crystallinity and crystal orientation) is needed to interpret in vivo observations. The first manufacturing step of the scaffold is tube expansion in a process similar to injection blow molding. Spatial uniformity of the tube microstructure is essential for the consistent production and performance of the final scaffold. For implantation into the artery, solid-state deformation below the glass transition temperature is imposed on a laser-cut subassembly to crimp it into a small diameter. Regions of localized strain during crimping are implicated in deployment behavior. To examine the semicrystalline microstructure development of the scaffold, we employed complementary techniques of scanning electron and polarized light microscopy, wide-angle X-ray scattering, and X-ray microdiffraction. These techniques enabled us to assess the microstructure at the micro and nano length scale. The results show that the expanded tube is very uniform in the azimuthal and axial directions and that radial variations are more pronounced. The crimping step dramatically changes the microstructure of the subassembly by imposing extreme elongation and compression. Spatial information on the degree and direction of chain orientation from X-ray microdiffraction data gives insight into the mechanism by which the PLLA dissipates the stresses during crimping, without fracture. Finally, analysis of the microstructure after deployment shows that it is inherited from the crimping step and contributes to the scaffold's successful implantation in vivo.
2012-06-18
Raleigh, NC 27695 -7514 REPORT DOCUMENTATION PAGE b. ABSTRACT UU c . THIS PAGE UU 2. REPORT TYPE Final Report 17. LIMITATION OF ABSTRACT UU 15. NUMBER...Experimental and Computational Investigation of High Strength Aluminum Alloys, The Metals Society Annual Meeting, San Francisco, CA, February, 2009 ( c ...on the characterization of microstructure see [21]. Fig. 3 ( c ) summarizes by schematic the different secondary phases and their associated length
Microstructure of Turbulence in the Stably Stratified Boundary Layer
NASA Astrophysics Data System (ADS)
Sorbjan, Zbigniew; Balsley, Ben B.
2008-11-01
The microstructure of a stably stratified boundary layer, with a significant low-level nocturnal jet, is investigated based on observations from the CASES-99 campaign in Kansas, U.S.A. The reported, high-resolution vertical profiles of the temperature, wind speed, wind direction, pressure, and the turbulent dissipation rate, were collected under nocturnal conditions on October 14, 1999, using the CIRES Tethered Lifting System. Two methods for evaluating instantaneous (1-sec) background profiles are applied to the raw data. The background potential temperature is calculated using the “bubble sort” algorithm to produce a monotonically increasing potential temperature with increasing height. Other scalar quantities are smoothed using a running vertical average. The behaviour of background flow, buoyant overturns, turbulent fluctuations, and their respective histograms are presented. Ratios of the considered length scales and the Ozmidov scale are nearly constant with height, a fact that can be applied in practice for estimating instantaneous profiles of the dissipation rate.
Architected squirt-flow materials for energy dissipation
NASA Astrophysics Data System (ADS)
Cohen, Tal; Kurzeja, Patrick; Bertoldi, Katia
2017-12-01
In the present study we explore material architectures that lead to enhanced dissipation properties by taking advantage of squirt-flow - a local flow mechanism triggered by heterogeneities at the pore level. While squirt-flow is a known dominant source of dissipation and seismic attenuation in fluid saturated geological materials, we study its untapped potential to be incorporated in highly deformable elastic materials with embedded fluid-filled cavities for future engineering applications. An analytical investigation, that isolates the squirt-flow mechanism from other potential dissipation mechanisms and considers an idealized setting, predicts high theoretical levels of dissipation achievable by squirt-flow and establishes a set of guidelines for optimal dissipation design. Particular architectures are then investigated via numerical simulations showing that a careful design of the internal voids can lead to an increase of dissipation levels by an order of magnitude, compared with equivalent homogeneous void distributions. Therefore, we suggest squirt-flow as a promising mechanism to be incorporated in future architected materials to effectively and reversibly dissipate energy.
From micro to macro: the role of defects in the mechanical response of Earth and Planetary materials
NASA Astrophysics Data System (ADS)
McCarthy, Christine
2015-04-01
Microstructural features can greatly influence the bulk behavior of materials. Impurities, grain (and subgrain) size, dislocations, and partial melt can all affect the way that seismic waves are damped in the mantle, for instance, or how tidal energy is dissipated within an icy moon's outer shell. With proper scaling of the viscoelastic response, it is possible to use the attenuation signature -- for instance, the variation of Q with the micro/mesoscale evolution of deformation-induced strain (i.e. fabric) -- as a prospecting tool to determine active deformation structure within bodies of ice or rock at macroscopic (km) scale. In order to better interpret seismic data and provide better constraints for geophysical modeling, I design and perform laboratory experiments to directly measure the plastic and anelastic behaviours of various Earth and planetary materials, including polycrystalline ice. I will discuss findings from attenuation experiments, in particular results that suggest a coupling between deformation-induced microstructure effected by tectonics and attenuation behaviour. I will also discuss recent experiments that combine anelastic and frictional response using a custom-built biaxial friction apparatus. The experiments provide dynamic, frequency-dependent material properties of ice and ice on rock deformation at frequencies consistent with tidal forcing of Antarctic and Greenland glaciers. Such data can be used directly in models of glacier and ice stream flow and will inform our understanding of the complex glacier dynamics needed to improve predictions of sea level rise. Additionally, the experimental measurements can ultimately be compared with field observations to infer characteristics of the bed interface and the material composition of the bulk glacier.
Picosecond laser ablation of poly-L-lactide: Effect of crystallinity on the material response
NASA Astrophysics Data System (ADS)
Ortiz, Rocío; Quintana, Iban; Etxarri, Jon; Lejardi, Ainhoa; Sarasua, Jose-Ramon
2011-11-01
The picosecond laser ablation of poly-L-lactide (PLLA) as a function of laser fluence and degree of crystallinity was examined. The ablation parameters and the surface modifications were analyzed under various irradiation conditions using laser wavelengths ranging from the ultraviolet through the visible. When processing the amorphous PLLA, both energy threshold and topography varied considerably depending on laser wavelength. Laser irradiation showed a reduction in the energy ablation threshold as the degree of crystallinity increased, probably related to photomechanical effects involved in laser ablation with ultra-short pulses and the lower stress accommodation behavior of semicrystalline polymers. In particular, cooperative chain motions are impeded by the higher degree of crystallinity, showing fragile mechanical behavior and lower energy dissipation. The experimental results on ablation rate versus laser energy showed that UV laser ablation on semicrystalline PLLA was more efficient than the visible ablation, i.e., it exhibits higher etch rates over a wide range of pulse energy conditions. These results were interpreted in terms of photo-thermal and photo-chemical response of polymers as a function of material micro-structure and incident laser wavelength. High quality micro-grooves were produced in amorphous PLLA, reveling the potential of ultra-fast laser processing technique in the field of micro-structuring biocompatible and biodegradable polymers for biomedical applications.
Microstructure measurements in natural waters: Methodology and applications
NASA Astrophysics Data System (ADS)
Roget, Elena; Lozovatsky, Iossif; Sanchez, Xavier; Figueroa, Manuel
2006-08-01
Modern approaches to microstructure data processing, including wavelet denoising, are discussed. The wavelet procedure is applied to small-scale shear signals before estimating the dissipation rate ε and to the temperature/density profiles used to calculate Thorpe scales. Microstructure data obtained on the Mediterranean shelf of Catalonia are used to illustrate various approaches to the Thorpe displacement calculations. It is suggested that the Weibull probability function is an appropriate model for the Thorpe scale distribution. Microstructure measurements from the upper layer of the Boadella reservoir (Catalonia, Spain) support this finding. A new analytical approximation for the 1D Panchev-Kesich spectrum is deduced and the results of ε computation are compared with spectral fitting by the widely used Nasmyth spectrum. Applying the Kraichnan spectral model to compute ε from temperature spectra in the convective-viscous sub-range is examined as an alternative to the Batchelor spectrum. Microstructure measurements taken in Lake Banyoles (Catalonia, Spain) and in the North Atlantic were used for spectral calculations. Statistical analysis of eddy Kb and thermal Kθ diffusivities measured on a shallow shelf of the Black Sea shows the importance of process-orientated domain averaging of the diffusivities in obtaining good correspondence between Kb and Kθ in active turbulent regions. In weakly turbulent, stratified interior layers, the averaged Kb and Kθ differ significantly, which may point to the inapplicability of isotropic formulae used for ε and temperature dissipation χθ estimates, as well as to a dependence of the mixing efficiency γ on the Richardson number or in some cases on regions of fossil turbulence.
Beneficial effects of a N-terminally modified GIP agonist on tissue-level bone material properties.
Mabilleau, Guillaume; Mieczkowska, Aleksandra; Irwin, Nigel; Simon, Yannick; Audran, Maurice; Flatt, Peter R; Chappard, Daniel
2014-06-01
Bone remodeling is under complex regulation from nervous, hormonal and local signals, including gut hormones. Among the gut hormones, a role for the glucose-dependent insulinotropic polypeptide (GIP) has been suggested. However, the rapid degradation of GIP in the bloodstream by the ubiquitous enzyme dipeptidyl peptidase-4 (DPP-4) precludes therapeutic use. To circumvent this problem, a series of N-terminally modified GIP agonists have been developed, with N-AcGIP being the most promising. The aims of the present study were to investigate the effects of N-AcGIP on bone at the micro-level using trabecular and cortical microstructural morphology, and at the tissue-level in rats. Copenhagen rats were randomly assigned into control or N-AcGIP-treated groups and received daily injection for 4 weeks. Bone microstructural morphology was assessed by microCT and dynamic histomorphometry and tissue-level properties by nanoindentation, qBEI and infra-red microscopy. Four week treatment with N-AcGIP did not alter trabecular or cortical microstructural morphology. In addition, no significant modifications of mechanical response and properties at the tissue-level were observed in trabecular bone. However, significant augmentations in maximum load (12%), hardness (14%), indentation modulus (13%) and dissipated energy (16%) were demonstrated in cortical bone. These beneficial modifications of mechanical properties at the tissue-level were associated with increased mineralization (22%) and collagen maturity (13%) of the bone matrix. Taken together, the results support a beneficial role of GIP, and particularly stable analogs such as N-AcGIP, on tissue material properties of bone. Copyright © 2014 Elsevier Inc. All rights reserved.
Innovative contracting practices for ITS : task E final
DOT National Transportation Integrated Search
1997-07-01
An important property of materials that defines the viscoelastic and inelastic characteristics of materials is the dissipated work or dissipated energy of the material. Dissipated energy has been used in the asphalt concrete fatigue area for many yea...
Adhesion of Dental Materials to Tooth Structure
NASA Astrophysics Data System (ADS)
Mitra, Sumita B.
2000-03-01
The understanding and proper application of the principles of adhesion has brought forth a new paradigm in the realm of esthetic dentistry. Modern restorative tooth procedures can now conserve the remaining tooth-structure and also provide for the strengthening of the tooth. Adhesive restorative techniques call for the application and curing of the dental adhesive at the interface between the tooth tissue and the filling material. Hence the success of the restoration depends largely on the integrity of this interface. The mechanism of adhesion of the bonding materials to the dental hard tissue will be discussed in this paper. There are four main steps that occur during the application of the dental adhesive to the oral hard tissues: 1) The first step is the creation of a microstructure in the tooth enamel or dentin by means of an acidic material. This can be through the application of a separate etchant or can be accomplished in situ by the adhesive/primer. This agent has to be effective in removing or modifying the proteinaceous “smear” layer, which would otherwise act as a weak boundary layer on the surface to be bonded. 2) The primer/adhesive must then be able to wet and penetrate the microstructure created in the tooth. Since the surface energies of etched enamel and that of etched dentin are different finding one material to prime both types of dental tissues can be quite challenging. 3) The ionomer types of materials, particularly those that are carboxylate ion-containing, can chemically bond with the calcium ions of the hydroxyapatite mineral. 4) Polymerization in situ allows for micromechanical interlocking of the adhesive. The importance of having the right mechanical properties of the cured adhesive layer and its role in absorbing and dissipating stresses encountered by a restored tooth will also be discussed.
NASA Astrophysics Data System (ADS)
Liu, Yang; Geng, Cong; Zhu, Yunke; Peng, Jinfeng; Xu, Junrui
2017-04-01
Using a controlled thermal simulator system, hybrid carbon nanotube-aluminum reinforced ZA27 composites were subjected to hot compression testing in the temperature range of 473-523 K with strain rates of 0.01-10 s-1. Based on experimental results, a developed-flow stress model was established using a constitutive equation coupled with strain to describe strain softening arising from dynamic recrystallization. The intrinsic workability was further investigated by constructing three-dimensional (3D) processing maps aided by optical observations of microstructures. The 3D processing maps were constructed based on a dynamic model of materials to delineate variations in the efficiency of power dissipation and flow instability domains. The instability domains exhibited adiabatic shear band and flow localization, which need to be prevented during hot processing. The recommended domain is predicated to be within the temperature range 550-590 K and strain rate range 0.01-0.35 s-1. In this state, the main softening mechanism is dynamic recrystallization. The results from processing maps agree well with the microstructure observations.
Effect of the Microstructure on the Fracture Mode of Short-Fiber Reinforced Plastic Composites
NASA Astrophysics Data System (ADS)
Nishikawa, Masaaki; Okabe, Tomonaga; Takeda, Nobuo
A numerical simulation was presented to discuss the microscopic damage and its influence on the strength and energy-absorbing capability of short-fiber reinforced plastic composites. The dominant damage includes matrix crack and/or interfacial debonding, when the fibers are shorter than the critical length for fiber breakage. The simulation addressed the matrix crack with a continuum damage mechanics (CDM) model and the interfacial debonding with an embedded process zone (EPZ) model. Fictitious free-edge effects on the fracture modes were successfully eliminated with the periodic-cell simulation. The advantage of our simulation was pointed out by demonstrating that the simulation with edge effects significantly overestimates the dissipative energy of the composites. We then investigated the effect of the material microstructure on the fracture modes in the composites. The simulated results clarified that the inter-fiber distance affects the breaking strain of the composites and the fiber-orientation angle affects the position of the damage initiation. These factors influence the strength and energy-absorbing capability of short fiber-reinforced composites.
Near unity ultraviolet absorption in graphene without patterning
NASA Astrophysics Data System (ADS)
Zhu, Jinfeng; Yan, Shuang; Feng, Naixing; Ye, Longfang; Ou, Jun-Yu; Liu, Qing Huo
2018-04-01
Enhancing the light-matter interaction of graphene is an important issue for related photonic devices and applications. In view of its potential ultraviolet applications, we aim to achieve extremely high ultraviolet absorption in graphene without any nanostructure or microstructure patterning. By manipulating the polarization and angle of incident light, the ultraviolet power can be sufficiently coupled to the optical dissipation of graphene based on single-channel coherent perfect absorption in an optimized multilayered thin film structure. The ultraviolet absorbance ratios of single and four atomic graphene layers are enhanced up to 71.4% and 92.2%, respectively. Our research provides a simple and efficient scheme to trap ultraviolet light for developing promising photonic and optoelectronic devices based on graphene and potentially other 2D materials.
Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys
Zhang, Yanwen; Jin, Ke; Xue, Haizhou; ...
2016-08-01
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Coupled gamma/alpha phase transformations in low-carbon steels
NASA Astrophysics Data System (ADS)
Mizutani, Yasushi
Since steels have been the most prevalently utilized materials for many years, the desire for steels with low alloying components with a well-balanced combination of high strength and toughness is increasing. Low carbon steels consisting of bainitic microstructures are ideally suited to meeting such technological and economic requirements. Thus it is extremely important to fully clarify the mechanism of bainite formation in order to produce this type of engineering steel by optimized alloy and process design. This research focuses on understanding the mechanism of coupled displacive/diffusional gamma/alpha transformation in low-carbon steels including bainitic and martensitic transformation, and establishing a more comprehensive and physically rational computational model for predictive control of coupled gamma/alpha transformation phenomena. Models for coupled gamma/alpha phase transformation proposed in this study are based on a mechanistic and unified theory and the following assumptions: (1) The energy dissipation due to interface motion can be linearly combined with the energy dissipation due to carbon diffusion. (2) The carbon concentrations at the interface in both gamma and alpha phases are constrained by an interface solute trapping law. (3) Interface motion during nucleation is also governed by the carbon diffusion field velocity. (4) The response function of glissile interface motion can be expressed in the form of thermally activated dislocation glide. In contrast to the conventional semi-empirical models of the previous literature, the computational model proposed in this study is demonstrated to successfully provide a comprehensive and quantitative prediction of the effects of temperature, composition, microstructure, and the interactions among them. This includes the effects of substitutional solutes, morphology of the parent gamma phase, density of nucleation sites, temperature dependent variation of flow stress of matrix, and dynamic recovery of forest dislocations on the kinetics of coupled gamma/alpha phase transformation.
NASA Astrophysics Data System (ADS)
Sellers, Michael S.; Lísal, Martin; Schweigert, Igor; Larentzos, James P.; Brennan, John K.
2017-01-01
In discrete particle simulations, when an atomistic model is coarse-grained, a tradeoff is made: a boost in computational speed for a reduction in accuracy. The Dissipative Particle Dynamics (DPD) methods help to recover lost accuracy of the viscous and thermal properties, while giving back a relatively small amount of computational speed. Since its initial development for polymers, one of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. In 2007, Maillet, Soulard, and Stoltz introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We present an extended and generalized version of the DPD-RX method, and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Demonstration simulations of reacting RDX are performed under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its transition to hot product gases within DPD-RX is presented. Additionally, we discuss several examples of the effect of shock speed and microstructure on the corresponding material chemistry.
Optimization of SMA layers in composite structures to enhance damping
NASA Astrophysics Data System (ADS)
Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.
2016-04-01
The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.
NASA Astrophysics Data System (ADS)
Scheid, James Eric
Aluminum-lined shaped charges are used in special applications where jet and / or slug residue in the target is undesired. The three different microstructures of the aluminum liners studied herein resulted from three different manufacturing interpretations of the same design. One interpretation was completely machining the liners from best available annealed round stock. The second was to cold-forge the liners from annealed round-stock in an open-die forge to near-final dimensions, and then machine the liners to the final dimensions. The third variant in this study was to use the above forged liner, but with annealing after the machining. These three manufacturing choices resulted in significant variations in shaped charge performance. The goal of this research was to clarify the relationships between the liner metal microstructure and properties, and the corresponding shaped charge dynamic flow behavior. What began as an investigation into user-reported performance problems associated inherently with liner manufacturing processes and resultant microstructure, resolved into new understandings of the relationships between aluminum liner microstructure and shaped charge collapse kinetics. This understanding was achieved through an extensive literature review and the comprehensive characterization of the material properties of three variants of an 1100 aluminum shaped charge liner with a focus on collapse and nascent jet formation. The machined liner had a microstructure with large millimeter-sized grains and fine particles aligned in bands parallel to the charge axis. The forged liner microstructure consisted of very small one micrometer-sized (1 mum) subgrains and fine particles aligned largely in bands elongated parallel to the liner contour. The annealed liner was characterized by ten micrometer (10 mum) sized equiaxed grains with residual fine particles in the forged alignment. This characterization was enabled by the development, execution and validation of a custom explosive experiment that delivered meaningful, full-scale shock deformed samples for analysis. The experiment arrested the collapse of actual, as-fabricated liners in the first microseconds of development. This experiment, performed with only 2% of the explosive mass of the full charge, revealed new insights into material-dependent variations in liner collapse including a striking image of the formation of a shaped charge jet axial hole. The highly strain-hardened and elongated forged liner was the best performer of the three. Less energy from the explosive was dissipated by dislocation generation. This translated to more efficient flow whereas the softer materials behaved as shock absorbers delaying flow. A set of hypotheses was formulated and critiqued based on these observations. The key findings were the effects of grain size, and shear bands induced in the microstructure through cold work enabled efficient liner flow. These bands provide highly localized dislocation highways enabling the matrix adjacent to the bands to deform plastically at higher velocity. Where such bands are unavailable, the pressure must first develop bands of smaller grains, thus decreasing energy available for flow. Collapse velocities were then associated with the number of shear bands, the organization of mobile dislocations, material strain, and liner geometry. Microstructures with the ability to deform with the direction of liner collapse at lower stresses will form jets with a higher velocity and elongate earlier. The effect is higher performance at shorter standoffs. This relationship can be used to predict material behavior under explosive load, guiding engineering choices while designing with respect to anticipated shock loading. The explosive experiment designed here has obvious application in refining the performance of other warheads, and in the hydrodynamic modeling of material properties.
High power water load for microwave and millimeter-wave radio frequency sources
Ives, R. Lawrence; Mizuhara, Yosuke M.; Schumacher, Richard V.; Pendleton, Rand P.
1999-01-01
A high power water load for microwave and millimeter wave radio frequency sources has a front wall including an input port for the application of RF power, a cylindrical dissipation cavity lined with a dissipating material having a thickness which varies with depth, and a rear wall including a rotating reflector for the reflection of wave energy inside the cylindrical cavity. The dissipation cavity includes a water jacket for removal of heat generated by the absorptive material coating the dissipation cavity, and this absorptive material has a thickness which is greater near the front wall than near the rear wall. Waves entering the cavity reflect from the rotating reflector, impinging and reflecting multiple times on the absorptive coating of the dissipation cavity, dissipating equal amounts of power on each internal reflection.
Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators
NASA Astrophysics Data System (ADS)
Manimala, James Mathew
Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation in locally dissipative AM with various damped oscillator microstructures was studied using mechanical lattice models. The presence of damping was represented by a complex effective-mass. Analytical transmissibilities and numerical verifications were obtained for Kelvin-Voigt-type, Maxwell-type and Zener-type oscillators. Although peak attenuation at resonance is diminished, broadband attenuation was found to be achievable without increasing mass ratio, obviating the bandgap width limitations of locally resonant AM. Static and frequency-dependent measures of optimal damping that maximize the attenuation characteristics were established. A transitional value for the excitation frequency was identified within the locally resonant bandgap, above which there always exists an optimal amount of damping that renders the attenuation for the dissipative AM greater than that for the locally resonant case. AM with nonlinear stiffnesses were also investigated. For a base-excited two degree of freedom system consisting of a master structure and a Duffing-type oscillator, approximate transmissibility was derived, verified using simulations and compared to its equivalent damped model. Analytical solutions for dispersion curve shifts in nonlinear chains with linear resonators and in linear chains with nonlinear oscillators were obtained using perturbation analysis and first order approximations for cubic hardening and softening cases. Amplitude-activated alterations in bandgap width and the possibility of phenomena such as branch curling and overtaking were observed. Device implications of nonlinear AM as amplitude-dependent filters and direction-biased waveguides were examined using simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allen, D.H.; Helms, K.L.E.; Hurtado, L.D.
1999-04-06
A model is developed herein for predicting the mechanical response of inelastic crystalline solids. Particular emphasis is given to the development of microstructural damage along grain boundaries, and the interaction of this damage with intragranular inelasticity caused by dislocation dissipation mechanisms. The model is developed within the concepts of continuum mechanics, with special emphasis on the development of internal boundaries in the continuum by utilizing a cohesive zone model based on fracture mechanics. In addition, the crystalline grains are assumed to be characterized by nonlinear viscoplastic mechanical material behavior in order to account for dislocation generation and migration. Due tomore » the nonlinearities introduced by the crack growth and viscoplastic constitution, a numerical algorithm is utilized to solve representative problems. Implementation of the model to a finite element computational algorithm is therefore briefly described. Finally, sample calculations are presented for a polycrystalline titanium alloy with particular focus on effects of scale on the predicted response.« less
Mechanisms-based viscoplasticity: Theoretical approach and experimental validation for steel 304L
Zubelewicz, Aleksander; Oliferuk, Wiera
2016-01-01
We propose a mechanisms-based viscoplasticity approach for metals and alloys. First, we derive a stochastic model for thermally-activated motion of dislocations and, then, introduce power-law flow rules. The overall plastic deformation includes local plastic slip events taken with an appropriate weight assigned to each angle of the plane misorientation from the direction of maximum shear stress. As deformation progresses, the material experiences successive reorganizations of the slip systems. The microstructural evolution causes that a portion of energy expended on plastic deformation is dissipated and the rest is stored in the defect structures. We show that the reorganizations are stable in a homogeneously deformed material. The concept is tested for steel 304L, where we reproduce experimentally obtained stress-strain responses, we construct the Frost-Ashby deformation map and predict the rate of the energy storage. The storage is assessed in terms of synchronized measurements of temperature and displacement distributions on the specimen surface during tensile loading. PMID:27026209
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith A.; Zikry, M. A., E-mail: zikry@ncsu.edu
2015-09-28
The coupled electromagnetic (EM)-thermo-mechanical response of cyclotrimethylenetrinitramine-estane energetic aggregates under laser irradiation and high strain rate loads has been investigated for various aggregate sizes and binder volume fractions. The cyclotrimethylenetrinitramine (RDX) crystals are modeled with a dislocation density-based crystalline plasticity formulation and the estane binder is modeled with finite viscoelasticity through a nonlinear finite element approach that couples EM wave propagation with laser heat absorption, thermal conduction, and inelastic deformation. Material property and local behavior mismatch at the crystal-binder interfaces resulted in geometric scattering of the EM wave, electric field and laser heating localization, high stress gradients, dislocation density, andmore » crystalline shear slip accumulation. Viscous sliding in the binder was another energy dissipation mechanism that reduced stresses in aggregates with thicker binder ligaments and larger binder volume fractions. This investigation indicates the complex interactions between EM waves and mechanical behavior, for accurate predictions of laser irradiation of heterogeneous materials.« less
NASA Technical Reports Server (NTRS)
Vandersande, Ian W. (Inventor); Ewell, Richard (Inventor); Fleurial, Jean-Pierre (Inventor); Lyon, Hylan B. (Inventor)
1998-01-01
A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.
NASA Astrophysics Data System (ADS)
Lucas, N. S.; Allen, J.; Belcher, S. E.; Boyd, T.; Brannigan, L.; Inall, M.; Palmer, M.; Polton, J.; Rippeth, T. P.
2016-02-01
This study presents a new 9.5 day dataset showing the evolution of the Ocean Surface Boundary Layer (OSBL) and dissipation of turbulence kinetic energy (TKE), carried out as part of OSMOSIS[i], at a location in the North East Atlantic Ocean in September 2012. The TKE dissipation measurements were made using three methods; (i) repeated profiling between 100m and the surface by an Ocean Microstructure glider, (ii) three series of profiles made using a loosely tethered velocity microstructure glider and (iii) a moored pulse-pulse coherent high frequency ADCP. Supporting measurements show the evolution of the water column structure, including surface wave measurements from a TRIAXYS wave buoy. This data shows two distinct regimes; the first, spanning 4 days with relatively low winds, displays a distinct diurnal cycle with the deepening of the active mixing layer during the night which shoaled during the day. The second spanned a significant storm, (with maximum winds speeds reaching 20 m s-1 and significant wave heights reaching 6 m), during which, rather than a deepening of the mixed layer as predicted by classical theory, the primary effect was a broadening of the transition layer, similar to that found by Dohan and Davies (2011). During the storm, significant dissipation was observed throughout the surface mixed layer and into the transition layer, driving fluxes of heat downwards through the base of the surface mixed layer. [i] Ocean Surface Mixing and Submesoscale Interaction Study Dohan, K. & Davis, R.E., 2011. Mixing in the Transition Layer during Two Storm Events. Journal of Physical Oceanography. 41 (1). pp. 42-66.
NASA Technical Reports Server (NTRS)
Smith, T. M.; Nelson, G. L.
2005-01-01
Electrostatic dissipative polymers are used for a variety of functions. Typical methods utilized to transform electrically insulating polymers into either charge dissipative or conductive materials involve incorporating a conductive filler, conductive polymer, oxidizing the surface using plasma, or incorporating surfactants that act as surface wetting agents. Another approach is to synthesize a block copolymer that is expected to result in better electrical properties with minimal impacts to physical, fire, and thermal properties. One such block that can be added into the main chain of polymers is a diol terminated ferrocene oligomer, which is expected to impart electrostatic dissipative properties into the host polymer while concurrently improving the overall fire properties. Previous work with polyurethanes incorporating a ferrocene oligomer into the main chain resulted in much improved fire retardancy. In dealing with electrostatic dissipative materials the important questions are: how easily does the material charge and how quickly can the charge move to ground. One normally describes the materials conductivity, but conductivity only measures the fastest path for an electron not the slowest path. The slowest path is the one of interest, since it is left on the surface and thus can cause discharges. In order to assess ease of charging and decay times corona charge dissipation measurements can accurately assess these properties by introducing a charge on the surface of the material then measuring the surface voltage and the amount of charge deposited. The charge decay curve then will give an indication of a materials electrostatic dissipation properties. Normally, triboelectric testing can be performed, but results vary. Corona charge dissipation results are more repeatable.
Prodanovic, Srdjan; Gracewski, Sheryl; Nam, Jong-Hoon
2015-02-03
The stereocilia bundle is the mechano-transduction apparatus of the inner ear. In the mammalian cochlea, the stereocilia bundles are situated in the subtectorial space (STS)--a micrometer-thick space between two flat surfaces vibrating relative to each other. Because microstructures vibrating in fluid are subject to high-viscous friction, previous studies considered the STS as the primary place of energy dissipation in the cochlea. Although there have been extensive studies on how metabolic energy is used to compensate the dissipation, much less attention has been paid to the mechanism of energy dissipation. Using a computational model, we investigated the power dissipation in the STS. The model simulates fluid flow around the inner hair cell (IHC) stereocilia bundle. The power dissipation in the STS because of the presence IHC stereocilia increased as the stimulating frequency decreased. Along the axis of the stimulating frequency, there were two asymptotic values of power dissipation. At high frequencies, the power dissipation was determined by the shear friction between the two flat surfaces of the STS. At low frequencies, the power dissipation was dominated by the viscous friction around the IHC stereocilia bundle--the IHC stereocilia increased the STS power dissipation by 50- to 100-fold. There exists a characteristic frequency for STS power dissipation, CFSTS, defined as the frequency where power dissipation drops to one-half of the low frequency value. The IHC stereocilia stiffness and the gap size between the IHC stereocilia and the tectorial membrane determine the characteristic frequency. In addition to the generally assumed shear flow, nonshear STS flow patterns were simulated. Different flow patterns have little effect on the CFSTS. When the mechano-transduction of the IHC was tuned near the vibrating frequency, the active motility of the IHC stereocilia bundle reduced the power dissipation in the STS. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
NASA Astrophysics Data System (ADS)
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for a diffusion-reaction controlled deformable solid.
NASA Astrophysics Data System (ADS)
Sellers, Michael; Lisal, Martin; Schweigert, Igor; Larentzos, James; Brennan, John
2015-06-01
In discrete particle simulations, when an atomistic model is coarse-grained, a trade-off is made: a boost in computational speed for a reduction in accuracy. Dissipative Particle Dynamics (DPD) methods help to recover accuracy in viscous and thermal properties, while giving back a small amount of computational speed. One of the most notable extensions of DPD has been the introduction of chemical reactivity, called DPD-RX. Today, pairing the current evolution of DPD-RX with a coarse-grained potential and its chemical decomposition reactions allows for the simulation of the shock behavior of energetic materials at a timescale faster than an atomistic counterpart. In 2007, Maillet et al. introduced implicit chemical reactivity in DPD through the concept of particle reactors and simulated the decomposition of liquid nitromethane. We have recently extended the DPD-RX method and have applied it to solid hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) under shock conditions using a recently developed single-site coarse-grain model and a reduced RDX decomposition mechanism. A description of the methods used to simulate RDX and its tranition to hot product gases within DPD-RX will be presented. Additionally, examples of the effect of microstructure on shock behavior will be shown. Approved for public release. Distribution is unlimited.
Stochastic Analysis and Design of Heterogeneous Microstructural Materials System
NASA Astrophysics Data System (ADS)
Xu, Hongyi
Advanced materials system refers to new materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to superior properties over the conventional materials. To accelerate the development of new advanced materials system, the objective of this dissertation is to develop a computational design framework and the associated techniques for design automation of microstructure materials systems, with an emphasis on addressing the uncertainties associated with the heterogeneity of microstructural materials. Five key research tasks are identified: design representation, design evaluation, design synthesis, material informatics and uncertainty quantification. Design representation of microstructure includes statistical characterization and stochastic reconstruction. This dissertation develops a new descriptor-based methodology, which characterizes 2D microstructures using descriptors of composition, dispersion and geometry. Statistics of 3D descriptors are predicted based on 2D information to enable 2D-to-3D reconstruction. An efficient sequential reconstruction algorithm is developed to reconstruct statistically equivalent random 3D digital microstructures. In design evaluation, a stochastic decomposition and reassembly strategy is developed to deal with the high computational costs and uncertainties induced by material heterogeneity. The properties of Representative Volume Elements (RVE) are predicted by stochastically reassembling SVE elements with stochastic properties into a coarse representation of the RVE. In design synthesis, a new descriptor-based design framework is developed, which integrates computational methods of microstructure characterization and reconstruction, sensitivity analysis, Design of Experiments (DOE), metamodeling and optimization the enable parametric optimization of the microstructure for achieving the desired material properties. Material informatics is studied to efficiently reduce the dimension of microstructure design space. This dissertation develops a machine learning-based methodology to identify the key microstructure descriptors that highly impact properties of interest. In uncertainty quantification, a comparative study on data-driven random process models is conducted to provide guidance for choosing the most accurate model in statistical uncertainty quantification. Two new goodness-of-fit metrics are developed to provide quantitative measurements of random process models' accuracy. The benefits of the proposed methods are demonstrated by the example of designing the microstructure of polymer nanocomposites. This dissertation provides material-generic, intelligent modeling/design methodologies and techniques to accelerate the process of analyzing and designing new microstructural materials system.
Transmission problems for Mindlin–Timoshenko plates: frictional versus viscous damping mechanisms
NASA Astrophysics Data System (ADS)
Ferreira, Marcio V.; Muñoz Rivera, Jaime E.; Suárez, Fredy M. S.
2018-06-01
In this article, we make a comparative analysis of the stabilizing effect of the frictional dissipation with the dissipation produced by viscous materials of Kelvin-Voigt type both located in a part of a Mindlin-Timoshenko plate. We model these dissipative mechanisms through transmission problems and show that localized frictional damping, when effective over a strategic component of the plate, produces exponential stability of the corresponding semigroup. On the other hand, although the dissipation of Kelvin-Voigt is considered a strong dissipation, we prove that it loses its uniform stabilizing properties when localized over a component of the material and provides only a slower polynomial decay.
NASA Astrophysics Data System (ADS)
Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.
2017-01-01
We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L
2012-08-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions.
Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L
2012-01-01
Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear resistance under extreme tribological conditions. PMID:27877499
Microstructural effects on constitutive and fatigue fracture behavior of TinSilverCopper solder
NASA Astrophysics Data System (ADS)
Tucker, Jonathon P.
As microelectronic package construction becomes more diverse and complex, the need for accurate, geometry-independent material constitutive and failure models increases. Evaluations of packages based on accelerated environmental tests (such as accelerated thermal cycling or power cycling) only provide package-dependent reliability information. In addition, extrapolations of such test data to life predictions under field conditions are often empirical. Besides geometry, accelerated environmental test data must account for microstructural factors such as alloy composition or isothermal aging condition, resulting in expensive experimental variation. In this work, displacement-controlled, creep, and fatigue lap shear tests are conducted on specially designed SnAgCu test specimens with microstructures representative to those found in commercial microelectronic packages. The data are used to develop constitutive and fatigue fracture material models capable of describing deformation and fracture behavior for the relevant temperature and strain rate ranges. Furthermore, insight is provided into the microstructural variation of solder joints and the subsequent effect on material behavior. These models are appropriate for application to packages of any geometrical construction. The first focus of the thesis is on Pb-mixed SnAgCu solder alloys. During the transition from Pb-containing solders to Pb-free solders, joints composed of a mixture of SnPb and SnAgCu often result from either mixed assemblies or rework. Three alloys of 1, 5 and 20 weight percent Pb were selected so as to represent reasonable ranges of Pb contamination expected from different 63Sn37Pb components mixed with Sn3.0Ag0.5Cu. Displacement-controlled (constant strain rate) and creep tests were performed at temperatures of 25°C, 75°C, and 125°C using a double lap shear test setup that ensures a nearly homogeneous state of plastic strain at the joint interface. Rate-dependent constitutive models for Pb-contaminated SnAgCu solder alloys ranging from the traditional time-hardening creep model to the viscoplastic Anand model are described. The second focus of the thesis is on fatigue damage accumulation in SnAgCu solder alloys. While, typical fatigue fracture models are empirical, recently a non-empirical model termed Maximum Entropy Fracture Model (MEFM) was proposed. MEFM is a thermodynamically consistent and information theory inspired damage accumulation theory for ductile solids. This model has been validated recently for Sn3.8Ag0.7Cu solder alloy, and uses a single damage accumulation parameter to relate the probability of fracture to accumulated entropic dissipation. Isothermal cycling fatigue tests on Sn3.0Ag0.5Cu and mixed SnPb/Sn3.0Ag0.5Cu solder alloys at varying strain rates and temperatures are conducted using a custom-built microscale mechanical tester capable of submicron displacement resolution. MEFM is applied here in conjunction with the Anand viscoplasticity model to predict the softening occurring over successive cycles as a result of damage accumulation. The damage accumulation parameters for Sn3.0Ag0.5Cu in different aged states are related to a microstructural parameter which quantitatively describes the state of coarsening. In addition, damage accumulation parameters for the three mixed solder alloys are reported. This approach allows for a non-empirical prediction of both constitutive and fracture behavior of packages of different geometries and different microstructural states under thermo-mechanical fatigue. Approaches to solder joint reliability predictions from materials science and mechanics perspectives differ dramatically. Materials science methods identify key failure mechanisms, but most models cannot predict failure. In contrast, mechanics approaches often provide estimates of joint lifetime, but fail to provide insight into microstructural influences. This work attempts to connect the two fields by relating constitutive behavior and fatigue fracture models for different alloys and aging conditions to one or more microstructural parameters.
Role of Microstructure on the Performance of UHTCs
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Lawson, John W.; Gusman, Michael I.; Stackpoole, Mairead
2010-01-01
We have investigated a number of methods to control microstructure. We have routes to form: a) in situ "composites" b) Very fine microstructures. Arcjet testing and other characterization of monolithic materials. Control oxidation through microstructure and composition. Beginning to incorporate these materials as matrices for composites. Modeling effort to facilitate material design and characterization.
A model problem concerning ionic transport in microstructured solid electrolytes
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2015-11-01
We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects.
Relaxation-type nonlocal inertial-number rheology for dry granular flows
NASA Astrophysics Data System (ADS)
Lee, Keng-lin; Yang, Fu-ling
2017-12-01
We propose a constitutive model to describe the nonlocality, hysteresis, and several flow features of dry granular materials. Taking the well-known inertial number I as a measure of sheared-induced local fluidization, we derive a relaxation model for I according to the evolution of microstructure during avalanche and dissipation processes. The model yields a nonmonotonic flow law for a homogeneous flow, accounting for hysteretic solid-fluid transition and intermittency in quasistatic flows. For an inhomogeneous flow, the model predicts a generalized Bagnold shear stress revealing the interplay of two microscopic nonlocal mechanisms: collisions among correlated structures and the diffusion of fluidization within the structures. In describing a uniform flow down an incline, the model reproduces the hysteretic starting and stopping heights and the Pouliquen flow rule for mean velocity. Moreover, a dimensionless parameter reflecting the nonlocal effect on the flow is discovered, which controls the transition between Bagnold and creeping flow dynamics.
NASA Astrophysics Data System (ADS)
Pasquet, Simon; Bouruet-Aubertot, Pascale; Reverdin, Gilles; Turnherr, Andreas; Laurent, Lou St.
2016-06-01
The relevance of finescale parameterizations of dissipation rate of turbulent kinetic energy is addressed using finescale and microstructure measurements collected in the Lucky Strike segment of the Mid-Atlantic Ridge (MAR). There, high amplitude internal tides and a strongly sheared mean flow sustain a high level of dissipation rate and turbulent mixing. Two sets of parameterizations are considered: the first ones (Gregg, 1989; Kunze et al., 2006) were derived to estimate dissipation rate of turbulent kinetic energy induced by internal wave breaking, while the second one aimed to estimate dissipation induced by shear instability of a strongly sheared mean flow and is a function of the Richardson number (Kunze et al., 1990; Polzin, 1996). The latter parameterization has low skill in reproducing the observed dissipation rate when shear unstable events are resolved presumably because there is no scale separation between the duration of unstable events and the inverse growth rate of unstable billows. Instead GM based parameterizations were found to be relevant although slight biases were observed. Part of these biases result from the small value of the upper vertical wavenumber integration limit in the computation of shear variance in Kunze et al. (2006) parameterization that does not take into account internal wave signal of high vertical wavenumbers. We showed that significant improvement is obtained when the upper integration limit is set using a signal to noise ratio criterion and that the spatial structure of dissipation rates is reproduced with this parameterization.
UCx target preparations and characterizations
NASA Astrophysics Data System (ADS)
Andrighetto, Alberto; Corradetti, Stefano; Manzolaro, Mattia; Scarpa, Daniele; Monetti, Alberto; Rossignoli, Massimo; Borgna, Francesca; Ballan, Michele; Agostini, Mattia; D'Agostini, Fabio; Ferrari, Matteo; Zenoni, Aldo
2018-05-01
The Target-Ion Source unit is the core of an ISOL-RIB facility. Many international ISOL facilities have chosen different layouts of this unit. Many research groups are involved in research and development of targets capable of dissipating high power and, at the same time, be able to have a fast isotope release. This is mandatory in order to produce beams of short half-life isotopes. The research of new materials with advanced microstructural features is crucial in this field. The design of a proper target is indeed strictly related to the obtainment of porous refractory materials, which are capable to work under extreme conditions (temperatures up to 2000 °C in high vacuum) with a high release efficiency. For SPES, the second generation Italian ISOL-RIB Facility, the target will be made of uranium carbide (UCx) in which, by fission induced by a proton beam of 40 MeV of energy (8 kW of power), isotopes in the 60-160 amu mass region are produced. The current technological developments are also crucial in the study of third generation ISOL facilities.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Arakere, A.; Ramaswami, S.; Snipes, J. S.; Yavari, R.; Yen, C.-F.; Cheeseman, B. A.; Montgomery, J. S.
2013-06-01
A conventional gas metal arc welding (GMAW) butt-joining process has been modeled using a two-way fully coupled, transient, thermal-mechanical finite-element procedure. To achieve two-way thermal-mechanical coupling, the work of plastic deformation resulting from potentially high thermal stresses is allowed to be dissipated in the form of heat, and the mechanical material model of the workpiece and the weld is made temperature dependent. Heat losses from the deposited filler-metal are accounted for by considering conduction to the adjoining workpieces as well as natural convection and radiation to the surroundings. The newly constructed GMAW process model is then applied, in conjunction with the basic material physical-metallurgy, to a prototypical high-hardness armor martensitic steel (MIL A46100). The main outcome of this procedure is the prediction of the spatial distribution of various crystalline phases within the weld and the heat-affected zone regions, as a function of the GMAW process parameters. The newly developed GMAW process model is validated by comparing its predictions with available open-literature experimental and computational data.
NASA Astrophysics Data System (ADS)
Mao, Y.; Coenen, J. W.; Riesch, J.; Sistla, S.; Almanstötter, J.; Jasper, B.; Terra, A.; Höschen, T.; Gietl, H.; Bram, M.; Gonzalez-Julian, J.; Linsmeier, Ch; Broeckmann, C.
2017-12-01
In future fusion reactors, tungsten is the prime candidate material for the plasma facing components. Nevertheless, tungsten is prone to develop cracks due to its intrinsic brittleness—a major concern under the extreme conditions of fusion environment. To overcome this drawback, tungsten fiber reinforced tungsten (Wf/W) composites are being developed. These composite materials rely on an extrinsic toughing principle, similar to those in ceramic matrix composite, using internal energy dissipation mechanisms, such as crack bridging and fiber pull-out, during crack propagation. This can help Wf/W to facilitate a pseudo-ductile behavior and allows an elevated damage resilience compared to pure W. For pseudo-ductility mechanisms to occur, the interface between the fiber and matrix is crucial. Recent developments in the area of powder-metallurgical Wf/W are presented. Two consolidation methods are compared. Field assisted sintering technology and hot isostatic pressing are chosen to manufacture the Wf/W composites. Initial mechanical tests and microstructural analyses are performed on the Wf/W composites with a 30% fiber volume fraction. The samples produced by both processes can give pseudo-ductile behavior at room temperature.
Fracture behavior of reinforced aluminum alloy matrix composites using thermal imaging tools
NASA Astrophysics Data System (ADS)
Avdelidis, N. P.; Exarchos, D.; Vazquez, P.; Ibarra-Castanedo, C.; Sfarra, S.; Maldague, X. P. V.; Matikas, T. E.
2016-05-01
In this work the influence of the microstructure at the vicinity of the interface on the fracture behavior of particulate-reinforced aluminum alloy matrix composites (Al/SiCp composites) is studied by using thermographic tools. In particular, infrared thermography was used to monitor the plane crack propagation behavior of the materials. The deformation of solid materials is almost always accompanied by heat release. When the material becomes deformed or is damaged and fractured, a part of the energy necessary to initiate and propagate the damage is transformed in an irreversible way into heat. The thermal camera detects the heat wave, generated by the thermo-mechanical coupling and the intrinsic dissipated energy during mechanical loading of the sample. By using an adapted detector, thermography records the two dimensional "temperature" field as it results from the infrared radiation emitted by the object. The principal advantage of infrared thermography is its noncontact, non-destructive character. This methodology is being applied to characterise the fracture behavior of the particulate composites. Infrared thermography is being used to monitor the plane crack propagation behavior of such materials. Furthermore, an innovative approach to use microscopic measurements using IR microscopic lenses was attempted, in order to enable smaller features (in the micro scale) to be imaged with accuracy and assurance.
Metallurgical characterization of melt-spun ribbons of U-5.4 wt%Nb alloy
NASA Astrophysics Data System (ADS)
Ma, Rong; Ren, Zhiyong; Tang, Qingfu; Chen, Dong; Liu, Tingyi; Su, Bin; Wang, Zhenhong; Luo, Chao
2018-06-01
The microstructures and micro-mechanical properties of the melt-spun ribbons of U-5.4 wt%Nb alloy were characterized using optical microscopy, scanning electron microscopy, X-ray diffraction and nanoindentation. Observed variations in microstructures and properties are related to the changes in ribbon thicknesses and cooling rates. The microstructures of the melt-spun ribbon consist of fine-scale columnar grains (∼1 μm) adjacent to the chill surface and coarse cellular grains in the remainder of the ribbon. In addition, the formation of inclusions in the ribbon is suppressed kinetically due to the high cooling rate during melt spinning. Compared with the water-quenched specimen prepared by traditional gravity casting and solution heat treatment, the elastic modulus values of the U-5.4 wt%Nb alloy were examined to vary with grain size and exhibited diverse energy dissipation capacities.
Characterization of vertical mixing at a tidal-front on Georges Bank
NASA Astrophysics Data System (ADS)
Yoshida, Jiro; Oakey, Neil S.
Studies of mixing were done at the northern flank of Georges Bank in the summer and autumn of 1988. Two time-series of the evolution and intensity of microstructure were examined over a tidal period in the context of tidal forcing and the evolution of the density and velocity field at the site. From the CTD, ADCP and microstructure observations (EPSONDE) on Georges Bank, several interesting features of the mixing processes were found. High dissipation and diffusivity regions appear near the bottom of the Bank. Turbulence near the bottom is highest in intensity and reaches farthest from the bottom at peak tidal flow and diminishes in intensity and vertical extent as the flow decreases. The thickness of the bottom turbulent layer has its maximum value when the flow is strongest and the stratification is weakest. Characterization of the dissipation rate and turbulent diffusivities in respect to buoyancy frequency N, current shear S, Richardson Number Ri and ɛ/νN 2 was done. Dissipation and χT showed little dependence on shear or N2 but decreased at larger Ri. χt was found to be higher in regions of higher N2 and increased as ɛ/νN 2 increased. KT, Kϱ and Kν, were all highest near the bottom in excess of 10 -2m 2s -1 and decreased towards the surface. There was little suggestion of a dependence of mixing efficiency on S2, Ri or ɛ/νN 2, but some indication that Γ decreases with decreasing N2.
Compaction shock dissipation in low density granular explosive
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rao, Pratap T.; Gonthier, Keith A., E-mail: gonthier@me.lsu.edu; Chakravarthy, Sunada
The microstructure of granular explosives can affect dissipative heating within compaction shocks that can trigger combustion and initiate detonation. Because initiation occurs over distances that are much larger than the mean particle size, homogenized (macroscale) theories are often used to describe local thermodynamic states within and behind shocks that are regarded as the average manifestation of thermodynamic fields at the particle scale. In this paper, mesoscale modeling and simulation are used to examine how the initial packing density of granular HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}) C{sub 4}H{sub 8}N{sub 8}O{sub 8} having a narrow particle size distribution influences dissipation withinmore » resolved, planar compaction shocks. The model tracks the evolution of thermomechanical fields within large ensembles of particles due to pore collapse. Effective shock profiles, obtained by averaging mesoscale fields over space and time, are compared with those given by an independent macroscale compaction theory that predicts the variation in effective thermomechanical fields within shocks due to an imbalance between the solid pressure and a configurational stress. Reducing packing density is shown to reduce the dissipation rate within shocks but increase the integrated dissipated work over shock rise times, which is indicative of enhanced sensitivity. In all cases, dissipated work is related to shock pressure by a density-dependent power law, and shock rise time is related to pressure by a power law having an exponent of negative one.« less
Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials
NASA Astrophysics Data System (ADS)
Clifford, Jallisa Janet
Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured quantitatively using BbDS. These materials are typically used in solid oxide fuel cells (SOFC). Results show significant effect of microstructural design on material properties at multiple temperatures (up to 800 °C). In the later part of the thesis, we will focus on microstructural changes of fiber reinforced composite materials due to impact and static loading. The changes in dielectric response can then be linked to the bulk mechanical properties of the material and various damage modes. Observing trends in dielectric response enables us to further determine local mechanisms and distribution of properties throughout the damaged specimens. A 3D X-ray microscope and a digital microscope have been used to visualize these changes in material microstructure and validate experimental observations. The increase in damage observed in the material microstructure can then also be linked to the changes in dielectric response. Results show that BbDS is an extremely useful tool for identifying microstructural changes within a heterogeneous material and particularly useful in relating remaining properties. Dielectric material variables can be used directly in property degradation laws and help develop a framework for future predictive modeling methodologies.
A thermodynamic framework for the study of crystallization in polymers
NASA Astrophysics Data System (ADS)
Rao, I. J.; Rajagopal, K. R.
In this paper, we present a new thermodynamic framework within the context of continuum mechanics, to predict the behavior of crystallizing polymers. The constitutive models that are developed within this thermodynamic setting are able to describe the main features of the crystallization process. The model is capable of capturing the transition from a fluid like behavior to a solid like behavior in a rational manner without appealing to any adhoc transition criterion. The anisotropy of the crystalline phase is built into the model and the specific anisotropy of the crystalline phase depends on the deformation in the melt. These features are incorporated into a recent framework that associates different natural configurations and material symmetries with distinct microstructural features within the body that arise during the process under consideration. Specific models are generated by choosing particular forms for the internal energy, entropy and the rate of dissipation. Equations governing the evolution of the natural configurations and the rate of crystallization are obtained by maximizing the rate of dissipation, subject to appropriate constraints. The initiation criterion, marking the onset of crystallization, arises naturally in this setting in terms of the thermodynamic functions. The model generated within such a framework is used to simulate bi-axial extension of a polymer film that is undergoing crystallization. The predictions of the theory that has been proposed are consistent with the experimental results (see [28] and [7]).
Computational discovery of extremal microstructure families
Chen, Desai; Skouras, Mélina; Zhu, Bo; Matusik, Wojciech
2018-01-01
Modern fabrication techniques, such as additive manufacturing, can be used to create materials with complex custom internal structures. These engineered materials exhibit a much broader range of bulk properties than their base materials and are typically referred to as metamaterials or microstructures. Although metamaterials with extraordinary properties have many applications, designing them is very difficult and is generally done by hand. We propose a computational approach to discover families of microstructures with extremal macroscale properties automatically. Using efficient simulation and sampling techniques, we compute the space of mechanical properties covered by physically realizable microstructures. Our system then clusters microstructures with common topologies into families. Parameterized templates are eventually extracted from families to generate new microstructure designs. We demonstrate these capabilities on the computational design of mechanical metamaterials and present five auxetic microstructure families with extremal elastic material properties. Our study opens the way for the completely automated discovery of extremal microstructures across multiple domains of physics, including applications reliant on thermal, electrical, and magnetic properties. PMID:29376124
A New Approach for Quantitative Evaluation of Ultrasonic Wave Attenuation in Composites
NASA Astrophysics Data System (ADS)
Ni, Qing-Qing; Li, Ran; Xia, Hong
2017-02-01
When ultrasonic waves propagate in composite materials, the propagation behaviors result from the combination effects of various factors, such as material anisotropy and viscoelastic property, internal microstructure and defects, incident wave characteristics and interface condition between composite components. It is essential to make it clear how these factors affect the ultrasonic wave propagation and attenuation characteristics, and how they mutually interact on each other. In the present paper, based on a newly developed time-domain finite element analysis code, PZflex, a unique approach for clarifying the detailed influence mechanism of aforementioned factors is proposed, in which each attenuation component can be extracted from the overall attenuation and analyzed respectively. By taking into consideration the interrelation between each individual attenuation component, the variation behaviors of each component and internal dynamic stress distribution against material anisotropy and matrix viscosity are separately and quantitatively evaluated. From the detailed analysis results of each attenuation component, the energy dissipation at interface is a major component in ultrasonic wave attenuation characteristics, which can provide a maximum contribution rate of 68.2 % to the overall attenuation, and each attenuation component is closely related to the material anisotropy and viscoelasticity. The results clarify the correlation between ultrasonic wave propagation characteristics and material viscoelastic properties, which will be useful in the further development of ultrasonic technology in defect detection.
2013-08-23
REPORT Stablization of Nanotwinned Microstructures in Stainless Steels Through Alloying and Microstructural Design 14. ABSTRACT 16. SECURITY...15. SUBJECT TERMS materials design, stainless steels , plastic deformation by twinning, computational materials science, experimental characterization...Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 30-Jun-2013 Stablization of Nanotwinned Microstructures in Stainless Steels Through
NASA Astrophysics Data System (ADS)
Straka, Weston J.
Hafnium dioxide has attracted a great deal of attention recently due to its potential use in two different electronic applications: CMOS and FeRAM. In CMOS, the usefulness of hafnia comes in due to its high dielectric constant and compatibility with current IC processing parameters. For FeRAM, hafnia's recent discovery to exhibit ferroelectricity in an orthorhombic phase makes this material attractive for replacement of the ferroelectric material in FeRAM. This study shows the feasibility of depositing thin films of hafnium oxide via chemical solution deposition for integration into these devices. The processing parameters necessary to produce this phase show how non-equilibrium processing plays a role in its synthesis. The temperature necessary to achieve the high symmetry phase was at 725 °C for 3 minutes on sapphire, silicon, and coated silicon substrates. The thermal conductivity of each was viewed as the property that allowed the hafnia formation. The dielectric constant of the hafnia films were between 30 and 32 with low dissipation factors and up to 47 with a poor dissipation factor all at 1 kHz. The formation of this phase was shown to be thickness independent with the high symmetry phase existing up to 300 nm film thickness. Interfacing the hafnia film with nickel ferrite was also studied to identify the possibility of using this composite for non-destructive reading of FeRAM. The magnetic properties showed an unchanged nickel ferrite film but the interface between the two was poor leading to the conclusion that more work must be done to successfully integrate these two films.
Microstructure of Matrix in UHTC Composites
NASA Technical Reports Server (NTRS)
Johnson, Sylvia; Stackpoole, Margaret; Gusman, Michael I.; Chavez-Garia Jose; Doxtad, Evan
2011-01-01
Approaches to controlling the microstructure of Ultra High Temperature Ceramics (UHTCs) are described.. One matrix material has been infiltrated into carbon weaves to make composite materials. The microstructure of these composites is described.
Morphology and microstructure of composite materials
NASA Technical Reports Server (NTRS)
Tiwari, S. N.; Srinivansan, K.
1991-01-01
Lightweight continuous carbon fiber based polymeric composites are currently enjoying increasing acceptance as structural materials capable of replacing metals and alloys in load bearing applications. As with most new materials, these composites are undergoing trials with several competing processing techniques aimed at cost effectively producing void free consolidations with good mechanical properties. As metallic materials have been in use for several centuries, a considerable database exists on their morphology - microstructure; and the interrelationships between structure and properties have been well documented. Numerous studies on composites have established the crucial relationship between microstructure - morphology and properties. The various microstructural and morphological features of composite materials, particularly those accompanying different processing routes, are documented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Schondel; Henry S. Chu
Lightweight panels have been designed to protect buildings and vehicles from blast pressures by activating energy dissipation mechanisms under the influence of blast loading. Panels were fabricated which featured a variety of granular materials and hydraulic dissipative deformation mechanisms and the test articles were subjected to full-scale blast loading. The force time-histories transmitted by each technology were measured by a novel method that utilized inexpensive custom-designed force sensors. The array of tests revealed that granular materials can effectively dissipate blast energy if they are employed in a way that they easily crush and rearrange. Similarly, hydraulic dissipation can effectively dissipatemore » energy if the panel features a high fraction of porosity and the panel encasement features low compressive stiffness.« less
Additive Manufacturing of Metastable Beta Titanium Alloys
NASA Astrophysics Data System (ADS)
Yannetta, Christopher J.
Additive manufacturing processes of many alloys are known to develop texture during the deposition process due to the rapid reheating and the directionality of the dissipation of heat. Titanium alloys and with respect to this study beta titanium alloys are especially susceptible to these effects. This work examines Ti-20wt%V and Ti-12wt%Mo deposited under normal additive manufacturing process parameters to examine the texture of these beta-stabilized alloys. Both microstructures contained columnar prior beta grains 1-2 mm in length beginning at the substrate with no visible equiaxed grains. This microstructure remained constant in the vanadium system throughout the build. The microstructure of the alloy containing molybdenum changed from a columnar to an equiaxed structure as the build height increased. Eighteen additional samples of the Ti-Mo system were created under different processing parameters to identify what role laser power and travel speed have on the microstructure. There appears to be a correlation in alpha lath size and power density. The two binary alloys were again deposited under the same conditions with the addition of 0.5wt% boron to investigate the effects an insoluble interstitial alloying element would have on the microstructure. The size of the prior beta grains in these two alloys were reduced with the addition of boron by approximately 50 (V) and 100 (Mo) times.
Hiptmair, F; Major, Z; Haßlacher, R; Hild, S
2015-08-01
Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.
Cu-Al-Ni-SMA-Based High-Damping Composites
NASA Astrophysics Data System (ADS)
López, Gabriel A.; Barrado, Mariano; San Juan, Jose; Nó, María Luisa
2009-08-01
Recently, absorption of vibration energy by mechanical damping has attracted much attention in several fields such as vibration reduction in aircraft and automotive industries, nanoscale vibration isolations in high-precision electronics, building protection in civil engineering, etc. Typically, the most used high-damping materials are based on polymers due to their viscoelastic behavior. However, polymeric materials usually show a low elastic modulus and are not stable at relatively low temperatures (≈323 K). Therefore, alternative materials for damping applications are needed. In particular, shape memory alloys (SMAs), which intrinsically present high-damping capacity thanks to the dissipative hysteretic movement of interfaces under external stresses, are very good candidates for high-damping applications. A completely new approach was applied to produce high-damping composites with relatively high stiffness. Cu-Al-Ni shape memory alloy powders were embedded with metallic matrices of pure In, a In-10wt.%Sn alloy and In-Sn eutectic alloy. The production methodology is described. The composite microstructures and damping properties were characterized. A good particle distribution of the Cu-Al-Ni particles in the matrices was observed. The composites exhibit very high damping capacities in relatively wide temperature ranges. The methodology introduced provides versatility to control the temperature of maximum damping by adjusting the shape memory alloy composition.
Kongpatpanich, Kanokwan; Horike, Satoshi; Fujiwara, Yu-Ichi; Ogiwara, Naoki; Nishihara, Hirotomo; Kitagawa, Susumu
2015-09-14
Porous carbon material with a foam-like microstructure has been synthesized by direct carbonization of porous coordination polymer (PCP). In situ generation of foaming agents by chemical reactions of ligands in PCP during carbonization provides a simple way to create lightweight carbon material with a foam-like microstructure. Among several substituents investigated, the nitro group has been shown to be the key to obtain the unique foam-like microstructure, which is due to the fast kinetics of gas evolution during carbonization. Foam-like microstructural carbon materials showed higher pore volume and specific capacitance compared to a microporous carbon. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Extreme Toughening of Soft Materials with Liquid Metal.
Kazem, Navid; Bartlett, Michael D; Majidi, Carmel
2018-05-01
Soft and tough materials are critical for engineering applications in medical devices, stretchable and wearable electronics, and soft robotics. Toughness in synthetic materials is mostly accomplished by increasing energy dissipation near the crack tip with various energy dissipation techniques. However, bio-materials exhibit extreme toughness by combining multi-scale energy dissipation with the ability to deflect and blunt an advancing crack tip. Here, we demonstrate a synthetic materials architecture that also exhibits multi-modal toughening, whereby embedding a suspension of micron sized and highly deformable liquid metal (LM) droplets inside a soft elastomer, the fracture energy dramatically increases by up to 50x (from 250 ± 50 J m -2 to 11,900 ± 2600 J m -2 ) over an unfilled polymer. For some LM-embedded elastomer (LMEE) compositions, the toughness is measured to be 33,500 ± 4300 J m -2 , which far exceeds the highest value previously reported for a soft elastic material. This extreme toughening is achieved by (i) increasing energy dissipation, (ii) adaptive crack movement, and (iii) effective elimination of the crack tip. Such properties arise from the deformability of the LM inclusions during loading, providing a new mechanism to not only prevent crack initiation, but also resist the propagation of existing tears for ultra tough, soft materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Concept for a fast analysis method of the energy dissipation at mechanical joints
NASA Astrophysics Data System (ADS)
Wolf, Alexander; Brosius, Alexander
2017-10-01
When designing hybrid parts and structures one major challenge is the design, production and quality assessment of the joining points. While the polymeric composites themselves have excellent material properties, the necessary joints are often the weak link in assembled structures. This paper presents a method of measuring and analysing the energy dissipation at mechanical joining points of hybrid parts. A simplified model is applied based on the characteristic response to different excitation frequencies and amplitudes. The dissipation from damage is the result of relative moments between joining partners und damaged fibres within the composite, whereas the visco-elastic material behaviour causes the intrinsic dissipation. The ambition is to transfer these research findings to the characterisation of mechanical joints in order to quickly assess the general quality of the joint with this non-destructive testing method. The inherent challenge for realising this method is the correct interpretation of the measured energy dissipation and its attribution to either a bad joining point or intrinsic material properties. In this paper the authors present the concept for energy dissipation measurements at different joining points. By inverse analysis a simplified fast semi-analytical model will be developed that allows for a quick basic quality assessment of a given joining point.
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
30 CFR 56.6602 - Static electricity dissipation during loading.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Static electricity dissipation during loading... Explosives Extraneous Electricity § 56.6602 Static electricity dissipation during loading. When explosive material is loaded pneumatically into a blasthole in a manner that generates a static electricity hazard...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramovici, E.; Northwood, D.O.; Shehata, M.T.
1999-01-01
The contents include Analysis of In-Service Failures (tutorials, transportation industry, corrosion and materials degradation, electronic and advanced materials); 1998 Sorby Award Lecture by Kay Geels, Struers A/S (Metallographic Preparation from Sorby to the Present); Advances in Microstructural Characterization (characterization techniques using high resolution and focused ion beam, characterization of microstructural clustering and correlation with performance); Advanced Applications (advanced alloys and intermetallic compounds, plasma spray coatings and other surface coatings, corrosion, and materials degradation).
Intergranular degradation assessment via random grain boundary network analysis
Kumar, Mukul; Schwartz, Adam J.; King, Wayne E.
2002-01-01
A method is disclosed for determining the resistance of polycrystalline materials to intergranular degradation or failure (IGDF), by analyzing the random grain boundary network connectivity (RGBNC) microstructure. Analysis of the disruption of the RGBNC microstructure may be assess the effectiveness of materials processing in increasing IGDF resistance. Comparison of the RGBNC microstructures of materials exposed to extreme operating conditions to unexposed materials may be used to diagnose and predict possible onset of material failure due to
An Approximate Dissipation Function for Large Strain Rubber Thermo-Mechanical Analyses
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Chen, Tzi-Kang
2003-01-01
Mechanically induced viscoelastic dissipation is difficult to compute. When the constitutive model is defined by history integrals, the formula for dissipation is a double convolution integral. Since double convolution integrals are difficult to approximate, coupled thermo-mechanical analyses of highly viscous rubber-like materials cannot be made with most commercial finite element software. In this study, we present a method to approximate the dissipation for history integral constitutive models that represent Maxwell-like materials without approximating the double convolution integral. The method requires that the total stress can be separated into elastic and viscous components, and that the relaxation form of the constitutive law is defined with a Prony series. Numerical data is provided to demonstrate the limitations of this approximate method for determining dissipation. Rubber cylinders with imbedded steel disks and with an imbedded steel ball are dynamically loaded, and the nonuniform heating within the cylinders is computed.
Effect of microstructure and THCM processes on fault weakening
NASA Astrophysics Data System (ADS)
Stefanou, I.; Sulem, J.; Rattez, H.
2017-12-01
Field observations of exhumed mature faults and outcrops, i.e. faults that have experienced a large slip, suggest that shear localization occurs in a narrow zone of few millimeters thick or even less inside the fault core. The size of this zone plays a major role in the energy budget of the system as it controls the feedback of the dissipative terms in the energy balance equation.Strain localization in narrow bands can be seen as a bifurcation from the homogeneous deformation solution of the underlying mathematical problem, and is favored by softening behavior. Here we model the shearing of a saturated fault gouge under various multi-physical couplings to investigate the influence of these coupled processes on the softening response. The major drawback of classical continuum theories is that they lead to infinitely narrow shear localized zone. This can be remedied by resorting to Cosserat continuum theory for which constitutive models contain a material length. Moreover, Cosserat models are appropriate for taking into account the granular microstructure of the fault gouge for which the Cosserat material length is naturally related to the grain size of the gouge. Thus, bifurcation analysis of the sheared layer includes the calculation of the evolution of the thickness of the localized zone.A numerical analysis including the effect of shear heating and pore fluid thermal pressurization is performed and the results of the bifurcation analysis are compared to field observations in terms of the localized zone thickness. At high temperature rise, thermally induced mineral transformation such as dehydration of clayey minerals or decomposition of carbonates can occur. The effect of these chemical reactions on the shear band thickness evolution is investigated and the numerical results are compared to observations of the Mt. Maggio fault located in the Northern Apennines of Italy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourspring, P.M.; Pangborn, R.N.
1996-06-01
X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The first objective of the investigation was to determine if XRDCD could be used to effectively monitor cyclic microstructural deformation in polycrystalline Fe alloys. A second objective was to study the microstructural deformation induced by cyclic loading of polycrystalline Fe alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life ofmore » the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.« less
NASA Astrophysics Data System (ADS)
Zou, Shibo; Therriault, Daniel; Gosselin, Frederick
A simple modification by increasing the deposition height on a commercially available 3D printer makes it a mechanical sewing machine due to the fluid mechanical instability. A variety of stitches-like patterns can be produced, similar to those by the Newtonian fluid mechanical sewing machine\\x9D, but with more interesting characteristics in the additional third dimension, which creates weakly fused bonds in some patterns. With these bonds, the fabricated fibers exhibit improved toughness in uniaxial tensile test. The toughening mechanism is found to be similar to the one in spider silk - the breaking of sacrificial bonds and the releasing of hidden length contribute significant dissipated energy to the system. However, the mechanical performance of these microstructured fibers is restricted by early fiber breakage as the number of sacrificial bonds increases. Here, we seek to understand the failure mechanisms of the microstructured fibers through tensile tests and finite element simulations. Static and dynamic failure are both found to cause early fiber breakage. These findings are helpful for the design optimization of microstructured fibers with high toughness and ductility, which can find potential use in impact protection and safety-critical applications.
Ciuffini, Andrea Francesco; Barella, Silvia; Peral Martínez, Luis Borja; Mapelli, Carlo; Fernández Pariente, Inés
2018-06-19
Shot peening is a surface process commonly used in the aeronautic and automotive industries to improve fatigue resistance. Shot peening is proven to be beneficial in the fatigue behavior of components, but rarely has its influence on wear and pitting corrosion resistance been evaluated. In this work, shot peening was performed on AISI F55-UNS S32760 super-duplex stainless steel samples previously submitted to various thermal treatments, to obtain different initial microstructures and properties. Samples have been characterized in terms of microstructure morphology, local chemical composition, microhardness of each constituent phase, and energy dissipation modes. The enhanced properties provided by shot peening has been evaluated through residual stress depth profiles and Full Width at Half Maximum (FWHM) using X-ray diffraction (XRD), surface hardness, surface roughness, and corrosion resistance through salt spray fog tests. The 1400 °C solution thermal treatment was identified as the optimum initial condition, which maximizes the advantages of the shot peening treatment, even pitting corrosion resistance. These results are related to the uniformity of austenite and ferrite in terms of microstructure morphology, micromechanical properties, and alloying elements distribution.
Effect of Microstructure on the Strength and Fracture Energy of Bimaterial Interfaces
1993-12-31
non - dimensional plastic dissipationdensity with distance from the crack plane, y. Preliminary Analysis of Plastic Dissipation Associated with Crack...basis for emplaced in the bonding fixture, subject to a pressure finite element analysis of crack extension along the of - I MPa. The bonding fixture is... finite element analysis has been used to calculate stresses in the vicinity of a crack and the results rationalizd on the basis of low and high
Long-Term Autonomous Measurement of Ocean Dissipation with EPS-MAPPER
2002-09-30
profiler merges two well-established instruments, EPSONDE (Oakey, 1988) and Seahorse (Hamilton et al, 1999). The EPSONDE ocean- microstructure technology...will be repackaged with modernized electronics and data logging memory and used as the payload for the Seahorse moored profiler. APPROACH The...mounting to decouple the SeaHorse motions from the profiler. SeaHorseTM uses wave energy to move the profiler down a mooring wire to a docked
3D Microstructures for Materials and Damage Models
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
2017-02-01
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Cavitation instability as a trigger of aneurysm rupture.
Volokh, K Y
2015-10-01
Aneurysm formation and growth is accompanied by microstructural alterations in the arterial wall. Particularly, the loss of elastin may lead to tissue disintegration and appearance of voids or cavities at the micron scale. Unstable growth and coalescence of voids may be a predecessor and trigger for the onset of macroscopic cracks. In the present work, we analyze the instability of membrane (2D) and bulk (3D) voids under hydrostatic tension by using two experimentally calibrated constitutive models of abdominal aortic aneurysm enhanced with energy limiters. The limiters provide the saturation value for the strain energy, which indicates the maximum energy that can be stored and dissipated by an infinitesimal material volume. We find that the unstable growth of voids can start when the critical stress is considerably less than the aneurysm strength. Moreover, this critical stress may even approach the arterial wall stress in the physiological range. This finding suggests that cavitation instability can be a rational indicator of the aneurysm rupture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, W.; Zhang, J.; Wang, Z.
1995-10-01
The relationship between microstructure and propagation behavior of fatigue crack in TiB{sub 2} particulate reinforced ZA-8 Zn alloy and in the corresponding constituent matrix material was studied in three point bending fatigue tests with well-polished and pre-etched specimens. Special attention was paid to the observation of microstructure along the crack path as well as on the fracture surface. Mechanism for the difference in fatigue crack growth behavior of the two materials was investigated. The present results indicate that the addition of reinforcement modified the solidification process of the matrix material leading to a considerable change in the matrix microstructure. Thismore » change in the matrix microstructure and the presence of reinforcing particles considerably affected the fatigue crack propagation behavior in the material.« less
Structural integrity of additive materials: Microstructure, fatigue behavior, and surface processing
NASA Astrophysics Data System (ADS)
Book, Todd A.
Although Additive Manufacturing (AM) offers numerous performance advantages over existing methods, AM structures are not being utilized for critical aerospace and mechanical applications due to uncertainties in their structural integrity as a result of the microstructural variations and defects arising from the AM process itself. Two of these uncertainties are the observed scatter in tensile strength and fatigue lives of direct metal laser sintering (DMLS) parts. With strain localization a precursor for material failure, this research seeks to explore the impact of microstructural variations in DMLS produced materials on strain localization. The first part of this research explores the role of the microstructure in strain localization of DMLS produced IN718 and Ti6Al4V specimens (as-built and post-processed) through the characterization of the linkage between microstructural variations, and the accumulation of plastic strain during monotonic and low cycle fatigue loading. The second part of this research explores the feasibility for the application of select surface processing techniques in-situ during the DMLS build process to alter the microstructure in AlSi10Mg to reduce strain localization and improve material cohesion. This study is based on utilizing experimental observations through the employment of advanced material characterization techniques such as digital image correlation to illustrate the impacts of DMLS microstructural variation.
Designing Biomimetic, Dissipative Material Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balazs, Anna C.; Whitesides, George M.; Brinker, C. Jeffrey
Throughout human history, new materials have been the foundation of transformative technologies: from bronze, paper, and ceramics to steel, silicon, and polymers, each material has enabled far-reaching advances. Today, another new class of materials is emerging—one with both the potential to provide radically new functions and to challenge our notion of what constitutes a “material”. These materials would harvest, transduce, or dissipate energy to perform autonomous, dynamic functions that mimic the behaviors of living organisms. Herein, we discuss the challenges and benefits of creating “dissipative” materials that can potentially blur the boundaries between living and non-living matter.
Cantilevered multilevel LIGA devices and methods
Morales, Alfredo Martin; Domeier, Linda A.
2002-01-01
In the formation of multilevel LIGA microstructures, a preformed sheet of photoresist material, such as polymethylmethacrylate (PMMA) is patterned by exposure through a mask to radiation, such as X-rays, and developed using a developer to remove the exposed photoresist material. A first microstructure is then formed by electroplating metal into the areas from which the photoresist has been removed. Additional levels of microstructure are added to the initial microstructure by covering the first microstructure with a conductive polymer, machining the conductive polymer layer to reveal the surface of the first microstructure, sealing the conductive polymer and surface of the first microstructure with a metal layer, and then forming the second level of structure on top of the first level structure. In such a manner, multiple layers of microstructure can be built up to allow complex cantilevered microstructures to be formed.
High thermal conductivity liquid metal pad for heat dissipation in electronic devices
NASA Astrophysics Data System (ADS)
Lin, Zuoye; Liu, Huiqiang; Li, Qiuguo; Liu, Han; Chu, Sheng; Yang, Yuhua; Chu, Guang
2018-05-01
Novel thermal interface materials using Ag-doped Ga-based liquid metal were proposed for heat dissipation of electronic packaging and precision equipment. On one hand, the viscosity and fluidity of liquid metal was controlled to prevent leakage; on the other hand, the thermal conductivity of the Ga-based liquid metal was increased up to 46 W/mK by incorporating Ag nanoparticles. A series of experiments were performed to evaluate the heat dissipation performance on a CPU of smart-phone. The results demonstrated that the Ag-doped Ga-based liquid metal pad can effectively decrease the CPU temperature and change the heat flow path inside the smart-phone. To understand the heat flow path from CPU to screen through the interface material, heat dissipation mechanism was simulated and discussed.
Molecular dynamics studies of thermal dissipation during shock induced spalling
NASA Astrophysics Data System (ADS)
Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi
2013-09-01
Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.
Toward a virtual platform for materials processing
NASA Astrophysics Data System (ADS)
Schmitz, G. J.; Prahl, U.
2009-05-01
Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.
1981-10-01
microstructures which may be developed and finally to relate properties to structure and composition (28-31). Sialon materials are alloys of Si3N4 with oxides...techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of fabrication...microhardness techniques. The effects of specimen microstructure on indentation processes were determined by using materials formed by a wide range of
Vibration dissipation mount for motors or the like
Small, Thomas R.
1987-01-01
A vibration dissipation mount which permits the mounting of a motor, generator, or the like such that the rotatable shaft thereof passes through the mount and the mount permits the dissipation of self-induced and otherwise induced vibrations wherein the mount comprises a pair of plates having complementary concave and convex surfaces, a semi-resilient material being disposed therebetween.
Composite Materials for Thermal Energy Storage: Enhancing Performance through Microstructures
Ge, Zhiwei; Ye, Feng; Ding, Yulong
2014-01-01
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. PMID:24591286
Realistic micromechanical modeling and simulation of two-phase heterogeneous materials
NASA Astrophysics Data System (ADS)
Sreeranganathan, Arun
This dissertation research focuses on micromechanical modeling and simulations of two-phase heterogeneous materials exhibiting anisotropic and non-uniform microstructures with long-range spatial correlations. Completed work involves development of methodologies for realistic micromechanical analyses of materials using a combination of stereological techniques, two- and three-dimensional digital image processing, and finite element based modeling tools. The methodologies are developed via its applications to two technologically important material systems, namely, discontinuously reinforced aluminum composites containing silicon carbide particles as reinforcement, and boron modified titanium alloys containing in situ formed titanium boride whiskers. Microstructural attributes such as the shape, size, volume fraction, and spatial distribution of the reinforcement phase in these materials were incorporated in the models without any simplifying assumptions. Instrumented indentation was used to determine the constitutive properties of individual microstructural phases. Micromechanical analyses were performed using realistic 2D and 3D models and the results were compared with experimental data. Results indicated that 2D models fail to capture the deformation behavior of these materials and 3D analyses are required for realistic simulations. The effect of clustering of silicon carbide particles and associated porosity on the mechanical response of discontinuously reinforced aluminum composites was investigated using 3D models. Parametric studies were carried out using computer simulated microstructures incorporating realistic microstructural attributes. The intrinsic merit of this research is the development and integration of the required enabling techniques and methodologies for representation, modeling, and simulations of complex geometry of microstructures in two- and three-dimensional space facilitating better understanding of the effects of microstructural geometry on the mechanical behavior of materials.
TRADITIONAL METALLURGY, NANOTECHNOLOGIES AND STRUCTURAL MATERIALS: A SORBY AWARD LECTURE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Louthan, M
2007-07-17
Traditional metallurgical processes are among the many ''old fashion'' practices that use nanoparticles to control the behavior of materials. Many of these practices were developed long before microscopy could resolve nanoscale features, yet the practitioners learned to manipulate and control microstructural elements that they could neither see nor identify. Furthermore, these early practitioners used that control to modify microstructures and develop desired material properties. Centuries old colored glass, ancient high strength steels and medieval organ pipes derived many of their desirable features through control of nanoparticles in their microstructures. Henry Sorby was among the first to recognize that the propertiesmore » of rocks, minerals, metals and organic materials were controlled by microstructure. However, Mr. Sorby was accused of the folly of trying to study mountains with a microscope. Although he could not resolve nanoscale microstructural features, Mr. Sorby's observations revolutionized the study of materials. The importance of nanoscale microstructural elements should be emphasized, however, because the present foundation for structural materials was built by manipulating those features. That foundation currently supports several multibillion dollar industries but is not generally considered when the nanomaterials revolution is discussed. This lecture demonstrates that using nanotechnologies to control the behavior of metallic materials is almost as old as the practice of metallurgy and that many of the emergent nanomaterials technologists are walking along pathways previously paved by traditional metallurgists.« less
Coastal Microstructure: From Active Overturn to Fossil Turbulence
NASA Astrophysics Data System (ADS)
Tau Leung, Pak
2011-11-01
The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil turbulence theory and with laboratory studies. 3. Compared to a far-field reference, elevated dissipation rates near the diffuser were found in the seasonal pycnocline as well as in the bottom boundary layer. 4. More than 90% of the turbulent patches observed in the water column were non- overturning (active+fossil and fossil). Such patches can provide significant mixing in the interior of the ocean, far from surface and bottom boundary layers.
NASA Astrophysics Data System (ADS)
Fourspring, Patrick Michael
X-ray double crystal diffractometry (XRDCD) and X-ray scanning diffractometry (XRSD) were used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if X-ray diffraction could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material. Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0-10 mum), subsurface (10-300 mum), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. The results from the XRSD data show similar but less coherent trends than the results from the XRDCD data. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels. In addition, for the AISI304 material, the level of cyclic microstructural deformation in the bulk material was found to be greater than the level in the near surface material. In contrast, previous investigations have shown that the deformation is greater in the near surface than the bulk for Al alloys and bcc Fe alloys.
Discrete microstructural cues for the attenuation of fibrosis following myocardial infarction.
Pinney, James R; Du, Kim T; Ayala, Perla; Fang, Qizhi; Sievers, Richard E; Chew, Patrick; Delrosario, Lawrence; Lee, Randall J; Desai, Tejal A
2014-10-01
Chronic fibrosis caused by acute myocardial infarction (MI) leads to increased morbidity and mortality due to cardiac dysfunction. We have developed a therapeutic materials strategy that aims to mitigate myocardial fibrosis by utilizing injectable polymeric microstructures to mechanically alter the microenvironment. Polymeric microstructures were fabricated using photolithographic techniques and studied in a three-dimensional culture model of the fibrotic environment and by direct injection into the infarct zone of adult rats. Here, we show dose-dependent down-regulation of expression of genes associated with the mechanical fibrotic response in the presence of microstructures. Injection of this microstructured material into the infarct zone decreased levels of collagen and TGF-β, increased elastin deposition and vascularization in the infarcted region, and improved functional outcomes after six weeks. Our results demonstrate the efficacy of these discrete anti-fibrotic microstructures and suggest a potential therapeutic materials approach for combatting pathologic fibrosis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Quantifying the limits of through-plane thermal dissipation in 2D-material-based systems
NASA Astrophysics Data System (ADS)
Yasaei, Poya; Behranginia, Amirhossein; Hemmat, Zahra; El-Ghandour, Ahmed I.; Foster, Craig D.; Salehi-Khojin, Amin
2017-09-01
Through-plane thermal transport accounts for a major fraction of heat dissipation from hot-spots in many existing devices made of two-dimensional (2D) materials. In this report, we performed a set of electrical thermometry measurements and 3D finite element analyses to quantify the limits of power dissipation in monolayer graphene, a representative of 2D materials, fabricated on various technologically viable substrates such as chemical vapor deposited (CVD) diamond, tape-casted (sintered) aluminum nitride (AlN), and single crystalline c-plane sapphire as well as silicon with different oxide layers. We demonstrate that the heat dissipation through graphene on AlN substrate near room temperature outperforms those of CVD diamond and other studied substrates, owing to its superior thermal boundary conductance (TBC). At room temperature, our measurements reveal a TBC of 33.5 MW · m-2 · K-1 for graphene on AlN compared to 6.2 MW · m-2 · K-1 on diamond. This study highlights the importance of simultaneous optimization of the interfaces and the substrate and provides a route to maximize the heat removal capability of 2D-material-based devices.
NASA Astrophysics Data System (ADS)
Mathieu, Jean-Philippe; Inal, Karim; Berveiller, Sophie; Diard, Olivier
2010-11-01
Local approach to brittle fracture for low-alloyed steels is discussed in this paper. A bibliographical introduction intends to highlight general trends and consensual points of the topic and evokes debatable aspects. French RPV steel 16MND5 (equ. ASTM A508 Cl.3), is then used as a model material to study the influence of temperature on brittle fracture. A micromechanical modelling of brittle fracture at the elementary volume scale already used in previous work is then recalled. It involves a multiscale modelling of microstructural plasticity which has been tuned on experimental inter-phase and inter-granular stresses heterogeneities measurements. Fracture probability of the elementary volume can then be computed using a randomly attributed defect size distribution based on realistic carbides repartition. This defect distribution is then deterministically correlated to stress heterogeneities simulated within the microstructure using a weakest-link hypothesis on the elementary volume, which results in a deterministic stress to fracture. Repeating the process allows to compute Weibull parameters on the elementary volume. This tool is then used to investigate the physical mechanisms that could explain the already experimentally observed temperature dependence of Beremin's parameter for 16MND5 steel. It is showed that, assuming that the hypothesis made in this work about cleavage micro-mechanisms are correct, effective equivalent surface energy (i.e. surface energy plus plastically dissipated energy when blunting the crack tip) for propagating a crack has to be temperature dependent to explain Beremin's parameters temperature evolution.
Composite materials for thermal energy storage: enhancing performance through microstructures.
Ge, Zhiwei; Ye, Feng; Ding, Yulong
2014-05-01
Chemical incompatibility and low thermal conductivity issues of molten-salt-based thermal energy storage materials can be addressed by using microstructured composites. Using a eutectic mixture of lithium and sodium carbonates as molten salt, magnesium oxide as supporting material, and graphite as thermal conductivity enhancer, the microstructural development, chemical compatibility, thermal stability, thermal conductivity, and thermal energy storage performance of composite materials are investigated. The ceramic supporting material is essential for preventing salt leakage and hence provides a solution to the chemical incompatibility issue. The use of graphite gives a significant enhancement on the thermal conductivity of the composite. Analyses suggest that the experimentally observed microstructural development of the composite is associated with the wettability of the salt on the ceramic substrate and that on the thermal conduction enhancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Thermal Microstructural Stability of AZ31 Magnesium after Severe Plastic Deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, John P.; Askari, Hesam A.; Hovanski, Yuri
2015-03-01
Both equal channel angular pressing and friction stir processing have the ability to refine the grain size of twin roll cast AZ31 magnesium and potentially improve its superplastic properties. This work used isochronal and isothermal heat treatments to investigate the microstructural stability of twin roll cast, equal channel angular pressed and friction stir processed AZ31 magnesium. For both heat treatment conditions, it was found that the twin roll casted and equal channel angular pressed materials were more stable than the friction stir processed material. Calculations of the grain growth kinetics showed that severe plastic deformation processing decreased the activation energymore » for grain boundary motion with the equal channel angular pressed material having the greatest Q value of the severely plastically deformed materials and that increasing the tool travel speed of the friction stir processed material improved microstructural stability. The Hollomon-Jaffe parameter was found to be an accurate means of identifying the annealing conditions that will result in substantial grain growth and loss of potential superplastic properties in the severely plastically deformed materials. In addition, Humphreys’s model of cellular microstructural stability accurately predicted the relative microstructural stability of the severely plastically deformed materials and with some modification, closely predicted the maximum grain size ratio achieved by the severely plastically deformed materials.« less
A constitutive model for magnetostriction based on thermodynamic framework
NASA Astrophysics Data System (ADS)
Ho, Kwangsoo
2016-08-01
This work presents a general framework for the continuum-based formulation of dissipative materials with magneto-mechanical coupling in the viewpoint of irreversible thermodynamics. The thermodynamically consistent model developed for the magnetic hysteresis is extended to include the magnetostrictive effect. The dissipative and hysteretic response of magnetostrictive materials is captured through the introduction of internal state variables. The evolution rate of magnetostrictive strain as well as magnetization is derived from thermodynamic and dissipative potentials in accordance with the general principles of thermodynamics. It is then demonstrated that the constitutive model is competent to describe the magneto-mechanical behavior by comparing simulation results with the experimental data reported in the literature.
Storage depot for radioactive material
Szulinski, Milton J.
1983-01-01
Vertical drilling of cylindrical holes in the soil, and the lining of such holes, provides storage vaults called caissons. A guarded depot is provided with a plurality of such caissons covered by shielded closures preventing radiation from penetrating through any linear gap to the atmosphere. The heat generated by the radioactive material is dissipated through the vertical liner of the well into the adjacent soil and thus to the ground surface so that most of the heat from the radioactive material is dissipated into the atmosphere in a manner involving no significant amount of biologically harmful radiation. The passive cooling of the radioactive material without reliance upon pumps, personnel, or other factor which might fail, constitutes one of the most advantageous features of this system. Moreover this system is resistant to damage from tornadoes or earthquakes. Hermetically sealed containers of radioactive material may be positioned in the caissons. Loading vehicles can travel throughout the depot to permit great flexibility of loading and unloading radioactive materials. Radioactive material can be shifted to a more closely spaced caisson after ageing sufficiently to generate much less heat. The quantity of material stored in a caisson is restricted by the average capacity for heat dissipation of the soil adjacent such caisson.
NASA Technical Reports Server (NTRS)
Reed, Susan M.; Herakovich, Carl T.; Sykes, George F., Jr.
1987-01-01
The effects of electron radiation and elevated temperature on the matrix-dominated cyclic response of standard T300/934 and a chemically modified T300/934 graphite-epoxy are characterized. Both materials were subjected to 1.0 x 10 to the 10th rads of 1.0 MeV electron irradiation, under vacuum, to simulate 30 years in geosynchronous orbit. Cyclic tests were performed at room temperature and elevated temperature (121 C) on 4-ply unidirectional laminates to characterize the effects associated with irradiation and elevated temperature. Both materials exhibited energy dissipation in their response at elevated temperature. The irradiated modified material also exhibited energy dissipation at room temperature. The combination of elevated temperature and irradiation resulted in the most severe effects in the form of lower proportional limits, and greater energy dissipation. Dynamic-mechanical analysis demonstrated that the glass transition temperature, T(g), of the standard material was lowered 39 C by irradiation, wereas the T(g) of the modified material was lowered 28 C by irradiation. Thermomechanical analysis showed the occurrence of volatile products generated upon heating of the irradiated materials.
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, J.; Pindera, M. J.; Arnold, Steven M.
2001-01-01
Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.
Effect of an Auxiliary Plate on Passive Heat Dissipation of Carbon Nanotube-Based Materials.
Yu, Wei; Duan, Zheng; Zhang, Guang; Liu, Changhong; Fan, Shoushan
2018-03-14
Carbon nanotubes (CNTs) and other related CNT-based materials with a high thermal conductivity can be used as promising heat dissipation materials. Meanwhile, the miniaturization and high functionality of portable electronics, such as laptops and mobile phones, are achieved at the cost of overheating the high power-density components. The heat removal for hot spots occurring in a relatively narrow space requires simple and effective cooling methods. Here, an auxiliary passive cooling approach by the aid of a flat plate (aluminum-magnesium alloy) is investigated to accommodate heat dissipation in a narrow space. The cooling efficiency can be raised to 43.5%. The cooling performance of several CNT-based samples is compared under such circumstances. Heat dissipation analyses show that, when there is a nearby plate for cooling assistance, the heat radiation is weakened and natural convection is largely improved. Thus, improving heat radiation by increasing emissivity without reducing natural convection can effectively enhance the cooling performance. Moreover, the decoration of an auxiliary cooling plate with sprayed CNTs can further improve the cooling performance of the entire setup.
Food structure: Its formation and relationships with other properties.
Joardder, Mohammad U H; Kumar, Chandan; Karim, M A
2017-04-13
Food materials are complex in nature as it has heterogeneous, amorphous, hygroscopic and porous properties. During processing, microstructure of food materials changes which significantly affects other properties of food. An appropriate understanding of the microstructure of the raw food material and its evolution during processing is critical in order to understand and accurately describe dehydration processes and quality anticipation. This review critically assesses the factors that influence the modification of microstructure in the course of drying of fruits and vegetables. The effect of simultaneous heat and mass transfer on microstructure in various drying methods is investigated. Effects of changes in microstructure on other functional properties of dried foods are discussed. After an extensive review of the literature, it is found that development of food structure significantly depends on fresh food properties and process parameters. Also, modification of microstructure influences the other properties of final product. An enhanced understanding of the relationships between food microstructure, drying process parameters and final product quality will facilitate the energy efficient optimum design of the food processor in order to achieve high-quality food.
NASA Astrophysics Data System (ADS)
Meshgin, Pania
2011-12-01
This research focuses on two important subjects: (1) Characterization of heterogeneous microstructure of multi-phase composites and the effect of microstructural features on effective properties of the material. (2) Utilizations of phase change materials and recycled rubber particles from waste tires to improve thermal properties of insulation materials used in building envelopes. Spatial pattern of multi-phase and multidimensional internal structures of most composite materials are highly random. Quantitative description of the spatial distribution should be developed based on proper statistical models, which characterize the morphological features. For a composite material with multi-phases, the volume fraction of the phases as well as the morphological parameters of the phases have very strong influences on the effective property of the composite. These morphological parameters depend on the microstructure of each phase. This study intends to include the effect of higher order morphological details of the microstructure in the composite models. The higher order statistics, called two-point correlation functions characterize various behaviors of the composite at any two points in a stochastic field. Specifically, correlation functions of mosaic patterns are used in the study for characterizing transport properties of composite materials. One of the most effective methods to improve energy efficiency of buildings is to enhance thermal properties of insulation materials. The idea of using phase change materials and recycled rubber particles such as scrap tires in insulation materials for building envelopes has been studied.
Towards a metadata scheme for the description of materials - the description of microstructures
NASA Astrophysics Data System (ADS)
Schmitz, Georg J.; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
Towards a metadata scheme for the description of materials - the description of microstructures.
Schmitz, Georg J; Böttger, Bernd; Apel, Markus; Eiken, Janin; Laschet, Gottfried; Altenfeld, Ralph; Berger, Ralf; Boussinot, Guillaume; Viardin, Alexandre
2016-01-01
The property of any material is essentially determined by its microstructure. Numerical models are increasingly the focus of modern engineering as helpful tools for tailoring and optimization of custom-designed microstructures by suitable processing and alloy design. A huge variety of software tools is available to predict various microstructural aspects for different materials. In the general frame of an integrated computational materials engineering (ICME) approach, these microstructure models provide the link between models operating at the atomistic or electronic scales, and models operating on the macroscopic scale of the component and its processing. In view of an improved interoperability of all these different tools it is highly desirable to establish a standardized nomenclature and methodology for the exchange of microstructure data. The scope of this article is to provide a comprehensive system of metadata descriptors for the description of a 3D microstructure. The presented descriptors are limited to a mere geometric description of a static microstructure and have to be complemented by further descriptors, e.g. for properties, numerical representations, kinetic data, and others in the future. Further attributes to each descriptor, e.g. on data origin, data uncertainty, and data validity range are being defined in ongoing work. The proposed descriptors are intended to be independent of any specific numerical representation. The descriptors defined in this article may serve as a first basis for standardization and will simplify the data exchange between different numerical models, as well as promote the integration of experimental data into numerical models of microstructures. An HDF5 template data file for a simple, three phase Al-Cu microstructure being based on the defined descriptors complements this article.
NASA Astrophysics Data System (ADS)
Wang, Kelu; Li, Xin; Zhang, Xiaobo
2018-03-01
The power dissipation maps of Ti-25Al-15Nb alloy were constructed by using the compression test data. A method is proposed to predict the distribution and variation of power dissipation coefficient in hot forging process using both the dynamic material model and finite element simulation. Using the proposed method, the change characteristics of the power dissipation coefficient are simulated and predicted. The effectiveness of the proposed method was verified by comparing the simulation results with the physical experimental results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fourspring, P.M.; Pangborn, R.N.
1997-12-31
X-ray double crystal diffractometry (XRDCD) was used to assess cyclic microstructural deformation in a face centered cubic (fcc) steel (AISI304) and a body centered cubic (bcc) steel (SA508 class 2). The objectives of the investigation were to determine if XRDCD could be used effectively to monitor cyclic microstructural deformation in polycrystalline Fe alloys and to study the distribution of the microstructural deformation induced by cyclic loading in these alloys. The approach used in the investigation was to induce fatigue damage in a material and to characterize the resulting microstructural deformation at discrete fractions of the fatigue life of the material.more » Also, characterization of microstructural deformation was carried out to identify differences in the accumulation of damage from the surface to the bulk, focusing on the following three regions: near surface (0--10 {micro}m), subsurface (10--300 {micro}m), and bulk. Characterization of the subsurface region was performed only on the AISI304 material because of the limited availability of the SA508 material. The results from the XRDCD data indicate a measurable change induced by fatigue from the initial state to subsequent states of both the AISI304 and the SA508 materials. Therefore, the XRDCD technique was shown to be sensitive to the microstructural deformation caused by fatigue in steels; thus, the technique can be used to monitor fatigue damage in steels.« less
Yan, Yongli; Zhang, Chuang; Yao, Jiannian; Zhao, Yong Sheng
2013-07-19
Many recent activities in the use of one-dimensional nanostructures as photonic elements for optical information processing are explained by huge advantages that photonic circuits possess over traditional silicon-based electronic ones in bandwidth, heat dissipation, and resistance to electromagnetic wave interference. Organic materials are a promising candidate to support these optical-related applications, as they combine the properties of plastics with broad spectral tunability, high optical cross-section, easy fabrication, as well as low cost. Their outstanding compatibility allows organic composite structures which are made of two or more kinds of materials combined together, showing great superiority to single-component materials due to the introduced interactions among multiple constituents, such as energy transfer, electron transfer, exciton coupling, etc. The easy processability of organic 1D crystalline heterostructures enables a fine topological control of both composition and geometry, which offsets the intrinsic deficiencies of individual material. At the same time, the strong exciton-photon coupling and exciton-exciton interaction impart the excellent confinement of photons in organic microstructures, thus light can be manipulated according to our intention to realize specific functions. These collective properties indicate a potential utility of organic heterogeneous material for miniaturized photonic circuitry. Herein, focus is given on recent advances of 1D organic crystalline heterostructures, with special emphasis on the novel design, controllable construction, diverse performance, as well as wide applications in isolated photonic elements for integration. It is proposed that the highly coupled, hybrid optical networks would be an important material basis towards the creation of on-chip optical information processing. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utilization of FEM model for steel microstructure determination
NASA Astrophysics Data System (ADS)
Kešner, A.; Chotěborský, R.; Linda, M.; Hromasová, M.
2018-02-01
Agricultural tools which are used in soil processing, they are worn by abrasive wear mechanism cases by hard minerals particles in the soil. The wear rate is influenced by mechanical characterization of tools material and wear rate is influenced also by soil mineral particle contents. Mechanical properties of steel can be affected by a technology of heat treatment that it leads to a different microstructures. Experimental work how to do it is very expensive and thanks to numerical methods like FEM we can assumed microstructure at low cost but each of numerical model is necessary to be verified. The aim of this work has shown a procedure of prediction microstructure of steel for agricultural tools. The material characterizations of 51CrV4 grade steel were used for numerical simulation like TTT diagram, heat capacity, heat conduction and other physical properties of material. A relationship between predicted microstructure by FEM and real microstructure after heat treatment shows a good correlation.
The effect of microstructure on microbiologically influenced corrosion
NASA Technical Reports Server (NTRS)
Walsh, Dan; Pope, Dan; Danford, Merlin; Huff, Tim
1993-01-01
Results of several investigations involving stainless steels, aluminum alloys, and low-alloy steels are reviewed, and the effect of welding on microbiologically influenced corrosion (MIC) susceptibility in these materials is discussed. Emphasis is placed on research performed at California Polytechnic State University on the relationship between MIC and metallurgical microstructure. Topics addressed include initial stages of film development in materials with different microstructure and surface conditions, effects of inclusion on the MIC response of materials, aluminum 2219, effects of welding, and constitutional liquation.
Huang, Wei; Zaheri, Alireza; Jung, Jae-Young; Espinosa, Horacio D; Mckittrick, Joanna
2017-12-01
Bighorn sheep (Ovis canadensis) rams hurl themselves at each other at speeds of ∼9 m/s (20 mph) to fight for dominance and mating rights. This necessitates impact resistance and energy absorption mechanisms, which stem from material-structure components in horns. In this study, the material hierarchical structure as well as correlations between the structure and mechanical properties are investigated. The major microstructural elements of horns are found as tubules and cell lamellae, which are oriented with (∼30⁰) angle with respect to each other. The cell lamellae contain keratin cells, in the shape of pancakes, possessing an average thickness of ∼2 µm and diameter of ∼20-30 µm. The morphology of keratin cells reveals the presence of keratin fibers and intermediate filaments with diameter of ∼200 nm and ∼12 nm, respectively, parallel to the cell surface. Quasi-static and high strain rate impact experiments, in different loading directions and hydration states, revealed a strong strain rate dependency for both dried and hydrated conditions. A strong anisotropy behavior was observed under impact for the dried state. The results show that the radial direction is the most preferable impact orientation because of its superior energy absorption. Detailed failure mechanisms under the aforementioned conditions are examined by bar impact recovery experiments. Shear banding, buckling of cell lamellae, and delamination in longitudinal and transverse direction were identified as the cause for strain softening under high strain rate impact. While collapse of tubules occurs in both quasi-static and impact tests, in radial and transverse directions, the former leads to more energy absorption and impact resistance. Bighorn sheep (Ovis canadensis) horns show remarkable impact resistance and energy absorption when undergoing high speed impact during the intraspecific fights. The present work illustrates the hierarchical structure of bighorn sheep horn at different length scales and investigates the energy dissipation mechanisms under different strain rates, loading orientations and hydration states. These results demonstrate how horn dissipates large amounts of energy, thus provide a new path to fabricate energy absorbent and crashworthiness engineering materials. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Modeling macro-and microstructures of Gas-Metal-Arc Welded HSLA-100 steel
NASA Astrophysics Data System (ADS)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence, thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of the calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, “finger” penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstätten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.
NASA Astrophysics Data System (ADS)
SzelÄ g, M.; Lesiak, P.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Results of our research on embedded highly birefringent polymer microstructured fibers are presented. A composite material sample with fibers embedded between two layers of a multi-layer composite structure is fabricated and characterized. Temperature sensitivities of the polymer fibers are measured in a free space and compared with the fibers embedded in the composite material. It appeared that highly birefringent polymer microstructured fibers exhibit a strong increase in temperature sensitivity when embedded in the composite material, which is due to the stress-induced changes in birefringence created by thermally-induced strain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pareige, P.; Russell, K.F.; Stoller, R.E.
1998-03-01
Atom probe field ion microscopy (APFIM) investigations of the microstructure of unaged (as-fabricated) and long-term thermally aged ({approximately} 100,000 h at 280 C) surveillance materials from commercial reactor pressure vessel steels were performed. This combination of materials and conditions permitted the investigation of potential thermal-aging effects. This microstructural study focused on the quantification of the compositions of the matrix and carbides. The APFIM results indicate that there was no significant microstructural evolution after a long-term thermal exposure in weld, plate, or forging materials. The matrix depletion of copper that was observed in weld materials was consistent with the copper concentrationmore » in the matrix after the stress-relief heat treatment. The compositions of cementite carbides aged for 100,000 h were compared with the Thermocalc{trademark} prediction. The APFIM comparisons of materials under these conditions are consistent with the measured change in mechanical properties such as the Charpy transition temperature.« less
Mechanical properties of porous and cellular materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sieradzki, K.; Green, D.J.; Gibson, L.J.
1991-01-01
This symposium successfully brought scientists together from a wide variety of disciplines to focus on the mechanical behavior of porous and cellular solids composed of metals, ceramics, polymers, or biological materials. For cellular materials, papers ranged from processing techniques through microstructure-mechanical property relationships to design. In an overview talk, Mike Ashby (Cambridge Univ.) showed how porous cellular materials can be more efficient than dense materials in designs that require minimum weight. He indicated that many biological materials have been able to accomplish such efficiency but there exists an opportunity to design even more efficient, manmade materials controlling microstructures at differentmore » scale levels. In the area of processing, James Aubert (Sandia National Laboratories) discussed techiques for manipulating polymersolvent phase equilibria to control the microstructure of microcellular foams. Other papers on processing discussed the production of cellular ceramics by CVD, HIPing and sol- gel techniques. Papers on the mechanical behavior of cellular materials considered various ceramics microcellular polymers, conventional polymer foams and apples. There were also contributions that considered optimum design procedures for cellular materials. Steven Cowin (City Univ. of New York) discussed procedures to match the discrete microstructural aspects of cellular materials with the continuum mechanics approach to their elastic behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwen; Jin, Ke; Xue, Haizhou
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Superconductivity devices: Commercial use of space
NASA Technical Reports Server (NTRS)
Haertling, Gene; Furman, Eugene; Hsi, Chi-Shiung; Li, Guang
1993-01-01
A YBCO thick film containing 20 percent Ag2O with a T(sub c) of 86.8 K and J(sub c) of 108 A/sq cm was obtained. The film was fabricated by a two-step firing process, i.e., firing the film at 1000 C for 10 minutes and annealing at 970 C for 30 minutes. The two-step firing process, however, was not suitable for the multiple-lead YBCO sample due to the formation of the 211 green phase at 1000 C in the multiple-lead YBCO sample. A BSCCO thick film printed on a MgO coated MSZ substrate and fired at 845 C for 2 hours exhibited a superconducting behavior at 89 K. Because of its porous microstructure, the critical current density of the BSCCO thick film was limited. This report also includes the results of the YBCO and BSCCO materials used as oxide electrodes for ferroelectric materials. The YBCO electroded PLZT showed higher remanent polarization and coercive field than the sample electroded with silver paste. A higher Curie temperature for the PLZT was obtained from the YBCO electroded sample. The BSCCO electroded sample, however, exhibited the same Curie temperature as that of a silver electroded sample. Dissipation factors of the ferroelectric samples increased when the oxide electrode was applied.
Rapid Quantification of Energy Absorption and Dissipation Metrics for PPE Padding Materials
2010-01-22
dampers , i.e., Hooke’s Law springs and viscous ...absorbing/dissipating materials. Input forces caused by blast pressures, determined from computational fluid dynamics (CFD) analysis and simulation...simple lumped-‐ parameter elements – spring, k (energy storage) – damper , b (energy dissipa/on Rapid
The Microstructural Evolution of Fatigue Cracks in FCC Metals
NASA Astrophysics Data System (ADS)
Gross, David William
The microstructural evolution during fatigue crack propagation was investigated in a variety of planar and wavy slip FCC metals. The planar materials included Haynes 230, Nitronic 40, and 316 stainless steel, and the wavy materials included pure nickel and pure copper. Three different sets of experiments were performed to fully characterize the microstructural evolution. The first, performed on Haynes 230, mapped the strain field ahead a crack tip using digital image correlation and electron backscatter diffraction techniques. Focused ion beam (FIB) lift-out techniques were then utilized to extract transmission electron microscopy (TEM) samples at specific distances from the crack tip. TEM investigations compared the measured strain to the microstructure. Overall, the strain measured via DIC and EBSD was only weakly correlated to the density of planar slip bands in the microstructure. The second set of experiments concerned the dislocation structure around crack tips. This set of experiments was performed on all the materials. The microstructure at arrested fatigue cracks on the free surface was compared to the microstructure found beneath striations on the fracture surfaces by utilizing FIB micromachining to create site-specific TEM samples. The evolved microstructure depended on the slip type. Strong agreement was found between the crack tip microstructure at the free surface and the fracture surface. In the planar materials, the microstructure in the plastic zone consisted of bands of dislocations or deformation twins, before transitioning to a refined sub-grain microstructure near the crack flank. The sub-grain structure extended 300-500 nm away from the crack flank in all the planar slip materials studied. In contrast, the bulk structure in the wavy slip material consisted of dislocation cells and did not transition to a different microstructure as the crack tip was approached. The strain in wavy slip was highest near the crack tip, as the misorientations between the dislocation cells increased and the cell size decreased as the crack flank was approached. The final set of experiments involved reloading the arrested crack tips in monotonic tension. This was performed on both the Haynes 230 and 316 stainless steel. This technique exposed the fracture surface and location of the arrested crack tip away from the free surface, allowing for a sample to be extracted via FIB micromachining and TEM evaluation of the microstructure. This permitted the crack tip microstructure to be investigated without exposing the microstructure to crack closure or free surface effects. These experiments confirmed what was inferred from the earlier experiments, namely that the banded structure was a product of the crack tip plastic zone and the refined structure was a product of the strain associated with crack advance. Overall the microstructural complexity presented in this work was much higher than would be predicted by current models of fatigue crack propagation. It is recommended that future models attempt to simulate interactions between the dislocations emitted during fatigue crack growth and the pre-existing microstructure to more accurately simulate the processes occurring at the crack tip during crack growth.
Dissipation of mechanical work and temperature rise in AS4/PEEK thermoplastic composite
NASA Technical Reports Server (NTRS)
Georgiou, I.; Sun, C. T.
1990-01-01
The dissipated mechanical work per cycle of sinusoidal stress in the thermoplastic composite material AS4/PEEK was measured as a function of stress amplitude for fixed frequency and fiber orientation. The experimental result shows that the dissipated work per cycle is proportional to the square of the stress amplitude. Using the concept of the equivalent isotropic material, it is shown that the relaxation modulus satisfies a proportionality condition. Also, the rate of temperature rise due to sinusoidal stresses has been measured as a function of stress amplitude. The result shows that the rate of temperature rise is not proportional to the square of the stress amplitude.
The paper gives results of a comparison of several standard materials and techniques for the Warren-Averbach determination of microstructure characteristics of calcium hydroxide--Ca(OH)2--sorbent materials. The comparison is part of an investigation of the injection of dry Ca(OH)...
NASA Astrophysics Data System (ADS)
Miyazaki, Narumasa; Sato, Kazunori; Shibutani, Yoji
Dual-phase (DP) transformation, which is composed of felite- and/or martensite- multicomponent microstructural phases, is one of the most effective tools to product functional alloys. To obtain this DP structure such as DP steels and other materials, we usually apply thermal processes such as quenching, tempering and annealing. As the transformation dynamics of DP microstructure depends on conditions of temperature, annealing time, and quenching rate, physical properties of materials are able to be tuned by controlling microstructure type, size, their interfaces and so on. In this study, to understand the behavior of DP transformation and to control physical properties of materials by tuning DP microstructures, we analyze the atomistic dynamics of DP transformation during the quenching process and the detail of DP microstructures by using the molecular dynamics simulations. As target metals of DP transformation, we focus on group 4 transition metals, such as Ti and Zr described by EAM interatomic potentials. For Ti and Zr models we perform molecular dynamics simulations by assuming melt-quenching process from 3000 K to 0 K under the isothermal-isobaric ensemble. During the process for each material, we observe liquid to HCP like transition around the melting temperature, and continuously HCP-BCC like transition around martensitic transformation temperature. Furthermore, we clearly distinguish DP microstructure for each quenched model.
Kojic, M; Milosevic, M; Kojic, N; Kim, K; Ferrari, M; Ziemys, A
2014-02-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts.
Kojic, M.; Milosevic, M.; Kojic, N.; Kim, K.; Ferrari, M.; Ziemys, A.
2014-01-01
Mass transport by diffusion within composite materials may depend not only on internal microstructural geometry, but also on the chemical interactions between the transported substance and the material of the microstructure. Retrospectively, there is a gap in methods and theory to connect material microstructure properties with macroscale continuum diffusion characteristics. Here we present a new hierarchical multiscale model for diffusion within composite materials that couples material microstructural geometry and interactions between diffusing particles and the material matrix. This model, which bridges molecular dynamics (MD) and the finite element (FE) method, is employed to construct a continuum diffusion model based on a novel numerical homogenization procedure. The procedure is general and robust for evaluating constitutive material parameters of the continuum model. These parameters include the traditional bulk diffusion coefficients and, additionally, the distances from the solid surface accounting for surface interaction effects. We implemented our models to glucose diffusion through the following two geometrical/material configurations: tightly packed silica nanospheres, and a complex fibrous structure surrounding nanospheres. Then, rhodamine 6G diffusion analysis through an aga-rose gel network was performed, followed by a model validation using our experimental results. The microstructural model, numerical homogenization and continuum model offer a new platform for modeling and predicting mass diffusion through complex biological environment and within composite materials that are used in a wide range of applications, like drug delivery and nanoporous catalysts. PMID:24578582
Granular compaction and the topology of pore deformation
NASA Astrophysics Data System (ADS)
Saadatfar, Mohammad; Takeuchi, Hiroshi; Hanifpour, Maryam; Robins, Vanessa; Francois, Nicolas; Hiraoka, Yasuaki
2017-06-01
The mechanism of crystallisation in highly dissipative materials such as foams or granular materials is still widely unknown. In macroscopic granular materials high levels of energy need to be injected to overcome the natural propensity of these dissipative materials to form amorphous structures [1, 2]. The transition from disordered to ordered packings in such systems triggers a wide range of geometrical, topological and mechanical changes at multi length scales [3]. Formation of cavities and patterns by aggregates of grains and their evolution during this transition requires a complete topological description of the system. Here, crystallisation of three-dimensional packings of frictional spheres is studied at the grain scale with x-ray tomography. Using a novel and powerful topological tool, Persistent Homology, we describe the complete formation process of perfect tetrahedral and octahedral patterns: the two building blocks of FCC and HCP crystalline arrangements. Additionally we present possible and allowable deformations of these components that accurately reproduce the main topological features of the system. These results give new insights into the crystallisation of these highly dissipative materials.
NASA Astrophysics Data System (ADS)
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-05-01
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can reveal salient microstructural features that cannot be observed from conventional metallographic techniques. Examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.
Chung, Brandon W.; Erler, Robert G.; Teslich, Nick E.
2016-03-03
Nuclear forensics requires accurate quantification of discriminating microstructural characteristics of the bulk nuclear material to identify its process history and provenance. Conventional metallographic preparation techniques for bulk plutonium (Pu) and uranium (U) metals are limited to providing information in two-dimension (2D) and do not allow for obtaining depth profile of the material. In this contribution, use of dual-beam focused ion-beam/scanning electron microscopy (FIB-SEM) to investigate the internal microstructure of bulk Pu and U metals is demonstrated. Our results demonstrate that the dual-beam methodology optimally elucidate microstructural features without preparation artifacts, and the three-dimensional (3D) characterization of inner microstructures can revealmore » salient microstructural features that cannot be observed from conventional metallographic techniques. As a result, examples are shown to demonstrate the benefit of FIB-SEM in improving microstructural characterization of microscopic inclusions, particularly with respect to nuclear forensics.« less
Checa, Antonio G; Harper, Elizabeth M; González-Segura, Alicia
2018-05-14
Oyster shells are mainly composed of layers of foliated microstructure and lenses of chalk, a highly porous, apparently poorly organized and mechanically weak material. We performed a structural and crystallographic study of both materials, paying attention to the transitions between them. The morphology and crystallography of the laths comprising both microstructures are similar. The main differences were, in general, crystallographic orientation and texture. Whereas the foliated microstructure has a moderate sheet texture, with a defined 001 maximum, the chalk has a much weaker sheet texture, with a defined 011 maximum. This is striking because of the much more disorganized aspect of the chalk. We hypothesize that part of the unanticipated order is inherited from the foliated microstructure by means of, possibly, [Formula: see text] twinning. Growth line distribution suggests that during chalk formation, the mantle separates from the previous shell several times faster than for the foliated material. A shortage of structural material causes the chalk to become highly porous and allows crystals to reorient at a high angle to the mantle surface, with which they continue to keep contact. In conclusion, both materials are structurally similar and the differences in orientation and aspect simply result from differences in growth conditions.
Microstructural processes in irradiated materials
NASA Astrophysics Data System (ADS)
Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald
2016-04-01
These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.
Impact absorption properties of carbon fiber reinforced bucky sponges
NASA Astrophysics Data System (ADS)
Thevamaran, Ramathasan; Saini, Deepika; Karakaya, Mehmet; Zhu, Jingyi; Podila, Ramakrishna; Rao, Apparao M.; Daraio, Chiara
2017-05-01
We describe the super compressible and highly recoverable response of bucky sponges as they are struck by a heavy flat-punch striker. The bucky sponges studied here are structurally stable, self-assembled mixtures of multiwalled carbon nanotubes (MWCNTs) and carbon fibers (CFs). We engineered the microstructure of the sponges by controlling their porosity using different CF contents. Their mechanical properties and energy dissipation characteristics during impact loading are presented as a function of their composition. The inclusion of CFs improves the impact force damping by up to 50% and the specific damping capacity by up to 7% compared to bucky sponges without CFs. The sponges also exhibit significantly better stress mitigation characteristics compared to vertically aligned CNT foams of similar densities. We show that delamination occurs at the MWCNT-CF interfaces during unloading, and it arises from the heterogeneous fibrous microstructure of the bucky sponges.
Consequences of Part Temperature Variability in Electron Beam Melting of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Fisher, Brian A.; Mireles, Jorge; Ridwan, Shakerur; Wicker, Ryan B.; Beuth, Jack
2017-12-01
To facilitate adoption of Ti-6Al-4V (Ti64) parts produced via additive manufacturing (AM), the ability to ensure part quality is critical. Measuring temperatures is an important component of part quality monitoring in all direct metal AM processes. In this work, surface temperatures were monitored using a custom infrared camera system attached to an Arcam electron beam melting (EBM®) machine. These temperatures were analyzed to understand their possible effect on solidification microstructure based on solidification cooling rates extracted from finite element simulations. Complicated thermal histories were seen during part builds, and temperature changes occurring during typical Ti64 builds may be large enough to affect solidification microstructure. There is, however, enough time between fusion of individual layers for spatial temperature variations (i.e., hot spots) to dissipate. This means that an effective thermal control strategy for EBM® can be based on average measured surface temperatures, ignoring temperature variability.
Effect of Yttrium on the Microstructure and Properties of Pt-Ir Electrical Contact Materials
NASA Astrophysics Data System (ADS)
Wang, Saibei; Sun, Yong; Wang, Song; Peng, Mingjun; Liu, Manmen; Duan, Yonghua; Chen, Yongtai; Yang, Youcai; Chen, Song; Li, Aikun; Xie, Ming
2017-10-01
The Pt-10Ir and Pt-10Ir-1Y were prepared by high frequency induction melting, then the samples were obtained by powder metallurgy, hot extrusion and drawing. The influence of Y addition on microstructure and electrical contact properties of Pt-10Ir alloy has been investigated by using optical microscopy, SEM, electronic balance and the contact material test system. The results show that the addition of Y leads to the micro-structural refinement and directional change of material transfer, but has almost no influence on erosion morphology.
Transfer function concept for ultrasonic characterization of material microstructures
NASA Technical Reports Server (NTRS)
Vary, A.; Kautz, H. E.
1986-01-01
The approach given depends on treating material microstructures as elastomechanical filters that have analytically definable transfer functions. These transfer functions can be defined in terms of the frequency dependence of the ultrasonic attenuation coefficient. The transfer function concept provides a basis for synthesizing expressions that characterize polycrystalline materials relative to microstructural factors such as mean grain size, grain-size distribution functions, and grain boundary energy transmission. Although the approach is nonrigorous, it leads to a rational basis for combining the previously mentioned diverse and fragmented equations for ultrasonic attenuation coefficients.
Advanced composite applications for sub-micron biologically derived microstructures
NASA Technical Reports Server (NTRS)
Schnur, J. M.; Price, R. R.; Schoen, P. E.; Bonanventura, Joseph; Kirkpatrick, Douglas
1991-01-01
A major thrust of advanced material development is in the area of self-assembled ultra-fine particulate based composites (micro-composites). The application of biologically derived, self-assembled microstructures to form advanced composite materials is discussed. Hollow 0.5 micron diameter cylindrical shaped microcylinders self-assemble from diacetylenic lipids. These microstructures have a multiplicity of potential applications in the material sciences. Exploratory development is proceeding in application areas such as controlled release for drug delivery, wound repair, and biofouling as well as composites for electronic and magnetic applications, and high power microwave cathodes.
Materials at 200 mph: Making NASCAR Faster and Safer
NASA Astrophysics Data System (ADS)
Leslie-Pelecky, Diandra
2008-03-01
You cannot win a NASCAR race without understanding science.ootnotetextDiandra Leslie-Pelecky, The Physics of NASCAR (Dutton, New York City, 2008). Materials play important roles in improving performance, as well as ensuring safety. On the performance side, NASCAR limits the materials race car scientists and engineers can use to limit ownership costs. `Exotic metals' are not allowed, so controlling microstructure and nanostructure are important tools. Compacted Graphite Iron, a cast iron in which magnesium additions produce interlocking microscale graphite reinforcements, makes engine blocks stronger and lighter. NASCAR's new car design employs a composite called Tegris^TM that has 70 percent of the strength of carbon fiber composites at about 10 percent of the cost. The most important role of materials in racing is safety. Drivers wear firesuits made of polymers that carbonize (providing thermal protection) and expand (reducing oxygen access) when heated. Catalytic materials originally developed for space-based CO2 lasers filter air for drivers during races. Although materials help cars go fast, they also help cars slow down safely---important because the kinetic energy of a race car going 180 mph is nine times greater than that of a passenger car going 60 mph. Energy-absorbing foams in the cars and on the tracks control energy dissipation during accidents. To say that most NASCAR fans (and there are estimated to be 75 million of them) are passionate about their sport is an understatement. NASCAR fans understand that science and engineering are integral to keeping their drivers safe and helping their teams win. Their passion for racing gives us a great opportunity to share our passion for science with them. NASCAR^ is a registered trademark of the National Association for Stock Car Auto Racing, Inc. Tegris^TM is a trademark of Milliken & Company.
NASA Astrophysics Data System (ADS)
Lubner, Sean; Khan, Md. Imran; Dames, Chris
In the electronics and clean energy fields, it is increasingly necessary to reliably model the dissipation of heat from micro and nanostructures or nanostructured materials such as in batteries, computer chips, and thermoelectrics. In these regimes where length scales are comparable to the mean free paths (MFPs) of energy carriers, the diffusion law of heat conduction begins to break down. In this talk, I present our recent results from using a time domain thermoreflectance (TDTR) technique with laser spot 1/e-squared radii less than 2 microns to measure sub-diffusion thermal transport in silicon, nanograined-silicon (ng-Si), and silicon germanium (SiGe) alloys. Our results experimentally demonstrate that alloy scattering skews phonon spectra toward longer MFPs, while nanostructuring skews phonon spectra toward shorter MFPs. As a consequence, we show that a significant fraction of the heat-carrying phonons in SiGe have MFPs greater than 10 microns at room temperature, and that the thermal conductivity of ng-Si overtakes that of SiGe after microstructuring. NSF.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Seebo, Jeffrey P.; Winfree, William P.
2008-01-01
This article describes a noncontact single-sided terahertz electromagnetic measurement and imaging method that simultaneously characterizes microstructural (egs. spatially-lateral density) and thickness variation in dielectric (insulating) materials. The method was demonstrated for two materials-Space Shuttle External Tank sprayed-on foam insulation and a silicon nitride ceramic. It is believed that this method can be used as an inspection method for current and future NASA thermal protection system and other dielectric material inspection applications, where microstructural and thickness variation require precision mapping. Scale-up to more complex shapes such as cylindrical structures and structures with beveled regions would appear to be feasible.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-06-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
NASA Astrophysics Data System (ADS)
Belgasam, Tarek M.; Zbib, Hussein M.
2018-03-01
The increase in use of dual-phase (DP) steel grades by vehicle manufacturers to enhance crash resistance and reduce body car weight requires the development of a clear understanding of the effect of various microstructural parameters on the energy absorption in these materials. Accordingly, DP steelmakers are interested in predicting the effect of various microscopic factors as well as optimizing microstructural properties for application in crash-relevant components of vehicle bodies. This study presents a microstructure-based approach using a multiscale material and structure model. In this approach, Digimat and LS-DYNA software were coupled and employed to provide a full micro-macro multiscale material model, which is then used to simulate tensile tests. Microstructures with varied ferrite grain sizes, martensite volume fractions, and carbon content in DP steels were studied. The impact of these microstructural features at different strain rates on energy absorption characteristics of DP steels is investigated numerically using an elasto-viscoplastic constitutive model. The model is implemented in a multiscale finite-element framework. A comprehensive statistical parametric study using response surface methodology is performed to determine the optimum microstructural features for a required tensile toughness at different strain rates. The simulation results are validated using experimental data found in the literature. The developed methodology proved to be effective for investigating the influence and interaction of key microscopic properties on the energy absorption characteristics of DP steels. Furthermore, it is shown that this method can be used to identify optimum microstructural conditions at different strain-rate conditions.
Microstructure design for fast oxygen conduction
Aidhy, Dilpuneet S.; Weber, William J.
2015-11-11
Research from the last decade has shown that in designing fast oxygen conducting materials for electrochemical applications has largely shifted to microstructural features, in contrast to material-bulk. In particular, understanding oxygen energetics in heterointerface materials is currently at the forefront, where interfacial tensile strain is being considered as the key parameter in lowering oxygen migration barriers. Nanocrystalline materials with high densities of grain boundaries have also gathered interest that could possibly allow leverage over excess volume at grain boundaries, providing fast oxygen diffusion channels similar to those previously observed in metals. In addition, near-interface phase transformations and misfit dislocations aremore » other microstructural phenomenon/features that are being explored to provide faster diffusion. In this review, the current understanding on oxygen energetics, i.e., thermodynamics and kinetics, originating from these microstructural features is discussed. Moreover, our experimental observations, theoretical predictions and novel atomistic mechanisms relevant to oxygen transport are highlighted. In addition, the interaction of dopants with oxygen vacancies in the presence of these new microstructural features, and their future role in the design of future fast-ion conductors, is outlined.« less
Demirörs, Ahmet Faik; Courty, Diana; Libanori, Rafael; Studart, André R.
2016-01-01
Living organisms often combine soft and hard anisotropic building blocks to fabricate composite materials with complex microstructures and outstanding mechanical properties. An optimum design and assembly of the anisotropic components reinforces the material in specific directions and sites to best accommodate multidirectional external loads. Here, we fabricate composite films with periodic modulation of the soft–hard microstructure by simultaneously using electric and magnetic fields. We exploit forefront directed-assembly approaches to realize highly demanded material microstructural designs and showcase a unique example of how one can bridge colloidal sciences and composite technology to fabricate next-generation advanced structural materials. In the proof-of-concept experiments, electric fields are used to dictate the position of the anisotropic particles through dielectrophoresis, whereas a rotating magnetic field is used to control the orientation of the particles. By using such unprecedented control over the colloidal assembly process, we managed to fabricate ordered composite microstructures with up to 2.3-fold enhancement in wear resistance and unusual site-specific hardness that can be locally modulated by a factor of up to 2.5. PMID:27071113
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOLM,ELIZABETH A.; BATTAILE,CORBETT C.; BUCHHEIT,THOMAS E.
2000-04-01
Computational materials simulations have traditionally focused on individual phenomena: grain growth, crack propagation, plastic flow, etc. However, real materials behavior results from a complex interplay between phenomena. In this project, the authors explored methods for coupling mesoscale simulations of microstructural evolution and micromechanical response. In one case, massively parallel (MP) simulations for grain evolution and microcracking in alumina stronglink materials were dynamically coupled. In the other, codes for domain coarsening and plastic deformation in CuSi braze alloys were iteratively linked. this program provided the first comparison of two promising ways to integrate mesoscale computer codes. Coupled microstructural/micromechanical codes were appliedmore » to experimentally observed microstructures for the first time. In addition to the coupled codes, this project developed a suite of new computational capabilities (PARGRAIN, GLAD, OOF, MPM, polycrystal plasticity, front tracking). The problem of plasticity length scale in continuum calculations was recognized and a solution strategy was developed. The simulations were experimentally validated on stockpile materials.« less
NASA Astrophysics Data System (ADS)
Lohmar, Johannes; Bambach, Markus; Karhausen, Kai F.
2013-01-01
Integrated computational materials engineering is an up to date method for developing new materials and optimizing complete process chains. In the simulation of a process chain, material models play a central role as they capture the response of the material to external process conditions. While much effort is put into their development and improvement, less attention is paid to their implementation, which is problematic because the representation of microstructure in the model has a decisive influence on modeling accuracy and calculation speed. The aim of this article is to analyze the influence of different microstructure representation concepts on the prediction of flow stress and microstructure evolution when using the same set of material equations. Scalar, tree-based and cluster-based concepts are compared for a multi-stage rolling process of an AA5182 alloy. It was found that implementation influences the predicted flow stress and grain size, in particular in the regime of coupled hardening and softening.
NASA Astrophysics Data System (ADS)
Wang, Baoming; Haque, M. A.
2015-08-01
With atomic-scale imaging and analytical capabilities such as electron diffraction and energy-loss spectroscopy, the transmission electron microscope has allowed access to the internal microstructure of materials like no other microscopy. It has been mostly a passive or post-mortem analysis tool, but that trend is changing with in situ straining, heating and electrical biasing. In this study, we design and demonstrate a multi-functional microchip that integrates actuators, sensors, heaters and electrodes with freestanding electron transparent specimens. In addition to mechanical testing at elevated temperatures, the chip can actively control microstructures (grain growth and phase change) of the specimen material. Using nano-crystalline aluminum, nickel and zirconium as specimen materials, we demonstrate these novel capabilities inside the microscope. Our approach of active microstructural control and quantitative testing with real-time visualization can influence mechanistic modeling by providing direct and accurate evidence of the fundamental mechanisms behind materials behavior.
Microstructural Effects on Initiation Behavior in HMX
NASA Astrophysics Data System (ADS)
Molek, Christopher; Welle, Eric; Hardin, Barrett; Vitarelli, Jim; Wixom, Ryan; Samuels, Philip
Understanding the role microstructure plays on ignition and growth behavior has been the subject of a significant body of research within the detonation physics community. The pursuit of this understanding is important because safety and performance characteristics have been shown to strongly correlate to particle morphology. Historical studies have often correlated bulk powder characteristics to the performance or safety characteristics of pressed materials. We believe that a clearer and more relevant correlation is made between the pressed microstructure and the observed detonation behavior. This type of assessment is possible, as techniques now exist for the quantification of the pressed microstructures. Our talk will report on experimental efforts that correlate directly measured microstructural characteristics to initiation threshold behavior of HMX based materials. The internal microstructures were revealed using an argon ion cross-sectioning technique. This technique enabled the quantification of density and interface area of the pores within the pressed bed using methods of stereology. These bed characteristics are compared to the initiation threshold behavior of three HMX based materials using an electric gun based test method. Finally, a comparison of experimental threshold data to supporting theoretical efforts will be made.
Refractive-index profiling of embedded microstructures in optical materials
NASA Astrophysics Data System (ADS)
Dave, Digant P.; Milner, Thomas E.
2002-04-01
We describe use of a phase-sensitive low-coherence reflectometer to measure spatial variation of refractive index in optical materials. The described interferometric technique is demonstrated to be a valuable tool to profile the refractive index of optical elements such as integrated waveguides and photowritten optical microstructures. As an example, a refractive-index profile is mapped of a microstructure written in a microscope glass slide with an ultrashort-pulse laser.
System and methods to determine and monitor changes in microstructural properties
Turner, Joseph Alan [Lincoln, NE
2011-05-17
A system and methods with which changes in microstructure properties such as grain size, grain elongation, texture, and porosity of materials can be determined and monitored over time to assess conditions such as stress and defects. The present invention includes a database of data, wherein a first set of data is used for comparison with a second set of data to determine the conditions of the material microstructure.
Linking natural microstructures with numerical modeling of pinch-and-swell structures
NASA Astrophysics Data System (ADS)
Peters, Max; Berger, Alfons; Herwegh, Marco; Regenauer-Lieb, Klaus
2016-04-01
For a variety of geological problems, the change from homogeneous to localized deformation and the establishment of steady-state conditions are equally important. Here, we show that pinch-and-swell structures are ideal candidates for the study of the switch in deformation style and mechanism during ductile creep. We present an interdisciplinary approach to the onset of pinch-and-swell structures and to the flow conditions during pre- to post-localization stages in ductile rocks. For this reason, naturally boudinaged calcite veins, embedded in a calc-mylonite, and their microfabrics were investigated quantitatively. Remnants of slightly deformed calcite hosts build up the swells, showing twinning and minor dislocation glide as crystal plastic deformation mechanisms which are accompanied by subgrain rotation recrystallization (SGR). Towards the pinches, we find a gradient of severe grain size reduction through progressive SGR, developing a characteristic dislocation creep crystallographic preferred orientation (CPO). Along this gradient, the finest recrystallized calcite grains appear randomly oriented, expressed by a "smearing-out" of the CPO and missing systematics of misorientation angles in the most extended areas. We interpret this microstructure as a switch from dislocation dominated creep to grain boundary sliding processes. Further, we show that the onset of boudinage is independent on both the original orientation and grain size of calcite hosts. We implemented these microstructural observations into a layered elasto-visco-plastic finite element framework, tracing variations in grain size (Peters et al., 2015). We base the microstructural evolution on thermo-mechanical-chemical principles and end-member flow laws (Herwegh et al., 2014). The simulated pinch-and-swell structures indicate that low strain rates in the swells favor dislocation creep, whereas accelerated rates provoke continuous grain size reduction allowing strain accommodation by diffusion creep dominated deformation at relatively high extensional strains in the pinches. The numerical simulations indicate that viscosity weakening due to dissipated heat from grain size reduction marks the onset of localization, resulting in continuous necking of the layer. Interestingly, there exist multiple steady states, i.e. a first homogeneous state out of which localization arises, steady states of the stable end-member structure, expressed by homogeneous conditions in both pinches and swells, and in the surrounding matrix, the latter obeying a linear rheology. Based on our microstructural and numerical results, we suggest that the onset of localization represents a fundamental material bifurcation. This implies that the studied structures can be described as ductile instabilities. Finally, we discuss the profound role of the energy theory of localization described here, which allows deriving the paleo-deformation conditions, as well as fundamental material properties in a self-consistent manner. REFERENCES Herwegh, M., Poulet, T., Karrech, A. and Regenauer-Lieb, K. (2014): Journal of Geophysical Research 119, doi:10.1002/2013JB010701 Peters, M., Veveakis, M., Poulet, T., Karrech, A., Herwegh, M. and Regenauer-Lieb, K. (2015): Journal of Structural Geology 78, doi:10.1016/j.jsg.2015.06.005
Microstructural Modeling of Brittle Materials for Enhanced Performance and Reliability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teague, Melissa Christine; Teague, Melissa Christine; Rodgers, Theron
Brittle failure is often influenced by difficult to measure and variable microstructure-scale stresses. Recent advances in photoluminescence spectroscopy (PLS), including improved confocal laser measurement and rapid spectroscopic data collection have established the potential to map stresses with microscale spatial resolution (%3C2 microns). Advanced PLS was successfully used to investigate both residual and externally applied stresses in polycrystalline alumina at the microstructure scale. The measured average stresses matched those estimated from beam theory to within one standard deviation, validating the technique. Modeling the residual stresses within the microstructure produced general agreement in comparison with the experimentally measured results. Microstructure scale modelingmore » is primed to take advantage of advanced PLS to enable its refinement and validation, eventually enabling microstructure modeling to become a predictive tool for brittle materials.« less
Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys
2015-06-01
MICROSTRUCTURE - PROPERTY RELATIONSHIPS FOR COLD SPRAY POWDER DEPOSITION OF Al - Cu ALLOYS by Jeremy D. Leazer June 2015 Thesis Advisor: Sarath K...basic microstructure -mechanical property relationships for cold spray deposited Al - Cu alloy coatings The microstructure of the deposited materials will...the dynamic mechanical
He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl
NASA Astrophysics Data System (ADS)
Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang
2009-05-01
TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Tianyu; Xu, Hongyi; Chen, Wei
Fiber-reinforced polymer composites are strong candidates for structural materials to replace steel and light alloys in lightweight vehicle design because of their low density and relatively high strength. In the integrated computational materials engineering (ICME) development of carbon fiber composites, microstructure reconstruction algorithms are needed to generate material microstructure representative volume element (RVE) based on the material processing information. The microstructure RVE reconstruction enables the material property prediction by finite element analysis (FEA)This paper presents an algorithm to reconstruct the microstructure of a chopped carbon fiber/epoxy laminate material system produced by compression molding, normally known as sheet molding compounds (SMC).more » The algorithm takes the result from material’s manufacturing process as inputs, such as the orientation tensor of fibers, the chopped fiber sheet geometry, and the fiber volume fraction. The chopped fiber sheets are treated as deformable rectangle chips and a random packing algorithm is developed to pack these chips into a square plate. The RVE is built in a layer-by-layer fashion until the desired number of lamina is reached, then a fine tuning process is applied to finalize the reconstruction. Compared to the previous methods, this new approach has the ability to model bended fibers by allowing limited amount of overlaps of rectangle chips. Furthermore, the method does not need SMC microstructure images, for which the image-based characterization techniques have not been mature enough, as inputs. Case studies are performed and the results show that the statistics of the reconstructed microstructures generated by the algorithm matches well with the target input parameters from processing.« less
Deformation mechanisms in negative Poisson's ratio materials - Structural aspects
NASA Technical Reports Server (NTRS)
Lakes, R.
1991-01-01
Poisson's ratio in materials is governed by the following aspects of the microstructure: the presence of rotational degrees of freedom, non-affine deformation kinematics, or anisotropic structure. Several structural models are examined. The non-affine kinematics are seen to be essential for the production of negative Poisson's ratios for isotropic materials containing central force linkages of positive stiffness. Non-central forces combined with pre-load can also give rise to a negative Poisson's ratio in isotropic materials. A chiral microstructure with non-central force interaction or non-affine deformation can also exhibit a negative Poisson's ratio. Toughness and damage resistance in these materials may be affected by the Poisson's ratio itself, as well as by generalized continuum aspects associated with the microstructure.
NASA Technical Reports Server (NTRS)
Roth, Donald J (Inventor)
2011-01-01
A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.
NASA Astrophysics Data System (ADS)
Li, Ling; Ortiz, Christine
2014-05-01
Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm-3) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm-3). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.
Spontaneous evolution of microstructure in materials
NASA Astrophysics Data System (ADS)
Kirkaldy, J. S.
1993-08-01
Microstructures which evolve spontaneously from random solutions in near isolation often exhibit patterns of remarkable symmetry which can only in part be explained by boundary and crystallographic effects. With reference to the detailed experimental record, we seek the source of causality in this natural tendency to constructive autonomy, usually designated as a principle of pattern or wavenumber selection in a free boundary problem. The phase field approach which incorporates detailed boundary structure and global rate equations has enjoyed some currency in removing internal degrees of freedom, and this will be examined critically in reference to the migration of phase-antiphase boundaries produced in an order-disorder transformation. Analogous problems for singular interfaces including solute trapping are explored. The microscopic solvability hypothesis has received much attention, particularly in relation to dendrite morphology and the Saffman-Taylor fingering problem in hydrodynamics. A weak form of this will be illustrated in relation to local equilibrium binary solidification cells which renders the free boundary problem unique. However, the main thrust of this article concerns dynamic configurations at anisotropic singular interfaces and the related patterns of eutectoid(ic)s, nonequilibrium cells, cellular dendrites, and Liesegang figures where there is a recognizable macroscopic phase space of pattern fluctuations and/or solitons. These possess a weakly defective stability point and thereby submit to a statistical principle of maximum path probability and to a variety of corollary dissipation principles in the determination of a unique average patterning behavior. A theoretical development of the principle based on Hamilton's principle for frictional systems is presented in an Appendix. Elements of the principles of scaling, universality, and deterministic chaos are illustrated.
De Wilde, Tineke; Spanoghe, Pieter; Sniegowksi, Kristel; Ryckeboer, Jaak; Jaeken, Peter; Springael, Dirk
2010-01-01
Laboratory column displacement experiments were performed to examine whether addition of pesticide-primed material to the matrix of an on-farm biopurification system (BPS), intended to remove pesticides from agricultural waste water, positively affects the degradation of mobile pesticides in the system. Percolated column microcosms with varying types and amounts of metalaxyl and/or isoproturon-primed material or non-primed material were irrigated with water artificially contaminated with isoproturon and/or metalaxyl. Transport of isoproturon was well described using the convection dispersion equation and no dissipation was observed, even in columns inoculated with isoproturon-primed material. On the other hand, delayed dissipation of metalaxyl, i.e., after an initial lag phase, was encountered in all columns receiving metalaxyl. In all systems, dissipation could be described using the Monod model indicating that a metalaxyl degrading population grew in the systems. There was a clear correlation between the lag phase and the amount of metalaxyl-primed material added to the system, i.e., increasing amounts of added material resulted into shorter lag phases and hence more rapid initiation of growth-associated metalaxyl degradation in the system. Our observations suggest that indeed pesticide-primed material can reduce the start-up phase of degradation of mobile pesticides in a BPS and as such can increase its efficiency. However, the primed material should be chosen carefully and preferentially beforehand tested for its capacity to degrade the pesticide.
Johnson, Alexander; Brace, Christopher
2015-01-01
Interventional oncology procedures such as thermal ablation are becoming widely used for many tumours in the liver, kidney and lung. Thermal ablation refers to the focal destruction of tissue by generating cytotoxic temperatures in the treatment zone. Hydrodissection - separating tissues with fluids - protects healthy tissues adjacent to the ablation treatment zone to improve procedural safety, and facilitate more aggressive power application or applicator placement. However, fluids such as normal saline and 5% dextrose in water (D5W) can migrate into the peritoneum, reducing their protective efficacy. As an alternative, a thermo-gelable poloxamer 407 (P407) solution has been recently developed to facilitate hydrodissection procedures. We hypothesise that the P407 gel material does not provide convective heat dissipation from the ablation site, and therefore may alter the heat transfer dynamics compared to liquid materials during hydrodissection-assisted thermal ablation. The purpose of this study was to investigate the heat dissipation mechanics within D5W, liquid P407 and gel P407 hydrodissection barriers. Overall it was shown that the gel P407 dissipated heat primarily through conduction, whereas the liquid P407 and D5W dissipated heat through convection. Furthermore, the rate of temperature change within the gel P407 was greater than liquid P407 and D5W. Testing to evaluate the in vivo efficacy of the fluids with different modes of heat dissipation seems warranted for further study.
Heat dissipation schemes in QCLs monitored by CCD thermoreflectance (Conference Presentation)
NASA Astrophysics Data System (ADS)
Pierscinski, Kamil; Pierścińska, Dorota; Morawiec, Magdalena; Gutowski, Piotr; Karbownik, Piotr; Serebrennikova, Olga; Bugajski, Maciej
2017-02-01
In this paper we present the development of the instrumentation for accurate evaluation of the thermal characteristics of quantum cascade lasers based on CCD thermoreflectance (CCD TR). This method allows rapid thermal characterization of QCLs, as the registration of high-resolution map of the whole device facet lasts only several seconds. The capabilities of the CCD TR are used to study temperature dissipation schemes in different designs of QCLs. We report on the investigation of thermal performance of QCLs developed at the Institute of Electron Technology, with an emphasis on the influence of different material system, processing technology and device designs. We investigate and compare AlInAs/InGaAs/InP QCLs (lattice matched and strain compensated) of different architectures, i.e., double trench and buried heterostructure (BH) in terms of thermal management. Experimental results are in very good agreement with numerical predictions of heat dissipation in various device constructions. Numerical model is based on FEM model solved by commercial software package. The model assumes anisotropic thermal conductivity in the AR layers as well as the temperature dependence of thermal conductivities of all materials in the project. We have observed experimentally improvement of thermal properties of devices based on InP materials, especially for buried heterostructure type. The use of buried heterostructure enhanced the lateral heat dissipation from the active region of QCLs. The BH structure and epilayer-down bonding help dissipate the heat generated from active core of the QCL.
Microstructural processes in irradiated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie
2016-04-01
This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.
The effect of strain rate on the evolution of microstructure in aluminium alloys.
Leszczyńska-Madej, B; Richert, M
2010-03-01
Intensive deformations influence strongly microstructure. The very well-known phenomenon is the diminishing dimension of grain size by the severe plastic deformation (SPD) methods. The nanometric features of microstructure were discovered after the SPD deformation of various materials, such as aluminium alloys, iron and others. The observed changes depended on the kind of the deformed material, amount of deformation, strain rate, existence of different phases and stacking fault energy. The influence of the strain and strain rate on the microstructure is commonly investigated nowadays. It was found that the high strain rates activate deformation in shear bands, microbands and adiabatic shear bands. It was observed that bands were places of the nucleation of nanograins in the material deformed by SPD methods. In the work, the refinement of microstructure of the aluminium alloys influenced by the high strain rate was investigated. The samples were compressed by a specially designed hammer to the deformation of phi= 0/0.62 with the strain rate in the range of [Formula in text]. The highest reduction of microbands width with the increase of the strain was found in the AlCu4Zr alloy. The influence of the strain rate on the microstructure refinement indicated that the increase of the strain rate caused the reduction of the microbands width in the all investigated materials (Al99.5, AlCu4Zr, AlMg5, AlZn6Mg2.5CuZr). A characteristic feature of the microstructure of the compressed material was large density of the shear bands and microbands. It was found that the microbands show a large misorientation to the surrounds and, except Al99.5, the large density of dislocation.
Chen, Ke; Zhang, Shuhao; Li, Anran; Tang, Xuke; Li, Lidong; Guo, Lin
2018-05-22
Many biological organisms usually derived from the ordered assembly of heterogeneous, hierarchical inorganic/organic constituents exhibit outstanding mechanical integration, but have proven to be difficult to produce the combination of excellent mechanical properties, such as strength, toughness, and light weight, by merely mimicking their component and structural characteristics. Herein, inspired by biologically strong chelating interactions of phytic acid (PA) or IP6 in many biomaterials, we present a biologically interfacial chelating-like reinforcement (BICR) strategy for fabrication of a highly dense ordered "brick-and-mortar" microstructure by incorporating tiny amounts of a natural chelating agent ( e. g., PA) into the interface or the interlamination of a material ( e. g., graphene oxide (GO)), which shows joint improvement in hardness (∼41.0%), strength (∼124.1%), maximum Young's modulus (∼134.7%), and toughness (∼118.5%) in the natural environment. Besides, for different composite matrix systems and artificial chelating agents, the BICR strategy has been proven successful for greatly enhancing their mechanical properties, which is superior to many previous reinforcing approaches. This point can be mainly attributed to the stronger noncovalent cross-linking interactions such as dense hydrogen bonds between the richer phosphate (hydroxyl) groups on its cyclohexanehexol ring and active sites of GO, giving rise to the larger energy dissipation at its hybrid interfaces. It is also simple and environmentally friendly for further scale-up fabrication and can be readily extended to other material systems, which opens an advanced reinforcement route to construct structural materials with high mechanical performance in an efficient way for practical applications.
NASA Astrophysics Data System (ADS)
Gatti, J. R.; Bhattacharjee, P. P.
2014-12-01
Evolution of microstructure and texture during severe deformation and annealing was studied in Al-2.5%Mg alloy processed by two different routes, namely, monotonic Accumulative Roll Bonding (ARB) and a hybrid route combining ARB and conventional rolling (CR). For this purpose Al-2.5%Mg sheets were subjected to 5 cycles of monotonic ARB (equivalent strain (ɛeq) = 4.0) processing while in the hybrid route (ARB + CR) 3 cycle ARB-processed sheets were further deformed by conventional rolling to 75% reduction in thickness (ɛeq = 4.0). Although formation of ultrafine structure was observed in the two processing routes, the monotonic ARB—processed material showed finer microstructure but weak texture as compared to the ARB + CR—processed material. After complete recrystallization, the ARB + CR-processed material showed weak cube texture ({001}<100>) but the cube component was almost negligible in the monotonic ARB-processed material-processed material. However, the ND-rotated cube components were stronger in the monotonic ARB-processed material-processed material. The observed differences in the microstructure and texture evolution during deformation and annealing could be explained by the characteristic differences of the two processing routes.
A 4-D dataset for validation of crystal growth in a complex three-phase material, ice cream
NASA Astrophysics Data System (ADS)
Rockett, P.; Karagadde, S.; Guo, E.; Bent, J.; Hazekamp, J.; Kingsley, M.; Vila-Comamala, J.; Lee, P. D.
2015-06-01
Four dimensional (4D, or 3D plus time) X-ray tomographic imaging of phase changes in materials is quickly becoming an accepted tool for quantifying the development of microstructures to both inform and validate models. However, most of the systems studied have been relatively simple binary compositions with only two phases. In this study we present a quantitative dataset of the phase evolution in a complex three-phase material, ice cream. The microstructure of ice cream is an important parameter in terms of sensorial perception, and therefore quantification and modelling of the evolution of the microstructure with time and temperature is key to understanding its fabrication and storage. The microstructure consists of three phases, air cells, ice crystals, and unfrozen matrix. We perform in situ synchrotron X-ray imaging of ice cream samples using in-line phase contrast tomography, housed within a purpose built cold-stage (-40 to +20oC) with finely controlled variation in specimen temperature. The size and distribution of ice crystals and air cells during programmed temperature cycling are determined using 3D quantification. The microstructural evolution of three-phase materials has many other important applications ranging from biological to structural and functional material, hence this dataset can act as a validation case for numerical investigations on faceted and non-faceted crystal growth in a range of materials.
Modeling macro-and microstructures of gas-metal-arc welded HSLA-100 steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Z.; Debroy, T.
1999-06-01
Fluid flow and heat transfer during gas-metal-arc welding (GMAW) of HSLA-100 steel were studied using a transient, three-dimensional, turbulent heat transfer and fluid flow model. The temperature and velocity fields, cooling rates, and shape and size of the fusion and heat-affected zones (HAZs) were calculated. A continuous-cooling-transformation (CCT) diagram was computed to aid in the understanding of the observed weld metal microstructure. The computed results demonstrate that the dissipation of heat and momentum in the weld pool is significantly aided by turbulence,m thus suggesting that previous modeling results based on laminar flow need to be re-examined. A comparison of themore » calculated fusion and HAZ geometries with their corresponding measured values showed good agreement. Furthermore, finger penetration, a unique geometric characteristic of gas-metal-arc weld pools, could be satisfactorily predicted from the model. The ability to predict these geometric variables and the agreement between the calculated and the measured cooling rates indicate the appropriateness of using a turbulence model for accurate calculations. The microstructure of the weld metal consisted mainly of acicular ferrite with small amounts of bainite. At high heat inputs, small amounts of allotriomorphic and Widmanstaetten ferrite were also observed. The observed microstructures are consistent with those expected from the computed CCT diagram and the cooling rates. The results presented here demonstrate significant promise for understanding both macro-and microstructures of steel welds from the combination of the fundamental principles from both transport phenomena and phase transformation theory.« less
Dependence of triboelectric charging behavior on material microstructure
NASA Astrophysics Data System (ADS)
Wang, Andrew E.; Gil, Phwey S.; Holonga, Moses; Yavuz, Zelal; Baytekin, H. Tarik; Sankaran, R. Mohan; Lacks, Daniel J.
2017-08-01
We demonstrate that differences in the microstructure of chemically identical materials can lead to distinct triboelectric charging behavior. Contact charging experiments are carried out between strained and unstrained polytetrafluoroethylene samples. Whereas charge transfer is random between samples of identical strain, when one of the samples is strained, systematic charge transfer occurs. No significant changes in the molecular-level structure of the polymer are observed by XRD and micro-Raman spectroscopy after deformation. However, the strained surfaces are found to exhibit void and craze formation spanning the nano- to micrometer length scales by molecular dynamics simulations, SEM, UV-vis spectroscopy, and naked-eye observations. This suggests that material microstructure (voids and crazes) can govern the triboelectric charging behavior of materials.
Alkali Halide Microstructured Optical Fiber for X-Ray Detection
NASA Technical Reports Server (NTRS)
DeHaven, S. L.; Wincheski, R. A.; Albin, S.
2014-01-01
Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. The results and associated materials difference are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livescu, Veronica; Bronkhorst, Curt Allan; Vander Wiel, Scott Alan
Many challenges exist with regard to understanding and representing complex physical processes involved with ductile damage and failure in polycrystalline metallic materials. Currently, the ability to accurately predict the macroscale ductile damage and failure response of metallic materials is lacking. Research at Los Alamos National Laboratory (LANL) is aimed at building a coupled experimental and computational methodology that supports the development of predictive damage capabilities by: capturing real distributions of microstructural features from real material and implementing them as digitally generated microstructures in damage model development; and, distilling structure-property information to link microstructural details to damage evolution under a multitudemore » of loading states.« less
Study of Asorption Kinetics of Surfactants onto Polyethersulfone Membrane Surface Using QCM-D
USDA-ARS?s Scientific Manuscript database
The adsorption kinetics of surfactants onto the crystal surface spin-coated with a thin layer of a model membrane material, polyethersulfone was monitored through measurements of frequency and dissipation shifts simultaneously using a quartz crystal microbalance with dissipation (QCM-D) device. In ...
Assessment of Titanium Aluminide Alloys for High-Temperature Nuclear Structural Applications
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Wei, Tao; Carr, David; Harrison, Robert; Edwards, Lyndon; Hoffelner, Wolfgang; Seo, Dongyi; Maruyama, Kouichi
2012-12-01
Titanium aluminide (TiAl) alloys exhibit high specific strength, low density, good oxidation, corrosion, and creep resistance at elevated temperatures, making them good candidate materials for aerospace and automotive applications. TiAl alloys also show excellent radiation resistance and low neutron activation, and they can be developed to have various microstructures, allowing different combinations of properties for various extreme environments. Hence, TiAl alloys may be used in advanced nuclear systems as high-temperature structural materials. Moreover, TiAl alloys are good materials to be used for fundamental studies on microstructural effects on irradiation behavior of advanced nuclear structural materials. This article reviews the microstructure, creep, radiation, and oxidation properties of TiAl alloys in comparison with other nuclear structural materials to assess the potential of TiAl alloys as candidate structural materials for future nuclear applications.
2-Point microstructure archetypes for improved elastic properties
NASA Astrophysics Data System (ADS)
Adams, Brent L.; Gao, Xiang
2004-01-01
Rectangular models of material microstructure are described by their 1- and 2-point (spatial) correlation statistics of placement of local state. In the procedure described here the local state space is described in discrete form; and the focus is on placement of local state within a finite number of cells comprising rectangular models. It is illustrated that effective elastic properties (generalized Hashin Shtrikman bounds) can be obtained that are linear in components of the correlation statistics. Within this framework the concept of an eigen-microstructure within the microstructure hull is useful. Given the practical innumerability of the microstructure hull, however, we introduce a method for generating a sequence of archetypes of eigen-microstructure, from the 2-point correlation statistics of local state, assuming that the 1-point statistics are stationary. The method is illustrated by obtaining an archetype for an imaginary two-phase material where the objective is to maximize the combination C_{xxxx}^{*} + C_{xyxy}^{*}
NASA Astrophysics Data System (ADS)
Li, Hechao
An accurate knowledge of the complex microstructure of a heterogeneous material is crucial for quantitative structure-property relations establishment and its performance prediction and optimization. X-ray tomography has provided a non-destructive means for microstructure characterization in both 3D and 4D (i.e., structural evolution over time). Traditional reconstruction algorithms like filtered-back-projection (FBP) method or algebraic reconstruction techniques (ART) require huge number of tomographic projections and segmentation process before conducting microstructural quantification. This can be quite time consuming and computationally intensive. In this thesis, a novel procedure is first presented that allows one to directly extract key structural information in forms of spatial correlation functions from limited x-ray tomography data. The key component of the procedure is the computation of a "probability map", which provides the probability of an arbitrary point in the material system belonging to specific phase. The correlation functions of interest are then readily computed from the probability map. Using effective medium theory, accurate predictions of physical properties (e.g., elastic moduli) can be obtained. Secondly, a stochastic optimization procedure that enables one to accurately reconstruct material microstructure from a small number of x-ray tomographic projections (e.g., 20 - 40) is presented. Moreover, a stochastic procedure for multi-modal data fusion is proposed, where both X-ray projections and correlation functions computed from limited 2D optical images are fused to accurately reconstruct complex heterogeneous materials in 3D. This multi-modal reconstruction algorithm is proved to be able to integrate the complementary data to perform an excellent optimization procedure, which indicates its high efficiency in using limited structural information. Finally, the accuracy of the stochastic reconstruction procedure using limited X-ray projection data is ascertained by analyzing the microstructural degeneracy and the roughness of energy landscape associated with different number of projections. Ground-state degeneracy of a microstructure is found to decrease with increasing number of projections, which indicates a higher probability that the reconstructed configurations match the actual microstructure. The roughness of energy landscape can also provide information about the complexity and convergence behavior of the reconstruction for given microstructures and projection number.
NASA Astrophysics Data System (ADS)
Hamdan, A.; Noel, C.; Kosior, F.; Henrion, G.; Belmonte, T.
2013-01-01
Modes of energy dissipation in impacts made on various materials (Al, Cu, Fe, and Si) by discharges in heptane are investigated for micro-gap conditions. Bulk metals and thin films of 300 nm in thickness deposited on silicon wafers are used as samples. Positive high voltage pulses with nanosecond rise times make it possible to isolate a single discharge and to study the way the charge delivered by the power supply is transferred to the larger electrode (the sample) in a pin-to-plate configuration. The diameter of the impacts created by the plasma varies linearly versus the charge raised at a power close to 0.5. However, the exact value of the power depends on the material. We also show how the impact morphologies change with the applied charge. At high charges, the diameters of impacts on thin films behave as those made on silicon. At low charges, they behave as the bulk material. Finally, we show that the energy dissipated in impacts is below a few percent.
David Adler Lectureship Award: n-point Correlation Functions in Heterogeneous Materials.
NASA Astrophysics Data System (ADS)
Torquato, Salvatore
2009-03-01
The determination of the bulk transport, electromagnetic, mechanical, and optical properties of heterogeneous materials has a long and venerable history, attracting the attention of some of the luminaries of science, including Maxwell, Lord Rayleigh, and Einstein. The bulk properties can be shown to depend rigorously upon infinite sets of various n-point correlation functions. Many different types of correlation functions arise, depending on the physics of the problem. A unified approach to characterize the microstructure and bulk properties of a large class of disordered materials is developed [S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer-Verlag, New York, 2002)]. This is accomplished via a canonical n-point function Hn from which one can derive exact analytical expressions for any microstructural function of interest. This microstructural information can then be used to estimate accurately the bulk properties of the material. Unlike homogeneous materials, seemingly different bulk properties (e.g., transport and mechanical properties) of a heterogeneous material can be linked to one another because of the common microstructure that they share. Such cross-property relations can be used to estimate one property given a measurement of another. A recently identified decorrelation principle, roughly speaking, refers to the phenomenon that unconstrained correlations that exist in low-dimensional disordered materials vanish as the space dimension becomes large. Among other results, this implies that in sufficiently high dimensions the densest spheres packings may be disordered (rather than ordered) [S. Torquato and F. H. Stillinger, ``New Conjectural Lower Bounds on the Optimal Density of Sphere Packings," Experimental Mathematics, 15, 307 (2006)].
Suriyapha, Chatkaew; Bubphachot, Bopit; Rittidech, Sampan
2015-01-01
Sheet metal extrusion is a metal forming process in which the movement of a punch penetrates a sheet metal surface and it flows through a die orifice; the extruded parts can be deflected to have an extrusion cavity and protrusion on the opposite side. Therefore, this process results in a narrow region of highly localized plastic deformation due to the formation and microstructure effect on the work piece. This research investigated the characteristics of the material-flow behavior during the formation and its effect on the microstructure of the extruded sheet metal using the finite element method (FEM). The actual parts and FEM simulation model were developed using a blank material made from AISI-1045 steel with a thickness of 5 mm; the material's behavior was determined subject to the punch penetration depths of 20%, 40%, 60%, and 80% of the sheet thickness. The results indicated the formation and microstructure effects on the sheet metal extrusion parts and defects. Namely, when increasing penetration, narrowing the die orifice the material flows through, the material was formed by extruding, and defects were visibility, and the microstructure of the material's grains' size was flat and very fine. Extrusion defects were not found in the control material flow. The region of highly localized plastic deformation affected the material gain and mechanical properties. The FEM simulation results agreed with the experimental results. Moreover, FEM could be investigated as a tool to decrease the cost and time in trial and error procedures. PMID:26229979
The Upper Limit of Energy Density of Nanoporous Materials Functionalized Liquid
NASA Astrophysics Data System (ADS)
Han, Aijie; Punyamurtula, Venkata K.; Kim, Taewan; Qiao, Yu
2008-06-01
In this article, we report the experimental result of energy dissipation of a mobil crystalline material (MCM) 41 in mercury. The MCM41 contains a large volume fraction of nanometer-sized pores. As the applied pressure is relatively high, the nanopore surfaces are exposed to mercury. Due to the large nanopore surface area and the large solid-liquid interfacial tension, the energy dissipation effectiveness of this system is ultrahigh, representing the upper limit that can be achieved by the pressure-induced infiltration technique.
Zhao, Pengyue; Cao, Lidong; Ma, Dukang; Zhou, Zhaolu; Huang, Qiliang; Pan, Canping
2017-05-16
Mesoporous silica nanoparticles are used as pesticide carries in plants, which has been considered as a novel method to reduce the indiscriminate use of conventional pesticides. In the present work, mesoporous silica nanoparticles with particle diameters of 200-300 nm were synthesized in order to obtain pyrimethanil-loaded nanoparticles. The microstructure of the nanoparticles was observed by scanning electron microscopy. The loading content of pyrimethanil-loaded nanoparticles was investigated. After treatment on cucumber leaves, the concentrations of pyrimethanil were determined in different parts of cucumber over a period of 48 days using high performance liquid chromatography tandem mass spectrometry. It was shown that the pyrimethanil-loaded mesoporous silica nanoparticles might be more conducive to acropetal, rather than basipetal, uptake, and the dosage had almost no effect on the distribution and dissipation rate in cucumber plants. The application of the pesticide-loaded nanoparticles in leaves had a low risk of pyrimethanil accumulating in the edible part of the plant.
Ocean Surface Observations of the Diurnal Cycle of Turbulence with ASIP
NASA Astrophysics Data System (ADS)
Ward, Brian; Sutherland, Graig; Reverdin, Gilles; Marie, Louis; Christensen, Kai; Brostrom, Goran; Harcourt, Ramsey; Breivik, Oyvind
2015-04-01
The STRASSE field experiment was conducted in August/September 2012 as part of the Salinity Processes in the Upper Ocean Regional Study (SPURS) campaign. The average conditions during STRASSE were low wind and high insolation, which are typical for the generation of near-surface diurnal warming. We deployed the Air-Sea Interaction Profiler (ASIP), an autonomous upwardly-rising microstructure instrument capable of resolving small-scale processes close to the air-sea interface. ASIP provides direct estimates of the dissipation rate of turbulent kinetic energy, temperature, salinity, and PAR at timescales suitable for the study of diurnal processes. In combination with the ASIP data, we had shipboard meteorological data for calculation of atmospheric forcing, and a surface mounted Lagrangian ADCP for determination of the near-surface velocity. There was a strong diurnal cycle of temperature and dissipation (from ASIP) and shear (from an ADCP). As air-sea fluxes are driven by turbulence immediately at the air-sea interface, the presence of this enhanced shear-induced turbulence will enhance fluxes.
NASA Astrophysics Data System (ADS)
Sutherland, G.; Reverdin, G.; Marié, L.; Ward, B.
2014-12-01
A comparison between mixed (MLD) and mixing (XLD) layer depths is presented from the SubTRopical Atlantic Surface Salinity Experiment (STRASSE) cruise in the subtropical Atlantic. This study consists of 400 microstructure profiles during fairly calm and moderate conditions (2 < U10 < 10 m s-1) and strong solar heating O(1000 W m-2). The XLD is determined from a decrease in the turbulent dissipation rate to an assumed background level. Two different thresholds for the background dissipation level are tested, 10-8 and 10-9 m2 s-3, and these are compared with the MLD as calculated using a density threshold. The larger background threshold agrees with the MLD during restratification but only extends to half the MLD during nighttime convection, while the lesser threshold agrees well during convection but is deeper by a factor of 2 during restratification. Observations suggest the use of a larger density threshold to determine the MLD in a buoyancy driven regime.
2016-07-01
characteristics and to examine the sensitivity of using such techniques for evaluating microstructure. In addition to the GUI tool, a manual describing its use has... Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures, Metallurgical and...driven approach for quanti - fying materials uncertainty in creep deformation and failure of aerspace materials, Multi-scale Structural Mechanics and
Root-cause estimation of ultrasonic scattering signatures within a complex textured titanium
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Na, Jeong K.; Freed, Shaun
2016-02-01
The nondestructive evaluation of polycrystalline materials has been an active area of research for many decades, and continues to be an area of growth in recent years. Titanium alloys in particular have become a critical material system used in modern turbine engine applications, where an evaluation of the local microstructure properties of engine disk/blade components is desired for performance and remaining life assessments. Current NDE methods are often limited to estimating ensemble material properties or detecting localized voids, inclusions, or damage features within a material. Recent advances in computational NDE and material science characterization methods are providing new and unprecedented access to heterogeneous material properties, which permits microstructure-sensing interactions to be studied in detail. In the present research, Integrated Computational Materials Engineering (ICME) methods and tools are being leveraged to gain a comprehensive understanding of root-cause ultrasonic scattering processes occurring within a textured titanium aerospace material. A combination of destructive, nondestructive, and computational methods are combined within the ICME framework to collect, holistically integrate, and study complex ultrasound scattering using realistic 2-dimensional representations of the microstructure properties. Progress towards validating the computational sensing methods are discussed, along with insight into the key scattering processes occurring within the bulk microstructure, and how they manifest in pulse-echo immersion ultrasound measurements.
Microstructural characterization of pressed HMX material sets at differing densities
NASA Astrophysics Data System (ADS)
Molek, C. D.; Welle, E. J.; Wixom, R. R.; Ritchey, M. B.; Samuels, P.; Horie, Y.
2017-01-01
The detonation physics community has embraced the idea that initiation of high explosives (HE) proceeds from an ignition event through subsequent growth to steady detonation. A weakness of all the commonly used ignition and growth models is the microstructural characteristics of the HE are not explicitly incorporated in their ignition and growth terms. This is the case in spite of a demonstrated, but not well-understood, empirical link between particle morphology and initiation of HE. Morphological effects have been parametrically studied in many ways, the majority of efforts focus on establishing a tie between bulk powder metrics and initiation of the pressed beds. More recently, there has been a shift toward characterizing the microstructure of pressed beds in order to understand the underlying mechanisms governing initiation behavior. In this work, we have characterized the microstructures of two HMX classes pressed at three densities using ion bombardment techniques. We find more significant compaction associated with the larger crystalline material - Class 3 - than the smaller fluid energy milled material. The Class 3 material exhibits evidence of crystal cracking. Finally, we discuss this evidence and our attempt to correlate microstructural features to observed changes in continuum level initiation behavior.
The Microstructural Response of Granular Soil Under Uniaxial Strain
1993-10-01
under uniaxial strains of up to 10 percent. The material tested was a poorly graded ottowa sand with specimens consisting of either 0.5- or 0.75-mm...microstructural effects in granular material under uniaxial strain of up to 10.0 percent. The relative influence of several microstructural effects (such as...uniaxial strain. The confinement vessel consisted of a base plate, four walls, and a loading cap. The sidewalls extended up beyond the specimen and served
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Lim, Hojun; Abdeljawad, Fadi; Owen, Steven J.; ...
2016-04-25
Here, the mechanical properties of materials systems are highly influenced by various features at the microstructural level. The ability to capture these heterogeneities and incorporate them into continuum-scale frameworks of the deformation behavior is considered a key step in the development of complex non-local models of failure. In this study, we present a modeling framework that incorporates physically-based realizations of polycrystalline aggregates from a phase field (PF) model into a crystal plasticity finite element (CP-FE) framework. Simulated annealing via the PF model yields ensembles of materials microstructures with various grain sizes and shapes. With the aid of a novel FEmore » meshing technique, FE discretizations of these microstructures are generated, where several key features, such as conformity to interfaces, and triple junction angles, are preserved. The discretizations are then used in the CP-FE framework to simulate the mechanical response of polycrystalline α-iron. It is shown that the conformal discretization across interfaces reduces artificial stress localization commonly observed in non-conformal FE discretizations. The work presented herein is a first step towards incorporating physically-based microstructures in lieu of the overly simplified representations that are commonly used. In broader terms, the proposed framework provides future avenues to explore bridging models of materials processes, e.g. additive manufacturing and microstructure evolution of multi-phase multi-component systems, into continuum-scale frameworks of the mechanical properties.« less
Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata
NASA Astrophysics Data System (ADS)
Kuc, Dariusz; Gawąd, Jerzy
2011-01-01
The paper is focused on application of multi-scale 2D method. Model approach consists of Cellular Automata (CA) model of microstructure development and the finite element code to solve thermo-mechanical problem. Dynamic recrystallization phenomenon is taken into account in 2D CA model which takes advantage of explicit representation of microstructure, including individual grains and grain boundaries. Flow stress is the main material parameter in mechanical part of FE and is calculated on the basis of average dislocation density obtained from CA model. The results attained from the model were validated with the experimental data. In the present study, austenitic steel X3CrNi18-10 was investigated. The examination of microstructure for the initial and final microstructures was carried out, using light microscopy and transmission electron microscopy.
NASA Astrophysics Data System (ADS)
Morrow, Benjamin M.; Lienert, Thomas J.; Knapp, Cameron M.; Sutton, Jacob O.; Brand, Michael J.; Pacheco, Robin M.; Livescu, Veronica; Carpenter, John S.; Gray, George T.
2018-05-01
Recent work in both 304L and 316L stainless steel produced by additive manufacturing (AM) has shown that in addition to the unique, characteristic microstructures formed during the process, a fine dispersion of sub-micron particles, with a chemistry different from either the powder feedstock or the expected final material, are evident in the final microstructure. Such fine-scale features can only be resolved using transmission electron microscopy (TEM) or similar techniques. The present work uses electron microscopy to study both the initial powder feedstock and microstructures in final AM parts. Special attention is paid to the chemistry and origin of these nanoscale particles in several different metal alloys, and their impact on the final build. Comparisons to traditional, wrought material will be made.
Hooper, R. J.; Adams, D. P.; Hirschfeld, D.; ...
2015-08-05
The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less
Characterization of a polymer-infiltrated ceramic-network material.
Della Bona, Alvaro; Corazza, Pedro H; Zhang, Yu
2014-05-01
To characterize the microstructure and determine some mechanical properties of a polymer-infiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD-CAM systems. Specimens were fabricated to perform quantitative and qualitative analyses of the material's microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson's ratio (ν) and Young's modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and ν and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc=1.09±0.05MPam(1/2), ρ=2.09±0.01g/cm(3), ν=0.23±0.002 and E=37.95±0.34GPa. The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Scanning and Transmission Electron Microscopy of High Temperature Materials
NASA Technical Reports Server (NTRS)
1994-01-01
Software and hardware updates to further extend the capability of the electron microscope were carried out. A range of materials such as intermetallics, metal-matrix composites, ceramic-matrix composites, ceramics and intermetallic compounds, based on refractory elements were examined under this research. Crystal structure, size, shape and volume fraction distribution of various phases which constitute the microstructures were examined. Deformed materials were studied to understand the effect of interfacial microstructure on the deformation and fracture behavior of these materials. Specimens tested for a range of mechanical property requirements, such as stress rupture, creep, low cycle fatigue, high cycle fatigue, thermomechanical fatigue, etc. were examined. Microstructural and microchemical stability of these materials exposed to simulated operating environments were investigated. The EOIM Shuttle post-flight samples were also examined to understand the influence of low gravity processing on microstructure. In addition, fractographic analyses of Nb-Zr-W, titanium aluminide, molybdenum silicide and silicon carbide samples were carried out. Extensive characterization of sapphire fibers in the fiber-reinforced composites made by powder cloth processing was made. Finally, pressure infiltration casting of metal-matrix composites was carried out.
Temperature analysis of laser ignited metalized material using spectroscopic technique
NASA Astrophysics Data System (ADS)
Bassi, Ishaan; Sharma, Pallavi; Daipuriya, Ritu; Singh, Manpreet
2018-05-01
The temperature measurement of the laser ignited aluminized Nano energetic mixture using spectroscopy has a great scope in in analysing the material characteristic and combustion analysis. The spectroscopic analysis helps to do in depth study of combustion of materials which is difficult to do using standard pyrometric methods. Laser ignition was used because it consumes less energy as compared to electric ignition but ignited material dissipate the same energy as dissipated by electric ignition and also with the same impact. Here, the presented research is primarily focused on the temperature analysis of energetic material which comprises of explosive material mixed with nano-material and is ignited with the help of laser. Spectroscopy technique is used here to estimate the temperature during the ignition process. The Nano energetic mixture used in the research does not comprise of any material that is sensitive to high impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Judith Alice; Steck, Daniel; Brown, Judith Alice
Previous numerical studies of Sylgard filled with glass microballoons (GMB) have relied on various microstructure idealizations to achieve a large range of volume fractions with high mesh quality. This study investigates how different microstructure idealizations and constraints affect the apparent homogenized elastic constants in the virgin state of the material, in which all GMBs are intact and perfectly bonded to the Sylgard matrix, and in the fully damaged state of the material in which all GMBs are destroyed. In the latter state, the material behaves as an elastomeric foam. Four microstructure idealizations are considered relating to how GMBs are packedmore » into a representative volume element (RVE): (1) no boundary penetration nor GMB-GMB overlap, (2) GMB-GMB overlap, (3) boundary penetration, and (4) boundary penetration and GMB-GMB overlap. First order computational homogenization with kinematically uniform displacement boundary conditions (KUBCs) was employed to determine the homogenized (apparent) bulk and shear moduli for the four microstructure idealizations in the intact and fully broken GMB material states. It was found that boundary penetration has a significant effect on the shear modulus for microstructures with intact GMBs, but that neither boundary penetration nor GMB overlap have a significant effect on homogenized properties for microstructures with fully broken GMBs. The primary conclusion of the study is that future investigations into Sylgard/GMB micromechanics should either force GMBs to stay within the RVE fully and/or use periodic BCs (PBCs) to eliminate the boundary penetration issues. The implementation of PBCs requires the improvement of existing tools in Sandia’s Sierra/SM code.« less
NASA Technical Reports Server (NTRS)
Gandin, Charles-Andre; Ratke, Lorenz
2008-01-01
The Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MSL-CETSOL and MICAST) are two investigations which supports research into metallurgical solidification, semiconductor crystal growth (Bridgman and zone melting), and measurement of thermo-physical properties of materials. This is a cooperative investigation with the European Space Agency (ESA) and National Aeronautics and Space Administration (NASA) for accommodation and operation aboard the International Space Station (ISS). Research Summary: Materials Science Laboratory - Columnar-to-Equiaxed Transition in Solidification Processing (CETSOL) and Microstructure Formation in Casting of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions (MICAST) are two complementary investigations which will examine different growth patterns and evolution of microstructures during crystallization of metallic alloys in microgravity. The aim of these experiments is to deepen the quantitative understanding of the physical principles that govern solidification processes in cast alloys by directional solidification.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
Nennig, Benoit; Perrey-Debain, Emmanuel; Ben Tahar, Mabrouk
2010-12-01
A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.
Alkali halide microstructured optical fiber for X-ray detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeHaven, S. L., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Wincheski, R. A., E-mail: stanton.l.dehaven@nasa.gov, E-mail: russel.a.wincheski@nasa.gov; Albin, S., E-mail: salbin@nsu.edu
Microstructured optical fibers containing alkali halide scintillation materials of CsI(Na), CsI(Tl), and NaI(Tl) are presented. The scintillation materials are grown inside the microstructured fibers using a modified Bridgman-Stockbarger technique. The x-ray photon counts of these fibers, with and without an aluminum film coating are compared to the output of a collimated CdTe solid state detector over an energy range from 10 to 40 keV. The photon count results show significant variations in the fiber output based on the materials. The alkali halide fiber output can exceed that of the CdTe detector, dependent upon photon counter efficiency and fiber configuration. Themore » results and associated materials difference are discussed.« less
Microstructural characterization of catalysis product of nanocement based materials: A review
NASA Astrophysics Data System (ADS)
Sutan, Norsuzailina Mohamed; Izaitul Akma Ideris, Nur; Taib, Siti Noor Linda; Lee, Delsye Teo Ching; Hassan, Alsidqi; Kudnie Sahari, Siti; Mohamad Said, Khairul Anwar; Rahman Sobuz, Habibur
2018-03-01
Cement as an essential element for cement-based products contributed to negative environmental issues due to its high energy consumption and carbon dioxide emission during its production. These issues create the need to find alternative materials as partial cement replacement where studies on the potential of utilizing silica based materials as partial cement replacement come into picture. This review highlights the effectiveness of microstructural characterization techniques that have been used in the studies that focus on characterization of calcium hydroxide (CH) and calcium silicate hydrate (C-S-H) formation during hydration process of cement-based product incorporating nano reactive silica based materials as partial cement replacement. Understanding the effect of these materials as cement replacement in cement based product focusing on the microstructural development will lead to a higher confidence in the use of industrial waste as a new non-conventional material in construction industry that can catalyse rapid and innovative advances in green technology.
Sonnenfeld, Camille; Sulejmani, Sanne; Geernaert, Thomas; Eve, Sophie; Lammens, Nicolas; Luyckx, Geert; Voet, Eli; Degrieck, Joris; Urbanczyk, Waclaw; Mergo, Pawel; Becker, Martin; Bartelt, Hartmut; Berghmans, Francis; Thienpont, Hugo
2011-01-01
Fiber Bragg gratings written in highly birefringent microstructured optical fiber with a dedicated design are embedded in a composite fiber-reinforced polymer. The Bragg peak wavelength shifts are measured under controlled axial and transversal strain and during thermal cycling of the composite sample. We obtain a sensitivity to transversal strain that exceeds values reported earlier in literature by one order of magnitude. Our results evidence the relevance of using microstructured optical fibers for structural integrity monitoring of composite material structures. PMID:22163755
NASA Astrophysics Data System (ADS)
Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.
2016-05-01
Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.
Tidal dissipation in a viscoelastic planet
NASA Technical Reports Server (NTRS)
Ross, M.; Schubert, G.
1986-01-01
Tidal dissipation is examined using Maxwell standard liner solid (SLS), and Kelvin-Voigt models, and viscosity parameters are derived from the models that yield the amount of dissipation previously calculated for a moon model with QW = 100 in a hypothetical orbit closer to the earth. The relevance of these models is then assessed for simulating planetary tidal responses. Viscosities of 10 exp 14 and 10 ex 18 Pa s for the Kelvin-Voigt and Maxwell rheologies, respectively, are needed to match the dissipation rate calculated using the Q approach with a quality factor = 100. The SLS model requires a short time viscosity of 3 x 10 exp 17 Pa s to match the Q = 100 dissipation rate independent of the model's relaxation strength. Since Q = 100 is considered a representative value for the interiors of terrestrial planets, it is proposed that derived viscosities should characterize planetary materials. However, it is shown that neither the Kelvin-Voigt nor the SLS models simulate the behavior of real planetary materials on long time scales. The Maxwell model, by contrast, behaves realistically on both long and short time scales. The inferred Maxwell viscosity, corresponding to the time scale of days, is several times smaller than the longer time scale (greater than or equal to 10 exp 14 years) viscosity of the earth's mantle.
Unifying role of dissipative action in the dynamic failure of solids
NASA Astrophysics Data System (ADS)
Grady, Dennis E.
2015-04-01
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
NASA Astrophysics Data System (ADS)
Rabe, Benjamin; Janout, Markus; Graupner, Rainer; Hoelemann, Jens; Hampe, Hendrik; Hoppmann, Mario; Horn, Myriel; Juhls, Bennet; Korhonen, Meri; Nikolopoulos, Anna; Pisarev, Sergey; Randelhoff, Achim; Savy, Jean-Philippe; Villacieros Robineau, Nicolas
2017-04-01
The Arctic Ocean is generally assumed to be fairly quiescent when compared to many other oceans. The sea-ice cover, a strong halocline and a shallow, cold mixed-layer prevents much of the ocean to be affected by atmospheric conditions and properties of the ocean mixed-layer. In turn, the mixed-layer and the sea-ice is largely isolated from the warm layer of Atlantic origin below by the lower halocline. Yet, the content of heat, freshwater and biologically important nutrients differs strongly between these different layers. Hence, it is crucial to be able to estimate vertical fluxes of salt, heat and nutrients to understand variability in the upper Arctic Ocean and the sea-ice, including the ecosystem. Yet, it is difficult to obtain direct flux measurements, and estimates are sparse. We present several sets of under-ice turbulent microstructure profiles in the Eurasian and Makarov Basin of the Arctic Ocean from two expeditions, in 2015. These cover melt during late spring north of Svalbard and freeze-up during late summer / autumn across the Eurasian and Makarov basins. Our results are presented against a background of the anomalously warm atmospheric conditions during summer 2015 followed by unusually low temperatures in September. 4 - 24 h averages of the measurements generally show elevated dissipation rates at the base of the mixed-layer. We found highest levels of dissipation near the Eurasian continental slope and smaller peaks in the profiles where Bering Sea Summer Water (sBSW) lead to additional stratification within the upper halocline in the Makarov Basin. The elevated levels of dissipation associated with sBSW and the base of the mixed-layer were associated with the relatively low levels of vertical eddy diffusivity. We discuss these findings in the light of the anomalous conditions in the upper ocean, sea-ice and the atmosphere during 2015 and present estimates of vertical fluxes of heat, salt and other dissolved substances measured in water samples.
Turbulence suppression at water density interfaces: observations under moderate wind forcing.
NASA Astrophysics Data System (ADS)
Marcello Falcieri, Francesco; Kanth, Lakshmi H.; Benetazzo, Alvise; Bergamasco, Andrea; Bonaldo, Davide; Barbariol, Francesco; Malačič, Vlado; Sclavo, Mauro; Carniel, Sandro
2016-04-01
Water column stratification has a strong influence on the behaviour of turbulence kinetic energy (TKE) dissipation rates. Density gradient interfaces, due to thermohaline characteristics and to suspended sediment concentration, can act as a barrier and significantly damp TKE. Between January 30th - February 4th 2014 (CARPET2014 oceanographic campaign on R/V URANIA) we collected the very first turbulence data in the Gulf of Trieste (a small bay located in the North-eartern part of the Adriatic Sea). Observation consisted of 38 CTD casts and 478 microstructure profiles (145 ensembles) collected with a free-falling probe (MSS90L). Among those 48 were grouped in three sets of yoyo casts, each lasting for about 12 consecutive hours. The meteorological conditions during the campaign were of moderate wind (average wind speed 10 m s-1) and heat flux (net negative heat flux ranging from 150 to 400 W m-2). The water column characteristics in the Gulf during the campaign evolved from well-mixed to stratified conditions with waters intruding from the Adriatic Sea at the bottom. Two types of water intrusions were found during yoyo casts: one coming from the Adriatic Sea northern coast (i.e. warmer, saltier and more turbid) and one coming from the open sea in front of the Po Delta (i.e. cooler, fresher and less turbid). Our observations show that under moderate wind forcing, the GOT was not completely mixed due to the interfaces created by the bottom waters intruding from the open sea. The comparison of microstructure profiles collected during well mixed and stratified conditions permitted us to highlight the effect of different stratification on TKE dissipation rates. While during well mixed condition TKE profiles are governed just by their forcing, the two intrusions showed different impacts on TKE dissipation rate profiles. The coastal one, with high turbidity, acted as a barrier to surface driven turbulence dumping it of almost two order of magnitude, while the one coming from the open sea, with low sediment concentrations and a smaller vertical density gradient, was not able to suppress downward penetration of turbulence from the surface.
In situ grain fracture mechanics during uniaxial compaction of granular solids
NASA Astrophysics Data System (ADS)
Hurley, R. C.; Lind, J.; Pagan, D. C.; Akin, M. C.; Herbold, E. B.
2018-03-01
Grain fracture and crushing are known to influence the macroscopic mechanical behavior of granular materials and be influenced by factors such as grain composition, morphology, and microstructure. In this paper, we investigate grain fracture and crushing by combining synchrotron x-ray computed tomography and three-dimensional x-ray diffraction to study two granular samples undergoing uniaxial compaction. Our measurements provide details of grain kinematics, contacts, average intra-granular stresses, inter-particle forces, and intra-grain crystal and fracture plane orientations. Our analyses elucidate the complex nature of fracture and crushing, showing that: (1) the average stress states of grains prior to fracture vary widely in their relation to global and local trends; (2) fractured grains experience inter-particle forces and stored energies that are statistically higher than intact grains prior to fracture; (3) fracture plane orientations are primarily controlled by average intra-granular stress and contact fabric rather than the orientation of the crystal lattice; (4) the creation of new surfaces during fracture accounts for a very small portion of the energy dissipated during compaction; (5) mixing brittle and ductile grain materials alters the grain-scale fracture response. The results highlight an application of combined x-ray measurements for non-destructive in situ analysis of granular solids and provide details about grain fracture that have important implications for theory and modeling.
Highly birefringent polymer microstructured optical fibers embedded in composite materials
NASA Astrophysics Data System (ADS)
Lesiak, P.; SzelÄ g, M.; Kuczkowski, M.; Domański, A. W.; Woliński, T. R.
2013-05-01
Composite structures are made from two or more constituent materials with significantly different physical or chemical properties and they remain separate and distinct in a macroscopic level within the finished structure. This feature allows for introducing highly birefringent polymer microstructured optical fibers into the composite material. These new fibers can consist of only two polymer materials (PMMA and PC) with similar value of the Young modulus as the composite material so any stresses induced in the composite material can be easily measured by the proposed embedded fiber optic sensors.
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlyingmore » the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.« less
Time for pulse traversal through slabs of dispersive and negative ({epsilon}, {mu}) materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanda, Lipsa; Ramakrishna, S. Anantha
2007-12-15
The traversal times for an electromagnetic pulse traversing a slab of dispersive and dissipative material with negative dielectric permittivity ({epsilon}) and magnetic permeability ({mu}) have been calculated by using the average flow of electromagnetic energy in the medium. The effects of bandwidth of the pulse and dissipation in the medium have been investigated. While both large bandwidth and large dissipation have similar effects in smoothening out the resonant features that appear due to Fabry-Perot resonances, large dissipation can result in very small or even negative traversal times near the resonant frequencies. We have also investigated the traversal times and Wignermore » delay times for obliquely incident pulses and evanescent pulses. The coupling to slab plasmon-polariton modes in frequency ranges with negative {epsilon} or {mu} is shown to result in large traversal times at the resonant conditions. We also find that the group velocity mainly contributes to the delay times for pulses propagating across a slab with n=-1. We have checked that the traversal times are positive and subluminal for pulses with sufficiently large bandwidths.« less
Li, Ling; Ortiz, Christine
2014-05-01
Hierarchical composite materials design in biological exoskeletons achieves penetration resistance through a variety of energy-dissipating mechanisms while simultaneously balancing the need for damage localization to avoid compromising the mechanical integrity of the entire structure and to maintain multi-hit capability. Here, we show that the shell of the bivalve Placuna placenta (~99 wt% calcite), which possesses the unique optical property of ~80% total transmission of visible light, simultaneously achieves penetration resistance and deformation localization via increasing energy dissipation density (0.290 ± 0.072 nJ μm(-3)) by approximately an order of magnitude relative to single-crystal geological calcite (0.034 ± 0.013 nJ μm(-3)). P. placenta, which is composed of a layered assembly of elongated diamond-shaped calcite crystals, undergoes pervasive nanoscale deformation twinning (width ~50 nm) surrounding the penetration zone, which catalyses a series of additional inelastic energy dissipating mechanisms such as interfacial and intracrystalline nanocracking, viscoplastic stretching of interfacial organic material, and nanograin formation and reorientation.
Low Energy Dissipation Nano Device Research
NASA Astrophysics Data System (ADS)
Yu, Jenny
2015-03-01
The development of research on energy dissipation has been rapid in energy efficient area. Nano-material power FET is operated as an RF power amplifier, the transport is ballistic, noise is limited and power dissipation is minimized. The goal is Green-save energy by developing the Graphene and carbon nantube microwave and high performance devices. Higher performing RF amplifiers can have multiple impacts on broadly field, for example communication equipment, (such as mobile phone and RADAR); higher power density and lower power dissipation will improve spectral efficiency which translates into higher system level bandwidth and capacity for communications equipment. Thus, fundamental studies of power handling capabilities of new RF (nano)technologies can have broad, sweeping impact. Because it is critical to maximizing the power handling ability of grephene and carbon nanotube FET, the initial task focuses on measuring and understanding the mechanism of electrical breakdown. We aim specifically to determine how the breakdown voltage in graphene and nanotubes is related to the source-drain spacing, electrode material and thickness, and substrate, and thus develop reliable statistics on the breakdown mechanism and probability.
A Dissipative Systems Theory for FDTD With Application to Stability Analysis and Subgridding
NASA Astrophysics Data System (ADS)
Bekmambetova, Fadime; Zhang, Xinyue; Triverio, Piero
2017-02-01
This paper establishes a far-reaching connection between the Finite-Difference Time-Domain method (FDTD) and the theory of dissipative systems. The FDTD equations for a rectangular region are written as a dynamical system having the magnetic and electric fields on the boundary as inputs and outputs. Suitable expressions for the energy stored in the region and the energy absorbed from the boundaries are introduced, and used to show that the FDTD system is dissipative under a generalized Courant-Friedrichs-Lewy condition. Based on the concept of dissipation, a powerful theoretical framework to investigate the stability of FDTD methods is devised. The new method makes FDTD stability proofs simpler, more intuitive, and modular. Stability conditions can indeed be given on the individual components (e.g. boundary conditions, meshes, embedded models) instead of the whole coupled setup. As an example of application, we derive a new subgridding method with material traverse, arbitrary grid refinement, and guaranteed stability. The method is easy to implement and has a straightforward stability proof. Numerical results confirm its stability, low reflections, and ability to handle material traverse.
Kirka, M. M.; Brindley, K. A.; Neu, R. W.; ...
2015-08-17
The aging of the microstructure of Ni-base superalloys during service is mainly characterized by coarsening and rafting of the γ' precipitates. The influence of these different aged microstructures on thermomechanical fatigue (TMF) under either continuously cycled (CC) and creep-fatigue (CF) was investigated. Three different aged microstructures, generated through accelerated aging and pre-creep treatments, were studied: stress-free coarsened γ', rafted with orientation perpendicular to loading direction (N-raft), and rafted with orientation parallel to loading direction (P-raft). Under most conditions, the aged microstructures were less resistant to TMF than the virgin microstructure; however, there were exceptions. Both stress-free coarsened and N-raft microstructuresmore » resulted in a reduction in TMF life under both CC and CF conditions in comparison to the virgin material. P-raft microstructure also resulted in reduction in TMF life under CC conditions; however, an increase in life over that of the virgin material was observed under CF conditions. Finally, these differences are discussed and hypothesized to be related to the interactions of the dislocations in the γ channels with γ' precipitates.« less
Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales
2015-08-31
ABSTRACT 16. SECURITY CLASSIFICATION OF: Shock wave response of heterogeneous materials like cement and concrete is greatly influenced by the...constituents and their statistical distributions. The microstructure of cement is complex due to the presence of unhydrated water, nano /micro pores, and other...heterogeneous materials like cement and concrete is greatly influenced by the constituents and their statistical distributions. The microstructure of cement
Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist
2013-11-19
A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.
Ionescu, Emanuel; Kleebe, Hans-Joachim; Riedel, Ralf
2012-08-07
Composites consist by definition of at least two materials (Gibbsian phases) with rather different properties. They exhibit a heterogeneous microstructure and possess improved properties with respect to their components. Furthermore, the design of their microstructure allows for tailoring their overall properties. In the last decades, intense work was performed on the synthesis of nanocomposites, which have the feature that at least one of their components is nanoscaled. However, the microstructure-property relationship of nanocomposite materials is still a challenging topic. This tutorial review paper deals with a special class of nanocomposites, i.e. polymer-derived ceramic nanocomposites (PDC-NCs), which have been shown to be promising materials for various structural and functional applications. Within this context, different preparative approaches for PDC-NCs as well as some of their properties will be presented and discussed. Furthermore, recent results concerning the relationship between the nano/microstructure of PDC-NCs and their properties will be highlighted.
PuMA: the Porous Microstructure Analysis software
NASA Astrophysics Data System (ADS)
Ferguson, Joseph C.; Panerai, Francesco; Borner, Arnaud; Mansour, Nagi N.
2018-01-01
The Porous Microstructure Analysis (PuMA) software has been developed in order to compute effective material properties and perform material response simulations on digitized microstructures of porous media. PuMA is able to import digital three-dimensional images obtained from X-ray microtomography or to generate artificial microstructures. PuMA also provides a module for interactive 3D visualizations. Version 2.1 includes modules to compute porosity, volume fractions, and surface area. Two finite difference Laplace solvers have been implemented to compute the continuum tortuosity factor, effective thermal conductivity, and effective electrical conductivity. A random method has been developed to compute tortuosity factors from the continuum to rarefied regimes. Representative elementary volume analysis can be performed on each property. The software also includes a time-dependent, particle-based model for the oxidation of fibrous materials. PuMA was developed for Linux operating systems and is available as a NASA software under a US & Foreign release.
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Wirth, Brian; Motta, Athur
The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less
NASA Astrophysics Data System (ADS)
Burik, P.; Pesek, L.; Kejzlar, P.; Andrsova, Z.; Zubko, P.
2017-01-01
The main idea of this work is using a physical model to prepare a virtual material with required properties. The model is based on the relationship between the microstructure and mechanical properties. The macroscopic (global) mechanical properties of steel are highly dependent upon microstructure, crystallographic orientation of grains, distribution of each phase present, etc... We need to know the local mechanical properties of each phase separately in multiphase materials. The grain size is a scale, where local mechanical properties are responsible for the behavior. Nanomechanical testing using depth sensing indentation (DSI) provides a straightforward solution for quantitatively characterizing each of phases in microstructure because it is very powerful technique for characterization of materials in small volumes. The aim of this experimental investigation is: (i) to prove how the mixing rule works for local mechanical properties (indentation hardness HIT) in microstructure scale using the DSI technique on steel sheets with different microstructure; (ii) to compare measured global properties with properties achieved by mixing rule; (iii) to analyze the effect of crystallographic orientations of grains on the mixing rule.
Genesis of Microstructures in Friction Stir Welding of Ti-6Al-4V
NASA Astrophysics Data System (ADS)
Tchein, Gnofam Jacques; Jacquin, Dimitri; Coupard, Dominique; Lacoste, Eric; Girot Mata, Franck
2018-06-01
This paper is focused on the genesis of microstructures in friction stir welding (FSW) of the Ti-6Al-4V alloy. Several titanium joints, initially prepared with four different preheat treatments, were processed by FSW. Detailed microstructural analyses were performed in order to investigate change in the microstructure during the process. In this work, the FSW processing allows a controlled and stable microstructure to be produced in the stirring zone, regardless of the initial heat treatment or the welding conditions. The welded material undergoes a severe thermomechanical treatment which can be divided into two steps. First, the friction in the shoulder and the plastic strain give rise to the necessary conditions to allow a continuous dynamic recrystallization of the β phase. This operation produces a fine and equiaxed β grain structure. Second, once the pin has moved away, the temperature decreases, and the material undergoes a heat treatment equivalent to air quenching. The material thus exhibits a β → β + α transformation with germination of a fine intergranular Widmanstätten phase within the ex-fully-recrystallized- β grains.
Laassiri, Said; Bion, Nicolas; Duprez, Daniel; Royer, Sébastien; Alamdari, Houshang
2014-03-07
Microstructural properties of mixed oxides play essential roles in their oxygen mobility and consequently in their catalytic performances. Two families of mixed oxides (perovskite and hexaaluminate) with different microstructural features, such as crystal size and specific surface area, were prepared using the activated reactive synthesis (ARS) method. It was shown that ARS is a flexible route to synthesize both mixed oxides with nano-scale crystal size and high specific surface area. Redox properties and oxygen mobility were found to be strongly affected by the material microstructure. Catalytic activities of hexaaluminate and perovskite materials for methane oxidation were discussed in the light of structural, redox and oxygen mobility properties.
Self-consistent description of graphene quantum amplifier
NASA Astrophysics Data System (ADS)
Lozovik, Yu. E.; Nechepurenko, I. A.; Andrianov, E. S.; Dorofeenko, A. V.; Pukhov, A. A.; Chtchelkatchev, N. M.
2016-07-01
The development of active and passive plasmonic devices is challenging due to the high level of dissipation in normal metals. One possible solution to this problem is using alternative materials. Graphene is a good candidate for plasmonics in the near-infrared region. In this paper, we develop a quantum theory of a graphene plasmon generator. We account for quantum correlations and dissipation effects, thus we are able to describe such regimes of a quantum plasmonic amplifier as a surface plasmon emitting diode and a surface plasmon amplifier using stimulated radiation emission. Switching between these generation types is possible in situ with a variance of the graphene Fermi level. We provide explicit expressions for dissipation and interaction constants through material parameters, and we identify the generation spectrum and the second-order correlation function, which predicts the laser statistics.
NASA Astrophysics Data System (ADS)
Tůma, K.; Stupkiewicz, S.; Petryk, H.
2016-10-01
A finite-strain phase field model for martensitic phase transformation and twinning in shape memory alloys is developed and confronted with the corresponding sharp-interface approach extended to interfacial energy effects. The model is set in the energy framework so that the kinetic equations and conditions of mechanical equilibrium are fully defined by specifying the free energy and dissipation potentials. The free energy density involves the bulk and interfacial energy contributions, the latter describing the energy of diffuse interfaces in a manner typical for phase-field approaches. To ensure volume preservation during martensite reorientation at finite deformation within a diffuse interface, it is proposed to apply linear mixing of the logarithmic transformation strains. The physically different nature of phase interfaces and twin boundaries in the martensitic phase is reflected by introducing two order-parameters in a hierarchical manner, one as the reference volume fraction of austenite, and thus of the whole martensite, and the second as the volume fraction of one variant of martensite in the martensitic phase only. The microstructure evolution problem is given a variational formulation in terms of incremental fields of displacement and order parameters, with unilateral constraints on volume fractions explicitly enforced by applying the augmented Lagrangian method. As an application, size-dependent microstructures with diffuse interfaces are calculated for the cubic-to-orthorhombic transformation in a CuAlNi shape memory alloy and compared with the sharp-interface microstructures with interfacial energy effects.
Metallurgy and properties of plasma spray formed materials
NASA Technical Reports Server (NTRS)
Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.
1992-01-01
Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.
Microstructure Characterization of Al-TiC Surface Composite Fabricated by Friction Stir Processing
NASA Astrophysics Data System (ADS)
Shiva, Apireddi; Cheepu, Muralimohan; Charan Kantumuchu, Venkata; Kumar, K. Ravi; Venkateswarlu, D.; Srinivas, B.; Jerome, S.
2018-03-01
Titanium carbide (TiC) is an exceedingly hard and wear refractory ceramic material. The surface properties of the material are very important and the corrosion, wear and fatigue resistance behaviour determines its ability and applications. It is necessary to modify the surface properties of the materials to enhance their performance. The present work aims on developing a new surface composite using commercially pure aluminum and TiC reinforcement powder with a significant fabrication technique called friction stir processing (FSP). The metal matrix composite of Al/TiC has been developed without any defects formation to investigate the particles distribution in the composite, microstructural changes and mechanical properties of the material. The microstructural observations exhibited that the grain refinement in the nugget compared to the base metal and FSP without TiC particles. The developed composite properties showed substantial improvement in micro-hardness, friction factor, wear resistance and microstructural characteristics in comparison to parent metal. On the other side, the ductility of the composite specimens was diminished over the substrate. The FSPed specimens were characterised using X-ray diffraction technique and revealed that the formation of AlTi compounds and the presence of Ti phases in the matrix. The microstructures of the samples illustrated the uniform distribution of particles in the newly developed metal matrix composite.
NASA Astrophysics Data System (ADS)
Ingle, Ninad; Gu, Ling; Mohanty, Samarendra K.
2011-03-01
Here, we report in situ formation of microstructures from the regular constituents of culture media near live cells using spatially-structured near infrared (NIR) laser beam. Irradiation with the continuous wave (cw) NIR laser microbeam for few seconds onto the regular cell culture media containing fetal bovine serum resulted in accumulation of dense material inside the media as evidenced by phase contrast microscopy. The time to form the phase dense material was found to depend on the laser beam power. Switching off the laser beam led to diffusion of phase dark material. However, the proteins could be stitched together by use of carbon nanoparticles and continuous wave (cw) Ti: Sapphire laser beam. Further, by use of spatially-structured beam profiles different structures near live cells could be formed. The microfabricated structure could be held by the Gravito-optical trap and repositioned by movement of the sample stage. Orientation of these microstructures was achieved by rotating the elliptical laser beam profile. Thus, multiple microstructures were formed and organized near live cells. This method would enable study of response of cells/axons to the immediate physical hindrance provided by such structure formation and also eliminate the biocompatibility requirement posed on artificial microstructure materials.
4D nano-tomography of electrochemical energy devices using lab-based X-ray imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heenan, T. M. M.; Finegan, D. P.; Tjaden, B.
Electrochemical energy devices offer a variety of alternate means for low-carbon, multi-scale energy conversion and storage. Reactions in these devices are supported by electrodes with characteristically complex microstructures. To meet the increasing capacity and lifetime demands across a range of applications, it is essential to understand microstructural evolutions at a cell and electrode level which are thought to be critical aspects influencing material and device lifetime and performance. X-ray computed tomography (CT) has become a highly employed method for non-destructive characterisation of such microstructures with high spatial resolution. However, sub-micron resolutions present significant challenges for sample preparation and handling particularlymore » in 4D studies, (three spatial dimensions plus time). Here, microstructural information is collected from the same region of interest within two electrode materials: a solid oxide fuel cell and the positive electrode from a lithium-ion battery. Using a lab-based X-ray instrument, tomograms with sub-micron resolutions were obtained between thermal cycling. The intricate microstructural evolutions captured within these two materials provide model examples of 4D X-ray nano-CT capabilities in tracking challenging degradation mechanisms. This technique is valuable in the advancement of electrochemical research as well as broader applications for materials characterisation.« less
Recent Developments in Ultra High Temperature Ceramics at NASA Ames
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matt; Lawson, John W.; Gusman, Michael I.; Stackpole, Margaret M.
2009-01-01
NASA Ames is pursuing a variety of approaches to modify and control the microstructure of UHTCs with the goal of improving fracture toughness, oxidation resistance and controlling thermal conductivity. The overall goal is to produce materials that can perform reliably as sharp leading edges or nose tips in hypersonic reentry vehicles. Processing approaches include the use of preceramic polymers as the SiC source (as opposed to powder techniques), the addition of third phases to control grain growth and oxidation, and the use of processing techniques to produce high purity materials. Both hot pressing and field assisted sintering have been used to make UHTCs. Characterization of the mechanical and thermal properties of these materials is ongoing, as is arcjet testing to evaluate performance under simulated reentry conditions. The preceramic polymer approach has generated a microstructure in which elongated SiC grains grow in the form of an in-situ composite. This microstructure has the advantage of improving fracture toughness while potentially improving oxidation resistance by reducing the amount and interconnectivity of SiC in the material. Addition of third phases, such as Ir, results in a very fine-grained microstructure, even in hot-pressed samples. The results of processing and compositional changes on microstructure and properties are reported, along with selected arcjet results.
NASA Astrophysics Data System (ADS)
Paul, Surajit Kumar
2013-07-01
The microstructure of dual-phase (DP) steels typically consists of a soft ferrite matrix with dispersed islands of hard martensite phase. Due to the composite effect of ferrite and martensite, DP steels exhibit a unique combination of strain hardening, strength and ductility. A microstructure-based micromechanical modeling approach is adopted in this work to capture the tensile and cyclic plastic deformation behavior of DP steel. During tensile straining, strain incompatibility between the softer ferrite matrix and the harder martensite phase arises due to a difference in the flow characteristics of these two phases. Microstructural-level inhomogeneity serves as the initial imperfection, triggering strain incompatibility, strain partitioning and finally shear band localization during tensile straining. The local deformation in the ferrite phase is constrained by adjacent martensite islands, which locally results in stress triaxiality development in the ferrite phase. As the martensite distribution varies within the microstructure, the stress triaxiality also varies in a band within the microstructure. Inhomogeneous stress and strain distribution within the softer ferrite phase arises even during small tensile straining because of material inhomogeneity. The magnitude of cyclic plastic deformation within the softer ferrite phase also varies according to the stress distribution in the first-quarter cycle tensile loading. Accumulation of tensile/compressive plastic strain with number of cycles is noted in different locations within the ferrite phase during both symmetric stress and strain controlled cycling. The basic mode of cyclic plastic deformation in an inhomogeneous material is cyclic strain accumulation, i.e. ratcheting. Microstructural inhomogeneity results in cyclic strain accumulation in the aggregate DP material even in symmetric stress cycling.
3D Printing Optical Engine for Controlling Material Microstructure
NASA Astrophysics Data System (ADS)
Huang, Wei-Chin; Chang, Kuang-Po; Wu, Ping-Han; Wu, Chih-Hsien; Lin, Ching-Chih; Chuang, Chuan-Sheng; Lin, De-Yau; Liu, Sung-Ho; Horng, Ji-Bin; Tsau, Fang-Hei
Controlling the cooling rate of alloy during melting and resolidification is the most commonly used method for varying the material microstructure and consequently the resuling property. However, the cooling rate of a selective laser melting (SLM) production is restricted by a preset optimal parameter of a good dense product. The head room for locally manipulating material property in a process is marginal. In this study, we invent an Optical Engine for locally controlling material microstructure in a SLM process. It develops an invovative method to control and adjust thermal history of the solidification process to gain desired material microstucture and consequently drastically improving the quality. Process parameters selected locally for specific materials requirement according to designed characteristics by using thermal dynamic principles of solidification process. It utilize a technique of complex laser beam shape of adaptive irradiation profile to permit local control of material characteristics as desired. This technology could be useful for industrial application of medical implant, aerospace and automobile industries.
Morphological effects on sensitivity of heterogeneous energetic materials
NASA Astrophysics Data System (ADS)
Roy, Sidhartha; Rai, Nirmal; Sen, Oishik; Udaykumar, H. S.
2017-06-01
The mesoscale physical response under shock loading in heterogeneous energetics is inherently linked to the microstructural characteristics. The current work demonstrates the connection between the microstructural features of porous energetic material and its sensitivity. A unified levelset based framework is developed to characterize the microstructures of a given sample. Several morphological metrics describing the mesoscale geometry of the materials are extracted using the current tool including anisotropy, tortuosity, surface to volume, nearest neighbors, size and curvature distributions. The relevant metrics among the ones extracted are identified and correlated to the mesoscale response of the energetic materials under shock loading. Two classes of problems are considered here: (a) field of idealized voids embedded in the HMX material and (b) real samples of pressed HMX. The effects of stochasticity associated with void arrangements on the sensitivity of the energetic material samples are shown. In summary, this work demonstrates the relationship between the mesoscale morphology and shock response of heterogeneous energetic materials using a levelset based framework.
NASA Astrophysics Data System (ADS)
Key, M. J.; Cindro, V.; Lozano, M.
2004-12-01
SU-8 photosensitive epoxy resin was developed for the fabrication of high-aspect ratio microstructures in MEMS and microengineering applications, and has potential for use in the construction of novel gaseous micropattern radiation detectors. However, little is known of the behaviour of the cured material under irradiation. Mechanical properties of SU-8 film have been measured as a function of neutron exposure and compared with Kapton ® polyimide and Mylar ® PET polyester films, materials routinely used in gaseous radiation detectors, to asses the suitability of SU-8 based microstructures for gaseous detector applications. After exposure to a reactor core neutron fluence of 7.5×10 18 n cm -2, the new material showed a high level of resistance to radiation damage, comparable to Kapton film.
Ortega, José Marcos; Sánchez, Isidro; Climent, Miguel Ángel
2017-09-25
Today, the characterisation of the microstructure of cement-based materials using non-destructive techniques has become an important topic of study, and among them, the impedance spectroscopy has recently experienced great progress. In this research, mortars with two different contents of fly ash were exposed to four different constant temperature and relative humidity environments during a 180-day period. The evolution of their microstructure was studied using impedance spectroscopy, whose results were contrasted with mercury intrusion porosimetry. The hardening environment has an influence on the microstructure of fly ash cement mortars. On one hand, the impedance resistances R₁ and R₂ are more influenced by the drying of the materials than by microstructure development, so they are not suitable for following the evolution of the porous network under non-optimum conditions. On the other hand, the impedance spectroscopy capacitances C₁ and C₂ allow studying the microstructure development of fly ash cement mortars exposed to those conditions, and their results are in accordance with mercury intrusion porosimetry ones. Finally, it has been observed that the combined analysis of the abovementioned capacitances could be very useful for studying shrinkage processes in cement-based materials kept in low relative humidity environments.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
A Sensory Material Approach for Reducing Variability in Additively Manufactured Metal Parts.
Franco, B E; Ma, J; Loveall, B; Tapia, G A; Karayagiz, K; Liu, J; Elwany, A; Arroyave, R; Karaman, I
2017-06-15
Despite the recent growth in interest for metal additive manufacturing (AM) in the biomedical and aerospace industries, variability in the performance, composition, and microstructure of AM parts remains a major impediment to its widespread adoption. The underlying physical mechanisms, which cause variability, as well as the scale and nature of variability are not well understood, and current methods are ineffective at capturing these details. Here, a Nickel-Titanium alloy is used as a sensory material in order to quantitatively, and rather rapidly, observe compositional and/or microstructural variability in selective laser melting manufactured parts; thereby providing a means to evaluate the role of process parameters on the variability. We perform detailed microstructural investigations using transmission electron microscopy at various locations to reveal the origins of microstructural variability in this sensory material. This approach helped reveal how reducing the distance between adjacent laser scans below a critical value greatly reduces both the in-sample and sample-to-sample variability. Microstructural investigations revealed that when the laser scan distance is wide, there is an inhomogeneity in subgrain size, precipitate distribution, and dislocation density in the microstructure, responsible for the observed variability. These results provide an important first step towards understanding the nature of variability in additively manufactured parts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Morgan, Dane; Kaoumi, Djamel
2013-12-01
The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less
Blast Performance of Four Armour Materials
2013-08-01
provided in the Q&T condition, possessing tempered martensitic microstructures. Steels H, A and M possessed very similar microstructures at the...weld metal solidification cracking in steels and stainless steels . He has also undertaken extensive work on improving the weld zone toughness of high...3.1 Microstructures of steels It is generally accepted that a tempered martensitic microstructure is the most desirable condition for armour steel
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hooper, R. J.; Adams, D. P.; Hirschfeld, D.
The rapid release of energy from reactive multilayer foils can create extreme local temperature gradients near substrate materials. To fully exploit the potential of these materials, a better understanding of the interaction between the substrate or filler material and the foil is needed. In particular, this work investigates how variations in local properties within the substrate (i.e. differences between properties in constituent phases) can affect heat transport into the substrate. Furthermore, this can affect the microstructural evolution observed within the substrate, which may affect the final joint properties. The effect of the initial substrate microstructure on microstructural evolution within themore » heat-affected zone is evaluated experimentally in two Sn-Zn alloys and numerical techniques are utilized to inform the analysis.« less
A gravimetric analysis of protein-oligosaccharide interactions.
Rudd, T; Gallagher, J T; Ron, D; Nichols, R J; Fernig, D G
2003-04-01
Interactions between an immobilized, heparin-derived octasaccharide and growth factors have been observed using a quartz crystal microbalance-dissipation (QCM-D). This device can measure the amount of growth factors binding to the octasaccharide surface and also the change of dissipation of the surface. Dissipation is a measure of how the adhered material 'damps' the surface vibrations. The octasaccharides were anchored through their reducing ends by the intermediary of the alkanethiol molecule, which covalently binds to the crystal surface through the thiol group. As expected, heparin sulphate binding growth factors bound to the octasaccharide, but the change in mass of growth factor bound per unit change in dissipation is different for the different growth factors. Suggesting that the structures of the various growth factor-octasaccharide complexes are different, therefore, indicates that the change in dissipation can give insights into the structure, orientation and packing of the oligosaccharide-growth factor complexes.
NASA Technical Reports Server (NTRS)
Singh, M.
2002-01-01
Environment-conscious, biomorphic ceramics (Ecoceramics) are a new class of materials that can be produced with renewable resources (wood) and wood wastes (wood sawdust). These materials have tailorable properties with numerous potential applications. Silicon carbide-based ecoceramics have been fabricated by the infiltration of wood-derived carbonaceous preforms with oxide and silicon based materials. The wood-derived carbonaceous preforms have been shown to be quite useful in producing porous or dense materials with different microstructures and compositions. The microstructure and mechanical properties (flexural strength, fracture toughness, elastic modulus, and compressive strength) of a wide variety of Sic-based ecoceramics have been measured. Ecoceramics have tailorable properties and behave like ceramic materials manufactured by conventional approaches. In this presentation the fabrication approach, microstructure, and thermomechanical properties of a wide variety of Sic-based Ecoceramics will be reported.
Mechanistic materials modeling for nuclear fuel performance
Tonks, Michael R.; Andersson, David; Phillpot, Simon R.; ...
2017-03-15
Fuel performance codes are critical tools for the design, certification, and safety analysis of nuclear reactors. However, their ability to predict fuel behavior under abnormal conditions is severely limited by their considerable reliance on empirical materials models correlated to burn-up (a measure of the number of fission events that have occurred, but not a unique measure of the history of the material). In this paper, we propose a different paradigm for fuel performance codes to employ mechanistic materials models that are based on the current state of the evolving microstructure rather than burn-up. In this approach, a series of statemore » variables are stored at material points and define the current state of the microstructure. The evolution of these state variables is defined by mechanistic models that are functions of fuel conditions and other state variables. The material properties of the fuel and cladding are determined from microstructure/property relationships that are functions of the state variables and the current fuel conditions. Multiscale modeling and simulation is being used in conjunction with experimental data to inform the development of these models. Finally, this mechanistic, microstructure-based approach has the potential to provide a more predictive fuel performance capability, but will require a team of researchers to complete the required development and to validate the approach.« less
Dissipation processes in the Tongue of the Ocean
NASA Astrophysics Data System (ADS)
Hooper V, James A.; Baringer, Molly O.; St. Laurent, Louis C.; Dewar, William K.; Nowacek, Doug
2016-05-01
The Tongue of the Ocean (TOTO) region located within the Bahamas archipelago is a relatively understudied region in terms of both its biological and physical oceanographic characteristics. A prey-field mapping cruise took place in the fall between 15 September 2008 and 1 October 2008, consisting of a series of transects and "clovers" to study the spatial and temporal variability. The region is characterized by a deep scattering layer (DSL), which is preyed on by nekton that serves as the food for beaked whale and other whale species. This study marks the first of its kind where concurrent measurements of acoustic backscatter and turbulence have been conducted for a nekton scattering layer well below the euphotic zone. Turbulence data collected from a Deep Microstructure Profiler are compared to biological and shear data collected by a 38 kHz Simrad EK 60 echo sounder and a hydrographic Doppler sonar system, respectively. From these measurements, the primary processes responsible for the turbulent production in the TOTO region are assessed. The DSL around 500 m and a surface scattering layer (SSL) are investigated for raised ɛ values. Strong correlation between turbulence levels and scattering intensity of prey is generally found in the SSL with dissipation levels as large as ˜10-7 W kg-1, 3 orders of magnitude above background levels. In the DSL and during the diel vertical migration, dissipation levels ˜10-8 W kg-1 were observed.
NASA Astrophysics Data System (ADS)
Gokulnath, C.; Saravanan, U.; Rajagopal, K. R.
2017-12-01
A methodology for obtaining implicit constitutive representations involving the Cauchy stress and the Hencky strain for isotropic materials undergoing a non-dissipative process is developed. Using this methodology, a general constitutive representation for a subclass of implicit models relating the Cauchy stress and the Hencky strain is obtained for an isotropic material with no internal constraints. It is shown that even for this subclass, unlike classical Green elasticity, one has to specify three potentials to relate the Cauchy stress and the Hencky strain. Then, a procedure to obtain implicit constitutive representations for isotropic materials with internal constraints is presented. As an illustration, it is shown that for incompressible materials the Cauchy stress and the Hencky strain could be related through a single potential. Finally, constitutive approximations are obtained when the displacement gradient is small.
Dissipative elastic metamaterial with a low-frequency passband
NASA Astrophysics Data System (ADS)
Liu, Yongquan; Yi, Jianlin; Li, Zheng; Su, Xianyue; Li, Wenlong; Negahban, Mehrdad
2017-06-01
We design and experimentally demonstrate a dissipative elastic metamaterial structure that functions as a bandpass filter with a low-frequency passband. The mechanism of dissipation in this structure is well described by a mass-spring-damper model that reveals that the imaginary part of the wavenumber is non-zero, even in the passband of dissipative metamaterials. This indicates that transmittance in this range can be low. A prototype for this viscoelastic metamaterial model is fabricated by 3D printing techniques using soft and hard acrylics as constituent materials. The transmittance of the printed metamaterial is measured and shows good agreement with theoretical predictions, demonstrating its potential in the design of compact waveguides, filters and other advanced devices for controlling mechanical waves.
Strength and microstructure of IPS Empress 2 glass-ceramic after different treatments.
Oh, S C; Dong, J K; Lüthy, H; Schärer, P
2000-01-01
This investigation was designed to determine whether heat pressing and/or simulated heat treatments affect the flexure strength and microstructure of the lithium disilicate glass-ceramic of the IPS Empress 2 system. Four groups of the lithium disilicate glass-ceramic were prepared as follows: group 1 = as-received material; group 2 = heat-pressed material; group 3 = heat-pressed and stimulated initial heat-treated material; and group 4 = heat-pressed and simulated heat-treated material with full firings for a final restoration. Three-point bending tests and scanning electron microscopy (SEM) analysis were conducted. The flexure strength of group 2 was significantly higher than that of group 1. However, there were no significant differences in strength among groups 2, 3, and 4, or between groups 1 and 4. The SEM micrographs of the lithium disilicate glass-ceramic showed a closely packed, multidirectionally interlocking microstructure of numerous lithium disilicate crystals protruding from the glass matrix. The crystals in the glass matrix of the heat-pressed materials (groups 2, 3, and 4) were a little more homogeneous and about 2 times bigger than those of the as-received material (group 1). These changes of the microstructure were greatest between groups 1 and 2. However, there were no marked differences among groups 2, 3, and 4. Although there were significant increases in the strength and some changes of the microstructure after the heat-pressing operation, the combination of heat pressing and simulated subsequent heat treatments did not produce an increase of strength of IPS Empress 2 glass-ceramic.
Effect of the microstructure on the lifetime of dental ceramics.
Borba, Márcia; de Araújo, Maico D; Fukushima, Karen A; Yoshimura, Humberto N; Cesar, Paulo F; Griggs, Jason A; Della Bona, Alvaro
2011-07-01
To evaluate the effect of the microstructure on the Weibull and slow crack growth (SCG) parameters and on the lifetime of three ceramics used as framework materials for fixed partial dentures (FPDs) (YZ - Vita In-Ceram YZ; IZ - Vita In-Ceram Zirconia; AL - Vita In-Ceram AL) and of two veneering porcelains (VM7 and VM9). Bar-shaped specimens were fabricated according to the manufacturer's instructions. Specimens were tested in three-point flexure in 37°C artificial saliva. Weibull analysis (n=30) and a constant stress-rate test (n=10) were used to determine the Weibull modulus (m) and SCG coefficient (n), respectively. Microstructural and fractographic analyzes were performed using SEM. ANOVA and Tukey's test (α=0.05) were used to statistically analyze data obtained with both microstructural and fractographic analyzes. YZ and AL presented high crystalline content and low porosity (0.1-0.2%). YZ had the highest characteristic strength (σ(0)) value (911MPa) followed by AL (488MPa) and IZ (423MPa). Lower σ(0) values were observed for the porcelains (68-75MPa). Except for IZ and VM7, m values were similar among the ceramic materials. Higher n values were found for YZ (76) and AL (72), followed by IZ (54) and the veneering materials (36-44). Lifetime predictions showed that YZ was the material with the best mechanical performance. The size of the critical flaw was similar among the framework materials (34-48μm) and among the porcelains (75-86μm). The microstructure influenced the mechanical and SCG behavior of the studied materials and, consequently, the lifetime predictions. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jacques, Kevin; Steentjes, Simon; Henrotte, François; Geuzaine, Christophe; Hameyer, Kay
2018-04-01
This paper demonstrates how the statistical distribution of pinning fields in a ferromagnetic material can be identified systematically from standard magnetic measurements, Epstein frame or Single Sheet Tester (SST). The correlation between the pinning field distribution and microstructural parameters of the material is then analyzed.
Effect of heat treatment On Microstructure of steel AISI 01 Tools
NASA Astrophysics Data System (ADS)
Dyanasari Sebayang, Melya; Yudo, Sesmaro Max; Silitonga, Charlie
2018-03-01
This study discusses the influence of quenching, normalizing, and annealing to changes in hardness, tensile, and microstructure of materials tool steel AISI 01 after the material undergo heat treatment process. This heat treatment process includes an initial warming of 600° C and a 5-minute detention time, followed by heating to an austenisation temperature of 850°C. After that a different cooling process, including annealing process, normalizing and quenching oil SAE 40. Tests performed include tensile, hard, and microstructure with shooting using SEM (Scanning Electron Microscope). This is done to see the effect of different heat treatment and cooling process. The result of this research is difference of tensile test value, hard, and micro structure from influence of difference of each process. The quenching process obtains the highest tensile and hard values followed by the normalizing process, annealing, and the lowest is in the starting material, this is because the initial material does not undergo heat treatment process. The resulting microstructure is pearlit and cementite, the difference seen from the shape and size of the grains. The larger the grain size, the greater the hardness.
NASA Astrophysics Data System (ADS)
Zhou, Jie E.; Yan, Yongke; Priya, Shashank; Wang, Yu U.
2017-01-01
Quantitative relationships between processing, microstructure, and properties in textured ferroelectric polycrystals and the underlying responsible mechanisms are investigated by phase field modeling and computer simulation. This study focuses on three important aspects of textured ferroelectric ceramics: (i) grain microstructure evolution during templated grain growth processing, (ii) crystallographic texture development as a function of volume fraction and seed size of the templates, and (iii) dielectric and piezoelectric properties of the obtained template-matrix composites of textured polycrystals. Findings on the third aspect are presented here, while an accompanying paper of this work reports findings on the first two aspects. In this paper, the competing effects of crystallographic texture and template seed volume fraction on the dielectric and piezoelectric properties of ferroelectric polycrystals are investigated. The phase field model of ferroelectric composites consisting of template seeds embedded in matrix grains is developed to simulate domain evolution, polarization-electric field (P-E), and strain-electric field (ɛ-E) hysteresis loops. The coercive field, remnant polarization, dielectric permittivity, piezoelectric coefficient, and dissipation factor are studied as a function of grain texture and template seed volume fraction. It is found that, while crystallographic texture significantly improves the polycrystal properties towards those of single crystals, a higher volume fraction of template seeds tends to decrease the electromechanical properties, thus canceling the advantage of ferroelectric polycrystals textured by templated grain growth processing. This competing detrimental effect is shown to arise from the composite effect, where the template phase possesses material properties inferior to the matrix phase, causing mechanical clamping and charge accumulation at inter-phase interfaces between matrix and template inclusions. The computational results are compared with complementary experiments, where good agreement is obtained.
Thermal conductivity on stud bump interconnection of high power COB LED
NASA Astrophysics Data System (ADS)
Sarukunaselan, K.; Ong, N. R.; Sauli, Z.; Mahmed, N.; Kirtsaeng, S.; Sakuntasathien, S.; Suppiah, S.; Alcain, J. B.; Retnasamy, V.
2017-09-01
In this paper, the impacts of bump dimensions and material conductivity on the thermal performances of a high power chip on board (COB) LED package were investigated using open source software, Elmer. The stud bump acted as interconnection join which has an extra role in dissipating heat generated by the chip to the ambience. Simulation data showed that for a bump with a fixed contact length of 1mm, the most suitable height was 171 µm with material conductivity of 238W/mK or 319W/mK. Materials with thermal conductivity of lower than 20W/mK, had the poorest heat dissipation irrespective of the height.
Analytical Ultrasonics in Materials Research and Testing
NASA Technical Reports Server (NTRS)
Vary, A.
1986-01-01
Research results in analytical ultrasonics for characterizing structural materials from metals and ceramics to composites are presented. General topics covered by the conference included: status and advances in analytical ultrasonics for characterizing material microstructures and mechanical properties; status and prospects for ultrasonic measurements of microdamage, degradation, and underlying morphological factors; status and problems in precision measurements of frequency-dependent velocity and attenuation for materials analysis; procedures and requirements for automated, digital signal acquisition, processing, analysis, and interpretation; incentives for analytical ultrasonics in materials research and materials processing, testing, and inspection; and examples of progress in ultrasonics for interrelating microstructure, mechanical properites, and dynamic response.
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.
1999-01-01
This paper presents the full generalization of the Cartesian coordinate-based higher-order theory for functionally graded materials developed by the authors during the past several years. This theory circumvents the problematic use of the standard micromechanical approach, based on the concept of a representative volume element, commonly employed in the analysis of functionally graded composites by explicitly coupling the local (microstructural) and global (macrostructural) responses. The theoretical framework is based on volumetric averaging of the various field quantities, together with imposition of boundary and interfacial conditions in an average sense between the subvolumes used to characterize the composite's functionally graded microstructure. The generalization outlined herein involves extension of the theoretical framework to enable the analysis of materials characterized by spatially variable microstructures in three directions. Specialization of the generalized theoretical framework to previously published versions of the higher-order theory for materials functionally graded in one and two directions is demonstrated. In the applications part of the paper we summarize the major findings obtained with the one-directional and two-directional versions of the higher-order theory. The results illustrate both the fundamental issues related to the influence of microstructure on microscopic and macroscopic quantities governing the response of composites and the technologically important applications. A major issue addressed herein is the applicability of the classical homogenization schemes in the analysis of functionally graded materials. The technologically important applications illustrate the utility of functionally graded microstructures in tailoring the response of structural components in a variety of applications involving uniform and gradient thermomechanical loading.
C-Coupon Studies of CMCS: Fracture Behavior and Microstructural Characterization
NASA Technical Reports Server (NTRS)
Hurwitz, Frances I.; Calomino, Anthony M.; McCue, Terry R.; Abdul-Aziz, Ali
2001-01-01
A curved beam 'C-coupon' was used to assess fracture behavior in a Sylramic(tm)/melt infiltration (MI) SiC matrix composite. Failure stresses and fracture mechanisms, as determined by optical and scanning electron microstructural analysis, are compared with finite element stress calculations to analyze failure modes. Material microstructure was found to have a strong influence on mechanical behavior. Fracture occurs in interlaminar tension (ILT), provided that the ratio of ILT to tensile strength for the material is less than the ratio of radial to hoop stresses for the C-coupon geometry. Utilization of 3D architectures to improve interlaminar strength requires significant development efforts to incorporate through thickness fibers in regions with high curvatures while maintaining uniform thickness, radius, and microstructure.
Bose Condensation and Lasing in Optical Microstructures - Part 1
NASA Astrophysics Data System (ADS)
Szymanska, M. H.
2002-04-01
In the first part of this thesis I study the intermediate regime between ordinary lasing and a BEC of exciton polaritons. I take into account the fermionic structure of polaritons, treating the excitons as two-level systems coupled to a single mode in a microcavity. I introduce decoherence and dissipation processes to this system. Employing many-body Green function techniques, similar to those used by Abrikosov and Gor'kov in their theory of gapless superconductivity, I provide a mathematical structure that unifies models of lasers with models of condensates. This allows me to study the stability of the polariton condensate with respect to decoherence processes and the crossover between the polariton condensate and the laser. I give detailed indications of a regime in which the condensate should be observed to guide experimental work and show how to distinguish the Bose condensate from a laser. The second part of this thesis is concerned with properties of excitons and modelling of excitonic lasing in quasi-one-dimensional quantum wires. I develop a very general numerical method of calculating the properties of wires with different shapes and materials. Using this method I study the properties of very wide range of T-shaped quantum wires.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knechtel, M.; Prielipp, H.; Claussen, N.
The rising fracture resistance with crack length in metal-toughened ceramics due to ductile bridging has been discussed from some selected microstructures and metal-ceramic combinations. An intriguing feature of these composites is the influence of interfacial fracture strength. Strong interfacial bonding leads to high geometrical constraint for the metal and high degree of triaxial tension in the metal ligament, thereby increasing the uniaxial yield strength by a factor of 5--7. This in turn increases the closure stress of the metal ligament, but ultimately limits the total plastic dissipation in the ductile reinforcement. The intent of this paper is to provide somemore » insight on the influence of metal ligament size on both fracture toughness and fracture strength. The materials chosen are Al/Al[sub 2]O[sub 3] and Cu/Al[sub 2]O[sub 3] composites, both prepared by gas-pressure metal-infiltration of porous alumina preforms. SEM observations of fracture surfaces in conjunction with preliminary TEM and PEELS investigations of the metal-ceramic interfaces are used to explain the trends in mechanical property data.« less
Hidden contributions of the enamel rods on the fracture resistance of human teeth
Yahyazadehfar, M.; Bajaj, Devendra; Arola, Dwayne D.
2013-01-01
The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin–enamel junction, they are deflected by the decussated rods and continue growth about the tooth’s periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. PMID:23022547
A damage mechanics based approach to structural deterioration and reliability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattcharya, B.; Ellingwood, B.
1998-02-01
Structural deterioration often occurs without perceptible manifestation. Continuum damage mechanics defines structural damage in terms of the material microstructure, and relates the damage variable to the macroscopic strength or stiffness of the structure. This enables one to predict the state of damage prior to the initiation of a macroscopic flaw, and allows one to estimate residual strength/service life of an existing structure. The accumulation of damage is a dissipative process that is governed by the laws of thermodynamics. Partial differential equations for damage growth in terms of the Helmholtz free energy are derived from fundamental thermodynamical conditions. Closed-form solutions tomore » the equations are obtained under uniaxial loading for ductile deformation damage as a function of plastic strain, for creep damage as a function of time, and for fatigue damage as function of number of cycles. The proposed damage growth model is extended into the stochastic domain by considering fluctuations in the free energy, and closed-form solutions of the resulting stochastic differential equation are obtained in each of the three cases mentioned above. A reliability analysis of a ring-stiffened cylindrical steel shell subjected to corrosion, accidental pressure, and temperature is performed.« less
Ultrathin multi-slit metamaterial as excellent sound absorber: Influence of micro-structure
NASA Astrophysics Data System (ADS)
Ren, S. W.; Meng, H.; Xin, F. X.; Lu, T. J.
2016-01-01
An ultrathin (subwavelength) hierarchy multi-slit metamaterial with simultaneous negative effective density and negative compressibility is proposed to absorb sound over a wide frequency range. Different from conventional acoustic metamaterials having only negative real parts of acoustic parameters, the imaginary parts of effective density and compressibility are both negative for the proposed metamaterial, which result in superior viscous and thermal dissipation of sound energy. By combining the slit theory of sound absorption with the double porosity theory for porous media, a theoretical model is developed to investigate the sound absorption performance of the metamaterial. To verify the model, a finite element model is established to calculate the effective density, compressibility, and sound absorption of the metamaterial. It is theoretically and numerically confirmed that, upon introducing micro-slits into the meso-slits matrix, the multi-slit metamaterial possesses indeed negative imaginary parts of effective density and compressibility. The influence of micro-slits on the acoustical performance of the metamaterial is analyzed in the context of its specific surface area and static flow resistivity. This work shows great potential of multi-slit metamaterials in noise control applications that require both small volume and small weight of sound-absorbing materials.
NASA Astrophysics Data System (ADS)
Grilli, Nicolo; Dandekar, Akshay; Koslowski, Marisol
2017-06-01
The development of high explosive materials requires constitutive models that are able to predict the influence of microstructure and loading conditions on shock sensitivity. In this work a model at the continuum-scale for the polymer-bonded explosive constituted of β-HMX particles embedded in a Sylgard matrix is developed. It includes a Murnaghan equation of state, a crystal plasticity model, based on power-law slip rate and hardening, and a phase field damage model based on crack regularization. The temperature increase due to chemical reactions is introduced by a heat source term, which is validated using results from reactive molecular dynamics simulations. An initial damage field representing pre-existing voids and cracks is used in the simulations to understand the effect of these inhomogeneities on the damage propagation and shock sensitivity. We show the predictions of the crystal plasticity model and the effect of the HMX crystal orientation on the shock initiation and on the dissipated plastic work and damage propagation. The simulation results are validated with ultra-fast dynamic transmission electron microscopy experiments and x-ray experiments carried out at Purdue University. Membership Pending.
Indei, Tsutomu; Schieber, Jay D; Córdoba, Andrés
2012-04-01
We analyze the appropriate form for the generalized Stokes-Einstein relation (GSER) for viscoelastic solids and fluids when bead inertia and medium inertia are taken into account, which we call the inertial GSER. It was previously shown for Maxwell fluids that the Basset (or Boussinesq) force arising from medium inertia can act purely dissipatively at high frequencies, where elasticity of the medium is dominant. In order to elucidate the cause of this counterintuitive result, we consider Brownian motion in a purely elastic solid where ordinary Stokes-type dissipation is not possible. The fluctuation-dissipation theorem requires the presence of a dissipative mechanism for the particle to experience fluctuating Brownian forces in a purely elastic solid. We show that the mechanism for such dissipation arises from the radiation of elastic waves toward the system boundaries. The frictional force associated with this mechanism is the Basset force, and it exists only when medium inertia is taken into consideration in the analysis of such a system. We consider first a one-dimensional harmonic lattice where all terms in the generalized Langevin equation--i.e., the elastic term, the memory kernel, and Brownian forces-can be found analytically from projection-operator methods. We show that the dissipation is purely from radiation of elastic waves. A similar analysis is made on a particle in a continuum, three-dimensional purely elastic solid, where the memory kernel is determined from continuum mechanics. Again, dissipation arises only from radiation of elastic shear waves toward infinite boundaries when medium inertia is taken into account. If the medium is a viscoelastic solid, Stokes-type dissipation is possible in addition to radiational dissipation so that the wave decays at the penetration depth. Inertial motion of the bead couples with the elasticity of the viscoelastic material, resulting in a possible resonant oscillation of the mean-square displacement (MSD) of the bead. On the other hand, medium inertia (the Basset force) tends to attenuate the oscillations by the dissipation mechanism described above. Thus competition between bead inertia and medium inertia determines whether or not the MSD oscillates. We find that, if the medium density is larger than 4/7 of the bead density, the Basset damping will suppress oscillations in the MSD; this criterion is sufficient but not necessary to present oscillations.
NASA Astrophysics Data System (ADS)
Collins, P. C.; Koduri, S.; Dixit, V.; Fraser, H. L.
2018-03-01
The fracture toughness of a material depends upon the material's composition and microstructure, as well as other material properties operating at the continuum level. The interrelationships between these variables are complex, and thus difficult to interpret, especially in multi-component, multi-phase ductile engineering alloys such as α/β-processed Ti-6Al-4V (nominal composition, wt pct). Neural networks have been used to elucidate how variables such as composition and microstructure influence the fracture toughness directly ( i.e., via a crack initiation or propagation mechanism)—and independent of the influence of the same variables influence on the yield strength and plasticity of the material. The variables included in the models and analysis include (i) alloy composition, specifically, Al, V, O, and Fe; (ii) materials microstructure, including phase fractions and average sizes of key microstructural features; (iii) the yield strength and reduction in area obtained from uniaxial tensile tests; and (iv) an assessment of the degree to which plane strain conditions were satisfied by including a factor related to the plane strain thickness. Once trained, virtual experiments have been conducted which permit the determination of each variable's functional dependency on the resulting fracture toughness. Given that the database includes both K 1 C and K Q values, as well as the in-plane component of the stress state of the crack tip, it is possible to quantitatively assess the effect of sample thickness on K Q and the degree to which the K Q and K 1 C values may vary. These interpretations drawn by comparing multiple neural networks have a significant impact on the general understanding of how the microstructure influences the fracture toughness in ductile materials, as well as an ability to predict the fracture toughness of α/β-processed Ti-6Al-4V.
Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich
2017-01-01
A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Microstructure-based modelling of arbitrary deformation histories of filler-reinforced elastomers
NASA Astrophysics Data System (ADS)
Lorenz, H.; Klüppel, M.
2012-11-01
A physically motivated theory of rubber reinforcement based on filler cluster mechanics is presented considering the mechanical behaviour of quasi-statically loaded elastomeric materials subjected to arbitrary deformation histories. This represents an extension of a previously introduced model describing filler induced stress softening and hysteresis of highly strained elastomers. These effects are referred to the hydrodynamic reinforcement of rubber elasticity due to strain amplification by stiff filler clusters and cyclic breakdown and re-aggregation (healing) of softer, already damaged filler clusters. The theory is first developed for the special case of outer stress-strain cycles with successively increasing maximum strain. In this more simple case, all soft clusters are broken at the turning points of the cycle and the mechanical energy stored in the strained clusters is completely dissipated, i.e. only irreversible stress contributions result. Nevertheless, the description of outer cycles involves already all material parameters of the theory and hence they can be used for a fitting procedure. In the general case of an arbitrary deformation history, the cluster mechanics of the material is complicated due to the fact that not all soft clusters are broken at the turning points of a cycle. For that reason additional reversible stress contributions considering the relaxation of clusters upon retraction have to be taken into account for the description of inner cycles. A special recursive algorithm is developed constituting a frame of the mechanical response of encapsulated inner cycles. Simulation and measurement are found to be in fair agreement for CB and silica filled SBR/BR and EPDM samples, loaded in compression and tension along various deformation histories.
NASA Astrophysics Data System (ADS)
Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.
2018-02-01
Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-01-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions. PMID:27087704
NASA Astrophysics Data System (ADS)
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A.; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
Ma, Qiang; Cheng, Huanyu; Jang, Kyung-In; Luan, Haiwen; Hwang, Keh-Chih; Rogers, John A; Huang, Yonggang; Zhang, Yihui
2016-05-01
Development of advanced synthetic materials that can mimic the mechanical properties of non-mineralized soft biological materials has important implications in a wide range of technologies. Hierarchical lattice materials constructed with horseshoe microstructures belong to this class of bio-inspired synthetic materials, where the mechanical responses can be tailored to match the nonlinear J-shaped stress-strain curves of human skins. The underlying relations between the J-shaped stress-strain curves and their microstructure geometry are essential in designing such systems for targeted applications. Here, a theoretical model of this type of hierarchical lattice material is developed by combining a finite deformation constitutive relation of the building block (i.e., horseshoe microstructure), with the analyses of equilibrium and deformation compatibility in the periodical lattices. The nonlinear J-shaped stress-strain curves and Poisson ratios predicted by this model agree very well with results of finite element analyses (FEA) and experiment. Based on this model, analytic solutions were obtained for some key mechanical quantities, e.g., elastic modulus, Poisson ratio, peak modulus, and critical strain around which the tangent modulus increases rapidly. A negative Poisson effect is revealed in the hierarchical lattice with triangular topology, as opposed to a positive Poisson effect in hierarchical lattices with Kagome and honeycomb topologies. The lattice topology is also found to have a strong influence on the stress-strain curve. For the three isotropic lattice topologies (triangular, Kagome and honeycomb), the hierarchical triangular lattice material renders the sharpest transition in the stress-strain curve and relative high stretchability, given the same porosity and arc angle of horseshoe microstructure. Furthermore, a demonstrative example illustrates the utility of the developed model in the rapid optimization of hierarchical lattice materials for reproducing the desired stress-strain curves of human skins. This study provides theoretical guidelines for future designs of soft bio-mimetic materials with hierarchical lattice constructions.
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Guo, Bing; Rao, Zhimin; Zhao, Qingliang
2014-08-01
In consideration of the excellent property of SiC, the ground micro-structured surface quality is hard to meet the requirement - consequently the ultrasonic vibration assisted polishing (UVAP) of micro-structures of molds is proposed in this paper. Through the orthogonal experiment, the parameters of UVAP of micro-structures were optimized. The experimental results show that, abrasive polishing process, the effect of the workpiece feed rate on the surface roughness (Ra), groove tip radius (R) and material removal rate (MRR) of micro-structures is significant. While, the UVAP, the most significant effect factor for Ra, R and MRR is the ultrasonic amplitude of the ultrasonic vibration. In addition, within the scope of the polishing process parameters selected by preliminary experiments, ultrasonic amplitude of 2.5μm, polishing force of 0.5N, workpiece feed rate of 5 mm·min-1, polishing wheel rotational speed of 50rpm, polishing time of 35min, abrasive size of 100nm and the polishing liquid concentration of 15% is the best technology of UVAP of micro-structures. Under the optimal parameters, the ground traces on the micro-structured surface were removed efficiently and the integrity of the edges of the micro-structure after grinding was maintained efficiently.
Advanced Steel Microstructural Classification by Deep Learning Methods.
Azimi, Seyed Majid; Britz, Dominik; Engstler, Michael; Fritz, Mario; Mücklich, Frank
2018-02-01
The inner structure of a material is called microstructure. It stores the genesis of a material and determines all its physical and chemical properties. While microstructural characterization is widely spread and well known, the microstructural classification is mostly done manually by human experts, which gives rise to uncertainties due to subjectivity. Since the microstructure could be a combination of different phases or constituents with complex substructures its automatic classification is very challenging and only a few prior studies exist. Prior works focused on designed and engineered features by experts and classified microstructures separately from the feature extraction step. Recently, Deep Learning methods have shown strong performance in vision applications by learning the features from data together with the classification step. In this work, we propose a Deep Learning method for microstructural classification in the examples of certain microstructural constituents of low carbon steel. This novel method employs pixel-wise segmentation via Fully Convolutional Neural Network (FCNN) accompanied by a max-voting scheme. Our system achieves 93.94% classification accuracy, drastically outperforming the state-of-the-art method of 48.89% accuracy. Beyond the strong performance of our method, this line of research offers a more robust and first of all objective way for the difficult task of steel quality appreciation.
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
Zhang, Yanwen; Stocks, G. Malcolm; Jin, Ke; Lu, Chenyang; Bei, Hongbin; Sales, Brian C.; Wang, Lumin; Béland, Laurent K.; Stoller, Roger E.; Samolyuk, German D.; Caro, Magdalena; Caro, Alfredo; Weber, William J.
2015-01-01
A grand challenge in materials research is to understand complex electronic correlation and non-equilibrium atomic interactions, and how such intrinsic properties and dynamic processes affect energy transfer and defect evolution in irradiated materials. Here we report that chemical disorder, with an increasing number of principal elements and/or altered concentrations of specific elements, in single-phase concentrated solid solution alloys can lead to substantial reduction in electron mean free path and orders of magnitude decrease in electrical and thermal conductivity. The subsequently slow energy dissipation affects defect dynamics at the early stages, and consequentially may result in less deleterious defects. Suppressed damage accumulation with increasing chemical disorder from pure nickel to binary and to more complex quaternary solid solutions is observed. Understanding and controlling energy dissipation and defect dynamics by altering alloy complexity may pave the way for new design principles of radiation-tolerant structural alloys for energy applications. PMID:26507943
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1999-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1999-03-16
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, Johannes J.; Thomas, Gareth; Huetten, Andreas R.
1998-01-01
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties.
Giant magnetoresistive heterogeneous alloys and method of making same
Bernardi, J.J.; Thomas, G.; Huetten, A.R.
1998-10-20
The inventive material exhibits giant magnetoresistance upon application of an external magnetic field at room temperature. The hysteresis is minimal. The inventive material has a magnetic phase formed by eutectic decomposition. The bulk material comprises a plurality of regions characterized by (a) the presence of magnetic lamellae wherein the lamellae are separated by a distance smaller than the mean free path of the conduction electrons, and (b) a matrix composition having nonmagnetic properties that is interposed between the lamellae within the regions. The inventive, rapidly quenched, eutectic alloys form microstructure lamellae having antiparallel antiferromagnetic coupling and give rise to GMR properties. The inventive materials made according to the inventive process yielded commercially acceptable quantities and timeframes. Annealing destroyed the microstructure lamellae and the GMR effect. Noneutectic alloys did not exhibit the antiparallel microstructure lamellae and did not possess GMR properties. 7 figs.
Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617
NASA Astrophysics Data System (ADS)
Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.
2014-02-01
Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.
A semi-empirical model relating micro structure to acoustic properties of bimodal porous material
NASA Astrophysics Data System (ADS)
Mosanenzadeh, Shahrzad Ghaffari; Doutres, Olivier; Naguib, Hani E.; Park, Chul B.; Atalla, Noureddine
2015-01-01
Complex morphology of open cell porous media makes it difficult to link microstructural parameters and acoustic behavior of these materials. While morphology determines the overall sound absorption and noise damping effectiveness of a porous structure, little is known on the influence of microstructural configuration on the macroscopic properties. In the present research, a novel bimodal porous structure was designed and developed solely for modeling purposes. For the developed porous structure, it is possible to have direct control on morphological parameters and avoid complications raised by intricate pore geometries. A semi-empirical model is developed to relate microstructural parameters to macroscopic characteristics of porous material using precise characterization results based on the designed bimodal porous structures. This model specifically links macroscopic parameters including static airflow resistivity ( σ ) , thermal characteristic length ( Λ ' ) , viscous characteristic length ( Λ ) , and dynamic tortuosity ( α ∞ ) to microstructural factors such as cell wall thickness ( 2 t ) and reticulation rate ( R w ) . The developed model makes it possible to design the morphology of porous media to achieve optimum sound absorption performance based on the application in hand. This study makes the base for understanding the role of microstructural geometry and morphological factors on the overall macroscopic parameters of porous materials specifically for acoustic capabilities. The next step is to include other microstructural parameters as well to generalize the developed model. In the present paper, pore size was kept constant for eight categories of bimodal foams to study the effect of secondary porous structure on macroscopic properties and overall acoustic behavior of porous media.
A predictive machine learning approach for microstructure optimization and materials design
NASA Astrophysics Data System (ADS)
Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; Agrawal, Ankit; Sundararaghavan, Veera; Choudhary, Alok
2015-06-01
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniqueness of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. Experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.
NASA Astrophysics Data System (ADS)
Kim, Seokpum; Wei, Yaochi; Horie, Yasuyuki; Zhou, Min
2018-05-01
The design of new materials requires establishment of macroscopic measures of material performance as functions of microstructure. Traditionally, this process has been an empirical endeavor. An approach to computationally predict the probabilistic ignition thresholds of polymer-bonded explosives (PBXs) using mesoscale simulations is developed. The simulations explicitly account for microstructure, constituent properties, and interfacial responses and capture processes responsible for the development of hotspots and damage. The specific mechanisms tracked include viscoelasticity, viscoplasticity, fracture, post-fracture contact, frictional heating, and heat conduction. The probabilistic analysis uses sets of statistically similar microstructure samples to directly mimic relevant experiments for quantification of statistical variations of material behavior due to inherent material heterogeneities. The particular thresholds and ignition probabilities predicted are expressed in James type and Walker-Wasley type relations, leading to the establishment of explicit analytical expressions for the ignition probability as function of loading. Specifically, the ignition thresholds corresponding to any given level of ignition probability and ignition probability maps are predicted for PBX 9404 for the loading regime of Up = 200-1200 m/s where Up is the particle speed. The predicted results are in good agreement with available experimental measurements. A parametric study also shows that binder properties can significantly affect the macroscopic ignition behavior of PBXs. The capability to computationally predict the macroscopic engineering material response relations out of material microstructures and basic constituent and interfacial properties lends itself to the design of new materials as well as the analysis of existing materials.
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
NASA Astrophysics Data System (ADS)
Lu, Jianxun; Wu, Xiaoyu; Wu, Zhaozhi; Liu, Zhiyuan; Guo, Dengji; Lou, Yan; Ruan, Shuangchen
2017-10-01
Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.
Microstructure and Charpy impact properties of 12 14Cr oxide dispersion-strengthened ferritic steels
NASA Astrophysics Data System (ADS)
Oksiuta, Z.; Baluc, N.
2008-02-01
This paper describes the microstructure and Charpy impact properties of 12-14 Cr ODS ferritic steels fabricated by mechanical alloying of pure Fe, Cr, W, Ti and Y 2O 3 powders in a Retsch ball mill in argon atmosphere, followed by hot isostatic pressing at 1100 °C under 200 MPa for 4 h and heat treatment at 850 °C for 1 h. Weak Charpy impact properties were obtained in the case of both types of as-hipped materials. In the case of 14Cr materials, the weak Charpy properties appeared related to a bimodal grain size distribution and a heterogeneous dislocation density between the coarse and fine grains. No changes in microstructure were evidenced after heat treatment at 850 °C. Significant improvement in the transition temperature and upper shelf energy of 12Cr materials was obtained by heat treatment at 850 °C for 1 h, which was attributed to the formation of smaller grains, homogenous in size and containing fewer dislocations, with respect to the as-hipped microstructure. This modified microstructure results in a good compromise between strength and Charpy impact properties.
Phase Transformations and Microstructural Evolution: Part II
Clarke, Amy Jean
2015-10-30
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance. In this issue, aspects of liquid–solid and solid-state phase transformations and microstructural evolution are highlighted. Many papers in thismore » issue are highlighted by this paper, giving a brief summary of what they bring to the scientific community.« less
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.; Mishin, Yuri
2014-01-01
A multiscale modeling methodology is developed for structurally-graded material microstructures. Molecular dynamic (MD) simulations are performed at the nanoscale to determine fundamental failure mechanisms and quantify material constitutive parameters. These parameters are used to calibrate material processes at the mesoscale using discrete dislocation dynamics (DD). Different grain boundary interactions with dislocations are analyzed using DD to predict grain-size dependent stress-strain behavior. These relationships are mapped into crystal plasticity (CP) parameters to develop a computationally efficient finite element-based DD/CP model for continuum-level simulations and complete the multiscale analysis by predicting the behavior of macroscopic physical specimens. The present analysis is focused on simulating the behavior of a graded microstructure in which grain sizes are on the order of nanometers in the exterior region and transition to larger, multi-micron size in the interior domain. This microstructural configuration has been shown to offer improved mechanical properties over homogeneous coarse-grained materials by increasing yield stress while maintaining ductility. Various mesoscopic polycrystal models of structurally-graded microstructures are generated, analyzed and used as a benchmark for comparison between multiscale DD/CP model and DD predictions. A final series of simulations utilize the DD/CP analysis method exclusively to study macroscopic models that cannot be analyzed by MD or DD methods alone due to the model size.
Sheng, Yinying; Hua, Youlu; Zhao, Xueyang; Chen, Lianxi; Zhou, Hanyu; Wang, James; Berndt, Christopher C.; Li, Wei
2018-01-01
The technology of high-density electropulsing has been applied to increase the performance of metallic materials since the 1990s and has shown significant advantages over traditional heat treatment in many aspects. However, the microstructure changes in electropulsing treatment (EPT) metals and alloys have not been fully explored, and the effects vary significantly on different material. When high-density electrical pulses are applied to metals and alloys, the input of electric energy and thermal energy generally leads to structural rearrangements, such as dynamic recrystallization, dislocation movements and grain refinement. The enhanced mechanical properties of the metals and alloys after high-density electropulsing treatment are reflected by the significant improvement of elongation. As a result, this technology holds great promise in improving the deformation limit and repairing cracks and defects in the plastic processing of metals. This review summarizes the effect of high-density electropulsing treatment on microstructural properties and, thus, the enhancement in mechanical strength, hardness and corrosion performance of metallic materials. It is noteworthy that the change of some properties can be related to the structure state before EPT (quenched, annealed, deformed or others). The mechanisms for the microstructural evolution, grain refinement and formation of oriented microstructures of different metals and alloys are presented. Future research trends of high-density electrical pulse technology for specific metals and alloys are highlighted. PMID:29364844
NASA Astrophysics Data System (ADS)
Battaile, Corbett; Owen, Steven; Moore, Nathan
2017-06-01
The properties of most engineering materials depend on the characteristics of internal microstructures and defects. In additively manufactured (AM) metals, these can include polycrystalline grains, impurities, phases, and significant porosity that qualitatively differ from conventional engineering materials. The microscopic details of the interactions between these internal defects, and the propagation of applied loads through the body, act in concert to dictate macro-observable properties like strength and compressibility. In this work, we used Sandia's ALEGRA finite element software to simulate the high-strain-rate loading of AM metals from laser engineered net shaping (LENS) and thermal spraying. The microstructural details of the material were represented explicitly, such that internal features like second phases and pores are captured and meshed as individual entities in the computational domain. We will discuss the dependence of the high-strain-rate mechanical properties on microstructural characteristics such as the shapes, sizes, and volume fractions of second phases and pores. In addition, we will examine how the details of the microstructural representation affect the microscopic material response to dynamic loads, and the effects of using ``stair-step'' versus conformal interfaces smoothed via the SCULPT tool in Sandia's CUBIT software. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the US DOE NNSA under contract DE-AC04-94AL85000.
Landing Energy Dissipation for Manned Reentry Vehicles
NASA Technical Reports Server (NTRS)
Fisher, Loyd. L.
1960-01-01
The film shows experimental investigations to determine the landing-energy-dissipation characteristics for several types of landing gear for manned reentry vehicles. The landing vehicles are considered in two categories: those having essentially vertical-descent paths, the parachute-supported vehicles, and those having essentially horizontal paths, the lifting vehicles. The energy-dissipation devices include crushable materials such as foamed plastics and honeycomb for internal application in couch-support systems, yielding metal elements as part of the structure of capsules or as alternates for oleos in landing-gear struts, inflatable bags, braking rockets, and shaped surfaces for water impact.
Laser-induced Self-organizing Microstructures on Steel for Joining with Polymers
NASA Astrophysics Data System (ADS)
van der Straeten, Kira; Burkhardt, Irmela; Olowinsky, Alexander; Gillner, Arnold
The combination of different materials such as thermoplastic composites and metals is an important way to improve lightweight construction. As direct connections between these materials fail due to their physical and chemical properties, other joining techniques are required. A new joining approach besides fastening and adhesive joining is a laser-based two-step process. Within the first step the metal surface is modified by laser-microstructuring. In order to enlarge the boundary surface and create undercuts, random self-organizing microstructures are generated on stainless steel substrates. In a second process step both joining partners, metal and composite, are clamped together, the steel surface is heated up with laser radiation and through heat conduction the thermoplastic matrix is melted and flows into the structures. After cooling-down a firm joint between both materials is created. The presented work shows the influence of different laser parameters on the generation of the microstructures. The joint strength is investigated through tensile shear strength tests.
Relationships between microstructure and microfissuring in alloy 718
NASA Technical Reports Server (NTRS)
Thompson, R. G.
1985-01-01
Microfissures which occur in the weld heat affected zone of alloy 718 can be a limiting factor in the material's weldability. Several studies have attempted to relate microfissuring susceptibility to processing conditions, microstructure, and/or heat-to-heat chemistry differences. The present investigation studies the relationships between microstructure and microfissuring by isolating a particular microstructural feature and measuring microfissuring as a function of that feature. Results to date include the identification of a microstructure-microfissure sequence, microfissuring susceptibility as a function of grain size, and microfissuring susceptibility as a function of solution annealing time.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
Microstructural analysis of the 2195 aluminum-lithium alloy welds
NASA Technical Reports Server (NTRS)
Talia, George E.
1993-01-01
The principal objective of this research was to explain a tendency of 2195 Al-Li alloy to crack at elevated temperature during welding. Therefore, a study was made on the effect of welding and thermal treatment on the microstructure of Al-Li Alloy 2195. The critical roles of precipitates, boundaries, phases, and other features of the microstructure were inferred from the crack propagation paths and the morphology of fracture surface of the alloy with different microstructures. Particular emphasis was placed on the microstructures generated by the welding process and the mechanisms of crack propagation in such structures. Variation of the welding parameters and thermal treatments were used to alter the micro/macro structures, and they were characterized by optical and scanning electron microscopy. A theoretical model is proposed to explain changes in the microstructure of welded material. This model proposes a chemical reaction in which gases from the air (i.e., nitrogen) release hydrogen inside the alloy. Such a reaction could generate large internal stresses capable to induce porosity and crack-like delamination in the material.
Non-equilibrium dissipative supramolecular materials with a tunable lifetime
NASA Astrophysics Data System (ADS)
Tena-Solsona, Marta; Rieß, Benedikt; Grötsch, Raphael K.; Löhrer, Franziska C.; Wanzke, Caren; Käsdorf, Benjamin; Bausch, Andreas R.; Müller-Buschbaum, Peter; Lieleg, Oliver; Boekhoven, Job
2017-07-01
Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles.
Non-equilibrium dissipative supramolecular materials with a tunable lifetime
Tena-Solsona, Marta; Rieß, Benedikt; Grötsch, Raphael K.; Löhrer, Franziska C.; Wanzke, Caren; Käsdorf, Benjamin; Bausch, Andreas R.; Müller-Buschbaum, Peter; Lieleg, Oliver; Boekhoven, Job
2017-01-01
Many biological materials exist in non-equilibrium states driven by the irreversible consumption of high-energy molecules like ATP or GTP. These energy-dissipating structures are governed by kinetics and are thus endowed with unique properties including spatiotemporal control over their presence. Here we show man-made equivalents of materials driven by the consumption of high-energy molecules and explore their unique properties. A chemical reaction network converts dicarboxylates into metastable anhydrides driven by the irreversible consumption of carbodiimide fuels. The anhydrides hydrolyse rapidly to the original dicarboxylates and are designed to assemble into hydrophobic colloids, hydrogels or inks. The spatiotemporal control over the formation and degradation of materials allows for the development of colloids that release hydrophobic contents in a predictable fashion, temporary self-erasing inks and transient hydrogels. Moreover, we show that each material can be re-used for several cycles. PMID:28719591
Multiscale modelling and experimentation of hydrogen embrittlement in aerospace materials
NASA Astrophysics Data System (ADS)
Jothi, Sathiskumar
Pulse plated nickel and nickel based superalloys have been used extensively in the Ariane 5 space launcher engines. Large structural Ariane 5 space launcher engine components such as combustion chambers with complex microstructures have usually been manufactured using electrodeposited nickel with advanced pulse plating techniques with smaller parts made of nickel based superalloys joined or welded to the structure to fabricate Ariane 5 space launcher engines. One of the major challenges in manufacturing these space launcher components using newly developed materials is a fundamental understanding of how different materials and microstructures react with hydrogen during welding which can lead to hydrogen induced cracking. The main objective of this research has been to examine and interpret the effects of microstructure on hydrogen diffusion and hydrogen embrittlement in (i) nickel based superalloy 718, (ii) established and (iii) newly developed grades of pulse plated nickel used in the Ariane 5 space launcher engine combustion chamber. Also, the effect of microstructures on hydrogen induced hot and cold cracking and weldability of three different grades of pulse plated nickel were investigated. Multiscale modelling and experimental methods have been used throughout. The effect of microstructure on hydrogen embrittlement was explored using an original multiscale numerical model (exploiting synthetic and real microstructures) and a wide range of material characterization techniques including scanning electron microscopy, 2D and 3D electron back scattering diffraction, in-situ and ex-situ hydrogen charged slow strain rate tests, thermal spectroscopy analysis and the Varestraint weldability test. This research shows that combined multiscale modelling and experimentation is required for a fundamental understanding of microstructural effects in hydrogen embrittlement in these materials. Methods to control the susceptibility to hydrogen induced hot and cold cracking and to improve the resistance to hydrogen embrittlement in aerospace materials are also suggested. This knowledge can play an important role in the development of new hydrogen embrittlement resistant materials. A novel micro/macro-scale coupled finite element method incorporating multi-scale experimental data is presented with which it is possible to perform full scale component analyses in order to investigate hydrogen embrittlement at the design stage. Finally, some preliminary and very encouraging results of grain boundary engineering based techniques to develop alloys that are resistant to hydrogen induced failure are presented. Keywords: Hydrogen embrittlement; Aerospace materials; Ariane 5 combustion chamber; Pulse plated nickel; Nickel based super alloy 718; SSRT test; Weldability test; TDA; SEM/EBSD; Hydrogen induced hot and cold cracking; Multiscale modelling and experimental methods.
NASA Astrophysics Data System (ADS)
Zhang, Yongjun
A key part of the FutureGen concept is to support the production of hydrogen to fuel a "hydrogen economy," with the use of clean burning hydrogen in power-producing fuel cells, as well as for use as a transportation fuel. One of the key technical barriers to FutureGen deployment is reliable and efficient hydrogen separation technology. Most Hydrogen Transport Membrane (HTM) research currently focuses on separation technology and hydrogen flux characterization. No significant work has been performed on thermo-mechanical properties of HTMs. The objective of the thesis is to understand the structure-property correlation of HTM and to characterize (1) thermo mechanical properties under different reducing environments and thermal cycles (thermal shock), and (2) evaluate the stability of the novel HTM material. A novel HTM cermet bulk sample was characterized for its physical and mechanical properties at both room temperature and at elevated temperature up to 1000°C. Micro-structural properties and residual stresses were evaluated in order to understand the changing mechanism of the microstructure and its effects on the mechanical properties of materials. A correlation of the microstructural and thermo mechanical properties of the HTM system was established for both HTM and the substrate material. Mechanical properties of both selected structural ceramics and the novel HTM cermet bulk sample are affected mainly by porosity and microstructural features, such as grain size and pore size-distribution. The Young's Modulus (E-value) is positively correlated to the flexural strength for materials with similar crystallographic structure. However, for different crystallographic materials, physical properties are independent of mechanical properties. Microstructural properties, particularly, grain size and crystallographic structure, and thermodynamic properties are the main factors affecting the mechanical properties at both room and high temperatures. The HTM cermet behaves more like an elastic material at room temperature and as a ductile material at temperature above 850°C. The oxidation and the plasticity of Pd phase mainly affected the mechanical properties of HTM cermet at high temperature, also as a result of thermal cycling. Residual stress induced in the HTM by thermo cycles also plays a very critical role in defining the thermo-mechanical properties.
Dissipative structures and related methods
Langhorst, Benjamin R; Chu, Henry S
2013-11-05
Dissipative structures include at least one panel and a cell structure disposed adjacent to the at least one panel having interconnected cells. A deformable material, which may comprise at least one hydrogel, is disposed within at least one interconnected cell proximate to the at least one panel. Dissipative structures may also include a cell structure having interconnected cells formed by wall elements. The wall elements may include a mesh formed by overlapping fibers having apertures formed therebetween. The apertures may form passageways between the interconnected cells. Methods of dissipating a force include disposing at least one hydrogel in a cell structure proximate to at least one panel, applying a force to the at least one panel, and forcing at least a portion of the at least one hydrogel through apertures formed in the cell structure.
NASA Astrophysics Data System (ADS)
Sornin, D.; Giroux, P.-F.; Rigal, E.; Fabregue, D.; Soulas, R.; Hamon, D.
2017-11-01
Oxide dispersion-strengthened ferritic stainless steels are foreseen as fuel cladding tube materials for the new generation of sodium fast nuclear reactors. Those materials, which exhibit remarkable creep properties at high temperature, are reinforced by a dense precipitation of nanometric oxides. This precipitation is obtained by mechanical alloying of a powder and subsequent consolidation. Before consolidation, to obtain a fully dense material, the powder is vacuumed to outgas trapped gases and species adsorbed at the surface of the powder particles. This operation is commonly done at moderate to high temperature to evacuate as much as possible volatile species. This paper focuses on the influence of outgassing conditions on some properties of the further consolidated materials. Chemical composition and microstructural characterization of different materials obtained from various outgassing cycles are compared. Finally, impact toughness of those materials is evaluated by using Charpy testing. This study shows a significant influence of the outgassing conditions on the mechanical properties of the consolidated material. However, microstructure and oxygen contents seem poorly impacted by the various outgassing conditions.
Simulation of the Growth of Austenite from As-Quenched Martensite in Medium Mn Steels
NASA Astrophysics Data System (ADS)
Huyan, Fei; Yan, Jia-Yi; Höglund, Lars; Ågren, John; Borgenstam, Annika
2018-04-01
As part of an ongoing development of third-generation advanced high-strength steels with acceptable cost, austenite reversion treatment of medium Mn steels becomes attractive because it can give rise to a microstructure of fine mixture of ferrite and austenite, leading to both high strength and large elongation. The growth of austenite during intercritical annealing is crucial for the final properties, primarily because it determines the fraction, composition, and phase stability of austenite. In the present work, the growth of austenite from as-quenched lath martensite in medium Mn steels has been simulated using the DICTRA software package. Cementite is added into the simulations based on experimental observations. Two types of systems (cells) are used, representing, respectively, (1) austenite and cementite forming apart from each other, and (2) austenite forming on the cementite/martensite interface. An interfacial dissipation energy has also been added to take into account a finite interface mobility. The simulations using the first type of setup with an addition of interfacial dissipation energy are able to reproduce the observed austenite growth in medium Mn steels reasonably well.
Biomimetic Materials by Freeze Casting
NASA Astrophysics Data System (ADS)
Porter, Michael M.; Mckittrick, Joanna; Meyers, Marc A.
2013-06-01
Natural materials, such as bone and abalone nacre, exhibit exceptional mechanical properties, a product of their intricate microstructural organization. Freeze casting is a relatively simple, inexpensive, and adaptable materials processing method to form porous ceramic scaffolds with controllable microstructural features. After infiltration of a second polymeric phase, hybrid ceramic-polymer composites can be fabricated that closely resemble the architecture and mechanical performance of natural bone and nacre. Inspired by the narwhal tusk, magnetic fields applied during freeze casting can be used to further control architectural alignment, resulting in freeze-cast materials with enhanced mechanical properties.
Artificial Microstructures to Investigate Microstructure-Property Relationships in Metallic Glasses
NASA Astrophysics Data System (ADS)
Sarac, Baran
Technology has evolved rapidly within the last decade, and the demand for higher performance materials has risen exponentially. To meet this demand, novel materials with advanced microstructures have been developed and are currently in use. However, the already complex microstructure of technological relevant materials imposes a limit for currently used development strategies for materials with optimized properties. For this reason, a strategy to correlate microstructure features with properties is still lacking. Computer simulations are challenged due to the computing size required to analyze multi-scale characteristics of complex materials, which is orders of magnitude higher than today's state of the art. To address these challenges, we introduced a novel strategy to investigate microstructure-property relationships. We call this strategy "artificial microstructure approach", which allows us to individually and independently control microstructural features. By this approach, we defined a new way of analyzing complex microstructures, where microstructural second phase features were precisely varied over a wide range. The artificial microstructures were fabricated by the combination of lithography and thermoplastic forming (TPF), and subsequently characterized under different loading conditions. Because of the suitability and interesting properties of metallic glasses, we proposed to use this toolbox to investigate the different deformation modes in cellular structures and toughening mechanism in metallic glass (MG) composites. This study helped us understand how to combine the unique properties of metallic glasses such as high strength, elasticity, and thermoplastic processing ability with plasticity generated from heterostructures of metallic glasses. It has been widely accepted that metallic glass composites are very complex, and a broad range of contributions have been suggested to explain the toughening mechanism. This includes the shear modulus, morphology, size, spacing, volume fraction of the second phase, and strength and toughness of the interface. Previous studies suggest these contributions, however, do not provide quantitative experimental evidence. Within this thesis, we paid tribute to the complexity of the toughening mechanism by revealing the correlation between plastic zone size (Rp) and second phase spacing (s ), and the results guided us how to design elasticity through the second phase morphology (AB pore stacking) in MG heterostructures. The second phase elasticity and shear modulus were also found to be contributing to the overall elasticity. We identified the pores' ratio of diameter to spacing (d/s) as one of the major factors controlling the mechanical properties of MG hetero structures, which is most efficient when d/s ≈ 1. Effectiveness of MG heterostructures also depends on the size of the sample, w, in comparison to s. Our experimental findings illuminate the complexity in MG composites, which can be resolved with our artificial microstructure approach. Another subject where we use artificial microstructures is to identify the effect of length scales on structural properties of MG heterostructures. MG structures can be fabricated over 7 orders of magnitude length scale (nm to cm), where the effect of the feature size determines whether the deformation will be homogenous throughout the sample, it will be localized into shear bands, or it will not show any shear bands (no plasticity) during bending and tension. We investigated the deformation modes of Zr-based MGs in hexagonal cellular structures controlled by the relative density, and revealed three distinctive deformation regions: collective buckling, local failure, and global failure which originate from size effects in metallic glasses. The relative density of ˜25.0% was determined as the ideal relative density for energy absorption, strength and plasticity in MG cellular structures. Besides two specific examples studied in detail here, the artificial microstructure concept can be applied to a wide range of problems in microstructures and micro structural architectures of porous and natural materials. Furthermore, it can be used to determine the flaw tolerance, and to investigate the sensitivity of microstructures to imperfections. For example, a mechanistic understanding of shear localization would help address the major shortcoming of metallic glasses and enable predictive models to be developed which would permit one to intelligently design microstructures to exhibit desirable properties.
1982-03-01
meter 25 11.0 Microstructure by SEM 11.1 Introduction In order to correlate observed physical and mechanical properties in cured grout samples, a...studied at the two laboratories has proper physical properties , phase composi- tions, and microstructures for the materials used and ages covered...Scanning Electron Microscope Resolution Test Specimen ( Al -W) D. B. Ballard Research Material 100 SEM Resolution Test Specimen (AI-W)., is an alloy of
Fabrication of fillable microparticles and other complex 3D microstructures
NASA Astrophysics Data System (ADS)
McHugh, Kevin J.; Nguyen, Thanh D.; Linehan, Allison R.; Yang, David; Behrens, Adam M.; Rose, Sviatlana; Tochka, Zachary L.; Tzeng, Stephany Y.; Norman, James J.; Anselmo, Aaron C.; Xu, Xian; Tomasic, Stephanie; Taylor, Matthew A.; Lu, Jennifer; Guarecuco, Rohiverth; Langer, Robert; Jaklenec, Ana
2017-09-01
Three-dimensional (3D) microstructures created by microfabrication and additive manufacturing have demonstrated value across a number of fields, ranging from biomedicine to microelectronics. However, the techniques used to create these devices each have their own characteristic set of advantages and limitations with regards to resolution, material compatibility, and geometrical constraints that determine the types of microstructures that can be formed. We describe a microfabrication method, termed StampEd Assembly of polymer Layers (SEAL), and create injectable pulsatile drug-delivery microparticles, pH sensors, and 3D microfluidic devices that we could not produce using traditional 3D printing. SEAL allows us to generate microstructures with complex geometry at high resolution, produce fully enclosed internal cavities containing a solid or liquid, and use potentially any thermoplastic material without processing additives.
A homogenization-based quasi-discrete method for the fracture of heterogeneous materials
NASA Astrophysics Data System (ADS)
Berke, P. Z.; Peerlings, R. H. J.; Massart, T. J.; Geers, M. G. D.
2014-05-01
The understanding and the prediction of the failure behaviour of materials with pronounced microstructural effects is of crucial importance. This paper presents a novel computational methodology for the handling of fracture on the basis of the microscale behaviour. The basic principles presented here allow the incorporation of an adaptive discretization scheme of the structure as a function of the evolution of strain localization in the underlying microstructure. The proposed quasi-discrete methodology bridges two scales: the scale of the material microstructure, modelled with a continuum type description; and the structural scale, where a discrete description of the material is adopted. The damaging material at the structural scale is divided into unit volumes, called cells, which are represented as a discrete network of points. The scale transition is inspired by computational homogenization techniques; however it does not rely on classical averaging theorems. The structural discrete equilibrium problem is formulated in terms of the underlying fine scale computations. Particular boundary conditions are developed on the scale of the material microstructure to address damage localization problems. The performance of this quasi-discrete method with the enhanced boundary conditions is assessed using different computational test cases. The predictions of the quasi-discrete scheme agree well with reference solutions obtained through direct numerical simulations, both in terms of crack patterns and load versus displacement responses.
The weak interfaces within tough natural composites: experiments on three types of nacre.
Khayer Dastjerdi, Ahmad; Rabiei, Reza; Barthelat, Francois
2013-03-01
Mineralization is a typical strategy used in natural materials to achieve high stiffness and hardness for structural functions such as skeletal support, protection or predation. High mineral content generally leads to brittleness, yet natural materials such as bone, mollusk shells or glass sponge achieve relatively high toughness considering the weakness of their constituents through intricate microstructures. In particular, nanometers thick organic interfaces organized in micro-architectures play a key role in providing toughness by various processes including crack deflection, crack bridging or energy dissipation. While these interfaces are critical in these materials, their composition, structure and mechanics is often poorly understood. In this work we focus on nacre, one of the most impressive hard biological materials in terms of toughness. We performed interfacial fracture tests on chevron notched nacre samples from three different species: red abalone, top shell and pearl oyster. We found that the intrinsic toughness of the interfaces is indeed found to be extremely low, in the order of the toughness of the mineral inclusions themselves. Such low toughness is required for the cracks to follow the interfaces, and to deflect and circumvent the mineral tablets. This result highlights the efficacy of toughening mechanisms in natural materials, turning low-toughness inclusions and interfaces into high-performance composites. We found that top shell nacre displayed the highest interfacial toughness, because of higher surface roughness and a more resilient organic material, and also through extrinsic toughening mechanisms including crack deflection, crack bridging and process zone. In the context of biomimetics, the main implication of this finding is that the interface in nacre-like composite does not need to be tough; the extensibility or ductility of the interfaces may be more important than their strength and toughness to produce toughness at the macroscale. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy dissipation in a rolling aircraft tire
NASA Technical Reports Server (NTRS)
Tielking, John T.
1988-01-01
The project is extending an existing finite element tire model to calculate the energy dissipation in a free-rolling aircraft tire and temperature buildup in the tire carcass. The model will provide a means of calculating the influence of tire design on the distribution of tire temperature. Current focus is on energy loss measurements of aircraft tire material. The feasibility of taking test specimens directly from the tire carcass for measurements of viscoelastic properties was demonstrated. The interaction of temperature and frequency effects on material loss properties was studied. The tire model was extended to calculate the cyclic energy change in a tire during rolling under load. Input data representing the 40 by 14 aircraft tire whose material loss properties were measured are being used.
Multi-Scale Modeling of Microstructural Evolution in Structural Metallic Systems
NASA Astrophysics Data System (ADS)
Zhao, Lei
Metallic alloys are a widely used class of structural materials, and the mechanical properties of these alloys are strongly dependent on the microstructure. Therefore, the scientific design of metallic materials with superior mechanical properties requires the understanding of the microstructural evolution. Computational models and simulations offer a number of advantages over experimental techniques in the prediction of microstructural evolution, because they can allow studies of microstructural evolution in situ, i.e., while the material is mechanically loaded (meso-scale simulations), and bring atomic-level insights into the microstructure (atomistic simulations). In this thesis, we applied a multi-scale modeling approach to study the microstructural evolution in several metallic systems, including polycrystalline materials and metallic glasses (MGs). Specifically, for polycrystalline materials, we developed a coupled finite element model that combines phase field method and crystal plasticity theory to study the plasticity effect on grain boundary (GB) migration. Our model is not only coupled strongly (i.e., we include plastic driving force on GB migration directly) and concurrently (i.e., coupled equations are solved simultaneously), but also it qualitatively captures such phenomena as the dislocation absorption by mobile GBs. The developed model provides a tool to study the microstructural evolution in plastically deformed metals and alloys. For MGs, we used molecular dynamics (MD) simulations to investigate the nucleation kinetics in the primary crystallization in Al-Sm system. We calculated the time-temperature-transformation curves for low Sm concentrations, from which the strong suppressing effect of Sm solute on Al nucleation and its influencing mechanism are revealed. Also, through the comparative analysis of both Al attachment and Al diffusion in MGs, it has been found that the nucleation kinetics is controlled by interfacial attachment of Al, and that the attachment behavior takes place collectively and heterogeneously, similarly to Al diffusion in MGs. Finally, we applied the MD technique to study the origin of five-fold twinning nucleation during the solidification of Al base alloys. We studied several model alloys and reported the observed nucleation pathway. We found that the key factors controlling the five-fold twinning are the twin boundary energy and the formation of pentagon structures, and the twin boundary energy plays the dominant role in the five-fold twinning in the model alloys studied.
NASA Astrophysics Data System (ADS)
Sivai Bharasi, N.; Thyagarajan, K.; Shaikh, H.; Balamurugan, A. K.; Bera, Santanu; Kalavathy, S.; Gurumurthy, K.; Tyagi, A. K.; Dayal, R. K.; Rajan, K. K.; Khatak, H. S.
2008-07-01
AISI type 316LN stainless steel was exposed to flowing sodium in mass transfer loop (MTL) at 823 K for 16 000 h and then examined for changes in the tensile properties due to the mass transfer and corrosion effects. Comparisons in microstructural and mechanical properties were made between annealed, thermally aged and sodium exposed materials. Microstructural examination of thermally aged and sodium exposed materials revealed precipitation of carbides at the grain boundaries. The sodium exposed samples contained a degraded layer at the surface up to a depth of around 10 μm and a surface carburized layer of about 30 μm. There was about 15% increase in yield strength and a decrease of about 20% in ductility for the sodium exposed material vis-a-vis thermally aged material and this was attributed to carburization effects and microstructural changes.
Metal Dissipation and Inefficient Recycling Intensify Climate Forcing.
Ciacci, Luca; Harper, E M; Nassar, N T; Reck, Barbara K; Graedel, T E
2016-10-07
In the metals industry, recycling is commonly included among the most viable options for climate change mitigation, because using secondary (recycled) instead of primary sources in metal production carries both the potential for significant energy savings and for greenhouse gas emissions reduction. Secondary metal production is, however, limited by the relative quantity of scrap available at end-of-life for two reasons: long product lifespans during use delay the availability of the material for reuse and recycling; and end-of-life recycling rates are low, a result of inefficient collection, separation, and processing. For a few metals, additional losses exist in the form of in-use dissipation. The sum of these lost material flows forms the theoretical maximum potential for future efficiency improvements. Based on a dynamic material flow analysis, we have evaluated these factors from an energy perspective for 50 metals and calculated the corresponding greenhouse gas emissions associated with the supply of lost material from primary sources that would otherwise be used to satisfy demand. A use-by-use examination demonstrates the potential emission gains associated with major application sectors. The results show that minimizing in-use dissipation and constraints to metal recycling have the potential to reduce greenhouse gas emissions from the metal industry by about 13-23%, corresponding to 1% of global anthropogenic greenhouse gas emissions.
Efficient 3D porous microstructure reconstruction via Gaussian random field and hybrid optimization.
Jiang, Z; Chen, W; Burkhart, C
2013-11-01
Obtaining an accurate three-dimensional (3D) structure of a porous microstructure is important for assessing the material properties based on finite element analysis. Whereas directly obtaining 3D images of the microstructure is impractical under many circumstances, two sets of methods have been developed in literature to generate (reconstruct) 3D microstructure from its 2D images: one characterizes the microstructure based on certain statistical descriptors, typically two-point correlation function and cluster correlation function, and then performs an optimization process to build a 3D structure that matches those statistical descriptors; the other method models the microstructure using stochastic models like a Gaussian random field and generates a 3D structure directly from the function. The former obtains a relatively accurate 3D microstructure, but computationally the optimization process can be very intensive, especially for problems with large image size; the latter generates a 3D microstructure quickly but sacrifices the accuracy due to issues in numerical implementations. A hybrid optimization approach of modelling the 3D porous microstructure of random isotropic two-phase materials is proposed in this paper, which combines the two sets of methods and hence maintains the accuracy of the correlation-based method with improved efficiency. The proposed technique is verified for 3D reconstructions based on silica polymer composite images with different volume fractions. A comparison of the reconstructed microstructures and the optimization histories for both the original correlation-based method and our hybrid approach demonstrates the improved efficiency of the approach. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.
Chu, Bei; Eivazi, Frieda
2018-03-01
Most farms have a centralized location to fill spray tanks with pesticides and to flush and clean application equipment. These sites, depending on the frequency of use, could be significant sources of surface and groundwater contamination. One approach to minimize this contamination is to install a treatment system, such as a biobed. This study sought to construct a biobed and test the effects of different biomix materials in enhancing the dissipation of herbicides widely used in crop production. The four types of biomix evaluated had mixing ratios by volume of (1) 12.5% straw:62.5% soil:25% peat, (2) 25% straw:50% soil:25% peat, (3) 12.5% straw:62.5% soil:25% compost, and (4) 25% straw:50% soil:25% compost. The dissipation rates of acetochlor, atrazine, pendimethalin, and trifluralin at different incubation times over 90 d were evaluated. The dissipation of atrazine and pendimethalin in the biomixes were faster than in soil. The half-lives for atrazine were 27.8 d in soil and 14.3 to 20.2 d in the biomixes and those of pendimethalin were 25.5 d in soil and 11.9 to 14.8 d in the biomixes. The dissipation rates and half-lives of acetochlor were similar to those in soil; the trifluralin dissipation rates were slower in the biomixes. The phenol oxidase activity was higher in the peat biomixes than in those containing compost. The results showed that biobed materials, especially those with peat, are effective in degrading selected herbicides. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
NASA Astrophysics Data System (ADS)
Latypov, Marat I.; Kalidindi, Surya R.
2017-10-01
There is a critical need for the development and verification of practically useful multiscale modeling strategies for simulating the mechanical response of multiphase metallic materials with heterogeneous microstructures. In this contribution, we present data-driven reduced order models for effective yield strength and strain partitioning in such microstructures. These models are built employing the recently developed framework of Materials Knowledge Systems that employ 2-point spatial correlations (or 2-point statistics) for the quantification of the heterostructures and principal component analyses for their low-dimensional representation. The models are calibrated to a large collection of finite element (FE) results obtained for a diverse range of microstructures with various sizes, shapes, and volume fractions of the phases. The performance of the models is evaluated by comparing the predictions of yield strength and strain partitioning in two-phase materials with the corresponding predictions from a classical self-consistent model as well as results of full-field FE simulations. The reduced-order models developed in this work show an excellent combination of accuracy and computational efficiency, and therefore present an important advance towards computationally efficient microstructure-sensitive multiscale modeling frameworks.
Fabrication and microstructures of functional gradient SiBCN–Nb composite by hot pressing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Min, E-mail: lcxsunmin@163.com; Fu, Ruoyu; Chen, Jun
2016-04-15
A functional gradient material with five layers composed of SiBCN ceramic and niobium (Nb) was prepared successfully by hot pressing. The phase composition, morphology features and microstructures were investigated in each layer of the gradient material. The Nb-containing compounds involving NbC, Nb{sub 6}C{sub 5}, Nb{sub 4}C{sub 3}, Nb{sub 5}Si{sub 3} and NbN increase with the volume fraction of Nb increasing in the sub-layer. They are randomly scattered (≤ 25 vol.% Nb), then strip-like, and finally distribute continuously (≥ 75 vol.% Nb). The size of BN(C) and SiC grains in Nb-containing layers is larger than in 100% SiBCN layer due tomore » the loss of the capsule-like structures. No distinct interfaces form in the transition regions indicating the gradual changes in phase composition and microstructures. - Highlights: • A functional gradient SiBCN–Nb material was prepared successfully by hot pressing. • Phase composition, morphology features and microstructures were investigated. • Thermodynamic calculation was used to aid in the phase analysis. • No distinct interfaces form typical of the functional gradient material.« less
Li, Qing; Liang, Steven Y
2018-04-20
Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method.
In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide.
Pfeiffer, Björn; Maier, Johannes; Arlt, Jonas; Nowak, Carsten
2017-04-01
Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.
Dynamic toughness in elastic nonlinear viscous solids
NASA Astrophysics Data System (ADS)
Tang, S.; Guo, T. F.; Cheng, L.
2009-02-01
This work addresses the interrelationship among dissipative mechanisms—material separation in the fracture process zone (FPZ), nonelastic deformation in the surrounding background material and kinetic energy—and how they affect the macroscopic dynamic fracture toughness as well as the limiting crack speed in strain rate sensitive materials. To this end, a micromechanics-based model for void growth in a nonlinear viscous solid is incorporated into a microporous strip of cell elements that forms the FPZ. The latter is surrounded by background material described by conventional constitutive relations. In the first part of the paper, the background material is assumed to be purely elastic. Here, the computed dynamic fracture toughness is a convex function of crack velocity. In the second part, the background material as well as the FPZ are described by similar rate-sensitivity parameters. Voids grow in the strain rate strengthened FPZ as the crack velocity increases. Consequently, the work of separation increases. By contrast, the inelastic dissipation in the background material appears to be a concave function of crack velocity. At the lower crack velocity regime, where dissipation in the background material is dominant, toughness decreases as crack velocity increases. At high crack velocities, inelastic deformation enhanced by the inertial force can cause a sharp increase in toughness. Here, the computed toughness increases rapidly with crack velocity. There exist regimes where the toughness is a non-monotonic function of the crack velocity. Two length scales—the width of the FPZ and the ratio of the shear wave speed to the reference strain rate—can be shown to strongly affect the dynamic fracture toughness. Our computational simulations can predict experimental data for fracture toughness vs. crack velocity reported in several studies for amorphous polymeric materials.
NASA Astrophysics Data System (ADS)
Zhang, Fan
Dual phase steel alloys belong to the first generation of advanced high strength steels that are widely used in the automotive industry to form body structure and closure panels of vehicles. A deeper understanding of the microstructural features, such as phase orientation and morphology are needed in order to establish their effect on the mechanical performance and to design a material with optimized attributes. In this work, our goal is to establish what kind of relationship exist between the mechanical properties and the microstructural representation of dual phase steels obtained from experimental observations. Microstructure in different specimens are characterized with advanced experimental techniques as optical microscopy, scanning electron microscopy, transmission electron microscopy, electron backscatter diffraction pattern, scanning probe microscopy, and nanoindentation. Nanoindentation, Vickers hardness and tensile testing are conducted to reveal a multi-scale mechanical performance on original material and also specimens under a variety combinations of temperatures, cooling rates, and rolling conditions. To quantify the single phase properties in each sample, an inverse method is adopted using experimental nanoindentation load-depth curves to obtain tensile stress-strain curves for each phase, and the inverse results were verified with the true stress-strain curves from tensile tests. This work also provides the insight on spatial phase distribution of different phases through a 2-point correlation statistical methodology and relate to material strength and formability. The microstructure information is correlated with the results of mechanical tests. The broken surfaces from tensile testing are analyzed to discover the fracture mechanism in relation to martensite morphology and distribuion. Viscoplastic self-consistent fast Fourier Transformation simulations is also used to compute efficiently the local and the homogenized viscoplastic response of the polycrystalline microstructure. The specific objectives of this work are 1) the development of etching techniques and electron backscatter diffraction strategies to characterize ferrite and martensite phases in steel; 2) the uncovering of a relationship between strength/ductility and material microstructure, 3) a statistical description to quantify the spatial distributions of these phases; and finally 4) the simulation of the microstructural evolution using parameters obtained from the experiments.
NASA Astrophysics Data System (ADS)
Gurnon, Amanda Kate
The complex, nonlinear flow behavior of soft materials transcends industrial applications, smart material design and non-equilibrium thermodynamics. A long-standing, fundamental challenge in soft-matter science is establishing a quantitative connection between the deformation field, local microstructure and macroscopic dynamic flow properties i.e., the rheology. Soft materials are widely used in consumer products and industrial processes including energy recovery, surfactants for personal healthcare (e.g. soap and shampoo), coatings, plastics, drug delivery, medical devices and therapeutics. Oftentimes, these materials are processed by, used during, or exposed to non-equilibrium conditions for which the transient response of the complex fluid is critical. As such, designing new dynamic experiments is imperative to testing these materials and further developing micromechanical models to predict their transient response. Two of the most common classes of these soft materials stand as the focus of the present research; they are: solutions of polymer-like micelles (PLM or also known as wormlike micelles, WLM) and concentrated colloidal suspensions. In addition to their varied applications these two different classes of soft materials are also governed by different physics. In contrast, to the shear thinning behavior of the WLMs at high shear rates, the near hard-sphere colloidal suspensions are known to display increases, sometimes quite substantial, in viscosity (known as shear thickening). The stress response of these complex fluids derive from the shear-induced microstructure, thus measurements of the microstructure under flow are critical for understanding the mechanisms underlying the complex, nonlinear rheology of these complex fluids. A popular micromechanical model is reframed from its original derivation for predicting steady shear rheology of polymers and WLMs to be applicable to weakly nonlinear oscillatory shear flow. The validity, utility and limits of this constitutive model are tested by comparison with experiments on model WLM solutions. Further comparisons to the nonlinear oscillatory shear responses measured from colloidal suspensions establishes this analysis as a promising, quantitative method for understanding the underlying mechanisms responsible for the nonlinear dynamic response of complex fluids. A new experimental technique is developed to measure the microstructure of complex fluids during steady and transient shear flow using small-angle neutron scattering (SANS). The Flow-SANS experimental method is now available to the broader user communities at the NIST Center for Neutron Research, Gaithersburg, MD and the Institut Laue-Langevin, Grenoble, France. Using this new method, a model shear banding WLM solution is interrogated under steady and oscillatory shear. For the first time, the flow-SANS methods identify new metastable states for shear banding WLM solutions, thus establishing the method as capable of probing new states not accessible using traditional steady or linear oscillatory shear methods. The flow-induced three-dimensional microstructure of a colloidal suspension under steady and dynamic oscillatory shear is also measured using these rheo- and flow-SANS methods. A new structure state is identified in the shear thickening regime that proves critical for defining the "hydrocluster" microstructure state of the suspension that is responsible for shear thickening. For both the suspensions and the WLM solutions, stress-SANS rules with the measured microstructures define the individual stress components arising separately from conservative and hydrodynamic forces and these are compared with the macroscopic rheology. Analysis of these results defines the crucial length- and time-scales of the transient microstructure response. The novel dynamic microstructural measurements presented in this dissertation provide new insights into the complexities of shear thickening and shear banding flow phenomena, which are effects observed more broadly across many different types of soft materials. Consequently, the microstructure-rheology property relationships developed for these two classes of complex fluids will aid in the testing and advancement of micromechanical constitutive model development, smart material design, industrial processing and fundamental non-equilibrium thermodynamic research of a broad range of soft materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sames, William J.; Unocic, Kinga A.; Dehoff, Ryan R.
2014-07-28
Additive manufacturing (AM) technologies, also known as 3D printing, have demonstrated the potential to fabricate complex geometrical components, but the resulting microstructures and mechanical properties of these materials are not well understood due to unique and complex thermal cycles observed during processing. The electron beam melting (EBM) process is unique because the powder bed temperature can be elevated and maintained at temperatures over 1000 °C for the duration of the process. This results in three specific stages of microstructural phase evolution: (a) rapid cool down from the melting temperature to the process temperature, (b) extended hold at the process temperature,more » and (c) slow cool down to the room temperature. In this work, the mechanisms for reported microstructural differences in EBM are rationalized for Inconel 718 based on measured thermal cycles, preliminary thermal modeling, and computational thermodynamics models. The relationship between processing parameters, solidification microstructure, interdendritic segregation, and phase precipitation (δ, γ´, and γ´´) are discussed.« less
NASA Technical Reports Server (NTRS)
Wolfe, Douglas E.; Singh, Jogender
2005-01-01
Various advanced Hafnia-based thermal barrier coatings (TBC) were applied on nickel-based superalloy coupons by electron beam physical vapor deposition. In addition, microstructural modifications to the coating material were made in an effort to reduce the thermal conductivity of the coating materials. Various processing parameters and coating system modifications were made in order to deposit the alloyed TBC with the desired microstructure and thus coating performance, some of which include applying coatings at substrate temperatures of 1150 C on both PtAl and CoNiCrAlY bond coated samples, as well as using 8YSZ as a bond layer. In addition, various characterization techniques including thermal cyclic tests, scanning electron microscopy, x-ray diffraction, thermal conductivity, and reflectivity measurements were performed. Although the coating microstructure was never fully optimized due to funding being cut short, significant reductions in thermal conductivity were accomplished through both chemistry changes (composition) and microstructural modifications.
Phase Transformations and Microstructural Evolution: Part I
Clarke, Amy Jean
2015-08-29
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less
Microstructure characterisation of Ti-6Al-4V from different additive manufacturing processes
NASA Astrophysics Data System (ADS)
Neikter, M.; Åkerfeldt, P.; Pederson, R.; Antti, M.-L.
2017-10-01
The focus of this work has been microstructure characterisation of Ti-6Al-4V manufactured by five different additive manufacturing (AM) processes. The microstructure features being characterised are the prior β size, grain boundary α and α lath thickness. It was found that material manufactured with powder bed fusion processes has smaller prior β grains than the material from directed energy deposition processes. The AM processes with fast cooling rate render in thinner α laths and also thinner, and in some cases discontinuous, grain boundary α. Furthermore, it has been observed that material manufactured with the directed energy deposition processes has parallel bands, except for one condition when the parameters were changed, while the powder bed fusion processes do not have any parallel bands.
Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T
2017-02-22
A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material.
Aymerich, María; Nieto, Daniel; Álvarez, Ezequiel; Flores-Arias, María T.
2017-01-01
A laser based technique for microstructuring titanium and tantalum substrates using the Talbot effect and an array of microlenses is presented. By using this hybrid technique; we are able to generate different patterns and geometries on the top surfaces of the biomaterials. The Talbot effect allows us to rapidly make microstructuring, solving the common problems of using microlenses for multipatterning; where the material expelled during the ablation of biomaterials damages the microlens. The Talbot effect permits us to increase the working distance and reduce the period of the patterns. We also demonstrate that the geometries and patterns act as anchor points for cells; affecting the cell adhesion to the metallic substrates and guiding how they spread over the material. PMID:28772574
A predictive machine learning approach for microstructure optimization and materials design
Liu, Ruoqian; Kumar, Abhishek; Chen, Zhengzhang; ...
2015-06-23
This paper addresses an important materials engineering question: How can one identify the complete space (or as much of it as possible) of microstructures that are theoretically predicted to yield the desired combination of properties demanded by a selected application? We present a problem involving design of magnetoelastic Fe-Ga alloy microstructure for enhanced elastic, plastic and magnetostrictive properties. While theoretical models for computing properties given the microstructure are known for this alloy, inversion of these relationships to obtain microstructures that lead to desired properties is challenging, primarily due to the high dimensionality of microstructure space, multi-objective design requirement and non-uniquenessmore » of solutions. These challenges render traditional search-based optimization methods incompetent in terms of both searching efficiency and result optimality. In this paper, a route to address these challenges using a machine learning methodology is proposed. A systematic framework consisting of random data generation, feature selection and classification algorithms is developed. In conclusion, experiments with five design problems that involve identification of microstructures that satisfy both linear and nonlinear property constraints show that our framework outperforms traditional optimization methods with the average running time reduced by as much as 80% and with optimality that would not be achieved otherwise.« less
NASA Astrophysics Data System (ADS)
Shi, Qiwei; Latourte, Félix; Hild, François; Roux, Stéphane
2017-12-01
In situ mechanical tests performed on polycrystalline materials in a scanning electron microscope suffer from the lack of information on depth-resolved three-dimensional microstructures. The latter ones can be accessed with focused ion beam technology only postmortem, because it is destructive. The present study considers the challenge of backtracking this deformed microstructure to the reference state. This theoretical question is tackled on a numerical (synthetic) test case. A two-dimensional microstructure with one dimension along the depth is considered, and deformed using a crystal plasticity law. The proposed numerical strategy is shown to retrieve accurately the reference state.
Supersoft lithography: Candy-based fabrication of soft silicone microstructures
Moraes, Christopher; Labuz, Joseph M.; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based ‘hard candy’ recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues. PMID:26245893
Supersoft lithography: candy-based fabrication of soft silicone microstructures.
Moraes, Christopher; Labuz, Joseph M; Shao, Yue; Fu, Jianping; Takayama, Shuichi
2015-01-01
We designed a fabrication technique able to replicate microstructures in soft silicone materials (E < 1 kPa). Sugar-based 'hard candy' recipes from the confectionery industry were modified to be compatible with silicone processing conditions, and used as templates for replica molding. Microstructures fabricated in soft silicones can then be easily released by dissolving the template in water. We anticipate that this technique will be of particular importance in replicating physiologically soft, microstructured environments for cell culture, and demonstrate a first application in which intrinsically soft microstructures are used to measure forces generated by fibroblast-laden contractile tissues.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Graphene heat dissipating structure
Washburn, Cody M.; Lambert, Timothy N.; Wheeler, David R.; Rodenbeck, Christopher T.; Railkar, Tarak A.
2017-08-01
Various technologies presented herein relate to forming one or more heat dissipating structures (e.g., heat spreaders and/or heat sinks) on a substrate, wherein the substrate forms part of an electronic component. The heat dissipating structures are formed from graphene, with advantage being taken of the high thermal conductivity of graphene. The graphene (e.g., in flake form) is attached to a diazonium molecule, and further, the diazonium molecule is utilized to attach the graphene to material forming the substrate. A surface of the substrate is treated to comprise oxide-containing regions and also oxide-free regions having underlying silicon exposed. The diazonium molecule attaches to the oxide-free regions, wherein the diazonium molecule bonds (e.g., covalently) to the exposed silicon. Attachment of the diazonium plus graphene molecule is optionally repeated to enable formation of a heat dissipating structure of a required height.
Toughening by crack bridging in heterogeneous ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curtin, W.A.
1995-05-01
The toughening of a ceramic by crack bridging is considered, including the heterogeneity caused simply by spatial randomness in the bridge locations. The growth of a single planar crack is investigated numerically by representing the microstructure as an array of discrete springs with heterogeneity in the mechanical properties of each spring. The stresses on each microstructural element are determined, for arbitrary configurations of spring properties and heterogeneity, using a lattice Green function technique. For toughening by (heterogeneous) crack bridging for both elastic and Dugdale bridging mechanisms, the following key physical results are found: (1) growing cracks avoid regions which aremore » efficiently bridged, and do not propagate as self-similar penny cracks; (2) crack growth thus proceeds at lower applied stresses in a heterogeneous material than in an ordered material; (3) very little toughening is evident for moderate amounts of crack growth in many cases; and (4) a different R-curve is found for every particular spatial distribution of bridging elements. These results show that material reliability is determined by both the flaw distribution and the ``toughness`` distribution, or local environment, around each flaw. These results also demonstrate that the ``microstructural`` parameters derived from fitting an R-curve to a continuum model may not have an immediate relationship to the actual microstructure; the parameters are ``effective`` parameters that absorb the effects of the heterogeneity. The conceptual issues illuminated by these conclusions must be fully understood and appreciated to further develop microstructure-property relationships in ceramic materials.« less
Microstructure and mechanical behavior of direct metal laser sintered Inconel alloy 718
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Derek H.; Bicknell, Jonathan; Jorgensen, Luke
2016-03-15
In this paper, we investigate microstructure and quasi-static mechanical behavior of the direct metal laser sintered Inconel 718 superalloy as a function of build direction (BD). The printed material was further processed by annealing and double-aging, hot isostatic pressing (HIP), and machining. We characterize porosity fraction and distribution using micro X-ray computed tomography (μXCT), grain structure and crystallographic texture using electron backscattered diffraction (EBSD), and mechanical response in quasi-static tension and compression using standard mechanical testing at room temperature. Analysis of the μXCT imaging shows that majority of porosity develops in the outer layer of the printed material. However, porositymore » inside the material is also present. The EBSD measurements reveal formation of columnar grains, which favor < 001 > fiber texture components along the BD. These measurements also show evidence of coarse-grained microstructure present in the samples treated by HIP. Finally, analysis of grain boundaries reveal that HIP results in a large number of annealing twins compared to that in samples that underwent annealing and double-aging. The yield strength varies with the testing direction by approximately 7%, which is governed by a combination of grain morphology and crystallographic texture. In particular, we determine tension–compression asymmetry in the yield stress as well as anisotropy of the material flow during compression. We find that HIP lowers yield stress but improves ductility relative to the annealed and aged material. These results are discussed and critically compared with the data reported for wrought material in the same condition. - Highlights: • Microstructure and mechanical properties of DMLS Inconel 718 are studied in function of build direction. • Inhomogeneity of microstructure in the material in several conditions is quantified by μXCT and EBSD. • Anisotropy and asymmetry in the mechanical response are determined by tension and compression testing.« less
Influence of Dissipation on Heat Transfer During Flow of a Non-Newtonian Fluid in a Porous Channel
NASA Astrophysics Data System (ADS)
Baranov, A. V.; Yunitskii, S. A.
2017-07-01
A study is made of flow and heat transfer during the motion of a non-Newtonian (power-law) fluid in a plane channel filled with porous material. The Brinkman equation is used as the equation of state, and a one-temperature model, in representing the energy equation. Account us taken of dissipative heat releases. The problem is solved for temperature boundary conditions of the first kind. The authors show the influence of dissipation on the development of the temperature profile, and also on the distributions of the local Nusselt number and the mass-mean temperature along the channel.
The Influence of Wheel/Rail Contact Conditions on the Microstructure and Hardness of Railway Wheels
Davis, Claire
2014-01-01
The susceptibility of railway wheels to wear and rolling contact fatigue damage is influenced by the properties of the wheel material. These are influenced by the steel composition, wheel manufacturing process, and thermal and mechanical loading during operation. The in-service properties therefore vary with depth below the surface and with position across the wheel tread. This paper discusses the stress history at the wheel/rail contact (derived from dynamic simulations) and observed variations in hardness and microstructure. It is shown that the hardness of an “in-service” wheel rim varies significantly, with three distinct effects. The underlying hardness trend with depth can be related to microstructural changes during manufacturing (proeutectoid ferrite fraction and pearlite lamellae spacing). The near-surface layer exhibits plastic flow and microstructural shear, especially in regions which experience high tangential forces when curving, with consequentially higher hardness values. Between 1 mm and 7 mm depth, the wheel/rail contacts cause stresses exceeding the material yield stress, leading to work hardening, without a macroscopic change in microstructure. These changes in material properties through the depth of the wheel rim would tend to increase the likelihood of crack initiation on wheels toward the end of their life. This correlates with observations from several train fleets. PMID:24526883
NASA Astrophysics Data System (ADS)
Cheruvathur, Sudha; Lass, Eric A.; Campbell, Carelyn E.
2016-03-01
17-4 precipitation hardenable (PH) stainless steel is a useful material when a combination of high strength and good corrosion resistance up to about 315°C is required. In the wrought form, this steel has a fully martensitic structure that can be strengthened by precipitation of fine Cu-rich face-centered cubic phase upon aging. When fabricated via additive manufacturing (AM), specifically laser powder-bed fusion, 17-4 PH steel exhibits a dendritic structure containing a substantial fraction of nearly 50% of retained austenite along with body centered cubic/martensite and fine niobium carbides preferentially aligned along interdendritic boundaries. The effect of post-build thermal processing on the material microstructure is studied in comparison to that of conventionally produced wrought 17-4 PH with the intention of creating a more uniform, fully martensitic microstructure. The recommended stress relief heat treatment currently employed in industry for post-processing of AM 17-4 PH steel is found to have little effect on the as-built dendritic microstructure. It is found that, by implementing the recommended homogenization heat treatment regimen of Aerospace Materials Specification 5355 for CB7Cu-1, a casting alloy analog to 17-4 PH, the dendritic solidification structure is eliminated, resulting in a microstructure containing about 90% martensite with 10% retained austenite.
Stainless steel valves with enhanced performance through microstructure optimization
NASA Astrophysics Data System (ADS)
Barani, A. A.; Boukhattam, M.; Haggeney, M.; Güler, S.
2017-08-01
Compressor valves are made of hardened and tempered martensitic steels. The main design criterion for the material selection is the fatigue performance of the material under bending loads. In some cases impact loads and corrosive atmospheres additionally act on the part. For the first time, the microstructure of the most commonly used stainless steel and its influence on the properties relevant for flapper valves is presented and described in this paper. It is demonstrated how the tensile properties of a martensitic stainless steel can be enhanced by tailoring the microstructure. Electron back scatter diffraction method is carried out to explain the changes in monotonic mechanical properties. Through a modified heat treatment the martensite microstructure is refined resulting in an increase of yield and ultimate tensile strength and at the same time a significant increase of elongation.
Hagihara, Koji; Ikenishi, Takaaki; Araki, Haruka; Nakano, Takayoshi
2017-06-21
A (Mo 0.85 Nb 0.15 )Si 2 crystal with an oriented, lamellar, C40/C11 b two-phase microstructure is a promising ultrahigh-temperature (UHT) structural material, but its low room-temperature fracture toughness and low high-temperature strength prevent its practical application. As a possibility to overcome these problems, we first found a development of unique "cross-lamellar microstructure", by the cooping of Cr and Ir. The cross-lamellar microstructure consists of a rod-like C11 b -phase grains that extend along a direction perpendicular to the lamellar interface in addition to the C40/C11 b fine lamellae. In this study, the effectiveness of the cross-lamellar microstructure for improving the high-temperature creep deformation property, being the most essential for UHT materials, was examined by using the oriented crystals. The creep rate significantly reduced along a loading orientation parallel to the lamellar interface. Furthermore, the degradation in creep strength for other loading orientation that is not parallel to the lamellar interface, which has been a serious problem up to now, was also suppressed. The results demonstrated that the simultaneous improvement of high-temperature creep strength and room temperature fracture toughness can be first accomplished by the development of unique cross-lamellar microstructure, which opens a potential avenue for the development of novel UHT materials as alternatives to existing Ni-based superalloys.
Mixing rates and vertical heat fluxes north of Svalbard from Arctic winter to spring
NASA Astrophysics Data System (ADS)
Meyer, Amelie; Fer, Ilker; Sundfjord, Arild; Peterson, Algot K.
2017-06-01
Mixing and heat flux rates collected in the Eurasian Basin north of Svalbard during the N-ICE2015 drift expedition are presented. The observations cover the deep Nansen Basin, the Svalbard continental slope, and the shallow Yermak Plateau from winter to summer. Mean quiescent winter heat flux values in the Nansen Basin are 2 W m-2 at the ice-ocean interface, 3 W m-2 in the pycnocline, and 1 W m-2 below the pycnocline. Large heat fluxes exceeding 300 W m-2 are observed in the late spring close to the surface over the Yermak Plateau. The data consisting of 588 microstructure profiles and 50 days of high-resolution under-ice turbulence measurements are used to quantify the impact of several forcing factors on turbulent dissipation and heat flux rates. Wind forcing increases turbulent dissipation seven times in the upper 50 m, and doubles heat fluxes at the ice-ocean interface. The presence of warm Atlantic Water close to the surface increases the temperature gradient in the water column, leading to enhanced heat flux rates within the pycnocline. Steep topography consistently enhances dissipation rates by a factor of four and episodically increases heat flux at depth. It is, however, the combination of storms and shallow Atlantic Water that leads to the highest heat flux rates observed: ice-ocean interface heat fluxes average 100 W m-2 during peak events and are associated with rapid basal sea ice melt, reaching 25 cm/d.
NASA Astrophysics Data System (ADS)
Yang, X. G.; Xu, Q. T.; Wu, C. L.; Chen, Y. S.
2017-12-01
The relationship between the microstructure of the continuous casting slab (CCS) and quality defects of the steel products, as well as evolution and characteristics of the fine equiaxed, columnar, equiaxed zones and crossed dendrites of CCS were systematically investigated in this study. Different microstructures of various CCS samples were revealed. The dendrite etching method was proved to be quite efficient for the analysis of solidified morphologies, which are essential to estimate the material characteristics, especially the CCS microstructure defects.
The Effect of Various Quenchants on the Hardness and Microstructure of 60-NITINOL
NASA Technical Reports Server (NTRS)
Thomas, Fransua
2015-01-01
The effect of various quenching media on the hardness and microstructure of 60 NITINOL (60 NiTi) were evaluated. Specimens of 60 NiTi were heat treated in air at 1000 degC for 30 min or 2 hr, then quench cooled by one of seven different methods. The microstructure and hardness of this material was examined post heat treatment. The results indicated that the quench method had little effect on the resulting hardness and microstructure of 60 NiTi.
Biaxial flexural strength and microstructure changes of two recycled pressable glass ceramics.
Albakry, Mohammad; Guazzato, Massimiliano; Swain, Michael Vincent
2004-09-01
This study evaluated the biaxial flexural strength and identified the crystalline phases and the microstructural features of pressed and repressed materials of the glass ceramics, Empress 1 and Empress 2. Twenty pressed and 20 repressed disc specimens measuring 14 mm x 1 mm per material were prepared following the manufacturers' recommendations. Biaxial flexure (piston on 3-ball method) was used to assess strength. X-ray diffraction was performed to identify the crystalline phases, and a scanning electron microscope was used to disclose microstructural features. Biaxial flexural strength, for the pressed and repressed specimens, respectively, were E1 [148 (SD 18) and 149 (SD 35)] and E2 [340 (SD 40), 325 (SD 60)] MPa. There was no significant difference in strength between the pressed and the repressed groups of either material, Empress 1 and Empress 2 (p > 0.05). Weibull modulus values results were E1: (8, 4.7) and E2: (9, 5.8) for the same groups, respectively. X-ray diffraction revealed that leucite was the main crystalline phase for Empress 1 groups, and lithium disilicate for Empress 2 groups. No further peaks were observed in the X-ray diffraction patterns of either material after repressing. Dispersed leucite crystals and cracks within the leucite crystals and glass matrix were features observed in Empress 1 for pressed and repressed samples. Similar microstructure features--dense lithium disilicate crystals within a glass matrix--were observed in Empress 2 pressed and repressed materials. However, the repressed material showed larger lithium disilicate crystals than the singly pressed material. Second pressing had no significant effect on the biaxial flexural strength of Empress 1 or Empress 2; however, higher strength variations among the repressed samples of the materials may indicate less reliability of these materials after second pressing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
The effect of microstructure on the fracture toughness of titanium alloys
NASA Technical Reports Server (NTRS)
Vanstone, R. H.; Low, J. R., Jr.; Shannon, J. L., Jr.
1974-01-01
The microstructure of the alpha titanium alloy Ti-5Al-2.5Sn and the metastable beta titanium alloy Beta 3 was examined. The material was from normal and extra low interstitial grade plates which were either air-cooled or furnace-cooled from an annealing treatment. Beta 3 was studied in alpha-aged and omega-aged plates which were heat treated to similar strength levels. Tensile and plane strain fracture toughness tests were conducted at room temperature on the alpha-aged material. The microstructure and fracture mechanisms of alloys were studied using optical metallography, electron microscopy, microprobe analyses, and texture pole figures. Future experiments are described.
Role of Microstructure on the Performance of UHTC's
NASA Technical Reports Server (NTRS)
Johnson, Sylvia M.; Gasch, Matthew J.; Stackpoole, Mairead; Gusman, Mike; Thornton, Jeremy
2009-01-01
UHTCs, because of their refractory nature and high thermal conductivity, are candidates for use on sharp leading edges of hypersonic vehicles. NASA Ames has been investigating the use of UHTCs in the HfB2/SiC family under NASA's Fundamental Aeronautics Program. The goal of this work has been to tailor the microstructure to improve mechanical properties and the performance in reentry conditions, as determined by arcjet testing. This talk discusses results of mechanical evaluation and arcjet testing of various materials with different microstructures, including the incorporation of high-temperature fibers in these materials to improve fracture toughness. Some preliminary information on UHTC composites will also be discussed.
Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures
NASA Astrophysics Data System (ADS)
Freed, Shaun; Blackshire, James L.; Na, Jeong K.
2016-02-01
Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.
United States Air Force Research Initiation Program for 1987. Volume 3
1989-04-01
Influence of Microstructural Variations Dr. Ravinder Diwan on the Thermomechanical Processing in Dynamic Material Modeling of Titanium Aluminides , 760,7MG...7MG-077 INFLUENCE OF MICROSTRUCTURAL VARIATIONS ON THE THERMOMECHANICAL PROCESSING IN DYNAMIC MATERIAL MODELING OF TITANIUM ALUMINIDES MARCH 15, 1989...provided on this project. Final Report Submitted: March 15, 1989. 75-1 ABSTRACT Titanium aluminides with strong thermodynamically stable intermetallic phases
Modeling property evolution of container materials used in nuclear waste storage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin
2010-03-01
Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.
Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.
2017-09-12
In this paper, we summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Finally, overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.
X-ray Computed Microtomography technique applied for cementitious materials: A review.
da Silva, Ítalo Batista
2018-04-01
The main objective of this article is to present a bibliographical review about the use of the X-ray microtomography method in 3D images processing of cementitious materials microstructure, analyzing the pores microstructure and connectivity network, enabling tthe possibility of building a relationship between permeability and porosity. The use of this technique enables the understanding of physical, chemical and mechanical properties of cementitious materials by publishing good results, considering that the quality and quantity of accessible information were significant and may contribute to the study of cementitious materials development. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Thanawala, Sachin
Electrical stimulation of neurons provides promising results for treatment of a number of diseases and for restoration of lost function. Clinical examples include retinal stimulation for treatment of blindness and cochlear implants for deafness and deep brain stimulation for treatment of Parkinsons disease. A wide variety of materials have been tested for fabrication of electrodes for neural stimulation applications, some of which are platinum and its alloys, titanium nitride, and iridium oxide. In this study iridium oxide thin films were sputtered onto laser micro-structured platinum thin films by pulsed-DC reactive sputtering of iridium metal in oxygen-containing atmosphere, to obtain high charge capacity coatings for neural stimulation applications. The micro-structuring of platinum films was achieved by a pulsed-laser-based technique (KrF excimer laser emitting at lambda=248nm). The surface morphology of the micro-structured films was studied using different surface characterization techniques. In-vitro biocompatibility of these laser micro-structured films coated with iridium oxide thin films was evaluated using cortical neurons isolated from rat embryo brain. Characterization of these laser micro-structured films coated with iridium oxide, by cyclic voltammetry and impedance spectroscopy has revealed a considerable decrease in impedance and increase in charge capacity. A comparison between amorphous and crystalline iridium oxide thin films as electrode materials indicated that amorphous iridium oxide has significantly higher charge capacity and lower impedance making it preferable material for neural stimulation application. Our biocompatibility studies show that neural cells can grow and differentiate successfully on our laser micro-structured films coated with iridium oxide. This indicates that reactively sputtered iridium oxide (SIROF) is biocompatible.
Modeling of microstructure evolution in direct metal laser sintering: A phase field approach
NASA Astrophysics Data System (ADS)
Nandy, Jyotirmoy; Sarangi, Hrushikesh; Sahoo, Seshadev
2017-02-01
Direct Metal Laser Sintering (DMLS) is a new technology in the field of additive manufacturing, which builds metal parts in a layer by layer fashion directly from the powder bed. The process occurs within a very short time period with rapid solidification rate. Slight variations in the process parameters may cause enormous change in the final build parts. The physical and mechanical properties of the final build parts are dependent on the solidification rate which directly affects the microstructure of the material. Thus, the evolving of microstructure plays a vital role in the process parameters optimization. Nowadays, the increase in computational power allows for direct simulations of microstructures during materials processing for specific manufacturing conditions. In this study, modeling of microstructure evolution of Al-Si-10Mg powder in DMLS process was carried out by using a phase field approach. A MATLAB code was developed to solve the set of phase field equations, where simulation parameters include temperature gradient, laser scan speed and laser power. The effects of temperature gradient on microstructure evolution were studied and found that with increase in temperature gradient, the dendritic tip grows at a faster rate.
Tan, Yongqiang; Luo, Heng; Zhou, Xiaosong; Peng, Shuming; Zhang, Haibin
2018-05-21
The microstructure dependent electromagnetic interference (EMI) shielding properties of nano-layered Ti 3 AlC 2 ceramics were presented in this study by comparing the shielding properties of various Ti 3 AlC 2 ceramics with distinct microstructures. Results indicate that Ti 3 AlC 2 ceramics with dense microstructure and coarse grains are more favourable for superior EMI shielding efficiency. High EMI shielding effectiveness over 40 dB at the whole Ku-band frequency range was achieved in Ti 3 AlC 2 ceramics by microstructure optimization, and the high shielding effectiveness were well maintained up to 600 °C. A further investigation reveals that only the absorption loss displays variations upon modifying microstructure by allowing more extensive multiple reflections in coarse layered grains. Moreover, the absorption loss of Ti 3 AlC 2 was found to be much higher than those of highly conductive TiC ceramics without layered structure. These results demonstrate that nano-layered MAX phase ceramics are promising candidates of high-temperature structural EMI shielding materials and provide insightful suggestions for achieving high EMI shielding efficiency in other ceramic-based shielding materials.
Bioinspired toughening mechanism: lesson from dentin.
An, Bingbing; Zhang, Dongsheng
2015-07-09
Inspired by the unique microstructure of dentin, in which the hard peritubular dentin surrounding the dentin tubules is embedded in the soft intertubular dentin, we explore the crack propagation in the bioinspired materials with fracture process zone possessing a dentin-like microstructure, i.e. the composite structure consisting of a soft matrix and hard reinforcements with cylindrical voids. A micromechanical model under small-scale yielding conditions is developed, and numerical simulations are performed, showing that the rising resistant curve (R-curve) is observed for crack propagation caused by the plastic collapse of the intervoid ligaments in the fracture process zone. The dentin-like microstructure in the fracture process zone exhibits enhanced fracture toughness, compared with the case of voids embedded in the homogeneous soft matrix. Further computational simulations show that the dentin-like microstructure can retard void growth, thereby promoting fracture toughness. The typical fracture mechanism of the bioinspired materials with fracture process zone possessing the dentin-like structure is void by void growth, while it is the multiple void interaction in the case of voids in the homogeneous matrix. Based on the results, we propose a bioinspired material design principle, which is that the combination of a hard inner material encompassing voids and a soft outer material in the fracture process zone can give rise to exceptional fracture toughness, achieving damage tolerance. It is expected that the proposed design principle could shed new light on the development of novel man-made engineering materials.
Song, Bo; Nelson, Kevin
2015-09-01
Kolsky compression bar experiments were conducted to characterize the shock mitigation response of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam, abbreviated as PMDI foam in this study. The Kolsky bar experimental data was analyzed in the frequency domain with respect to impact energy dissipation and acceleration attenuation to perform a shock mitigation assessment on the foam material. The PMDI foam material exhibits excellent performance in both energy dissipation and acceleration attenuation, particularly for the impact frequency content over 1.5 kHz. This frequency (1.5 kHz) was observed to be independent of specimen thickness and impact speed, which may represent themore » characteristic shock mitigation frequency of the PMDI foam material under investigation. The shock mitigation characteristics of the PMDI foam material were insignificantly influenced by the specimen thickness. As a result, impact speed did have some effect.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Bo; Nelson, Kevin
Kolsky compression bar experiments were conducted to characterize the shock mitigation response of a polymethylene diisocyanate (PMDI) based rigid polyurethane foam, abbreviated as PMDI foam in this study. The Kolsky bar experimental data was analyzed in the frequency domain with respect to impact energy dissipation and acceleration attenuation to perform a shock mitigation assessment on the foam material. The PMDI foam material exhibits excellent performance in both energy dissipation and acceleration attenuation, particularly for the impact frequency content over 1.5 kHz. This frequency (1.5 kHz) was observed to be independent of specimen thickness and impact speed, which may represent themore » characteristic shock mitigation frequency of the PMDI foam material under investigation. The shock mitigation characteristics of the PMDI foam material were insignificantly influenced by the specimen thickness. As a result, impact speed did have some effect.« less
Characterization of a polymer-infiltrated ceramic-network material
Corazza, Pedro H.; Zhang, Yu
2015-01-01
Objectives To characterize the microstructure and determine some mechanical properties of a polymer-ingfiltrated ceramic-network (PICN) material (Vita Enamic, Vita Zahnfabrik) available for CAD–CAM systems. Methods Specimens were fabricated to perform quantitative and qualitative analyses of the material’s microstructure and to determine the fracture toughness (KIc), density (ρ), Poisson’s ratio (v) and Young’s modulus (E). KIc was determined using V-notched specimens and the short beam toughness method, where bar-shaped specimens were notched and 3-point loaded to fracture. ρ was calculated using Archimedes principle, and v and E were measured using an ultrasonic thickness gauge with a combination of a pulse generator and an oscilloscope. Results Microstructural analyses showed a ceramic- and a polymer-based interpenetrating network. Mean and standard deviation values for the properties evaluated were: KIc = 1.09 ± 0.05 MPa m1/2, ρ = 2.09 ± 0.01 g/cm3, v = 0.23 ± 0.002 and E = 37.95 ± 0.34 GPa. Significance The PICN material showed mechanical properties between porcelains and resin-based composites, reflecting its microstructural components. PMID:24656471
NASA Astrophysics Data System (ADS)
Schneider, Daniel; Schoof, Ephraim; Tschukin, Oleg; Reiter, Andreas; Herrmann, Christoph; Schwab, Felix; Selzer, Michael; Nestler, Britta
2018-03-01
Computational models based on the phase-field method have become an essential tool in material science and physics in order to investigate materials with complex microstructures. The models typically operate on a mesoscopic length scale resolving structural changes of the material and provide valuable information about the evolution of microstructures and mechanical property relations. For many interesting and important phenomena, such as martensitic phase transformation, mechanical driving forces play an important role in the evolution of microstructures. In order to investigate such physical processes, an accurate calculation of the stresses and the strain energy in the transition region is indispensable. We recall a multiphase-field elasticity model based on the force balance and the Hadamard jump condition at the interface. We show the quantitative characteristics of the model by comparing the stresses, strains and configurational forces with theoretical predictions in two-phase cases and with results from sharp interface calculations in a multiphase case. As an application, we choose the martensitic phase transformation process in multigrain systems and demonstrate the influence of the local homogenization scheme within the transition regions on the resulting microstructures.
Nanostructure formation during accumulative roll bonding of commercial purity titanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karimi, Mohsen, E-mail: m.karimi@shahroodut.ac.ir
2016-12-15
In this investigation, commercial purity titanium (CP–Ti) was subjected to accumulative roll bonding (ARB) process up to 8 cycles (equivalent strain of 6.4) at the ambient temperature. Transmission electron microscopy (TEM) and X–ray diffraction line profile analysis (XRDLPA) were utilized to investigate the microstructure and grain size evolution. Both characterization techniques could clarify the non–uniform microstructure in the early stages and the uniform microstructure in the final stages of the process. The effectiveness of ARB for the fabrication of the nano–grained structure in CP–Ti was revealed. It was found that the SFE is not the only factor affecting grain refinement,more » as compared with other studies on ARB of FCC materials. Influence of other factors such as the melting temperature and the crystalline structure of the material was determined on the grain refinement. - Highlights: •Nano–grained commercial purity titanium was produced by accumulative roll bonding. •TEM and XRDLPA were used for the characterization of the microstructure. •Important factors affecting the grain size of ARBed materials were discussed.« less
Yan, Zhifeng; Wang, Denghui; Wang, Wenxian; Zhou, Jun; He, Xiuli; Dong, Peng; Zhang, Hongxia; Sun, Liyong
2018-03-28
In this paper, studies were conducted to investigate the deformation behavior and microstructure change in a hot-rolled AZ31B magnesium alloy during a tensile-tensile cyclic loading. The relationship between ratcheting effect and microstructure change was discussed. The ratcheting effect in the material during current tensile-tensile fatigue loading exceeds the material's fatigue limit and the development of ratcheting strain in the material experienced three stages: initial sharp increase stage (Stage I); steady stage (Stage II); and final abrupt increase stage (Stage III). Microstructure changes in Stage I and Stage II are mainly caused by activation of basal slip system. The Extra Geometrically Necessary Dislocations (GNDs) were also calculated to discuss the relationship between the dislocation caused by the basal slip system and the ratcheting strain during the cyclic loading. In Stage III, both the basal slip and the {11-20} twins are found active during the crack propagation. The fatigue crack initiation in the AZ31B magnesium alloy is found due to the basal slip and the {11-20} tensile twins.
NASA Astrophysics Data System (ADS)
Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.
2017-03-01
The additive manufacturing build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the postbuild microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4 precipitation hardened (SS17-4PH) is an industrially relevant alloy for applications requiring high strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5-mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively processed material than in the samples of the alloy in wrought form. This indicates that the additively processed material is more resistant to localized corrosion and pitting in this environment than is the wrought alloy. The results also suggest that after homogenization, the additively produced SS17-4 could be more resistant to pitting than the wrought SS17-4 is in an actual service environment.
Stoudt, M R; Ricker, R E; Lass, E A; Levine, L E
2017-03-01
The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment.
Stoudt, M. R.; Ricker, R. E.; Lass, E. A.; Levine, L. E.
2017-01-01
The additive manufacturing (AM) build process produces a segregated microstructure with significant variations in composition and phases that are uncommon in traditional wrought materials. As such, the relationship between the post-build microstructure and the corrosion resistance is not well understood. Stainless steel alloy 17-4PH is an industrially-relevant alloy for applications requiring high-strength and good corrosion resistance. A series of potentiodynamic scans conducted in a deaerated 0.5 mol/L NaCl solution evaluated the influence of these microstructural differences on the pitting behavior of SS17-4. The pitting potentials were found to be higher in the samples of additively-processed material than in samples of the alloy in wrought form. This indicates that the additively-processed material is more resistant to localized corrosion and pitting in this environment than the wrought alloy. The results also suggest that after homogenization, the additively-produced SS17-4 could be more resistant to pitting than wrought SS17-4 in an actual service environment. PMID:28757787
Magnetophoretic manipulation in microsystem using carbonyl iron-polydimethylsiloxane microstructures
Faivre, Magalie; Gelszinnis, Renaud; Degouttes, Jérôme; Terrier, Nicolas; Rivière, Charlotte; Ferrigno, Rosaria; Deman, Anne-Laure
2014-01-01
This paper reports the use of a recent composite material, noted hereafter i-PDMS, made of carbonyl iron microparticles mixed in a PolyDiMethylSiloxane (PDMS) matrix, for magnetophoretic functions such as capture and separation of magnetic species. We demonstrated that this composite which combine the advantages of both components, can locally generate high gradients of magnetic field when placed between two permanent magnets. After evaluating the magnetic susceptibility of the material as a function of the doping ratio, we investigated the molding resolution offered by i-PDMS to obtain microstructures of various sizes and shapes. Then, we implemented 500 μm i-PDMS microstructures in a microfluidic channel and studied the influence of flow rate on the deviation and trapping of superparamagnetic beads flowing at the neighborhood of the composite material. We characterized the attraction of the magnetic composite by measuring the distance from the i-PDMS microstructure, at which the beads are either deviated or captured. Finally, we demonstrated the interest of i-PDMS to perform magnetophoretic functions in microsystems for biological applications by performing capture of magnetically labeled cells. PMID:25332740
Effect of microstructure on static and dynamic mechanical properties of high strength steels
NASA Astrophysics Data System (ADS)
Qu, Jinbo
The high speed deformation behavior of a commercially available dual phase (DP) steel was studied by means of split Hopkinson bar apparatus in shear punch (25m/s) and tension (1000s-1) modes with an emphasis on the influence of microstructure. The cold rolled sheet material was subjected to a variety of heat treatment conditions to produce several different microstructures, namely ferrite plus pearlite, ferrite plus bainite and/or acicular ferrite, ferrite plus bainite and martensite, and ferrite plus different fractions of martensite. Static properties (0.01mm/s for shear punch and 0.001s -1 for tension) of all the microstructures were also measured by an MTS hydraulic machine and compared to the dynamic properties. The effects of low temperature tempering and bake hardening were investigated for some ferrite plus martensite microstructures. In addition, two other materials, composition designed as high strength low alloy (HSLA) steel and transformation induced plasticity (TRIP) steel, were heat treated and tested to study the effect of alloy chemistry on the microstructure and property relationship. A strong effect of microstructure on both static and dynamic properties and on the relationship between static and dynamic properties was observed. According to the variation of dynamic factor with static strength, three groups of microstructures with three distinct behaviors were identified, i.e. classic dual phase (ferrite plus less than 50% martensite), martensite-matrix dual phase (ferrite plus more than 50% martensite), and non-dual phase (ferrite plus non-martensite). Under the same static strength level, the dual phase microstructure was found to absorb more dynamic energy than other microstructures. It was also observed that the general dependence of microstructure on static and dynamic property relationship was not strongly influenced by chemical composition, except the ferrite plus martensite microstructures generated by the TRIP chemistry, which exhibited much better dynamic factor values. This may suggest that solid solution strengthening should be more utilized in the design of crashworthy dual phase steels.
Ciacci, Luca; Reck, Barbara K; Nassar, N T; Graedel, T E
2015-08-18
In some common uses metals are lost by intent-copper in brake pads, zinc in tires, and germanium in retained catalyst applications being examples. In other common uses, metals are incorporated into products in ways for which no viable recycling approaches exist, examples include selenium in colored glass and vanadium in pigments. To determine quantitatively the scope of these "losses by design", we have assessed the major uses of 56 metals and metalloids, assigning each use to one of three categories: in-use dissipation, currently unrecyclable when discarded, or potentially recyclable when discarded. In-use dissipation affects fewer than a dozen elements (including mercury and arsenic), but the spectrum of elements dissipated increases rapidly if applications from which they are currently unrecyclable are considered. In many cases the resulting dissipation rates are higher than 50%. Among others, specialty metals (e.g., gallium, indium, and thallium) and some heavy rare earth elements are representative of modern technology, and their loss provides a measure of the degree of unsustainability in the contemporary use of materials and products. Even where uses are currently compatible with recycling technologies and approaches, end of life recycling rates are in most cases well below those that are potentially achievable. The outcomes of this research provide guidance in identifying product design approaches for reducing material losses so as to increase element recovery at end-of-life.
NASA Astrophysics Data System (ADS)
Liang, Qizhen; Yao, Xuxia; Wang, Wei; Wong, C. P.
2012-02-01
Low operation temperature and efficient heat dissipation are important for device life and speed in current electronic and photonic technologies. Being ultra-high thermally conductive, graphene is a promising material candidate for heat dissipation improvement in devices. In the application, graphene is expected to be vertically stacked between contact solid surfaces in order to facilitate efficient heat dissipation and reduced interfacial thermal resistance across contact solid surfaces. However, as an ultra-thin membrane-like material, graphene is susceptible to Van der Waals forces and usually tends to be recumbent on substrates. Thereby, direct growth of vertically aligned free-standing graphene on solid substrates in large scale is difficult and rarely available in current studies, bringing significant barriers in graphene's application as thermal conductive media between joint solid surfaces. In this work, a three-dimensional vertically aligned multi-layer graphene architecture is constructed between contacted Silicon/Silicon surfaces with pure Indium as a metallic medium. Significantly higher equivalent thermal conductivity and lower contact thermal resistance of vertically aligned multilayer graphene are obtained, compared with those of their recumbent counterpart. This finding provides knowledge of vertically aligned graphene architectures, which may not only facilitate current demanding thermal management but also promote graphene's widespread applications such as electrodes for energy storage devices, polymeric anisotropic conductive adhesives, etc.
Dissipation of fragrance materials in sludge-amended soils.
DiFrancesco, Angela M; Chiu, Pei C; Standley, Laurel J; Allen, Herbert E; Salvito, Daniel T
2004-01-01
A possible removal mechanism for fragrance materials (FMs) in wastewater is adsorption to sludge, and sludge application to land may be a route through which FMs are released to the soil environment. However, little is known about the concentrations and fate of FMs in soil receiving sludge application. This study was conducted to better understand the dissipation of FMs in sludge-amended soils. We first determined the spiking and extraction efficiencies for 22 FMs in soil and leachate samples. Nine FMs were detected in digested sludges from two wastewater treatment plants in Delaware using these methods. We conducted a 1-year die-away experiment which involved four different soils amended with sludge, with and without spiking of the 22 FMs. The initial dissipation of FMs in all spiked trays was rapid, and only seven FMs remained at concentrations above the quantification limits after 3 months: AHTN, HHCB, musk ketone, musk xylene, acetyl cedrene, OTNE, and DPMI. After 1 year, the only FMs remaining in all spiked trays were musk ketone and AHTN. DPMI was the only FM that leached significantly from the spiked trays, and no FMs were detected in leachate from any unspiked tray. While soil organic matter content affected the dissipation rate in general, different mechanisms (volatilization, transformation, leaching) appeared to be important for different FMs.
Constitutive modelling of composite biopolymer networks.
Fallqvist, B; Kroon, M
2016-04-21
The mechanical behaviour of biopolymer networks is to a large extent determined at a microstructural level where the characteristics of individual filaments and the interactions between them determine the response at a macroscopic level. Phenomena such as viscoelasticity and strain-hardening followed by strain-softening are observed experimentally in these networks, often due to microstructural changes (such as filament sliding, rupture and cross-link debonding). Further, composite structures can also be formed with vastly different mechanical properties as compared to the individual networks. In this present paper, we present a constitutive model presented in a continuum framework aimed at capturing these effects. Special care is taken to formulate thermodynamically consistent evolution laws for dissipative effects. This model, incorporating possible anisotropic network properties, is based on a strain energy function, split into an isochoric and a volumetric part. Generalisation to three dimensions is performed by numerical integration over the unit sphere. Model predictions indicate that the constitutive model is well able to predict the elastic and viscoelastic response of biological networks, and to an extent also composite structures. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Fencheng; Mao, Yuqing; Lin, Xin; Zhou, Baosheng; Qian, Tao
2016-09-01
To improve the high temperature oxidation resistance of TA2 titanium alloy, a gradient Ni-Ti coating was laser cladded on the surface of the TA2 titanium alloy substrate, and the microstructure and oxidation behavior of the laser cladded coating were investigated experimentally. The gradient coating with a thickness of about 420-490 μm contains two different layers, e.g. a bright layer with coarse equiaxed grain and a dark layer with fine and columnar dendrites, and a transition layer with a thickness of about 10 μm exists between the substrate and the cladded coating. NiTi, NiTi2 and Ni3Ti intermetallic compounds are the main constructive phases of the laser cladded coating. The appearance of these phases enhances the microhardness, and the dense structure of the coating improves its oxidation resistance. The solidification procedure of the gradient coating is analyzed and different kinds of solidification processes occur due to the heat dissipation during the laser cladding process.
Materials Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRC's Additive Manufacturing roles and experimental findings will be presented.
Material Characterization of Additively Manufactured Components for Rocket Propulsion
NASA Technical Reports Server (NTRS)
Carter, Robert; Draper, Susan; Locci, Ivan; Lerch, Bradley; Ellis, David; Senick, Paul; Meyer, Michael; Free, James; Cooper, Ken; Jones, Zachary
2015-01-01
To advance Additive Manufacturing (AM) technologies for production of rocket propulsion components the NASA Glenn Research Center (GRC) is applying state of the art characterization techniques to interrogate microstructure and mechanical properties of AM materials and components at various steps in their processing. The materials being investigated for upper stage rocket engines include titanium, copper, and nickel alloys. Additive manufacturing processes include laser powder bed, electron beam powder bed, and electron beam wire fed processes. Various post build thermal treatments, including Hot Isostatic Pressure (HIP), have been studied to understand their influence on microstructure, mechanical properties, and build density. Micro-computed tomography, electron microscopy, and mechanical testing in relevant temperature environments has been performed to develop relationships between build quality, microstructure, and mechanical performance at temperature. A summary of GRCs Additive Manufacturing roles and experimental findings will be presented.
Scale effects in crystal plasticity
NASA Astrophysics Data System (ADS)
Padubidri Janardhanachar, Guruprasad
The goal of this research work is to further the understanding of crystal plasticity, particularly at reduced structural and material length scales. Fundamental understanding of plasticity is central to various challenges facing design and manufacturing of materials for structural and electronic device applications. The development of microstructurally tailored advanced metallic materials with enhanced mechanical properties that can withstand extremes in stress, strain, and temperature, will aid in increasing the efficiency of power generating systems by allowing them to work at higher temperatures and pressures. High specific strength materials can lead to low fuel consumption in transport vehicles. Experiments have shown that enhanced mechanical properties can be obtained in materials by constraining their size, microstructure (e.g. grain size), or both for various applications. For the successful design of these materials, it is necessary to have a thorough understanding of the influence of different length scales and evolving microstructure on the overall behavior. In this study, distinction is made between the effect of structural and material length scale on the mechanical behavior of materials. A length scale associated with an underlying physical mechanism influencing the mechanical behavior can overlap with either structural length scales or material length scales. If it overlaps with structural length scales, then the material is said to be dimensionally constrained. On the other hand, if it overlaps with material length scales, for example grain size, then the material is said to be microstructurally constrained. The objectives of this research work are: (1) to investigate scale and size effects due to dimensional constraints; (2) to investigate size effects due to microstructural constraints; and (3) to develop a size dependent hardening model through coarse graining of dislocation dynamics. A discrete dislocation dynamics (DDD) framework where the scale of analysis is intermediate between a fully discretized (e.g. atomistic) and fully continuum is used for this study. This mesoscale tool allows to address all the stated objectives of this study within a single framework. Within this framework, the effect of structural and the material length scales are naturally accounted for in the simulations and need not be specified in an ad hoc manner, as in some continuum models. It holds the promise of connecting the evolution of the defect microstructure to the effective response of the crystal. Further, it provides useful information to develop physically motivated continuum models to model size effects in materials. The contributions of this study are: (a) provides a new interpretation of mechanical size effect due to only dimensional constraint using DDD; (b) a development of an experimentally validated DDD simulation methodology to model Cu micropillars; (c) a coarse graining technique using DDD to develop a phenomenological model to capture size effect on strain hardening; and (d) a development of a DDD framework for polycrystals to investigate grain size effect on yield strength and strain hardening.
Liang, Steven Y.
2018-01-01
Microstructure images of metallic materials play a significant role in industrial applications. To address image degradation problem of metallic materials, a novel image restoration technique based on K-means singular value decomposition (KSVD) and smoothing penalty sparse representation (SPSR) algorithm is proposed in this work, the microstructure images of aluminum alloy 7075 (AA7075) material are used as examples. To begin with, to reflect the detail structure characteristics of the damaged image, the KSVD dictionary is introduced to substitute the traditional sparse transform basis (TSTB) for sparse representation. Then, due to the image restoration, modeling belongs to a highly underdetermined equation, and traditional sparse reconstruction methods may cause instability and obvious artifacts in the reconstructed images, especially reconstructed image with many smooth regions and the noise level is strong, thus the SPSR (here, q = 0.5) algorithm is designed to reconstruct the damaged image. The results of simulation and two practical cases demonstrate that the proposed method has superior performance compared with some state-of-the-art methods in terms of restoration performance factors and visual quality. Meanwhile, the grain size parameters and grain boundaries of microstructure image are discussed before and after they are restored by proposed method. PMID:29677163
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Bonacuse, Peter J.; Mital, Subodh K.
2012-01-01
To develop methods for quantifying the effects of the microstructural variations of woven ceramic matrix composites on the effective properties and response of the material, a research program has been undertaken which is described in this paper. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, CVI SiC/SiC, composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents and collect relevant statistics such as within ply tow spacing. This information was then used to build two dimensional finite element models that approximated the observed section geometry. With the aid of geometrical models generated by the microstructural characterization process, finite element models were generated and analyses were performed to quantify the effects of the microstructure and its variation on the effective stiffness and areas of stress concentration of the material. The results indicated that the geometry and distribution of the porosity appear to have significant effects on the through-thickness modulus. Similarly, stress concentrations on the outer surface of the composite appear to correlate to regions where the transverse tows are separated by a critical amount.
Baldenebro-Lopez, Francisco J.; Gomez-Esparza, Cynthia D.; Corral-Higuera, Ramon; Arredondo-Rea, Susana P.; Pellegrini-Cervantes, Manuel J.; Ledezma-Sillas, Jose E.; Martinez-Sanchez, Roberto; Herrera-Ramirez, Jose M.
2015-01-01
In this work, the mechanical properties and microstructural features of an AISI 304L stainless steel in two presentations, bulk and fibers, were systematically studied in order to establish the relationship among microstructure, mechanical properties, manufacturing process and effect on sample size. The microstructure was analyzed by XRD, SEM and TEM techniques. The strength, Young’s modulus and elongation of the samples were determined by tensile tests, while the hardness was measured by Vickers microhardness and nanoindentation tests. The materials have been observed to possess different mechanical and microstructural properties, which are compared and discussed. PMID:28787949
Effect of convection on the microstructure of the MnBi/Bi eutectic
NASA Technical Reports Server (NTRS)
Eisa, Gaber Faheem; Wilcox, william R.; Busch, Garrett
1986-01-01
For the quasi-regular fibrous microstructure of MnBi formed at freezing rates of 9 mm/h and above, good agreement between experimental and theoretical results for fiber spacing, freezing rate, radial position, and ampoule rotation rate is found. For the irregular blade-like microstructure formed at lower freezing rates, convection is found to coarsen the microstructure somwhat more than predicted. The volume fraction of MnBi was also shown to depend on ampoule rotation and radial position, even in the absence of ampoule rotation. The two-fold finer microstructure observed in space-processed material could not be explained by the elimination of buoyancy-driven natural convection.
Liquid-filled hollow core microstructured polymer optical fiber.
Cox, F M; Argyros, A; Large, M C J
2006-05-01
Guidance in a liquid core is possible with microstructured optical fibers, opening up many possibilities for chemical and biochemical fiber-optic sensing. In this work we demonstrate how the bandgaps of a hollow core microstructured polymer optical fiber scale with the refractive index of liquid introduced into the holes of the microstructure. Such a fiber is then filled with an aqueous solution of (-)-fructose, and the resulting optical rotation measured. Hence, we show that hollow core microstructured polymer optical fibers can be used for sensing, whilst also fabricating a chiral optical fiber based on material chirality, which has many applications in its own right.
Grindy, Scott C; Holten-Andersen, Niels
2017-06-07
Control over the viscoelastic mechanical properties of hydrogels intended for use as biomedical materials has long been a goal of soft matter scientists. Recent research has shown that materials made from polymers with reversibly associating transient crosslinks are a promising strategy for controlling viscoelasticity in hydrogels, for example leading to systems with precisely tunable mechanical energy-dissipation. We and others have shown that bio-inspired histidine:transition metal ion complexes allow highly precise and tunable control over the viscoelastic properties of transient network hydrogels. In this paper, we extend the design of these hydrogels such that their viscoelastic properties respond to longwave UV radiation. We show that careful selection of the histidine:transition metal ion crosslink mixtures allows unique control over pre- and post-UV viscoelastic properties. We anticipate that our strategy for controlling stimuli-responsive viscoelastic properties will aid biomedical materials scientists in the development of soft materials with specific stress-relaxing or energy-dissipating properties.
Dynamic impact indentation of hydrated biological tissues and tissue surrogate gels
NASA Astrophysics Data System (ADS)
Ilke Kalcioglu, Z.; Qu, Meng; Strawhecker, Kenneth E.; Shazly, Tarek; Edelman, Elazer; VanLandingham, Mark R.; Smith, James F.; Van Vliet, Krystyn J.
2011-03-01
For both materials engineering research and applied biomedicine, a growing need exists to quantify mechanical behaviour of tissues under defined hydration and loading conditions. In particular, characterisation under dynamic contact-loading conditions can enable quantitative predictions of deformation due to high rate 'impact' events typical of industrial accidents and ballistic insults. The impact indentation responses were examined of both hydrated tissues and candidate tissue surrogate materials. The goals of this work were to determine the mechanical response of fully hydrated soft tissues under defined dynamic loading conditions, and to identify design principles by which synthetic, air-stable polymers could mimic those responses. Soft tissues from two organs (liver and heart), a commercially available tissue surrogate gel (Perma-Gel™) and three styrenic block copolymer gels were investigated. Impact indentation enabled quantification of resistance to penetration and energy dissipative constants under the rates and energy densities of interest for tissue surrogate applications. These analyses indicated that the energy dissipation capacity under dynamic impact increased with increasing diblock concentration in the styrenic gels. Under the impact rates employed (2 mm/s to 20 mm/s, corresponding to approximate strain energy densities from 0.4 kJ/m3 to 20 kJ/m3), the energy dissipation capacities of fully hydrated soft tissues were ultimately well matched by a 50/50 triblock/diblock composition that is stable in ambient environments. More generally, the methodologies detailed here facilitate further optimisation of impact energy dissipation capacity of polymer-based tissue surrogate materials, either in air or in fluids.
Molecular friction dissipation and mode coupling in organic monolayers and polymer films.
Knorr, Daniel B; Widjaja, Peggy; Acton, Orb; Overney, René M
2011-03-14
The impact of thermally active molecular rotational and translational relaxation modes on the friction dissipation process involving smooth nano-asperity contacts has been studied by atomic force microscopy, using the widely known Eyring analysis and a recently introduced method, dubbed intrinsic friction analysis. Two distinctly different model systems, i.e., monolayers of octadecyl-phosphonic acid (ODPA) and thin films of poly(tert-butyl acrylate) (PtBA) were investigated regarding shear-rate critical dissipation phenomena originating from diverging mode coupling behaviors between the external shear perturbation and the internal molecular modes of relaxation. Rapidly (ODPA) versus slowly (PtBA) relaxing systems, in comparison to the sliding rate, revealed monotonous logarithmic and nonmonotonous spectral shear rate dependences, respectively. Shear coupled, enthalpic activation energies of 46 kJ∕mol for ODPA and of 35 and ∼65 kJ∕mol for PtBA (below and above the glass transition) were found that could be attributed to intrinsic modes of relaxations. Also, entropic energies involved in the cooperative backbone mobility of PtBA could be quantified, dwarfing the activation energy by more than a factor of five. This study provides (i) a material specific understanding of the molecular scale dissipation process in shear compliant substances, (ii) analyses of material intrinsic shear-rate mode coupling, shear coordination and energetics, (iii) a verification of Eyring's model applied to tribological systems toward material intrinsic specificity, and (iv) a valuable extension of the Eyring analysis for complex macromolecular systems that are slowly relaxing, and thus, exhibit shear-rate mode coupling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grady, Dennis E.
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition inmore » solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.« less
A damage analysis for brittle materials using stochastic micro-structural information
NASA Astrophysics Data System (ADS)
Lin, Shih-Po; Chen, Jiun-Shyan; Liang, Shixue
2016-03-01
In this work, a micro-crack informed stochastic damage analysis is performed to consider the failures of material with stochastic microstructure. The derivation of the damage evolution law is based on the Helmholtz free energy equivalence between cracked microstructure and homogenized continuum. The damage model is constructed under the stochastic representative volume element (SRVE) framework. The characteristics of SRVE used in the construction of the stochastic damage model have been investigated based on the principle of the minimum potential energy. The mesh dependency issue has been addressed by introducing a scaling law into the damage evolution equation. The proposed methods are then validated through the comparison between numerical simulations and experimental observations of a high strength concrete. It is observed that the standard deviation of porosity in the microstructures has stronger effect on the damage states and the peak stresses than its effect on the Young's and shear moduli in the macro-scale responses.
Topological Optimization of Artificial Microstructure Strategies
2015-04-02
a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength (>1000 MPa...Research Triangle Park, NC 27709-2211 materials, cellular structures, metallic glass REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S...demonstrate a 3D microstructural architecture structure made from bulk metallic glass , 3DMGS, exhibiting a combination of ceramic-like high strength
Energy Dissipating Devices in Falling Rock Protection Barriers
NASA Astrophysics Data System (ADS)
Castanon-Jano, L.; Blanco-Fernandez, E.; Castro-Fresno, D.; Ballester-Muñoz, F.
2017-03-01
Rockfall is a phenomenon which, when uncontrolled, may cause extensive material damage and personal injury. One of the structures used to avoid accidents caused by debris flows or rockfalls is flexible barriers. The energy dissipating devices which absorb the energy generated by rock impact and reduce the mechanical stresses in the rest of the elements of the structure are an essential part of these kinds of structures. This document proposes an overview of the performance of energy dissipating devices, as well as of the role that they fulfil in the barrier. Furthermore, a compilation and a description of the dissipating elements found in the literature are proposed. Additionally, an analysis has been performed of the aspects taken into account in the design, such as experimental (quasi-static and dynamic) tests observing the variation of the behaviour curve depending on the test speed and numerical simulations by means of several finite element software packages.
NASA Technical Reports Server (NTRS)
Powers, William O.
1987-01-01
A study of reduced chromium content in a nickel base superalloy via element substitution and rapid solidification processing was performed. The two elements used as partial substitutes for chromium were Si and Zr. The microstructure of conventionally solidified materials was characterized using microscopy techniques. These alloys were rapidly solidified using the chill block melt spinning technique and the rapidly solidified microstructures were characterized using electron microscopy. The spinning technique and the rapidly solidified microstructures was assessed following heat treatments at 1033 and 1272 K. Rapidly solidified material of three alloys was reduced to particulate form and consolidated using hot isostatic pressing (HIP). The consolidated materials were also characterized using microscopy techniques. In order to evaluate the relative strengths of the consolidated alloys, compression tests were performed at room temperature and 1033 K on samples of as-HIPed and HIPed plus solution treated material. Yield strength, porosity, and oxidation resistance characteristics are given and compared.
Compact forced simple-shear sample for studying shear localization in materials
Gray, George Thompson; Vecchio, K. S.; Livescu, Veronica
2015-11-06
In this paper, a new specimen geometry, the compact forced-simple-shear specimen (CFSS), has been developed as a means to achieve simple shear testing of materials over a range of temperatures and strain rates. The stress and strain state in the gage section is designed to produce essentially “pure” simple shear, mode II in-plane shear, in a compact-sample geometry. The 2-D plane of shear can be directly aligned along specified directional aspects of a material's microstructure of interest; i.e., systematic shear loading parallel, at 45°, and orthogonal to anisotropic microstructural features in a material such as the pancake-shaped grains typical inmore » many rolled structural metals, or to specified directions in fiber-reinforced composites. Finally, the shear-stress shear-strain response and the damage evolution parallel and orthogonal to the pancake grain morphology in 7039-Al are shown to vary significantly as a function of orientation to the microstructure.« less
Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...
2015-03-02
Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less
NASA Technical Reports Server (NTRS)
Pickering, Michael A.; Taylor, Raymond L.; Goela, Jitendra S.; Desai, Hemant D.
1992-01-01
Subatmospheric pressure CVD processes have been developed to produce theoretically dense, highly pure, void-free and large area bulk materials, SiC, Si, ZnSe, ZnS and ZnS(x)Se(1-x). These materials are used for optical elements, such as mirrors, lenses and windows, over a wide spectral range from the VUV to the IR. We discuss the effect of CVD process conditions on the microstructure and properties of these materials, with emphasis on optical performance. In addition, we discuss the effect of chemical composition on the properties of the composite material ZnS(x)Se(1-x). We first present a general overview of the bulk CVD process and the relationship between process conditions, such as temperature, pressure, reactant gas concentration and growth rate, and the microstructure, morphology and properties of CVD-grown materials. Then we discuss specific results for CVD-grown SiC, Si, ZnSe, ZnS and ZnS(x)Se(1-x).
Johnson, Oliver K.; Kurniawan, Christian
2018-02-03
Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Oliver K.; Kurniawan, Christian
Properties closures delineate the theoretical objective space for materials design problems, allowing designers to make informed trade-offs between competing constraints and target properties. In this paper, we present a new algorithm called hierarchical simplex sampling (HSS) that approximates properties closures more efficiently and faithfully than traditional optimization based approaches. By construction, HSS generates samples of microstructure statistics that span the corresponding microstructure hull. As a result, we also find that HSS can be coupled with synthetic polycrystal generation software to generate diverse sets of microstructures for subsequent mesoscale simulations. Finally, by more broadly sampling the space of possible microstructures, itmore » is anticipated that such diverse microstructure sets will expand our understanding of the influence of microstructure on macroscale effective properties and inform the construction of higher-fidelity mesoscale structure-property models.« less
Koenig, J; Winkler, M; Dankwort, T; Hansen, A-L; Pernau, H-F; Duppel, V; Jaegle, M; Bartholomé, K; Kienle, L; Bensch, W
2015-02-14
Here we report for the first time on a complete simulation assisted "material to module" development of a high performance thermoelectric generator (TEG) based on the combination of a phase change material and established thermoelectrics yielding the compositions (1 - x)(GeTe) x(Bi(2)Se(0.2)Te(2.8)). For the generator design our approach for benchmarking thermoelectric materials is demonstrated which is not restricted to the determination of the intrinsically imprecise ZT value but includes the implementation of the material into a TEG. This approach is enabling a much more reliable benchmarking of thermoelectric materials for TEG application. Furthermore we analyzed the microstructure and performance close to in-operandi conditions for two different compositions in order to demonstrate the sensitivity of the material against processing and thermal cycling. For x = 0.038 the microstructure of the as-prepared material remains unchanged, consequently, excellent and stable thermoelectric performance as prerequisites for TEG production was obtained. For x = 0.063 we observed strain phenomena for the pristine state which are released by the formation of planar defects after thermal cycling. Consequently the thermoelectric performance degrades significantly. These findings highlight a complication for deriving the correlation of microstructure and properties of thermoelectric materials in general.
NASA Technical Reports Server (NTRS)
Fischbach, D. B.; Uptegrove, D. R.; Srinivasagopalan, S.
1974-01-01
The microstructure and some microstructural effects of oxidation have been investigated for laminar carbon fiber cloth/cloth binder matrix composite materials. It was found that cloth wave is important in determining the macrostructure of the composites X-ray diffraction analysis showed that the composites were more graphitic than the constituent fiber phases, indicating a graphitic binder matrix phase. Various tests which were conducted to investigate specific properties of the material are described. It was learned that under the moderate temperature and oxidant flow conditions studied, C-700, 730 materials exhibit superior oxidation resistance primarily because of the inhibiting influence of the graphitized binder matrix.
NASA Astrophysics Data System (ADS)
Chang, Tien-Chan; Fuh, Yiin-Kuen; Lu, Hong-Yi; Tu, Sheng-Xun
2016-06-01
The thermal management of the inverter system is of great importance since very high voltage/current will be switched intermittently and/or continuously and high temperature is excruciably detrimental to the service life of electronics, especially for the switching devices such as insulated gate bipolar transistor (IGBT). In this study, a newly developed dual bi-directional IGBT-based inverter in conjunction with autonomous microgrid system is investigated with particular focus on the thermal management and performance evaluation under various operation conditions. Locally enhanced heat transfer approach such as oblique orientation and heat dissipating materials are experimentally investigated. The studied inverter system is initially packaged by a galvanized steel plate (size 62 × 48 × 18 cm) and the switching power is set in the range of 0.5-3 kW. The module is operated at the switching and pulse frequencies of 60 Hz and 20 kHz, respectively. The adoption of heat dissipating material in either paste or film form had experimentally shown to possess the flexibility tailoring heat transfer performance locally. Experimental studies of heat dissipating film with various hotspot scenarios showed that the temperature difference can be appreciably reduced as much as 13.1 and 15.4 °C, respectively with facilitation of one- and two-layers of heat dissipating film. From the measurement results, the measured peak temperature is highly dominated by the thickness of heat dissipating film, showing the dominance of thickness-dependent thermal resistance and resultant heat accumulation phenomena.
Evolution of microstructural disorder in annealed bismuth telluride nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham
Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less
Evolution of microstructural disorder in annealed bismuth telluride nanowires
Erickson, Kristopher J.; Limmer, Steven J.; Yelton, W. Graham; ...
2017-03-01
Controlling the distribution of structural defects in nanostructures is important since such defects can strongly affect critical properties, including thermal and electronic transport. However, characterizing the defect arrangements in individual nanostructures is difficult because of the small length scales involved. Here, we investigate the evolution of microstructural disorder with annealing in electrochemically deposited Bi2Te3 nanowires, which are of interest for thermoelectrics. We combine Convergent Beam Electron Diffraction (CBED) and Scanning Transmission Electron Microscopy (STEM) to provide the necessary spatial and orientational resolution. We find that despite their large initial grain sizes and strong Formula crystallographic texturing, the as-deposited nanowires stillmore » exhibit significant intragranular orientational disorder. Annealing drives both grain growth and a significant reduction in the intragranular disorder. The results are discussed in the context of the existing understanding of the initial microstructure of electrodeposited materials and the understanding of annealing microstructures in both electrochemically deposited and bulk-deformed materials. Finally, this analysis highlights the importance of assessing both the grain size and intragranular disorder in understanding the microstructural evolution of individual nanostructures.« less
Modeling of the flow behavior of SAE 8620H combing microstructure evolution in hot forming
NASA Astrophysics Data System (ADS)
Fu, Xiaobin; Wang, Baoyu; Tang, Xuefeng
2017-10-01
With the development of net-shape forming technology, hot forming process is widely applied to manufacturing gear parts, during which, materials suffer severe plastic distortion and microstructure changes continually. In this paper, to understand and model the flow behavior and microstructure evolution, SAE 8620H, a widely used gear steel, is selected as the object and the flow behavior and microstructure evolution are observed by an isothermal hot compression tests at 1273-1373 K with a strain rate of 0.1-10 s-1. Depending on the results of the compression test, a set of internal-state-variable based unified constitutive equations is put forward to describe the flow behavior and microstructure evaluation of SAE 8620H. Moreover, the evaluation of the dislocation density and the fraction of dynamic recrystallization based on the theory of thermal activation is modeled and reincorporated into the constitutive law. The material parameters in the constitutive model are calculated based on the measured flow stress and dynamic recrystallization fraction. The predicted flow stress under different deformation conditions has a good agreement with the measured results.
Computational Design for Multifunctional Microstructural Composites
NASA Astrophysics Data System (ADS)
Chen, Yuhang; Zhou, Shiwei; Li, Qing
As an important class of natural and engineered materials, periodic microstructural composites have drawn substantial attention from the material research community for their excellent flexibility in tailoring various desirable physical behaviors. To develop periodic cellular composites for multifunctional applications, this paper presents a unified design framework for combining stiffness and a range of physical properties governed by quasi-harmonic partial differential equations. A multiphase microstructural configuration is sought within a periodic base-cell design domain using topology optimization. To deal with conflicting properties, e.g. conductivity/permeability versus bulk modulus, the optimum is sought in a Pareto sense. Illustrative examples demonstrate the capability of the presented procedure for the design of multiphysical composites and tissue scaffolds.
NASA Astrophysics Data System (ADS)
Monti, Cosimo; Giorgetti, Alessandro; Tognarelli, Leonardo; Mastromatteo, Francesco
2018-05-01
The scope of this work is to show the effects of multiple applications of a rejuvenation treatment studied for IN-738 on both the microstructure and the mechanical properties of the creep-damaged superalloy and to check the recovery obtained after one and two rejuvenation cycles through creep and tensile tests, whose results will be compared with the performance of the virgin material. This work will show that this rejuvenation treatment is able to recover the microstructure of creep-damaged specimens after one and two applications and that the mechanical properties of the rejuvenated alloy are very similar to the virgin material even after two rejuvenation cycles.
Della Bona, Alvaro
2005-03-01
The appeal of ceramics as structural dental materials is based on their light weight, high hardness values, chemical inertness, and anticipated unique tribological characteristics. A major goal of current ceramic research and development is to produce tough, strong ceramics that can provide reliable performance in dental applications. Quantifying microstructural parameters is important to develop structure/property relationships. Quantitative microstructural analysis provides an association among the constitution, physical properties, and structural characteristics of materials. Structural reliability of dental ceramics is a major factor in the clinical success of ceramic restorations. Complex stress distributions are present in most practical conditions and strength data alone cannot be directly extrapolated to predict structural performance.
Effect of microstructure on the detonation initiation in energetic materials
NASA Astrophysics Data System (ADS)
Zhang, J.; Jackson, T. L.
2017-12-01
In this work we examine the role of the microstructure on detonation initiation of energetic materials. We solve the reactive Euler equations, with the energy equation augmented by a power deposition term. The deposition term is based on simulations of void collapse at the microscale, modeled at the mesoscale as hot-spots, while the reaction rate at the mesoscale is modeled using density-based kinetics. We carry out two-dimensional simulations of random packs of HMX crystals in a binder. We show that mean particle size, size distribution, and particle shape have a major effect on the transition between detonation and no-detonation, thus highlighting the importance of the microstructure for shock-induced initiation.
Ultrasonic nondestructive materials characterization
NASA Technical Reports Server (NTRS)
Green, R. E., Jr.
1986-01-01
A brief review of ultrasonic wave propagation in solid materials is presented with consideration of the altered behavior in anisotropic and nonlinear elastic materials in comparison with isotropic and linear elastic materials. Some experimental results are described in which ultrasonic velocity and attenuation measurements give insight into materials microstructure and associated mechanical properties. Recent developments with laser beam non-contact generation and detection of ultrasound are presented. The results of several years of experimental measurements using high-power ultrasound are discussed, which provide substantial evidence of the inability of presently accepted theories to fully explain the interaction of ultrasound with solid materials. Finally, a special synchrotron X-ray topographic system is described which affords the possibility of observing direct interaction of ultrasonic waves with the microstructural features of real crystalline solid materials for the first time.
NASA Astrophysics Data System (ADS)
Ravi, Sathish Kumar; Gawad, Jerzy; Seefeldt, Marc; Van Bael, Albert; Roose, Dirk
2017-10-01
A numerical multi-scale model is being developed to predict the anisotropic macroscopic material response of multi-phase steel. The embedded microstructure is given by a meso-scale Representative Volume Element (RVE), which holds the most relevant features like phase distribution, grain orientation, morphology etc., in sufficient detail to describe the multi-phase behavior of the material. A Finite Element (FE) mesh of the RVE is constructed using statistical information from individual phases such as grain size distribution and ODF. The material response of the RVE is obtained for selected loading/deformation modes through numerical FE simulations in Abaqus. For the elasto-plastic response of the individual grains, single crystal plasticity based plastic potential functions are proposed as Abaqus material definitions. The plastic potential functions are derived using the Facet method for individual phases in the microstructure at the level of single grains. The proposed method is a new modeling framework and the results presented in terms of macroscopic flow curves are based on the building blocks of the approach, while the model would eventually facilitate the construction of an anisotropic yield locus of the underlying multi-phase microstructure derived from a crystal plasticity based framework.
Petrovič, Darja Steiner; Šturm, Roman; Naglič, Iztok; Markoli, Boštjan; Pepelnjak, Tomaž
2016-01-01
The development of advanced materials and technologies based on magnetocaloric Gd and its compounds requires an understanding of the dependency of mechanical properties on their underlying microstructure. Therefore, the aim of the study was to characterize microstructural inhomogeneities in the gadolinium that can be used in magnetocaloric refrigeration systems. Microstructures of magnetocaloric gadolinium cylinders were investigated by light microscopy and FE-SEM (Field Emission Scanning Electron Microscopy), EDS (Energy-dispersive X-ray Spectroscopy), and BSE (Back-scattered Electrons) in both the extrusion and the extrusion-transversal directions. XRD (X-ray Diffraction) analyses were performed to reveal the presence of calcium- and fluorine-based compounds. Metallographic characterization showed an oxidized and inhomogeneous microstructure of the cross-sections. The edges and the outer parts of the cylinders were oxidized more intensively on the surfaces directly exposed to the processing tools. Moreover, a significant morphological anisotropy of the non-metallic inclusions was observed. CaF inclusions act as active nucleation sites for internal oxidation. The non-metallic, Ca- and F-containing inclusions can be classified as complex calciumoxyfluorides. The solubility of Er and Yb in the CaF was negligible compared to the Gd matrix and/or the oxide phase. Lower mechanical properties of the material are a consequence of the lower structural integrity due to selective oxidation of surfaces and interfaces. PMID:28773502
NASA Astrophysics Data System (ADS)
Banai, Rona Elinor
Herzenbergite tin (II) monosulfide (alpha-SnS) is of growing interest as a photovoltaic material because of its interesting optoelectronic properties and Earth abundance. It has several stable phases due to the dual valency of tin. As a layered material, alpha-SnS has the ability to form varying microstructure with differing properties. For this dissertation, films were RF sputtered from a SnS and SnS2 target to produce films with varying microstructure. Growth of high energy phases includin beta-SnS and amorphous SnS2 were possible through sputtering. Films of mixed or strained phase resulted from both targets. Pure phase alpha-SnS was made by annealing amorphous SnS2 films. Microstructure was measured using grazing incidence XRD and field emission SEM. The impact of microstructure was seen for both optical and electronic properties. Films were evaluated using spectroscopic ellipsometry as well as unpolarized UV-Vis transmission and reflection measurements. Optical modeling of the films is sufficient for developing models corresponding to specific microstructure, enabling it to be an inexpensive tool for studying the material. Absorption coefficient and band gap were also derived for these films. Films deposited with the SnS target had resistivity values up to 20,000 O-cm. Annealing of amorphous films deposited from the SnS2 target resulted in alpha-SnS films with much lower resistivity (<50 O-cm) values. This method for producing alpha-SnS offered better control of the phase, microstructure and therefore optoelectronic properties. While SnS films made from either target were typically p-type, sputtering of the SnS2 target with substrate heating resulted in n-type SnSx of a potentially new phase similar to SnS2 but with a 2:3 tin-to-sulfur ratio. Resistivity of those films typically ranged from 1 to 40 O-cm. Both p- and n-type films made from the SnS2 target had high carrier concentration of 10 17 to 1020 cm-3, but films had low Hall mobility such that conductivity type was not determined. Titanium, molybdenum, and aluminum contacts were tested for Ohmic and Schottky behavior using transmission line measurements. The complexity of its microstructure and flexibility in formation of varying phase and altered phase presents challenges to its use as a PV absorber.
NASA Astrophysics Data System (ADS)
Hwang, Stephen
Combustion synthesis (CS) is an attractive method for producing advanced materials, including ceramics, intermetallics, and composites. In this process, after initiation by an external heat source, a highly exothermic reaction propagates through the sample in a self-sustained combustion wave. The process offers the possibility of producing materials with novel structures and properties. At conventional magnifications and imaging rates, the combustion wave appears to propagate in a planar, steady manner. However, using higher magnifications (>400X) and imaging rates (1000 frames/sec), fluctuations in the shape and propagation of the combustion front were observed. These variations in local conditions (i.e., the microstructure of the combustion wave) can influence the microstructure and properties of materials produced by combustion synthesis. In this work, the microstructure of wave propagation during combustion synthesis is investigated experimentally and theoretically. Using microscopic high-speed imaging, the spatial and temporal fluctuations of the combustion front shape and propagation were investigated. New image analysis methods were developed to characterize the heterogeneity of the combustion front quantitatively. The initial organization of the reaction medium was found to affect the heterogeneity of the combustion wave. Moreover, at the microscopic level, two different regimes of combustion propagation were observed. In the quasihomogeneous mechanism, the microstructure of the combustion wave resembles what is viewed macroscopically, and steady, planar propagation is observed. In the relay-race mechanism, while planar at the macroscopic level, the combustion front profiles are irregularly shaped, with arc-shaped convexities and concavities at the microscopic level. Also, the reaction front propagates as a series of rapid jumps and hesitations. Based on the combustion wave microstructure, new criteria were developed to determine the boundaries between quasihomogeneous and relay-race mechanisms, as functions of the initial organization of the reaction medium (i.e. particle size and porosity). In conjunction with the experiments, a microheterogeneous cell model was developed that simulates the local propagation of the combustion wave. Accounting for the stochastically organized medium with non-uniform properties, calculated results for the microstructural parameters of the combustion wave, and their dependence on density and reactant particle size, were in good qualitative agreement with experimental data.
Hidden contributions of the enamel rods on the fracture resistance of human teeth.
Yahyazadehfar, M; Bajaj, Devendra; Arola, Dwayne D
2013-01-01
The enamel of human teeth is generally regarded as a brittle material with low fracture toughness. Consequently, the contributions of this tissue in resisting tooth fracture and the importance of its complex microstructure have been largely overlooked. In this study an experimental evaluation of the crack growth resistance of human enamel was conducted to characterize the role of rod (i.e. prism) orientation and degree of decussation on the fracture behavior of this tissue. Incremental crack growth was achieved in-plane, with the rods in directions longitudinal or transverse to their axes. Results showed that the fracture resistance of enamel is both inhomogeneous and spatially anisotropic. Cracks extending transverse to the rods in the outer enamel undergo a lower rise in toughness with extension, and achieve significantly lower fracture resistance than in the longitudinal direction. Though cracks initiating at the surface of teeth may begin extension towards the dentin-enamel junction, they are deflected by the decussated rods and continue growth about the tooth's periphery, transverse to the rods in the outer enamel. This process facilitates dissipation of fracture energy and averts cracks from extending towards the dentin and vital pulp. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Seo, Dong Seok; Lee, Jong Kook; Hwang, Kyu Hong; Hahn, Byung Dong; Yoon, Seog Young
2015-08-01
Three types of raw materials were used for the fabrication of hydroxyapatite coatings by using the room temperature spraying method and their influence on the microstructure and in vitro characteristics were investigated. Starting hydroxyapatite powders for coatings on titanium substrate were prepared by a heat treatment at 1100 °C for 2 h of bovine bone, bone ash, and commercial hydroxyapatite powders. The phase compositions and Ca/P ratios of the three hydroxyapatite coatings were similar to those of the raw materials without decomposition or formation of a new phase. All hydroxyapatite coatings showed a honeycomb structure, but their surface microstructures revealed different features in regards to surface morphology and roughness, based on the staring materials. All coatings consisted of nano-sized grains and had dense microstructure. Inferred from in vitro experiments in pure water, all coatings have a good dissolution-resistance and biostability in water.
NASA Technical Reports Server (NTRS)
Balckburn, Linda B.
1987-01-01
A study was undertaken to determine the mechanical properties and microstructures resulting from Liquid Interface Diffusion (LID -Registered) processing of foil-gauge specimens of Ti-6Al-4V and Ti-6Al-2Sn-4Zr-2Mo coated with varying amounts of LID material. In addition, the effects of various elevated temperature exposures on the concentration profiles of the LID alloying elements were investigated, using specimens with a narrow strip of LID material applied to the surface. Room and elevated temperature tensile properties were determined for both coated and uncoated specimens. Optical microscopy was used to examine alloy microstructures, and scanning electron microscopy to examine fracture surface morphologies. The chemical concentration profiles of the strip-coated specimens were determined with an electron microprobe.
Bufford, Daniel C.; Wang, Morris; Liu, Yue; ...
2016-04-01
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less
NASA Astrophysics Data System (ADS)
Zhao, Jianfeng; Zhang, Xu; Konstantinidis, Avraam A.; Kang, Guozheng
2015-06-01
The internal length is the governing parameter in strain gradient theories which among other things have been used successfully to interpret size effects at the microscale. Physically, the internal length is supposed to be related with the microstructure of the material and evolves during the deformation. Based on Taylor hardening law, we propose a power-law relationship to describe the evolution of the variable internal length with strain. Then, the classical Fleck-Hutchinson strain gradient theory is extended with a strain-dependent internal length, and the generalized Fleck-Hutchinson theory is confirmed here, by comparing our model predictions to recent experimental data on tension and torsion of thin wires with varying diameter and grain size. Our work suggests that the internal length is a configuration-dependent parameter, closely related to dislocation characteristics and grain size, as well as sample geometry when this affects either the underlying microstructure or the ductility of the material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bufford, Daniel C.; Wang, Morris; Liu, Yue
The remarkable properties of nanotwinned (NT) face-centered-cubic (fcc) metals arise directly from twin boundaries, the structures of which can be initially determined by growth twinning during the deposition process. When we understand the synthesis process and its relation to the resulting microstructure, and ultimately to material properties, we realize how key it is to understanding and utilizing these materials. Furthermore, our article presents recent studies on electrodeposition and sputtering methods that produce a high density of nanoscale growth twins in fcc metals. Nanoscale growth twins tend to form spontaneously in monolithic and alloyed fcc metals with lower stacking-fault energies, whilemore » engineered approaches are necessary for fcc metals with higher stacking-fault energies. Finally, growth defects and other microstructural features that influence nanotwin behavior and stability are introduced here, and future challenges in fabricating NT materials are highlighted.« less
Modeling the microstructure of surface by applying BRDF function
NASA Astrophysics Data System (ADS)
Plachta, Kamil
2017-06-01
The paper presents the modeling of surface microstructure using a bidirectional reflectance distribution function. This function contains full information about the reflectance properties of the flat surfaces - it is possible to determine the share of the specular, directional and diffuse components in the reflected luminous stream. The software is based on the authorial algorithm that uses selected elements of this function models, which allows to determine the share of each component. Basing on obtained data, the surface microstructure of each material can be modeled, which allows to determine the properties of this materials. The concentrator directs the reflected solar radiation onto the photovoltaic surface, increasing, at the same time, the value of the incident luminous stream. The paper presents an analysis of selected materials that can be used to construct the solar concentrator system. The use of concentrator increases the power output of the photovoltaic system by up to 17% as compared to the standard solution.
Effect of Interface Structure on the Microstructural Evolution of Ceramics
2007-11-06
because almost all the material properties are de - pendent upon their internal microstructures. Therefore, the microstructural evolution during the...growing interface de - pends upon the density of kinks on that interface. It fol- lows that the atomically smooth interface, which is char- acterized by...grain, and its de - tailed coarsening process has been treated elsewhere.139 During liquid-phase sintering, the formation of grain boundaries between
Zhang, Guang; Jiang, Shaohui; Yao, Wei; Liu, Changhong
2016-11-16
Owing to the outstanding properties of thermal conduction, lightweight, and chemical durability, carbon nanotubes (CNTs) have revealed promising applications in thermal management materials. Meanwhile, the increasingly popular portable electronics and the rapid development of space technology need lighter weight, smaller size, and more effective thermal management devices. Here, a novel kind of heat dissipation devices based on the superaligned CNT films and underlying microchannels is proposed, and the heat dissipation properties are measured at the natural condition. Distinctive from previous studies, by combining the advantages of microchannels and CNTs, such a novel heat dissipation device enables superior natural convection heat transfer properties. Our findings prove that the novel CNT-based devices could show an 86.6% larger total natural heat dissipation properties than bare copper plate. Further calculations of the radiation and natural convection heat transfer properties demonstrate that the excellent passive cooling properties of these CNT-based devices are primarily caused by the reinforcement of the natural convection heat transfer properties. Furthermore, the heat dissipation mechanisms are briefly discussed, and we propose that the very high heat transfer coefficients and the porous structures of superaligned CNT films play critical roles in reinforcing the natural convection. The novel CNT-based heat dissipation devices also have advantages of energy-saving, free-noise, and without additional accessories. So we believe that the CNT-based heat dissipation devices would replace the traditional metal-finned heat dissipation devices and have promising applications in electronic devices, such as photovoltaic devices, portable electronic devices, and electronic displays.
Investigation of microstructural alterations in M50 and 52100 steel using nanoindentation
NASA Astrophysics Data System (ADS)
Paulson, Kristin R.
Bearing steels are used in rolling elements and are designed to withstand heavy loads for an extended period of time. At the end of life, microstructural alterations within the material have been observed and are linked to failure. In this study, a three ball-on-rod fatigue tester was used to test M50 and 52100 steel cylindrical rods at differing loads of 4.0 GPa, 4.5 GPa, and 5.0 GPa and in lubricated and unlubricated conditions to 108 cycles in an attempt to produce microstructural alterations. Microstructural alterations characterized as butterflies were observed and investigated further in two M50 samples that were tested at 4.5 GPa to 10 8 cycles in the lubricated and unlubricated condition. Microstructural alterations characterized as dark etching regions (DER), and white etching bands (WEBs) were not observed. Additionally, hardness was investigated cross sectionally as a function of depth and location within the wear track produced by the fatigue test. No conclusive evidence was derived from the hardness measurements as a function of depth in relation to the formation of microstructural alterations or the stress experienced subsurface within the material. Hardness measurements performed specifically within a butterfly wing, however, returned hardness values significantly higher than the matrix hardness values.
Modeling the Homogenization Kinetics of As-Cast U-10wt% Mo alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Zhijie; Joshi, Vineet; Hu, Shenyang Y.
2016-01-15
Low-enriched U-22at% Mo (U-10Mo) alloy has been considered as an alternative material to replace the highly enriched fuels in research reactors. For the U-10Mo to work effectively and replace the existing fuel material, a thorough understanding of the microstructure development from as-cast to the final formed structure is required. The as-cast microstructure typically resembles an inhomogeneous microstructure with regions containing molybdenum-rich and -lean regions, which may affect the processing and possibly the in-reactor performance. This as-cast structure must be homogenized by thermal treatment to produce a uniform Mo distribution. The development of a modeling capability will improve the understanding ofmore » the effect of initial microstructures on the Mo homogenization kinetics. In the current work, we investigated the effect of as-cast microstructure on the homogenization kinetics. The kinetics of the homogenization was modeled based on a rigorous algorithm that relates the line scan data of Mo concentration to the gray scale in energy dispersive spectroscopy images, which was used to generate a reconstructed Mo concentration map. The map was then used as realistic microstructure input for physics-based homogenization models, where the entire homogenization kinetics can be simulated and validated against the available experiment data at different homogenization times and temperatures.« less
Microstructure-based approach for predicting crack initiation and early growth in metals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cox, James V.; Emery, John M.; Brewer, Luke N.
2009-09-01
Fatigue cracking in metals has been and is an area of great importance to the science and technology of structural materials for quite some time. The earliest stages of fatigue crack nucleation and growth are dominated by the microstructure and yet few models are able to predict the fatigue behavior during these stages because of a lack of microstructural physics in the models. This program has developed several new simulation tools to increase the microstructural physics available for fatigue prediction. In addition, this program has extended and developed microscale experimental methods to allow the validation of new microstructural models formore » deformation in metals. We have applied these developments to fatigue experiments in metals where the microstructure has been intentionally varied.« less
Microstructure characterization via stereological relations — A shortcut for beginners
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pabst, Willi, E-mail: pabstw@vscht.cz; Gregorová, Eva; Uhlířová, Tereza
Stereological relations that can be routinely applied for the quantitative characterization of microstructures of heterogeneous single- and two-phase materials via global microstructural descriptors are reviewed. It is shown that in the case of dense, single-phase polycrystalline materials (e.g., transparent yttrium aluminum garnet ceramics) two quantities have to be determined, the interface density (or, equivalently, the mean chord length of the grains) and the mean curvature integral density (or, equivalently, the Jeffries grain size), while for two-phase materials (e.g., highly porous, cellular alumina ceramics), one additional quantity, the volume fraction (porosity), is required. The Delesse–Rosiwal law is recalled and size measuresmore » are discussed. It is shown that the Jeffries grain size is based on the triple junction line length density, while the mean chord length of grains is based on the interface density (grain boundary area density). In contrast to widespread belief, however, these two size measures are not alternative, but independent (and thus complementary), measures of grain size. Concomitant with this fact, a clear distinction between linear and planar grain size numbers is proposed. Finally, based on our concept of phase-specific quantities, it is shown that under certain conditions it is possible to define a Jeffries size also for two-phase materials and that the ratio of the mean chord length and the Jeffries size has to be considered as an invariant number for a certain type of microstructure, i.e., a characteristic value that is independent of the absolute size of the microstructural features (e.g., grains, inclusions or pores). - Highlights: • Stereology-based image analysis is reviewed, including error considerations. • Recipes are provided for measuring global metric microstructural descriptors. • Size measures are based on interface density and mean curvature integral density. • Phase-specific quantities and a generalized Jeffries size are introduced. • Linear and planar grain size numbers are clearly distinguished and explained.« less
Nugroho, Dwiyoga; Koch-Larrouy, Ariane; Gaspar, Philippe; Lyard, Florent; Reffray, Guillaume; Tranchant, Benoit
2018-06-01
Very intense internal tides take place in Indonesian seas. They dissipate and affect the vertical distribution of temperature and currents, which in turn influence the survival rates and transports of most planktonic organisms at the base of the whole marine ecosystem. This study uses the INDESO physical model to characterize the internal tides spatio-temporal patterns in the Indonesian Seas. The model reproduced internal tide dissipation in agreement with previous fine structure and microstructure observed in-situ in the sites of generation. The model also produced similar water mass transformation as the previous parameterization of Koch-Larrouy et al. (2007), and show good agreement with observations. The resulting cooling at the surface is 0.3°C, with maxima of 0.8°C at the location of internal tides energy, with stronger cooling in austral winter. The cycle of spring tides and neap tides modulates this impact by 0.1°C to 0.3°C. These results suggest that mixing due to internal tides might also upwell nutrients at the surface at a frequency similar to the tidal frequencies. Implications for biogeochemical modelling are important. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transient Binding and Viscous Dissipation in Semi-flexible Polymer Networks
NASA Astrophysics Data System (ADS)
Lieleg, Oliver; Claessens, Mireille; Bausch, Andreas
2008-03-01
Nature specifically chooses from a myriad of actin binding proteins (ABPs) to tailor the cytoskeletal microstructure. Herein, cells rely on the dynamics of the cytoskeleton as its structural and mechanical adaptability is crucial to allow for dynamic processes. A molecular understanding of such biological complexity calls for an in vitro system with well-defined structural rearrangements and cross-linker dynamics to elucidate the physical origin of the unique viscoelastic properties of cells. As we present here, the frequency-dependent viscoelastic response of cross-linked in vitro actin networks is determined by the binding kinetics of cross-linking molecules. Independent from the particular network structure, the viscous dissipation (loss modulus) exhibits a pronounced minimum in an intermediate frequency which is dominated by elasticity. We show that in this frequency regime the molecular origin of the viscoelastic response is given by the non-static nature of actin/ABP bonds as they are subjugated to chemical on/off kinetics. The time scale of the resulting stress release is set by the lifetime distribution of the cross-linking molecule and therefore can be tuned independently from other relaxation mechanisms. We speculate that unbinding of distinct cross-links might be the molecular mechanism employed by cells for mechanosensing.
The microstructure of capsule containing self-healing materials: A micro-computed tomography study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Stappen, Jeroen, E-mail: Jeroen.Vanstappen@uge
Autonomic self-healing materials are materials with built-in (micro-) capsules or vessels, which upon fracturing release healing agents in order to recover the material's physical and mechanical properties. In order to better understand and engineer these materials, a thorough characterization of the material's microstructural behavior is essential and often overlooked. In this context, micro-computed tomography (μCT) can be used to investigate the three dimensional distribution and (de)bonding of (micro-) capsules in their native state in a polymer system with self-healing properties. Furthermore, in-situ μCT experiments in a self-healing polymer and a self-healing concrete system can elucidate the breakage and leakage behaviormore » of (micro-) capsules at the micrometer scale. While challenges related to image resolution and contrast complicate the characterization in specific cases, non-destructive 3D imaging with μCT is shown to contribute to the understanding of the link between the microstructure and the self-healing behavior of these complex materials. - Highlights: • μCT imaging allows for the analysis of microcapsule distribution patterns in self-healing materials. • μCT allows for qualitative and quantitative measurements of healing agent release from carriers in self-healing materials. • Experimental set-ups can be optimized by changing chemical compounds in the system to ensure maximum quality imaging.« less
Methods and apparatuses for the development of microstructured nuclear fuels
Jarvinen, Gordon D [Los Alamos, NM; Carroll, David W [Los Alamos, NM; Devlin, David J [Santa Fe, NM
2009-04-21
Microstructured nuclear fuel adapted for nuclear power system use includes fissile material structures of micrometer-scale dimension dispersed in a matrix material. In one method of production, fissile material particles are processed in a chemical vapor deposition (CVD) fluidized-bed reactor including a gas inlet for providing controlled gas flow into a particle coating chamber, a lower bed hot zone region to contain powder, and an upper bed region to enable powder expansion. At least one pneumatic or electric vibrator is operationally coupled to the particle coating chamber for causing vibration of the particle coater to promote uniform powder coating within the particle coater during fuel processing. An exhaust associated with the particle coating chamber and can provide a port for placement and removal of particles and powder. During use of the fuel in a nuclear power reactor, fission products escape from the fissile material structures and come to rest in the matrix material. After a period of use in a nuclear power reactor and subsequent cooling, separation of the fissile material from the matrix containing the embedded fission products will provide an efficient partitioning of the bulk of the fissile material from the fission products. The fissile material can be reused by incorporating it into new microstructured fuel. The fission products and matrix material can be incorporated into a waste form for disposal or processed to separate valuable components from the fission products mixture.
Inundation and Gas Fluxes from Amazon Lakes and Wetlands
NASA Astrophysics Data System (ADS)
Melack, J. M.; MacIntyre, S.; Forsberg, B. R.; Amaral, J. H.; Barbosa, P.
2015-12-01
Inundation areas and wetland habitats for the lowland Amazon basin derived remote sensing with synthetic aperture radar are combined with measurements of greenhouse gas evasion derived from field measurements and new formulations of atmosphere-water. On-going field studies in representative aquatic habitats on the central Amazon floodplain are combining monthly measurements of carbon dioxide and methane concentrations and fluxes to the atmosphere with deployment of meteorological sensors and high-resolution thermistors and optical dissolved oxygen sensors. A real-time cavity ringdown spectrometer is being used to determine the gas concentrations; vertical profiles were obtained by using an equilibrator to extract gases from water, and floating chambers are used to assess fluxes. Gas fluxes varied as a function of season, habitat and water depth. Greatest carbon dioxide fluxes occurred during high and falling water levels. During low water, periods with high chlorophyll, indicative of phytoplankton, the flux of carbon dioxide switched from being emitted from the lake to being taken-up by the lake some of the time. The highest pCO2 concentration (5500 μatm) was about three times higher than the median (1700 μatm). Higher CO2 fluxes were observed in open water than in areas with flooded or floating vegetation. In contrast, methane fluxes were higher in vegetated regions. We measured turbulence as rate of dissipation of turbulent kinetic energy based on microstructure profiling. Comparison of these measurements with those calculated from meteorological and time series measurements validated new equations for turbulent kinetic energy dissipation (TKE) rates during moderate winds and cooling and illustrated that the highest dissipation rates occurred under heating. Measured gas exchange coefficients (k600) were similar to those based on the TKE dissipation rates and are well described using the surface renewal model. These k values are several times higher than previous values applied to regional extrapolations in the Amazon basin and elsewhere.
Assessment of fine-scale parameterizations of turbulent dissipation rates in the Southern Ocean
NASA Astrophysics Data System (ADS)
Takahashi, A.; Hibiya, T.
2016-12-01
To sustain the global overturning circulation, more mixing is required in the ocean than has been observed. The most likely candidates for this missing mixing are breaking of wind-induced near-inertial waves and bottom-generated internal lee waves in the sparsely observed Southern Ocean. Nevertheless, there is a paucity of direct microstructure measurements in the Southern Ocean where energy dissipation rates have been estimated mostly using fine-scale parameterizations. In this study, we assess the validity of the existing fine-scale parameterizations in the Antarctic Circumpolar Current (ACC) region using the data obtained from simultaneous full-depth measurements of micro-scale turbulence and fine-scale shear/strain carried out south of Australia during January 17 to February 2, 2016. Although the fine-scale shear/strain ratio (Rω) is close to the Garrett-Munk (GM) value at the station north of Subtropical Front, the values of Rω at the stations south of Subantarctic Front well exceed the GM value, suggesting that the local internal wave spectra are significantly biased to lower frequencies. We find that not all of the observed energy dissipation rates at these locations are well predicted using Gregg-Henyey-Polzin (GHP; Gregg et al., 2003) and Ijichi-Hibiya (IH; Ijichi and Hibiya, 2015) parameterizations, both of which take into account the spectral distortion in terms of Rω; energy dissipation rates at some locations are obviously overestimated by GHP and IH, although only the strain-based Wijesekera (Wijesekera et al., 1993) parameterization yields fairly good predictions. One possible explanation for this result is that a significant portion of the observed shear variance at these locations might be attributed to kinetic-energy-dominant small-scale eddies associated with the ACC, so that fine-scale strain rather than Rω becomes a more appropriate parameter to characterize the actual internal wave field.
BiVO4 microstructures with various morphologies: Synthesis and characterization
NASA Astrophysics Data System (ADS)
Wu, Min; Jing, Qifeng; Feng, Xinyan; Chen, Limiao
2018-01-01
Bismuth vanadate (BiVO4) microstructures with dumbbell, rod, ellipsoid, sphere, and cake-like morphologies have been successfully fabricated by using a surfactant-free hydrothermal method, in which the morphology of the BiVO4 microstructures can be tuned by simply varying the molar ratio of Bi(NO)3·5H2O to NaVO3 in the starting materials. Based on a series of contrast experiments, the probable formation mechanism of the BiVO4 microstructures with multiple shapes have been proposed. The photocatalytic performances of the as-prepared BiVO4 microstructures have been evaluated by studying the degradation of Rhodamine B solutions under visible light irradiation. The results reveal that the cake-like BiVO4 microstructures exhibit the higher photocatalytic activity than other BiVO4 microstructures due to its high surface area and unique morphology.
Microstructural Evolution of Ti-6Al-4V during High Strain Rate Conditions of Metal Cutting
NASA Technical Reports Server (NTRS)
Dong, Lei; Schneider, Judy
2009-01-01
The microstructural evolution following metal cutting was investigated within the metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior grains and equiaxed primary located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary grains and lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the transus temperature.
Microstructure Evolution in Cut Metal Chips of Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Dong, L.; Schneider, J. A.
2008-01-01
The microstructural evolution following metal cutting was investigated within metal chips of Ti-6Al-4V. Metal cutting was used to impose a high strain rate on the order of approx.10(exp 5)/s within the primary shear zone as the metal was removed from the workpiece. The initial microstructure of the parent material (PM) was composed of a bi-modal microstructure with coarse prior beta grains and equiaxed primary alpha located at the boundaries. After metal cutting, the microstructure of the metal chips showed coarsening of the equiaxed primary alpha grains and beta lamellar. These metallographic findings suggest that the metal chips experienced high temperatures which remained below the beta transus temperature.
Anomalous Annealing Response of Directed Energy Deposited Type 304L Austenitic Stainless Steel
NASA Astrophysics Data System (ADS)
Smith, Thale R.; Sugar, Joshua D.; Schoenung, Julie M.; San Marchi, Chris
2018-03-01
Directed energy deposited (DED) and forged austenitic stainless steels possess dissimilar microstructures but can exhibit similar mechanical properties. In this study, annealing was used to evolve the microstructure of both conventional wrought and DED type 304L austenitic stainless steels, and significant differences were observed. In particular, the density of geometrically necessary dislocations and hardness were used to probe the evolution of the microstructure and properties. Forged type 304L exhibited the expected decrease in measured dislocation density and hardness as a function of annealing temperature. The more complex microstructure-property relationship observed in the DED type 304L material is attributed to compositional heterogeneities in the solidification microstructure.
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-03-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
NASA Astrophysics Data System (ADS)
Santosh, R.; Das, G.; Kumar, S.; Singh, P. K.; Ghosh, M.
2018-06-01
The structural integrity of dissimilar metal welded (DMW) joint consisting of low-alloy steel and 304LN austenitic stainless steel was examined by evaluating mechanical properties and metallurgical characteristics. INCONEL 82 and 182 were used as buttering and filler materials, respectively. Experimental findings were substantiated through thermomechanical simulation of the weld. During simulation, the effect of thermal state and stress distribution was pondered based on the real-time nuclear power plant environment. The simulation results were co-related with mechanical and microstructural characteristics. Material properties were varied significantly at different fusion boundaries across the weld line and associated with complex microstructure. During in-situ deformation testing in a scanning electron microscope, failure occurred through the buttering material. This indicated that microstructure and material properties synergistically contributed to altering the strength of DMW joints. Simulation results also depicted that the stress was maximum within the buttering material and made its weakest zone across the welded joint during service exposure. Various factors for the failure of dissimilar metal weld were analyzed. It was found that the use of IN 82 alloy as the buttering material provided a significant improvement in the joint strength and became a promising material for the fabrication of DMW joint.
Xu, Jie; Li, Jianwei; Zhu, Xiaocheng; Fan, Guohua; Shan, Debin; Guo, Bin
2015-11-04
Micro-forming with ultrafine-grained (UFG) materials is a promising direction for the fabrication of micro-electro-mechanical systems (MEMS) components due to the improved formability, good surface quality, and excellent mechanical properties it provides. In this paper, micro-compression tests were performed using UFG pure aluminum processed by equal-channel angular pressing (ECAP) with subsequent annealing treatment. Microstructural evolution was investigated by electron back-scattered diffraction (EBSD) and transmission electron microscopy (TEM). The results show that microstructural evolutions during compression tests at the micro/meso-scale in UFG pure Al are absolutely different from the coarse-grained (CG) materials. A lot of low-angle grain boundaries (LAGBs) and recrystallized fine grains are formed inside of the original large grains in CG pure aluminum after micro-compression. By contrast, ultrafine grains are kept with few sub-grain boundaries inside the grains in UFG pure aluminum, which are similar to the original microstructure before micro-compression. The surface roughness and coordinated deformation ability can be signmicrostructure; micro/meso-forming; ultrafine grains; ECAP; aluminumificantly improved with UFG pure aluminum, which demonstrates that the UFG materials have a strong potential application in micro/meso-forming.
Multi-modal porous microstructure for high temperature fuel cell application
NASA Astrophysics Data System (ADS)
Wejrzanowski, T.; Haj Ibrahim, S.; Cwieka, K.; Loeffler, M.; Milewski, J.; Zschech, E.; Lee, C.-G.
2018-01-01
In this study, the effect of microstructure of porous nickel electrode on the performance of high temperature fuel cell is investigated and presented based on a molten carbonate fuel cell (MCFC) cathode. The cathode materials are fabricated from slurry consisting of nickel powder and polymeric binder/solvent mixture, using the tape casting method. The final pore structure is shaped through modifying the slurry composition - with or without the addition of porogen(s). The manufactured materials are extensively characterized by various techniques involving: micro-computed tomography (micro-XCT), scanning electron microscopy (SEM), mercury porosimetry, BET and Archimedes method. Tomographic images are also analyzed and quantified to reveal the evolution of pore space due to nickel in situ oxidation to NiO, and infiltration by the electrolyte. Single-cell performance tests are carried out under MCFC operation conditions to estimate the performance of the manufactured materials. It is found that the multi-modal microstructure of MCFC cathode results in a significant enhancement of the power density generated by the reference cell. To give greater insight into the understanding of the effect of microstructure on the properties of the cathode, a model based on 3D tomography image transformation is proposed.
SEM stereo-section fractography (SSF) observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.
1997-12-31
Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 {micro}m), and perpendicular to both the fracture surface and the precrack front, a direct correspondence between initiationmore » and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less
SEM stereo-section fractography observations. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, X.J.; Tregoning, R.L.; Armstrong, R.W.
1998-05-01
Cleavage initiation in engineering materials is governed by local microstructural inhomogeneities. These features are often the principal reason for the large scatter evident in fracture toughness measurements which, in extreme cases, can mask the fundamental relationship between cracking resistance and global material properties. The SEM stereo-section fractography (SSF) technique can be used to carefully evaluate these local inhomogeneities through simultaneous observation of both the fracture surface and the underlying microstructure. By sectioning the fracture surface close to the cleavage initiation site (within 10 microns), and perpendicular to both the fracture surface and the pre crack front, a direct correspondence betweenmore » initiation and the local microstructure can be established. Information obtained from this technique can provide quantitative input about important, local microstructural features which can then be used to calibrate or create realistic micromechanical models. A compendium of SSF results is presented herein for cleavage cracking in disparate materials (A533B steel plates, MIL-70S multi-pass weldments, and Ti6A14V forgings), under various testing conditions. In each case, the SSF technique was able to unambiguously identify the dominant, local features which triggered cleavage initiation.« less
Reproducibility of ZrO2-based freeze casting for biomaterials.
Naleway, Steven E; Fickas, Kate C; Maker, Yajur N; Meyers, Marc A; McKittrick, Joanna
2016-04-01
The processing technique of freeze casting has been intensely researched for its potential to create porous scaffold and infiltrated composite materials for biomedical implants and structural materials. However, in order for this technique to be employed medically or commercially, it must be able to reliably produce materials in great quantities with similar microstructures and properties. Here we investigate the reproducibility of the freeze casting process by independently fabricating three sets of eight ZrO2-epoxy composite scaffolds with the same processing conditions but varying solid loading (10, 15 and 20 vol.%). Statistical analyses (One-way ANOVA and Tukey's HSD tests) run upon measurements of the microstructural dimensions of these composite scaffold sets show that, while the majority of microstructures are similar, in all cases the composite scaffolds display statistically significant variability. In addition, composite scaffolds where mechanically compressed and statistically analyzed. Similar to the microstructures, almost all of their resultant properties displayed significant variability though most composite scaffolds were similar. These results suggest that additional research to improve control of the freeze casting technique is required before scaffolds and composite scaffolds can reliably be reproduced for commercial or medical applications. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Rokni, M. R.; Nutt, S. R.; Widener, C. A.; Champagne, V. K.; Hrabe, R. H.
2017-08-01
In the cold spray (CS) process, deposits are produced by depositing powder particles at high velocity onto a substrate. Powders deposited by CS do not undergo melting before or upon impacting the substrate. This feature makes CS suitable for deposition of a wide variety of materials, most commonly metallic alloys, but also ceramics and composites. During processing, the particles undergo severe plastic deformation and create a more mechanical and less metallurgical bond with the underlying material. The deformation behavior of an individual particle depends on multiple material and process parameters that are classified into three major groups—powder characteristics, geometric parameters, and processing parameters, each with their own subcategories. Changing any of these parameters leads to evolution of a different microstructure and consequently changes the mechanical properties in the deposit. While cold spray technology has matured during the last decade, the process is inherently complex, and thus, the effects of deposition parameters on particle deformation, deposit microstructure, and mechanical properties remain unclear. The purpose of this paper is to review the parameters that have been investigated up to now with an emphasis on the existent relationships between particle deformation behavior, microstructure, and mechanical properties of various cold spray deposits.
Negative emotion impacts memory for verbal discourse in pediatric bipolar disorder.
Jacobs, Rachel H; Pavuluri, Mani N; Schenkel, Lindsay S; Palmer, Anne; Shah, Khushbu; Vemuri, Deepthi; Whited, Stefanie; Little, Deborah M
2011-05-01
Cognitive and emotional deficits have been documented in youth with pediatric bipolar disorder (PBD); however, to date, a systematic evaluation of comprehension and memory for verbally presented information has not been conducted. The effect of emotion on comprehension and memory for verbally presented material also has not been examined. We examined whether youth with PBD have difficulty recalling the big picture (macrostructure) as well as the story details (microstructure). A total of 35 youth with PBD and 25 healthy controls completed an Affective Story Task. A psychological processing model allowed for the examination of both the macrostructure and microstructure of language comprehension. Youth with PBD were capable of comprehending the gist of the stories and were not impaired by emotion when comprehending and remembering macrostructure. However, negative emotional material was found to proactively interfere with the encoding and recall of microstructure. Level of depression appeared to impact recall of microstructure, but not macrostructure. Negatively valenced material may impair subsequent comprehension and memory for details among youth with PBD. This deficit could impact the daily functioning of these youth, as the perception of negative affect may derail aspects of successful comprehension and learning. © 2011 John Wiley and Sons A/S.
Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials
NASA Astrophysics Data System (ADS)
Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria
2017-10-01
The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.
Microscale Modeling of Porous Thermal Protection System Materials
NASA Astrophysics Data System (ADS)
Stern, Eric C.
Ablative thermal protection system (TPS) materials play a vital role in the design of entry vehicles. Most simulation tools for ablative TPS in use today take a macroscopic approach to modeling, which involves heavy empiricism. Recent work has suggested improving the fidelity of the simulations by taking a multi-scale approach to the physics of ablation. In this work, a new approach for modeling ablative TPS at the microscale is proposed, and its feasibility and utility is assessed. This approach uses the Direct Simulation Monte Carlo (DSMC) method to simulate the gas flow through the microstructure, as well as the gas-surface interaction. Application of the DSMC method to this problem allows the gas phase dynamics---which are often rarefied---to be modeled to a high degree of fidelity. Furthermore this method allows for sophisticated gas-surface interaction models to be implemented. In order to test this approach for realistic materials, a method for generating artificial microstructures which emulate those found in spacecraft TPS is developed. Additionally, a novel approach for allowing the surface to move under the influence of chemical reactions at the surface is developed. This approach is shown to be efficient and robust for performing coupled simulation of the oxidation of carbon fibers. The microscale modeling approach is first applied to simulating the steady flow of gas through the porous medium. Predictions of Darcy permeability for an idealized microstructure agree with empirical correlations from the literature, as well as with predictions from computational fluid dynamics (CFD) when the continuum assumption is valid. Expected departures are observed for conditions at which the continuum assumption no longer holds. Comparisons of simulations using a fabricated microstructure to experimental data for a real spacecraft TPS material show good agreement when similar microstructural parameters are used to build the geometry. The approach is then applied to investigating the ablation of porous materials through oxidation. A simple gas surface interaction model is described, and an approach for coupling the surface reconstruction algorithm to the DSMC method is outlined. Simulations of single carbon fibers at representative conditions suggest this approach to be feasible for simulating the ablation of porous TPS materials at scale. Additionally, the effect of various simulation parameters on in-depth morphology is investigated for random fibrous microstructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Almer, Jonathan D.; Yang, Yong
2016-01-01
This report provides a summary of research activities on understanding microstructure – property correlation in reactor materials using in situ high-energy X-rays. The report is a Level 2 deliverable in FY16 (M2CA-13-IL-AN_-0403-0111), under the Work Package CA-13-IL-AN_- 0403-01, “Microstructure-Property Correlation in Reactor Materials using in situ High Energy Xrays”, as part of the DOE-NE NEET Program. The objective of this project is to demonstrate the application of in situ high energy X-ray measurements of nuclear reactor materials under thermal-mechanical loading, to understand their microstructure-property relationships. The gained knowledge is expected to enable accurate predictions of mechanical performance of these materialsmore » subjected to extreme environments, and to further facilitate development of advanced reactor materials. The report provides detailed description of the in situ X-ray Radiated Materials (iRadMat) apparatus designed to interface with a servo-hydraulic load frame at beamline 1-ID at the Advanced Photon Source. This new capability allows in situ studies of radioactive specimens subject to thermal-mechanical loading using a suite of high-energy X-ray scattering and imaging techniques. We conducted several case studies using the iRadMat to obtain a better understanding of deformation and fracture mechanisms of irradiated materials. In situ X-ray measurements on neutron-irradiated pure metal and model alloy and several representative reactor materials, e.g. pure Fe, Fe-9Cr model alloy, 316 SS, HT-UPS, and duplex cast austenitic stainless steels (CASS) CF-8 were performed under tensile loading at temperatures of 20-400°C in vacuum. A combination of wide-angle X-ray scattering (WAXS), small-angle X-ray scattering (SAXS), and imaging techniques were utilized to interrogate microstructure at different length scales in real time while the specimen was subject to thermal-mechanical loading. In addition, in situ X-ray studies were complemented and benchmarked by ex situ characterization using advanced electron microscopy, atom probe tomography (APT) and micro/nano-indentation. The report presented in situ tensile test results on neutron-irradiated pure Fe, Fe-9Cr model alloy, 316 SS and CASS CF-8. These in situ experiments demonstrate the broad applications of the new capability in understanding several outstanding issues related to irradiated materials.« less
Materials Characterization of Electron Beam Melted Ti-6Al-4V
NASA Technical Reports Server (NTRS)
Draper, Susan; Lerch, Brad; Rogers, Richard; Martin, Richard; Locci, Ivan; Garg, Anita
2015-01-01
An in-depth material characterization of Electron Beam Melted (EBM) Ti-6Al-4V material has been completed. Hot Isostatic Pressing (HIP) was utilized to close porosity from fabrication and also served as a material heat treatment to obtain the desired microstructure. The changes in the microstructure and chemistry from the powder to pre-HIP and post-HIP material have been analyzed. Computed tomography (CT) scans indicated porosity closure during HIP and high-density inclusions scattered throughout the specimens. The results of tensile and high cycle fatigue (HCF) testing are compared to conventional Ti-6Al-4V. The EBM Ti-6Al-4V had similar or superior mechanical properties compared to conventionally manufactured Ti-6Al-4V.
Evidence for Decay of Turbulence by MHD Shocks in the ISM via CO Emission
NASA Astrophysics Data System (ADS)
Larson, Rebecca L.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun
2015-06-01
We utilize observations of sub-millimeter rotational transitions of CO from a Herschel Cycle 2 open time program (“COPS”, PI: J. Green) to identify previously predicted turbulent dissipation by magnetohydrodynamic (MHD) shocks in molecular clouds. We find evidence of the shocks expected for dissipation of MHD turbulence in material not associated with any protostar. Two models fit about equally well: model 1 has a density of 103 cm-3, a shock velocity of 3 km s-1, and a magnetic field strength of 4 μG model 2 has a density of 103.5 cm-3, a shock velocity of 2 km s-1, and a magnetic field strength of 8 μG. Timescales for decay of turbulence in this region are comparable to crossing times. Transitions of CO up to J of 8, observed close to active sites of star formation, but not within outflows, can trace turbulent dissipation of shocks stirred by formation processes. Although the transitions are difficult to detect at individual positions, our Herschel-SPIRE survey of protostars provides a grid of spatially distributed spectra within molecular clouds. We averaged all spatial positions away from known outflows near seven protostars. We find significant agreement with predictions of models of turbulent dissipation in slightly denser (103.5 cm-3) material with a stronger magnetic field (24 μG) than in the general molecular cloud.
NASA Astrophysics Data System (ADS)
Foltz, John W., IV
beta-titanium alloys are being increasingly used in airframes as a way to decrease the weight of the aircraft. As a result of this movement, Ti-5Al-5V-5Mo-3Cr-0.4Fe (Timetal 555), a high-strength beta titanium alloy, is being used on the current generation of landing gear. This alloy features good combinations of strength, ductility, toughness and fatigue life in alpha+beta processed conditions, but little is known about beta-processed conditions. Recent work by the Center for the Accelerated Maturation of Materials (CAMM) research group at The Ohio State University has improved the tensile property knowledge base for beta-processed conditions in this alloy, and this thesis augments the aforementioned development with description of how microstructure affects fatigue life. In this work, beta-processed microstructures have been produced in a Gleeble(TM) thermomechanical simulator and subsequently characterized with a combination of electron and optical microscopy techniques. Four-point bending fatigue tests have been carried out on the material to characterize fatigue life. All the microstructural conditions have been fatigue tested with the maximum test stress equal to 90% of the measured yield strength. The subsequent results from tensile tests, fatigue tests, and microstructural quantification have been analyzed using Bayesian neural networks in an attempt to predict fatigue life using microstructural and tensile inputs. Good correlation has been developed between lifetime predictions and experimental results using microstructure and tensile inputs. Trained Bayesian neural networks have also been used in a predictive fashion to explore functional dependencies between these inputs and fatigue life. In this work, one section discusses the thermal treatments that led to the observed microstructures, and the possible sequence of precipitation that led to these microstructures. The thesis then describes the implications of microstructure on fatigue life and implications of tensile properties on fatigue life. Several additional experiments are then described that highlight possible causes for the observed dependence of microstructure on fatigue life, including fractographic evidence to provide support of microstructural dependencies.
Diffraction Contrast Tomography: A Novel 3D Polycrystalline Grain Imaging Technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuettner, Lindsey Ann
2017-06-06
Diffraction contrast tomography (DCT) is a non-destructive way of imaging microstructures of polycrystalline materials such as metals or crystalline organics. It is a useful technique to map 3D grain structures as well as providing crystallographic information such as crystal orientation, grain shape, and strain. Understanding the internal microstructure of a material is important in understanding the bulk material properties. This report gives a general overview of the similar techniques, DCT data acquisition, and analysis processes. Following the short literature review, potential work and research at Los Alamos National Laboratory (LANL) is discussed.
Ripley, Edward B.; Hallman, Russell L.
2015-11-10
Disclosed are methods and systems for controlling of the microstructures of a soldered, brazed, welded, plated, cast, or vapor deposited manufactured component. The systems typically use relatively weak magnetic fields of either constant or varying flux to affect material properties within a manufactured component, typically without modifying the alloy, or changing the chemical composition of materials or altering the time, temperature, or transformation parameters of a manufacturing process. Such systems and processes may be used with components consisting of only materials that are conventionally characterized as be uninfluenced by magnetic forces.
Three Microstructural Exercises for Students.
ERIC Educational Resources Information Center
Means, Winthrop D.
1986-01-01
Describes laboratory exercises which demonstrate a new simplified technique for deforming thin samples of crystalline materials on the stage of a petrographic microscope. Discusses how this process allows students to see the development of microstructures resulting from cracking, slipping, thinning, and recrystallization. References and sources of…
1980-12-01
spray process ...... ............... .. 40 9 Etched microstructures of as-received alloys ................ 42 10 Microstructures of as...Figure 8. Schematic sketch of spray process . 40 4.5 Results and Discussion 4.5.1 Alloy Procurement The desired compositions of the deposits (after... deposited samples...................... 44 11 As- Sprayed x-ray patterns obtained on two deposits made with 34 wt % Sm and one with 30 wt % Sm powders
Lin, Bao; Kong, Lingxue; Hodgson, Peter D.; Dumée, Ludovic F.
2014-01-01
Nano-textured porous metal materials present unique surface properties due to their enhanced surface energy with potential applications in sensing, molecular separation and catalysis. In this paper, commercial alloy foils, including brass (Cu85Zn15 and Cu70Zn30) and white gold (Au50Ag50) foils have been chemically de-alloyed to form nano-porous thin films. The impact of the initial alloy micro-structure and number of phases, as well as chemical de-alloying (DA) parameters, including etchant concentration, time and solution temperature on the final nano-porous thin film morphology and properties were investigated by electron microscopy (EM). Furthermore, the penetration depth of the pores across the alloys were evaluated through the preparation of cross sections by focus ion beam (FIB) milling. It is demonstrated that ordered pores ranging between 100 nm and 600 nm in diameter and 2–5 μm in depth can be successfully formed for the range of materials tested. The microstructure of the foils were obtained by electron back-scattered diffraction (EBSD) and linked to development of pits across the material thickness and surface during DA. The role of selective etching of both noble and sacrificial metal phases of the alloy were discussed in light of the competitive surface etching across the range of microstructures and materials tested. PMID:28344253
Preparation and Reactivity of Gasless Nanostructured Energetic Materials
Manukyan, Khachatur V.; Shuck, Christopher E.; Rogachev, Alexander S.; Mukasyan, Alexander S.
2015-01-01
High-Energy Ball Milling (HEBM) is a ball milling process where a powder mixture placed in the ball mill is subjected to high-energy collisions from the balls. Among other applications, it is a versatile technique that allows for effective preparation of gasless reactive nanostructured materials with high energy density per volume (Ni+Al, Ta+C, Ti+C). The structural transformations of reactive media, which take place during HEBM, define the reaction mechanism in the produced energetic composites. Varying the processing conditions permits fine tuning of the milling-induced microstructures of the fabricated composite particles. In turn, the reactivity, i.e., self-ignition temperature, ignition delay time, as well as reaction kinetics, of high energy density materials depends on its microstructure. Analysis of the milling-induced microstructures suggests that the formation of fresh oxygen-free intimate high surface area contacts between the reagents is responsible for the enhancement of their reactivity. This manifests itself in a reduction of ignition temperature and delay time, an increased rate of chemical reaction, and an overall decrease of the effective activation energy of the reaction. The protocol provides a detailed description for the preparation of reactive nanocomposites with tailored microstructure using short-term HEBM method. It also describes a high-speed thermal imaging technique to determine the ignition/combustion characteristics of the energetic materials. The protocol can be adapted to preparation and characterization of a variety of nanostructured energetic composites. PMID:25868065
NASA Technical Reports Server (NTRS)
Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew
2006-01-01
The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.
Microstructure and Mechanical Properties of Extruded Gamma Microstructure Met PX
NASA Technical Reports Server (NTRS)
Draper, S. L.; Das, G.; Locci, J.; Whittenberger, J. D.; Lerch, B. A.; Kestler, H.
2003-01-01
A gamma TiAl alloy with a high Nb content is being assessed as a compressor blade material. The microstructure and mechanical properties of extruded Ti-45Al-X(Nb,B,C) (at.%) were evaluated in both an as-extruded condition and after a lamellar heat treatment. Tensile behavior of both as-extruded and lamellar heat treated specimens was studied in the temperature range of RT to 926 C. In general, the yield stress and ultimate tensile strength reached relatively high values at room temperature and decreased with increasing deformation temperature. The fatigue strength of both microstructures was characterized at 650 C and compared to a baseline TiAl alloy and to a Ni-base superalloy. Tensile and fatigue specimens were also exposed to 800 C for 200 h in air to evaluate the alloy's environmental resistance. A decrease in ductility was observed at room temperature due to the 800 C. exposure but the 650 C fatigue properties were unaffected. Compressive and tensile creep testing between 727 and 1027 C revealed that the creep deformation was reproducible and predictable. Creep strengths reached superalloy-like levels at fast strain rates and lower temperatures but deformation at slower strain rates and/or higher temperature indicated significant weakening for the as-extruded condition. At high temperatures and low stresses, the lamellar microstructure had improved creep properties when compared to the as-extruded material. Microstructural evolution during heat treatment, identification of various phases, and the effect of microstructure on the tensile, fatigue, and creep behaviors is discussed.