Quantum analysis applied to thermo field dynamics on dissipative systems
Hashizume, Yoichiro; Okamura, Soichiro; Suzuki, Masuo
2015-03-10
Thermo field dynamics is one of formulations useful to treat statistical mechanics in the scheme of field theory. In the present study, we discuss dissipative thermo field dynamics of quantum damped harmonic oscillators. To treat the effective renormalization of quantum dissipation, we use the Suzuki-Takano approximation. Finally, we derive a dissipative von Neumann equation in the Lindbrad form. In the present treatment, we can easily obtain the initial damping shown previously by Kubo.
Quantum dissipation and neural net dynamics.
Pessa, E; Vitiello, G
1999-05-01
Inspired by the dissipative quantum model of brain, we model the states of neural nets in terms of collective modes by the help of the formalism of Quantum Field Theory. We exhibit an explicit neural net model which allows to memorize a sequence of several informations without reciprocal destructive interference, namely we solve the overprinting problem in such a way last registered information does not destroy the ones previously registered. Moreover, the net is able to recall not only the last registered information in the sequence, but also anyone of those previously registered.
Isotropy and control of dissipative quantum dynamics
NASA Astrophysics Data System (ADS)
Dive, Benjamin; Burgarth, Daniel; Mintert, Florian
2016-07-01
We investigate the problem of what evolutions an open quantum system described by a time-local master equation can undergo with universal coherent controls. A series of conditions is given which exclude channels from being reachable by any unitary controls, assuming that the coupling to the environment is not being modified. These conditions primarily arise by defining decay rates for the generator of the dynamics of the open system, and then showing that controlling the system can only make these rates more isotropic. This forms a series of constraints on the shape and nonunitality of allowed evolutions, as well as an expression for the time required to reach a given goal. We give numerical examples of the usefulness of these criteria and explore some similarities they have with quantum thermodynamics.
Dynamics, synchronization, and quantum phase transitions of two dissipative spins
Orth, Peter P.; Le Hur, Karyn; Roosen, David; Hofstetter, Walter
2010-10-01
We analyze the static and dynamic properties of two Ising-coupled quantum spins embedded in a common bosonic bath as an archetype of dissipative quantum mechanics. First, we elucidate the ground-state phase diagram for an Ohmic and a sub-Ohmic bath using a combination of bosonic numerical renormalization group (NRG), analytical techniques, and intuitive arguments. Second, by employing the time-dependent NRG we investigate the system's rich dynamical behavior arising from the complex interplay between spin-spin and spin-bath interactions. Interestingly, spin oscillations can synchronize due to the proximity of the common non-Markovian bath and the system displays highly entangled steady states for certain nonequilibrium initial preparations. We complement our nonperturbative numerical results by exact analytical solutions when available and provide quantitative limits on the applicability of the perturbative Bloch-Redfield approach at weak coupling.
Dynamical Lamb effect versus dissipation in superconducting quantum circuits
NASA Astrophysics Data System (ADS)
Zhukov, A. A.; Shapiro, D. S.; Pogosov, W. V.; Lozovik, Yu. E.
2016-06-01
Superconducting circuits provide a new platform for study of nonstationary cavity QED phenomena. An example of such a phenomenon is the dynamical Lamb effect, which is the parametric excitation of an atom due to nonadiabatic modulation of its Lamb shift. This effect was initially introduced for a natural atom in a varying cavity, while we suggest its realization in a superconducting qubit-cavity system with dynamically tunable coupling. In the present paper, we study the interplay between the dynamical Lamb effect and the energy dissipation, which is unavoidable in realistic systems. We find that despite naive expectations, this interplay can lead to unexpected dynamical regimes. One of the most striking results is that photon generation from vacuum can be strongly enhanced due to qubit relaxation, which opens another channel for such a process. We also show that dissipation in the cavity can increase the qubit excited-state population. Our results can be used for experimental observation and investigation of the dynamical Lamb effect and accompanying quantum effects.
Coupled-Channels Approach for Dissipative Quantum Dynamics in Near-Barrier Collisions
Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Milburn, G. J.; Tostevin, J. A.
2009-03-04
A novel quantum dynamical model based on the dissipative quantum dynamics of open quantum systems is presented. It allows the treatment of both deep-inelastic processes and quantum tunneling (fusion) within a fully quantum mechanical coupled-channels approach. Model calculations show the transition from pure state (coherent) to mixed state (decoherent and dissipative) dynamics during a near-barrier nuclear collision. Energy dissipation, due to irreversible decay of giant-dipole excitations of the interacting nuclei, results in hindrance of quantum tunneling.
Dissipative quantum dynamics in low-energy collisions of complex nuclei
Diaz-Torres, A.; Hinde, D. J.; Dasgupta, M.; Milburn, G. J.; Tostevin, J. A.
2008-12-15
Model calculations that include the effects of irreversible, environmental couplings on top of a coupled-channels dynamical description of the collision of two complex nuclei are presented. The Liouville-von Neumann equation for the time evolution of the density matrix of a dissipative system is solved numerically providing a consistent transition from coherent to decoherent (and dissipative) dynamics during the collision. Quantum decoherence and dissipation are clearly manifested in the model calculations. Energy dissipation, due to the irreversible decay of giant-dipole vibrational states of the colliding nuclei, is shown to result in a hindrance of quantum tunneling and fusion.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Zhang, Yu Chen, GuanHua; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
Coherent Quantum Dynamics in Steady-State Manifolds of Strongly Dissipative Systems
NASA Astrophysics Data System (ADS)
Zanardi, Paolo; Campos Venuti, Lorenzo
2014-12-01
Recently, it has been realized that dissipative processes can be harnessed and exploited to the end of coherent quantum control and information processing. In this spirit, we consider strongly dissipative quantum systems admitting a nontrivial manifold of steady states. We show how one can enact adiabatic coherent unitary manipulations, e.g., quantum logical gates, inside this steady-state manifold by adding a weak, time-rescaled, Hamiltonian term into the system's Liouvillian. The effective long-time dynamics is governed by a projected Hamiltonian which results from the interplay between the weak unitary control and the fast relaxation process. The leakage outside the steady-state manifold entailed by the Hamiltonian term is suppressed by an environment-induced symmetrization of the dynamics. We present applications to quantum-computation in decoherence-free subspaces and noiseless subsystems and numerical analysis of nonadiabatic errors.
Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation
NASA Astrophysics Data System (ADS)
Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H.
2013-01-01
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Cortes, Cristian; Jacob, Zubin
2015-04-01
Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach, first developed by Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.
Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Cortes, Cristian; Jacob, Zubin
2015-05-01
Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach first developed by H. Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.
Noether’s theorem for dissipative quantum dynamical semi-groups
Gough, John E.; Ratiu, Tudor S.; Smolyanov, Oleg G.
2015-02-15
Noether’s theorem on constants of the motion of dynamical systems has recently been extended to classical dissipative systems (Markovian semi-groups) by Baez and Fong [J. Math. Phys. 54, 013301 (2013)]. We show how to extend these results to the fully quantum setting of quantum Markov dynamics. For finite-dimensional Hilbert spaces, we construct a mapping from observables to completely positive maps that leads to the natural analogue of their criterion of commutativity with the infinitesimal generator of the Markov dynamics. Using standard results on the relaxation of states to equilibrium under quantum dynamical semi-groups, we are able to characterise the constants of the motion under quantum Markov evolutions in the infinite-dimensional setting under the usual assumption of existence of a stationary strictly positive density matrix. In particular, the Noether constants are identified with the fixed point of the Heisenberg picture semi-group.
Optimizing quantum correlation dynamics by weak measurement in dissipative environment
NASA Astrophysics Data System (ADS)
Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang
2015-04-01
We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).
Quantum bouncer with dissipation
NASA Astrophysics Data System (ADS)
Lopez, Gustavo; Gonzalez, Gabriel
2004-05-01
Effects on the spectra of the quantum bouncer due to dissipation are given when a linear or quadratic dissipation is taken into account. Classical constants of motions and Hamiltonians are deduced for these systems and their quantized eigenvalues are estimated through perturbation theory. Differences were found comparing the eigenvalues of these two quantities.
Quantum dissipative Higgs model
Amooghorban, Ehsan Mahdifar, Ali
2015-09-15
By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.
Quantum Dynamics in Noisy Backgrounds: from Sampling to Dissipation and Fluctuations
NASA Astrophysics Data System (ADS)
Oliveira, O.; Paula, W. de; Frederico, T.; Hussein, M. S.
2016-08-01
We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.
Efficient Simulation of Dissipative Dynamics
NASA Astrophysics Data System (ADS)
Noh, Kyungjoo; Albert, Victor V.; Shen, Chao; Jiang, Liang
Open quantum systems with engineered dissipations may have more than one steady states. These steady states may form a non-trivial decoherence free subspace (DFS) that can store quantum information against major decoherences. Besides unitary operations within DFS, it is also useful to have dissipative/cooling operations within the DFS. We investigate the possibility of using Hamiltonian perturbation to the engineered dissipation to induce an effective dissipative dynamics within the DFS in a controlled manner. The major challenge is to simulate all the Lindblad jump operators in the master equation. By designing the dissipation within the subspace complementary to the DFS, we can simply use the Hamiltonian perturbation to the designed dissipation with a single jump operator to produce an effective dissipation with multiple Lindblad jump operators.
Dissipative dynamics and novel quantum phases in strongly correlated cold-atom mixtures
NASA Astrophysics Data System (ADS)
Orth, Peter Philipp
2011-12-01
We study the static and dynamical properties of a number of strongly correlated quantum many-body systems, that can be experimentally realized using cold-atoms. In the first part of the thesis, we investigate various quantum spin systems that interact with their environment, which we model as a bath of harmonic oscillators. Coupling to the bosonic bath modes induces a phonon-mediated ferromagnetic interaction between the spins. It also introduces decoherence and dissipation as a result of spin-bath entanglement. We extensively study the effect of dissipation on a single spin, two spins and the quantum Ising model, focusing on universal properties. Static properties become universal close to a quantum phase transition, where dissipation profoundly affects the scaling behavior. Universal dynamics occurs in the scaling limit, where the bandwidth of the bath oc becomes large. For a single spin, we study the famous Landau-Zener level crossing problem in the presence of dissipation. Interaction with the bath leads to universal decay from the upper to the lower spin state, even far away from the resonance. The timescale to reach the final Landau-Zener spin transition probability is determined by the large parameter oc. To address this strongly driven non-equilibrium problem, we devise a novel non-perturbative stochastic Schrodinger equation method, based on a real-time functional integral description. This approach is particularly well-suited to study time-dependent bias fields, both at zero and finite temperature. We also investigate a system of two Ising-coupled quantum spins, that are embedded in a common bosonic bath. To study the ground state phases for an Ohmic and a sub-Ohmic bath, we employ a combination of non-perturbative analytical and numerical renormalization group (NRG) methods. We discuss a number of different non-equilibrium situations, mainly using the time-dependent NRG. Most interestingly, spin oscillations may synchronize due to the proximity of a
NASA Astrophysics Data System (ADS)
Barth, A. M.; Vagov, A.; Axt, V. M.
2016-09-01
We present a numerical path-integral iteration scheme for the low-dimensional reduced density matrix of a time-dependent quantum dissipative system. Our approach simultaneously accounts for the combined action of a microscopically modeled pure-dephasing-type coupling to a continuum of harmonic oscillators representing, e.g., phonons, and further environmental interactions inducing non-Hamiltonian dynamics in the inner system represented, e.g., by Lindblad-type dissipation or relaxation. Our formulation of the path-integral method allows for a numerically exact treatment of the coupling to the oscillator modes and moreover is general enough to provide a natural way to include Markovian processes that are sufficiently described by rate equations. We apply this new formalism to a model of a single semiconductor quantum dot which includes the coupling to longitudinal acoustic phonons for two cases: (a) external laser excitation taking into account a phenomenological radiative decay of the excited dot state and (b) a coupling of the quantum dot to a single mode of an optical cavity taking into account cavity photon losses.
Detailed model study of dissipative quantum dynamics of K2 attached to helium nanodroplets
NASA Astrophysics Data System (ADS)
Schlesinger, Martin; Strunz, Walter T.
2012-01-01
We thoroughly investigate vibrational quantum dynamics of dimers attached to He droplets, motivated by recent measurements with K2 (Claas et al 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S1151). For those femtosecond pump-probe experiments, the crucial observed features are not reproduced by gas-phase calculations, but agreement is found using a description based on dissipative quantum dynamics, as briefly shown in the work by Schlesinger et al (2010 Chem. Phys. Lett. 490 245-8). Here we present a detailed study of the influence of possible effects induced by the droplet. The helium droplet causes electronic decoherence, shifts of potential surfaces and relaxation of wave packets in attached dimers. Moreover, a realistic description of (stochastic) desorption of dimers off the droplet needs to be taken into account. Step by step, we include and study the importance of these effects in our full quantum calculation of the effective dimer dynamics. This approach allows us to reproduce and explain all major experimental findings. We find that desorption is fast and occurs within 2-10 ps after electronic excitation. A further finding is that slow vibrational motion in the ground state can be considered frictionless.
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Olmos, Beatriz; Lesanovsky, Igor; Garrahan, Juan P
2014-10-01
We explore the relaxation dynamics of quantum many-body systems that undergo purely dissipative dynamics through non-classical jump operators that can establish quantum coherence. Our goal is to shed light on the differences in the relaxation dynamics that arise in comparison to systems evolving via classical rate equations. In particular, we focus on a scenario where both quantum and classical dissipative evolution lead to a stationary state with the same values of diagonal or "classical" observables. As a basis for illustrating our ideas we use spin systems whose dynamics becomes correlated and complex due to dynamical constraints, inspired by kinetically constrained models (KCMs) of classical glasses. We show that in the quantum case the relaxation can be orders of magnitude slower than the classical one due to the presence of quantum coherences. Aspects of these idealized quantum KCMs become manifest in a strongly interacting Rydberg gas under electromagnetically induced transparency (EIT) conditions in an appropriate limit. Beyond revealing a link between this Rydberg gas and the rather abstract dissipative KCMs of quantum glassy systems, our study sheds light on the limitations of the use of classical rate equations for capturing the non-equilibrium behavior of this many-body system. PMID:25375478
Quantum dissipation in unbounded systems.
Maddox, Jeremy B; Bittner, Eric R
2002-02-01
In recent years trajectory based methodologies have become increasingly popular for evaluating the time evolution of quantum systems. A revival of the de Broglie--Bohm interpretation of quantum mechanics has spawned several such techniques for examining quantum dynamics from a hydrodynamic perspective. Using techniques similar to those found in computational fluid dynamics one can construct the wave function of a quantum system at any time from the trajectories of a discrete ensemble of hydrodynamic fluid elements (Bohm particles) which evolve according to nonclassical equations of motion. Until very recently these schemes have been limited to conservative systems. In this paper, we present our methodology for including the effects of a thermal environment into the hydrodynamic formulation of quantum dynamics. We derive hydrodynamic equations of motion from the Caldeira-Leggett master equation for the reduced density matrix and give a brief overview of our computational scheme that incorporates an adaptive Lagrangian mesh. Our applications focus upon the dissipative dynamics of open unbounded quantum systems. Using both the Wigner phase space representation and the linear entropy, we probe the breakdown of the Markov approximation of the bath dynamics at low temperatures. We suggest a criteria for rationalizing the validity of the Markov approximation in open unbound systems and discuss decoherence, energy relaxation, and quantum/classical correspondence in the context of the Bohmian paths.
Uranga-Piña, L.; Tremblay, J. C.
2014-08-21
We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It
Quantum Chaotic Attractor in a Dissipative System
NASA Astrophysics Data System (ADS)
Liu, W. Vincent; Schieve, William C.
1997-04-01
A dissipative quantum system is treated here by coupling it with a heat bath of harmonic oscillators. Through quantum Langevin equations and Ehrenfest's theorem, we establish explicitly the quantum Duffing equations with a double-well potential chosen. A quantum noise term appears the only driving force in dynamics. Numerical studies show that the chaotic attractor exists in this system while chaos is certainly forbidden in the classical counterpart.
Natural approach to quantum dissipation
NASA Astrophysics Data System (ADS)
Taj, David; Öttinger, Hans Christian
2015-12-01
The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Optical realization of the dissipative quantum oscillator.
Longhi, Stefano; Eaton, Shane M
2016-04-15
An optical realization of the damped quantum oscillator, based on transverse light dynamics in an optical resonator with slowly-moving mirrors, is theoretically suggested. The optical resonator setting provides a simple implementation of the time-dependent Caldirola-Kanai Hamiltonian of the dissipative quantum oscillator and enables the visualization of the effects of damped oscillations in the classical (ray optics) limit and wave packet collapse in the quantum (wave optics) regime.
Dissipative Landau-Zener quantum dynamics with transversal and longitudinal noise
NASA Astrophysics Data System (ADS)
Javanbakht, S.; Nalbach, P.; Thorwart, M.
2015-05-01
We determine the Landau-Zener transition probability in a dissipative environment including both longitudinal as well as transversal quantum-mechanical noise originating from a single noise source. For this, we use the numerically exact quasiadiabatic path integral, as well as the approximative nonequilibrium Bloch equations. We find that transversal quantum noise in general influences the Landau-Zener probability much more strongly than longitudinal quantum noise does at a given temperature and system-bath coupling strength. In other words, transversal noise contributions become important even when the coupling strength of transversal noise is smaller than that of longitudinal noise. We furthermore reveal that transversal noise renormalizes the tunnel coupling independent of temperature. Finally, we show that the effect of mixed longitudinal and transversal noise originating from a single bath cannot be obtained from an incoherent sum of purely longitudinal and purely transversal noise.
Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime
NASA Astrophysics Data System (ADS)
Magazzù, Luca; Carollo, Angelo; Spagnolo, Bernardo; Valenti, Davide
2016-05-01
We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman–Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped intrawell oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.
Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime
NASA Astrophysics Data System (ADS)
Magazzù, Luca; Carollo, Angelo; Spagnolo, Bernardo; Valenti, Davide
2016-05-01
We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped intrawell oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.
The effects of nonextensivity on quantum dissipation
Choi, Jeong Ryeol
2014-01-01
Nonextensive dynamics for a quantum dissipative system described by a Caldirola-Kanai (CK) Hamiltonian is investigated in SU(1,1) coherent states. To see the effects of nonextensivity, the system is generalized through a modification fulfilled by replacing the ordinary exponential function in the standard CK Hamiltonian with the q-exponential function. We confirmed that the time behavior of the system is somewhat different depending on the value of q which is the degree of nonextensivity. The effects of q on quantum energy dissipation and other parameters are illustrated and discussed in detail. PMID:24468727
Quantum bouncer with quadratic dissipation
NASA Astrophysics Data System (ADS)
González, G.
2008-02-01
The energy loss due to a quadratic velocity dependent force on a quantum particle bouncing on a perfectly reflecting surface is obtained for a full cycle of motion. We approach this problem by means of a new effective phenomenological Hamiltonian which corresponds to the actual energy of the system and obtained the correction to the eigenvalues of the energy in first order quantum perturbation theory for the case of weak dissipation.
NASA Astrophysics Data System (ADS)
Wieser, Robert
2015-03-01
The classical Landau-Lifshitz equation has been derived from quantum mechanics. Starting point is the assumption of a non-Hermitian Hamilton operator to take the energy dissipation into account. The corresponding quantum mechanical spin dynamics along with the time dependent Schrödinger, Liouville and Heisenberg equation has been described and the similarities and differences between classical and quantum mechanical spin dynamics have been discussed. Furthermore, a time dependent Schrödinger equation corresponding to the classical Landau-Lifshitz-Gilbert equation and two ways to include temperature into the quantum mechanical spin dynamics have been proposed.
Quantum Dissipation in Nanomechanical Oscillators
NASA Astrophysics Data System (ADS)
Zolfagharkhani, G.; Gaidarzhy, A.; Badzey, R. L.; Mohanty, P.
2004-03-01
Dissipation or energy relaxation of a resonant mode in a nanomechanical device occurs by its coupling to environment degrees of freedom, which also acquire quantum mechanical correlations at millikelvin temperatures. We report measurements of temperature and magnetic field dependence of dissipation in single crystal silicon nanobeams in MHz up to 1 GHz frequency range. We extend our measurements down to temperatures of 20 millikelvin and up to fields of 16 tesla. The fabrication of our Nano-Electro-Mechanical Systems (NEMS) involves e-beam lithography, as well as various deposition and plasma etching processes. This work is supported by NSF and the Sloan Foundation.
Quantum Correlation in Circuit QED Under Various Dissipative Modes
NASA Astrophysics Data System (ADS)
Ying-Hua, Ji; Yong-Mei, Liu
2016-10-01
Dynamical evolutions of quantum correlations in circuit quantum electrodynamics (circuit-QED) are investigated under various dissipative modes. The influences of photon number, coupling strength, detuning and relative phase angle on quantum entanglement and quantum discord are compared as well. The results show that quantum discord may be less robust to decoherence than quantum entanglement since the death and revival also appears. Under certain dissipative mode, the decoherence subspace can be formed in circuit-QED due to the cooperative action of vacuum field. Whether a decoherence subspace can be formed not only depends on the form of quantum system but also relates closely to the dissipative mode of environment. One can manipulate decoherence through manipulating the correlation between environments, but the effect depends on the choice of initial quantum states and dissipative modes. Furthermore, we find that proper relative phase of initial quantum state provides one means of suppressing decoherence.
NASA Astrophysics Data System (ADS)
Saalfrank, Peter; Kosloff, Ronnie
1996-08-01
The dynamics of uv/visible laser-induced nonthermal desorption of neutral molecules from metal surfaces are studied by Liouville-von Neumann equations for quantum open systems. A one-dimensional, two-state Gadzuk-Antoniewicz model is adopted, representative for NO/Pt(111). Electronic quenching due to coupling of the adsorbate negative ion resonance to the metal electrons is treated within the Lindblad dynamical semigroup approach. Both indirect (hot-electron mediated) and hypothetical direct (dipole) excitation processes are considered. For the indirect pathways, DIET (single-excitation) and DIMET (multiple-excitation) limits are studied using one- and double-dissipative channel models, respectively. To reproduce experimental desorption yields and desorbate translational energies, we estimate the quenching lifetime for NO/Pt(111) to be less than 5 fs. We also extend previous quantum treatments of photodesorption processes to the case of coordinate-dependent quenching rates. Further, the characteristic scaling laws of desorption yields versus laser fluence are derived for each of the individual excitation pathways. Finally, the possibility to control photoreactivity at surfaces by different, vibration-promoted schemes (surface heating, ir+uv two-photon strategies, use of pulsed uv lasers) is examined.
Dissipative effects on quantum sticking.
Zhang, Yanting; Clougherty, Dennis P
2012-04-27
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s~E((1+α)/2(1-α)); for a charged particle, we obtain s~E(α/2(1-α)). Thus, "quantum mirrors"-surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero-can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon. PMID:22680861
Dissipative Effects on Quantum Sticking
NASA Astrophysics Data System (ADS)
Zhang, Yanting; Clougherty, Dennis P.
2012-04-01
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s˜E(1+α)/2(1-α); for a charged particle, we obtain s˜Eα/2(1-α). Thus, “quantum mirrors”—surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero—can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
Dissipative Effects on Quantum Sticking
NASA Astrophysics Data System (ADS)
Zhang, Yanting; Clougherty, Dennis
2011-03-01
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral particles are examined. For the case of an ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain an analytic expression for the rate of sticking as an asymptotic expansion in the incident energy E . The low-energy threshold law for quantum sticking is found to be robust with respect to many-body effects and remains a universal scaling law to leading order in E . Non-universal many-body effects alter the coefficient of the rate law and the exponent of a subdominant term. We gratefully acknowledge support from NSF under DMR-0814377.
Dissipation-induced quantum phase transition in a quantum box
NASA Astrophysics Data System (ADS)
Borda, László; Zaránd, Gergely; Simon, Pascal
2005-10-01
In a recent work, Le Hur has shown, using perturbative arguments, that dissipative coupling to gate electrodes may play an important role in a quantum box near its degeneracy point [K. Le Hur, Phys. Rev. Lett. 92, 196804 (2004)]: While quantum fluctuations of the charge of the dot tend to round Coulomb blockade charging steps of the box, strong enough dissipation suppresses these fluctuations and leads to the reappearance of sharp charging steps. In the present paper, we study this quantum phase transition in detail using bosonization and the numerical renormalization group in the limit of vanishing level spacing and map out the phase diagram using these nonperturbative methods. We also discuss the properties of the renormalized lead-dot conductance in the vicinity of the phase transition and determine the scaling properties of the dynamically generated crossover scale analytically.
NASA Astrophysics Data System (ADS)
Grifoni, Milena; Paladino, Elisabetta
2008-11-01
'unconventional' questions were still open on the standard harmonic oscillator and spin baths. This includes both fundamental issues, such as the possibility of estimating the specific heat for a free particle in the presence of dissipation, and the development of methods suitable to dealing with long range correlations at zero temperature and with quantum chaotic environments. We believe that the present focus issue on Quantum Dissipation in Unconventional Environments, although certainly not exhaustive, provides an important open-access resource that presents the latest state of the art of research in this field along its different lines. Focus on Quantum Dissipation in Unconventional Environments Contents Dephasing by electron-electron interactions in a ballistic Mach-Zehnder interferometer Clemens Neuenhahn and Florian Marquardt Quantum frustration of dissipation by a spin bath D D Bhaktavatsala Rao, Heiner Kohler and Fernando Sols A random matrix theory of decoherence T Gorin, C Pineda, H Kohler and T H Seligman Dissipative dynamics of a biased qubit coupled to a harmonic oscillator: analytical results beyond the rotating wave approximation Johannes Hausinger and Milena Grifoni Dissipative dynamics of a two-level system resonantly coupled to a harmonic mode Frederico Brito and Amir O Caldeira Spin correlations in spin blockade Rafael Sánchez, Sigmund Kohler and Gloria Platero Landau-Zener tunnelling in dissipative circuit QED David Zueco, Peter Hänggi and Sigmund Kohler Quantum oscillations in the spin-boson model: reduced visibility from non-Markovian effects and initial entanglement F K Wilhelm Dynamics of dissipative coupled spins: decoherence, relaxation and effects of a spin-boson bath P Nägele, G Campagnano and U Weiss Spin chain model for correlated quantum channels Davide Rossini, Vittorio Giovannetti and Simone Montangero Finite quantum dissipation: the challenge of obtaining specific heat Peter Hänggi, Gert-Ludwig Ingold and Peter Talkner Dynamics of large
Dissipative Properties of Quantum Systems
Grecos, A. P.; Prigogine, I.
1972-01-01
We consider the dissipative properties of large quantum systems from the point of view of kinetic theory. The existence of a nontrivial collision operator imposes restrictions on the possible collisional invariants of the system. We consider a model in which a discrete level is coupled to a set of quantum states and which, in the limit of a large “volume,” becomes the Friedrichs model. Because of its simplicity this model allows a direct calculation of the collision operator as well as of related operators and the constants of the motion. For a degenerate spectrum the calculations become more involved but the conclusions remain simple. The special role played by the invariants that are functions of the Hamiltonion is shown to be a direct consequence of the existence of a nonvanishing collision operator. For a class of observables we obtain ergodic behavior, and this reformulation of the ergodic problem may be used in statistical mechanics to study the ergodicity of large quantum systems containing a small physical parameter such as the coupling constant or the concentration. PMID:16591994
Entanglement and dephasing of quantum dissipative systems
Stauber, T.; Guinea, F.
2006-04-15
The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.
On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics.
Chen, Hsing-Ta; Berkelbach, Timothy C; Reichman, David R
2016-04-21
Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin-boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we present is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques. PMID:27389208
Thermodynamical properties of Strunz’s quantum dissipative models
Zen, Freddy P.; Sulaiman, A.
2015-09-30
The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.
Segale, D; Apkarian, V A
2011-07-14
Spectrally resolved, 4-wave mixing measurements in five resonant colors are used to interrogate vibronic quantum coherences in phase-space. We highlight the principles through measurements on the B-state of I(2) in solid Kr--a prototype of a system strongly coupled to its environment. The measurements consist of preparing a superposition of wavepackets on the B-state and interrogating their cross-coherence as they get entangled with the environment. The study provides direct realizations of fundamental quantum principles in the mechanics of molecular matter, among them: the distinction between quantum and classical coherent dynamics of a system entangled with the environment, coherent dissipation, event-driven decoherence, environment selected coherent states, and non-local mechanics.
Dissipative superfluid dynamics from gravity
NASA Astrophysics Data System (ADS)
Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz
2011-04-01
Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.
Quantum Simulation of Dissipative Processes without Reservoir Engineering
Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.
2015-01-01
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy. PMID:26024437
Quantum simulation of dissipative processes without reservoir engineering
Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.
2015-05-29
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.
NASA Astrophysics Data System (ADS)
Shit, Anindita; Chattopadhyay, Sudip; Ray Chaudhuri, Jyotipratim
2014-03-01
Escape under the action of the external modulation constitutes a nontrivial generalization of an conventional Kramers rate because the system is away from thermal equilibrium. A derivation of this result from the point of view of Langevin dynamics in the frame of Floquet theorem in conjunction with the Kapitza-Landau time window (that leads to an attractive description of the time-dependent quantum dynamics in terms of time-independent one) has been provided. The quantum escape rate in the intermediate-to-high and very-high damping regime so obtained analytically using the phase space formalism associated with the Wigner distribution and path-integral formalism bears a quantum correction that depends strongly on the barrier height. It is shown that an increase of (amplitude/frequency) ratio causes the system to decay faster, in general. The crossover temperature between tunneling and thermal activation increases in the presence of field so that quantum effects in the escape are relevant at higher temperatures.
Dynamics of dissipative gravitational collapse
Herrera, L.; Santos, N.O.
2004-10-15
The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.
Critical properties of dissipative quantum spin systems in finite dimensions
NASA Astrophysics Data System (ADS)
Takada, Kabuki; Nishimori, Hidetoshi
2016-10-01
We study the critical properties of finite-dimensional dissipative quantum spin systems with uniform ferromagnetic interactions. Starting from the transverse field Ising model coupled to a bath of harmonic oscillators with Ohmic spectral density, we generalize its classical representation to classical spin systems with O(n) symmetry and then take the large-n limit to reduce the system to a spherical model. The exact solution to the resulting spherical model with long-range interactions along the imaginary time axis shows a phase transition with static critical exponents coinciding with those of the conventional short-range spherical model in d+2 dimensions, where d is the spatial dimensionality of the original quantum system. This implies that the dynamical exponent is z = 2. These conclusions are consistent with the results of Monte Carlo simulations and renormalization group calculations for dissipative transverse field Ising and O(n) models in one and two dimensions. The present approach therefore serves as a useful tool for analytically investigating the properties of quantum phase transitions of the dissipative transverse field Ising and other related models. Our method may also offer a platform to study more complex phase transitions in dissipative finite-dimensional quantum spin systems, which have recently received renewed interest in the context of quantum annealing in a noisy environment.
Dynamics of Dissipative Temporal Solitons
NASA Astrophysics Data System (ADS)
Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.
The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the
Quantum parameter space of dissipative directed transport.
Ermann, Leonardo; Carlo, Gabriel G
2015-01-01
Quantum manifestations of isoperiodic stable structures (QISSs) have a crucial role in the current behavior of quantum dissipative ratchets. In this context, the simple shape of the ISSs has been conjectured to be an almost exclusive feature of the classical system. This has drastic consequences for many properties of the directed currents, the most important one being that it imposes a significant reduction in their maximum values, thus affecting the attainable efficiency at the quantum level. In this work we prove this conjecture by means of comprehensive numerical explorations and statistical analysis of the quantum states. We are able to describe the quantum parameter space of a paradigmatic system for different values of ℏ(eff) in great detail. Moreover, thanks to this we provide evidence on a mechanism that we call parametric tunneling by which the sharp classical borders of the regions in parameter space become blurred in the quantum counterpart. We expect this to be a common property of generic dissipative quantum systems.
Bifurcations in dissipative fermionic dynamics
NASA Astrophysics Data System (ADS)
Napolitani, Paolo; Colonna, Maria; Di Prima, Mariangela
2014-05-01
The Boltzmann-Langevin One-Body model (BLOB), is a novel one-body transport approach, based on the solution of the Boltzmann-Langevin equation in three dimensions; it is used to handle large-amplitude phase-space fluctuations and has a broad applicability for dissipative fermionic dynamics. We study the occurrence of bifurcations in the dynamical trajectories describing heavy-ion collisions at Fermi energies. The model, applied to dilute systems formed in such collisions, reveals to be closer to the observation than previous attempts to include a Langevin term in Boltzmann theories. The onset of bifurcations and bimodal behaviour in dynamical trajectories, determines the fragment-formation mechanism. In particular, in the proximity of a threshold, fluctuations between two energetically favourable mechanisms stand out, so that when evolving from the same entrance channel, a variety of exit channels is accessible. This description gives quantitative indications about two threshold situations which characterise heavy-ion collisions at Fermi energies. First, the fusion-to-multifragmentation threshold in central collisions, where the system either reverts to a compact shape, or splits into several pieces of similar sizes. Second, the transition from binary mechanisms to neck fragmentation (in general, ternary channels), in peripheral collisions.
Quantum information-geometry of dissipative quantum phase transitions.
Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo
2014-02-01
A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them. PMID:25353417
Quantum information-geometry of dissipative quantum phase transitions.
Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo
2014-02-01
A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them.
Communication: Engineered tunable decay rate and controllable dissipative dynamics
Lue Zhiguo; Zheng Hang
2012-03-28
We investigate the steering dissipative dynamics of a two-level system (qubit) by means of the modulation of an assisted tunneling degree of freedom which is described by a quantum-oscillator spin-boson model. Our results reveal that the decoherence rate of the qubit can be significantly suppressed and simultaneously its quality factor is enhanced. Moreover, the modulated dynamical susceptibility exhibits a multi-peak feature which is indicative of the underlying structure and measurable in experiment. Our findings demonstrate that the interplay between the combined degrees of freedom and the qubit is crucial for reducing the dissipation of qubit and expanding the coherent regime of quantum operation much large. The strategy might be used to fight against deterioration of quantum coherence in quantum information processing.
Dissipative time-dependent quantum transport theory.
Zhang, Yu; Yam, Chi Yung; Chen, GuanHua
2013-04-28
A dissipative time-dependent quantum transport theory is developed to treat the transient current through molecular or nanoscopic devices in presence of electron-phonon interaction. The dissipation via phonon is taken into account by introducing a self-energy for the electron-phonon coupling in addition to the self-energy caused by the electrodes. Based on this, a numerical method is proposed. For practical implementation, the lowest order expansion is employed for the weak electron-phonon coupling case and the wide-band limit approximation is adopted for device and electrodes coupling. The corresponding hierarchical equation of motion is derived, which leads to an efficient and accurate time-dependent treatment of inelastic effect on transport for the weak electron-phonon interaction. The resulting method is applied to a one-level model system and a gold wire described by tight-binding model to demonstrate its validity and the importance of electron-phonon interaction for the quantum transport. As it is based on the effective single-electron model, the method can be readily extended to time-dependent density functional theory.
Environment-dependent dissipation in quantum Brownian motion
Paavola, J.; Piilo, J.; Suominen, K.-A.; Maniscalco, S.
2009-05-15
The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic, and super-Ohmic environments, without performing the Markovian approximation. Our results allow one to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.
Dissipative quantum trajectories in complex space: Damped harmonic oscillator
NASA Astrophysics Data System (ADS)
Chou, Chia-Chun
2016-10-01
Dissipative quantum trajectories in complex space are investigated in the framework of the logarithmic nonlinear Schrödinger equation. The logarithmic nonlinear Schrödinger equation provides a phenomenological description for dissipative quantum systems. Substituting the wave function expressed in terms of the complex action into the complex-extended logarithmic nonlinear Schrödinger equation, we derive the complex quantum Hamilton-Jacobi equation including the dissipative potential. It is shown that dissipative quantum trajectories satisfy a quantum Newtonian equation of motion in complex space with a friction force. Exact dissipative complex quantum trajectories are analyzed for the wave and solitonlike solutions to the logarithmic nonlinear Schrödinger equation for the damped harmonic oscillator. These trajectories converge to the equilibrium position as time evolves. It is indicated that dissipative complex quantum trajectories for the wave and solitonlike solutions are identical to dissipative complex classical trajectories for the damped harmonic oscillator. This study develops a theoretical framework for dissipative quantum trajectories in complex space.
Quantum dissipative effect of one dimension coupled anharmonic oscillator
Sulaiman, A.; Zen, Freddy P.
2015-04-16
Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.
Quantum sweeps, synchronization, and Kibble-Zurek physics in dissipative quantum spin systems
NASA Astrophysics Data System (ADS)
Henriet, Loïc; Le Hur, Karyn
2016-02-01
We address dissipation effects on the nonequilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (Ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions and develop an (mathematically and numerically) exact stochastic approach to address nonequilibrium protocols in the presence of an environment. For the two-spin case, we first investigate the dissipative quantum phase transition induced by the environment through quantum quenches and study the effect of the environment on the synchronization properties. Then we address Landau-Zener-Stueckelberg-Majorana protocols for two spins and for the spin array. In this latter case, we adopt a stochastic mean-field point of view and present a Kibble-Zurek-type argument to account for interaction effects in the lattice. Such dissipative quantum spin arrays can be realized in ultracold atoms, trapped ions, and mesoscopic systems and are related to Kondo lattice models.
Dissipative nonlinear dynamics in holography
NASA Astrophysics Data System (ADS)
Basu, Pallab; Ghosh, Archisman
2014-02-01
We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behavior very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behavior, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of O, the operator dual to the scalar field. Our setup can also be used to study quenchlike behavior in strongly coupled nonlinear systems.
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation. PMID:24270806
Quantum damped oscillator I: Dissipation and resonances
Chruscinski, Dariusz
2006-04-15
Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.
Jahn-Teller instability in dissipative quantum systems
Meaney, Charles P.; Duty, Tim; McKenzie, Ross H.; Milburn, G. J.
2010-04-15
We consider the steady states of a harmonic oscillator coupled so strongly to a two-level system (a qubit) that the rotating wave approximation cannot be made. The Hamiltonian version of this model is known as the E x {beta} Jahn-Teller model. The semiclassical version of this system exhibits a fixed-point bifurcation, which in the quantum model leads to a ground state with substantial entanglement between the oscillator and the qubit. We show that the dynamical bifurcation survives in a dissipative quantum description of the system, amidst an even richer bifurcation structure. We propose an experimental implementation of this model based on a superconducting cavity: a superconducting junction in the central conductor of a coplanar waveguide.
Kinetic foundations of relativistic dissipative fluid dynamics
NASA Astrophysics Data System (ADS)
Denicol, G. S.
2014-12-01
In this contribution we discuss in detail the most widespread formalisms employed to derive relativistic dissipative fluid dynamics from the Boltzmann equation: Chapman-Enskog expansion and Israel-Stewart theory. We further point out the drawbacks of each theory and explain possible ways to circumvent them. Recent developments in the derivation of fluid dynamics from the Boltzmann equation are also discussed.
Dissipation equation of motion approach to open quantum systems
NASA Astrophysics Data System (ADS)
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
Quantum and classical dissipation of charged particles
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.
An introduction to dissipative particle dynamics.
Lu, Zhong-Yuan; Wang, Yong-Lei
2013-01-01
Dissipative particle dynamics (DPD) is a particle-based mesoscopic simulation method, which facilitates the studies of thermodynamic and dynamic properties of soft matter systems at physically interesting length and time scales. In this method, molecule groups are clustered into the dissipative beads, and this coarse-graining procedure is a very important aspect of DPD as it allows significant computational speed-up. In this chapter, we introduce the DPD methodology, including its theoretical foundation and its parameterization. With this simulation technique, we can study complex behaviors of biological systems, such as the formation of vesicles and their fusion and fission processes, and the phase behavior of lipid membranes.
Dissipative electronic transport through double quantum dots irradiated with microwaves
NASA Astrophysics Data System (ADS)
Brandes, Tobias; Aguado, Ramon; Platero, Gloria
2003-03-01
Double quantum dots in the strong Coulomb blockade regime are realizations of two-level systems defined from two tunnel--splitted ground states, which are separated by a large energy gap from the remaining many--particle states. The interactions between electrons and bosonic degrees of freedom (photons, phonons) in these systems can be tested and manipulated in electronic transport experiments [1]. Monochromatic classical radiation (AC fields, microwaves) gives rise to various non-linear effects such as photo-sidebands or dynamical localization (coherent supression of tunneling) that show up in the time-averaged, stationary electronic current [2]. On the other hand, quantum noise of a dissipative environment strongly influences the transport properties of coupled quantum dots [3,4]. In this contribution, we quantitatively investigate the combined influence of a classical, monochromatic time-dependent AC field and a dissipative boson environment on the non-linear transport through a double quantum dot. We develop a Floquet-like theory [5] that takes into account the effect of the electron reservoirs (leads) and can be numerically evaluated for arbitrary strong AC fields and arbitrary boson environment. In limiting cases we reproduce previous analytical results (polaron tunneling, Tien-Gordon formula). [1] T. Fujisawa, T. H. Oosterkamp, W. G. van der Wiel, B. W. Broer, R. Aguado, S. Tarucha, and L. P. Kouwenhoven, Science 282, 932 (1998); R. H. Blick, D. Pfannkuche, R. J. Haug, K. v. Klitzing, and K. Eberl, Phys. Rev. Lett. 80, 4032 (1998). [2] T. H. Stoof, Yu. V. Nazarov, Phys. Rev. B 53, 1050 (1996). [3] T. Brandes, B. Kramer, Phys. Rev. Lett. 83, 3021 (1999); T. Brandes, F. Renzoni, R. H. Blick, Phys. Rev. B 64, 035319 (2001); T. Brandes, T. Vorrath, Phys. Rev. B 66, 075341 (2002). [4] R. Aguado and L. P. Kouwenhoven, Phys. Rev. Lett, 84, 1986 (2000). [5] M. Grifoni, P. Hänggi, Phys. Rep. 304, 229 (1998).
Dynamic fission instability of dissipative protoplanets
NASA Technical Reports Server (NTRS)
Boss, A. P.; Mizuno, H.
1985-01-01
Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.
Dynamic fission instability of dissipative protoplanets
NASA Astrophysics Data System (ADS)
Boss, A. P.; Mizuno, H.
1985-07-01
Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.
Schroedinger-equation formalism for a dissipative quantum system
Anisimovas, E.; Matulis, A.
2007-02-15
We consider a model dissipative quantum-mechanical system realized by coupling a quantum oscillator to a semi-infinite classical string which serves as a means of energy transfer from the oscillator to the infinity and thus plays the role of a dissipative element. The coupling between the two--quantum and classical--parts of the compound system is treated in the spirit of the mean-field approximation and justification of the validity of such an approach is given. The equations of motion of the classical subsystem are solved explicitly and an effective dissipative Schroedinger equation for the quantum subsystem is obtained. The proposed formalism is illustrated by its application to two basic problems: the decay of the quasistationary state and the calculation of the nonlinear resonance line shape.
Viscosity measurement techniques in Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
From quantum correlations in dissipative quantum walk to two-qubit systems
NASA Astrophysics Data System (ADS)
Nizama, Marco; Cáceres, Manuel O.
2014-04-01
A dissipative quantum walk (according to the semigroup approach) has been used as the starting point from which to study quantum correlations in an open system. This system is a fruitful model that allows the definition of several bipartite systems (sets of qubits). Thus the quantum correlations and the decoherence properties induced by a phonon bath can be investigated analytically using tools from quantum information. In particular we have studied the negativity, concurrence and quantum discord for different bipartitions in our dissipative system, and we have found analytical expression for these measures, using a local initial condition for the density matrix of the walker. In general quantum correlations are affected by dissipation in a complex non-monotonic way, showing at long time an expected asymptotic decrease with the increase of the dissipation. In addition, our results for the quantum correlations can be used as an indicator of the transition from the quantum to the classical regimen, as has recently been shown experimentally.
Symmetry boundary condition in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao
2015-07-01
Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.
Entanglement distillation by dissipation and continuous quantum repeaters.
Vollbrecht, Karl Gerd H; Muschik, Christine A; Cirac, J Ignacio
2011-09-16
Even though entanglement is very vulnerable to interactions with the environment, it can be created by purely dissipative processes. Yet, the attainable degree of entanglement is profoundly limited in the presence of noise sources. We show that distillation can also be realized dissipatively, such that a highly entangled steady state is obtained. The schemes put forward here display counterintuitive phenomena, such as improved performance if noise is added to the system. We also show how dissipative distillation can be employed in a continuous quantum repeater architecture, in which the resources scale polynomially with the distance.
Blast Dynamics in a Dissipative Gas.
Barbier, M; Villamaina, D; Trizac, E
2015-11-20
The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves.
Blast Dynamics in a Dissipative Gas.
Barbier, M; Villamaina, D; Trizac, E
2015-11-20
The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves. PMID:26636851
Quantum metrology with spin cat states under dissipation
NASA Astrophysics Data System (ADS)
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Quantum metrology with spin cat states under dissipation
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Quantum metrology with spin cat states under dissipation.
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Quantum metrology with spin cat states under dissipation.
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-09
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics.
Liu, Yong-Chun; Xiao, Yun-Feng; Luan, Xingsheng; Wong, Chee Wei
2013-04-12
Cooling of mesoscopic mechanical resonators represents a primary concern in cavity optomechanics. In this Letter, in the strong optomechanical coupling regime, we propose to dynamically control the cavity dissipation, which is able to significantly accelerate the cooling process while strongly suppressing the heating noise. Furthermore, the dynamic control is capable of overcoming quantum backaction and reducing the cooling limit by several orders of magnitude. The dynamic dissipation control provides new insights for tailoring the optomechanical interaction and offers the prospect of exploring mesoscopic quantum physics.
Polarizable water model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
Exceptional points in coupled dissipative dynamical systems.
Ryu, Jung-Wan; Son, Woo-Sik; Hwang, Dong-Uk; Lee, Soo-Young; Kim, Sang Wook
2015-05-01
We study the transient behavior in coupled dissipative dynamical systems based on the linear analysis around the steady state. We find that the transient time is minimized at a specific set of system parameters and show that at this parameter set, two eigenvalues and two eigenvectors of the Jacobian matrix coalesce at the same time; this degenerate point is called the exceptional point. For the case of coupled limit-cycle oscillators, we investigate the transient behavior into the amplitude death state, and clarify that the exceptional point is associated with a critical point of frequency locking, as well as the transition of the envelope oscillation.
Nonequilibrium quantum dissipation in spin-fermion systems
NASA Astrophysics Data System (ADS)
Segal, Dvira; Reichman, David R.; Millis, Andrew J.
2007-11-01
Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.
Energy relaxation of a dissipative quantum oscillator
Kumar, Pradeep; Pollak, Eli
2014-12-21
The dissipative harmonic oscillator is studied as a model for vibrational relaxation in a liquid environment. Continuum limit expressions are derived for the time-dependent average energy, average width of the population, and the vibrational population itself. The effect of the magnitude of the solute-solvent interaction, expressed in terms of a friction coefficient, solvent temperature, and initial energy of the oscillator on the relaxation has been studied. These results shed light on the recent femtosecond stimulated Raman scattering probe of the 1570 cm{sup −1} −C=C− stretching mode of trans-Stilbene in the first (S{sub 1}) excited electronic state. When the oscillator is initially cold with respect to the bath temperature, its average energy and width increase in time. When it is initially hot, the average energy and width decrease with time in qualitative agreement with the experimental observations.
Dynamics of dissipative multifluid neutron star cores
NASA Astrophysics Data System (ADS)
Haskell, B.; Andersson, N.; Comer, G. L.
2012-09-01
We present a Newtonian multifluid formalism for superfluid neutron star cores, focusing on the additional dissipative terms which arise when one takes into account the individual dynamical degrees of freedom associated with the coupled “fluids.” The problem is of direct astrophysical interest as the nature of the dissipative terms can have significant impact on the damping of the various oscillation modes of the star and the associated gravitational-wave signatures. A particularly interesting application concerns the gravitational-wave driven instability of f- and r-modes. We apply the developed formalism to two specific three-fluid systems: (i) a hyperon core in which both Λ and Σ- hyperons are present and (ii) a core of deconfined quarks in the color-flavor-locked phase in which a population of neutral K0 kaons is present. The formalism is, however, general and can be applied to other problems in neutron-star dynamics (such as the effect of thermal excitations close to the superfluid transition temperature) as well as laboratory multifluid systems.
Polarizable protein model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Peter, Emanuel; Lykov, Kirill; Pivkin, Igor
2015-11-01
In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.
Persistent currents and dissipation in narrow bilayer quantum Hall bars
NASA Astrophysics Data System (ADS)
Kyriakidis, Jordan; Radzihovsky, Leo
2001-11-01
Bilayer quantum Hall states support a flow of nearly dissipationless staggered current which can only decay through collective channels. We study the dominant finite-temperature dissipation mechanism which in narrow bars is driven by thermal nucleation of pseudospin solitons. We find the finite-temperature resistivity, predict the resulting staggered current-voltage characteristics, and calculate the associated zero-temperature critical staggered current and gate voltage.
Flow around spheres by dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun
2006-10-01
The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech
Dynamics and universality in noise-driven dissipative systems
NASA Astrophysics Data System (ADS)
Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud
2012-05-01
We investigate the dynamical properties of low-dimensional systems, driven by external noise sources. Specifically we consider a resistively shunted Josephson junction and a one-dimensional quantum liquid in a commensurate lattice potential, subject to 1/f noise. In absence of nonlinear coupling, we have shown previously that these systems establish a nonequilibrium critical steady state [Dalla Torre, Demler, Giamarchi, and Altman, Nat. Phys.1745-247310.1038/nphys1754 6, 806 (2010)]. Here, we use this state as the basis for a controlled renormalization group analysis using the Keldysh path integral formulation to treat the nonlinearities: the Josephson coupling and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions. However, at second order, the back action of the mode coupling on the critical state leads to renormalization of dissipation and emergence of an effective temperature. In the Josephson junction, the temperature is parametrically small allowing to observe a universal crossover between the superconducting and insulating regimes. The I-V characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide range. In the noisy one-dimensional liquid, the generated dissipation and effective temperature are not small as in the junction. We find a crossover between a quasilocalized regime dominated by dissipation and another dominated by temperature. However, since in the thermal regime the thermalization rate is parametrically small, signatures of the nonequilibrium critical state may be seen in transient dynamics.
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.
Abdi, M; Degenfeld-Schonburg, P; Sameti, M; Navarrete-Benlloch, C; Hartmann, M J
2016-06-10
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition. PMID:27341233
Fidelity optimization for holonomic quantum gates in dissipative environments
Parodi, Daniele; Solinas, Paolo; Zanghi, Nino; Sassetti, Maura; Zanardi, Paolo
2006-05-15
We analyze the performance of holonomic quantum gates in semiconductor quantum dots, driven by ultrafast lasers, under the effect of a dissipative environment. The environment is modeled as a thermal bath of oscillators linearly coupled with the electron states of the quantum dot. Standard techniques make the problem amenable to a numerical treatment and allow one to determine the fidelity as a function of all the relevant physical parameters. As a consequence of our analysis, we show that the disturbance of the environment can be (approximately) suppressed and the performance of the gate optimized--provided that the thermal bath is purely super-Ohmic. We conclude by showing that such an optimization is impossible for Ohmic environments.
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States
NASA Astrophysics Data System (ADS)
Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.
2016-06-01
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
Minimising the heat dissipation of quantum information erasure
NASA Astrophysics Data System (ADS)
Hamed Mohammady, M.; Mohseni, Masoud; Omar, Yasser
2016-01-01
Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state ≤ft|{\\varphi }1\\right.> be no smaller than {p}{\\varphi 1}{max}-δ . Here {p}{\\varphi 1}{max} is the maximum probability of information erasure that is permissible by the physical context, and δ ≥slant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework.
Quantum simulation of dynamical maps with trapped ions
NASA Astrophysics Data System (ADS)
Schindler, P.; Müller, M.; Nigg, D.; Barreiro, J. T.; Martinez, E. A.; Hennrich, M.; Monz, T.; Diehl, S.; Zoller, P.; Blatt, R.
2013-06-01
Dynamical maps describe general transformations of the state of a physical system--their iteration interpreted as generating a discrete time evolution. Prime examples include classical nonlinear systems undergoing transitions to chaos. Quantum mechanical counterparts show intriguing phenomena such as dynamical localization on the single-particle level. Here we extend the concept of dynamical maps to a many-particle context, where the time evolution involves both coherent and dissipative elements: we experimentally explore the stroboscopic dynamics of a complex many-body spin model with a universal trapped ion quantum simulator. We generate long-range phase coherence of spin by an iteration of purely dissipative quantum maps and demonstrate the characteristics of competition between combined coherent and dissipative non-equilibrium evolution--the hallmark of a previously unobserved dynamical phase transition. We assess the influence of experimental errors in the quantum simulation and tackle this problem by developing an efficient error detection and reduction toolbox based on quantum feedback.
Friction and particle-hole pairs. [in dissipative quantum phenomena
NASA Technical Reports Server (NTRS)
Guinea, F.
1984-01-01
The effect induced by dissipation on quantum phenomena has recently been considered, taking into account as a starting point a phenomenological Hamiltonian in which the environment is simulated by an appropriately chosen set of harmonic oscillators. It is found that this approach should be adequate to describe the low-energy behavior of a wide class of environments. The present investigation is concerned with an analysis of the case in which the environment is a gas (or liquid) of fermions, and the relevant low-energy excitations are particle-hole pairs. A study is conducted regarding the extent to which the quantum results obtained for harmonic oscillators are also valid in the considered situation. Linear-response theory is used to derive an effective action which describes the motion of an external particle coupled to a normal Fermi fluid.
Diffusion of Dissipative Correlation in the Dynamic Failure of Solids
NASA Astrophysics Data System (ADS)
Grady, Dennis
A property identified as the dissipative action has found application as a unifying attribute underlying the dynamic failure of solid materials. Failure modes include tensile spall, impact-induced dynamic shear, shock compaction and steady shock-wave compression. The present work explores the possible application of Langevin dynamics and related statistical mechanical implications as underlying the extreme dynamic failure of solids.
Zeno dynamics in quantum open systems
Zhang, Yu-Ran; Fan, Heng
2015-01-01
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states. PMID:26099840
Zeno dynamics in quantum open systems.
Zhang, Yu-Ran; Fan, Heng
2015-06-23
Quantum Zeno effect shows that frequent observations can slow down or even stop the unitary time evolution of an unstable quantum system. This effect can also be regarded as a physical consequence of the statistical indistinguishability of neighboring quantum states. The accessibility of quantum Zeno dynamics under unitary time evolution can be quantitatively estimated by quantum Zeno time in terms of Fisher information. In this work, we investigate the accessibility of quantum Zeno dynamics in quantum open systems by calculating noisy Fisher information when a trace preserving and completely positive map is assumed. We firstly study the consequences of non-Markovian noise on quantum Zeno effect and give the exact forms of the dissipative Fisher information and the quantum Zeno time. Then, for the operator-sum representation, an achievable upper bound of the quantum Zeno time is given with the help of the results in noisy quantum metrology. It is of significance that the noise reducing the accuracy in the entanglement-enhanced parameter estimation can conversely be favorable for the accessibility of quantum Zeno dynamics of entangled states.
Networks of dissipative quantum harmonic oscillators: A general treatment
Ponte, M. A. de; Mizrahi, S. S.; Moussa, M. H. Y.
2007-09-15
We present a general treatment of a bosonic dissipative network: a chain of coupled dissipative harmonic oscillators whatever its topology--i.e., whichever the way the oscillators are coupled together, the strength of their couplings, and their natural frequencies. Starting with a general more realistic scenario where each oscillator is coupled to its own reservoir, we also discuss the case where all the network oscillators are coupled to a common reservoir. We obtain the master equation governing the dynamic of the network states and the associated evolution equation of the Glauber-Sudarshan P function. With these instruments we briefly show how to analyze the decoherence and the evolution of the linear entropy of general states of the network. We also show how to obtain the master equation for the case of distinct reservoirs from that of a common one.
Quantum Information with Rydberg atoms: Role of dissipation and decoherence
NASA Astrophysics Data System (ADS)
Dasari, Durga Bhaktavatsala Rao; Molmer, Klaus
2014-03-01
Originally inhomegeneities, decoherence and decay of the atomic systems were minimized in quantum computing proposals so that their effects would not disturb the ideal unitary evolution of the system. Recent works, however, suggest a quite opposite strategy, where inhomegeneities are created on purpose and and the system is driven on resonance with short lived states such that it dephases and decays to robust steady states. By suitable use of the interactions, these states can be selected, e.g., as entangled states or states encoding the outcome of a quantum computation. We investigate the coherent effects induced by dissipation and decoherence in neutral atom based quantum computing proposals, for creating robust entangled states and long distance gates. We also show that these incoherent effects can also be helpful for deterministic loading of optical traps with single atoms and to reliably store and emit single photons. This work was supported by the project MALICIA under FET-Open grant number 265522, and the IARPA MQCO program.
Internal dissipation and heat leaks in quantum thermodynamic cycles
NASA Astrophysics Data System (ADS)
Correa, Luis A.; Palao, José P.; Alonso, Daniel
2015-09-01
The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.
Molecular dynamics studies of thermal dissipation during shock induced spalling
NASA Astrophysics Data System (ADS)
Xiang, Meizhen; Hu, Haibo; Chen, Jun; Liao, Yi
2013-09-01
Under shock loadings, the temperature of materials may vary dramatically during deformation and fracture processes. Thus, thermal effect is important for constructing dynamical failure models. Existing works on thermal dissipation effects are mostly from meso- to macro-scale levels based on phenomenological assumptions. The main purpose of the present work is to provide several atomistic scale perspectives about thermal dissipation during spall fracture by nonequilibrium molecular dynamics simulations on single-crystalline and nanocrystalline Pb. The simulations show that temperature arising starts from the vicinity of voids during spalling. The thermal dissipation rate in void nucleation stage is much higher than that in the later growth and coalescence stages. Both classical spallation and micro-spallation are taken into account. Classical spallation is corresponding to spallation phenomenon where materials keep in solid state during shock compression and release stages, while micro-spallation is corresponding to spallation phenomenon where melting occurs during shock compression and release stages. In classical spallation, whether residuary dislocations are produced in pre-spall stages has significant influences on thermal dissipation rate during void growth and coalescence. The thermal dissipation rates decrease as shock intensity increases. When the shock intensity exceeds the threshold of micro-spallation, the thermal dissipation rate in void nucleation stage drops precipitously. It is found that grain boundaries mainly influence the thermal dissipation rate in void nucleation stage in classical spallation. In micro-spallation, the grain boundary effects are insignificant.
Classical and quantum dissipation of bright solitons in a bosonic superfluid
NASA Astrophysics Data System (ADS)
Efimkin, Dmitry K.; Hofmann, Johannes B.; Galitski, Victor
We consider the quantum dissipation of a bright soliton in a quasi-one-dimensional bosonic superfluid. The dissipation appears due to interaction of the soliton with Bogoliubov excitations, which act as a bath for the soliton. Using a collective coordinate approach and the Keldysh formalism, we derive a Langevin equation for the soliton motion which contains both a friction and a stochastic force. We argue that due to the integrability of the original problem, Ohmic friction is absent, rendering the dynamics non-Markovian. We furthermore show that the resulting friction can be interpreted as the backreaction of Bogoliubov quasiparticles emitted by an accelerating soliton, which represents an analogue of the Abraham-Lorentz force known in electrodynamic.
NASA Astrophysics Data System (ADS)
Hussain, S.; Akhtar, N.
2016-09-01
Ion acoustic shocks in the electron-hole-ion semiconductor plasmas have been studied. The quantum recoil effects, exchange-correlation effects and degenerate pressure of electrons and holes are included. The ion species are considered classical and their dissipation is taken into account via the dynamic viscosity. The Korteweg de Vries Burgers equation is derived by using reductive perturbation approach. The excitation of shock waves in different semiconductor plasmas is pointed out. For numerical analyses, the plasma parameters of different semiconductors are considered. The impact of variation of the plasma parameters on the strength of the shock wave in the semiconductor plasmas is discussed.
Quench dynamics of a disordered array of dissipative coupled cavities
Creatore, C.; Fazio, R.; Keeling, J.; Türeci, H. E.
2014-01-01
We investigate the mean-field dynamics of a system of interacting photons in an array of coupled cavities in the presence of dissipation and disorder. We follow the evolution of an initially prepared Fock state, and show how the interplay between dissipation and disorder affects the coherence properties of the cavity emission, and show that these properties can be used as signatures of the many-body phase of the whole array. PMID:25197253
Entanglement Dynamics and its Application for Two Qubits in Dissipative Environment
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Yu, X. G.; Fu, Guolan; Xu, Hualan; Yu, Yanxia
2015-02-01
An entanglement dynamics of two dissipative qubits under different situation of initial conditions is studied. We find that the periodic disentanglement and entanglement results from the interaction between two qubits, while the disentanglement is primarily caused by environmental perturbations. In the two cases of a pure dephasing environment and a normal environment, the sudden death of entanglement (ESD) is happened. For a simple dissipative environment, the sudden death of entanglement disappears for non-interacting qubits. The concurrence decreases gradually with the involving time, where the stronger the strength interacting with the environment is, the faster the attenuation of the amplitude of concurrence should be. Without the interaction with the environment, ESD would disappear. Furthermore, the applications of quantum entanglement are discussed in the rotating operator dynamics and the populations of quantum states.
Fluctuation-dissipation dynamics of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Bartrum, Sam; Berera, Arjun; Rosa, João G.
2015-04-01
We show that dissipative effects have a significant impact on the evolution of cosmological scalar fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation coefficient for different scalar fields within the standard model and some of its most widely considered extensions, in different parametric regimes. We describe the generic consequences of fluctuation-dissipation dynamics in the postinflationary universe, focusing in particular on friction and particle production, and analyze in detail two important effects. First, we show that dissipative friction delays the process of spontaneous symmetry breaking and may even damp the motion of a Higgs field sufficiently to induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically dilute the abundance of dangerous thermal relics. Second, we show that dissipation can generate the observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative leptogenesis. We further show that this generically leads to characteristic baryon isocurvature perturbations that can be tested with cosmic microwave background observations. This work provides a fundamental framework to go beyond the leading thermal equilibrium semiclassical approximation in addressing fundamental problems in modern cosmology.
Dissipation, dephasing and quantum Darwinism in qubit systems with random unitary interactions
NASA Astrophysics Data System (ADS)
Balaneskovic, Nenad; Mendler, Marc
2016-09-01
We investigate the influence of dissipation and decoherence on quantum Darwinism by generalizing Zurek's original qubit model of decoherence and the establishment of pointer states [W.H. Zurek, Nat. Phys. 5, 181 (2009); see also arXiv: quant-ph/0707.2832v1, pp. 14-19.]. Our model allows for repeated multiple qubit-qubit couplings between system and environment which are described by randomly applied two-qubit quantum operations inducing entanglement, dissipation and dephasing. The resulting stationary qubit states of system and environment are investigated. They exhibit the intricate influence of entanglement generation, dissipation and dephasing on this characteristic quantum phenomenon.
Dissipation and entropy production in open quantum systems
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2010-11-01
A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.
Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter
NASA Astrophysics Data System (ADS)
Trautmann, N.; Alber, G.
2016-05-01
We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.
A variational approach for dissipative quantum transport in a wide parameter space.
Zhang, Yu; Yam, ChiYung; Chen, GuanHua
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented. PMID:26619516
A variational approach for dissipative quantum transport in a wide parameter space
Zhang, Yu Kwok, YanHo; Chen, GuanHua; Yam, ChiYung
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.
A particle-dynamics study of dissipation in colliding clouds of ultracold fermions.
Succi, Sauro; Toschi, Federico; Capuzzi, Pablo; Vignolo, Patrizia; Tosi, Mario P
2004-08-15
We present a numerical study of the micro-dynamical roots of dissipation in two colliding mesoscopic clouds of point-like fermions as a function of the scattering length and of temperature approaching full quantum degeneracy. This study, which is motivated by current experiments on ultracold gaseous mixtures of fermionic atoms inside magnetic traps, combines the solution of the coupled Vlasov-Landau equations for the Wigner distribution functions with a locally adaptive importance-sampling technique for handling collisional interactions. The results illustrate the consequences of genuinely quantum collisional phenomena, and in particular the role of Pauli blocking in the transition to hydrodynamic behaviour. We also compare the computed quantum collision rate as a function of temperature in the weak-coupling case with theoretical results assuming that equilibrium distributions determine the quantum collision integral.
Dissipative time evolution of a chiral state after a quantum quench
NASA Astrophysics Data System (ADS)
Wolff, Stefan; Sheikhan, Ameneh; Kollath, Corinna
2016-10-01
We investigate the dynamics of fermionic atoms in a high-finesse optical resonator after a sudden switch on of the coupling between the atoms and the cavity. The atoms are additionally confined by optical lattices to a ladder geometry. The tunneling mechanism on a rung of a ladder is induced by a cavity-assisted Raman process. At long times after the quantum quench the arising steady state can carry a chiral current. In this work we employ exact diagonalization techniques on small system sizes to study the dissipative attractor dynamics after the quench towards the steady state and deviations of the properties of the steady state from predictions obtained by adiabatically eliminating the cavity mode.
Stochastic simulation of dissipation and non-Markovian effects in open quantum systems.
Lacroix, Denis
2008-04-01
The exact dynamics of a system coupled to an environment can be described by an integro-differential stochastic equation for the reduced density. The influence of the environment is incorporated through a mean field which is both stochastic and nonlocal in time and where the standard two-time correlation functions of the environment appear naturally. Since no approximation is made, the presented theory incorporates exactly dissipative and non-Markovian effects. Applications to the spin-boson model coupled to a heat bath with various coupling regimes and temperature show that the presented stochastic theory can be a valuable tool to simulate exactly the dynamics of open quantum systems. Links with the stochastic Schrödinger equation method and possible extensions to "imaginary time" propagation are discussed.
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban
2006-09-01
We propose quantization relationships which would let us describe and solution problems originated by conflicting or cooperative behaviors among the members of a system from the point of view of quantum mechanical interactions. The quantum version of the replicator dynamics is the equation of evolution of mixed states from quantum statistical mechanics. A system and all its members will cooperate and rearrange its states to improve their present condition. They strive to reach the best possible state for each of them which is also the best possible state for the whole system. This led us to propose a quantum equilibrium in which a system is stable only if it maximizes the welfare of the collective above the welfare of the individual. If it is maximized the welfare of the individual above the welfare of the collective the system gets unstable and eventually it collapses.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems
Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems
Schlosshauer, Maximilian; Hines, A. P.; Milburn, G. J.
2008-02-15
We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four 'canonical' system-environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.
Dynamic performance of dissipative dielectric elastomers under alternating mechanical load
NASA Astrophysics Data System (ADS)
Zhang, Junshi; Chen, Hualing; Sheng, Junjie; Liu, Lei; Wang, Yongquan; Jia, Shuhai
2014-07-01
This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.
Efficient Schmidt number scaling in dissipative particle dynamics.
Krafnick, Ryan C; García, Angel E
2015-12-28
Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies. PMID:26723591
Efficient Schmidt number scaling in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Krafnick, Ryan C.; García, Angel E.
2015-12-01
Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.
Quantum driven dissipative parametric oscillator in a blackbody radiation field
Pachón, Leonardo A.; Brumer, Paul
2014-01-15
We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in analytic closed formulae, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.
Quantum Simulation for Open-System Dynamics
NASA Astrophysics Data System (ADS)
Wang, Dong-Sheng; de Oliveira, Marcos Cesar; Berry, Dominic; Sanders, Barry
2013-03-01
Simulations are essential for predicting and explaining properties of physical and mathematical systems yet so far have been restricted to classical and closed quantum systems. Although forays have been made into open-system quantum simulation, the strict algorithmic aspect has not been explored yet is necessary to account fully for resource consumption to deliver bounded-error answers to computational questions. An open-system quantum simulator would encompass classical and closed-system simulation and also solve outstanding problems concerning, e.g. dynamical phase transitions in non-equilibrium systems, establishing long-range order via dissipation, verifying the simulatability of open-system dynamics on a quantum Turing machine. We construct an efficient autonomous algorithm for designing an efficient quantum circuit to simulate many-body open-system dynamics described by a local Hamiltonian plus decoherence due to separate baths for each particle. The execution time and number of gates for the quantum simulator both scale polynomially with the system size. DSW funded by USARO. MCO funded by AITF and Brazilian agencies CNPq and FAPESP through Instituto Nacional de Ciencia e Tecnologia-Informacao Quantica (INCT-IQ). DWB funded by ARC Future Fellowship (FT100100761). BCS funded by AITF, CIFAR, NSERC and USARO.
Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Electron theory of fast and ultrafast dissipative magnetization dynamics.
Fähnle, M; Illg, C
2011-12-14
For metallic magnets we review the experimental and electron-theoretical investigations of fast magnetization dynamics (on a timescale of ns to 100 ps) and of laser-pulse-induced ultrafast dynamics (few hundred fs). It is argued that for both situations the dominant contributions to the dissipative part of the dynamics arise from the excitation of electron-hole pairs and from the subsequent relaxation of these pairs by spin-dependent scattering processes, which transfer angular momentum to the lattice. By effective field theories (generalized breathing and bubbling Fermi-surface models) it is shown that the Gilbert equation of motion, which is often used to describe the fast dissipative magnetization dynamics, must be extended in several aspects. The basic assumptions of the Elliott-Yafet theory, which is often used to describe the ultrafast spin relaxation after laser-pulse irradiation, are discussed very critically. However, it is shown that for Ni this theory probably yields a value for the spin-relaxation time T(1) in good agreement with the experimental value. A relation between the quantity α characterizing the damping of the fast dynamics in simple situations and the time T(1) is derived. PMID:22089491
Dissipative particle dynamics model for colloid transport in porous media
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation
NASA Astrophysics Data System (ADS)
Molnár, Etele; Niemi, Harri; Rischke, Dirk H.
2016-06-01
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
Richardson, W.H. . E-mail: whr@stanford.edu
2006-06-15
A technique for describing dissipative quantum systems that utilizes a fundamental Hamiltonian, which is composed of intrinsic operators of the system, is presented. The specific system considered is a capacitor (or free particle) that is coupled to a resistor (or dissipative medium). The microscopic mechanisms that lead to dissipation are represented by the standard Hamiltonian. Now dissipation is really a collective phenomenon of entities that comprise a macroscopic or mesoscopic object. Hence operators that describe the collective features of the dissipative medium are utilized to construct the Hamiltonian that represents the coupled resistor and capacitor. Quantization of the spatial gauge function is introduced. The magnetic energy part of the coupled Hamiltonian is written in terms of that quantized gauge function and the current density of the dissipative medium. A detailed derivation of the kinetic equation that represents the capacitor or free particle is presented. The partial spectral densities and functions related to spectral densities, which enter the kinetic equations as coefficients of commutators, are evaluated. Explicit expressions for the nonMarkoffian contribution in terms of products of spectral densities and related functions are given. The influence of all two-time correlation functions are considered. Also stated is a remainder term that is a product of partial spectral densities and which is due to higher order terms in the correlation density matrix. The Markoffian part of the kinetic equation is compared with the Master equation that is obtained using the standard generator in the axiomatic approach. A detailed derivation of the Master equation that represents the dissipative medium is also presented. The dynamical equation for the resistor depends on the spatial wavevector, and the influence of the free particle on the diagonal elements (in wavevector space) is stated.
Quantum jump approach for work and dissipation in a two-level system.
Hekking, F W J; Pekola, J P
2013-08-30
We apply the quantum jump approach to address the statistics of work in a driven two-level system coupled to a heat bath. We demonstrate how this question can be analyzed by counting photons absorbed and emitted by the environment in repeated experiments. We find that the common nonequilibrium fluctuation relations are satisfied identically. The usual fluctuation-dissipation theorem for linear response applies for weak dissipation and/or weak drive. We point out qualitative differences between the classical and quantum regimes. PMID:24033034
Smoothed dissipative particle dynamics with angular momentum conservation
Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Dynamical Critical Phenomena in Driven-Dissipative Systems
NASA Astrophysics Data System (ADS)
Sieberer, L. M.; Huber, S. D.; Altman, E.; Diehl, S.
2013-05-01
We explore the nature of the Bose condensation transition in driven open quantum systems, such as exciton-polariton condensates. Using a functional renormalization group approach formulated in the Keldysh framework, we characterize the dynamical critical behavior that governs decoherence and an effective thermalization of the low frequency dynamics. We identify a critical exponent special to the driven system, showing that it defines a new dynamical universality class. Hence critical points in driven systems lie beyond the standard classification of equilibrium dynamical phase transitions. We show how the new critical exponent can be probed in experiments with driven cold atomic systems and exciton-polariton condensates.
Dissipative Particle Dynamics interaction parameters from ab initio calculations
NASA Astrophysics Data System (ADS)
Sepehr, Fatemeh; Paddison, Stephen J.
2016-02-01
Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.
Dissipative-particle-dynamics model of biofilm growth
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
Modeling of Endothelial Glyccalyx via Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Liang, Haojun; Karniadakis, George
2011-03-01
We employ Dissipative Particle Dynamics (DPD) to simulate flow in small vessels with the endothelial glycocalyx attached to the wall. Of particular interest is the quantification of the slip velocity at the edge of glycocalyx and of the increased pressure drop at different crafting densities, stiffness and height of the glycocalyx. Results will be presented for capillaries and small arterioles, and interactions with discrete red blood cells will be included in the modeling. In addition to the physical insight gain for this important but relatively unexplored bioflow, simple models for the slip velocity will be proposed that can be used in continuum simulations of blood flow in micro-vessels.
Chaos in high-dimensional dissipative dynamical systems
Ispolatov, Iaroslav; Madhok, Vaibhav; Allende, Sebastian; Doebeli, Michael
2015-01-01
For dissipative dynamical systems described by a system of ordinary differential equations, we address the question of how the probability of chaotic dynamics increases with the dimensionality of the phase space. We find that for a system of d globally coupled ODE’s with quadratic and cubic non-linearities with randomly chosen coefficients and initial conditions, the probability of a trajectory to be chaotic increases universally from ~10−5 − 10−4 for d = 3 to essentially one for d ~ 50. In the limit of large d, the invariant measure of the dynamical systems exhibits universal scaling that depends on the degree of non-linearity, but not on the choice of coefficients, and the largest Lyapunov exponent converges to a universal scaling limit. Using statistical arguments, we provide analytical explanations for the observed scaling, universality, and for the probability of chaos. PMID:26224119
Dissipation coefficients from scalar and fermion quantum field interactions
Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O. E-mail: ab@ph.ed.ac.uk
2011-09-01
Dissipation coefficients are calculated in the adiabatic, near thermal equilibrium regime for a large class of renormalizable interaction configurations involving a two-stage mechanism, where a background scalar field is coupled to heavy intermediate scalar or fermion fields which in turn are coupled to light scalar or fermion radiation fields. These interactions are typical of warm inflation microscopic model building. Two perturbative regimes are shown where well defined approximations for the spectral functions apply. One regime is at high temperature, when the masses of both intermediate and radiation fields are less than the temperature scale and where the poles of the spectral functions dominate. The other regime is at low temperature, when the intermediate field masses are much bigger than the temperature and where the low energy and low three-momentum regime dominate the spectral functions. The dissipation coefficients in these two regimes are derived. However, due to resummation issues for the high temperature case, only phenomenological approximate estimates are provided for the dissipation in this regime. In the low temperature case, higher loop contributions are suppressed and so no resummation is necessary. In addition to inflationary cosmology, the application of our results to cosmological phase transitions is also discussed.
Quantum Monte Carlo simulation of the dissipative granular array
NASA Astrophysics Data System (ADS)
Matsumoto, Munehisa; Troyer, Matthias
2007-03-01
We develop a new cluster algorithm for the dissipative granular arrays and apply it to the one-dimensional (1D) array. The problem in the simulation of the dissipative granular array arises from the competition between the phase difference terms and the on-site charging energy terms in the action. We divide these two kinds of terms into on-site terms and inter-site terms. A cluster update for the latter is combined with the Metropolis method for the former, being in the same spirit as was done for the resistively-shunted Josephson-junction array [1]. The on-site charging energy is calculated for the 1D array and its dependence on the strength of dissipation is discussed in comparison to several theoretical predictions [2]. [1] P. Werner and M. Troyer: Phys. Rev. Lett. 95 (2005) 060201. [2] K. B. Efetov and A. Tschersich: Europhys. Lett. 59 (2002) 114; A. Altland, L.I. Glazman, A. Kamenev: Phys. Rev. Lett 92 (2004) 026801.
Decoherence and dissipation for a quantum system coupled to a local environment
NASA Technical Reports Server (NTRS)
Gallis, Michael R.
1994-01-01
Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.
Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems
NASA Astrophysics Data System (ADS)
Bianucci, Marco
2016-08-01
Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way. PMID:27419546
NASA Astrophysics Data System (ADS)
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.
Dissipative effects in nonlinear Klein-Gordon dynamics
NASA Astrophysics Data System (ADS)
Plastino, A. R.; Tsallis, C.
2016-03-01
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.
Quantum-beat based dissipation for spin squeezing and light entanglement.
Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi
2016-08-22
We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states.
Quantum-beat based dissipation for spin squeezing and light entanglement.
Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi
2016-08-22
We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states. PMID:27557189
Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.
Petsev, Nikolai D; Leal, L Gary; Shell, M Scott
2016-02-28
Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales. PMID:26931689
Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2016-02-01
Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales.
Area law for fixed points of rapidly mixing dissipative quantum systems
Brandão, Fernando G. S. L.; Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David
2015-10-15
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.
NASA Astrophysics Data System (ADS)
Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng
2016-01-01
We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.
Ion-acoustic vortices in inhomogeneous and dissipative electron-positron-ion quantum magnetoplasmas
NASA Astrophysics Data System (ADS)
Masood, W.; Mirza, Arshad M.; Nargis, Shahida; Ayub, M.
2009-04-01
Linear and nonlinear properties of quantum ion-acoustic waves are studied in a nonuniform, dissipative quantum plasma (composed of electrons, positrons, and ions) with sheared ion flow parallel to the ambient magnetic field, using the quantum hydrodynamic model. It is shown that the shear ion flow parallel to the external magnetic field can drive the quantum ion-acoustic wave unstable provided ∣S∣ky>kz. Stationary solutions of the nonlinear equations that govern the quantum ion-acoustic waves are also obtained. It is found that electrostatic monopolar, dipolar, and vortex street-type solutions can appear in such a plasma. It is observed that the inclusion of positron, quantum statistical, and Bohm potential terms significantly modifies the scale lengths of these nonlinear structures. The relevance of the present investigation with regard to the dense astrophysical environments is also pointed out.
NASA Astrophysics Data System (ADS)
Masood, W.; Mirza, Arshad M.; Nargis, Shahida
2008-10-01
Linear and nonlinear properties of quantum dust acoustic waves are studied in a nonuniform, dissipative quantum plasma with sheared dust flow parallel to the ambient magnetic field, using the quantum hydrodynamic model. It is shown that the shear dust flow parallel to the external magnetic field can drive the quantum dust-acoustic wave unstable provided it has a negative slope. Stationary solutions of the nonlinear equations that govern the quantum dust-acoustic waves are also obtained. It is found that electrostatic monopolar, dipolar, and vortex street-type solutions can appear in such a plasma. It is observed that the inclusion of dust, quantum statistical, and Bohm potential terms significantly modify the scale lengths of these nonlinear structures. The relevance of the present investigation with regard to the dense astrophysical environments is also pointed out.
Dynamical structure of magnetized dissipative accretion flow around black holes
NASA Astrophysics Data System (ADS)
Sarkar, Biplob; Das, Santabrata
2016-09-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.
Population Dynamics of Excited Atoms in Dissipative Cavities
NASA Astrophysics Data System (ADS)
Zou, Hong-Mei; Liu, Yu; Fang, Mao-Fa
2016-10-01
Population dynamics of excited atoms in dissipative cavities is investigated in this work. We present a method of controlling populations of excited atoms in dissipative cavities. For the initial state | e e> A B |00> a b , the repopulation of excited atoms can be obtained by using atom-cavity couplings and non-Markovian effects after the atomic excited energy decays to zero. For the initial state | g g> A B |11> a b , the two atoms can also be populated to the excited states from the initial ground states by using atom-cavity couplings and non-Markovian effects. And the stronger the atom-cavity coupling or the non-Markovian effect is, the larger the number of repopulation of excited atoms is. Particularly, when the atom-cavity coupling or the non-Markovian effect is very strong, the number of repopulation of excited atoms can be close to one in a short time and will tend to a steady value in a long time.
Time-evolution of quantum systems via a complex nonlinear Riccati equation. II. Dissipative systems
NASA Astrophysics Data System (ADS)
Cruz, Hans; Schuch, Dieter; Castaños, Octavio; Rosas-Ortiz, Oscar
2016-10-01
In our former contribution (Cruz et al., 2015), we have shown the sensitivity to the choice of initial conditions in the evolution of Gaussian wave packets via the nonlinear Riccati equation. The formalism developed in the previous work is extended to effective approaches for the description of dissipative quantum systems. By means of simple examples we show the effects of the environment on the quantum uncertainties, correlation function, quantum energy contribution and tunnelling currents. We prove that the environmental parameter γ is strongly related with the sensitivity to the choice of initial conditions.
Quantum resistance standard accuracy close to the zero-dissipation state
NASA Astrophysics Data System (ADS)
Schopfer, F.; Poirier, W.
2013-08-01
We report on a comparison of four GaAs/AlGaAs-based quantum resistance standards using an original technique adapted from the well-known Wheatstone bridge. This work shows that the quantized Hall resistance at Landau level filling factor ν =2 can be reproducible with a relative uncertainty of 32×10-12 in the dissipationless limit of the quantum Hall effect regime. In the presence of a very small dissipation characterized by a mean macroscopic longitudinal resistivity Rxx(B)¯ of a few μΩ, the discrepancy ΔRH(B) between quantum Hall resistors measured on the Hall plateau at magnetic induction B turns out to follow the so-called resistivity rule Rxx(B)¯=αB ×d(ΔRH(B))/dB. While the dissipation increases with the measurement current value, the coefficient α stays constant in the range investigated (40-120 μA). This result enlightens the impact of the dissipation emergence in the two-dimensional electron gas on the Hall resistance quantization, which is of major interest for the resistance metrology. The quantum Hall effect is used to realize a universal resistance standard only linked to the electron charge e and the Planck constant h and it is known to play a central role in the upcoming revised Système International of units. There are therefore fundamental and practical benefits in testing the reproducibility property of the quantum Hall effect with better and better accuracy.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.
2015-05-01
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
Using dissipative particle dynamics to model micromechanics of responsive hydrogels
NASA Astrophysics Data System (ADS)
Alexeev, Alexander; Nikolov, Svetoslav; Fernandez de Las Nieves, Alberto
2015-03-01
The ability of responsive hydrogels to undergo complex and reversible shape transformations in response to external stimuli such as temperature, magnetic/electric fields, pH levels, and light intensity has made them the material of choice for tissue scaffolding, drug delivery, bio-adhesive, bio-sensing, and micro-sorting applications. The complex micromechanics and kinetics of these responsive networks however, currently hinders developments in the aforementioned areas. In order to better understand the mechanical properties of these systems and how they change during the volume transition we have developed a dissipative particle dynamics (DPD) model for responsive polymer networks. We use this model to examine the impact of the Flory-Huggins parameter on the bulk and shear moduli. In this fashion we evaluate how environmental factors can affect the micromechanical properties of these networks. Support from NSF CAREER Award (DMR-1255288) is gratefully acknowledged.
History-dependent dissipative vortex dynamics in superconducting arrays
NASA Astrophysics Data System (ADS)
Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena; Hughes, Taylor L.; Mason, Nadya
2016-07-01
We perform current (I )-voltage (V ) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I -V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. This approach has not been considered previously, to our knowledge, yet it is crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.
Minimum energy dissipation in computing: Maxwell's demon in quantum-dot cellular automata
NASA Astrophysics Data System (ADS)
Timler, John; Lent, Craig S.
2002-03-01
Discussions of the minimum energy required to compute and to erase information frequently occur in a fairly abstract context. We explore the ideas of Landauer in a specific system of possible technological interest. We examine the minimum energy dissipation incurred during information erasure in the context of quantum-dot cellular automata (QCA). We calculate the amount of energy dissipated by a QCA cell undergoing the erasure of a single bit. Irreversible information loss and energy dissipation occur when the cell contains the only copy of the bit. This situation is contrasted with the case when a neighboring "demon" cell first measures the cell state and then enables erasure with far less dissipation.Data propagation in a QCA shift register can be viewed as a succession of such read and erase cycles. Although the energy dissipated in reversible "demon-assisted" erasure can be made arbitrarily small, the actual amount of energy dissipated increases rapidly as the switching speed is increased. [1] R. Landauer, Phys. Rev. Lett. 53, 1205 (1984).
Impact of heat dissipation on quantum cascade laser performance
NASA Astrophysics Data System (ADS)
Monastyrskyi, G.; Elagin, M.; Klinkmüller, M.; Aleksandrova, A.; Kurlov, S.; Flores, Y. V.; Kischkat, J.; Semtsiv, M. P.; Masselink, W. T.
2013-04-01
We describe a simple and convenient method to analyze the impact of heating in a quantum-cascade laser on its basic performance characteristics. This method has only one fitting parameter, the thermal resistance of the laser, Rth, while the other parameters can be directly measured in pulsed mode. Furthermore, the method can be applied even in the case when lasers do not reach continuous-wave operation. The method was used to analyze a quantum-cascade laser emitting at λ =10.6μm and based on InGaAs-InAlAs material system, lattice-matched to InP. The thermal resistance of Rth = 10 K/W determined using the described method and the flat active region shape imply a vertical thermal conductivity value of κ⊥=0.53 W /m.K for the lattice-matched InGaAs-InAlAs active region, which agrees well with literature values.
Identification of nanoscale dissipation processes by dynamic atomic force microscopy.
Garcia, R; Gómez, C J; Martinez, N F; Patil, S; Dietz, C; Magerle, R
2006-07-01
Identification of energy-dissipation processes at the nanoscale is demonstrated by using amplitude-modulation atomic force microscopy. The variation of the energy dissipated on a surface by a vibrating tip as a function of its oscillation amplitude has a shape that singles out the dissipative process occurring at the surface. The method is illustrated by calculating the energy-dissipation curves for surface energy hysteresis, long-range interfacial interactions and viscoelasticity. The method remains valid with independency of the amount of dissipated energy per cycle, from 0.1 to 50 eV. The agreement obtained between theory and experiments performed on silicon and polystyrene validates the method.
Correspondence behavior of classical and quantum dissipative directed transport via thermal noise.
Carlo, Gabriel G; Ermann, Leonardo; Rivas, Alejandro M F; Spina, María E
2016-04-01
We systematically study several classical-quantum correspondence properties of the dissipative modified kicked rotator, a paradigmatic ratchet model. We explore the behavior of the asymptotic currents for finite ℏ_{eff} values in a wide range of the parameter space. We find that the correspondence between the classical currents with thermal noise providing fluctuations of size ℏ_{eff} and the quantum ones without it is very good in general with the exception of specific regions. We systematically consider the spectra of the corresponding classical Perron-Frobenius operators and quantum superoperators. By means of an average distance between the classical and quantum sets of eigenvalues we find that the correspondence is unexpectedly quite uniform. This apparent contradiction is solved with the help of the Weyl-Wigner distributions of the equilibrium eigenvectors, which reveal the key role of quantum effects by showing surviving coherences in the asymptotic states. PMID:27176280
Correspondence behavior of classical and quantum dissipative directed transport via thermal noise
NASA Astrophysics Data System (ADS)
Carlo, Gabriel G.; Ermann, Leonardo; Rivas, Alejandro M. F.; Spina, María E.
2016-04-01
We systematically study several classical-quantum correspondence properties of the dissipative modified kicked rotator, a paradigmatic ratchet model. We explore the behavior of the asymptotic currents for finite ℏeff values in a wide range of the parameter space. We find that the correspondence between the classical currents with thermal noise providing fluctuations of size ℏeff and the quantum ones without it is very good in general with the exception of specific regions. We systematically consider the spectra of the corresponding classical Perron-Frobenius operators and quantum superoperators. By means of an average distance between the classical and quantum sets of eigenvalues we find that the correspondence is unexpectedly quite uniform. This apparent contradiction is solved with the help of the Weyl-Wigner distributions of the equilibrium eigenvectors, which reveal the key role of quantum effects by showing surviving coherences in the asymptotic states.
Dissipative dynamics of composite domain walls in magnetic nanostrips
NASA Astrophysics Data System (ADS)
Tretiakov, O.; Bazaliy, Ya. B.; Tchernyshyov, O.
2007-03-01
We describe the dynamics of domain walls in thin magnetic nanostrips of submicron width under the action of magnetic field. Once the fast precession of magnetization is averaged out, the dynamics reduces to purely dissipative motion where the system follows the direction of the local energy gradient (Glauber's model A) [1]. We then apply the method of collective coordinates [2] to our variational model of the domain wall [3] reducing the dynamics to the evolution of two collective coordinates (the location of the vortex core). In weak magnetic fields the wall moves steadily. The calculated velocity is in good agreement with the results of numerical simulations (no adjustable parameters were used). In higher fields the steady motion breaks down and acquires an oscillatory character caused by periodic creation and annihilation of topological defects comprising the domain wall [3]. Numerical simulations uncover at least two different modes of oscillation. [1] C. J. Garc'ia-Cervera and W. E, J. Appl. Phys. 90, 370 (2001). [2] A. S'anchez and A. R. Bishop, SIAM Rev. 40, 579 (1998). [3] Preceding talk by O. Tchernyshyov.
Unbounded dynamics in dissipative flows: Rössler model
Barrio, Roberto Serrano, Sergio; Blesa, Fernando
2014-06-15
Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Struyve, Ward
2015-01-01
Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.
Selective protected state preparation of coupled dissipative quantum emitters
Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.
2015-01-01
Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2015-01-01
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2015-01-28
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2016-09-01
We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.
Nonlinear dynamics of drift structures in a magnetized dissipative plasma
NASA Astrophysics Data System (ADS)
Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.
2011-06-01
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense
Nonlinear dynamics of drift structures in a magnetized dissipative plasma
Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.
2011-06-15
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M.; Alberts, Thomas E.
1993-01-01
The stability characteristics of dynamic dissipative compensators are investigated for multibody flexible space structures having nonlinear dynamics. The problem addressed is that of proving asymptotic stability of dynamic dissipative compensators. The stability proof uses the Liapunov approach and exploits the inherent passivity of such systems. For such systems these compensators are shown to be robust to parametric uncertainties and unmodeled dynamics. The results are applicable to a large class of structures such as flexible space structures with articulated flexible appendages.
Using the Renyi entropy to describe quantum dissipative systems in statistical mechanics
NASA Astrophysics Data System (ADS)
Kirchanov, V. S.
2008-09-01
We develop a formalism for describing quantum dissipative systems in statistical mechanics based on the quantum Renyi entropy. We derive the quantum Renyi distribution from the principle of maximum quantum Renyi entropy and differentiate this distribution (the temperature density matrix) with respect to the inverse temperature to obtain the Bloch equation. We then use the Feynman path integral with a modified Mensky functional to obtain a Lindblad-type equation. From this equation using projection operators, we derive the integro-differential equation for the reduced temperature statistical operator, an analogue of the Zwanzig equation in statistical mechanics, and find its formal solution in the form of a series in the class of summable functions.
Entanglement entropy, decoherence, and quantum phase transitions of a dissipative two-level system
Le Hur, K.
2008-09-15
The concept of entanglement entropy appears in multiple contexts, from black hole physics to quantum information theory, where it measures the entanglement of quantum states. We investigate the entanglement entropy in a simple model, the spin-boson model, which describes a qubit (two-level system) interacting with a collection of harmonic oscillators that models the environment responsible for decoherence and dissipation. The entanglement entropy allows to make a precise unification between entanglement of the spin with its environment, decoherence, and quantum phase transitions. We derive exact analytical results which are confirmed by Numerical Renormalization Group arguments both for an ohmic and a subohmic bosonic bath. The entanglement entropy obeys universal scalings. We make comparisons with entanglement properties in the quantum Ising model and in the Dicke model. We also emphasize the possibility of measuring this entropy using charge qubits subject to electromagnetic noise; such measurements would provide an empirical proof of the existence of entanglement entropy.
Dissipative effects in dipolar, quantum many-body systems
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Rey, Ana Maria
2015-03-01
We use Quantum Monte Carlo simulations, by the Worm algorithm, to study the ground state phase diagram of two-dimensional, dipolar lattice bosons where each site is coupled, via density operators, to an external reservoir. A recent related study of the XXZ model with ohmic coupling to an external reservoir reported the existence of a bath-induced Bose metal phase in the ground state phase diagram away from half filling, and a Luttinger liquid and a charge density wave at half-filling. Our work extends this methodology to higher dimensional systems with long-range interactions. In the case of hard-core bosons, our method can be applied to experimental systems featuring dipolar fermionic molecules in the presence of losses. This work utilized the Janus supercomputer, which is supported by the NSF (award number CNS-0821794) and the University of Colorado Boulder, and is a joint effort with the University of Colorado Denver and the National Center for Atmospheric Research, as well as OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma. NIST, JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI.
Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field
NASA Astrophysics Data System (ADS)
Akhtarshenas, S. J.; Khezrian, M.
2010-04-01
In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.
Quantum resistance standard accuracy close to the zero-dissipation state
Schopfer, F.; Poirier, W.
2013-08-14
We report on a comparison of four GaAs/AlGaAs-based quantum resistance standards using an original technique adapted from the well-known Wheatstone bridge. This work shows that the quantized Hall resistance at Landau level filling factor ν=2 can be reproducible with a relative uncertainty of 32×10{sup −12} in the dissipationless limit of the quantum Hall effect regime. In the presence of a very small dissipation characterized by a mean macroscopic longitudinal resistivity R{sub xx}(B) of a few μΩ, the discrepancy ΔR{sub H}(B) between quantum Hall resistors measured on the Hall plateau at magnetic induction B turns out to follow the so-called resistivity rule R{sub xx}(B)=αB×d(ΔR{sub H}(B))/dB. While the dissipation increases with the measurement current value, the coefficient α stays constant in the range investigated (40−120 μA). This result enlightens the impact of the dissipation emergence in the two-dimensional electron gas on the Hall resistance quantization, which is of major interest for the resistance metrology. The quantum Hall effect is used to realize a universal resistance standard only linked to the electron charge e and the Planck constant h and it is known to play a central role in the upcoming revised Système International of units. There are therefore fundamental and practical benefits in testing the reproducibility property of the quantum Hall effect with better and better accuracy.
Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Karniadakis, George
2015-11-01
In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.
Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.
Berezkin, Anatoly V; Kudryavtsev, Yaroslav V
2014-11-21
Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed. PMID:25416911
Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2015-09-01
We suggest a coarse-grained model for dissipative particle dynamics (DPD) simulations of solutions with dissociated protons. The model uses standard short-range soft repulsion and smeared charge electrostatic potentials between the beads, representing solution components. The proton is introduced as a separate charged bead that forms dissociable bonds with proton receptor base beads, such as water or deprotonated acid anions. The proton-base bonds are described by Morse potentials. When the proton establishes the Morse bonds with two bases, they form an intermediate complex, and the proton is able to "hop" between the bases artificially mimicking the Grotthuss diffusion mechanism. By adjusting the Morse potential parameters, one can regulate the potential barrier associated with intermediate complex formation and breakup and control the hopping frequency. This makes the proposed model applicable to simulations of proton mobility and reaction equilibria between protonated and deprotonated acid forms in aqueous solutions. The proposed model provides quantitative agreement with experiments for the proton self-diffusion coefficient and hopping frequency, as well as for the degree of dissociation of benzenesulfonic acid. PMID:26575931
Dissipative particle dynamics incorporating non-Markovian effect
NASA Astrophysics Data System (ADS)
Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu
2015-11-01
The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.
Constant-pressure simulations with dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Trofimov, S. Y.; Nies, E. L. F.; Michels, M. A. J.
2005-10-01
Dissipative particle dynamics (DPD) is a mesoscopic simulation method for studying hydrodynamic behavior of complex fluids. Ideally, a mesoscopic model should correctly represent the thermodynamic and hydrodynamic properties of a real system beyond certain length and time scales. Traditionally defined DPD quite successfully mimics hydrodynamics but is not flexible enough to accurately describe the thermodynamics of a real system. The so-called multibody DPD (MDPD) is a pragmatic extension of the classical DPD that allows one to prescribe the thermodynamic behavior of a system with only a small performance impact. In an earlier paper [S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels, J. Chem. Phys. 117, 9383 (2002)] we much improved the accuracy of the MDPD model for strongly nonideal systems, which are of most practical interest. The ability to correctly reproduce the equation of state of realistic systems in turn makes simulations at constant pressure sensible and useful. This situation of constant-pressure conditions is very common in experimental studies of (soft) condensed matter but has so far remained unexplored with the traditional DPD. Here, as a proof of concept, we integrate a modified version of the Andersen barostat into our improved MDPD model and make an evaluation of the performance of the new model on a set of single- and multicomponent systems. The modification of the barostat suppresses the "unphysical" volume oscillations after a sudden pressure change and simplifies the equilibration of the system.
Constant-pressure simulations with dissipative particle dynamics.
Trofimov, S Y; Nies, E L F; Michels, M A J
2005-10-01
Dissipative particle dynamics (DPD) is a mesoscopic simulation method for studying hydrodynamic behavior of complex fluids. Ideally, a mesoscopic model should correctly represent the thermodynamic and hydrodynamic properties of a real system beyond certain length and time scales. Traditionally defined DPD quite successfully mimics hydrodynamics but is not flexible enough to accurately describe the thermodynamics of a real system. The so-called multibody DPD (MDPD) is a pragmatic extension of the classical DPD that allows one to prescribe the thermodynamic behavior of a system with only a small performance impact. In an earlier paper [S. Y. Trofimov, E. L. F. Nies, and M. A. J. Michels, J. Chem. Phys. 117, 9383 (2002)] we much improved the accuracy of the MDPD model for strongly nonideal systems, which are of most practical interest. The ability to correctly reproduce the equation of state of realistic systems in turn makes simulations at constant pressure sensible and useful. This situation of constant-pressure conditions is very common in experimental studies of (soft) condensed matter but has so far remained unexplored with the traditional DPD. Here, as a proof of concept, we integrate a modified version of the Andersen barostat into our improved MDPD model and make an evaluation of the performance of the new model on a set of single- and multicomponent systems. The modification of the barostat suppresses the "unphysical" volume oscillations after a sudden pressure change and simplifies the equilibration of the system.
Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.
Berezkin, Anatoly V; Kudryavtsev, Yaroslav V
2014-11-21
Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed.
Parametrization of Chain Molecules in Dissipative Particle Dynamics.
Lee, Ming-Tsung; Mao, Runfang; Vishnyakov, Aleksey; Neimark, Alexander V
2016-06-01
This paper presents a consistent strategy for parametrization of coarse-grained models of chain molecules in dissipative particle dynamics (DPD), where the soft-core DPD interaction parameters are fitted to the activities in solutions of reference compounds that represent different fragments of target molecules. The intercomponent parameters are matched either to the infinite dilution activity coefficients in binary solutions or to the solvent activity in polymer solutions. The respective calibration relationships between activity and intercomponent interaction parameter are constructed from the results of Monte Carlo simulation of the coarse-grained solutions of reference compounds. The chain conformation is controlled by the near neighbor and second neighbor bond potentials, which are parametrized by fitting the intramolecular radial distribution functions of the coarse-grained chains to the respective atomistic molecular dynamics simulations. The consistency, accuracy, and transferability of the proposed parametrization strategy is demonstrated drawing on the example of nonionic surfactants of the poly(ethylene oxide) alkyl ether (CnEm) family. The lengths of tail and head sequences are varied (n = 8-12 and m = 3-9), so that the critical micelle concentration ranges from 10 to 0.1 mM. The surfactants are modeled at different coarse-graining levels using DPD beads of different diameters. We found consistent agreement with experimental data for the critical micelle concentration and aggregation number, especially for surfactants with relatively long hydrophilic segments. Depending on the system, we observed surfactant aggregation into spheroidal, elongated, or core-shell micelles, as well as into irregular agglomerates. Using the models at different coarse-graining levels for the same molecules, we found that the smaller the bead size the better is agreement with experimental data. PMID:27167160
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Christov, Ivan P.
2016-08-01
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Short-pulse dynamics in strongly nonlinear dissipative granular chains.
Rosas, Alexandre; Romero, Aldo H; Nesterenko, Vitali F; Lindenberg, Katja
2008-11-01
We study the energy decay properties of a pulse propagating in a strongly nonlinear granular chain with damping proportional to the relative velocity of the grains. We observe a wave disturbance that at low viscosities consists of two parts exhibiting two entirely different time scales of dissipation. One part is an attenuating solitary wave, dominated by discreteness and nonlinearity effects as in a dissipationless chain, and has the shorter lifetime. The other is a purely dissipative shocklike structure with a much longer lifetime and exists only in the presence of dissipation. The range of viscosities and initial configurations that lead to this complex wave disturbance are explored.
Boudjada, Nazim; Segal, Dvira
2014-11-26
We study in a unified manner the dissipative dynamics and the transfer of heat in the two-bath spin-boson model. We use the Bloch-Redfield (BR) formalism, valid in the very weak system-bath coupling limit, the noninteracting-blip approximation (NIBA), applicable in the nonadiabatic limit, and iterative, numerically exact path integral tools. These methodologies were originally developed for the description of the dissipative dynamics of a quantum system, and here they are applied to explore the problem of quantum energy transport in a nonequilibrium setting. Specifically, we study the weak-to-intermediate system-bath coupling regime at high temperatures kBT/ħ > ε, with ε as the characteristic frequency of the two-state system. The BR formalism and NIBA can lead to close results for the dynamics of the reduced density matrix (RDM) in a certain range of parameters. However, relatively small deviations in the RDM dynamics propagate into significant qualitative discrepancies in the transport behavior. Similarly, beyond the strict nonadiabatic limit NIBA's prediction for the heat current is qualitatively incorrect: It fails to capture the turnover behavior of the current with tunneling energy and temperature. Thus, techniques that proved meaningful for describing the RDM dynamics, to some extent even beyond their rigorous range of validity, should be used with great caution in heat transfer calculations, because qualitative-serious failures develop once parameters are mildly stretched beyond the techniques' working assumptions.
Ansatz for the quantum phase transition in a dissipative two-qubit system.
Zheng, Hang; Lü, Zhiguo; Zhao, Yang
2015-06-01
By means of a unitary transformation, we propose an ansatz to study quantum phase transitions in the ground state of a two-qubit system interacting with a dissipative reservoir. First, the ground-state phase diagram is analyzed in the presence of the Ohmic and sub-Ohmic bath using an analytic ground-state wave function that takes into account the competition between intrasite tunneling and intersite correlation. The quantum critical point is determined as the transition point from a nondegenerate to a degenerate ground state, and our calculated critical coupling strength α(c) agrees with that from the numerical renormalization-group method. Moreover, by computing the entanglement entropy between the qubits and the bath as well as the qubit-qubit correlation function in the ground state, we explore the nature of the quantum phase transition between the delocalized and localized states.
Dissipative Particle Dynamics modeling of nanorod-polymer composites
NASA Astrophysics Data System (ADS)
Khani, Shaghayegh; Maia, Joao
2014-11-01
Recent years have seen a plethora of experimental methods for fabricating nanorod-polymer composites with enhanced physical and mechanical properties. The macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the properties of the nanorod-polymer composites is observed upon formation of a percolating network. Thus, controlling the structure of the nanoparticles in the matrix will advance the technology in the field. One way of doing this is by adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. Although the enthalpic interactions play the major role in such systems other entropic variables such as the dimension of the rods, density of grafting and etc. may influence the final morphology of the system. The recent developments in the computational techniques have paved the road for further understanding of the controlled assembly of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the nanorod-polymer composites. DPD is a coarse-grained mesoscale method which has been found very promising in simulating multi component systems. The interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. The main goal of this work is to provide a phase diagram that can be used to guide the experiments in designing new materials.
Elia, V; Germano, R; Napoli, E
2015-01-01
This paper presents a short review of the evidence - both experimental and theoretical - of the formation of dissipative structures in liquid water induced by three kinds of physical perturbations having a low energy content: extremely diluted solution (EDS), iteratively filtered water (IFW), and iteratively nafionated water (INW). Particular attention is devoted to the very recent discovery that such structures are tremendously persistent even in the solid phase: large ponderal quantities of supramolecular aggregates of water (with each nucleus hundreds of nanometers in size) have been observed - at ambient pressure and temperature - using easily-reproducible experimental methods. The nature of these dissipative structures is analyzed and explained in terms of the thermodynamics of far-from-equilibrium systems and irreversible processes, showing their spontaneous quantum origin. Are these kinds of structures the matrix itself of life?.
Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth.
Briggs, Ryan M; Frez, Clifford; Fradet, Mathieu; Forouhar, Siamak; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian
2016-06-27
We report continuous-wave operation of single-mode quantum cascade (QC) lasers emitting near 7.4 µm with threshold power consumption below 1 W at temperatures up to 40 °C. The lasers were fabricated with narrow, plasma-etched waveguides and distributed-feedback sidewall gratings clad with sputtered aluminum nitride. In contrast to conventional buried-heterostructure (BH) devices with epitaxial sidewall cladding and in-plane gratings, the devices described here were fabricated without any epitaxial regrowth processes, yet they exhibit power consumption comparable to the lowest-dissipation BH QC lasers reported to date. These low-dissipation devices are designed primarily as light sources for infrared spectroscopy instruments with limited volume, mass, and power budgets.
Statistics of energy dissipation in a quantum dot operating in the cotunneling regime
NASA Astrophysics Data System (ADS)
Dinaii, Yehuda; Shnirman, Alexander; Gefen, Yuval
2014-11-01
At Coulomb blockade valleys inelastic cotunneling processes generate particle-hole excitations in quantum dots (QDs), and lead to energy dissipation. We have analyzed the probability distribution function (PDF) of energy dissipated in a QD due to such processes during a given time interval. We obtained analytically the cumulant generating function, and extracted the average, variance, and Fano factor. The latter diverges as T3/(eV ) 2 at bias e V smaller than the temperature T , and reaches the value 3 e V /5 in the opposite limit. The PDF is further studied numerically. As expected, the Crooks fluctuation relation is not fulfilled by the PDF. Our results can be verified experimentally utilizing transport measurements of charge.
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-10
Highlights: {yields} Molecular Dynamics codes implemented on GPUs have achieved two-order of magnitude computational accelerations. {yields} Brownian Dynamics and Dissipative Particle Dynamics simulations require a large number of random numbers per time step. {yields} We introduce a method for generating small batches of pseudorandom numbers distributed over many threads of calculations. {yields} With this method, Dissipative Particle Dynamics is implemented on a GPU device without requiring thread-to-thread communication. - Abstract: Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
NASA Astrophysics Data System (ADS)
Asimakopoulos, Aristotelis
While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution. Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty
NASA Astrophysics Data System (ADS)
Shao, X. Q.; Wang, Z. H.; Liu, H. D.; Yi, X. X.
2016-09-01
We propose an experimentally feasible scheme for dissipative preparation of a tripartite entangled state with atoms separately trapped in an array of three coupled cavities. The combination of coherent driving fields and quantum-jump-based feedback control will drive the system into a nonequilibrium steady state, which has a nearly perfect overlap with the genuine three-atom singlet state. Different control strategies are investigated and the corresponding optimal parameters are confirmed. Moreover, the fidelity of the target state is insensitive to detection inefficiencies, and it exceeds 90% for a wide range of decoherence parameters as long as the single-atom cooperativity parameter C ≡g2/(γ κ ) >350 .
NASA Astrophysics Data System (ADS)
He, Juan; Xu, Shuai; Ye, Liu
2015-11-01
A scheme for inducing multipartite entanglement revival in the dissipative environment is proposed, which is implemented by performing a prior quantum uncollapsing (weak measurements or measurement reversals) procedure on partial qubits of the system simultaneously. This procedure preferentially equips our initial states, and make them hold more powerful ability to actively battle against degradation of entanglement, even postpone entanglement sudden death (ESD). Notably, the effect is more pronounced for the multipartite system with less initial entanglement. In addition, we found that our scheme also works for the N-qubit GHZ-class state.
High performance, low dissipation quantum cascade lasers across the mid-IR range.
Bismuto, Alfredo; Blaser, Stéphane; Terazzi, Romain; Gresch, Tobias; Muller, Antoine
2015-03-01
In this work, we present the development of low consumption quantum cascade lasers across the mid-IR range. In particular, short cavity single-mode lasers with optimised facet reflectivities have been fabricated from 4.5 to 9.2 μm. Threshold dissipated powers as low as 0.5 W were obtained in continuous wave operation at room temperature. In addition, the beneficial impact of reducing chip length on laser mounting yield is discussed. High power single-mode lasers from the same processed wafers are also presented.
Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications
NASA Astrophysics Data System (ADS)
Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.
2012-12-01
In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential
Experimental realization of quantum zeno dynamics
Schäfer, F.; Herrera, I.; Cherukattil, S.; Lovecchio, C.; Cataliotti, F.S.; Caruso, F.; Smerzi, A.
2014-01-01
It is generally impossible to probe a quantum system without disturbing it. However, it is possible to exploit the back action of quantum measurements and strong couplings to tailor and protect the coherent evolution of a quantum system. This is a profound and counterintuitive phenomenon known as quantum Zeno dynamics. Here we demonstrate quantum Zeno dynamics with a rubidium Bose–Einstein condensate in a five-level Hilbert space. We harness measurements and strong couplings to dynamically disconnect different groups of quantum states and constrain the atoms to coherently evolve inside a two-level subregion. In parallel to the foundational importance due to the realization of a dynamical superselection rule and the theory of quantum measurements, this is an important step forward in protecting and controlling quantum dynamics and, broadly speaking, quantum information processing. PMID:24476716
Dissipative controller designs for second-order dynamic systems
NASA Technical Reports Server (NTRS)
Morris, K. A.; Juang, J. N.
1990-01-01
The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.
Relationship between dynamical entropy and energy dissipation far from thermodynamic equilibrium.
Green, Jason R; Costa, Anthony B; Grzybowski, Bartosz A; Szleifer, Igal
2013-10-01
Connections between microscopic dynamical observables and macroscopic nonequilibrium (NE) properties have been pursued in statistical physics since Boltzmann, Gibbs, and Maxwell. The simulations we describe here establish a relationship between the Kolmogorov-Sinai entropy and the energy dissipated as heat from a NE system to its environment. First, we show that the Kolmogorov-Sinai or dynamical entropy can be separated into system and bath components and that the entropy of the system characterizes the dynamics of energy dissipation. Second, we find that the average change in the system dynamical entropy is linearly related to the average change in the energy dissipated to the bath. The constant energy and time scales of the bath fix the dynamical relationship between these two quantities. These results provide a link between microscopic dynamical variables and the macroscopic energetics of NE processes.
Quantum simulation of non-equilibrium dynamical maps with trapped ions
NASA Astrophysics Data System (ADS)
Schindler, Philipp; Müller, Markus; Nigg, Daniel; Monz, Thomas; Barreiro, Julio; Martinez, Esteban; Hennrich, Markus; Diehl, Sebastian; Zoller, Peter; Blatt, Rainer
2013-03-01
Dynamical maps are central for the understanding of general state transformations of physical systems. Prime examples include classical nonlinear systems undergoing transitions to chaos, or single particle quantum mechanical counterparts showing intriguing phenomena such as dynamical localization. Here, we extend the concept of dynamical maps to an open-system, many-particle context and experimentally explore the stroboscopic dynamics of a complex many-body spin model in a universal quantum simulator using up to five ions. We generate quantum mechanical long range order by an iteration of purely dissipative maps, reveal the characteristic features of a combined coherent and dissipative non-equilibrium evolution, and develop and implement various error detection and reduction techniques that will facilitate the faithful quantum simulation of larger systems.
Light scattering and dissipative dynamics of many fermionic atoms in an optical lattice
NASA Astrophysics Data System (ADS)
Sarkar, S.; Langer, S.; Schachenmayer, J.; Daley, A. J.
2014-08-01
We investigate the many-body dissipative dynamics of fermionic atoms in an optical lattice in the presence of incoherent light scattering. Deriving and solving a master equation to describe this process microscopically for many particles, we observe contrasting behavior in terms of the robustness against this type of heating for different many-body states. In particular, we find that the magnetic correlations exhibited by a two-component gas in the Mott insulating phase should be particularly robust against decoherence from light scattering, because the decoherence in the lowest band is suppressed by a larger factor than the time scales for effective superexchange interactions that drive coherent dynamics. Furthermore, the derived formalism naturally generalizes to analogous states with SU(N) symmetry. In contrast, for typical atomic and laser parameters, two-particle correlation functions describing bound dimers for strong attractive interactions exhibit superradiant effects due to the indistinguishability of off-resonant photons scattered by atoms in different internal states. This leads to rapid decay of correlations describing off-diagonal long-range order for these states. Our predictions should be directly measurable in ongoing experiments, providing a basis for characterizing and controlling heating processes in quantum simulation with fermions.
Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
NASA Astrophysics Data System (ADS)
Méndez-Bermúdez, J. A.; de Oliveira, Juliano A.; Leonel, Edson D.
2016-05-01
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust.
Quantum vortex dynamics in two-dimensional neutral superfluids
Wang, C.-C. Joseph; Duine, R. A.; MacDonald, A. H.
2010-01-15
We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and obtain an expression for the vortex mass. We find that this adiabatic approximation is valid only when the superfluid droplet radius R, or the typical distance between vortices, is very much larger than the coherence length xi. We go beyond the adiabatic approximation numerically, accounting for the quantum dynamics of environmental modes and capturing their dissipative coupling to condensate dynamics. For the case of an optical-lattice superfluid, we demonstrate that vortex motion damping can be adjusted by tuning the ratio between the tunneling energy J and the on-site interaction energy U. We comment on the possibility of realizing vortex-Landau-level physics.
Quantum dynamical field theory for nonequilibrium phase transitions in driven open systems
NASA Astrophysics Data System (ADS)
Marino, Jamir; Diehl, Sebastian
2016-08-01
We develop a quantum dynamical field theory for studying phase transitions in driven open systems coupled to Markovian noise, where nonlinear noise effects and fluctuations beyond semiclassical approximations influence the critical behavior. We systematically compare the diagrammatics, the properties of the renormalization group flow, and the structure of the fixed points of the quantum dynamical field theory and of its semiclassical counterpart, which is employed to characterize dynamical criticality in three-dimensional driven-dissipative condensates. As an application, we perform the Keldysh functional renormalization of a one-dimensional driven open Bose gas, where a tailored diffusion Markov noise realizes an analog of quantum criticality for driven-dissipative condensation. We find that the associated nonequilibrium quantum phase transition does not map into the critical behavior of its three-dimensional classical driven counterpart.
Existence for constrained dynamic Griffith fracture with a weak maximal dissipation condition
NASA Astrophysics Data System (ADS)
Dal Maso, Gianni; Larsen, Christopher J.; Toader, Rodica
2016-10-01
The study of dynamic fracture is based on the dynamic energy-dissipation balance. It is easy to see that this condition is always satisfied by a stationary crack together with a displacement satisfying the system of elastodynamics. Therefore to predict crack growth a further principle is needed. In this paper we introduce a weak maximal dissipation condition that, together with elastodynamics and energy balance, provides a model for dynamic fracture, at least within a certain class of possible crack evolutions. In particular, we prove the existence of dynamic fracture evolutions satisfying this condition, subject to smoothness constraints, and exhibit an explicit example to show that maximal dissipation can indeed rule out stationary cracks.
Dynamical memory effects in correlated quantum channels
NASA Astrophysics Data System (ADS)
Addis, Carole; Karpat, Göktuǧ; Macchiavello, Chiara; Maniscalco, Sabrina
2016-09-01
Memory effects play a fundamental role in the study of the dynamics of open quantum systems. There exist two conceptually distinct notions of memory discussed for quantum channels in the literature. In quantum information theory quantum channels with memory are characterized by the existence of correlations between successive applications of the channel on a sequence of quantum systems. In open quantum systems theory memory effects arise dynamically during the time evolution of quantum systems and define non-Markovian dynamics. Here we relate and combine these two different concepts of memory. In particular, we study the interplay between correlations between multiple uses of quantum channels and non-Markovianity as nondivisibility of the t -parametrized family of channels defining the dynamical map.
Dissipative Dynamics of Superfluid Vortices at Nonzero Temperatures
Berloff, Natalia G.; Youd, Anthony J.
2007-10-05
We consider the evolution and dissipation of vortex rings in a condensate at nonzero temperatures in the context of the classical field approximation, based on the defocusing nonlinear Schroedinger equation. The temperature in such a system is fully determined by the total number density and the number density of the condensate. The collisions with noncondensed particles reduce the radius of a vortex ring until it completely disappears. We obtain a universal decay law for a vortex line length and relate it to mutual friction coefficients in the fundamental equation of vortex motion in superfluids.
Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers.
Greck, Peter; Birner, Stefan; Huber, Bernhard; Vogl, Peter
2015-03-01
We present a novel and very efficient method for calculating quantum transport in quantum cascade lasers (QCLs). It follows the nonequilibrium Green's function (NEGF) framework but sidesteps the calculation of lesser self-energies by replacing them by a quasi-equilibrium expression. This method generalizes the phenomenological Büttiker probe model by taking into account individual scattering mechanisms. It is orders of magnitude more efficient than a fully self-consistent NEGF calculation for realistic devices. We apply this method to a new THz QCL design which works up to 250 K - according to our calculations.
Radiation from quantum weakly dynamical horizons in loop quantum gravity.
Pranzetti, Daniele
2012-07-01
We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable.
Non-Markovian dynamics of quantum discord
Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.
2010-05-15
We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.
Ergodicity and mixing in quantum dynamics
NASA Astrophysics Data System (ADS)
Zhang, Dongliang; Quan, H. T.; Wu, Biao
2016-08-01
After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy.
Ergodicity and mixing in quantum dynamics.
Zhang, Dongliang; Quan, H T; Wu, Biao
2016-08-01
After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy. PMID:27627289
Quantum dynamics in dual spaces
Sudarshan, E.C.G.
1993-12-31
Quantum mechanics gives us information about spectra of dynamical variables and transition rates including scattering cross sections. They can be exhibited as spectral information in analytically continued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with scattering of composite or unstable particles. Scattering theory needs amendment when the interacting system is not isospectral with the free Hamiltonian, and the amendment is formulated. Perturbation theory in generalized spaces is developed and used to study the deletion and augmentation of the spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting system is obtained. The question of the breaking of time symmetry is discussed.
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlyingmore » the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.« less
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Quantum Zeno dynamics in atoms and cavities
NASA Astrophysics Data System (ADS)
Gleyzes, Sébastien; Raimond, Jean-Michel
2016-08-01
Quantum Zeno Dynamics restricts the evolution of a system in a tailorable subspace of the Hilbert space by repeated measurements of a proper observable. This restricted dynamics can be counterintuitive and lead to the generation of interesting nonclassical states. We describe an experiment implementing the Zeno dynamics in an atomic Rydberg level manifold, and we propose an implementation in the cavity quantum electrodynamics context. Both systems open promising perspectives for quantum-enabled metrology and decoherence studies.
Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Rakesh, L.
2009-09-01
Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the
Dynamical and thermodynamical control of Open Quantum Walks
NASA Astrophysics Data System (ADS)
Petruccione, Francesco; Sinayskiy, Ilya
2014-03-01
Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Quantum dynamical framework for Brownian heat engines.
Agarwal, G S; Chaturvedi, S
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
Dynamics of entanglement transfer through multipartite dissipative systems
Lopez, C. E.; Retamal, J. C.; Romero, G.
2010-06-15
We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and noninteracting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.
Simulation of quantum dynamics with integrated photonics
NASA Astrophysics Data System (ADS)
Sansoni, Linda; Sciarrino, Fabio; Mataloni, Paolo; Crespi, Andrea; Ramponi, Roberta; Osellame, Roberto
2012-12-01
In recent years, quantum walks have been proposed as promising resources for the simulation of physical quantum systems. In fact it is widely adopted to simulate quantum dynamics. Up to now single particle quantum walks have been experimentally demonstrated by different approaches, while only few experiments involving many-particle quantum walks have been realized. Here we simulate the 2-particle dynamics on a discrete time quantum walk, built on an array of integrated waveguide beam splitters. The polarization independence of the quantum walk circuit allowed us to exploit the polarization entanglement to encode the symmetry of the two-photon wavefunction, thus the bunching-antibunching behavior of non interacting bosons and fermions has been simulated. We have also characterized the possible distinguishability and decoherence effects arising in such a structure. This study is necessary in view of the realization of a quantum simulator based on an integrated optical array built on a large number of beam splitters.
Quantum Geometry and Quantum Dynamics at the Planck Scale
Bojowald, Martin
2009-12-15
Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.
Quantum Dynamics of a d-wave Josephson Junction
NASA Astrophysics Data System (ADS)
Bauch, Thilo
2007-03-01
Thilo Bauch ^1, Floriana Lombardi ^1, Tobias Lindstr"om ^2, Francesco Tafuri ^3, Giacomo Rotoli ^4, Per Delsing ^1, Tord Claeson ^1 1 Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, S-412 96 G"oteborg, Sweden. 2 National Physical Laboratory, Queens Road, Teddington, Middlesex TW11 0LW, UK. 3 Istituto Nazionale per la Fisica della Materia-Dipartimento Ingegneria dell'Informazione, Seconda Universita di Napoli, Aversa (CE), Italy. 4 Dipartimento di Ingegneria Meccanica, Energetica e Gestionale, Universita of L'Aquila, Localita Monteluco, L'Aquila, Italy. We present direct observation of macroscopic quantum properties in an all high critical temperature superconductor d-wave Josephson junction. Although dissipation caused by low energy excitations is expected to strongly suppress quantum effects we demonstrate macroscopic quantum tunneling [1] and energy level quantization [2] in our d-wave Josephson junction. The results clearly indicate that the role of dissipation mechanisms in high temperature superconductors has to be revised, and may also have consequences for a new class of solid state ``quiet'' quantum bit with superior coherence time. We show that the dynamics of the YBCO grain boundary Josephson junctions fabricated on a STO substrate are strongly affected by their environment. As a first approximation we model the environment by the stray capacitance and stray inductance of the junction electrodes. The total system consisting of the junction and stray elements has two degrees of freedom resulting in two characteristic resonance frequencies. Both frequencies have to be considered to describe the quantum mechanical behavior of the Josephson circuit. [1] T. Bauch et al, Phys. Rev. Lett. 94, 087003 (2005). [2] T. Bauch et al, Science 311, 57 (2006).
Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes
Rudd, R E
2001-12-21
We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.
Quantum emitters dynamically coupled to a quantum field
NASA Astrophysics Data System (ADS)
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-01
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system's quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking.
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H; Burghardt, Irene; Martinazzo, Rocco
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated. PMID:26429029
NASA Astrophysics Data System (ADS)
Phillips, Carolyn L.; Anderson, Joshua A.; Glotzer, Sharon C.
2011-08-01
Brownian Dynamics (BD), also known as Langevin Dynamics, and Dissipative Particle Dynamics (DPD) are implicit solvent methods commonly used in models of soft matter and biomolecular systems. The interaction of the numerous solvent particles with larger particles is coarse-grained as a Langevin thermostat is applied to individual particles or to particle pairs. The Langevin thermostat requires a pseudo-random number generator (PRNG) to generate the stochastic force applied to each particle or pair of neighboring particles during each time step in the integration of Newton's equations of motion. In a Single-Instruction-Multiple-Thread (SIMT) GPU parallel computing environment, small batches of random numbers must be generated over thousands of threads and millions of kernel calls. In this communication we introduce a one-PRNG-per-kernel-call-per-thread scheme, in which a micro-stream of pseudorandom numbers is generated in each thread and kernel call. These high quality, statistically robust micro-streams require no global memory for state storage, are more computationally efficient than other PRNG schemes in memory-bound kernels, and uniquely enable the DPD simulation method without requiring communication between threads.
A nonequilibrium power balance relation for analyzing dissipative filament dynamics.
Ziebert, Falko; Mohrbach, Hervé; Kulić, Igor M
2015-12-01
Biofilaments like F-actin or microtubules, as well as cilia, flagella, or filament bundles, are often deformed by distributed and time-dependent external forces. It is highly desirable to characterize these filaments' mechanics in an efficient way, either using a single experiment or a high throughput method. We here propose a dynamic power balance approach to study nonequilibrium filament dynamics and exemplify it both experimentally and theoretically by applying it to microtubule gliding assay dynamics. Its usefulness is highlighted by the experimental determination of the lateral friction coefficient for microtubules on kinesins. In contrast to what is usually assumed, friction is anisotropic, in a similar fashion as hydrodynamic friction. We also exemplify, by considering a microtubule buckling event, that if at least one parameter is known in advance, all other parameters can be determined by analyzing a single time-dependent experiment. PMID:26687054
Dissipative fluid dynamics for the dilute Fermi gas at unitarity: Free expansion and rotation
Schaefer, T.
2010-12-15
We investigate the expansion dynamics of a dilute Fermi gas at unitarity in the context of dissipative fluid dynamics. Our aim is to quantify the effects of shear viscosity on the time evolution of the system. We compare exact numerical solutions of the equations of viscous hydrodynamics to various approximations that have been proposed in the literature. Our main findings are (i) shear viscosity leads to characteristic features in the expansion dynamics; (ii) a quantitative description of these effects has to include reheating; (iii) dissipative effects are not sensitive to the equation of state P(n,T) as long as the universal relation P=(2/3)E is satisfied; (iv) the expansion dynamics mainly constrains the cloud average of the shear viscosity.
On the Jarzynski relation for dissipative quantumdynamics
Crooks, Gavin E
2008-10-30
In this note, we will discuss how to compactly express the Jarzynski identity for an open quantum system with dissipative dynamics. In quantum dynamics we must avoid explicitly measuring the work directly, which is tantamount to continuously monitoring the state of the system, and instead measure the heat ?ow from the environment. These measurements can be concisely represented with Hermitian map superoperators, which provide a convenient and compact representations of correlation functions and sequential measurements of quantum systems.
Lesanovsky, Igor; van Horssen, Merlijn; Guţă, Mădălin; Garrahan, Juan P
2013-04-12
We describe how to characterize dynamical phase transitions in open quantum systems from a purely dynamical perspective, namely, through the statistical behavior of quantum jump trajectories. This approach goes beyond considering only properties of the steady state. While in small quantum systems dynamical transitions can only occur trivially at limiting values of the controlling parameters, in many-body systems they arise as collective phenomena and within this perspective they are reminiscent of thermodynamic phase transitions. We illustrate this in open models of increasing complexity: a three-level system, the micromaser, and a dissipative version of the quantum Ising model. In these examples dynamical transitions are accompanied by clear changes in static behavior. This is however not always the case, and, in general, dynamical phases need to be uncovered by observables which are strictly dynamical, e.g., dynamical counting fields. We demonstrate this via the example of a class of models of dissipative quantum glasses, whose dynamics can vary widely despite having identical (and trivial) stationary states. PMID:25167231
NASA Astrophysics Data System (ADS)
Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.
2015-04-01
In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).
Denicol, G. S.; Koide, T.; Rischke, D. H.
2010-10-15
We rederive the equations of motion of dissipative relativistic fluid dynamics from kinetic theory. In contrast with the derivation of Israel and Stewart, which considered the second moment of the Boltzmann equation to obtain equations of motion for the dissipative currents, we directly use the latter's definition. Although the equations of motion obtained via the two approaches are formally identical, the coefficients are different. We show that, for the one-dimensional scaling expansion, our method is in better agreement with the solution obtained from the Boltzmann equation.
Dissipative soliton dynamics in a discrete magnetic nano-dot chain
Lee, Kyeong-Dong; You, Chun-Yeol; Song, Hyon-Seok; Shin, Sung-Chul; Park, Byong-Guk
2014-02-03
Soliton dynamics is studied in a discrete magnetic nano-dot chain by means of micromagnetic simulations together with an analytic model equation. A soliton under a dissipative system is driven by an applied field. The field-driven dissipative soliton enhances its mobility nonlinearly, as the characteristic frequency and the intrinsic Gilbert damping decrease. During the propagation, the soliton emits spin waves which act as an extrinsic damping channel. The characteristic frequency, the maximum velocity, and the localization length of the soliton are found to be proportional to the threshold field, the threshold velocity, and the initial mobility, respectively.
Some dynamical properties of a classical dissipative bouncing ball model with two nonlinearities
NASA Astrophysics Data System (ADS)
Oliveira, Diego F. M.; Leonel, Edson D.
2013-04-01
Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent -2. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape.
NASA Astrophysics Data System (ADS)
Bartolomeo, Daniel; Caticha, Ariel
2016-03-01
Entropic Dynamics (ED) is a framework that allows the formulation of dynamical theories as an application of entropic methods of inference. In the generic application of ED to derive the Schrödinger equation for N particles the dynamics is a non-dissipative diffusion in which the system follows a “Brownian” trajectory with fluctuations superposed on a smooth drift. We show that there is a family of ED models that differ at the “microscopic” or sub-quantum level in that one can enhance or suppress the fluctuations relative to the drift. Nevertheless, members of this family belong to the same universality class in that they all lead to the same emergent Schrödinger behavior at the “macroscopic” or quantum level. The model in which fluctuations are totally suppressed is of particular interest: the system evolves along the smooth lines of probability flow. Thus ED includes the Bohmian or causal form of quantum mechanics as a special limiting case. We briefly explore a different universality class - a nondissipative dynamics with microscopic fluctuations but no quantum potential. The Bohmian limit of these hybrid models is equivalent to classical mechanics. Finally we show that the Heisenberg uncertainty relation is unaffected either by enhancing or suppressing microscopic fluctuations or by switching off the quantum potential.
Slow and long-ranged dynamical heterogeneities in dissipative fluids.
Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette
2016-06-28
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572
Slow and long-ranged dynamical heterogeneities in dissipative fluids.
Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette
2016-06-28
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution.
A vorticity dynamics based model for the turbulent dissipation: Model development and validation
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liou, William W.; Shabbir, Aamir; Yang, Zhigang; Zhu, Jian
1994-01-01
A new model dissipation rate equation is proposed based on the dynamic equation of the mean-square vorticity fluctuation for large Reynolds number turbulence. The advantage of working with the vorticity fluctuation equation is that the physical meanings of the terms in this equation are more clear than those in the dissipation rate equation. Hence, the model development based on the vorticity fluctuation equation is more straightforward. The resulting form of the model equation is consistent with the spectral energy cascade analysis introduced by Lumley. The proposed model dissipation rate equation is numerically well behaved and can be applied to any level of turbulence modeling. It is applied to a realizable eddy viscosity model. Flows that are examined include: rotating homogeneous shear flows; free shear flows; a channel flow and flat plate boundary layers with and without pressure gradients; and backward facing step separated flows. In most cases, the present model predictions show considerable improvement over the standard kappa-epsilon model.
Relativistic second-order dissipative fluid dynamics at finite chemical potential
NASA Astrophysics Data System (ADS)
Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof
2016-07-01
We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.
Nonequilibrium dynamics in lattice ecosystems: Chaotic stability and dissipative structures
NASA Astrophysics Data System (ADS)
Solé, Ricard V.; Bascompte, Jordi; Valls, Joaquim
1992-07-01
A generalized coupled map lattice (CML) model of ecosystem dynamics is presented. We consider the spatiotemporal behavior of a prey-predator map, a model of host-parasitoid interactions, and two-species competition. The latter model can show phase separation of domains (Turing-like structures) even when chaos is present. We also use this CML model to explore the time evolution and structural properties of ecological networks built with a set of N competing species. The May-Wigner criterion is applied as a measure of stability, and some regularities in the stable networks observed are discussed.
An Observational Study of the Recurring Formation and Dissipation of a Dynamic Filament
NASA Astrophysics Data System (ADS)
Zhou, Guiping; Wang, Jingxiu; Zhang, Jie
2016-10-01
Based on observations at the Hα wavelength from the Hinode spacecraft, we report here the detailed process of a dynamical filament that showed repeated appearance and dissipation in a filament channel. First, Hα short fibrils spreading in the pre-formed filament channel joined into longer threads. The joining process was found to be accompanied by small-scale brightening activity, indicating the possible involvement of magnetic reconnection. The forming filament was thickened by merging the neighboring dark threads that were nearly parallel to the axis and also those adjacent to its main endpoints. The formed filament as a single coherent structure only existed for tens of minutes, immediately followed by the dissipation. The dissipation appeared to start with expansion of the filament body, ascending and stripping away of the filament threads, and mass drainage along the legs of the filament. The formation-dissipation process of the filament was repeated three times within the four-hour observational window of Hinode. These observations indicate that the filament structure is highly dynamic. This study provides the observational evidence to confirm the hypothesis of Martin et al. ( Ann. Geophys. 26, 3061, 2008) on the irreversible build-up of magnetic fields in the corona by discrete threads or groups of threads ascending bodily into the corona.
An Observational Study of the Recurring Formation and Dissipation of a Dynamic Filament
NASA Astrophysics Data System (ADS)
Zhou, Guiping; Wang, Jingxiu; Zhang, Jie
2016-09-01
Based on observations at the Hα wavelength from the Hinode spacecraft, we report here the detailed process of a dynamical filament that showed repeated appearance and dissipation in a filament channel. First, Hα short fibrils spreading in the pre-formed filament channel joined into longer threads. The joining process was found to be accompanied by small-scale brightening activity, indicating the possible involvement of magnetic reconnection. The forming filament was thickened by merging the neighboring dark threads that were nearly parallel to the axis and also those adjacent to its main endpoints. The formed filament as a single coherent structure only existed for tens of minutes, immediately followed by the dissipation. The dissipation appeared to start with expansion of the filament body, ascending and stripping away of the filament threads, and mass drainage along the legs of the filament. The formation-dissipation process of the filament was repeated three times within the four-hour observational window of Hinode. These observations indicate that the filament structure is highly dynamic. This study provides the observational evidence to confirm the hypothesis of Martin et al. (Ann. Geophys. 26, 3061, 2008) on the irreversible build-up of magnetic fields in the corona by discrete threads or groups of threads ascending bodily into the corona.
NASA Astrophysics Data System (ADS)
Dunne, Lawrence J.; Axelsson, Anna-Karin; Alford, Neil Mcn.; Breeze, Jonathan; Aupi, Xavi; Brändas, Erkki J.
One of the most important problems in developing devices for quantum computation is the coupling and dissipation of states by thermal noise. We present a study of a two-state electric dipole in a crystal coupling to noise from a reservoir. As a realization of such an energy-dissipating dipole, we report and analyze dielectric loss measurements in single crystal and polycrystalline Al2O3 over the temperature range 70-300 K. We are able to model the dielectric loss in terms of a quasi-classical model that uses the fluctuation-dissipation theorem. Two key parameters in this model are the crystal oscillator energy and reservoir-lattice coupling constant. In polycrystalline samples, it is assumed that the main effect of structural disorder is a modification of the spectrum of the thermal phonons, so that acoustical vibrations acquire some optical mode character. The temperature dependence of the linewidth of the high dielectric strength infrared (IR) mode at 438 cm-1 and the quasi-degenerate Raman mode of the k = 0 (418 cm-1) transition are also investigated and are shown to be related simply to the dielectric loss. The model reproduces the unusual temperature dependence of the dielectric loss observed experimentally. The implications for the coupling of quantum mechanical objects to noise and quantum information processing are discussed.
Mapping quantum state dynamics in spontaneous emission
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-01-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893
Mapping quantum state dynamics in spontaneous emission
NASA Astrophysics Data System (ADS)
Naghiloo, M.; Foroozani, N.; Tan, D.; Jadbabaie, A.; Murch, K. W.
2016-05-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution.
Mapping quantum state dynamics in spontaneous emission.
Naghiloo, M; Foroozani, N; Tan, D; Jadbabaie, A; Murch, K W
2016-01-01
The evolution of a quantum state undergoing radiative decay depends on how its emission is detected. If the emission is detected in the form of energy quanta, the evolution is characterized by a quantum jump to a lower energy state. In contrast, detection of the wave nature of the emitted radiation leads to different dynamics. Here, we investigate the diffusive dynamics of a superconducting artificial atom under continuous homodyne detection of its spontaneous emission. Using quantum state tomography, we characterize the correlation between the detected homodyne signal and the emitter's state, and map out the conditional back-action of homodyne measurement. By tracking the diffusive quantum trajectories of the state as it decays, we characterize selective stochastic excitation induced by the choice of measurement basis. Our results demonstrate dramatic differences from the quantum jump evolution associated with photodetection and highlight how continuous field detection can be harnessed to control quantum evolution. PMID:27167893
Energy dissipation in dynamic fracture of brittle materials
NASA Astrophysics Data System (ADS)
Miller, O.; Freund, L. B.; Needleman, A.
1999-07-01
Dynamic crack growth in a plane strain strip is analysed using a cohesive surface fracture framework where the continuum is characterized by two constitutive relations: a material constitutive law that relates stress and strain, and a relation between the tractions and displacement jumps across a specified set of cohesive surfaces. The material constitutive relation is that of an isotropic hyperelastic solid. The cohesive surface constitutive relation introduces a characteristic length into the formulation. The resistance to crack initiation and the crack speed history are predicted without invoking any additional failure criterion. Finite-strain transient analyses are carried out, with a focus on the relation between the increase in fracture energy with crack speed and the increase in surface area due to crack branching. The numerical results show that, even with a fixed work of separation per unit area, there is a substantial increase in fracture energy with increasing crack speed. This arises from an increase in fracture surface area due to crack branching. The computational results are in good agreement with experimental observations in Sharon et al (1996).
Dynamics of dissipative self-assembly of particles interacting through oscillatory forces.
Tagliazucchi, M; Szleifer, I
2016-01-01
Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of the system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state.
Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method.
Mo, Chao-jie; Yang, Li-jun; Zhao, Fei; Cui, Kun-da
2015-08-01
In this research, the dissipative particle dynamics method was used to investigate the problem of thinning and breakup in a liquid bridge. It was found that both the inertial-force-dominated thinning process and the thermal-fluctuation-dominated thinning process can be reproduced with the dissipative particle dynamics (DPD) method by varying the simulation parameters. A highly suspect viscous thinning regime was also found, but the conclusion is not irrefutable because of the complication of the shear viscosity of DPD fluid. We show in this article that the DPD method can serve as a good candidate to elucidate crossover problem in liquid bridge thinning from being hydrodynamics dominated to being thermal fluctuation dominated. PMID:26382504
Mesoscopic simulation of a thinning liquid bridge using the dissipative particle dynamics method
NASA Astrophysics Data System (ADS)
Mo, Chao-jie; Yang, Li-jun; Zhao, Fei; Cui, Kun-da
2015-08-01
In this research, the dissipative particle dynamics method was used to investigate the problem of thinning and breakup in a liquid bridge. It was found that both the inertial-force-dominated thinning process and the thermal-fluctuation-dominated thinning process can be reproduced with the dissipative particle dynamics (DPD) method by varying the simulation parameters. A highly suspect viscous thinning regime was also found, but the conclusion is not irrefutable because of the complication of the shear viscosity of DPD fluid. We show in this article that the DPD method can serve as a good candidate to elucidate crossover problem in liquid bridge thinning from being hydrodynamics dominated to being thermal fluctuation dominated.
Robust dynamical decoupling for quantum computing and quantum memory.
Souza, Alexandre M; Alvarez, Gonzalo A; Suter, Dieter
2011-06-17
Dynamical decoupling (DD) is a popular technique for protecting qubits from the environment. However, unless special care is taken, experimental errors in the control pulses used in this technique can destroy the quantum information instead of preserving it. Here, we investigate techniques for making DD sequences robust against different types of experimental errors while retaining good decoupling efficiency in a fluctuating environment. We present experimental data from solid-state nuclear spin qubits and introduce a new DD sequence that is suitable for quantum computing and quantum memory.
NASA Astrophysics Data System (ADS)
Zhang, Wen-Ming; Yan, Han; Jiang, Hui-Ming; Hu, Kai-Ming; Peng, Zhi-Ke; Meng, Guang
2016-04-01
In this paper, the dynamics of suspended microchannel resonators which convey internal flows with opposite directions are investigated. The fluid-structure interactions between the laminar fluid flow and oscillating cantilever are analyzed by comprehensively considering the effects of velocity profile, flow viscosity and added flowing particle. A new model is developed to characterize the dynamic behavior of suspended microchannel resonators with the fluid-structure interactions. The stability, frequency shift and energy dissipation of suspended microchannel resonators are analyzed and discussed. The results demonstrate that the frequency shifts induced by the added flowing particle which are obtained from the new model have a good agreement with the experimental data. The steady mean flow can cause the frequency shift and influence the stability of the dynamic system. As the flow velocity reaches the critical value, the coupled-mode flutter occurs via a Hamiltonian Hopf bifurcation. The perturbation flow resulted from the vibration of the microcantilever leads to energy dissipation, while the steady flow does not directly cause the damping which increases with the increasing of the flow velocity predicted by the classical model. It can also be found that the steady flow firstly changes the mode shape of the cantilever and consequently affects the energy dissipation.
Non-Markovian dynamics in chiral quantum networks with spins and photons
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Vermersch, Benoît; Hauke, Philipp; Pichler, Hannes; Zoller, Peter
2016-06-01
We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to familiar photonic networks where driven two-level atoms exchange photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D X X spin chains representing spin waveguides. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bath, allowing for an efficient solution with time-dependent density matrix renormalization-group techniques. We illustrate our approach showing non-Markovian effects in the driven-dissipative formation of quantum dimers, and we present examples for quantum information protocols involving quantum state transfer with engineered elements as basic building blocks of quantum spintronic circuits.
Geometric phases and quantum correlations dynamics in spin-boson model
Wu, Wei; Xu, Jing-Bo
2014-01-28
We explore the dynamics of spin-boson model for the Ohmic bath by employing the master equation approach and obtain an explicit expression of reduced density matrix. We also calculate the geometric phases of the spin-boson model by making use of the analytical results and discuss how the dissipative bosonic environment affects geometric phases. Furthermore, we investigate the dynamics of quantum discord and entanglement of two qubits each locally interacting with its own independent bosonic environments. It is found that the decay properties of quantum discord and entanglement are sensitive to the choice of initial state's parameter and coupling strength between system and bath.
NASA Astrophysics Data System (ADS)
Lu, Mei; Xia, Yan; Shen, Li-Tuo; Song, Jie
2014-10-01
We propose an alternative scheme for constructing a shortcut to implement the quantum state transfer between two three-level atoms founded on the invariant-based inverse engineering in a cavity quantum electronic dynamics (QED) system. Quantum information can be quickly transferred between atoms by taking advantage of the cavity field as a medium. Through our design of the time-dependent laser pulse and atom-cavity coupling, we send atoms through the cavity within a short time interval, which involves the two processes of the invariant dynamics between each atom and the cavity field simultaneously. We redesign a reasonable Gaussian-type wave form in the atom-cavity coupling for a realistic experimental operation. Numerical simulation shows that the target state can be quickly populated with a high fidelity which is robust against both the parameter fluctuations and the dissipation.
NASA Astrophysics Data System (ADS)
Fanaei, M.; Foerster, A.; Leymann, H. A. M.; Wiersig, J.
2016-10-01
We investigate two-mode photon correlations in a quantum-dot-microcavity laser with special emphasis on the effects induced by a direct coupling of two competing modes due to the dissipative character of the laser resonator. Numerical results based on a microscopic semiconductor theory reveal an enhanced autocorrelation of both modes and an enhanced anticorrelation between the modes. A detailed analysis is given in terms of dark and bright modes. It is shown that above the lasing threshold the original modes build up a bright mode coupled to the quantum dots and a dark mode, which interacts only indirectly with the quantum dots. We demonstrate that a populated dark mode can enable an efficient transfer of photons between the two original cavity modes, mediating an effective coupling between them.
Dissipation dynamics and final residues of cloransulam-methyl in soybean and soil.
Zhang, Zihao; Li, Minghui; Feng, Mengyuan; Zhu, Kechen; Han, Lijun
2016-03-01
This work is the first report on the dissipation and final residue of cloransulam-methyl on soybean plant at field conditions. A fast, simple, and reliable residue analytical method for determination of cloransulam-methyl in soybean matrices and soil was developed based on quick, easy, cheap, effective, rugged, and safe (QuEChERS) sample preparation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) detection. The average recoveries of cloransulam-methyl in soybean matrices and soil ranged from 80 to 105%, with RSDs between 3-11%. The limit of detection (LOD) was 0.001 mg kg(-1) for soybean grain, plant, and soil and was 0.005 mg kg(-1) for soybean straw. This method was then used to characterize dissipation of cloransulam-methyl in soybeans and soil from three locations in China for the first time. Cloransulam-methyl dissipated quickly in soybean plant with half-lives (T1/2) of 0.21-0.56 days. The dissipation dynamic in soil was characterized using both first-order kinetics model and two-compartment model, and the half-lives were similar, ranging from 0.44 to 5.53 days at three experimental sites in 2012 and 2013. The final residue data showed a very low level of cloransulam-methyl in soil (≤0.026 mg kg(-1)), soybean grain (≤0.001 mg kg(-1)), and straw (≤0.005 mg kg(-1)) samples at harvest time. With the faster and simple analytical method on soybean and soil, rapid dissipation of cloransulam-methyl was observed at three geospatial locations in China, and the terminal residue levels were negligible, so mammalian ingestion exposure is minimal.
NASA Astrophysics Data System (ADS)
Celletti, Alessandra; Stefanelli, Letizia; Lega, Elena; Froeschlé, Claude
2011-03-01
We perform an analysis of the dynamics of the circular, restricted, planar three-body problem under the effect of different kinds of dissipation (linear, Stokes and Poynting-Robertson drags). Since the problem is singular, we implement a regularization technique in the style of Levi-Civita. The effect of the dissipation is often to decrease the semi-major axis; as a consequence the minor body collides with one of the primaries. In general, it is quite difficult to find non-collision orbits using random initial conditions. However, by means of the computation of the Fast Lyapunov Indicators (FLI), we obtain a global view of the dynamics. Precisely, we detect the regions of the phase space potentially belonging to basins of attraction. This investigation provides information on the different regions of the phase space, showing both collision and non-collision trajectories. Moreover, we find periodic orbit attractors for the case of linear and Stokes drags, while in the case of the Poynting-Robertson effect no other attractors are found beside the primaries, unless a fourth body is added to counterbalance the dissipative effect.
NASA Astrophysics Data System (ADS)
Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Maia, Joao
2015-12-01
We present in this letter an auxiliary thermostat for non-equilibrium simulations in Dissipative Particle Dynamics based on the Gaussian distribution of particle velocities in the fluid. We demonstrate the ability of the thermostat to maintain the temperature under a wide range of shear rates and dissipative parameters, and to extend the shear rate window accessible by DPD significantly. The effect of proposed method on the viscosity of a DPD fluid is studied which is particularly of interest when the rheological behavior of a complex fluids is subject of DPD simulations. Furthermore, performance of the proposed method is compared to the ones from the well-known Lowe-Andersen scheme in regards to temperature and viscosity measurements.
Unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis E.
2015-04-28
A fourth-power law underlying the steady shock-wave structure and solid viscosity of condensed material has been observed for a wide range of metals and non-metals. The fourth-power law relates the steady-wave Hugoniot pressure to the fourth power of the strain rate during passage of the material through the structured shock wave. Preceding the fourth-power law was the observation in a shock transition that the product of the shock dissipation energy and the shock transition time is a constant independent of the shock pressure amplitude. Invariance of this energy-time product implies the fourth-power law. This property of the shock transition in solids was initially identified as a shock invariant. More recently, it has been referred to as the dissipative action, although no relationship to the accepted definitions of action in mechanics has been demonstrated. This same invariant property has application to a wider range of transient failure phenomena in solids. Invariance of this dissipation action has application to spall fracture, failure through adiabatic shear, shock compaction of granular media, and perhaps others. Through models of the failure processes, a clearer picture of the physics underlying the observed invariance is emerging. These insights in turn are leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. Calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale dynamics and spatial structure in the steady shock wave.
Dynamical Correspondence in a Generalized Quantum Theory
NASA Astrophysics Data System (ADS)
Niestegge, Gerd
2015-05-01
In order to figure out why quantum physics needs the complex Hilbert space, many attempts have been made to distinguish the C*-algebras and von Neumann algebras in more general classes of abstractly defined Jordan algebras (JB- and JBW-algebras). One particularly important distinguishing property was identified by Alfsen and Shultz and is the existence of a dynamical correspondence. It reproduces the dual role of the selfadjoint operators as observables and generators of dynamical groups in quantum mechanics. In the paper, this concept is extended to another class of nonassociative algebras, arising from recent studies of the quantum logics with a conditional probability calculus and particularly of those that rule out third-order interference. The conditional probability calculus is a mathematical model of the Lüders-von Neumann quantum measurement process, and third-order interference is a property of the conditional probabilities which was discovered by Sorkin (Mod Phys Lett A 9:3119-3127, 1994) and which is ruled out by quantum mechanics. It is shown then that the postulates that a dynamical correspondence exists and that the square of any algebra element is positive still characterize, in the class considered, those algebras that emerge from the selfadjoint parts of C*-algebras equipped with the Jordan product. Within this class, the two postulates thus result in ordinary quantum mechanics using the complex Hilbert space or, vice versa, a genuine generalization of quantum theory must omit at least one of them.
NASA Astrophysics Data System (ADS)
Morales, Marco A.; Fernández-Cervantes, Irving; Agustín-Serrano, Ricardo; Anzo, Andrés; Sampedro, Mercedes P.
2016-08-01
A functional with interactions short-range and long-range low coarse-grained approximation is proposed. This functional satisfies models with dissipative dynamics A, B and the stochastic Swift-Hohenberg equation. Furthermore, terms associated with multiplicative noise source are added in these models. These models are solved numerically using the method known as fast Fourier transform. Results of the spatio-temporal dynamic show similarity with respect to patterns behaviour in ferrofluids phases subject to external fields (magnetic, electric and temperature), as well as with the nucleation and growth phenomena present in some solid dissolutions. As a result of the multiplicative noise effect over the dynamic, some microstructures formed by changing solid phase and composed by binary alloys of Pb-Sn, Fe-C and Cu-Ni, as well as a NiAl-Cr(Mo) eutectic composite material. The model A for active-particles with a non-potential term in form of quadratic gradient explain the formation of nanostructured particles of silver phosphate. With these models is shown that the underlying mechanisms in the patterns formation in all these systems depends of: (a) dissipative dynamics; (b) the short-range and long-range interactions and (c) the appropiate combination of quadratic and multiplicative noise terms.
Paul Meakin; Zhijie Xu
2008-06-01
Particle methods are much less computationally efficient than grid based numerical solution of the Navier Stokes equation, and they have been used much less extensively, particularly for engineering applications. However, they have important advantages for some applications. These advantages include rigorous mast conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing. Code development effort is relatively low, and it is relatively simple to simulate flows with moving boundaries. In addition, it is often quite easy to include coupling of fluid flow with other physical phenomena such a phase separation. Here we describe the application of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. While these methods were developed to simulate fluids and other materials on three quite different scales – the molecular, meso and continuum scales, they are very closely related from a computational point of view. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role. Important examples include polymer solutions, gels, small particle suspensions and membranes. In these applications inter particle and intra molecular hydrodynamic interactions are automatically included
Kudo, Kazue; Kawaguchi, Yuki
2011-10-15
The hydrodynamic equation of a spinor Bose-Einstein condensate (BEC) gives a simple description of spin dynamics in the condensate. We introduce the hydrodynamic equation of a ferromagnetic BEC with dissipation originating from the energy dissipation of the condensate. The dissipative hydrodynamic equation has the same form as an extended Landau-Lifshitz-Gilbert (LLG) equation, which describes the magnetization dynamics of conducting ferromagnets in which localized magnetization interacts with spin-polarized currents. Employing the dissipative hydrodynamic equation, we demonstrate the magnetic domain pattern dynamics of a ferromagnetic BEC in the presence and absence of a current of particles, and discuss the effects of the current on domain pattern formation. We also discuss the characteristic lengths of domain patterns that have domain walls with and without finite magnetization.
Influence of external magnetic field on dynamics of open quantum systems
Kalandarov, Sh. A.; Kanokov, Z.; Adamian, G. G.; Antonenko, N. V.
2007-03-15
The influence of an external magnetic field on the non-Markovian dynamics of an open two-dimensional quantum system is investigated. The fluctuations of collective coordinate and momentum and transport coefficients are studied for a charged harmonic oscillator linearly coupled to a neutral bosonic heat bath. It is shown that the dissipation of collective energy slows down with increasing strength of the external magnetic field. The role of magnetic field in the diffusion processes is illustrated by several examples.
Spectrum analysis with quantum dynamical systems
NASA Astrophysics Data System (ADS)
Ng, Shilin; Ang, Shan Zheng; Wheatley, Trevor A.; Yonezawa, Hidehiro; Furusawa, Akira; Huntington, Elanor H.; Tsang, Mankei
2016-04-01
Measuring the power spectral density of a stochastic process, such as a stochastic force or magnetic field, is a fundamental task in many sensing applications. Quantum noise is becoming a major limiting factor to such a task in future technology, especially in optomechanics for temperature, stochastic gravitational wave, and decoherence measurements. Motivated by this concern, here we prove a measurement-independent quantum limit to the accuracy of estimating the spectrum parameters of a classical stochastic process coupled to a quantum dynamical system. We demonstrate our results by analyzing the data from a continuous-optical-phase-estimation experiment and showing that the experimental performance with homodyne detection is close to the quantum limit. We further propose a spectral photon-counting method that can attain quantum-optimal performance for weak modulation and a coherent-state input, with an error scaling superior to that of homodyne detection at low signal-to-noise ratios.
Quantum dynamics of nonlinear cavity systems
NASA Astrophysics Data System (ADS)
Nation, Paul David
In this work we investigate the quantum dynamics of three different configurations of nonlinear cavity systems. We begin by carrying out a quantum analysis of a dc superconducting quantum interference device (SQUID) mechanical displacement detector comprising a SQUID with a mechanically compliant loop segment. The SQUID is approximated by a nonlinear current-dependent inductor, inducing an external flux tunable nonlinear Duffing term in the cavity equation of motion. Expressions are derived for the detector signal and noise response where it is found that a soft-spring Duffing self-interaction enables a closer approach to the displacement detection standard quantum limit, as well as cooling closer to the ground state. Next, we consider the use of a superconducting transmission line formed from an array of dc-SQUIDs for investigating analogue Hawking radiation. We will show that biasing the array with a space-time varying flux modifies the propagation velocity of the transmission line, leading to an effective metric with a horizon. As a fundamentally quantum mechanical device, this setup allows for investigations of quantum effects such as backreaction and analogue space-time fluctuations on the Hawking process. Finally, we investigate a quantum parametric amplifier with dynamical pump mode, viewed as a zero-dimensional model of Hawking radiation from an evaporating black hole. The conditions are derived under which the spectrum of particles generated from vacuum fluctuations deviates from the thermal spectrum predicted for the conventional parametric amplifier. We find that significant deviation occurs once the pump mode (black hole) has released nearly half of its initial energy in the signal (Hawking radiation) and idler (in-falling particle) modes. As a model of black hole dynamics, this finding lends support to the view that late-time Hawking radiation contains information about the quantum state of the black hole and is entangled with the black hole's quantum
Measurement-based quantum lattice gas model of fluid dynamics in 2+1 dimensions.
Micci, Michael M; Yepez, Jeffrey
2015-09-01
Presented are quantum simulation results using a measurement-based quantum lattice gas algorithm for Navier-Stokes fluid dynamics in 2+1 dimensions. Numerical prediction of the kinematic viscosity was measured by the decay rate of an initial sinusoidal flow profile. Due to local quantum entanglement in the quantum lattice gas, the minimum kinematic viscosity in the measurement-based quantum lattice gas is lower than achievable in a classical lattice gas. The numerically predicted viscosities precisely match the theoretical predictions obtained with a mean field approximation. Uniform flow profile with double shear layers, on a 16K×8K lattice, leads to the Kelvin-Helmholtz instability, breaking up the shear layer into pairs of counter-rotating vortices that eventually merge via vortex fusion and dissipate because of the nonzero shear viscosity.
Yamanishi, Masamichi
2012-12-17
Intrinsic linewidth formula modified by taking account of fluctuation-dissipation balance for thermal photons in a THz quantum-cascade laser (QCL) is exhibited. The linewidth formula based on the model that counts explicitly the influence of noisy stimulated emissions due to thermal photons existing inside the laser cavity interprets experimental results on intrinsic linewidth, ~91.1 Hz reported recently with a 2.5 THz bound-to-continuum QCL. The line-broadening induced by thermal photons is estimated to be ~22.4 Hz, i.e., 34% broadening. The modified linewidth formula is utilized as a bench mark in engineering of THz thermal photons inside laser cavities.
Control by quantum dynamics on graphs
Godsil, Chris; Severini, Simone
2010-05-15
We address the study of controllability of a closed quantum system whose dynamical Lie algebra is generated by adjacency matrices of graphs. We characterize a large family of graphs that renders a system controllable. The key property is a graph-theoretic feature consisting of a particularly disordered cycle structure. Disregarding efficiency of control functions, but choosing subfamilies of sparse graphs, the results translate into continuous-time quantum walks for universal computation.
Origin of Dynamical Quantum Non-locality
NASA Astrophysics Data System (ADS)
Pachon, Cesar E.; Pachon, Leonardo A.
2014-03-01
Non-locality is one of the hallmarks of quantum mechanics and is responsible for paradigmatic features such as entanglement and the Aharonov-Bohm effect. Non-locality comes in two ``flavours'': a kinematic non-locality- arising from the structure of the Hilbert space- and a dynamical non-locality- arising from the quantum equations of motion-. Kinematic non-locality is unable to induce any change in the probability distributions, so that the ``action-at-a-distance'' cannot manifest. Conversely, dynamical non-locality does create explicit changes in probability, though in a ``causality-preserving'' manner. The origin of non-locality of quantum measurements and its relations to the fundamental postulates of quantum mechanics, such as the uncertainty principle, have been only recently elucidated. Here we trace the origin of dynamical non-locality to the superposition principle. This relation allows us to establish and identify how the uncertainty and the superposition principles determine the non-local character of the outcome of a quantum measurement. Being based on group theoretical and path integral formulations, our formulation admits immediate generalizations and extensions to to, e.g., quantum field theory. This work was supported by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion -COLCIENCIAS- of Colombia under the grant number 111556934912.
Stochastic solution to quantum dynamics
NASA Technical Reports Server (NTRS)
John, Sarah; Wilson, John W.
1994-01-01
The quantum Liouville equation in the Wigner representation is solved numerically by using Monte Carlo methods. For incremental time steps, the propagation is implemented as a classical evolution in phase space modified by a quantum correction. The correction, which is a momentum jump function, is simulated in the quasi-classical approximation via a stochastic process. The technique, which is developed and validated in two- and three- dimensional momentum space, extends an earlier one-dimensional work. Also, by developing a new algorithm, the application to bound state motion in an anharmonic quartic potential shows better agreement with exact solutions in two-dimensional phase space.
NASA Astrophysics Data System (ADS)
Schröder, Florian A. Y. N.; Chin, Alex W.
2016-02-01
We report the development of an efficient many-body algorithm for simulating open quantum system dynamics that utilizes a time-dependent variational principle for matrix product states to evolve large system-environment states. Capturing all system-environment correlations, we reproduce the nonperturbative, quantum-critical dynamics of the zero-temperature spin-boson model, and then exploit the many-body information to visualize the complete time-frequency spectrum of the environmental excitations. Our "environmental spectra" reveal correlated vibrational motion in polaronic modes which preserve their vibrational coherence during incoherent spin relaxation, demonstrating how environment information could yield valuable insights into complex quantum dissipative processes.
No-go theorem in many-body dissipative particle dynamics.
Warren, Patrick B
2013-04-01
Many body dissipative particle dynamics (MDPD) is a particle-based simulation method in which the interaction potential is a sum of self energies depending on locally sampled density variables. This functional form gives rise to density-dependent pairwise forces; however, not all such force laws are derivable from a potential, and the integrability condition for this to be the case provides a strong constraint. A strategy to assess the implications of this constraint is illustrated here by the derivation of a useful no-go theorem for multicomponent MDPD.
Homman, Ahmed-Amine; Maillet, Jean-Bernard; Roussel, Julien; Stoltz, Gabriel
2016-01-14
This work presents new parallelizable numerical schemes for the integration of dissipative particle dynamics with energy conservation. So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long times and give rise to small errors on average properties for moderately small time steps, while being straightforwardly parallelizable. We present in this article two new methods, both straightforwardly parallelizable, allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations. PMID:26772559
NASA Astrophysics Data System (ADS)
Homman, Ahmed-Amine; Maillet, Jean-Bernard; Roussel, Julien; Stoltz, Gabriel
2016-01-01
This work presents new parallelizable numerical schemes for the integration of dissipative particle dynamics with energy conservation. So far, no numerical scheme introduced in the literature is able to correctly preserve the energy over long times and give rise to small errors on average properties for moderately small time steps, while being straightforwardly parallelizable. We present in this article two new methods, both straightforwardly parallelizable, allowing to correctly preserve the total energy of the system. We illustrate the accuracy and performance of these new schemes both on equilibrium and nonequilibrium parallel simulations.
On the numerical treatment of dissipative particle dynamics and related systems
Leimkuhler, Benedict Shang, Xiaocheng
2015-01-01
We review and compare numerical methods that simultaneously control temperature while preserving the momentum, a family of particle simulation methods commonly used for the modelling of complex fluids and polymers. The class of methods considered includes dissipative particle dynamics (DPD) as well as extended stochastic-dynamics models incorporating a generalized pairwise thermostat scheme in which stochastic forces are eliminated and the coefficient of dissipation is treated as an additional auxiliary variable subject to a feedback (kinetic energy) control mechanism. In the latter case, we consider the addition of a coupling of the auxiliary variable, as in the Nosé–Hoover–Langevin (NHL) method, with stochastic dynamics to ensure ergodicity, and find that the convergence of ensemble averages is substantially improved. To this end, splitting methods are developed and studied in terms of their thermodynamic accuracy, two-point correlation functions, and convergence. In terms of computational efficiency as measured by the ratio of thermodynamic accuracy to CPU time, we report significant advantages in simulation for the pairwise NHL method compared to popular alternative schemes (up to an 80% improvement), without degradation of convergence rate. The momentum-conserving thermostat technique described here provides a consistent hydrodynamic model in the low-friction regime, but it will also be of use in both equilibrium and nonequilibrium molecular simulation applications owing to its efficiency and simple numerical implementation.
Dynamics of the coiled-coil unfolding transition of myosin rod probed by dissipation force spectrum.
Taniguchi, Yukinori; Khatri, Bhavin S; Brockwell, David J; Paci, Emanuele; Kawakami, Masaru
2010-07-01
The motor protein myosin II plays a crucial role in muscle contraction. The mechanical properties of its coiled-coil region, the myosin rod, are important for effective force transduction during muscle function. Previous studies have investigated the static elastic response of the myosin rod. However, analogous to the study of macroscopic complex fluids, how myosin will respond to physiological time-dependent loads can only be understood from its viscoelastic response. Here, we apply atomic force microscopy using a magnetically driven oscillating cantilever to measure the dissipative properties of single myosin rods that provide unique dynamical information about the coiled-coil structure as a function of force. We find that the friction constant of the single myosin rod has a highly nontrivial variation with force; in particular, the single-molecule friction constant is reduced dramatically and increases again as it passes through the coiled-uncoiled transition. This is a direct indication of a large free-energy barrier to uncoiling, which may be related to a fine-tuned dynamic mechanosignaling response to large and unexpected physiological loads. Further, from the critical force at which the minimum in friction occurs we determine the asymmetry of the bistable landscape that controls uncoiling of the coiled coil. This work highlights the sensitivity of the dissipative signal in force unfolding to dynamic molecular structure that is hidden to the elastic signal. PMID:20655854
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375
Energy-conserving dissipative particle dynamics with temperature-dependent properties
Li, Zhen; Tang, Yu-Hang; Lei, Huan; Caswell, Bruce; Karniadakis, George E.
2014-05-01
The dynamic properties of fluid, including diffusivity and viscosity, are temperature-dependent and can significantly influence the flow dynamics of mesoscopic non-isothermal systems. To capture the correct temperature-dependence of a fluid, an energy-conserving dissipative particle dynamics (eDPD) model is developed by expressing the weighting terms of the dissipative force and the random force as functions of temperature. The diffusivity and viscosity of liquid water at various temperatures ranging from 273 K to 373 K are used as examples for verifying the proposed model. Simulations of a Poiseuille flow and a steady case of heat conduction for reproducing the Fourier law are carried out to validate the present eDPD formulation and the thermal boundary conditions. Results show that the present eDPD model recovers the standard DPD model when isothermal fluid systems are considered. For non-isothermal fluid systems, the present model can predict the diffusivity and viscosity consistent with available experimental data of liquid water at various temperatures. Moreover, an analytical formula for determining the mesoscopic heat friction is proposed. The validity of the formula is confirmed by reproducing the experimental data for Prandtl number of liquid water at various temperatures. The proposed method is demonstrated in water but it can be readily extended to other liquids. (C) 2014 Elsevier Inc. All rights reserved.
On the numerical treatment of dissipative particle dynamics and related systems
NASA Astrophysics Data System (ADS)
Leimkuhler, Benedict; Shang, Xiaocheng
2015-01-01
We review and compare numerical methods that simultaneously control temperature while preserving the momentum, a family of particle simulation methods commonly used for the modelling of complex fluids and polymers. The class of methods considered includes dissipative particle dynamics (DPD) as well as extended stochastic-dynamics models incorporating a generalized pairwise thermostat scheme in which stochastic forces are eliminated and the coefficient of dissipation is treated as an additional auxiliary variable subject to a feedback (kinetic energy) control mechanism. In the latter case, we consider the addition of a coupling of the auxiliary variable, as in the Nosé-Hoover-Langevin (NHL) method, with stochastic dynamics to ensure ergodicity, and find that the convergence of ensemble averages is substantially improved. To this end, splitting methods are developed and studied in terms of their thermodynamic accuracy, two-point correlation functions, and convergence. In terms of computational efficiency as measured by the ratio of thermodynamic accuracy to CPU time, we report significant advantages in simulation for the pairwise NHL method compared to popular alternative schemes (up to an 80% improvement), without degradation of convergence rate. The momentum-conserving thermostat technique described here provides a consistent hydrodynamic model in the low-friction regime, but it will also be of use in both equilibrium and nonequilibrium molecular simulation applications owing to its efficiency and simple numerical implementation.
Pairwise adaptive thermostats for improved accuracy and stability in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Leimkuhler, Benedict; Shang, Xiaocheng
2016-11-01
We examine the formulation and numerical treatment of dissipative particle dynamics (DPD) and momentum-conserving molecular dynamics. We show that it is possible to improve both the accuracy and the stability of DPD by employing a pairwise adaptive Langevin thermostat that precisely matches the dynamical characteristics of DPD simulations (e.g., autocorrelation functions) while automatically correcting thermodynamic averages using a negative feedback loop. In the low friction regime, it is possible to replace DPD by a simpler momentum-conserving variant of the Nosé-Hoover-Langevin method based on thermostatting only pairwise interactions; we show that this method has an extra order of accuracy for an important class of observables (a superconvergence result), while also allowing larger timesteps than alternatives. All the methods mentioned in the article are easily implemented. Numerical experiments are performed in both equilibrium and nonequilibrium settings; using Lees-Edwards boundary conditions to induce shear flow.
Relaxation dynamics in correlated quantum dots
Andergassen, S.; Schuricht, D.; Pletyukhov, M.; Schoeller, H.
2014-12-04
We study quantum many-body effects on the real-time evolution of the current through quantum dots. By using a non-equilibrium renormalization group approach, we provide analytic results for the relaxation dynamics into the stationary state and identify the microscopic cutoff scales that determine the transport rates. We find rich non-equilibrium physics induced by the interplay of the different energy scales. While the short-time limit is governed by universal dynamics, the long-time behavior features characteristic oscillations as well as an interplay of exponential and power-law decay.
Nonequilibrium quantum dynamics in optomechanical systems
NASA Astrophysics Data System (ADS)
Patil, Yogesh Sharad; Cheung, Hil F. H.; Shaffer, Airlia; Wang, Ke; Vengalattore, Mukund
2016-05-01
The thermalization dynamics of isolated quantum systems has so far been explored in the context of cold atomic systems containing a large number of particles and modes. Quantum optomechanical systems offer prospects of studying such dynamics in a qualitatively different regime - with few individually addressable modes amenable to continuous quantum measurement and thermalization times that vastly exceed those observed in cold atomic systems. We have experimentally realized a dynamical continuous phase transition in a quantum compatible nondegenerate mechanical parametric oscillator. This system is formally equivalent to the optical parametric amplifiers whose dynamics have been a subject of intense theoretical study. We experimentally verify its phase diagram and observe nonequilibrium behavior that was only theorized, but never directly observed, in the context of optical parametric amplifiers. We discuss prospects of using nonequilibrium protocols such as quenches in optomechanical systems to amplify weak nonclassical correlations and to realize macroscopic nonclassical states. This work was supported by the DARPA QuASAR program through a Grant from the ARO and the ARO MURI on non-equilibrium manybody dynamics.
Nuclear quantum dynamics in dense hydrogen
Kang, Dongdong; Sun, Huayang; Dai, Jiayu; Chen, Wenbo; Zhao, Zengxiu; Hou, Yong; Zeng, Jiaolong; Yuan, Jianmin
2014-01-01
Nuclear dynamics in dense hydrogen, which is determined by the key physics of large-angle scattering or many-body collisions between particles, is crucial for the dynamics of planet's evolution and hydrodynamical processes in inertial confinement confusion. Here, using improved ab initio path-integral molecular dynamics simulations, we investigated the nuclear quantum dynamics regarding transport behaviors of dense hydrogen up to the temperatures of 1 eV. With the inclusion of nuclear quantum effects (NQEs), the ionic diffusions are largely higher than the classical treatment by the magnitude from 20% to 146% as the temperature is decreased from 1 eV to 0.3 eV at 10 g/cm3, meanwhile, electrical and thermal conductivities are significantly lowered. In particular, the ionic diffusion is found much larger than that without NQEs even when both the ionic distributions are the same at 1 eV. The significant quantum delocalization of ions introduces remarkably different scattering cross section between protons compared with classical particle treatments, which explains the large difference of transport properties induced by NQEs. The Stokes-Einstein relation, Wiedemann-Franz law, and isotope effects are re-examined, showing different behaviors in nuclear quantum dynamics. PMID:24968754
Phase space representation of quantum dynamics
Polkovnikov, Anatoli
2010-08-15
We discuss a phase space representation of quantum dynamics of systems with many degrees of freedom. This representation is based on a perturbative expansion in quantum fluctuations around one of the classical limits. We explicitly analyze expansions around three such limits: (i) corpuscular or Newtonian limit in the coordinate-momentum representation, (ii) wave or Gross-Pitaevskii limit for interacting bosons in the coherent state representation, and (iii) Bloch limit for the spin systems. We discuss both the semiclassical (truncated Wigner) approximation and further quantum corrections appearing in the form of either stochastic quantum jumps along the classical trajectories or the nonlinear response to such jumps. We also discuss how quantum jumps naturally emerge in the analysis of non-equal time correlation functions. This representation of quantum dynamics is closely related to the phase space methods based on the Wigner-Weyl quantization and to the Keldysh technique. We show how such concepts as the Wigner function, Weyl symbol, Moyal product, Bopp operators, and others automatically emerge from the Feynmann's path integral representation of the evolution in the Heisenberg representation. We illustrate the applicability of this expansion with various examples mostly in the context of cold atom systems including sine-Gordon model, one- and two-dimensional Bose-Hubbard model, Dicke model and others.
Quantum metrology: dynamics versus entanglement.
Boixo, Sergio; Datta, Animesh; Davis, Matthew J; Flammia, Steven T; Shaji, Anil; Caves, Carlton M
2008-07-25
A parameter whose coupling to a quantum probe of n constituents includes all two-body interactions between the constituents can be measured with an uncertainty that scales as 1/n3/2, even when the constituents are initially unentangled. We devise a protocol that achieves the 1/n3/2 scaling without generating any entanglement among the constituents, and we suggest that the protocol might be implemented in a two-component Bose-Einstein condensate.
Quantum tunneling dynamics using hydrodynamic trajectories
NASA Astrophysics Data System (ADS)
Bittner, Eric R.
2000-06-01
In this paper we compute quantum trajectories arising from Bohm's causal description of quantum mechanics. Our computational methodology is based upon a finite-element moving least-squares method (MWLS) presented recently by Wyatt and co-workers [Lopreore and Wyatt, Phys. Rev. Lett. 82, 5190 (1999)]. This method treats the "particles" in the quantum Hamilton-Jacobi equation as Lagrangian fluid elements that carry the phase, S, and density, ρ, required to reconstruct the quantum wave function. Here, we compare results obtained via the MWLS procedure to exact results obtained either analytically or by numerical solution of the time-dependent Schrödinger equation. Two systems are considered: first, dynamics in a harmonic well and second, tunneling dynamics in a double well potential. In the case of tunneling in the double well potential, the quantum potential acts to lower the barrier, separating the right- and left-hand sides of the well, permitting trajectories to pass from one side to another. However, as probability density passes from one side to the other, the effective barrier begins to rise and eventually will segregate trajectories in one side from the other. We note that the MWLS trajectories exhibited long time stability in the purely harmonic cases. However, this stability was not evident in the barrier crossing dynamics. Comparisons to exact trajectories obtained via wave packet calculations indicate that the MWLS trajectories tend to underestimate the effects of constructive and destructive interference effects.
Soares, Joao S; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny
2013-11-01
Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets. PMID:23695489
Soares, Joao S.; Gao, Chao; Alemu, Yared; Slepian, Marvin; Bluestein, Danny
2013-01-01
Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represent a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets. PMID:23695489
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-01-01
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d + zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T) ∈ [0, 1] decreases with the temperature such that Λ(T = 0) = 1 and Λ(T → ∞) = 0. Our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover. PMID:26688102
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transition from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.
Quantum-to-classical crossover near quantum critical point
Vasin, M.; Ryzhov, V.; Vinokur, V. M.
2015-12-21
A quantum phase transition (QPT) is an inherently dynamic phenomenon. However, while non-dissipative quantum dynamics is described in detail, the question, that is not thoroughly understood is how the omnipresent dissipative processes enter the critical dynamics near a quantum critical point (QCP). Here we report a general approach enabling inclusion of both adiabatic and dissipative processes into the critical dynamics on the same footing. We reveal three distinct critical modes, the adiabatic quantum mode (AQM), the dissipative classical mode [classical critical dynamics mode (CCDM)], and the dissipative quantum critical mode (DQCM). We find that as a result of the transitionmore » from the regime dominated by thermal fluctuations to that governed by the quantum ones, the system acquires effective dimension d+zΛ(T), where z is the dynamical exponent, and temperature-depending parameter Λ(T)ε[0, 1] decreases with the temperature such that Λ(T=0) = 1 and Λ(T →∞) = 0. Lastly, our findings lead to a unified picture of quantum critical phenomena including both dissipation- and dissipationless quantum dynamic effects and offer a quantitative description of the quantum-to-classical crossover.« less
A polarizable coarse-grained protein model for dissipative particle dynamics.
Peter, Emanuel K; Lykov, Kirill; Pivkin, Igor V
2015-10-01
We present a new coarse-grained polarizable protein model for dissipative particle dynamics (DPD) method. This method allows large timesteps in particle-based systems and speeds up sampling by many orders of magnitude. Our new model is based on the electrostatic polarization of the protein backbone and a detailed representation of the sidechains in combination with a polarizable water model. We define our model parameters using the experimental structures of two proteins, TrpZip2 and TrpCage. Backmapping and subsequent short replica-exchange molecular dynamics runs verify our approach and show convergence to the experimental structures on the atomistic level. We validate our model on five different proteins: GB1, the WW-domain, the B-domain of Protein A, the peripheral binding subunit and villin headpiece. PMID:26339692
NASA Astrophysics Data System (ADS)
Lei, Huan; Baker, Nathan A.; Wu, Lei; Schenter, Gregory K.; Mundy, Christopher J.; Tartakovsky, Alexandre M.
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface.
Lei, Huan; Baker, Nathan A; Wu, Lei; Schenter, Gregory K; Mundy, Christopher J; Tartakovsky, Alexandre M
2016-08-01
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a multiphase smoothed dissipative particle dynamics (SDPD) model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension, we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semianalytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models dynamic processes, such as bubble coalescence and capillary spectra across the interface. PMID:27627409
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
NASA Astrophysics Data System (ADS)
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-07-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-07-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems
Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-01-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems.
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-07-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers. PMID:26156459
Comment on "Nonlinear fluctuations and dissipation in matter revealed by quantum light"
NASA Astrophysics Data System (ADS)
Kira, M.; Koch, S. W.; Cundiff, S. T.
2015-11-01
In a recent paper [Phys. Rev. A 91, 053844 (2015), 10.1103/PhysRevA.91.053844], Mukamel and Dorfman compare spectroscopies performed with classical vs quantum light and conclude that nonlinear quantum-spectroscopy signals cannot be obtained from averaging their classical-spectroscopy counterparts over the Glauber-Sudarshan quasiprobability distribution of the quantum field. In this Comment, we show that this interpretation is correct only when classical spectroscopy is perceived as a theoretical description which neglects quantum fluctuations of light altogether. While such an assumption can be a good approximation and useful for comparing theoretical results, it is never realized exactly in laser-spectroscopy experiments that typically use coherent states. Even though coherent states represent the most classical form of light, their quantumness must be considered to fully understand laser-spectroscopy experiments and their connection to quantum spectroscopy, performed with true quantum sources, such as Schrödinger's cat states. Thus, instead of using a classical approximation, the connection between coherent states and true quantum states of light must be considered. We rigorously show that quantum spectroscopy can always be projected from the experimentally realized coherent-state spectroscopy regardless how nonlinear the system response is.
NASA Astrophysics Data System (ADS)
Palii, Andrew; Bosch-Serrano, Cristian; Clemente-Juan, Juan Modesto; Coronado, Eugenio; Tsukerblat, Boris
2013-07-01
We propose a microscopic analytical approach to the description of the low-temperature dissipative intracluster electron transfer dynamics in centrosymmetric one-electron mixed-valence (MV) dimers. The dissipative system (bath) is supposed to consist of the acoustic phonons of the crystal surrounding that are coupled to the delocalized electron(s) of a MV dimer. Although the concept of the bath is the spin-boson model is more generic, the present consideration is relevant, for example, to a MV bi-center impurity in an ionic crystal. The model allows us to develop an approximate microscopic approach within which the relaxation processes are explicitly taken into account without additional assumption regarding spectral function of the bath. It is assumed that initially the extra electron is localized on a certain center and then the time-dependent localization probability (averaged value of the electron dipole moment) is evaluated with the emphasis on the damping of the amplitude of the Rabi oscillations. The approach assumes the following conditions: (i) the vibrational spectrum of the crystal does not show the presence of local modes; (ii) the itinerant electron is weakly coupled to the long-waves acoustic phonons which is peculiar to fully delocalized Robin and Day class III MV systems; (iii) the Debye energy ℏωD exceeds the electronic resonance energy gap 2β (β is the electron transfer parameter). We have demonstrated that the dissipation in this case is super-ohmic with the low-frequency spectral function J(ω) ∝ ω5. The time dependences of the localization probabilities show nearly picosecond damped oscillations. The longitudinal relaxation time T1 has been shown to be two times shorter than the decoherence time T2 thus giving the upper bound for T2, T2 ≤ 2T1.
Dynamic trapping near a quantum critical point
NASA Astrophysics Data System (ADS)
Kolodrubetz, Michael; Katz, Emanuel; Polkovnikov, Anatoli
2015-02-01
The study of dynamics in closed quantum systems has been revitalized by the emergence of experimental systems that are well-isolated from their environment. In this paper, we consider the closed-system dynamics of an archetypal model: spins driven across a second-order quantum critical point, which are traditionally described by the Kibble-Zurek mechanism. Imbuing the driving field with Newtonian dynamics, we find that the full closed system exhibits a robust new phenomenon—dynamic critical trapping—in which the system is self-trapped near the critical point due to efficient absorption of field kinetic energy by heating the quantum spins. We quantify limits in which this phenomenon can be observed and generalize these results by developing a Kibble-Zurek scaling theory that incorporates the dynamic field. Our findings can potentially be interesting in the context of early universe physics, where the role of the driving field is played by the inflaton or a modulus field.
Avoiding irreversible dynamics in quantum systems
NASA Astrophysics Data System (ADS)
Karasik, Raisa Iosifovna
2009-10-01
Devices that exploit laws of quantum physics offer revolutionary advances in computation and communication. However, building such devices presents an enormous challenge, since it would require technologies that go far beyond current capabilities. One of the main obstacles to building a quantum computer and devices needed for quantum communication is decoherence or noise that originates from the interaction between a quantum system and its environment, and which leads to the destruction of the fragile quantum information. Encoding into decoherence-free subspaces (DFS) provides an important strategy for combating decoherence effects in quantum systems and constitutes the focus of my dissertation. The theory of DFS relies on the existence of certain symmetries in the decoherence process, which allow some states of a quantum system to be completely decoupled from the environment and thus to experience no decoherence. In this thesis I describe various approaches to DFS that are developed in the current literature. Although the general idea behind various approaches to DFS is the same, I show that different mathematical definitions of DFS actually have different physical meaning. I provide a rigorous definition of DFS for every approach, explaining its physical meaning and relation to other definitions. I also examine the theory of DFS for Markovian systems. These are systems for which the environment has no memory, i.e., any change in the environment affects the quantum system instantaneously. Examples of such systems include many systems in quantum optics that have been proposed for implementation of a quantum computer, such as atomic and molecular gases, trapped ions, and quantum dots. Here I develop a rigorous theory that provides necessary and sufficient conditions for the existence of DFS. This theory allows us to identify a special new class of DFS that was not known before. Under particular circumstances, dynamics of a quantum system can connive together with
Monodisperse cluster crystals: Classical and quantum dynamics.
Díaz-Méndez, Rogelio; Mezzacapo, Fabio; Cinti, Fabio; Lechner, Wolfgang; Pupillo, Guido
2015-11-01
We study the phases and dynamics of a gas of monodisperse particles interacting via soft-core potentials in two spatial dimensions, which is of interest for soft-matter colloidal systems and quantum atomic gases. Using exact theoretical methods, we demonstrate that the equilibrium low-temperature classical phase simultaneously breaks continuous translational symmetry and dynamic space-time homogeneity, whose absence is usually associated with out-of-equilibrium glassy phenomena. This results in an exotic self-assembled cluster crystal with coexisting liquidlike long-time dynamical properties, which corresponds to a classical analog of supersolid behavior. We demonstrate that the effects of quantum fluctuations and bosonic statistics on cluster-glassy crystals are separate and competing: Zero-point motion tends to destabilize crystalline order, which can be restored by bosonic statistics. PMID:26651695
Instability of quantum equilibrium in Bohm's dynamics
Colin, Samuel; Valentini, Antony
2014-01-01
We consider Bohm's second-order dynamics for arbitrary initial conditions in phase space. In principle, Bohm's dynamics allows for ‘extended’ non-equilibrium, with initial momenta not equal to the gradient of phase of the wave function (as well as initial positions whose distribution departs from the Born rule). We show that extended non-equilibrium does not relax in general and is in fact unstable. This is in sharp contrast with de Broglie's first-order dynamics, for which non-standard momenta are not allowed and which shows an efficient relaxation to the Born rule for positions. On this basis, we argue that, while de Broglie's dynamics is a tenable physical theory, Bohm's dynamics is not. In a world governed by Bohm's dynamics, there would be no reason to expect to see an effective quantum theory today (even approximately), in contradiction with observation. PMID:25383020
Role of controllability in optimizing quantum dynamics
Wu Rebing; Hsieh, Michael A.; Rabitz, Herschel
2011-06-15
This paper reveals an important role that controllability plays in the complexity of optimizing quantum control dynamics. We show that the loss of controllability generally leads to multiple locally suboptimal controls when gate fidelity in a quantum control system is maximized, which does not happen if the system is controllable. Such local suboptimal controls may attract an optimization algorithm into a local trap when a global optimal solution is sought, even if the target gate can be perfectly realized. This conclusion results from an analysis of the critical topology of the corresponding quantum control landscape, which refers to the gate fidelity objective as a functional of the control fields. For uncontrollable systems, due to SU(2) and SU(3) dynamical symmetries, the control landscape corresponding to an implementable target gate is proven to possess multiple locally optimal critical points, and its ruggedness can be further increased if the target gate is not realizable. These results imply that the optimization of quantum dynamics can be seriously impeded when operating with local search algorithms under these conditions, and thus full controllability is demanded.
Quantum dynamics in the thermodynamic limit
Wezel, Jasper van
2008-08-01
The description of spontaneous symmetry breaking that underlies the connection between classically ordered objects in the thermodynamic limit and their individual quantum-mechanical building blocks is one of the cornerstones of modern condensed-matter theory and has found applications in many different areas of physics. The theory of spontaneous symmetry breaking, however, is inherently an equilibrium theory, which does not address the dynamics of quantum systems in the thermodynamic limit. Here, we will use the example of a particular antiferromagnetic model system to show that the presence of a so-called thin spectrum of collective excitations with vanishing energy - one of the well-known characteristic properties shared by all symmetry-breaking objects - can allow these objects to also spontaneously break time-translation symmetry in the thermodynamic limit. As a result, that limit is found to be able, not only to reduce quantum-mechanical equilibrium averages to their classical counterparts, but also to turn individual-state quantum dynamics into classical physics. In the process, we find that the dynamical description of spontaneous symmetry breaking can also be used to shed some light on the possible origins of Born's rule. We conclude by describing an experiment on a condensate of exciton polaritons which could potentially be used to experimentally test the proposed mechanism.
Johnson, Chris; Natarajan, Venkatesh; Antoniou, Chris
2014-01-01
Suspension mammalian cell cultures in aerated stirred tank bioreactors are widely used in the production of monoclonal antibodies. Given that production scale cell culture operations are typically performed in very large bioreactors (≥ 10,000 L), bioreactor scale-down and scale-up become crucial in the development of robust cell-culture processes. For successful scale-up and scale-down of cell culture operations, it is important to understand the scale-dependence of the distribution of the energy dissipation rates in a bioreactor. Computational fluid dynamics (CFD) simulations can provide an additional layer of depth to bioreactor scalability analysis. In this communication, we use CFD analyses of five bioreactor configurations to evaluate energy dissipation rates and Kolmogorov length scale distributions at various scales. The results show that hydrodynamic scalability is achievable as long as major design features (# of baffles, impellers) remain consistent across the scales. Finally, in all configurations, the mean Kolmogorov length scale is substantially higher than the average cell size, indicating that catastrophic cell damage due to mechanical agitation is highly unlikely at all scales.
NASA Astrophysics Data System (ADS)
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Advances in Quantum Trajectory Approaches to Dynamics
NASA Astrophysics Data System (ADS)
Askar, Attila
2001-03-01
The quantum fluid dynamics (QFD) formulation is based on the separation of the amplitude and phase of the complex wave function in Schrodinger's equation. The approach leads to conservation laws for an equivalent "gas continuum". The Lagrangian [1] representation corresponds to following the particles of the fluid continuum, i. e. calculating "quantum trajectories". The Eulerian [2] representation on the other hand, amounts to observing the dynamics of the gas continuum at the points of a fixed coordinate frame. The combination of several factors leads to a most encouraging computational efficiency. QFD enables the numerical analysis to deal with near monotonic amplitude and phase functions. The Lagrangian description concentrates the computation effort to regions of highest probability as an optimal adaptive grid. The Eulerian representation allows the study of multi-coordinate problems as a set of one-dimensional problems within an alternating direction methodology. An explicit time integrator limits the increase in computational effort with the number of discrete points to linear. Discretization of the space via local finite elements [1,2] and global radial functions [3] will be discussed. Applications include wave packets in four-dimensional quadratic potentials and two coordinate photo-dissociation problems for NOCl and NO2. [1] "Quantum fluid dynamics (QFD) in the Lagrangian representation with applications to photo-dissociation problems", F. Sales, A. Askar and H. A. Rabitz, J. Chem. Phys. 11, 2423 (1999) [2] "Multidimensional wave-packet dynamics within the fluid dynamical formulation of the Schrodinger equation", B. Dey, A. Askar and H. A. Rabitz, J. Chem. Phys. 109, 8770 (1998) [3] "Solution of the quantum fluid dynamics equations with radial basis function interpolation", Xu-Guang Hu, Tak-San Ho, H. A. Rabitz and A. Askar, Phys. Rev. E. 61, 5967 (2000)
NON-EQUILIBRIUM DYNAMICS OF MANY-BODY QUANTUM SYSTEMS: FUNDAMENTALS AND NEW FRONTIER
DeMille, David; LeHur, Karyn
2013-11-27
Rapid progress in nanotechnology and naofabrication techniques has ushered in a new era of quantum transport experiments. This has in turn heightened the interest in theoretical understanding of nonequilibrium dynamics of strongly correlated quantum systems. This project has advanced the frontiers of understanding in this area along several fronts. For example, we showed that under certain conditions, quantum impurities out of equilibrium can be reformulated in terms of an effective equilibrium theory; this makes it possible to use the gamut of tools available for quantum systems in equilibrium. On a different front, we demonstrated that the elastic power of a transmitted microwave photon in circuit QED systems can exhibit a many-body Kondo resonance. We also showed that under many circumstances, bipartite fluctuations of particle number provide an effective tool for studying many-body physics—particularly the entanglement properties of a many-body system. This implies that it should be possible to measure many-body entanglement in relatively simple and tractable quantum systems. In addition, we studied charge relaxation in quantum RC circuits with a large number of conducting channels, and elucidated its relation to Kondo models in various regimes. We also extended our earlier work on the dynamics of driven and dissipative quantum spin-boson impurity systems, deriving a new formalism that makes it possible to compute the full spin density matrix and spin-spin correlation functions beyond the weak coupling limit. Finally, we provided a comprehensive analysis of the nonequilibrium transport near a quantum phase transition in the case of a spinless dissipative resonant-level model. This project supported the research of two Ph.D. students and two postdoctoral researchers, whose training will allow them to further advance the field in coming years.
Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions
NASA Astrophysics Data System (ADS)
Arienti, Marco; Pan, Wenxiao; Li, Xiaoyi; Karniadakis, George
2011-05-01
The combination of short-range repulsive and long-range attractive forces in many-body dissipative particle dynamics (MDPD) is examined at a vapor/liquid and liquid/solid interface. Based on the radial distribution of the virial pressure in a drop at equilibrium, a systematic study is carried out to characterize the sensitivity of the surface tension coefficient with respect to the inter-particle interaction parameters. For the first time, the approximately cubic dependence of the surface tension coefficient on the bulk density of the fluid is evidenced. In capillary flow, MDPD solutions are shown to satisfy the condition on the wavelength of an axial disturbance leading to the pinch-off of a cylindrical liquid thread; correctly, no pinch-off occurs below the cutoff wavelength. Moreover, in an example that illustrates the cascade of fluid dynamics behaviors from potential to inertial-viscous to stochastic flow, the dynamics of the jet radius is consistent with the power law predictions of asymptotic analysis. To model interaction with a solid wall, MDPD is augmented by a set of bell-shaped weight functions; hydrophilic and hydrophobic behaviors, including the occurrence of slip in the latter, are reproduced using a modification in the weight function that avoids particle clustering. The dynamics of droplets entering an inverted Y-shaped fracture junction is shown to be correctly captured in simulations parametrized by the Bond number, confirming the flexibility of MDPD in modeling interface-dominated flows.
Composition of quantum states and dynamical subadditivity
NASA Astrophysics Data System (ADS)
Roga, Wojciech; Fannes, Mark; Życzkowski, Karol
2008-01-01
We introduce a composition of quantum states of a bipartite system which is based on the reshuffling of density matrices. This non-Abelian product is associative and stems from the composition of quantum maps acting on a simple quantum system. It induces a semi-group in the subset of states with maximally mixed partial traces. Subadditivity of the von Neumann entropy with respect to this product is proved. It is equivalent to subadditivity of the entropy of bistochastic maps with respect to their composition, where the entropy of a map is the entropy of the corresponding state under the Jamiołkowski isomorphism. Strong dynamical subadditivity of a concatenation of three bistochastic maps is established. Analogous bounds for the entropy of a composition are derived for general stochastic maps. In the classical case they lead to new bounds for the entropy of a product of two stochastic matrices.
Pick up and remove particles by water droplet using dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao
2014-11-01
Particle removal is a crucial concern for many engineering processes, such as, glass cleaning and substrate cleaning, where the removal of nanoparticles is a great challenge. In order to clean the surface without causing any mechanical damage to it, we use water droplets to pick up and remove the nanoparticles. Dissipative particle dynamics simulation is used to model the interaction between the water droplet and nanoparticles, as well as the solid substrate surface. The hydrophilic nanoparticles are successfully cleaned up by water droplet, and the detailed motion of these particles together with droplet is also captured. The results show that the water droplet can be used as an efficient tool for removal of nanoparticles from a surface.
Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent
NASA Astrophysics Data System (ADS)
Azarnykh, Dmitrii; Litvinov, Sergey; Bian, Xin; Adams, Nikolaus A.
2016-01-01
We present an approach to determine macroscopic transport coefficients of a dissipative particle dynamics (DPD) solvent. Shear viscosity, isothermal speed of sound, and bulk viscosity result from DPD-model input parameters and can be determined only a posteriori. For this reason approximate predictions of these quantities are desirable in order to set appropriate DPD input parameters. For the purpose of deriving an improved approximate prediction we analyze the autocorrelation of shear and longitudinal modes in Fourier space of a DPD solvent for Kolmogorov flow. We propose a fitting function with nonexponential properties which gives a good approximation to these autocorrelation functions. Given this fitting function we improve significantly the capability of a priori determination of macroscopic solvent transport coefficients in comparison to previously used exponential fitting functions.
NASA Astrophysics Data System (ADS)
Li, Yanggui; Geng, Xingguo; Wang, Heping; Zhuang, Xin; Ouyang, Jie
2016-06-01
The frontal instability of lock-exchange density currents is numerically investigated using dissipative particle dynamics (DPD) at the mesoscopic particle level. For modeling two-phase flow, the “color” repulsion model is adopted to describe binary fluids according to Rothman-Keller method. The present DPD simulation can reproduce the flow phenomena of lock-exchange density currents, including the lobe-and-cleft instability that appears at the head, as well as the formation of coherent billow structures at the interface behind the head due to the growth of Kelvin-Helmholtz instability. Furthermore, through the DPD simulation, some small-scale characteristics can be observed, which are difficult to be captured in macroscopic simulation and experiment.
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers
NASA Astrophysics Data System (ADS)
Azhar, Mueed; Greiner, Andreas; Korvink, Jan G.; Kauzlarić, David
2016-06-01
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered.
Determination of macroscopic transport coefficients of a dissipative particle dynamics solvent.
Azarnykh, Dmitrii; Litvinov, Sergey; Bian, Xin; Adams, Nikolaus A
2016-01-01
We present an approach to determine macroscopic transport coefficients of a dissipative particle dynamics (DPD) solvent. Shear viscosity, isothermal speed of sound, and bulk viscosity result from DPD-model input parameters and can be determined only a posteriori. For this reason approximate predictions of these quantities are desirable in order to set appropriate DPD input parameters. For the purpose of deriving an improved approximate prediction we analyze the autocorrelation of shear and longitudinal modes in Fourier space of a DPD solvent for Kolmogorov flow. We propose a fitting function with nonexponential properties which gives a good approximation to these autocorrelation functions. Given this fitting function we improve significantly the capability of a priori determination of macroscopic solvent transport coefficients in comparison to previously used exponential fitting functions. PMID:26871186
Dissipative particle dynamics of diffusion-NMR requires high Schmidt-numbers.
Azhar, Mueed; Greiner, Andreas; Korvink, Jan G; Kauzlarić, David
2016-06-28
We present an efficient mesoscale model to simulate the diffusion measurement with nuclear magnetic resonance (NMR). On the level of mesoscopic thermal motion of fluid particles, we couple the Bloch equations with dissipative particle dynamics (DPD). Thereby we establish a physically consistent scaling relation between the diffusion constant measured for DPD-particles and the diffusion constant of a real fluid. The latter is based on a splitting into a centre-of-mass contribution represented by DPD, and an internal contribution which is not resolved in the DPD-level of description. As a consequence, simulating the centre-of-mass contribution with DPD requires high Schmidt numbers. After a verification for fundamental pulse sequences, we apply the NMR-DPD method to NMR diffusion measurements of anisotropic fluids, and of fluids restricted by walls of microfluidic channels. For the latter, the free diffusion and the localisation regime are considered. PMID:27369491
Bulk viscosity and relaxation time of causal dissipative relativistic fluid dynamics
NASA Astrophysics Data System (ADS)
Huang, Xu-Guang; Kodama, Takeshi; Koide, Tomoi; Rischke, Dirk H.
2011-02-01
The microscopic formulas of the bulk viscosity ζ and the corresponding relaxation time τΠ in causal dissipative relativistic fluid dynamics are derived by using the projection operator method. In applying these formulas to the pionic fluid, we find that the renormalizable energy-momentum tensor should be employed to obtain consistent results. In the leading-order approximation in the chiral perturbation theory, the relaxation time is enhanced near the QCD phase transition, and τΠ and ζ are related as τΠ=ζ/[β{(1/3-cs2)(ɛ+P)-2(ɛ-3P)/9}], where ɛ, P, and cs are the energy density, pressure, and velocity of sound, respectively. The predicted ζ and τΠ should satisfy the so-called causality condition. We compare our result with the results of the kinetic calculation by Israel and Stewart and the string theory, and confirm that all three approaches are consistent with the causality condition.
Implementation of non-uniform FFT based Ewald summation in dissipative particle dynamics method
NASA Astrophysics Data System (ADS)
Wang, Yong-Lei; Laaksonen, Aatto; Lu, Zhong-Yuan
2013-02-01
The ENUF method, i.e., Ewald summation based on the non-uniform FFT technique (NFFT), is implemented in dissipative particle dynamics (DPD) simulation scheme to fast and accurately calculate the electrostatic interactions at mesoscopic level. In a simple model electrolyte system, the suitable ENUF-DPD parameters, including the convergence parameter α, the NFFT approximation parameter p, and the cut-offs for real and reciprocal space contributions, are carefully determined. With these optimized parameters, the ENUF-DPD method shows excellent efficiency and scales as O(NlogN). The ENUF-DPD method is further validated by investigating the effects of charge fraction of polyelectrolyte, ionic strength and counterion valency of added salts on polyelectrolyte conformations. The simulations in this paper, together with a separately published work of dendrimer-membrane complexes, show that the ENUF-DPD method is very robust and can be used to study charged complex systems at mesoscopic level.
Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction
NASA Astrophysics Data System (ADS)
Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul
2016-06-01
We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E (k ) , when the wave number k is large; this enhancement leads to dissipation reduction.
Binary-fluid turbulence: Signatures of multifractal droplet dynamics and dissipation reduction.
Pal, Nairita; Perlekar, Prasad; Gupta, Anupam; Pandit, Rahul
2016-06-01
We study the challenging problem of the advection of an active, deformable, finite-size droplet by a turbulent flow via a simulation of the coupled Cahn-Hilliard-Navier-Stokes (CHNS) equations. In these equations, the droplet has a natural two-way coupling to the background fluid. We show that the probability distribution function of the droplet center of mass acceleration components exhibit wide, non-Gaussian tails, which are consistent with the predictions based on pressure spectra. We also show that the droplet deformation displays multifractal dynamics. Our study reveals that the presence of the droplet enhances the energy spectrum E(k), when the wave number k is large; this enhancement leads to dissipation reduction. PMID:27415366
Natural convection heat transfer simulation using energy conservative dissipative particle dynamics.
Abu-Nada, Eiyad
2010-05-01
Dissipative particle dynamics with energy conservation (eDPD) was used to study natural convection via Rayleigh-Bénard (RB) problem and a differentially heated enclosure problem (DHE). The current eDPD model implemented the Boussinesq approximation to model the buoyancy forces. The eDPD results were compared to the finite volume solutions and it was found that the eDPD method predict the temperature and flow fields throughout the natural convection domains properly. The eDPD model recovered the basic features of natural convection, such as development of plumes, development of thermal boundary layers, and development of natural convection circulation cells (rolls). The eDPD results were presented via temperature isotherms, streamlines, velocity contours, velocity vector plots, and temperature and velocity profiles. Further useful quantities, such as Nusselt number was calculated from the eDPD results and found to be in good agreement with the finite volume calculations.
Multiscale modeling of sickle anemia blood blow by Dissipative Partice Dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Caswell, Bruce; Karniadakis, George
2011-11-01
A multi-scale model for sickle red blood cell is developed based on Dissipative Particle Dynamics (DPD). Different cell morphologies (sickle, granular, elongated shapes) typically observed in in vitro and in vivo are constructed and the deviations from the biconcave shape is quantified by the Asphericity and Elliptical shape factors. The rheology of sickle blood is studied in both shear and pipe flow systems. The flow resistance obtained from both systems exhibits a larger value than the healthy blood flow due to the abnormal cell properties. However, the vaso-occulusion phenomenon, reported in a recent microfluid experiment, is not observed in the pipe flow system unless the adhesive interactions between sickle blood cells and endothelium properly introduced into the model.
Oligomer stability of Amyloid- β (A β) 25-35: A Dissipative Particle Dynamics study
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peter, Emanuel
Alzheimer's disease is strongly associated with an accumulation of Amyloid- β (A β) peptide plaques in the human brain. A β is a 43 residues long intrinsically disordered peptide and has a strong tendency to form aggregates. Evidence accumulates that A β acts toxic to the neurons in the brain through the formation of small soluble oligomers. A β 25-35 is the smallest fragment of A β which still retains its toxicity and its ability to form extended fibrils. In this talk we will present the results from simulations of aggregation of up to 100 A β 25-35 peptides using a novel polarizable coarse-grained protein model in combination with Dissipative Particle Dynamics.
Dynamics of quantum wave packets
Gosnell, T.R.; Taylor, A.J.; Rodriguez, G.; Clement, T.S.
1998-11-01
This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of this project was to develop ultrafast laser techniques for the creation and measurement of quantum vibrational wave packets in gas phase diatomic molecules. Moreover, the authors sought to manipulate the constitution of these wave packets in terms of harmonic-oscillator basis wavefunctions by manipulating the time-dependent amplitude and phase of the incident ultrashort laser pulse. They specifically investigated gaseous diatomic potassium (K{sub 2}), and discovered variations in the shape of the wave packets as a result of changing the linear chirp in the ultrashort preparation pulse. In particular, they found evidence for wave-packet compression for a specific degree of chirp. Important ancillary results include development of new techniques for denoising and deconvolution of femtosecond time traces and techniques for diagnosing the phase and amplitude of the electric field of femtosecond laser pulses.
NASA Astrophysics Data System (ADS)
Mendoza-Arenas, J. J.; Clark, S. R.; Felicetti, S.; Romero, G.; Solano, E.; Angelakis, D. G.; Jaksch, D.
2016-02-01
In the present work we investigate the existence of multiple nonequilibrium steady states in a coherently driven X Y lattice of dissipative two-level systems. A commonly used mean-field ansatz, in which spatial correlations are neglected, predicts a bistable behavior with a sharp shift between low- and high-density states. In contrast one-dimensional matrix product methods reveal these effects to be artifacts of the mean-field approach, with both disappearing once correlations are taken fully into account. Instead, a bunching-antibunching transition emerges. This indicates that alternative approaches should be considered for higher spatial dimensions, where classical simulations are currently infeasible. Thus we propose a circuit QED quantum simulator implementable with current technology to enable an experimental investigation of the model considered.
3.36 µm single-mode quantum cascade laser with a dissipation below 250 mW.
Wolf, Johanna M; Riedi, Sabine; Süess, Martin J; Beck, Mattias; Faist, Jérôme
2016-01-11
We present 3.36 µm buried heterostructure distributed-feedback quantum cascade lasers with a power dissipation at threshold below 250 mW and operation temperatures as high as 130 °C. Threshold values below 20 mA at -10 °C in pulsed operation and 30 mA at -20 °C in continuous-wave operation are reported. Optical power above 130 mW and 13 mW are achieved at -20 °C in pulsed and continuous-wave operation, respectively. Continuous-wave operation occurs until 15 °C. We show single-mode emission in pulsed and continuous-wave operation. Single-mode performance is demonstrated in long pulse (5.56 µs) operation. The laser far-field exhibits a single lobe emission with full-width-half-max of 27 ° × 34 °.
Simulating Fiber Ordering and Aggregation In Shear Flow Using Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Stimatze, Justin T.
We have developed a mesoscale simulation of fiber aggregation in shear flow using LAMMPS and its implementation of dissipative particle dynamics. Understanding fiber aggregation in shear flow and flow-induced microstructural fiber networks is critical to our interest in high-performance composite materials. Dissipative particle dynamics enables the consideration of hydrodynamic interactions between fibers through the coarse-grained simulation of the matrix fluid. Correctly simulating hydrodynamic interactions and accounting for fluid forces on the microstructure is required to correctly model the shear-induced aggregation process. We are able to determine stresses, viscosity, and fiber forces while simulating the evolution of a model fiber system undergoing shear flow. Fiber-fiber contact interactions are approximated by combinations of common pairwise forces, allowing the exploration of interaction-influenced fiber behaviors such as aggregation and bundling. We are then able to quantify aggregate structure and effective volume fraction for a range of relevant system and fiber-fiber interaction parameters. Our simulations have demonstrated several aggregate types dependent on system parameters such as shear rate, short-range attractive forces, and a resistance to relative rotation while in contact. A resistance to relative rotation at fiber-fiber contact points has been found to strongly contribute to an increased angle between neighboring aggregated fibers and therefore an increase in average aggregate volume fraction. This increase in aggregate volume fraction is strongly correlated with a significant enhancement of system viscosity, leading us to hypothesize that controlling the resistance to relative rotation during manufacturing processes is important when optimizing for desired composite material characteristics.
Quantum dynamics of a vibronically coupled linear chain using a surrogate Hamiltonian approach.
Lee, Myeong H; Troisi, Alessandro
2016-06-01
Vibronic coupling between the electronic and vibrational degrees of freedom has been reported to play an important role in charge and exciton transport in organic photovoltaic materials, molecular aggregates, and light-harvesting complexes. Explicitly accounting for effective vibrational modes rather than treating them as a thermal environment has been shown to be crucial to describe the effect of vibronic coupling. We present a methodology to study dissipative quantum dynamics of vibronically coupled systems based on a surrogate Hamiltonian approach, which is in principle not limited by Markov approximation or weak system-bath interaction, using a vibronic basis. We apply vibronic surrogate Hamiltonian method to a linear chain system and discuss how different types of relaxation process, intramolecular vibrational relaxation and intermolecular vibronic relaxation, influence population dynamics of dissipative vibronic systems. PMID:27276944
NASA Technical Reports Server (NTRS)
Hickey, M. P.
1988-01-01
This paper examines the effect of inclusion of Coriolis force and eddy dissipation in the gravity wave dynamics theory of Walterscheid et al. (1987). It was found that the values of the ratio 'eta' (where eta is a complex quantity describing the ralationship between the intensity oscillation about the time-averaged intensity, and the temperature oscillation about the time-averaged temperature) strongly depend on the wave period and the horizontal wavelength; thus, if comparisons are to be made between observations and theory, horizontal wavelengths will need to be measured in conjunction with the OH nightglow measurements. For the waves with horizontal wavelengths up to 1000 km, the eddy dissipation was found to dominate over the Coriolis force in the gravity wave dynamics and also in the associated values of eta. However, for waves with horizontal wavelengths of 10,000 km or more, the Coriolis force cannot be neglected; it has to be taken into account along with the eddy dissipation.
Separability and dynamical symmetry of Quantum Dots
Zhang, P.-M.; Zou, L.-P.; Horvathy, P.A.; Gibbons, G.W.
2014-02-15
The separability and Runge–Lenz-type dynamical symmetry of the internal dynamics of certain two-electron Quantum Dots, found by Simonović et al. (2003), are traced back to that of the perturbed Kepler problem. A large class of axially symmetric perturbing potentials which allow for separation in parabolic coordinates can easily be found. Apart from the 2:1 anisotropic harmonic trapping potential considered in Simonović and Nazmitdinov (2013), they include a constant electric field parallel to the magnetic field (Stark effect), the ring-shaped Hartmann potential, etc. The harmonic case is studied in detail. -- Highlights: • The separability of Quantum Dots is derived from that of the perturbed Kepler problem. • Harmonic perturbation with 2:1 anisotropy is separable in parabolic coordinates. • The system has a conserved Runge–Lenz type quantity.
From Entropic Dynamics to Quantum Theory
Caticha, Ariel
2009-12-08
Non-relativistic quantum theory is derived from information codified into an appropriate statistical model. The basic assumption is that there is an irreducible uncertainty in the location of particles so that the configuration space is a statistical manifold. The dynamics then follows from a principle of inference, the method of Maximum Entropy. The concept of time is introduced as a convenient way to keep track of change. The resulting theory resembles both Nelson's stochastic mechanics and general relativity. The statistical manifold is a dynamical entity: its geometry determines the evolution of the probability distribution which, in its turn, reacts back and determines the evolution of the geometry. There is a new quantum version of the equivalence principle: 'osmotic' mass equals inertial mass. Mass and the phase of the wave function are explained as features of purely statistical origin.
Transport dissipative particle dynamics model for mesoscopic advection- diffusion-reaction problems
Zhen, Li; Yazdani, Alireza; Tartakovsky, Alexandre M.; Karniadakis, George E.
2015-07-07
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic DPD framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between particles, and an analytical formula is proposed to relate the mesoscopic concentration friction to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Dissipative particle dynamics with attractive and repulsive particle-particle interactions
Paul Meakin; Moubin Liu; Hai Huang
2006-01-01
In molecular dynamics simulations, a combination of short-range repulsive and long-range attractive interactions allows the behavior of gases, liquids, solids, and multiphase systems to be simulated. We demonstrate that dissipative particle dynamics (DPD) simulations with similar pairwise particle-particle interactions can also be used to simulate the dynamics of multiphase fluids. In these simulations, the positive, short-range, repulsive part of the interaction potentials were represented by polynomial spline functions such as those used as smoothing functions in smoothed particle hydrodynamics, and the negative long-range part of the interaction has the same form but a different range and amplitude. If a single spline function corresponding to a purely repulsive interaction is used, the DPD fluid is a gas, and we show that the Poiseuille flow of this gas can be described accurately by the Navier-Stokes equation at low Reynolds numbers. In a two-component system in which the purely repulsive interactions between different components are substantially larger than the purely repulsive intracomponent interactions, separation into two gas phases occurs, in agreement with results obtained using DPD simulations with standard repulsive particle-particle interactions. Finally, we show that a combination of short-range repulsive interactions and long-range attractive interactions can be used to simulate the behavior of liquid drops surrounded by a gas. Similar models can be used to simulate a wide range of processes such as multiphase fluid flow through fractures and porous media with complex geometries and wetting behaviors.
Effective Dynamics of Disordered Quantum Systems
NASA Astrophysics Data System (ADS)
Kropf, Chahan M.; Gneiting, Clemens; Buchleitner, Andreas
2016-07-01
We derive general evolution equations describing the ensemble-average quantum dynamics generated by disordered Hamiltonians. The disorder average affects the coherence of the evolution and can be accounted for by suitably tailored effective coupling agents and associated rates that encode the specific statistical properties of the Hamiltonian's eigenvectors and eigenvalues, respectively. Spectral disorder and isotropically disordered eigenvector distributions are considered as paradigmatic test cases.
Computer Visualization of Many-Particle Quantum Dynamics
Ozhigov, A. Y.
2009-03-10
In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.
Computer Visualization of Many-Particle Quantum Dynamics
NASA Astrophysics Data System (ADS)
Ozhigov, A. Y.
2009-03-01
In this paper I show the importance of computer visualization in researching of many-particle quantum dynamics. Such a visualization becomes an indispensable illustrative tool for understanding the behavior of dynamic swarm-based quantum systems. It is also an important component of the corresponding simulation framework, and can simplify the studies of underlying algorithms for multi-particle quantum systems.
NASA Astrophysics Data System (ADS)
Nesterov, L. A.; Veretenov, N. A.; Rosanov, N. N.
2015-05-01
Quantum fluctuations of one-dimensional dark dissipative solitons sustained by an external radiation in an interferometer with a Kerr nonlinearity are analyzed theoretically. The stability region of classical solitons in this interferometer is studied. The boundaries of this region are determined, and types of excited solitons are classified. Quantum fluctuations of solitons are analyzed in an approximation linear in fluctuations. This problem was solved by linearizing the quantum Langevin equation in a neighborhood of a classical solution for the main type of a soliton from the obtained stability region. The main attention has been paid to studying quantum fluctuations of collective variables of dissipative solitons, namely, the coordinate of the center and momentum of the soliton. Based on the expansion of solutions of the linearized equation in eigenfunctions of the discrete spectrum of this equation, a solution describing quantum fluctuations of these variables is constructed. Using this expansion scheme made it possible to give a rigorous definition of the dissipative soliton position fluctuation operator. The study performed based on this scheme has made it also possible to construct a solution for a one-dimensional dark relaxing dissipative soliton. This soliton generalizes the stationary soliton with allowance for the shift of its center and deformation of its profile followed by the recovery of its initial shape. Average squares of quantum fluctuations of collective variables are calculated. A domain of parameters in which there exist quantum states of solitons with an initially high degree of squeezing with respect to the momentum is found. It is shown that such states are in correspondence with significantly higher velocities of soliton center drift. An experiment that could detect the relative squeezing with respect to the momentum due to the soliton center drift is discussed.
Quantum-classical dynamics of wave fields.
Sergi, Alessandro
2007-02-21
An approach to the quantum-classical mechanics of phase space dependent operators, which has been proposed recently, is remodeled as a formalism for wave fields. Such wave fields obey a system of coupled nonlinear equations that can be written by means of a suitable non-Hamiltonian bracket. As an example, the theory is applied to the relaxation dynamics of the spin-boson model. In the adiabatic limit, a good agreement with calculations performed by the operator approach is obtained. Moreover, the theory proposed in this paper can take nonadiabatic effects into account without resorting to surface-hopping approximations. Hence, the results obtained follow qualitatively those of previous surface-hopping calculations and increase by a factor of (at least) 2, the time length over which nonadiabatic dynamics can be propagated with small statistical errors. Moreover, it is worth to note that the dynamics of quantum-classical wave fields proposed here is a straightforward non-Hamiltonian generalization of the formalism for nonlinear quantum mechanics that Weinberg introduced recently.
Entanglement Dynamics of Disordered Quantum XY Chains
NASA Astrophysics Data System (ADS)
Abdul-Rahman, Houssam; Nachtergaele, Bruno; Sims, Robert; Stolz, Günter
2016-05-01
We consider the dynamics of the quantum XY chain with disorder under the general assumption that the expectation of the eigenfunction correlator of the associated one-particle Hamiltonian satisfies a decay estimate typical of Anderson localization. We show that, starting from a broad class of product initial states, entanglement remains bounded for all times. For the XX chain, we also derive bounds on the particle transport which, in particular, show that the density profile of initial states that consist of fully occupied and empty intervals only have significant dynamics near the edges of those intervals, uniformly for all times.
Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems
NASA Astrophysics Data System (ADS)
Casteels, W.; Finazzi, S.; Le Boité, A.; Storme, F.; Ciuti, C.
2016-09-01
We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a ‘hard’ cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a ‘soft’ cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching crossover in the driven-dissipative Bose-Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.
Truncated correlation hierarchy schemes for driven-dissipative multimode quantum systems
NASA Astrophysics Data System (ADS)
Casteels, W.; Finazzi, S.; Le Boité, A.; Storme, F.; Ciuti, C.
2016-09-01
We present a method to describe driven-dissipative multi-mode systems by considering a truncated hierarchy of equations for the correlation functions. We consider two hierarchy truncation schemes with a global cutoff on the correlation order, which is the sum of the exponents of the operators involved in the correlation functions: a ‘hard’ cutoff corresponding to an expansion around the vacuum, which applies to a regime where the number of excitations per site is small; a ‘soft’ cutoff which corresponds to an expansion around coherent states, which can be applied for large excitation numbers per site. This approach is applied to describe the bunching-antibunching crossover in the driven-dissipative Bose–Hubbard model for photonic systems. The results have been successfully benchmarked by comparison with calculations based on the corner-space renormalization method in 1D and 2D systems. The regime of validity and strengths of the present truncation methods are critically discussed.
Electron Dynamics in Finite Quantum Systems
NASA Astrophysics Data System (ADS)
McDonald, Christopher R.
The multiconfiguration time-dependent Hartree-Fock (MCTDHF) and multiconfiguration time-dependent Hartree (MCTDH) methods are employed to investigate nonperturbative multielectron dynamics in finite quantum systems. MCTDHF is a powerful tool that allows for the investigation of multielectron dynamics in strongly perturbed quantum systems. We have developed an MCTDHF code that is capable of treating problems involving three dimensional (3D) atoms and molecules exposed to strong laser fields. This code will allow for the theoretical treatment of multielectron phenomena in attosecond science that were previously inaccessible. These problems include complex ionization processes in pump-probe experiments on noble gas atoms, the nonlinear effects that have been observed in Ne atoms in the presence of an x-ray free-electron laser (XFEL) and the molecular rearrangement of cations after ionization. An implementation of MCTDH that is optimized for two electrons, each moving in two dimensions (2D), is also presented. This implementation of MCTDH allows for the efficient treatment of 2D spin-free systems involving two electrons; however, it does not scale well to 3D or to systems containing more that two electrons. Both MCTDHF and MCTDH were used to treat 2D problems in nanophysics and attosecond science. MCTDHF is used to investigate plasmon dynamics and the quantum breathing mode for several electrons in finite lateral quantum dots. MCTDHF is also used to study the effects of manipulating the potential of a double lateral quantum dot containing two electrons; applications to quantum computing are discussed. MCTDH is used to examine a diatomic model molecular system exposed to a strong laser field; nonsequential double ionization and high harmonic generation are studied and new processes identified and explained. An implementation of MCTDHF is developed for nonuniform tensor product grids; this will allow for the full 3D implementation of MCTDHF and will provide a means to
NASA Astrophysics Data System (ADS)
Duchon, E.; Kato, Y.; Trivedi, N.
2012-12-01
We propose that the temperature dependence of a single quantity R=κi/δni2, the ratio of the local compressibility to the local number fluctuations, can be used to map out the finite temperature phase diagram, diagnose the critical region around a quantum phase transition, and identify critical points belonging to different universality classes. We test our proposal using state-of-the-art large-scale quantum Monte Carlo simulations of the two-dimensional Bose Hubbard model. Our results have implications for recently developed single-site imaging experiments.
Dynamics of quantum turbulence of different spectra.
Walmsley, Paul; Zmeev, Dmitry; Pakpour, Fatemeh; Golov, Andrei
2014-03-25
Turbulence in a superfluid in the zero-temperature limit consists of a dynamic tangle of quantized vortex filaments. Different types of turbulence are possible depending on the level of correlations in the orientation of vortex lines. We provide an overview of turbulence in superfluid (4)He with a particular focus on recent experiments probing the decay of turbulence in the zero-temperature regime below 0.5 K. We describe extensive measurements of the vortex line density during the free decay of different types of turbulence: ultraquantum and quasiclassical turbulence in both stationary and rotating containers. The observed decays and the effective dissipation as a function of temperature are compared with theoretical models and numerical simulations.
Dynamics of quantum turbulence of different spectra
Walmsley, Paul; Zmeev, Dmitry; Pakpour, Fatemeh; Golov, Andrei
2014-01-01
Turbulence in a superfluid in the zero-temperature limit consists of a dynamic tangle of quantized vortex filaments. Different types of turbulence are possible depending on the level of correlations in the orientation of vortex lines. We provide an overview of turbulence in superfluid 4He with a particular focus on recent experiments probing the decay of turbulence in the zero-temperature regime below 0.5 K. We describe extensive measurements of the vortex line density during the free decay of different types of turbulence: ultraquantum and quasiclassical turbulence in both stationary and rotating containers. The observed decays and the effective dissipation as a function of temperature are compared with theoretical models and numerical simulations. PMID:24704876
Makri, Nancy
2014-10-07
The real-time path integral representation of the reduced density matrix for a discrete system in contact with a dissipative medium is rewritten in terms of the number of blips, i.e., elementary time intervals over which the forward and backward paths are not identical. For a given set of blips, it is shown that the path sum with respect to the coordinates of all remaining time points is isomorphic to that for the wavefunction of a system subject to an external driving term and thus can be summed by an inexpensive iterative procedure. This exact decomposition reduces the number of terms by a factor that increases exponentially with propagation time. Further, under conditions (moderately high temperature and/or dissipation strength) that lead primarily to incoherent dynamics, the “fully incoherent limit” zero-blip term of the series provides a reasonable approximation to the dynamics, and the blip series converges rapidly to the exact result. Retention of only the blips required for satisfactory convergence leads to speedup of full-memory path integral calculations by many orders of magnitude.
Quantum effects in unimolecular reaction dynamics
Gezelter, J.D.
1995-12-01
This work is primarily concerned with the development of models for the quantum dynamics of unimolecular isomerization and photodissociation reactions. We apply the rigorous quantum methodology of a Discrete Variable Representation (DVR) with Absorbing Boundary Conditions (ABC) to these models in an attempt to explain some very surprising results from a series of experiments on vibrationally excited ketene. Within the framework of these models, we are able to identify the experimental signatures of tunneling and dynamical resonances in the energy dependence of the rate of ketene isomerization. Additionally, we investigate the step-like features in the energy dependence of the rate of dissociation of triplet ketene to form {sup 3}B{sub 1} CH{sub 2} + {sup 1}{sigma}{sup +} CO that have been observed experimentally. These calculations provide a link between ab initio calculations of the potential energy surfaces and the experimentally observed dynamics on these surfaces. Additionally, we develop an approximate model for the partitioning of energy in the products of photodissociation reactions of large molecules with appreciable barriers to recombination. In simple bond cleavage reactions like CH{sub 3}COCl {yields} CH{sub 3}CO + Cl, the model does considerably better than other impulsive and statistical models in predicting the energy distribution in the products. We also investigate ways of correcting classical mechanics to include the important quantum mechanical aspects of zero-point energy. The method we investigate is found to introduce a number of undesirable dynamical artifacts including a reduction in the above-threshold rates for simple reactions, and a strong mixing of the chaotic and regular energy domains for some model problems. We conclude by discussing some of the directions for future research in the field of theoretical chemical dynamics.
Momentum and spin in entropic quantum dynamics
NASA Astrophysics Data System (ADS)
Nawaz, Shahid
We study quantum theory as an example of entropic inference. Our goal is to remove conceptual difficulties that arise in quantum mechanics. Since probability is a common feature of quantum theory and of any inference problem, we briefly introduce probability theory and the entropic methods to update probabilities when new information becomes available. Nelson's stochastic mechanics and Caticha's derivation of quantum theory are discussed in the subsequent chapters. Our first goal is to understand momentum and angular momentum within an entropic dynamics framework and to derive the corresponding uncertainty relations. In this framework momentum is an epistemic concept -- it is not an attribute of the particle but of the probability distributions. We also show that the Heisenberg's uncertainty relation is an osmotic effect. Next we explore the entropic analog of angular momentum. Just like linear momentum, angular momentum is also expressed in purely informational terms. We then extend entropic dynamics to curved spaces. An important new feature is that the displacement of a particle does not transform like a vector. It involves second order terms that account for the effects of curvature . This leads to a modified Schrodinger equation for curved spaces that also take into account the curvature effects. We also derive Schrodinger equation for a charged particle interacting with external electromagnetic field on general Riemannian manifolds. Finally we develop the entropic dynamics of a particle of spin 1/2. The particle is modeled as a rigid point rotator interacting with an external EM field. The configuration space of such a rotator is R 3 x S3 (S 3 is the 3-sphere). The model describes the regular representation of SU(2) which includes all the irreducible representations (spin 0, 1/2, 1, 3/2,...) including spin 1/2.
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
NASA Astrophysics Data System (ADS)
Zhang, Sheng-Fei; Xu, Jun-Bo; Wen, Hao; Bhattacharjee, Subir
2011-08-01
Heavy crude oil consists of thousands of compounds, a significant fraction of which have fairly large molecular weights and complex structures. Our work aims at constructing a meso-scale platform to explore this complex fluid in terms of microstructure, phase behavior, stability and rheology. In the present study, we focus on the treatment of the structures of fused aromatic rings as rigid body fragments in fractions such as asphaltenes and resins. To derive the rotational motion of rigid bodies in a non-conservative force field, we conduct a comparison of three rigid body rotational algorithms integrated into a standard dissipative particle dynamics (DPD) simulation. The simulation results confirm the superiority of the Quaternion method. To ease any doubt concerning the introduction of rigid bodies into DPD, the performance of the Quaternion method was tested carefully. Finally, the aggregation dynamics of asphaltene in very diluted toluene was investigated. The nanoaggregates are found to experience forming, breaking up and reforming. The sizes of the asphaltene monomer and nanoaggregate are identified. The diffusion coefficient of diluted asphaltene in toluene is similar to that found experimentally. All these results verify the rotational algorithm and encourage us to extend this platform to study the rheological and colloidal characteristics of heavy crude oils in the future.
Modeling of advection-diffusion-reaction processes using transport dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Li, Zhen; Yazdani, Alireza; Tartakovsky, Alexandre; Karniadakis, George Em
2015-11-01
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. In particular, the transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of Lagrangian particles. To validate the proposed tDPD model and the boundary conditions, three benchmark simulations of one-dimensional diffusion with different boundary conditions are performed, and the results show excellent agreement with the theoretical solutions. Also, two-dimensional simulations of ADR systems are performed and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, an application of tDPD to the spatio-temporal dynamics of blood coagulation involving twenty-five reacting species is performed to demonstrate the promising biological applications of the tDPD model. Supported by the DOE Center on Mathematics for Mesoscopic Modeling of Materials (CM4) and an INCITE grant.
Zhao, Tongyang; Wang, Xiaogong; Jiang, Lei; Larson, Ronald G.
2014-07-01
We examine the accuracy of dissipative particle dynamics (DPD) simulations of polymers in dilute solutions with hydrodynamic interaction (HI), at the theta point, modeled by setting the DPD conservative interaction between beads to zero. We compare the first normal-mode relaxation time extracted from the DPD simulations with theoretical predictions from a normal-mode analysis for theta chains. We characterize the influence of bead inertia within the coil by a ratio L{sub m}/R{sub g}, where L{sub m} is the ballistic distance over which bead inertia is lost, and R{sub g} is the radius of gyration of the polymer coil, while the HI strength per bead h* is determined by the ratio of bead hydrodynamic radius (r{sub H}) to the equilibrium spring length. We show how to adjust h* through the spring length and monomer mass, and how to optimize the accuracy of DPD for fixed h* by increasing the friction coefficient (γ ≥ 9) and by incorporating a nonlinear distance dependence into the frictional interaction. Even with this optimization, DPD simulations exhibit deviations of over 20% from the theoretical normal-mode predictions for high HI strength with h* ≥ 0.20, for chains with as many as 100 beads, which is a larger deviation than is found for Stochastic rotation dynamics simulations for similar chains lengths and values of h*.
Simulating the Rayleigh-Taylor instability in polymer fluids with dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Li, Yanggui; Geng, Xingguo; Zhuang, Xin; Wang, Lihua; Ouyang, Jie
2016-04-01
The Rayleigh-Taylor (RT) instability that occurs in the flow of polymer fluids is numerically investigated with dissipative particle dynamics (DPD) method at the mesoscale particle level. For modeling two-phase flow, the Flory-Huggins parameter is introduced to model binary fluids. And the polymer chains in fluids are described by the modified FENE model that depicts both the elastic tension and the elastic repulsion between the adjacent beads with bond length as the equilibrium length of one segment. Besides, a bead repulsive potential is employed to capture entanglements between polymer chains. Through our model and numerical simulation, we research the dynamics behaviors of the RT instability in polymer fluid medium. Furthermore, we also explore the effects of polymer volume concentration, chain length, and extensibility on the evolution of RT instability. These simulation results show that increasing any of the parameters, concentration, chain length, and extensibility, the saturation length of spikes becomes longer, and the two polymer fluids have less mixture. On the contrary, for the case of low concentration, or short chain, or small extensibility, the spikes easily split and break up, and the RT instability pattern evolves into chaotic structure. These observations indicate that the polymer and its properties drastically modify the RT instability pattern.
A many-body dissipative particle dynamics study of spontaneous capillary imbibition and drainage.
Chen, Chen; Gao, Chunning; Zhuang, Lin; Li, Xuefeng; Wu, Pingcang; Dong, Jinfeng; Lu, Juntao
2010-06-15
The spontaneous capillary imbibition and drainage processes are studied using many-body dissipative particle dynamics (MDPD) simulations. By adjusting the solid-liquid interaction parameter, different wetting behavior between the fluid and the capillary wall, corresponding to the static contact angle ranging from 0 degrees to 180 degrees, can be controllably simulated. For wetting fluids, the spontaneous capillary imbibition (SCI) is evident in MDPD simulations. It is found that, whereas the corrected Lucas-Washburn equation (taking into account the dynamic contact angle and the fluid inertia) can well describe the SCI simulation result for the completely wetting fluid, it deviates, to a notable degree, from the results of partly wetting fluids. In particular, this corrected equation cannot be used to describe the spontaneous capillary drainage (SCD) processes. To solve this problem, we derive an improved form of the Lucas-Washburn equation, in which the slip effects of fluid particles at the capillary wall are treated. Such an improved equation turns out to be capable of describing all the simulation results of both the SCI and the SCD. These findings provide new insights into the SCI and SCD processes and improve the mathematical base.
Wang, Yuling; Li, Bin; Jin, Haibao; Zhou, Yongfeng; Lu, Zhongyuan; Yan, Deyue
2014-08-01
Hyperbranched multiarm copolymers (HMCs) have been shown to hold great potential as precursors in self-assembly, and many impressive supramolecular structures have been prepared through the self-assembly of HMCs in solution. However, theoretical studies on the corresponding self-assembly mechanism have been greatly lagging behind. Herein, we report the self-assembly of normal or reverse vesicles from amphiphilic HMCs by dissipative particle dynamics (DPD) simulation. The simulation disclosed both the self-assembly mechanisms and dynamics of vesicles. It indicates that the self-assembly of HMCs involves several steps, from randomly distributed unimolecular micelles to small spherical micelles, to membrane-like micelles, to finally small vesicles. The membranes are formed through the direct aggregation and lateral fusion of small micelles, and the bending and closing of the membranes give rise to small vesicles. Finally, large and steady vesicles are formed through the fusion of small vesicles. In addition, the bilayer or monolayer molecular packing modes as well as the mircrophase separation behaviors of HMCs in normal or reverse vesicles have also been studied. These simulation results explore details that cannot be observed in the experiments to a certain degree, and have extended the understanding of the vesicular self-assembly process of HMCs.
Many-body dissipative particle dynamics simulation of liquid/vapor and liquid/solid interactions
Arienti, Marco; Pan, Wenxiao; Li, Xiaoyi; Karniadakis, George E.
2011-05-27
The combination of short-range repulsive and long-range attractive forces in Many-body Dissipative Particle Dynamics (MDPD) is examined at a vapor/liquid and liquid/solid interface. Based on the radial distribution of the virial pressure in a drop at equilibrium, a systematic study is carried out to characterize the sensitivity of the surface tension coefficient with respect to the inter-particle interaction parameters. For the first time, this study highlights the approximately cubic dependence of the surface tension coefficient on the bulk density of the fluid. In capillary flow, MDPD solutions are shown to satisfy the condition on the wavelength of an axial disturbance leading to the pinch-off of a cylindrical liquid thread. Correctly, no pinch-off occurs below the cutoff wavelength. MDPD is augmented by a set of bell-shaped weight functions to model interaction with a solid wall. There, hydrophilic and hydrophobic behaviors, including the occurrence of slip in the latter, are reproduced using a modification in the weight function that avoids particle clustering. Finally, the dynamics of droplets entering an inverted Y-shaped fracture junction is correctly captured in simulations parameterized by the Bond number, proving the flexibility of MDPD in modeling interface-dominated flows.
A many-body dissipative particle dynamics study of forced water-oil displacement in capillary.
Chen, Chen; Zhuang, Lin; Li, Xuefeng; Dong, Jinfeng; Lu, Juntao
2012-01-17
The forced water-oil displacement in capillary is a model that has important applications such as the groundwater remediation and the oil recovery. Whereas it is difficult for experimental studies to observe the displacement process in a capillary at nanoscale, the computational simulation is a unique approach in this regard. In the present work, the many-body dissipative particle dynamics (MDPD) method is employed to simulate the process of water-oil displacement in capillary with external force applied by a piston. As the property of all interfaces involved in this system can be manipulated independently, the dynamic displacement process is studied systematically under various conditions of distinct wettability of water in capillary and miscibility between water and oil as well as of different external forces. By analyzing the dependence of the starting force on the properties of water/capillary and water/oil interfaces, we find that there exist two different modes of the water-oil displacement. In the case of stronger water-oil interaction, the water particles cannot displace those oil particles sticking to the capillary wall, leaving a low oil recovery efficiency. To minimize the residual oil content in capillary, enhancing the wettability of water and reducing the external force will be beneficial. This simulation study provides microscopic insights into the water-oil displacement process in capillary and guiding information for relevant applications.
Conditional and unconditional Gaussian quantum dynamics
NASA Astrophysics Data System (ADS)
Genoni, Marco G.; Lami, Ludovico; Serafini, Alessio
2016-07-01
This article focuses on the general theory of open quantum systems in the Gaussian regime and explores a number of diverse ramifications and consequences of the theory. We shall first introduce the Gaussian framework in its full generality, including a classification of Gaussian (also known as 'general-dyne') quantum measurements. In doing so, we will give a compact proof for the parametrisation of the most general Gaussian completely positive map, which we believe to be missing in the existing literature. We will then move on to consider the linear coupling with a white noise bath, and derive the diffusion equations that describe the evolution of Gaussian states under such circumstances. Starting from these equations, we outline a constructive method to derive general master equations that apply outside the Gaussian regime. Next, we include the general-dyne monitoring of the environmental degrees of freedom and recover the Riccati equation for the conditional evolution of Gaussian states. Our derivation relies exclusively on the standard quantum mechanical update of the system state, through the evaluation of Gaussian overlaps. The parametrisation of the conditional dynamics we obtain is novel and, at variance with existing alternatives, directly ties in to physical detection schemes. We conclude our study with two examples of conditional dynamics that can be dealt with conveniently through our formalism, demonstrating how monitoring can suppress the noise in optical parametric processes as well as stabilise systems subject to diffusive scattering.
NASA Astrophysics Data System (ADS)
Viola, Lorenza; Tannor, David
2011-08-01
tomography, which is a necessary 'primitive' for inferring the target quantum state and thereby diagnosing the control performance. Next, the impact of realistic control and system imperfections in continuous-time Markovian feedback strategies for rapid state preparation is analyzed by Combes and Wiseman. A prominent role is played in the special issue by optimal control (OC) approaches, reflecting their central importance for quantum control and QIP. The OC contributions have been divided into two separate sections, depending on whether the target dynamics is modeled as Hamiltonian (section 3) or dissipative (section 4), respectively. The contribution by Beltrani et al deals with `control landscapes', which provide a foundation for analyzing the performance of numerical OC algorithms and their robustness against control errors. Specifically, this paper characterizes geometric properties of the control landscape, relevant to the optimal control of state-to-state transitions. Application of OC theory to the problem of population transfer and coherence enhancement in Λ-systems is studied by Kumar et al, whereas Goerz et al report on the OC-design of a high-fidelity controlled phase-gate in atomic qubits. The robustness of an OC solution is specifically addressed by Negretti et al, along with an approach for identifying easily implementable while still 'close-to-optimal' control pulses. Powerful relaxation-optimized OC schemes (based on so-called opengrape algorithms) for generating unitary target gates in the presence of known dissipation parameters are discussed by Schulte-Herbrüggen et al. Next, Lapert et al report on the problem of time-optimal control of spin-1/2 systems undergoing Bloch relaxation dynamics, highlighting the crucial role played by singular extremals in the control synthesis. Alternative approaches for optimized control of qubits exposed to various decoherence processes are developed by Esher et al and Xue et al, based on a perturbative 'bath
Fundamental aspects of quantum Brownian motion
Haenggi, Peter; Ingold, Gert-Ludwig
2005-06-01
With this work we elaborate on the physics of quantum noise in thermal equilibrium and in stationary nonequilibrium. Starting out from the celebrated quantum fluctuation-dissipation theorem we discuss some important consequences that must hold for open, dissipative quantum systems in thermal equilibrium. The issue of quantum dissipation is exemplified with the fundamental problem of a damped harmonic quantum oscillator. The role of quantum fluctuations is discussed in the context of both, the nonlinear generalized quantum Langevin equation and the path integral approach. We discuss the consequences of the time-reversal symmetry for an open dissipative quantum dynamics and, furthermore, point to a series of subtleties and possible pitfalls. The path integral methodology is applied to the decay of metastable states assisted by quantum Brownian noise.
NASA Astrophysics Data System (ADS)
Levi, Emanuele; Gutiérrez, Ricardo; Lesanovsky, Igor
2016-09-01
In the presence of strong dephasing noise the dynamics of Rydberg gases becomes effectively classical, due to the rapid decay of quantum superpositions between atomic levels. Recently a great deal of attention has been devoted to the stochastic dynamics that emerges in that limit, revealing several interesting features, including kinetically constrained glassy behaviour, self-similarity and aggregation effects. However, the non-equilibrium physics of these systems, in particular in the regime where coherent and dissipative processes contribute on equal footing, is yet far from being understood. To explore this we study the dynamics of a small one-dimensional Rydberg lattice gas subject to dephasing noise by numerically integrating the quantum master equation. We interpolate between the coherent and the strongly dephased regime by defining a generalised concept of a blockade length. We find indications that the main features observed in the strongly dissipative limit persist when the dissipation is not strong enough to annihilate quantum coherences at the dynamically relevant time scales. These features include the existence of a time-dependent Rydberg blockade radius, and a growth of the density of excitations which is compatible with the power-law behaviour expected in the classical limit.
Quantum corrections to inflaton and curvaton dynamics
Markkanen, Tommi; Tranberg, Anders E-mail: anders.tranberg@nbi.dk
2012-11-01
We compute the fully renormalized one-loop effective action for two interacting and self-interacting scalar fields in FRW space-time. We then derive and solve the quantum corrected equations of motion both for fields that dominate the energy density (such as an inflaton) and fields that do not (such as a subdominant curvaton). In particular, we introduce quantum corrected Friedmann equations that determine the evolution of the scale factor. We find that in general, gravitational corrections are negligible for the field dynamics. For the curvaton-type fields this leaves only the effect of the flat-space Coleman-Weinberg-type effective potential, and we find that these can be significant. For the inflaton case, both the corrections to the potential and the Friedmann equations can lead to behaviour very different from the classical evolution. Even to the point that inflation, although present at tree level, can be absent at one-loop order.
Dissipative long-range entanglement generation between electronic spins
NASA Astrophysics Data System (ADS)
Benito, M.; Schuetz, M. J. A.; Cirac, J. I.; Platero, G.; Giedke, G.
2016-09-01
We propose a scheme for deterministic generation and long-term stabilization of entanglement between two electronic spin qubits confined in spatially separated quantum dots. Our approach relies on an electronic quantum bus, consisting either of quantum Hall edge channels or surface acoustic waves, that can mediate long-range coupling between localized spins over distances of tens of micrometers. Since the entanglement is actively stabilized by dissipative dynamics, our scheme is inherently robust against noise and imperfections.
Dynamics of entanglement and quantum discord in the Tavis-Cummings model
NASA Astrophysics Data System (ADS)
Restrepo, Juliana; Rodríguez, Boris A.
2016-06-01
We revisit the problem of the dynamics of quantum correlations in the Tavis-Cummings model. Our results show that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. We find states with the same entanglement but different discord and states where the two quantifiers give opposite information about correlations at a certain time. We furthermore show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the characteristic quantum nonlinearity of the model and to the choice of initial conditions. Through a comprehensive analysis of pure and mixed initial conditions, we find a fascinating range of phenomena that can be used for experimental purposes. We propose an experiment called quantum discord gates where for a given pure initial condition discord is zero or non-zero depending on the number of photons in the cavity. Given the marginal character of states with zero discord this result is not only completely counterintuitive but is also useful as a way to count photons.
Fedosov, Dmitry A.; Karniadakis, George Em; Caswell, Bruce
2010-01-01
Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees–Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method. PMID:20405981
Fedosov, Dmitry A; Karniadakis, George Em; Caswell, Bruce
2010-04-14
Polymer fluids are modeled with dissipative particle dynamics (DPD) as undiluted bead-spring chains and their solutions. The models are assessed by investigating their steady shear-rate properties. Non-Newtonian viscosity and normal stress coefficients, for shear rates from the lower to the upper Newtonian regimes, are calculated from both plane Couette and plane Poiseuille flows. The latter is realized as reverse Poiseuille flow (RPF) generated from two Poiseuille flows driven by uniform body forces in opposite directions along two-halves of a computational domain. Periodic boundary conditions ensure the RPF wall velocity to be zero without density fluctuations. In overlapping shear-rate regimes the RPF properties are confirmed to be in good agreement with those calculated from plane Couette flow with Lees-Edwards periodic boundary conditions (LECs), the standard virtual rheometer for steady shear-rate properties. The concentration and the temperature dependence of the properties of the model fluids are shown to satisfy the principles of concentration and temperature superposition commonly employed in the empirical correlation of real polymer-fluid properties. The thermodynamic validity of the equation of state is found to be a crucial factor for the achievement of time-temperature superposition. With these models, RPF is demonstrated to be an accurate and convenient virtual rheometer for the acquisition of steady shear-rate rheological properties. It complements, confirms, and extends the results obtained with the standard LEC configuration, and it can be used with the output from other particle-based methods, including molecular dynamics, Brownian dynamics, smooth particle hydrodynamics, and the lattice Boltzmann method.
Quantum walk coherences on a dynamical percolation graph
NASA Astrophysics Data System (ADS)
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-08-01
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media.
Quantum spin dynamics and entanglement in systems with long-range interactions
NASA Astrophysics Data System (ADS)
Rey, Ana M.
One of the fundamental goals of modern quantum sciences is to learn how to control and manipulate non-equilibrium many-body systems and use them to make powerful and improved quantum devices, materials and technologies. However, out-of-equilibrium systems are complex, typically strongly correlated and entangled, and thus to model them we are in an urgent need of new methodologies. In this talk I will discuss new theoretical methods that we have developed to investigate emergent non-equilibrium phenomena in driven-dissipative spin systems interacting via long-range interactions. I will show we can capture the dynamics of correlations and entanglement in close systems and the interplay between dissipation and entanglement in open quantum systems including spin-boson models. As a specific application I will discuss the use of our methods to model the spin dynamics exhibited by arrays of trapped ions with controllable long-range interactions. I will show that our predictions are consistent with recent experimental measurements. I will also discuss new protocols to diagnostic and characterize entanglement based on well-established NMR protocols This work is supported by NSF, ARO, AFOSR-MURI, and NIST.
Optimal control of molecular motion expressed through quantum fluid dynamics
NASA Astrophysics Data System (ADS)
Dey, Bijoy K.; Rabitz, Herschel; Askar, Attila
2000-04-01
A quantum fluid-dynamic (QFD) control formulation is presented for optimally manipulating atomic and molecular systems. In QFD the control quantum system is expressed in terms of the probability density ρ and the quantum current j. This choice of variables is motivated by the generally expected slowly varying spatial-temporal dependence of the fluid-dynamical variables. The QFD approach is illustrated for manipulation of the ground electronic state dynamics of HCl induced by an external electric field.
NASA Astrophysics Data System (ADS)
Jamali, Safa; Boromand, Arman; Khani, Shaghayegh; Wagner, Jacob; Yamanoi, Mikio; Maia, Joao
2015-04-01
In this work, a generalized relation between the fluid compressibility, the Flory-Huggins interaction parameter (χ), and the simulation parameters in multi-body dissipative particle dynamics (MDPD) is established. This required revisiting the MDPD equation of state previously reported in the literature and developing general relationships between the parameters used in the MDPD model. We derive a relationship to the Flory-Huggins χ parameter for incompressible fluids similar to the work previously done in dissipative particle dynamics by Groot and Warren. The accuracy of this relationship is evaluated using phase separation in small molecules and the solubility of polymers in dilute solvent solutions via monitoring the scaling of the radius of gyration (Rg) for different solvent qualities. Finally, the dynamics of the MDPD fluid is studied with respect to the diffusion coefficient and the zero shear viscosity.
Dynamics of Super Quantum Correlations and Quantum Correlations for a System of Three Qubits
NASA Astrophysics Data System (ADS)
Siyouri, F.; El Baz, M.; Rfifi, S.; Hassouni, Y.
2016-04-01
The dynamics of quantum discord for two qubits independently interacting with dephasing reservoirs have been studied recently. The authors [Phys. Rev. A 88 (2013) 034304] found that for some Bell-diagonal states (BDS) which interact with their environments the calculation of quantum discord could experience a sudden transition in its dynamics, this phenomenon is known as the sudden change. Here in the present paper, we analyze the dynamics of normal quantum discord and super quantum discord for tripartite Bell-diagonal states independently interacting with dephasing reservoirs. Then, we find that basis change does not necessary mean sudden change of quantum correlations.
Colloquium: Non-Markovian dynamics in open quantum systems
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Laine, Elsi-Mari; Piilo, Jyrki; Vacchini, Bassano
2016-04-01
The dynamical behavior of open quantum systems plays a key role in many applications of quantum mechanics, examples ranging from fundamental problems, such as the environment-induced decay of quantum coherence and relaxation in many-body systems, to applications in condensed matter theory, quantum transport, quantum chemistry, and quantum information. In close analogy to a classical Markovian stochastic process, the interaction of an open quantum system with a noisy environment is often modeled phenomenologically by means of a dynamical semigroup with a corresponding time-independent generator in Lindblad form, which describes a memoryless dynamics of the open system typically leading to an irreversible loss of characteristic quantum features. However, in many applications open systems exhibit pronounced memory effects and a revival of genuine quantum properties such as quantum coherence, correlations, and entanglement. Here recent theoretical results on the rich non-Markovian quantum dynamics of open systems are discussed, paying particular attention to the rigorous mathematical definition, to the physical interpretation and classification, as well as to the quantification of quantum memory effects. The general theory is illustrated by a series of physical examples. The analysis reveals that memory effects of the open system dynamics reflect characteristic features of the environment which opens a new perspective for applications, namely, to exploit a small open system as a quantum probe signifying nontrivial features of the environment it is interacting with. This Colloquium further explores the various physical sources of non-Markovian quantum dynamics, such as structured environmental spectral densities, nonlocal correlations between environmental degrees of freedom, and correlations in the initial system-environment state, in addition to developing schemes for their local detection. Recent experiments addressing the detection, quantification, and control of
Scattering in constraint relativistic quantum dynamics
NASA Astrophysics Data System (ADS)
Horwitz, L. P.; Rohrlich, F.
1982-12-01
A relativistic scattering theory is developed for a covariant constraint dynamics with direct interparticle interactions. Both time-dependent and time-independent formulations are presented, the latter being a generalization of the Lippmann-Schwinger equation. For the two-body problem, we study the simple case of maximal symmetry which, equivalently, admits both single- and two-time formulations. The two-time formalism illustrates the main features of the general case of N>=3 particles. Perturbation expansions are given for the wave function and for the S matrix. Their structure is similar to those in quantum field theory corresponding to skeleton diagrams.
Quantum gravity, dynamical phase-space and string theory
NASA Astrophysics Data System (ADS)
Freidel, Laurent; Leigh, Robert G.; Minic, Djordje
2014-08-01
In a natural extension of the relativity principle, we speculate that a quantum theory of gravity involves two fundamental scales associated with both dynamical spacetime as well as dynamical momentum space. This view of quantum gravity is explicitly realized in a new formulation of string theory which involves dynamical phase-space and in which spacetime is a derived concept. This formulation naturally unifies symplectic geometry of Hamiltonian dynamics, complex geometry of quantum theory and real geometry of general relativity. The spacetime and momentum space dynamics, and thus dynamical phase-space, is governed by a new version of the renormalization group (RG).
Zhang, Peng; Gao, Chao; Zhang, Na; Slepian, Marvin J.; Deng, Yuefan; Bluestein, Danny
2014-01-01
We developed a multiscale particle-based model of platelets, to study the transport dynamics of shear stresses between the surrounding fluid and the platelet membrane. This model facilitates a more accurate prediction of the activation potential of platelets by viscous shear stresses - one of the major mechanisms leading to thrombus formation in cardiovascular diseases and in prosthetic cardiovascular devices. The interface of the model couples coarse-grained molecular dynamics (CGMD) with dissipative particle dynamics (DPD). The CGMD handles individual platelets while the DPD models the macroscopic transport of blood plasma in vessels. A hybrid force field is formulated for establishing a functional interface between the platelet membrane and the surrounding fluid, in which the microstructural changes of platelets may respond to the extracellular viscous shear stresses transferred to them. The interaction between the two systems preserves dynamic properties of the flowing platelets, such as the flipping motion. Using this multiscale particle-based approach, we have further studied the effects of the platelet elastic modulus by comparing the action of the flow-induced shear stresses on rigid and deformable platelet models. The results indicate that neglecting the platelet deformability may overestimate the stress on the platelet membrane, which in turn may lead to erroneous predictions of the platelet activation under viscous shear flow conditions. This particle-based fluid-structure interaction multiscale model offers for the first time a computationally feasible approach for simulating deformable platelets interacting with viscous blood flow, aimed at predicting flow induced platelet activation by using a highly resolved mapping of the stress distribution on the platelet membrane under dynamic flow conditions. PMID:25530818
Meneses-Juárez, Efrain; Márquez-Beltrán, César; Rivas-Silva, Juan Francisco; Pal, Umapada; González-Melchor, Minerva
2015-08-01
The mechanism of complex formation of two oppositely charged linear polyelectrolytes dispersed in a solvent is investigated by using dissipative particle dynamics (DPD) simulation. In the polyelectrolyte solution, the size of the cationic polyelectrolyte remains constant while the size of the anionic chain increases. We analyze the influence of the anionic polyelectrolyte size and salt effect (ionic strength) on the conformational changes of the chains during complex formation. The behavior of the radial distribution function, the end-to-end distance and the radius of gyration of each polyelectrolyte is examined. These results showed that the effectiveness of complex formation is strongly influenced by the process of counterion release from the polyelectrolyte chains. The radius of gyration of the complex is estimated using the Fox-Flory equation for a wormlike polymer in a theta solvent. The addition of salts in the medium accelerates the complex formation process, affecting its radius of gyration. Depending on the ratio of chain lengths a compact complex or a loosely bound elongated structure can be formed.
NASA Astrophysics Data System (ADS)
Wang, Sibo; Xu, Junbo; Wen, Hao
2014-12-01
The heavy crude oil consists of thousands of compounds and much of them have large molecular weights and complex structures. Studying the aggregation and diffusion behavior of asphaltenes can facilitate the understanding of the heavy crude oil. In previous studies, the fused aromatic rings were treated as rigid bodies so that dissipative particle dynamics (DPD) integrated with the quaternion method can be used to study asphaltene systems. In this work, DPD integrated with the quaternion method is implemented on graphics processing units (GPUs). Compared with the serial program, tens of times speedup can be achieved when simulations performed on a single GPU. Using multiple GPUs can provide faster computation speed and more storage space for simulations of significant large systems. By using large systems, simulations of the asphaltene-toluene system at extremely dilute concentrations can be performed. The determined diffusion coefficients of asphaltenes are similar to that in experimental studies. At last, the aggregation behavior of asphaltenes in heptane was investigated, and the simulation results agreed with the modified Yen model. Monomers, nanoaggregates and clusters were observed from the simulations at different concentrations.
NASA Astrophysics Data System (ADS)
Maia, Joao; Khani, Shaghayegh
2015-03-01
Nanorods are incorporated into polymer matrices for fabricating composite materials with enhanced physical and mechanical properties.The final macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the mechanical properties of the nanorod-polymer composites is observed upon formation of a percolating network. One way of controlling the assembly of nanorods in the polymer medium is adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. The recent developments in the computational techniques have paved the road for further understanding of the controlled dispersion and aggregation of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the abovementioned nanocomposites. In DPD, the interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. This works studies the effect of the enthalpic and entropic variables on phase transitions. The main goal is to provide a phase diagram than can be used to guide the experiments in designing new materials.
Dissipative particle dynamics simulation on the rheological properties of heavy crude oil
NASA Astrophysics Data System (ADS)
Wang, Sibo; Xu, Junbo; Wen, Hao
2015-11-01
The rheological properties of heavy crude oil have a significant impact on the production, refining and transportation. In this paper, dissipative particle dynamics (DPD) simulations were performed to study the effects of the addition of light crude oil and emulsification on the rheological properties of heavy crude oil. The simulation results reflected that the addition of light crude oil reduced the viscosity effectively. The shear thinning behaviour of crude oil mixtures were becoming less distinct as the increase of the mass fraction of light crude oil. According to the statistics, the shear had an influence on the aggregation and spatial orientation of asphaltene molecules. In addition, the relationship between the viscosity and the oil mass fraction was investigated in the simulations of emulsion systems. The viscosity increased with the oil mass fraction slowly in oil-in-water emulsions. When the oil mass fraction was higher than 50%, the increase became much faster since systems had been converted into water-in-oil emulsions. The equilibrated morphologies of emulsion systems were shown to illustrate the phase inversion. The surfactant-like feature of asphaltenes was also studied in the simulations.
NASA Astrophysics Data System (ADS)
Moreno, Nicolas; Nunes, Suzana P.; Calo, Victor M.
2015-11-01
We introduce a framework for model reduction of polymer chain models for dissipative particle dynamics (DPD) simulations, where the properties governing the phase equilibria such as the characteristic size of the chain, compressibility, density, and temperature are preserved. The proposed methodology reduces the number of degrees of freedom required in traditional DPD representations to model equilibrium properties of systems with complex molecules (e.g., linear polymers). Based on geometrical considerations we explicitly account for the correlation between beads in fine-grained DPD models and consistently represent the effect of these correlations in a reduced model, in a practical and simple fashion via power laws and the consistent scaling of the simulation parameters. In order to satisfy the geometrical constraints in the reduced model we introduce bond-angle potentials that account for the changes in the chain free energy after the model reduction. Following this coarse-graining process we represent high molecular weight DPD chains (i.e., ≥ 200 beads per chain) with a significant reduction in the number of particles required (i.e., ≥ 20 times the original system). We show that our methodology has potential applications modeling systems of high molecular weight molecules at large scales, such as diblock copolymer and DNA.
Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.
Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao
2015-09-14
Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures. PMID:26235000
An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.
Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang
2016-08-14
Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly. PMID:27414465
On the connection between dissipative particle dynamics and the Itô-Stratonovich dilemma.
Farago, Oded; Grønbech-Jensen, Niels
2016-02-28
Dissipative Particle Dynamics (DPD) is a popular simulation model for investigating hydrodynamic behavior of systems with non-negligible equilibrium thermal fluctuations. DPD employs soft core repulsive interactions between the system particles, thus allowing them to overlap. This supposedly permits relatively large integration time steps, which is an important feature for simulations on large temporal scales. In practice, however, an increase in the integration time step leads to increasingly larger systematic errors in the sampling statistics. Here, we demonstrate that the prime origin of these systematic errors is the multiplicative nature of the thermal noise term in Langevin's equation, i.e., the fact that it depends on the instantaneous coordinates of the particles. This lead to an ambiguity in the interpretation of the stochastic differential Langevin equation, known as the Itô-Stratonovich dilemma. Based on insights from previous studies of the dilemma, we propose a novel algorithm for DPD simulations exhibiting almost an order of magnitude improvement in accuracy, and nearly twice the efficiency of commonly used DPD Langevin thermostats. PMID:26931676
Mao, Runfang; Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2015-09-01
Using dissipative particle dynamics (DPD) simulations, we explore the specifics of micellization in the solutions of anionic and cationic surfactants and their mixtures. Anionic surfactant sodium dodecyl sulfate (SDS) and cationic surfactant cetyltrimethylammonium bromide (CTAB) are chosen as characteristic examples. Coarse-grained models of the surfactants are constructed and parameterized using a combination of atomistic molecular simulation and infinite dilution activity coefficient calibration. Electrostatic interactions of charged beads are treated using a smeared charge approximation: the surfactant heads and dissociated counterions are modeled as beads with charges distributed around the bead center in an implicit dielectric medium. The proposed models semiquantitatively describe self-assembly in solutions of SDS and CTAB at various surfactant concentrations and molarities of added electrolyte. In particular, the model predicts a decline in the free surfactant concentration with the increase of the total surfactant loading, as well as characteristic aggregation transitions in single-component surfactant solutions caused by the addition of salt. The calculated values of the critical micelle concentration reasonably agree with experimental observations. Modeling of catanionic SDS-CTAB mixtures show consecutive transitions to worm-like micelles and then to vesicles caused by the addition of CTAB to micellar solution of SDS. PMID:26241704
Dissipative dynamics of a particle in a vibrating periodic potential: Chaos and control.
Chacón, R; Martínez, P J; Martínez, J A
2015-12-01
The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space are deduced from the application of Melnikov's method that fully determine the chaos-control scenario. Also, the structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally, we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise and reshaping of chaos-suppressing excitations. PMID:26764788
Dissipative dynamics of a particle in a vibrating periodic potential: Chaos and control.
Chacón, R; Martínez, P J; Martínez, J A
2015-12-01
The dissipative chaotic dynamics of a particle subjected to a horizontally vibrating periodic potential is characterized theoretically and confirmed numerically in the case of an external chaos-controlling periodic excitation also acting on the particle. Theoretical predictions concerning the chaotic threshold in parameter space are deduced from the application of Melnikov's method that fully determine the chaos-control scenario. Also, the structure of diverse regularization regions in parameter space is explained theoretically with the aid of an energy analysis. It was found that the phase difference between the two periodic excitations involved plays a crucial role in the chaos-control scenario, with the particular feature that its optimal value depends upon the ratio between the damping coefficient and the excitation frequency. This constitutes a genuine feature of the chaos-control scenario associated with nonsteady potentials which is in contrast to the case of steady potentials. Additionally, we demonstrate the robustness of the chaos-control scenario against the presence of low-intensity Gaussian noise and reshaping of chaos-suppressing excitations.
Dissipative particle dynamics study on directed self-assembly in holes
NASA Astrophysics Data System (ADS)
Nakano, T.; Matsukuma, M.; Matsuzaki, K.; Muramatsu, M.; Tomita, T.; Kitano, T.
2013-03-01
We report morphology of cylinder of diblock copolymers (BCP), which consist of polymer A and B, in cylindrical prepattern holes by dissipative particle dynamics simulation in order to predict optimal cylinder profile. Configuration of cylinder which consists of polymer B changes along with change of affinity of underlayer and guide wall for BCP. In the case of underlayer, neutral to both the polymer species shows the most stable cylinder shape. When affinity converts to either polymer, cylinder shape gets distorted. In the case of intergrading guide wall condition from A wet to B wet for a certain hole CD, polymer B, that constitutes cylinder, gradually loosen and stack on the guide eventually. Moreover cylinder forms again for B wet larger hole. Free energy for hole CD is also investigated and the profile shows A wet wall and B wet wall are suitable for hole shrink in a narrow and wide range of hole CD, respectively. Because free energy of A wet wall varies widely for hole CD change. In contrast, free energy of B wet wall exhibits no significant changes and the profiles signify that cylinder shapes relatively stable in wider range than A wet wall.
Zhou, Yang; Li, Yixue; Qian, Wen; He, Bi
2016-09-01
Based on dissipative particle dynamics (DPD) methods and experimental data, we used an empirical relationship between the DPD temperature and the real temperature to build a model that describes the viscosity of molten TNT fluids. The errors in the predicted viscosity based on this model were no more than 2.3 %. We also studied the steady-state shear rheological behavior of molten TNT fluids containing nanoparticles ("nanofluids"). The dependence of the nanofluid viscosity on the temperature was found to satisfy an Arrhenius-type equation, η = Ae (B/T) , where B, the flow activation energy, depends on particle content, size, and shape. We modified the Einstein-type viscosity model to account for the effects of nanoparticle solvation in TNT nanofluids. The resulting model was able to correctly predict the viscosities of suspensions containing nano- to microsized particles, and did not require any changes to the physical background of Einstein's viscosity theory. Graphical Abstract The revised Einstein viscosity model that correctly predict the viscosity of TNT suspensions containing nanoparticles. PMID:27553301
NASA Astrophysics Data System (ADS)
English, Niall J.; Clarke, Elaine T.
2013-09-01
Equilibrium and non-equilibrium molecular dynamics (MD) simulations have been performed to investigate thermal-driven break-up of planar CO2 hydrate interfaces in liquid water at 300-320 K. Different guest compositions, at 85%, 95%, and 100% of maximum theoretical occupation, led to statistically-significant differences in the observed initial dissociation rates. The melting temperatures of each interface were estimated, and dissociation rates were observed to be strongly dependent on temperature, with higher dissociation rates at larger over-temperatures vis-à-vis melting. A simple coupled mass and heat transfer model developed previously was applied to fit the observed dissociation profiles, and this helps to identify clearly two distinct régimes of break-up; a second well-defined region is essentially independent of composition and temperature, in which the remaining nanoscale, de facto two-dimensional system's lattice framework is intrinsically unstable. From equilibrium MD of the two-phase systems at their melting point, the relaxation times of the auto-correlation functions of fluctuations in number of enclathrated guest molecules were used as a basis for comparison of the variation in the underlying, non-equilibrium, thermal-driven dissociation rates via Onsager's hypothesis, and statistically significant differences were found, confirming the value of a fluctuation-dissipation approach in this case.
Dai, Xingxing; Ding, Haiou; Yin, Qianqian; Wan, Guang; Shi, Xinyuan; Qiao, Yanjiang
2015-04-01
Platycodin, as a kind of plant based biosurfactants, are saponins which derived from the root of Platycodon grandiflorum A. DC. It has been confirmed that platycodin have the potential to enhance the solubility of hydrophobic drugs and function as the drug carrier, which depends on their micellization over critical micelle concentration (CMC) in aqueous solutions. With the purpose of investigating the effects of influencing factors on the micellization behavior of platycodin and obtaining the phase behavior details at a mesoscopic level, dissipative particle dynamics (DPD) simulations method has been adopted in this study. The simulations reveal that a rich variety of aggregates morphologies will appear with changes of structure or the concentration of saponins, including spherical, ellipse and oblate micelles and vesicles, multilamellar vesicles (MLVs), multicompartment vesicles (MCMs), tubular and necklace-like micelle. They can be formed spontaneously from a randomly generated initial state and the result has been represented in the phase diagrams. Furthermore, deeper explorations have been done on the concentration-dependent structure variation of spherical vesicles as well as the formation mechanism of MLVs. This work provides insight into the solubilization system formed by platycodin, and may serve as guidance for further development and application in pharmaceutical field of platycodin and other saponins.
An insight into polymerization-induced self-assembly by dissipative particle dynamics simulation.
Huang, Feng; Lv, Yisheng; Wang, Liquan; Xu, Pengxiang; Lin, Jiaping; Lin, Shaoliang
2016-08-14
Polymerization-induced self-assembly is a one-pot route to produce concentrated dispersions of block copolymer nano-objects. Herein, dissipative particle dynamics simulations with a reaction model were employed to investigate the behaviors of polymerization-induced self-assembly. The polymerization kinetics in the polymerization-induced self-assembly were analyzed by comparing with solution polymerization. It was found that the polymerization rate enhances in the initial stage and decreases in the later stage. In addition, the effects of polymerization rate, length of macromolecular initiators, and concentration on the aggregate morphologies and formation pathway were studied. The polymerization rate and the length of the macromolecular initiators are found to have a marked influence on the pathway of the aggregate formations and the final structures. Morphology diagrams were mapped correspondingly. A comparison between simulation results and experimental findings is also made and an agreement is shown. This work can enrich our knowledge about polymerization-induced self-assembly.
Polymer-mediated nanorod self-assembly predicted by dissipative particle dynamics simulations.
Khani, Shaghayegh; Jamali, Safa; Boromand, Arman; Hore, Michael J A; Maia, Joao
2015-09-14
Self-assembly of nanoparticles in polymer matrices is an interesting and growing subject in the field of nanoscience and technology. We report herein on modelling studies of the self-assembly and phase behavior of nanorods in a homopolymer matrix, with the specific goal of evaluating the role of deterministic entropic and enthalpic factors that control the aggregation/dispersion in such systems. Grafting polymer brushes from the nanorods is one approach to control/impact their self-assembly capabilities within a polymer matrix. From an energetic point of view, miscible interactions between the brush and the matrix are required for achieving a better dispersibility; however, grafting density and brush length are the two important parameters in dictating the morphology. Unlike in previous computational studies, the present Dissipative Particle Dynamics (DPD) simulation framework is able to both predict dispersion or aggregation of nanorods and determine the self-assembled structure, allowing for the determination of a phase diagram, which takes all of these factors into account. Three types of morphologies are predicted: dispersion, aggregation and partial aggregation. Moreover, favorable enthalpic interactions between the brush and the matrix are found to be essential for expanding the window for achieving a well-dispersed morphology. A three-dimensional phase diagram is mapped on which all the afore-mentioned parameters are taken into account. Additionally, in the case of immiscibility between brushes and the matrix, simulations predict the formation of some new and tunable structures.
On the connection between dissipative particle dynamics and the Itô-Stratonovich dilemma
NASA Astrophysics Data System (ADS)
Farago, Oded; Grønbech-Jensen, Niels
2016-02-01
Dissipative Particle Dynamics (DPD) is a popular simulation model for investigating hydrodynamic behavior of systems with non-negligible equilibrium thermal fluctuations. DPD employs soft core repulsive interactions between the system particles, thus allowing them to overlap. This supposedly permits relatively large integration time steps, which is an important feature for simulations on large temporal scales. In practice, however, an increase in the integration time step leads to increasingly larger systematic errors in the sampling statistics. Here, we demonstrate that the prime origin of these systematic errors is the multiplicative nature of the thermal noise term in Langevin's equation, i.e., the fact that it depends on the instantaneous coordinates of the particles. This lead to an ambiguity in the interpretation of the stochastic differential Langevin equation, known as the Itô-Stratonovich dilemma. Based on insights from previous studies of the dilemma, we propose a novel algorithm for DPD simulations exhibiting almost an order of magnitude improvement in accuracy, and nearly twice the efficiency of commonly used DPD Langevin thermostats.
Dissipative-particle dynamics simulations of flow over a stationary sphere in compliant channels
NASA Astrophysics Data System (ADS)
Reddy, Harinath; Abraham, John
2009-05-01
Dissipative-particle dynamics (DPD), a particle-based fluid-simulation approach, is employed to simulate isothermal pressure-driven flow across a sphere in compliant cylindrical channels. The sphere is represented by frozen DPD particles, while the surrounding fluid is modeled using simple fluid particles. The channel walls are made up of interconnected finite extensible nonlinear elastic bead-spring chains. The wall particles at the inlet and outlet ends of the channel are frozen so as to hinge the channel. The model is assessed for accuracy by computing the drag coefficient CD in shear flow past a uniform sphere in unbounded flow, and comparing the results with those from correlations in literature. The effect of the aspect ratio λ of the channel, i.e., the ratio of the sphere diameter d to the channel diameter D, on the drag force FD on the sphere is investigated, and it is found that FD decreases as λ decreases toward the values predicted by the correlations as λ approaches zero. The effect of the elasticity of the wall is also studied. It is observed that as the wall becomes more elastic, there is a decrease in FD on the sphere.
NASA Astrophysics Data System (ADS)
Sadiek, Gehad; Almalki, Samaher
2016-07-01
We consider a finite one-dimensional Heisenberg XYZ spin chain under the influence of a dissipative Lindblad environment obeying the Born-Markovian constraint in presence of an external magnetic field with closed and open boundary conditions. We present an exact numerical solution for the Lindblad master equation of the system in the Liouville space. The dynamics and asymptotic behavior of the nearest-neighbor and beyond-nearest-neighbor pairwise entanglements in the system are investigated under the effect of spatial anisotropy, temperature, system size, and different initial states. The entanglements in the free spin system exhibit nonuniform oscillatory behavior that varies significantly depending on the system size, anisotropy, and initial state. The x y spatial anisotropy dictates the asymptotic behavior of the different entanglements in the system under the influence of the environment regardless of the initial state. Higher anisotropy yields higher steady-state value of the nearest-neighbor entanglement whereas a complete isotropy wipes it out. The longer range entanglements respond differently to the anisotropy variation. The anisotropy in the z direction may enhance the entanglements depending on the interplay with the magnetic field applied in the same direction. As the temperature is raised, the steady state of the short-range entanglements is found to be robust within very small nonzero temperature range that depends critically on the spatial anisotropy. Moreover, the end to end entanglement transfer time and speed through the open boundary chain vary considerably based on the degree of anisotropy and temperature of the environment.
Quantum dynamics of fast chemical reactions
Light, J.C.
1993-12-01
The aims of this research are to explore, develop, and apply theoretical methods for the evaluation of the dynamics of gas phase collision processes, primarily chemical reactions. The primary theoretical tools developed for this work have been quantum scattering theory, both in time dependent and time independent forms. Over the past several years, the authors have developed and applied methods for the direct quantum evaluation of thermal rate constants, applying these to the evaluation of the hydrogen isotopic exchange reactions, applied wave packet propagation techniques to the dissociation of Rydberg H{sub 3}, incorporated optical potentials into the evaluation of thermal rate constants, evaluated the use of optical potentials for state-to-state reaction probability evaluations, and, most recently, have developed quantum approaches for electronically non-adiabatic reactions which may be applied to simplify calculations of reactive, but electronically adiabatic systems. Evaluation of the thermal rate constants and the dissociation of H{sub 3} were reported last year, and have now been published.
Scheme for accelerating quantum tunneling dynamics
NASA Astrophysics Data System (ADS)
Khujakulov, Anvar; Nakamura, Katsuhiro
2016-02-01
We propose a scheme of the exact fast forwarding of standard quantum dynamics for a charged particle. The present idea allows the acceleration of both the amplitude and the phase of the wave function throughout the fast-forward time range and is distinct from that of Masuda and Nakamura [Proc. R. Soc. A 466, 1135 (2010), 10.1098/rspa.2009.0446], which enabled acceleration of only the amplitude of the wave function on the way. We apply the proposed method to the quantum tunneling phenomena and obtain the electromagnetic field to ensure the rapid penetration of wave functions through a tunneling barrier. Typical examples described here are (1) an exponential wave packet passing through the δ -function barrier and (2) the opened Moshinsky shutter with a δ -function barrier just behind the shutter. We elucidate the tunneling current in the vicinity of the barrier and find a remarkable enhancement of the tunneling rate (tunneling power) due to the fast forwarding. In the case of a very high barrier, in particular, we present the asymptotic analysis and exhibit a suitable driving force to recover a recognizable tunneling current. The analysis is also carried out on the exact acceleration of macroscopic quantum tunneling with use of the nonlinear Schrödinger equation, which accommodates a tunneling barrier.
Quantum dynamics of a plane pendulum
Leibscher, Monika; Schmidt, Burkhard
2009-07-15
A semianalytical approach to the quantum dynamics of a plane pendulum is developed, based on Mathieu functions which appear as stationary wave functions. The time-dependent Schroedinger equation is solved for pendular analogs of coherent and squeezed states of a harmonic oscillator, induced by instantaneous changes of the periodic potential energy function. Coherent pendular states are discussed between the harmonic limit for small displacements and the inverted pendulum limit, while squeezed pendular states are shown to interpolate between vibrational and free rotational motion. In the latter case, full and fractional revivals as well as spatiotemporal structures in the time evolution of the probability densities (quantum carpets) are quantitatively analyzed. Corresponding expressions for the mean orientation are derived in terms of Mathieu functions in time. For periodic double well potentials, different revival schemes, and different quantum carpets are found for the even and odd initial states forming the ground tunneling doublet. Time evolution of the mean alignment allows the separation of states with different parity. Implications for external (rotational) and internal (torsional) motion of molecules induced by intense laser fields are discussed.
What can we learn from the dynamics of entanglement and quantum discord in the Tavis-Cummings model?
NASA Astrophysics Data System (ADS)
Restrepo, Juliana; Rodriguez, Boris A.
We revisit the problem of the dynamics of quantum correlations in the exact Tavis-Cummings model. We show that many of the dynamical features of quantum discord attributed to dissipation are already present in the exact framework and are due to the well known non-linearities in the model and to the choice of initial conditions. Through a comprehensive analysis, supported by explicit analytical calculations, we find that the dynamics of entanglement and quantum discord are far from being trivial or intuitive. In this context, we find states that are indistinguishable from the point of view of entanglement and distinguishable from the point of view of quantum discord, states where the two quantifiers give opposite information and states where they give roughly the same information about correlations at a certain time. Depending on the initial conditions, this model exhibits a fascinating range of phenomena that can be used for experimental purposes such as: Robust states against change of manifold or dissipation, tunable entanglement states and states with a counterintuitive sudden birth as the number of photons increase. We furthermore propose an experiment called quantum discord gates where discord is zero or non-zero depending on the number of photons. This work was supported by the Vicerrectoria de Investigacion of the Universidad Antonio Narino, Colombia under Project Number 20141031 and by the Departamento Administrativo de Ciencia, Tecnologia e Innovacion (COLCIENCIAS) of Colombia under Grant Number.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
Demiralp, Emre; Demiralp, Metin
2010-09-30
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called ''Quantum Harmonical Form (QHF)''. QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Dynamical Causal Modeling from a Quantum Dynamical Perspective
NASA Astrophysics Data System (ADS)
Demiralp, Emre; Demiralp, Metin
2010-09-01
Recent research suggests that any set of first order linear vector ODEs can be converted to a set of specific vector ODEs adhering to what we have called "Quantum Harmonical Form (QHF)". QHF has been developed using a virtual quantum multi harmonic oscillator system where mass and force constants are considered to be time variant and the Hamiltonian is defined as a conic structure over positions and momenta to conserve the Hermiticity. As described in previous works, the conversion to QHF requires the matrix coefficient of the first set of ODEs to be a normal matrix. In this paper, this limitation is circumvented using a space extension approach expanding the potential applicability of this method. Overall, conversion to QHF allows the investigation of a set of ODEs using mathematical tools available to the investigation of the physical concepts underlying quantum harmonic oscillators. The utility of QHF in the context of dynamical systems and dynamical causal modeling in behavioral and cognitive neuroscience is briefly discussed.
Fault-tolerant dissipative preparation of atomic quantum registers with fermions
NASA Astrophysics Data System (ADS)
Griessner, A.; Daley, A. J.; Jaksch, D.; Zoller, P.
2005-09-01
We propose a fault-tolerant loading scheme to produce an array of fermions in an optical lattice of the high fidelity required for applications in quantum-information processing and the modeling of strongly correlated systems. A cold reservoir of fermions plays a dual role as a source of atoms to be loaded into the lattice via a Raman process and as a heat bath for sympathetic cooling of lattice atoms. Atoms are initially transferred into an excited motional state in each lattice site and then decay to the motional ground state, creating particle-hole pairs in the reservoir. Atoms transferred into the ground motional level are no longer coupled back to the reservoir, and doubly occupied sites in the motional ground state are prevented by Pauli blocking. This scheme has strong conceptual connections with optical pumping and can be extended to load high-fidelity patterns of atoms.
Quantum dissipation in a neutrino system propagating in vacuum and in matter
NASA Astrophysics Data System (ADS)
Guzzo, Marcelo M.; de Holanda, Pedro C.; Oliveira, Roberto L. N.
2016-07-01
Considering the neutrino state like an open quantum system, we analyze its propagation in vacuum or in matter. After defining what can be called decoherence and relaxation effects, we show that in general the probabilities in vacuum and in constant matter can be written in a similar way, which is not an obvious result for such system. From this result, we analyze the situation where neutrino evolution satisfies the adiabatic limit and use this formalism to study solar neutrinos. We show that the decoherence effect may not be bounded by the solar neutrino data and review some results in the literature, in particular the current results where solar neutrinos were used to put bounds on decoherence effects through a model-dependent approach. We conclude explaining how and why these models are not general and we reinterpret these constraints.
Modeling quantum fluid dynamics at nonzero temperatures
Berloff, Natalia G.; Brachet, Marc; Proukakis, Nick P.
2014-01-01
The detailed understanding of the intricate dynamics of quantum fluids, in particular in the rapidly growing subfield of quantum turbulence which elucidates the evolution of a vortex tangle in a superfluid, requires an in-depth understanding of the role of finite temperature in such systems. The Landau two-fluid model is the most successful hydrodynamical theory of superfluid helium, but by the nature of the scale separations it cannot give an adequate description of the processes involving vortex dynamics and interactions. In our contribution we introduce a framework based on a nonlinear classical-field equation that is mathematically identical to the Landau model and provides a mechanism for severing and coalescence of vortex lines, so that the questions related to the behavior of quantized vortices can be addressed self-consistently. The correct equation of state as well as nonlocality of interactions that leads to the existence of the roton minimum can also be introduced in such description. We review and apply the ideas developed for finite-temperature description of weakly interacting Bose gases as possible extensions and numerical refinements of the proposed method. We apply this method to elucidate the behavior of the vortices during expansion and contraction following the change in applied pressure. We show that at low temperatures, during the contraction of the vortex core as the negative pressure grows back to positive values, the vortex line density grows through a mechanism of vortex multiplication. This mechanism is suppressed at high temperatures. PMID:24704874
Dynamical phase transitions in quantum mechanics
NASA Astrophysics Data System (ADS)
Rotter, Ingrid
2012-02-01
The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.
Ness, H.; Dash, L. K.
2014-04-14
We study the non-equilibrium (NE) fluctuation-dissipation (FD) relations in the context of quantum thermoelectric transport through a two-terminal nanodevice in the steady-state. The FD relations for the one- and two-particle correlation functions are derived for a model of the central region consisting of a single electron level. Explicit expressions for the FD relations of the Green's functions (one-particle correlations) are provided. The FD relations for the current-current and charge-charge (two-particle) correlations are calculated numerically. We use self-consistent NE Green's functions calculations to treat the system in the absence and in the presence of interaction (electron-phonon) in the central region. We show that, for this model, there is no single universal FD theorem for the NE steady state. There are different FD relations for each different class of problems. We find that the FD relations for the one-particle correlation function are strongly dependent on both the NE conditions and the interactions, while the FD relations of the current-current correlation function are much less dependent on the interaction. The latter property suggests interesting applications for single-molecule and other nanoscale transport experiments.
Quantum nature of the big bang: Improved dynamics
Ashtekar, Abhay; Pawlowski, Tomasz; Singh, Parampreet
2006-10-15
An improved Hamiltonian constraint operator is introduced in loop quantum cosmology. Quantum dynamics of the spatially flat, isotropic model with a massless scalar field is then studied in detail using analytical and numerical methods. The scalar field continues to serve as ''emergent time'', the big bang is again replaced by a quantum bounce, and quantum evolution remains deterministic across the deep Planck regime. However, while with the Hamiltonian constraint used so far in loop quantum cosmology the quantum bounce can occur even at low matter densities, with the new Hamiltonian constraint it occurs only at a Planck-scale density. Thus, the new quantum dynamics retains the attractive features of current evolutions in loop quantum cosmology but, at the same time, cures their main weakness.
Dynamics in the quantum/classical limit based on selective use of the quantum potential
Garashchuk, Sophya Dell’Angelo, David; Rassolov, Vitaly A.
2014-12-21
A classical limit of quantum dynamics can be defined by compensation of the quantum potential in the time-dependent Schrödinger equation. The quantum potential is a non-local quantity, defined in the trajectory-based form of the Schrödinger equation, due to Madelung, de Broglie, and Bohm, which formally generates the quantum-mechanical features in dynamics. Selective inclusion of the quantum potential for the degrees of freedom deemed “quantum,” defines a hybrid quantum/classical dynamics, appropriate for molecular systems comprised of light and heavy nuclei. The wavefunction is associated with all of the nuclei, and the Ehrenfest, or mean-field, averaging of the force acting on the classical degrees of freedom, typical of the mixed quantum/classical methods, is avoided. The hybrid approach is used to examine evolution of light/heavy systems in the harmonic and double-well potentials, using conventional grid-based and approximate quantum-trajectory time propagation. The approximate quantum force is defined on spatial domains, which removes unphysical coupling of the wavefunction fragments corresponding to distinct classical channels or configurations. The quantum potential, associated with the quantum particle, generates forces acting on both quantum and classical particles to describe the backreaction.
Büttiker probes for dissipative phonon quantum transport in semiconductor nanostructures
NASA Astrophysics Data System (ADS)
Miao, K.; Sadasivam, S.; Charles, J.; Klimeck, G.; Fisher, T. S.; Kubis, T.
2016-03-01
Theoretical prediction of phonon transport in modern semiconductor nanodevices requires atomic resolution of device features and quantum transport models covering coherent and incoherent effects. The nonequilibrium Green's function method is known to serve this purpose well but is numerically expensive in simulating incoherent scattering processes. This work extends the efficient Büttiker probe approach widely used in electron transport to phonons and considers salient implications of the method. Different scattering mechanisms such as impurity, boundary, and Umklapp scattering are included, and the method is shown to reproduce the experimental thermal conductivity of bulk Si and Ge over a wide temperature range. Temperature jumps at the lead/device interface are captured in the quasi-ballistic transport regime consistent with results from the Boltzmann transport equation. Results of this method in Si/Ge heterojunctions illustrate the impact of atomic relaxation on the thermal interface conductance and the importance of inelastic scattering to activate high-energy channels for phonon transport. The resultant phonon transport model is capable of predicting the thermal performance in the heterostructure efficiently.
De Sitter Space Without Dynamical Quantum Fluctuations
NASA Astrophysics Data System (ADS)
Boddy, Kimberly K.; Carroll, Sean M.; Pollack, Jason
2016-06-01
We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.
Dynamics of open bosonic quantum systems in coherent state representation
Dalvit, D. A. R.; Berman, G. P.; Vishik, M.
2006-01-15
We consider the problem of decoherence and relaxation of open bosonic quantum systems from a perspective alternative to the standard master equation or quantum trajectories approaches. Our method is based on the dynamics of expectation values of observables evaluated in a coherent state representation. We examine a model of a quantum nonlinear oscillator with a density-density interaction with a collection of environmental oscillators at finite temperature. We derive the exact solution for dynamics of observables and demonstrate a consistent perturbation approach.
Measurement and Information Extraction in Complex Dynamics Quantum Computation
NASA Astrophysics Data System (ADS)
Casati, Giulio; Montangero, Simone
Quantum Information processing has several di.erent applications: some of them can be performed controlling only few qubits simultaneously (e.g. quantum teleportation or quantum cryptography) [1]. Usually, the transmission of large amount of information is performed repeating several times the scheme implemented for few qubits. However, to exploit the advantages of quantum computation, the simultaneous control of many qubits is unavoidable [2]. This situation increases the experimental di.culties of quantum computing: maintaining quantum coherence in a large quantum system is a di.cult task. Indeed a quantum computer is a many-body complex system and decoherence, due to the interaction with the external world, will eventually corrupt any quantum computation. Moreover, internal static imperfections can lead to quantum chaos in the quantum register thus destroying computer operability [3]. Indeed, as it has been shown in [4], a critical imperfection strength exists above which the quantum register thermalizes and quantum computation becomes impossible. We showed such e.ects on a quantum computer performing an e.cient algorithm to simulate complex quantum dynamics [5,6].
Electrostatics in dissipative particle dynamics using Ewald sums with point charges
NASA Astrophysics Data System (ADS)
Terrón-Mejía, Ketzasmin A.; López-Rendón, Roberto; Gama Goicochea, Armando
2016-10-01
A proper treatment of electrostatic interactions is crucial for the accurate calculation of forces in computer simulations. Electrostatic interactions are typically modeled using Ewald-based methods, which have become some of the cornerstones upon which many other methods for the numerical computation of electrostatic interactions are based. However, their use with charge distributions rather than point charges requires the inclusion of ansatz for the solutions of the Poisson equation, since there is no exact solution known for smeared out charges. The interest in incorporating electrostatic interactions at the scales of length and time that are relevant for the study the physics of soft condensed matter has increased considerably. Using mesoscale simulation techniques, such as dissipative particle dynamics (DPD), allows us to reach longer time scales in numerical simulations, without abandoning the particulate description of the problem. The main problem with incorporating electrostatics into DPD simulations is that DPD particles are soft and those particles with opposite charge can form artificial clusters of ions. Here we show that one can incorporate the electrostatic interactions through Ewald sums with point charges in DPD if larger values of coarse-graining degree are used, where DPD is truly mesoscopic. Using point charges with larger excluded volume interactions, the artificial formation of ionic pairs with point charges can be avoided and one obtains correct predictions. We establish ranges of parameters useful for detecting boundaries where artificial formation of ionic pairs occurs. Lastly, using point charges we predict the scaling properties of polyelectrolytes in solvents of varying quality, and obtain predictions that are in agreement with calculations that use other methods and with recent experimental results.
Electrostatics in dissipative particle dynamics using Ewald sums with point charges.
Terrón-Mejía, Ketzasmin A; López-Rendón, Roberto; Goicochea, Armando Gama
2016-10-26
A proper treatment of electrostatic interactions is crucial for the accurate calculation of forces in computer simulations. Electrostatic interactions are typically modeled using Ewald-based methods, which have become some of the cornerstones upon which many other methods for the numerical computation of electrostatic interactions are based. However, their use with charge distributions rather than point charges requires the inclusion of ansatz for the solutions of the Poisson equation, since there is no exact solution known for smeared out charges. The interest in incorporating electrostatic interactions at the scales of length and time that are relevant for the study the physics of soft condensed matter has increased considerably. Using mesoscale simulation techniques, such as dissipative particle dynamics (DPD), allows us to reach longer time scales in numerical simulations, without abandoning the particulate description of the problem. The main problem with incorporating electrostatics into DPD simulations is that DPD particles are soft and those particles with opposite charge can form artificial clusters of ions. Here we show that one can incorporate the electrostatic interactions through Ewald sums with point charges in DPD if larger values of coarse-graining degree are used, where DPD is truly mesoscopic. Using point charges with larger excluded volume interactions, the artificial formation of ionic pairs with point charges can be avoided and one obtains correct predictions. We establish ranges of parameters useful for detecting boundaries where artificial formation of ionic pairs occurs. Lastly, using point charges we predict the scaling properties of polyelectrolytes in solvents of varying quality, and obtain predictions that are in agreement with calculations that use other methods and with recent experimental results. PMID:27541198
NASA Astrophysics Data System (ADS)
Zhao, Tongyang; Wang, Xiaogong
2013-09-01
In this study, dissipative particle dynamics (DPD) method was employed to investigate the translational diffusion of rodlike polymer in its nematic phase. The polymer chain was modeled by a rigid rod composed of consecutive DPD particles and solvent was represented by independent DPD particles. To fully understand the translational motion of the rods in the anisotropic phase, four diffusion coefficients, D_{||}u, D_ bot u, D_{||}n, D_ bot n were obtained from the DPD simulation. By definition, D_{||}n and D_ bot n denote the diffusion coefficients parallel and perpendicular to the nematic director, while D_{||}u and D_ bot u denote the diffusion coefficients parallel and perpendicular to the long axis of a rigid rod u. In the simulation, the velocity auto-correlation functions were used to calculate the corresponding diffusion coefficients from the simulated velocity of the rods. Simulation results show that the variation of orientational order caused by concentration and temperature changes has substantial influences on D_{||}u and D_ bot u. In the nematic phase, the changes of concentration and temperature will result in a change of local environment of rods, which directly influence D_{||}u and D_ bot u. Both D_{||}n and D_ bot n can be represented as averages of D_{||}u and D_ bot u, and the weighted factors are functions of the orientational order parameter S2. The effect of concentration and temperature on D_{||}n and D_ bot n demonstrated by the DPD simulation can be rationally interpreted by considering their influences on D_{||}u, D_ bot u and the order parameter S2.
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Borodin, Oleg; Karniadakis, George Em
2016-10-01
We develop a "charged" dissipative particle dynamics (cDPD) model for simulating mesoscopic electrokinetic phenomena governed by the stochastic Poisson-Nernst-Planck and the Navier-Stokes equations. Specifically, the transport equations of ionic species are incorporated into the DPD framework by introducing extra degrees of freedom and corresponding evolution equations associated with each DPD particle. Diffusion of ionic species driven by the ionic concentration gradient, electrostatic potential gradient, and thermal fluctuations is captured accurately via pairwise fluxes between DPD particles. The electrostatic potential is obtained by solving the Poisson equation on the moving DPD particles iteratively at each time step. For charged surfaces in bounded systems, an effective boundary treatment methodology is developed for imposing both the correct hydrodynamic and electrokinetics boundary conditions in cDPD simulations. To validate the proposed cDPD model and the corresponding boundary conditions, we first study the electrostatic structure in the vicinity of a charged solid surface, i.e., we perform cDPD simulations of the electrostatic double layer and show that our results are in good agreement with the well-known mean-field theoretical solutions. We also simulate the electrostatic structure and capacity densities between charged parallel plates in salt solutions with different salt concentrations. Moreover, we employ the proposed methodology to study the electro-osmotic and electro-osmotic/pressure-driven flows in a micro-channel. In the latter case, we simulate the dilute poly-electrolyte solution drifting by electro-osmotic flow in a micro-channel, hence demonstrating the flexibility and capability of this method in studying complex fluids with electrostatic interactions at the micro- and nano-scales.
Geometry and dynamics of one-norm geometric quantum discord
NASA Astrophysics Data System (ADS)
Huang, Zhiming; Qiu, Daowen; Mateus, Paulo
2016-01-01
We investigate the geometry of one-norm geometric quantum discord and present a geometric interpretation of one-norm geometric quantum discord for a class of two-qubit states. It is found that one-norm geometric quantum discord has geometric behavior different from that described in Lang and Caves (Phys Rev Lett 105:150501, 2010), Li et al. (Phys Rev A 83:022321, 2011) and Yao et al. (Phys Lett A 376:358-364, 2012). We also compare the dynamics of the one-norm geometric quantum discord and other measures of quantum correlations under correlated noise. It is shown that different decoherent channels bring different influences to quantum correlations measured by concurrence, entropic quantum discord and geometric quantum discord, which depend on the memory parameter and decoherence parameter. We lay emphasis on the behaviors such as entanglement sudden death and sudden transition of quantum discord. Finally, we study the dynamical behavior of one-norm geometric quantum discord in one-dimensional anisotropic XXZ model by utilizing the quantum renormalization group method. It is shown that the one-norm geometric quantum discord demonstrates quantum phase transition through renormalization group approach.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits.
Strambini, E; Makarenko, K S; Abulizi, G; de Jong, M P; van der Wiel, W G
2016-01-06
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young's double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing. PMID:26732751
Geometric reduction of dynamical nonlocality in nanoscale quantum circuits
NASA Astrophysics Data System (ADS)
Strambini, E.; Makarenko, K. S.; Abulizi, G.; de Jong, M. P.; van der Wiel, W. G.
2016-01-01
Nonlocality is a key feature discriminating quantum and classical physics. Quantum-interference phenomena, such as Young’s double slit experiment, are one of the clearest manifestations of nonlocality, recently addressed as dynamical to specify its origin in the quantum equations of motion. It is well known that loss of dynamical nonlocality can occur due to (partial) collapse of the wavefunction due to a measurement, such as which-path detection. However, alternative mechanisms affecting dynamical nonlocality have hardly been considered, although of crucial importance in many schemes for quantum information processing. Here, we present a fundamentally different pathway of losing dynamical nonlocality, demonstrating that the detailed geometry of the detection scheme is crucial to preserve nonlocality. By means of a solid-state quantum-interference experiment we quantify this effect in a diffusive system. We show that interference is not only affected by decoherence, but also by a loss of dynamical nonlocality based on a local reduction of the number of quantum conduction channels of the interferometer. With our measurements and theoretical model we demonstrate that this mechanism is an intrinsic property of quantum dynamics. Understanding the geometrical constraints protecting nonlocality is crucial when designing quantum networks for quantum information processing.
Exponential rise of dynamical complexity in quantum computing through projections.
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-10-10
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once 'observed' as outlined above. Conversely, we show that any complex quantum dynamics can be 'purified' into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics.
Exponential rise of dynamical complexity in quantum computing through projections
Burgarth, Daniel Klaus; Facchi, Paolo; Giovannetti, Vittorio; Nakazato, Hiromichi; Pascazio, Saverio; Yuasa, Kazuya
2014-01-01
The ability of quantum systems to host exponentially complex dynamics has the potential to revolutionize science and technology. Therefore, much effort has been devoted to developing of protocols for computation, communication and metrology, which exploit this scaling, despite formidable technical difficulties. Here we show that the mere frequent observation of a small part of a quantum system can turn its dynamics from a very simple one into an exponentially complex one, capable of universal quantum computation. After discussing examples, we go on to show that this effect is generally to be expected: almost any quantum dynamics becomes universal once ‘observed’ as outlined above. Conversely, we show that any complex quantum dynamics can be ‘purified’ into a simpler one in larger dimensions. We conclude by demonstrating that even local noise can lead to an exponentially complex dynamics. PMID:25300692
Quantum molecular dynamics simulations of dense matter
Collins, L.; Kress, J.; Troullier, N.; Lenosky, T.; Kwon, I.
1997-12-31
The authors have developed a quantum molecular dynamics (QMD) simulation method for investigating the properties of dense matter in a variety of environments. The technique treats a periodically-replicated reference cell containing N atoms in which the nuclei move according to the classical equations-of-motion. The interatomic forces are generated from the quantum mechanical interactions of the (between?) electrons and nuclei. To generate these forces, the authors employ several methods of varying sophistication from the tight-binding (TB) to elaborate density functional (DF) schemes. In the latter case, lengthy simulations on the order of 200 atoms are routinely performed, while for the TB, which requires no self-consistency, upwards to 1000 atoms are systematically treated. The QMD method has been applied to a variety cases: (1) fluid/plasma Hydrogen from liquid density to 20 times volume-compressed for temperatures of a thousand to a million degrees Kelvin; (2) isotopic hydrogenic mixtures, (3) liquid metals (Li, Na, K); (4) impurities such as Argon in dense hydrogen plasmas; and (5) metal/insulator transitions in rare gas systems (Ar,Kr) under high compressions. The advent of parallel versions of the methods, especially for fast eigensolvers, presage LDA simulations in the range of 500--1000 atoms and TB runs for tens of thousands of particles. This leap should allow treatment of shock chemistry as well as large-scale mixtures of species in highly transient environments.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications.
Protecting conditional quantum gates by robust dynamical decoupling.
Piltz, Ch; Scharfenberger, B; Khromova, A; Varón, A F; Wunderlich, Ch
2013-05-17
Dephasing--phase randomization of a quantum superposition state--is a major obstacle for the realization of high fidelity quantum logic operations. Here, we implement a two-qubit controlled-NOT gate using dynamical decoupling (DD), despite the gate time being more than 1 order of magnitude longer than the intrinsic coherence time of the system. For realizing this universal conditional quantum gate, we have devised a concatenated DD sequence that ensures robustness against imperfections of DD pulses that otherwise may destroy quantum information or interfere with gate dynamics. We compare its performance with three other types of DD sequences. These experiments are carried out using a well-controlled prototype quantum system--trapped atomic ions coupled by an effective spin-spin interaction. The scheme for protecting conditional quantum gates demonstrated here is applicable to other physical systems, such as nitrogen vacancy centers, solid state nuclear magnetic resonance, and circuit quantum electrodynamics.
Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.
Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P
2015-05-13
An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085
Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas.
Matthaeus, W H; Wan, Minping; Servidio, S; Greco, A; Osman, K T; Oughton, S; Dmitruk, P
2015-05-13
An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction.
Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas
Matthaeus, W. H.; Wan, Minping; Servidio, S.; Greco, A.; Osman, K. T.; Oughton, S.; Dmitruk, P.
2015-01-01
An overview is given of important properties of spatial and temporal intermittency, including evidence of its appearance in fluids, magnetofluids and plasmas, and its implications for understanding of heliospheric plasmas. Spatial intermittency is generally associated with formation of sharp gradients and coherent structures. The basic physics of structure generation is ideal, but when dissipation is present it is usually concentrated in regions of strong gradients. This essential feature of spatial intermittency in fluids has been shown recently to carry over to the realm of kinetic plasma, where the dissipation function is not known from first principles. Spatial structures produced in intermittent plasma influence dissipation, heating, and transport and acceleration of charged particles. Temporal intermittency can give rise to very long time correlations or a delayed approach to steady-state conditions, and has been associated with inverse cascade or quasi-inverse cascade systems, with possible implications for heliospheric prediction. PMID:25848085
Residue and dissipation dynamics of lufenuron in tomato fruit using QuEChERS methodology.
Malhat, Farag; Almaz, Moniur; Arief, Mohamed; El-Din, Kamal; Fathy, Mohamed
2012-11-01
One field experiment was conducted with lufenuron (Match(®) 5% EC) on tomato crop during August 2011. The main objective was to understand the residue and dissipation behavior of insecticide lufenuron in tomato fruit samples. The dissipation behavior of lufenuron insecticide followed first-order rate kinetics at standard recommended dose application. The average initial deposit of lufenuron in tomato was observed to be 1.299 mg kg(-1)at single application rate. This lufenuron residue dissipated to bellow LOQ of 0.03 mg kg(-1) 21 days after the treatment. Lufenuron residues were lost with pre-harvest intervals of 7 days, following application at the recommended dose by manufacture. PMID:22965335
A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries
NASA Astrophysics Data System (ADS)
Gatsonis, Nikolaos A.; Potami, Raffaele; Yang, Jun
2014-01-01
A smooth dissipative particle dynamics method with dynamic virtual particle allocation (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains is presented. The physical domain in SDPD-DV may contain external and internal solid boundaries of arbitrary geometries, periodic inlets and outlets, and the fluid region. The SDPD-DV method is realized with fluid particles, boundary particles, and dynamically allocated virtual particles. The internal or external solid boundaries of the domain can be of arbitrary geometry and are discretized with a surface grid. These boundaries are represented by boundary particles with assigned properties. The fluid domain is discretized with fluid particles of constant mass and variable volume. Conservative and dissipative force models due to virtual particles exerted on a fluid particle in the proximity of a solid boundary supplement the original SDPD formulation. The dynamic virtual particle allocation approach provides the density and the forces due to virtual particles. The integration of the SDPD equations is accomplished with a velocity-Verlet algorithm for the momentum and a Runge-Kutta for the entropy equation. The velocity integrator is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. For the incompressible isothermal systems considered in this work, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for gases. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatiotemporal scales. The SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes for
A smooth dissipative particle dynamics method for domains with arbitrary-geometry solid boundaries
NASA Astrophysics Data System (ADS)
Gatsonis, Nikolaos A.; Potami, Raffaele; Yang, Jun
2014-01-01
A smooth dissipative particle dynamics method with dynamic virtual particle allocation (SDPD-DV) for modeling and simulation of mesoscopic fluids in wall-bounded domains is presented. The physical domain in SDPD-DV may contain external and internal solid boundaries of arbitrary geometries, periodic inlets and outlets, and the fluid region. The SDPD-DV method is realized with fluid particles, boundary particles, and dynamically allocated virtual particles. The internal or external solid boundaries of the domain can be of arbitrary geometry and are discretized with a surface grid. These boundaries are represented by boundary particles with assigned properties. The fluid domain is discretized with fluid particles of constant mass and variable volume. Conservative and dissipative force models due to virtual particles exerted on a fluid particle in the proximity of a solid boundary supplement the original SDPD formulation. The dynamic virtual particle allocation approach provides the density and the forces due to virtual particles. The integration of the SDPD equations is accomplished with a velocity-Verlet algorithm for the momentum and a Runge-Kutta for the entropy equation. The velocity integrator is supplemented by a bounce-forward algorithm in cases where the virtual particle force model is not able to prevent particle penetration. For the incompressible isothermal systems considered in this work, the pressure of a fluid particle is obtained by an artificial compressibility formulation for liquids and the ideal gas law for gases. The self-diffusion coefficient is obtained by an implementation of the generalized Einstein and the Green-Kubo relations. Field properties are obtained by sampling SDPD-DV outputs on a post-processing grid that allows harnessing the particle information on desired spatiotemporal scales. The SDPD-DV method is verified and validated with simulations in bounded and periodic domains that cover the hydrodynamic and mesoscopic regimes for
Ishizaki, Akihito; Fleming, Graham R
2009-06-21
A new quantum dynamic equation for excitation energy transfer is developed which can describe quantum coherent wavelike motion and incoherent hopping in a unified manner. The developed equation reduces to the conventional Redfield theory and Forster theory in their respective limits of validity. In the regime of coherent wavelike motion, the equation predicts several times longer lifetime of electronic coherence between chromophores than does the conventional Redfield equation. Furthermore, we show quantum coherent motion can be observed even when reorganization energy is large in comparison to intersite electronic coupling (the Forster incoherent regime). In the region of small reorganization energy, slow fluctuation sustains longer-lived coherent oscillation, whereas the Markov approximation in the Redfield framework causes infinitely fast fluctuation and then collapses the quantum coherence. In the region of large reorganization energy, sluggish dissipation of reorganization energy increases the time electronic excitation stays above an energy barrier separating chromophores and thus prolongs delocalization over the chromophores.
Protected quantum computing: interleaving gate operations with dynamical decoupling sequences.
Zhang, Jingfu; Souza, Alexandre M; Brandao, Frederico Dias; Suter, Dieter
2014-02-01
Implementing precise operations on quantum systems is one of the biggest challenges for building quantum devices in a noisy environment. Dynamical decoupling attenuates the destructive effect of the environmental noise, but so far, it has been used primarily in the context of quantum memories. Here, we experimentally demonstrate a general scheme for combining dynamical decoupling with quantum logical gate operations using the example of an electron-spin qubit of a single nitrogen-vacancy center in diamond. We achieve process fidelities >98% for gate times that are 2 orders of magnitude longer than the unprotected dephasing time T2.
Intense laser alignment in dissipative media as a route to solvent dynamics.
Ramakrishna, S; Seideman, Tamar
2005-09-01
We extend the concept of alignment by short intense pulses to dissipative environments within a density matrix formalism and illustrate the application of this method as a probe of the dissipative properties of dense media. In particular, we propose a means of disentangling rotational population relaxation from decoherence effects via strong laser alignment. We illustrate also the possibility of suppressing rotational relaxation to prolong the alignment lifetime through choice of the field parameters. Implications to several disciplines and a number of potential applications are proposed.
Intense Laser Alignment in Dissipative Media as a Route to Solvent Dynamics
Ramakrishna, S.; Seideman, Tamar
2005-09-09
We extend the concept of alignment by short intense pulses to dissipative environments within a density matrix formalism and illustrate the application of this method as a probe of the dissipative properties of dense media. In particular, we propose a means of disentangling rotational population relaxation from decoherence effects via strong laser alignment. We illustrate also the possibility of suppressing rotational relaxation to prolong the alignment lifetime through choice of the field parameters. Implications to several disciplines and a number of potential applications are proposed.
Power laws in the dynamic hysteresis of quantum nonlinear photonic resonators
NASA Astrophysics Data System (ADS)
Casteels, W.; Storme, F.; Le Boité, A.; Ciuti, C.
2016-03-01
We explore theoretically the physics of dynamic hysteresis for driven-dissipative nonlinear photonic resonators. In the regime where the semiclassical mean-field theory predicts bistability, the exact steady-state density matrix is known to be unique, being a statistical mixture of two states; in particular, no static hysteresis cycle of the excited population occurs as a function of the driving intensity. Here, we predict that in the quantum regime a dynamic hysteresis with a rich phenomenology does appear when sweeping the driving amplitude in a finite time. The hysteresis area as a function of the sweep time reveals a double power-law decay, with a behavior qualitatively different from the mean-field predictions. The dynamic hysteresis power-law in the slow sweep limit defines a characteristic time, which depends dramatically on the size of the nonlinearity and on the frequency detuning between the driving and the resonator. In the strong nonlinearity regime, the characteristic time oscillates as a function of the intrinsic system parameters due to multiphotonic resonances. We show that the dynamic hysteresis for the considered class of driven-dissipative systems is due to a nonadiabatic response region with connections to the Kibble-Zurek mechanism for quenched phase transitions. We also consider the case of two coupled driven-dissipative nonlinear resonators, showing that dynamic hysteresis and power-law behavior occur also in the presence of correlations between resonators. Our theoretical predictions can be explored in a broad variety of physical systems, e.g., circuit QED superconducting resonators and semiconductor optical microcavities.
Dynamics and conductivity near quantum criticality
NASA Astrophysics Data System (ADS)
Gazit, Snir; Podolsky, Daniel; Auerbach, Assa; Arovas, Daniel P.
2013-12-01
Relativistic O(N) field theories are studied near the quantum-critical point in two space dimensions. We compute dynamical correlations by large-scale Monte Carlo simulations and numerical analytic continuation. In the ordered side, the scalar spectral function exhibits a universal peak at the Higgs mass. For N=3 and 4, we confirm its ω3 rise at low frequency. On the disordered side, the spectral function exhibits a sharp gap. For N=2, the dynamical conductivity rises above a threshold at the Higgs mass (density gap), in the superfluid (Mott insulator) phase. For charged bosons (Josephson arrays), the power-law rise above the Higgs mass increases from two to four. Approximate charge-vortex duality is reflected in the ratio of imaginary conductivities on either side of the transition. We determine the critical conductivity to be σc*=0.3(±0.1)×4e2/h and describe a generalization of the worm algorithm to N>2. We use a singular value decomposition error analysis for the numerical analytic continuation.
Sumner, Isaiah; Iyengar, Srinivasan S
2007-10-18
We have introduced a computational methodology to study vibrational spectroscopy in clusters inclusive of critical nuclear quantum effects. This approach is based on the recently developed quantum wavepacket ab initio molecular dynamics method that combines quantum wavepacket dynamics with ab initio molecular dynamics. The computational efficiency of the dynamical procedure is drastically improved (by several orders of magnitude) through the utilization of wavelet-based techniques combined with the previously introduced time-dependent deterministic sampling procedure measure to achieve stable, picosecond length, quantum-classical dynamics of electrons and nuclei in clusters. The dynamical information is employed to construct a novel cumulative flux/velocity correlation function, where the wavepacket flux from the quantized particle is combined with classical nuclear velocities to obtain the vibrational density of states. The approach is demonstrated by computing the vibrational density of states of [Cl-H-Cl]-, inclusive of critical quantum nuclear effects, and our results are in good agreement with experiment. A general hierarchical procedure is also provided, based on electronic structure harmonic frequencies, classical ab initio molecular dynamics, computation of nuclear quantum-mechanical eigenstates, and employing quantum wavepacket ab initio dynamics to understand vibrational spectroscopy in hydrogen-bonded clusters that display large degrees of anharmonicities.
NASA Astrophysics Data System (ADS)
Romera, M.; Lacoste, B.; Ebels, U.; Buda-Prejbeanu, L. D.
2016-09-01
The general concepts of spin wave theory are adapted to the spin torque driven dynamics of a self-polarized system based on two layers coupled via interlayer exchange (conservative coupling) and mutual spin torque (dissipative coupling). An analytical description of the nonlinear dynamics is proposed and validated through numerical simulations. In contrast to the single layer model, the phase equation of the coupled system has a contribution coming from the dissipative part of the LLGS equation. It is shown that this is a major contribution to the frequency mandatory to describe well the most basic features of the dynamics of this coupled system. Using the proposed model a specific feature of coupled dynamics is addressed: the redshift to blueshift transition observed in the frequency current dependence of this kind of exchange coupled systems upon increasing the applied field. It is found that the blueshift regime can only occur in a region of field where the two linear eigenmodes contribute equally to the steady state mode (i.e., high mode hybridization). Finally, a general perturbed Hamiltonian equation for the coupled system is proposed.
Quantum versus classical hyperfine-induced dynamics in a quantum dota)
NASA Astrophysics Data System (ADS)
Coish, W. A.; Loss, Daniel; Yuzbashyan, E. A.; Altshuler, B. L.
2007-04-01
In this article we analyze spin dynamics for electrons confined to semiconductor quantum dots due to the contact hyperfine interaction. We compare mean-field (classical) evolution of an electron spin in the presence of a nuclear field with the exact quantum evolution for the special case of uniform hyperfine coupling constants. We find that (in this special case) the zero-magnetic-field dynamics due to the mean-field approximation and quantum evolution are similar. However, in a finite magnetic field, the quantum and classical solutions agree only up to a certain time scale t <τc, after which they differ markedly.
Dynamics of quantum cascade lasers: numerics
NASA Astrophysics Data System (ADS)
Van der Sande, Guy; Verschaffelt, Guy
2016-04-01
Since the original demonstration of terahertz quantum-cascade lasers (QCLs), the performance of these devices has shown rapid improvement. QCLs can now deliver milliwatts or more of continuous-wave radiation throughout the terahertz frequency range (300 GHz to 10 THz). Therefore, QCLs have become widely used in various applications such as spectroscopy, metrology or free-space telecommunications. For many of these applications there is a need for compact tuneable quantum cascade lasers. Nowadays most tuneable QCLs are based on a bulky external cavity configuration. We explore the possibility of tuning the operating wavelength through a fully integrated on-chip wavelength selective feedback applied to a dual wavelength QCL. Our numerical and analytical analyses are based on rate equation models describing the dynamics of QCLs extended to include delayed filtered optical feedback. We demonstrate the possibility to tune the operating wavelength by altering the absorption and/or amplification of the signal in the delayed feedback path. The tuning range of a laser is limited by the spectral width of its gain. For inter-band semiconductor lasers this spectral width is typically several tens of nm. Hence, the laser cavity supports the existence of multiple modes and on chip wavelength selective feedback has been demonstrated to be a promising tuning mechanism. We have selected a specific QCL gain structure with four energy levels and with two lasing transitions in the same cascade. In this scheme, the two lasing modes use a common upper level. Hence, the two modes compete in part for the same carriers to account for their optical gain. We have added delayed wavelength specific filtered optical feedback to the rate equation model describing these transitions. We have calculated the steady states and their stability in the absence of delay for the feedback field and studied numerically the case with non-zero delay. We have proven that wavelength tuning of a dual wavelength
Non-Markovian dynamics of an open quantum system with nonstationary coupling
Kalandarov, S. A.; Adamian, G. G.; Kanokov, Z.; Antonenko, N. V.; Scheid, W.
2011-04-15
The spectral, dissipative, and statistical properties of the damped quantum oscillator are studied in the case of non-Markovian and nonstationary system-heat bath coupling. The dissipation of collective energy is shown to be slowed down, and the decoherence rate and entropy grow with modulation frequency.
Dynamic homotopy and landscape dynamical set topology in quantum control
Dominy, Jason; Rabitz, Herschel
2012-08-15
We examine the topology of the subset of controls taking a given initial state to a given final state in quantum control, where 'state' may mean a pure state Double-Vertical-Line {psi}>, an ensemble density matrix {rho}, or a unitary propagator U(0, T). The analysis consists in showing that the endpoint map acting on control space is a Hurewicz fibration for a large class of affine control systems with vector controls. Exploiting the resulting fibration sequence and the long exact sequence of basepoint-preserving homotopy classes of maps, we show that the indicated subset of controls is homotopy equivalent to the loopspace of the state manifold. This not only allows us to understand the connectedness of 'dynamical sets' realized as preimages of subsets of the state space through this endpoint map, but also provides a wealth of additional topological information about such subsets of control space.
Comparisons of classical and quantum dynamics for initially localized states
Davis, M.J.; Heller, E.J.
1984-05-15
We compare the dynamics of quantum wave packets with the dynamics of classical trajectory ensembles. The wave packets are Gaussian with expectation values of position and momenta which centers them in phase space. The classical trajectory ensembles are generated directly from the quantum wave packets via the Wigner transform. Quantum and classical dynamics are then compared using several quantum measures and the analogous classical ones derived from the Wigner equivalent formalism. Comparisons are made for several model potentials and it is found that there is generally excellent classical--quantum correspondence except for certain specific cases of tunneling and interference. In general, this correspondence is also very good in regions of phase space where there is classical chaos.
Quantum and classical dynamics in adiabatic computation
NASA Astrophysics Data System (ADS)
Crowley, P. J. D.; Äńurić, T.; Vinci, W.; Warburton, P. A.; Green, A. G.
2014-10-01
Adiabatic transport provides a powerful way to manipulate quantum states. By preparing a system in a readily initialized state and then slowly changing its Hamiltonian, one may achieve quantum states that would otherwise be inaccessible. Moreover, a judicious choice of final Hamiltonian whose ground state encodes the solution to a problem allows adiabatic transport to be used for universal quantum computation. However, the dephasing effects of the environment limit the quantum correlations that an open system can support and degrade the power of such adiabatic computation. We quantify this effect by allowing the system to evolve over a restricted set of quantum states, providing a link between physically inspired classical optimization algorithms and quantum adiabatic optimization. This perspective allows us to develop benchmarks to bound the quantum correlations harnessed by an adiabatic computation. We apply these to the D-Wave Vesuvius machine with revealing—though inconclusive—results.
Dynamic quantum tunneling in mesoscopic driven Duffing oscillators.
Guo, Lingzhen; Zheng, Zhigang; Li, Xin-Qi; Yan, Yijing
2011-07-01
We investigate the dynamic quantum tunneling between two attractors of a mesoscopic driven Duffing oscillator. We find that, in addition to inducing a remarkable quantum shift of the bifurcation point, the mesoscopic nature also results in a perfect linear scaling behavior for the tunneling rate with the driving distance to the shifted bifurcation point. PMID:21867149
NASA Astrophysics Data System (ADS)
Weetman, Philip; Akhras, George
2009-01-01
A phenomenological dynamical model of ferromagnetic shape memory alloy based actuators is developed. The parameters of effective mass density, viscosity, and elasticity are defined and used in a dissipative Euler-Lagrange equation to determine the martensite variant fraction and strain as a function of time. These three parameters are determined by fitting our simulations to recent experiments on a NiMnGa based actuator. In addition to the simplicity of only three fitting parameters to model martensite variant evolution, the present model is a convenient formulation of the problem because it incorporates self-consistently all stresses and loads in the system.
Nemirovskii, Sergey K.; Sonin, E. B.
2007-12-01
We analyze the dynamics of three-dimensional (3D) coreless vortices in superfluid films covering porous substrates. The 3D vortex dynamics is derived from the two-dimensional (2D) dynamics of the film. The motion of a 3D vortex is a sequence of jumps between neighboring substrate cells, which can be described, nevertheless, in terms of quasicontinuous motion with average vortex velocity. The vortex velocity is derived from the dissociation rate of vortex-antivortex pairs in a 2D film, which was developed in the past on the basis of the Kosterlitz-Thouless theory. The theory explains the rotation-induced dissipation peak in torsion-oscillator experiments on {sup 4}He films on rotating porous substrates and can be used in the analysis of other phenomena related to vortex motion in films on porous substrates.
Hele, Timothy J H; Willatt, Michael J; Muolo, Andrea; Althorpe, Stuart C
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the "Classical Wigner" approximation. Here, we show that the further approximation of this "Matsubara dynamics" gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Xavier, J C; Strunz, W T; Beims, M W
2015-08-01
We consider the energy flow between a classical one-dimensional harmonic oscillator and a set of N two-dimensional chaotic oscillators, which represents the finite environment. Using linear response theory we obtain an analytical effective equation for the system harmonic oscillator, which includes a frequency dependent dissipation, a shift, and memory effects. The damping rate is expressed in terms of the environment mean Lyapunov exponent. A good agreement is shown by comparing theoretical and numerical results, even for environments with mixed (regular and chaotic) motion. Resonance between system and environment frequencies is shown to be more efficient to generate dissipation than larger mean Lyapunov exponents or a larger number of bath chaotic oscillators.
Effective quantum dynamics of interacting systems with inhomogeneous coupling
Lopez, C. E.; Retamal, J. C.; Christ, H.; Solano, E.
2007-03-15
We study the quantum dynamics of a single mode (particle) interacting inhomogeneously with a large number of particles and introduce an effective approach to find the accessible Hilbert space, where the dynamics takes place. Two relevant examples are given: the inhomogeneous Tavis-Cummings model (e.g., N atomic qubits coupled to a single cavity mode, or to a motional mode in trapped ions) and the inhomogeneous coupling of an electron spin to N nuclear spins in a quantum dot.
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Karniadakis, George Em
2014-11-01
We present a scalable dissipative particle dynamics simulation code, fully implemented on the Graphics Processing Units (GPUs) using a hybrid CUDA/MPI programming model, which achieves 10-30 times speedup on a single GPU over 16 CPU cores and almost linear weak scaling across a thousand nodes. A unified framework is developed within which the efficient generation of the neighbor list and maintaining particle data locality are addressed. Our algorithm generates strictly ordered neighbor lists in parallel, while the construction is deterministic and makes no use of atomic operations or sorting. Such neighbor list leads to optimal data loading efficiency when combined with a two-level particle reordering scheme. A faster in situ generation scheme for Gaussian random numbers is proposed using precomputed binary signatures. We designed custom transcendental functions that are fast and accurate for evaluating the pairwise interaction. The correctness and accuracy of the code is verified through a set of test cases simulating Poiseuille flow and spontaneous vesicle formation. Computer benchmarks demonstrate the speedup of our implementation over the CPU implementation as well as strong and weak scalability. A large-scale simulation of spontaneous vesicle formation consisting of 128 million particles was conducted to further illustrate the practicality of our code in real-world applications. Catalogue identifier: AETN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETN_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 1 602 716 No. of bytes in distributed program, including test data, etc.: 26 489 166 Distribution format: tar.gz Programming language: C/C++, CUDA C/C++, MPI. Computer: Any computers having nVidia GPGPUs with compute capability 3.0. Operating system: Linux. Has the code been
NASA Astrophysics Data System (ADS)
Frank, T. D.
2010-07-01
We formulate Markov diffusion processes for canonical-dissipative systems exhibiting Nambu mechanics. Analytical expressions for stationary canonical-dissipative distributions are obtained. Nambu-Boltzmann distributions are derived as special cases for systems without energy pumping. The Markov short-time propagator is used to derive maximum likelihood estimators for parameters of a model that describes a particular dynamic motor pattern providing haptic cues.
NASA Astrophysics Data System (ADS)
Yu, Min; Fang, Mao-Fa
2016-10-01
We investigate the entropy squeezing of a two-level atom coupled to a dissipative cavity under two different controls: In the first case, quantum-jump-based feedback is alone applied, whereas in the second case we consider the combined effect of quantum-jump-based feedback and classical driving, in which we provide a scheme to generate and protect steady and optimal entropy squeezing of the two-level atom. The results show that the entropy squeezing of atomic polarization components greatly depends on the control of quantum-jump-based feedback and classical driving. Under the condition of designing proper quantum-jump-based feedback parameters, the entropy squeezing can be generated and protected. Furthermore, when both quantum-jump-based feedback and classical driving are simultaneously applied, steady and optimal entropy squeezing of the two-level atom can be obtained even though there is initially no entropy squeezing, which is explained by making use of the steady-state solution of the atom.
NASA Astrophysics Data System (ADS)
Yu, Min; Fang, Mao-Fa
2016-07-01
We investigate the entropy squeezing of a two-level atom coupled to a dissipative cavity under two different controls: In the first case, quantum-jump-based feedback is alone applied, whereas in the second case we consider the combined effect of quantum-jump-based feedback and classical driving, in which we provide a scheme to generate and protect steady and optimal entropy squeezing of the two-level atom. The results show that the entropy squeezing of atomic polarization components greatly depends on the control of quantum-jump-based feedback and classical driving. Under the condition of designing proper quantum-jump-based feedback parameters, the entropy squeezing can be generated and protected. Furthermore, when both quantum-jump-based feedback and classical driving are simultaneously applied, steady and optimal entropy squeezing of the two-level atom can be obtained even though there is initially no entropy squeezing, which is explained by making use of the steady-state solution of the atom.
Quantum walk coherences on a dynamical percolation graph
Elster, Fabian; Barkhofen, Sonja; Nitsche, Thomas; Novotný, Jaroslav; Gábris, Aurél; Jex, Igor; Silberhorn, Christine
2015-01-01
Coherent evolution governs the behaviour of all quantum systems, but in nature it is often subjected to influence of a classical environment. For analysing quantum transport phenomena quantum walks emerge as suitable model systems. In particular, quantum walks on percolation structures constitute an attractive platform for studying open system dynamics of random media. Here, we present an implementation of quantum walks differing from the previous experiments by achieving dynamical control of the underlying graph structure. We demonstrate the evolution of an optical time-multiplexed quantum walk over six double steps, revealing the intricate interplay between the internal and external degrees of freedom. The observation of clear non-Markovian signatures in the coin space testifies the high coherence of the implementation and the extraordinary degree of control of all system parameters. Our work is the proof-of-principle experiment of a quantum walk on a dynamical percolation graph, paving the way towards complex simulation of quantum transport in random media. PMID:26311434
Time-Reversal Test for Stochastic Quantum Dynamics
NASA Astrophysics Data System (ADS)
Dowling, Mark R.; Drummond, Peter D.; Davis, Matthew J.; Deuar, Piotr
2005-04-01
The calculation of quantum dynamics is currently a central issue in theoretical physics, with diverse applications ranging from ultracold atomic Bose-Einstein condensates to condensed matter, biology, and even astrophysics. Here we demonstrate a conceptually simple method of determining the regime of validity of stochastic simulations of unitary quantum dynamics by employing a time-reversal test. We apply this test to a simulation of the evolution of a quantum anharmonic oscillator with up to 6.022×1023 (Avogadro’s number) of particles. This system is realizable as a Bose-Einstein condensate in an optical lattice, for which the time-reversal procedure could be implemented experimentally.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
NASA Astrophysics Data System (ADS)
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-10-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained.
Non-equilibrium quantum phase transition via entanglement decoherence dynamics
Lin, Yu-Chen; Yang, Pei-Yun; Zhang, Wei-Min
2016-01-01
We investigate the decoherence dynamics of continuous variable entanglement as the system-environment coupling strength varies from the weak-coupling to the strong-coupling regimes. Due to the existence of localized modes in the strong-coupling regime, the system cannot approach equilibrium with its environment, which induces a nonequilibrium quantum phase transition. We analytically solve the entanglement decoherence dynamics for an arbitrary spectral density. The nonequilibrium quantum phase transition is demonstrated as the system-environment coupling strength varies for all the Ohmic-type spectral densities. The 3-D entanglement quantum phase diagram is obtained. PMID:27713556
Dynamics of quantum correlation of four qubits system
NASA Astrophysics Data System (ADS)
Gebremariam, Tesfay; Li, Wenlin; Li, Chong
2016-09-01
In the present report, we investigate the dynamics of quantum correlation of four qubits system, and we characterize this kind of dynamics by quantum consonance and concurrence as measurement of quantum correlation and entanglement, respectively. By this measurement, one can easily study if non-entangled quantum correlation can transfer to entanglement. In our model, we find that this case cannot be realized. In addition, we constructed a four qubits swapping gate, which is made up of two bipartite swapping gates. Under this composite gate the quantum correlation is exchanged between two entangled pairs. The influence of the physical parameters like the purity and the amount of entanglement of the initial states is also examined.
Quantum centipedes: collective dynamics of interacting quantum walkers
NASA Astrophysics Data System (ADS)
Krapivsky, P. L.; Luck, J. M.; Mallick, K.
2016-08-01
We consider the quantum centipede made of N fermionic quantum walkers on the one-dimensional lattice interacting by means of the simplest of all hard-bound constraints: the distance between two consecutive fermions is either one or two lattice spacings. This composite quantum walker spreads ballistically, just as the simple quantum walk. However, because of the interactions between the internal degrees of freedom, the distribution of its center-of-mass velocity displays numerous ballistic fronts in the long-time limit, corresponding to singularities in the empirical velocity distribution. The spectrum of the centipede and the corresponding group velocities are analyzed by direct means for the first few values of N. Some analytical results are obtained for arbitrary N by exploiting an exact mapping of the problem onto a free-fermion system. We thus derive the maximal velocity describing the ballistic spreading of the two extremal fronts of the centipede wavefunction, including its non-trivial value in the large-N limit.
Computation of transient dynamics of energy power for a dissipative two state system
NASA Astrophysics Data System (ADS)
Carrega, M.; Solinas, P.; Braggio, A.; Sassetti, M.
2016-05-01
We consider a two-level system coupled to a thermal bath and we investigate the variation of energy transferred to the reservoir as a function of time. The physical quantity under investigation is the time-dependent quantum average power. We compare quantum master equation approaches with the functional influence method. Differences and similarities between the methods are analysed, showing deviations at low temperature between the functional integral approach and the predictions based on master equations.
NASA Astrophysics Data System (ADS)
Salehi-Fashami, Mohammad; Atulasimha, Jayasimha; Bandyopadhyay, Supriyo
2012-02-01
Stress induced magnetization dynamics of dipole coupled multiferroic nanomagnet arrays is modeled by solving the Landau-Lifshitz-Gilbert (LLG) equation. We show that in such multiferroic nanomagnets, consisting of magnetostrictive layers elastically coupled to piezoelectric layers, the single domain magnetization can be rotated by a large angle (˜ 90^o) in ˜ 1 ns if a tiny voltage of a few tens of millivolts is applied across the piezoelectric layer [Nanotechnology, 22, 155201, 2011, Appl. Phys. Lett. 99, 063108, 2011]. Arrays of such multiferroic nanomagnets can be laid out in specific geometric patterns to implement combinational and sequential logic circuits by exploiting inter-magnet dipole coupling and Bennett clocked with specific stress cycles to propagate logic bits and implement dynamic logic. In this work, we theoretically demonstrate logic propagation in and fan-out characteristics of a universal NAND gate and discuss energy dissipation in the magnet and in the external clock. We show that this energy dissipation can be 3 orders of magnitude more energy-efficient than current CMOS technology for a reasonable clock speed of 1 GHz. This work is supported by the NSF under grant ECCS-1124714.
Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope
Campo, A. de
2011-09-15
In this Rapid Communication, a method is proposed to spatially scale up a trapped ultracold gas while conserving the quantum correlations of the initial many-body state. For systems supporting self-similar dynamics, this is achieved by implementing an engineered finite-time quench of the harmonic trap, which induces a frictionless expansion of the gas and acts as a quantum dynamical microscope.
Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations
Misra, A. P.; Shukla, P. K.
2009-05-15
The dynamical behavior of the nonlinear interaction of quantum Langmuir waves (QLWs) and quantum ion-acoustic waves (QIAWs) is studied in the one-dimensional quantum Zakharov equations. Numerical simulations of coupled QLWs and QIAWs reveal that many coherent solitary patterns can be excited and saturated via the modulational instability of unstable harmonic modes excited by a modulation wave number of monoenergetic QLWs. The evolution of such solitary patterns may undergo the states of spatially partial coherence (SPC), coexistence of temporal chaos and spatiotemporal chaos (STC), as well as STC. The SPC state is essentially due to ion-acoustic wave emission and due to quantum diffraction, while the STC is caused by the combined effects of SPC and quantum diffraction, as well as by collisions and fusions among patterns in stochastic motion. The energy in the system is strongly redistributed, which may switch on the onset of weak turbulence in dense quantum plasmas.
Hele, Timothy J. H.; Willatt, Michael J.; Muolo, Andrea; Althorpe, Stuart C.
2015-05-21
We recently obtained a quantum-Boltzmann-conserving classical dynamics by making a single change to the derivation of the “Classical Wigner” approximation. Here, we show that the further approximation of this “Matsubara dynamics” gives rise to two popular heuristic methods for treating quantum Boltzmann time-correlation functions: centroid molecular dynamics (CMD) and ring-polymer molecular dynamics (RPMD). We show that CMD is a mean-field approximation to Matsubara dynamics, obtained by discarding (classical) fluctuations around the centroid, and that RPMD is the result of discarding a term in the Matsubara Liouvillian which shifts the frequencies of these fluctuations. These findings are consistent with previous numerical results and give explicit formulae for the terms that CMD and RPMD leave out.
Quantum dynamics simulation with classical oscillators
NASA Astrophysics Data System (ADS)
Briggs, John S.; Eisfeld, Alexander
2013-12-01
In a previous paper [J. S. Briggs and A. Eisfeld, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.85.052111 85, 052111 (2012)] we showed that the time development of the complex amplitudes of N coupled quantum states can be mapped by the time development of positions and velocities of N coupled classical oscillators. Here we examine to what extent this mapping can be realized to simulate the “quantum,” properties of entanglement and qubit manipulation. By working through specific examples, e.g., of quantum gate operation, we seek to illuminate quantum and classical differences which hitherto have been treated more mathematically. In addition, we show that important quantum coupled phenomena, such as the Landau-Zener transition and the occurrence of Fano resonances can be simulated by classical oscillators.
Nonlinear dynamics and quantum entanglement in optomechanical systems.
Wang, Guanglei; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2014-03-21
To search for and exploit quantum manifestations of classical nonlinear dynamics is one of the most fundamental problems in physics. Using optomechanical systems as a paradigm, we address this problem from the perspective of quantum entanglement. We uncover strong fingerprints in the quantum entanglement of two common types of classical nonlinear dynamical behaviors: periodic oscillations and quasiperiodic motion. There is a transition from the former to the latter as an experimentally adjustable parameter is changed through a critical value. Accompanying this process, except for a small region about the critical value, the degree of quantum entanglement shows a trend of continuous increase. The time evolution of the entanglement measure, e.g., logarithmic negativity, exhibits a strong dependence on the nature of classical nonlinear dynamics, constituting its signature.
The classical and quantum dynamics of molecular spins on graphene.
Cervetti, Christian; Rettori, Angelo; Pini, Maria Gloria; Cornia, Andrea; Repollés, Ana; Luis, Fernando; Dressel, Martin; Rauschenbach, Stephan; Kern, Klaus; Burghard, Marko; Bogani, Lapo
2016-02-01
Controlling the dynamics of spins on surfaces is pivotal to the design of spintronic and quantum computing devices. Proposed schemes involve the interaction of spins with graphene to enable surface-state spintronics and electrical spin manipulation. However, the influence of the graphene environment on the spin systems has yet to be unravelled. Here we explore the spin-graphene interaction by studying the classical and quantum dynamics of molecular magnets on graphene. Whereas the static spin response remains unaltered, the quantum spin dynamics and associated selection rules are profoundly modulated. The couplings to graphene phonons, to other spins, and to Dirac fermions are quantified using a newly developed model. Coupling to Dirac electrons introduces a dominant quantum relaxation channel that, by driving the spins over Villain's threshold, gives rise to fully coherent, resonant spin tunnelling. Our findings provide fundamental insight into the interaction between spins and graphene, establishing the basis for electrical spin manipulation in graphene nanodevices. PMID:26641019
Ovchinnikov, A. S.; Bostrem, I. G.; Sinitsyn, V. E.; Boyarchenkov, A. S.; Baranov, N. V.; Inoue, K.
2006-11-01
Based on a quantum dissipation theory of open systems, we present a theoretical study of slow dynamics of magnetization for the ordered state of the molecule-based magnetic complex [Mn(hfac){sub 2}BNO{sub H}] composed from antiferromagnetically coupled ferrimagnetic (5/2,1) spin chains. Experimental investigations of the magnetization process in pulsed fields have shown that this compound exhibits a metamagnetic AF-FI transition at a critical field in the order of the interchain coupling. A strong frequency dependence for the ac susceptibility has been revealed in the vicinity of the AF-FI transition and was associated with an AF-FI interface kink motion. We model these processes by a field-driven domain-wall motion along the field-unfavorable chains correlated with a dissipation effect due to a magnetic system-bath coupling. The calculated longitudinal magnetization has a two-step relaxation after the field is switched off and are found in good agreement with the experiment. The relaxation time determined from the imaginary part of the model ac susceptibility agrees qualitatively with that found from the remanent magnetization data.
Pinto, O. A.; Ramirez-Pastor, A. J.; Nieto, F.; Roma, F.
2011-03-24
In this work we study the critical equilibrium properties and the off-equilibrium dynamics of an Ising system with non additive interactions. The traditional assumption of additivity is modified for one more general, where the energy of exchange J between two spins depends on their neighbourhood. First, for several non additive situations, we calculated the critical temperature T{sub c} by using paralell tempering Monte Carlo in the canonical assemble and standard finite-size scaling techniques. Then, we carry out a quench from infinite temperature to a low temperature below T{sub c}(off-equilibrium dynamics protocol) and we compute two-time correlation and response functions. We find a violation of fluctuation-dissipation theorem like coarsening systems. All this was done for several waiting time and several non additive situations. Finally, we analyze the scaling of correlation and response functions for a critical quench from infinite temperature.
Analog Electronic Implementation of a Class of Hybrid Dissipative Dynamical System
NASA Astrophysics Data System (ADS)
Ontañón-García, L. J.; Campos-Cantón, E.; Femat, R.
An analog electronic implementation by means of operational amplifiers of a class of hybrid dissipative systems in R3 is presented. The switching systems have two unstable hyperbolic focus-saddle equilibria with the same stability index, a positive real eigenvalue and a pair of complex conjugated eigenvalues with negative real part. The analog circuit generates signals that oscillate in an attractor located between the two unstable equilibria, and may present saturation states at the moment of energizing it, i.e. if the initial voltage on the capacitors do not belong to the basin of attraction the circuit will end on a saturation state.