Sample records for dissolution ion exchange

  1. The effect of a confining unit on the geochemical evolution of ground water in the Upper Floridan aquifer system

    USGS Publications Warehouse

    Wicks, C.M.; Herman, J.S.

    1994-01-01

    In west-central Florida, sections of the Upper Floridan aquifer system range in character from confined to leaky to unconfined. The confining unit is the Hawthorn Formation, a clay-rich sequence. The presence or absence of the Hawthorn Formation affects the geochemical evolution of the ground water in the Upper Floridan aquifer system. Mass-balance and mass-transfer models suggest that, in unconfined areas, the geochemical reactions are dolomite dissolution, ion exchange (Mg for Na, K), sulfate reduction, calcite dissolution, and CO2 exchange. In the areas in which the Hawthorn Formation is leaky, the evolution of the ground water is accounted for by ion exchange, sulfate reduction, calcite dissolution, and CO2 exchange. In the confined areas, no ion exchange and only limited sulfate reduction occur, and the chemical character of the ground water is consistent with dolomite and gypsum dissolution, calcite precipitation, and CO2 ingassing. The Hawthorn Formation acts both as a physical barrier to the transport of CO2 and organic matter and as a source of ion-exchange sites, but the carbonate-mineral reactions are largely unaffected by the extent of confinement of the Upper Floridan aquifer. ?? 1994.

  2. Hydrogeochemical processes controlling changes in fluoride ion concentration within alluvial and hard rock aquifers in a part of a semi-arid region of Northern India

    NASA Astrophysics Data System (ADS)

    Singh, Priyadarshini; Ashthana, Harshita; Rena, Vikas; Kumar, Pardeep; Mukherjee, Saumitra

    2017-04-01

    Geochemical signatures from alluvial and hard rock aquifers in a part of Northern India elucidate the chemical processes controlling fluctuations in fluoride ion concentration linked to changes in major ion groundwater chemistry. Majority of samples from the hard rock and the alluvial aquifers for pre-monsoon show both carbonate and silicate weathering, ion exchange, evaporation and rock water interaction as the processes controlling major ion chemistry whereas for post monsoon samples, contribution of silicate weathering and ion exchange process were observed. Evaporative processes causing the increase in Na+ ion concentration in premonsoon enhance the reverse ion exchange processes causing increase in Ca2+ ions which impedes fluorite mineral dissolution in the premonsoon groundwater samples within the study area. Alternately, it is observed that the removal of Ca2+ ion from solution plays a key role in increase in fluorite mineral dissolution despite its saturation in groundwater in the postmonsoon samples. Also, ion exchange process on clay surfaces is more pronounced in the postmonsoon samples leading to the uptake of Ca2+ ion upon release of Na+ and K+ ion in solution. Ca2+ ion concentration is inversely correlated with F- ion concentration in both the aquifers in the postmonsoon season validating the role of calcite precipitation as a major reason for the fluoride ion increase. Moreover, increase in silicate weathering in the postmonsoon samples leads to increase in clay particles acting as suitable sites for ion exchange enhancing Ca2+ removal from groundwater. Cationic dominance of Na+ ion in the post monsoon samples also validates the occurrence of this process. Collectively, these processes set the ideal conditions for increase in the fluoride ion concentration particularly in the alluvium aquifer waters in the postmonsoon season Keywords: geochemistry, ion-exchange, rock-water interaction, mineral dissolution, weathering.

  3. The geochemical evolution of aqueous sodium in the Black Creek Aquifer, Horry and Georgetown counties, South Carolina

    USGS Publications Warehouse

    Zack, Allen L.; Roberts, Ivan

    1988-01-01

    The Black Creek aquifer contains dilute seawater near the North Carolina State line, probably the result of incomplete flushing of ancient seawater. Data do not indicate that the dilute seawater has migrated toward areas of fresh ground-water withdrawals. The concentration of chloride in ground-water samples ranges from 5 to 720 milligrams per liter and that of sodium from 160 to 690 milligrams per liter. Ion-exchange reactions (sodium for calcium and fluoride for hydroxyl) occur with the calcium carbonate dissolution reaction which produces calcium, bicarbonate, and hydroxyl ions. The reaction sequence and stoichiometry result in an aqueous solution in which the sum of bicarbonate and chloride equivalents per liter is equal to the equivalents per liter of sodium. Calcium ions are exchanged for sodium ions derived from sodium-rich clays upgradient of the dilute seawater. The cation-exchange reaction equilibrates at a sodium concentration of 280 milligrams per liter. Amounts of sodium greater than 280 milligrams per liter are contributed from dilute seawater. The cation-exchange reaction approaches an equilibrium which represents a mass-action limit in terms of the ratio of sodium to calcium in solution versus the ratio of exchangeable sodium to calcium on clay surfaces. Where the limit of calcium carbonate solubility is approached and dissolution ceases, some precipitation of calcite probably takes place. The dissolution of calcite exposes fossil shark teeth which release fluoride ions to the ground water through anion exchange with aqueous hydroxyl ions.

  4. Development of an automated experimental setup for the study of ionic-exchange kinetics. Application to the ionic adsorption, equilibrium attainment and dissolution of apatite compounds.

    PubMed

    Thomann, J M; Gasser, P; Bres, E F; Voegel, J C; Gramain, P

    1990-02-01

    An ion-selective electrode and microcomputer-based experimental setup for the study of ionic-exchange kinetics between a powdered solid and the solution is described. The equipment is composed of easily available commercial devices and a data acquisition and regularization computer program is presented. The system, especially developed to investigate the ionic adsorption, equilibrium attainment and dissolution of hard mineralized tissues, provides good reliable results by taking into account the volume changes of the reacting solution and the electrode behaviour under different experimental conditions, and by avoiding carbonation of the solution. A second computer program, using the regularized data and the experimental parameters, calculates the quantities of protons consumed and calcium released in the case of equilibrium attainment and dissolution of apatite-like compounds. Finally, typical examples of ion-exchange and dissolution kinetics under constant pH of enamel and synthetic hydroxyapatite are examined.

  5. Separation of organic ion exchange resins from sludge -- engineering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, J.B.

    1998-08-25

    This engineering study evaluates the use of physical separation technologies to separate organic ion exchange resin from KE Basin sludge prior to nitric acid dissolution. This separation is necessitate to prevent nitration of the organics in the acid dissolver. The technologies under consideration are: screening, sedimentation, elutriation. The recommended approach is to first screen the Sludge and resin 300 microns then subject the 300 microns plus material to elutriation.

  6. Citropin 1.1 Trifluoroacetate to Chloride Counter-Ion Exchange in HCl-Saturated Organic Solutions: An Alternative Approach.

    PubMed

    Sikora, Karol; Neubauer, Damian; Jaśkiewicz, Maciej; Kamysz, Wojciech

    2018-01-01

    In view of the increasing interest in peptides in various market sectors, a stronger emphasis on topics related to their production has been seen. Fmoc-based solid phase peptide synthesis, although being fast and efficient, provides final products with significant amounts of trifluoroacetate ions in the form of either a counter-ion or an unbound impurity. Because of the proven toxicity towards cells and peptide activity inhibition, ion exchange to more biocompatible one is purposeful. Additionally, as most of the currently used counter-ion exchange techniques are time-consuming and burdened by peptide yield reduction risk, development of a new approach is still a sensible solution. In this study, we examined the potential of peptide counter-ion exchange using non-aqueous organic solvents saturated with HCl. Counter-ion exchange of a model peptide, citropin 1.1 (GLFDVIKKVASVIGGL-NH 2 ), for each solvent was conducted through incubation with subsequent evaporation under reduced pressure, dissolution in water and lyophilization. Each exchange was performed four times and compared to a reference method-lyophilization of the peptide from an 0.1 M HCl solution. The results showed superior counter-ion exchange efficiency for most of the organic solutions in relation to the reference method. Moreover, HCl-saturated acetonitrile and tert -butanol provided a satisfying exchange level after just one repetition. Thus, those two organic solvents can be potentially introduced into routine peptide counter-ion exchange.

  7. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences.

    PubMed

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug-fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug-fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid.

  8. The load and release characteristics on a strong cationic ion-exchange fiber: kinetics, thermodynamics, and influences

    PubMed Central

    Yuan, Jing; Gao, Yanan; Wang, Xinyu; Liu, Hongzhuo; Che, Xin; Xu, Lu; Yang, Yang; Wang, Qifang; Wang, Yan; Li, Sanming

    2014-01-01

    Ion-exchange fibers were different from conventional ion-exchange resins in their non-cross-linked structure. The exchange was located on the surface of the framework, and the transport resistance reduced significantly, which might mean that the exchange is controlled by an ionic reaction instead of diffusion. Therefore, this work aimed to investigate the load and release characteristics of five model drugs with the strong cationic ion-exchange fiber ZB-1. Drugs were loaded using a batch process and released in United States Pharmacopoeia (USP) dissolution apparatus 2. Opposing exchange kinetics, suitable for the special structure of the fiber, were developed for describing the exchange process with the help of thermodynamics, which illustrated that the load was controlled by an ionic reaction. The molecular weight was the most important factor to influence the drug load and release rate. Strong alkalinity and rings in the molecular structures made the affinity between the drug and fiber strong, while logP did not cause any profound differences. The drug–fiber complexes exhibited sustained release. Different kinds and concentrations of counter ions or different amounts of drug–fiber complexes in the release medium affected the release behavior, while the pH value was independent of it. The groundwork for in-depth exploration and further application of ion-exchange fibers has been laid. PMID:25114504

  9. Dissolution of alkaline earth sulfates in the presence of montmorillonite

    USGS Publications Warehouse

    Eberl, D.D.; Landa, E.R.

    1985-01-01

    In a study of the effect of montmorillonite on the dissolution of BaSO4 (barite), SrSO4 (celestite), and 226Ra from U mill tailings, it was found that: (1) More of these substances dissolve in an aqueous system that contains montmorillonite than dissolve in a similar system without clay, due to the ion exchange properties of the clay; (2) Na-montmorillonite is more effective in aiding dissolution than is Ca-montmorillonite; (3) the amount of Ra that moves from mill tailings to an exchanger increases as solution sulfate activity decreases. Leaching experiments suggest that 226Ra from H2SO4-circuit U mill tailings from Edgemont, South Dakota, is not present as pure Ra sulfate or as an impurity in anhydrite or gypsum; it is less soluble, and probably occurs as a trace constituent in barite.

  10. Phase Changes of Monosulfoaluminate in NaCl Aqueous Solution

    DOE PAGES

    Yoon, Seyoon; Ha, Juyoung; Chae, Sejung Rosie; ...

    2016-05-21

    Monosulfoaluminate (Ca 4Al 2(SO 4)(OH) 12∙6H 2O) plays an important role in anion binding in Portland cement by exchanging its original interlayer ions (SO 4 2- and OH -) with chloride ions. In this study, scanning transmission X-ray microscope (STXM), X-ray absorption near edge structure (XANES) spectroscopy, and X-ray diffraction (XRD) were used to investigate the phase change of monosulfoaluminate due to its interaction with chloride ions. Pure monosulfoaluminate was synthesized and its powder samples were suspended in 0, 0.1, 1, 3, and 5 M NaCl solutions for seven days. At low chloride concentrations, a partial dissolution of monosulfoaluminate formedmore » ettringite, while, with increasing chloride content, the dissolution process was suppressed. As the NaCl concentration increased, the dominant mechanism of the phase change became ion exchange, resulting in direct phase transformation from monosulfoaluminate to Kuzel’s salt or Friedel’s salt. The phase assemblages of the NaCl-reacted samples were explored using thermodynamic calculations and least-square linear combination (LC) fitting of measured XANES spectra. A comprehensive description of the phase change and its dominant mechanism are discussed.« less

  11. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments.

    PubMed

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton; Serne, R Jeff; Thompson, Aaron; Perdrial, Nicolas; Steefel, Carl I; Chorover, Jon

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (Washington) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10(-5) and 10(-3) molal representative of LO- and HI-sediment, respectively) as surrogates for (90)Sr and (137)Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the major byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.

  12. Geochemistry of fluoride in the Black Creek aquifer system of Horry and Georgetown Counties, South Carolina--and its physiological implications

    USGS Publications Warehouse

    Zack, Allen L.

    1980-01-01

    High concentrations of fluoride in ground-water supplies in certain areas of Horry and Georgetown Counties, S.C., have been the cause of dental fluorosis (tooth mottling) among persons who have lived in these areas and have ingested the water as children. Geochemical evidence and laboratory experiments demonstrate that fluorapatite in the form of fossil shark teeth is the source of fluoride, and that the fluoride ions are liberated to the ground-water system through anion exchange, rather than by dissolution. Calcite-cemented quartz sand in the upper third of the Black Creek Formation of Late Cretaceous age contains the fossil shark teeth. As ground water progresses downdip, the calcite matrix dissolves and hydrolyzes, releasing bicarbonate, hydroxyl, and calcium ions. The calcium ions are immediately exchanged for sodium ions adsorbed on sodium-rich clays, and the bicarbonate ions accumulate. As the shark teeth are exposed, the hydroxyl ions in solution exchange with fluoride ions on fluorapatite surfaces. Experiments using fossil shark teeth show that sodium chloride in solution inhibits the rate of exchange of fluoride ions from tooth surfaces for hydroxyl ions in solution. The amount of fluoride removed from water and exchanged for hydroxyl ions in the presence of pure hydroxylapatite (hog teeth) was greater in saline water than in freshwater.

  13. The adsorption of silver on potassium cyanocobalt(II)ferrate(II).

    PubMed

    Wald, M; Soyka, W; Kaysser, B

    1973-04-01

    A procedure is described for recovering silver from industrial sewage (mining and photo-industry etc) with the aid of the ion-exchanger potassium cyanocobalt(II)ferrate(II) (KCFC). Silver is easily removed by simple mixing with KCFC, even from solutions containing less than 1 g of silver per ton of solution. The process is performed at room temperature at pH < 7. There is no interference from a 600-fold amount of Ca, Cu(II), Zn, Cd, Pb, and Fe(II). Pure silver may be obtained by dissolution of the ion-exchanger in potassium cyanide solution, subsequent precipitation as sulphide, and roasting, or by melting it out of the ion-exchanger after heat treatment in a high-frequency furnace. With 1 kg of KCFC, 1.25 kg of silver may be extracted from solution. The process is simple and economic.

  14. Strontium and cesium release mechanisms during unsaturated flow through waste-weathered Hanford sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Hyun-Shik; Um, Wooyong; Rod, Kenton A.

    2011-10-01

    Leaching behavior of Sr and Cs in the vadose zone of Hanford site (WA, USA) was studied with laboratory-weathered sediments mimicking realistic conditions beneath the leaking radioactive waste storage tanks. Unsaturated column leaching experiments were conducted using background Hanford pore water focused on first 200 pore volumes. The weathered sediments were prepared by 6 months reaction with a synthetic Hanford tank waste leachate containing Sr and Cs (10-5 and 10-3 molal representative of LO- and HI-sediment, respectively) as surrogates for 90Sr and 137Cs. The mineral composition of the weathered sediments showed that zeolite (chabazite-type) and feldspathoid (sodalite-type) were the majormore » byproducts but different contents depending on the weathering conditions. Reactive transport modeling indicated that Cs leaching was controlled by ion-exchange, while Sr release was affected primarily by dissolution of the secondary minerals. The later release of K, Al, and Si from the HI-column indicated the additional dissolution of a more crystalline mineral (cancrinite-type). A two-site ion-exchange model successfully simulated the Cs release from the LO-column. However, a three-site ion-exchange model was needed for the HI-column. The study implied that the weathering conditions greatly impact the speciation of the secondary minerals and leaching behavior of sequestrated Sr and Cs.« less

  15. Geochemical evolution of groundwater in the Culebra dolomite near the Waste Isolation Pilot Plant, southeastern New Mexico, USA

    USGS Publications Warehouse

    Siegel, M.D.; Anderholm, S.

    1994-01-01

    The Culebra Dolomite Member of the Rustler Formation, a thin (10 m) fractured dolomite aquifer, lies approximately 450 m above the repository horizon of the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico, USA. Salinities of water in the Culebra range roughly from 10,000 to 200,000 mg/L within the WIPP site. A proposed model for the post-Pleistocene hydrochemical evolution of the Culebra tentatively identifies the major sources and sinks for many of the groundwater solutes. Reaction-path simulations with the PHRQPITZ code suggest that the Culebra dolomite is a partial chemical equilibrium system whose composition is controlled by an irreversible process (dissolution of evaporites) and equilibrium with gypsum and calcite. Net geochemical reactions along postulated modern flow paths, calculated with the NETPATH code, include dissolution of halite, carbonate and evaporite salts, and ion exchange. R-mode principal component analysis revealed correlations among the concentrations of Si, Mg, pH, Li, and B that are consistent with several clay-water reactions. The results of the geochemical calculations and mineralogical data are consistent with the following hydrochemical model: 1. (1) solutes are added to the Culebra by dissolution of evaporite minerals 2. (2) the solubilities of gypsum and calcite increase as the salinity increases; these minerals dissolve as chemical equilibrium is maintained between them and the groundwater 3. (3) equilibrium is not maintained between the waters and dolomite; sufficient Mg is added to the waters by dissolution of accessory carnallite or polyhalite such that the degree of dolomite supersaturation increases with ionic strength 4. (4) clays within the fractures and rock matrix exert some control on the distribution of Li, B, Mg, and Si via sorption, ion exchange, and dissolution. ?? 1994.

  16. Evidence of Multi-Component Ion Exchange in Dolomite Formation during Low Salinity Waterflooding

    NASA Astrophysics Data System (ADS)

    Srisuriyachai, Falan; Meekangwal, Suthida

    2017-12-01

    Low salinity waterflooding is a technique performed in many oil reservoirs around the globe. The technique is simply implemented by injecting water with very low ionic activity compared to formation water into an injection well. The injected water will increase reservoir pressure that is compulsory to drive oil moving toward production well. More than just maintaining reservoir pressure as obtained from conventional waterflooding, low salinity water creates shifting of surface condition, resulting in additional amount of liberated oil. Nevertheless, exact oil recovery mechanisms are still discussed. Among these proposed mechanisms, Multi-component Ion Exchange (MIE) together with wettability alteration is believed to be a major mechanism leading to higher oil recovery compared to conventional waterflooding. In this study, detection of calcium and magnesium ions which are Potential Determining Ions (PDI) for carbonate reservoirs are detected during the coreflood experiment. Dolomite rock sample is used to represent carbonate formation and detection of previously mentioned ions is performed by complexometric titration of the effluents. From the study, it is observed that during conventional waterflooding and low salinity waterflooding at low temperature of 30 degrees Celsius, calcium and magnesium ions in the produced water is increased compared to the amount of these ions in the injected water. This incremental of ions can be explained by the dissolution of calcium and magnesium from dolomite which is chemically composed of calcium magnesium carbonate. At this temperature, the portion of calcium ion is always less than magnesium ion even though the amount of calcium ion is higher than magnesium ion in injected water. However, at higher temperatures which are 50 and 70 degrees Celsius, ratio of calcium and magnesium ions in injected and produced water is reversed. Disappearance of magnesium ion in the effluent is more obvious especially at 70 degrees Celsius and by low salinity waterflooding. This can be explained that at lower temperature, calcium ion disappears to form of calcium carboxylate complex with oil and at higher temperature, magnesium ion disappears as magnesium can start to form magnesium carboxylate complex with oil and hence, the amount of both calcium and magnesium ions is decreased compared to lower temperature. In dolomite reservoir, since both calcium ions and magnesium ions are provided from dissolution mechanism, the benefit from multi-component ion exchange will occur at high temperature as both calcium and magnesium ions will be consumed for oil recovery mechanism.

  17. Hafnium radioisotope recovery from irradiated tantalum

    DOEpatents

    Taylor, Wayne A.; Jamriska, David J.

    2001-01-01

    Hafnium is recovered from irradiated tantalum by: (a) contacting the irradiated tantalum with at least one acid to obtain a solution of dissolved tantalum; (b) combining an aqueous solution of a calcium compound with the solution of dissolved tantalum to obtain a third combined solution; (c) precipitating hafnium, lanthanide, and insoluble calcium complexes from the third combined solution to obtain a first precipitate; (d) contacting the first precipitate of hafnium, lanthanide and calcium complexes with at least one fluoride ion complexing agent to form a fourth solution; (e) selectively adsorbing lanthanides and calcium from the fourth solution by cationic exchange; (f) separating fluoride ion complexing agent product from hafnium in the fourth solution by adding an aqueous solution of ferric chloride to obtain a second precipitate containing the hafnium and iron; (g) dissolving the second precipitate containing the hafnium and iron in acid to obtain an acid solution of hafnium and iron; (h) selectively adsorbing the iron from the acid solution of hafnium and iron by anionic exchange; (i) drying the ion exchanged hafnium solution to obtain hafnium isotopes. Additionally, if needed to remove residue remaining after the product is dried, dissolution in acid followed by cation exchange, then anion exchange, is performed.

  18. Laboratory-Scale Column Testing Using IONSIV IE-911 for Removing Cesium from Acidic Tank Waste Simulant. 1: Cesium Exchange Capacity of a 15-cm3 Column and Dynamic Stability of the Exchange Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    T.J. Tranter; R.D. Tillotson; T.A. Todd

    2005-04-01

    Bench-scale column tests were performed using a commercial form of crystalline silicotitanate (CST) for removing radio-cesium from a surrogate acidic tank solution representative of liquid waste stored at the Idaho National Engineering and Environmental Laboratory (INEEL). An engineered form of CST ion exchanger, known as IONSIVtm IE-911 (UOP, Mt Laurel, NJ, USA), was tested in 15 cm3 columns at a flow rate of 5 bed volumes per hour. These experiments showed the ion exchange material to have reasonable selectivity and capacity for removing cesium from the complex chemical matrix of the solution. However, previous testing indicated that partial neutralization ofmore » the feed stream was necessary to increase the stability of the ion exchange media. Thus, in these studies, CST degradation was determined as a function of throughput in order to better assess the stability characteristics of the exchanger for potential future waste treatment applications. Results of these tests indicate that the degradation of the CST reaches a maximum very soon after the acidic feed is introduced to the column and then rapidly declines. Total dissolution of bed material did not exceed 3% under the experimental regime used.« less

  19. FY2017 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Cordova, Elsa

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various conditions. To accomplish this, an IDF PA glass dissolution model basedmore » on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon solution concentrations, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the ion exchange process. The effect of temperature, pH, H4SiO4 activity, and the rate of ion exchange can be parameterized and implemented directly into the PA rate model. The rate model parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. The provided data can be used by glass researchers to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate model parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  20. Common Ion Effects In Zeoponic Substrates: Dissolution And Cation Exchange Variations Due to Additions of Calcite, Dolomite and Wollastonite

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R. E.; Ming, D. W.; Galindo, C., Jr.

    2003-01-01

    c1inoptilolite-rich tuff-hydroxyapatite mixture (zeoponic substrate) has the potential to serve as a synthetic soil-additive for plant growth. Essential plant macro-nutrients such as calcium, phosphorous, magnesium, ammonium and potassium are released into solution via dissolution of the hydroxyapatite and cation exchange on zeolite charged sites. Plant growth experiments resulting in low yield for wheat have been attributed to a Ca deficiency caused by a high degree of cation exchange by the zeolite. Batch-equilibration experiments were performed in order to determine if the Ca deficiency can be remedied by the addition of a second Ca-bearing, soluble, mineral such as calcite, dolomite or wollastonite. Variations in the amount of calcite, dolomite or wollastonite resulted in systematic changes in the concentrations of Ca and P. The addition of calcite, dolomite or wollastonite to the zeoponic substrate resulted in an exponential decrease in the phosphorous concentration in solution. The exponential rate of decay was greatest for calcite (5.60 wt. % -I), intermediate for wollastonite (2.85 wt.% -I) and least for dolomite (1.58 wt.% -I). Additions of the three minerals resulted in linear increases in the calcium concentration in solution. The rate of increase was greatest for calcite (3.64), intermediate for wollastonite (2.41) and least for dolomite (0.61). The observed changes in P and Ca concentration are consistent with the solubilities of calcite, dolomite and wollastonite and with changes expected from a common ion effect with Ca. Keywords: zeolite, zeoponics, common-ion effect, clinoptilolite, hydroxyapatite

  1. Ultrasound-assisted analyte extraction for the determination of sulfate and elemental sulfur in zinc sulfide by different liquid chromatography techniques.

    PubMed

    Dash, K; Thangavel, S; Krishnamurthy, N V; Rao, S V; Karunasagar, D; Arunachalam, J

    2005-04-01

    The speciation and determination of sulfate (SO4(2-)) and elemental sulfur (S degree) in zinc sulfide (ZnS) using ion-chromatography (IC) and reversed-phase liquid chromatography (RPLC) respectively is described. Three sample pretreatment approaches were employed with the aim of determining sulfate: (i) conventional water extraction of the analyte; (ii) solid-liquid aqueous extraction with an ultrasonic probe; and (iii) elimination of the zinc sulfide matrix via ion-exchange dissolution (IED). The separation of sulfate was carried out by an anion-exchange column (IonPac AS17), followed by suppressed conductivity detection. Elemental sulfur was extracted ultrasonically from the acid treated sample solution into chloroform and separated on a reversed phase HPLC column equipped with a diode array detector (DAD) at 264 nm. The achievable solid detection limits for sulfate and sulfur were 35 and 10 microg g(-1) respectively.

  2. Effects of Bacillus subtilis endospore surface reactivity on the rate of forsterite dissolution

    NASA Astrophysics Data System (ADS)

    Harrold, Z.; Gorman-Lewis, D.

    2013-12-01

    Primary mineral dissolution products, such as silica (Si), calcium (Ca) and magnesium (Mg), play an important role in numerous biologic and geochemical cycles including microbial metabolism, plant growth and secondary mineral precipitation. The flux of these and other dissolution products into the environment is largely controlled by the rate of primary silicate mineral dissolution. Bacteria, a ubiquitous component in water-rock systems, are known to facilitate mineral dissolution and may play a substantial role in determining the overall flux of dissolution products into the environment. Bacterial cell walls are complex and highly reactive organic surfaces that can affect mineral dissolution rates directly through microbe-mineral adsorption or indirectly by complexing dissolution products. The effect of bacterial surface adsorption on chemical weathering rates may even outweigh the influence of active processes in environments where a high proportion of cells are metabolically dormant or cell metabolism is slow. Complications associated with eliminating or accounting for ongoing metabolic processes in long-term dissolution studies have made it challenging to isolate the influence of cell wall interactions on mineral dissolution rates. We utilized Bacillus subtilis endospores, a robust and metabolically dormant cell type, to isolate and quantify the effects of bacterial surface reactivity on forsterite (Mg2SiO4) dissolution rates. We measured the influence of both direct and indirect microbe-mineral interactions on forsterite dissolution. Indirect pathways were isolated using dialysis tubing to prevent mineral-microbe contact while allowing free exchange of dissolved mineral products and endospore-ion adsorption. Homogenous experimental assays allowed both direct microbe-mineral and indirect microbe-ion interactions to affect forsterite dissolution rates. Dissolution rates were calculated based on silica concentrations and zero-order dissolution kinetics. Additional analyses including Mg concentrations, microprobe and BET analyses support mineral dissolution rate calculations and stoichiometry considerations. All experimental assays containing endospores show increased forsterite dissolution rates relative to abiotic controls. Forsterite dissolution rates increased by approximately one order of magnitude in dialysis bound, biotic experiments relative to abiotic assays. Homogenous biotic assays exhibited a more complex dissolution rate profile that changes over time. All microbially mediated forsterite dissolution rates returned to abiotic control rates after 10 to 15 days of incubation. This shift in dissolution rate likely corresponds to maximum endospore surface adsorption capacity. The Bacillus subtilis endospore surface serves as a first-order proxy for studying the effect of metabolizing microbe surfaces on silicate dissolution rates. Comparisons with published abiotic, microbial, and organic acid mediated forsterite dissolution rates will provide insight on the importance of bacterial surfaces in primary mineral dissolution processes.

  3. Characterization of UOP IONSIV IE-911

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NYMAN, MAY D.; NENOFF, TINA M.; HEADLEY, THOMAS J.

    2001-06-01

    As a participating national lab in the inter-institutional effort to resolve performance issues of the non-elutable ion exchange technology for Cs extraction, they have carried out a series of characterization studies of UOP IONSIV{reg_sign} IE-911 and its component parts. IE-911 is a bound form (zirconium hydroxide-binder) of crystalline silicotitanate (CST) ion exchanger. The crystalline silicotitanate removes Cs from solutions by selective ion exchange. The performance issues of primary concern are: (1) excessive Nb leaching and subsequent precipitation of column-plugging Nb-oxide material, and (2) precipitation of aluminosilicate on IE-911 pellet surfaces, which may be initiated by dissolution of Si from themore » IE-911, thus creating a supersaturated solution with respect to silica. In this work, they have identified and characterized Si- and Nb-oxide based impurity phases in IE-911, which are the most likely sources of leachable Si and Nb, respectively. Furthermore, they have determined the criteria and mechanism for removal from IE-911 of the Nb-based impurity phase that is responsible for the Nb-oxide column plugging incidents.« less

  4. Solubility and cation exchange in phosphate rock and saturated clinoptilolite mixtures

    NASA Technical Reports Server (NTRS)

    Allen, E. R.; Hossner, L. R.; Ming, D. W.; Henninger, D. L.

    1993-01-01

    Mixtures of zeolite and phosphate rock (PR) have the potential to provide slow-release fertilization of plants in synthetic soils by dissolution and ion-exchange reactions. This study was conducted to examine solubility and cation-exchange relationships in mixtures of PR and NH4- and K-saturated clinoptilolite (Cp). Batch-equilibration experiments were designed to investigate the effect of PR source, the proportion of exchangeable K and NH4, and the Cp to PR ratio on solution N, P, K, and Ca concentrations. The dissolution and cation-exchange reactions that occurred after mixing NH4- and K-saturated Cp with PR increased the solubility of the PR and simultaneously released NH4 and K into solution. The more reactive North Carolina (NC) PR rendered higher solution concentrations of NH4 and K when mixed with Cp than did Tennessee (TN) PR. Solution P concentrations for the Cp-NC PR mixture and the Cp-TN PR mixture were similar. Solution concentrations of N, P, K, and Ca and the ratios of these nutrients in solution varied predictably with the type of PR, the Cp/PR ratio, and the proportions of exchangeable K and NH4 on the Cp. Our research indicated that slow-release fertilization using Cp/PR media may provide adequate levels of N, P, and K to support plant growth. Solution Ca concentrations were lower than optimum for plant growth.

  5. Characterization of Rare Earth Elements in in Clay Deposits Associated with Central Appalachian Coal Seams

    NASA Astrophysics Data System (ADS)

    Scott, M.; Verba, C.; Falcon, A.; Poston, J.; McKoy, M.

    2017-12-01

    Because of their multiple uses in clean energy technologies, rare earth elements (REE) are critical for national economic and energy security. With no current domestic source, supply remains a major concern for domestic security. Underclay - specifically the layer of stratum beneath a coal bed - is a potentially rich source of REE. This study focuses on the characterization and ion exchange recovery of REE from underclay samples from the Lower Freeport, Middle Kittanning, and Pittsburgh coal seams in West Virginia. Multimodal techniques provided quantitative assessments of REE-bearing mineral phases in select underclays and the influence of organic acid rock treatment on the recovery of REE from both exchangeable and crystalline mineral phases present. All samples are from extensively weathered horizons that contain abundant kaolinite and illite. Total REE concentrations range from 250-450 ppm and all samples have a HREE/LEEE ratio >20%. Rare earth element bearing minerals identified in the clay are monazite, xenotime, florencite, and crandallite. Our selective recovery approach is designed to isolate and recover REE through partial dissolution of the clay matrix and ion exchange rather than dissolution/recovery of phosphate or aluminosilicate bound REE. These results provide a better understanding of coal seam underclay, the affinity of REEs for specific ligands and colloids, and how the rock and ligands respond to different chemical treatments. These processes are important to the development and commercialization of efficient and cost effective methods to extract REE from domestic geologic deposits and recover into salable forms.

  6. Dissolution of synthetic uranium dibutyl phosphate deposits in oxidizing and reducing chemical formulations.

    PubMed

    Rufus, A L; Sathyaseelan, V S; Narasimhan, S V; Velmurugan, S

    2013-06-15

    Permanganate and nitrilotriacetic acid (NTA) based dilute chemical formulations were evaluated for the dissolution of uranium dibutyl phosphate (U-DBP), a compound that deposits over the surfaces of nuclear reprocessing plants and waste storage tanks. A combination of an acidic, oxidizing treatment (nitric acid with permanganate) followed by reducing treatment (NTA based formulation) efficiently dissolved the U-DBP deposits. The dissolution isotherm of U-DBP in its as precipitated form followed a logarithmic fit. The same chemical treatment was also effective in dissolving U-DBP coated on the surface of 304-stainless steel, while resulting in minimal corrosion of the stainless steel substrate material. Investigation of uranium recovery from the resulting decontamination solutions by ion exchange with a bed of mixed anion and cation resins showed quantitative removal of uranium. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Effect of particle size on the experimental dissolution and auto-aluminization processes of K-vermiculite

    NASA Astrophysics Data System (ADS)

    Viennet, Jean-Christophe; Hubert, Fabien; Tertre, Emmanuel; Ferrage, Eric; Robin, Valentin; Dzene, Liva; Cochet, Carine; Turpault, Marie-Pierre

    2016-05-01

    In acidic soils, the fixation of Al in the interlayer spaces of 2:1 clay minerals and the subsequent formation of hydroxyl interlayer minerals (HIMs) are known to reduce soil fertility. The resulting crystal structure of HIMs consist of complex mixed-layer minerals (MLMs) with contrasting relative proportions of expandable, hydroxy-interlayers (HI) and illite layers. The present study aims to experimentally assess the influence of particle size on the formation of such complex HIMs for vermiculite saturated with potassium (K). Based on chemical and structural data, this study reports the dissolution and Al-interlayer occupancy of three size fractions (0.1-0.2, 1-2 and 10-20 μm) of K-vermiculite, which were obtained at pH = 3 by using stirred flow-through reactors. The Al-interlayer occupancies were ordered 0.1-0.2 μm < 10-20 μm < 1-2 μm even though the dissolution rate (in molvermiculite g-1 s-1) increases with decreasing particle size. For fine particles (0.1-0.2 μm), a rapid but low Al-interlayer occupancy during the transitory state and a null rate in the steady-state were evidenced and interpreted as indicating (i) a rapid but limited K+ interlayer exchange during the first step of the overall reactions and (ii) a stoichiometric dissolution of the crystal (TOT layer + interlayer) in the steady-state. By contrast, although the stoichiometric dissolution of the TOT layer is reached in the steady-state for the coarsest fractions (10-20 and 1-2 μm), the Al-interlayer occupancies continue to evolve due to the exchange of interlayer K+, which continues to progress for a longer duration. The mechanism of auto-aluminization is interpreted in the present study as multiple processes that involve (i) the dissolution of the mineral under acidic conditions, (ii) the interlayer diffusion of initial interlayer cations and their exchange with those from the aqueous phase and (iii) the fixation of interlayer aluminum. Competition between the kinetics of ion-exchange reactions and that of mineral dissolution is responsible for the above Al-interlayer occupancy order among the particle sizes (i.e., 0.1-0.2 μm < 10-20 μm < 1-2 μm). Moreover, this mechanism may be the cause of complex mineralogical structures such as mixed-layer minerals, which are commonly found in the clay-size fraction of acidic soils.

  8. Structural characteristics and sorption properties of lithium-selective composite materials based on TiO2 and MnO2

    NASA Astrophysics Data System (ADS)

    Chaban, M. O.; Rozhdestvenska, L. M.; Palchyk, O. V.; Dzyazko, Y. S.; Dzyazko, O. G.

    2018-04-01

    A number of nanomaterials containing titanium dioxide and manganese dioxide were synthesized. The effect of synthesis conditions on structural and sorption characteristics for the selective extraction of lithium ions from solutions was studied. The ion-exchange materials were investigated with the methods of electron microscopy, thermogravimetric and X-ray analyses. During thermal synthesis phases of lithium manganese titanium spinel and TiO2 are being formed. Replacing a part of manganese with titanium ions leads to a decrease in the dissolution of Mn and to an increase in chemical stability. Composites with optimal values of selectivity and sorption rates were used to remove lithium ions from solutions with high salt background. The recovery degree of lithium ions under dynamic conditions reached 99%, the highest sorption capacity was found at pH 10.

  9. Chemical and isotopic evidence for hydrogeochemical processes occurring in the Lincolnshire Limestone

    NASA Astrophysics Data System (ADS)

    Bishop, Philip K.; Lloyd, John W.

    1990-12-01

    Over 150 groundwater samples from the Lincolnshire Limestone have been analysed for pH, major ions and δ 13C ratios. Where possible, field E h and iodide concentrations were measured and methane concentrations were determined for 12 samples. Stable isotope ratios were determined for soil and rock carbonate samples. A system of zonation allows the division of hydrogeochemical processes occurring in the aquifer. The use of hydrochemical and isotope data in modelling exercises enables the re-evaluation and possible enhancement of the understanding of hydrogeochemical processes. The carbonate chemistry of outcrop groundwaters is explained by calcite saturation being achieved under open-system conditions in the soil zone. δ 13C ratios in the range - 15.99 to - 10.57‰ may be generated from a stoichiometric reaction with possible additional partial and/or simultaneous exchange with soil CO 2 or carbonate. The isotopic composition of soil carbonate shows the effects of precipitation from soil waters. The incongruent dissolution of primary depositional limestone carbonate results in increasing magnesium and strontium concentrations and increasing δ 13C ratios for the groundwaters with flow down the hydraulic gradient. As a result of incongruent dissolution, secondary calcite may be precipitated onto fissure surfaces. Significant nitrate and sulphate reduction in non-saline groundwaters is not supported by the results of hydrochemical and isotope modelling exercises. However, sulphate reduction and methane fermentation may be affecting the isotopic and chemical compositions of saline groundwaters. Sodium-calcium ion exchange leads to limited calcite dissolution deep in the aquifer, but the evolution of these groundwaters is confused by the uncertain effects of oxidation of organic carbon and mixing with a saline end-member solution.

  10. Ion-Exchange Interdiffusion Model with Potential Application to Long-Term Nuclear Waste Glass Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James Joseph; Kerisit, Sebastien N.; Liu, Jia

    2016-05-05

    Abstract: Ion exchange is an integral mechanism influencing the corrosion of glasses. Due to the formation of alteration layers in aqueous conditions, it is difficult to conclusively deconvolute the process of ion exchange from other processes, principally dissolution of the glass matrix. Therefore, we have developed a method to isolate alkali diffusion that involves contacting glass coupons with a solution of 6LiCl dissolved in functionally inert dimethyl sulfoxide. We employ the method at temperatures ranging from 25 to 150 °C with various glass formulations. Glass compositions include simulant nuclear waste glasses, such as SON68 and the international simple glass (ISG),more » glasses in which the nature of the alkali element was varied, and glasses that contained more than one alkali element. An interdiffusion model based on Fick’s second law was developed and applied to all experiments to extract diffusion coefficients. The model expands established models of interdiffusion to the case where multiple types of alkali sites are present in the glass. Activation energies for alkali ion exchange were calculated and the results are in agreement with those obtained in glass strengthening experiments but are nearly five times higher than values reported for diffusion-controlled processes in nuclear waste glass corrosion experiments. A discussion of the root causes for this apparent discrepancy is provided. The interdiffusion model derived from laboratory experiments is expected to be useful for modeling glass corrosion in a geological repository when the silicon concentration is high.« less

  11. Recovery of fissile materials from nuclear wastes

    DOEpatents

    Forsberg, Charles W.

    1999-01-01

    A process for recovering fissile materials such as uranium, and plutonium, and rare earth elements, from complex waste feed material, and converting the remaining wastes into a waste glass suitable for storage or disposal. The waste feed is mixed with a dissolution glass formed of lead oxide and boron oxide resulting in oxidation, dehalogenation, and dissolution of metal oxides. Carbon is added to remove lead oxide, and a boron oxide fusion melt is produced. The fusion melt is essentially devoid of organic materials and halogens, and is easily and rapidly dissolved in nitric acid. After dissolution, uranium, plutonium and rare earth elements are separated from the acid and recovered by processes such as PUREX or ion exchange. The remaining acid waste stream is vitrified to produce a waste glass suitable for storage or disposal. Potential waste feed materials include plutonium scrap and residue, miscellaneous spent nuclear fuel, and uranium fissile wastes. The initial feed materials may contain mixtures of metals, ceramics, amorphous solids, halides, organic material and other carbon-containing material.

  12. Stability of the solid electrolyte Li{sub 3}OBr to common battery solvents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroeder, D.J.; Hubaud, A.A.; Vaughey, J.T., E-mail: vaughey@anl.gov

    2014-01-01

    Graphical abstract: The stability of the anti-perovskite phase Li{sub 3}OBr has been assessed in a variety of battery solvents. - Highlights: • Lithium stable solid electrolyte Li{sub 3}OBr unstable to polar organic solvents. • Solvation with no dissolution destroys long-range structure. • Ion exchange with protons observed. - Abstract: Recently a new class of solid lithium ion conductors was reported based on the anti-perovskite structure, notably Li{sub 3}OCl and Li{sub 3}OBr. For many beyond lithium-ion battery uses, the solid electrolyte is envisioned to be in direct contact with liquid electrolytes and lithium metal. In this study we evaluated the stabilitymore » of the Li{sub 3}OBr phase against common battery solvents electrolytes, including diethylcarbonate (DEC) and dimethylcarbonate (DMC), as well as a LiPF{sub 6} containing commercial electrolyte. In contact with battery-grade organic solvents, Li{sub 3}OBr was typically found to be insoluble but lost its crystallinity and reacted with available protons and in some cases with the solvent. A low temperature heat treatment was able to restore crystallinity of the samples; however evidence of proton ion exchange was conserved.« less

  13. Hydrogeochemical processes and geochemical modeling in a coastal aquifer: Case study of the Marathon coastal plain, Greece

    NASA Astrophysics Data System (ADS)

    Papazotos, Panagiotis; Koumantakis, Ioannis; Kallioras, Andreas; Vasileiou, Eleni; Perraki, Maria

    2017-04-01

    Determining the hydrogeochemical processes has always been a challenge for scientists. The aim of this work is the study of the principal hydrogeochemical processes controlling groundwater quality in the Marathon coastal plain, Greece, with emphasis on the origin of the solutes. Various physicochemical parameters and major ions of twenty-five groundwater samples were analyzed. The hydrogeochemical data of groundwater were studied in order to determine the major factors controlling the chemical composition and hydrogeochemical evolution. In the Marathon coastal plain, three different zones of the alluvial granular aquifer system have been detected, considering the geochemical processes and recharge, which affect its hydrochemical characteristics. The alluvial granular aquifer system is divided eastwards into three zones: a) the natural recharge zone, b) the reverse ion exchange zone and c) the diffusion sea water zone. Cl-is the dominant anion and Na+and Ca2+ are the dominant cations, as determined by plotting the analyses on the respective Piper diagram. Near the coastline high concentrations of Na+ and Cl- were observed indicating a zone of seawater intrusion. On the other hand, westward there is increasing concentration of HCO3- with simultaneous decrease of Na+is indication of a recharge zone from karstic aquifers of the study area. Between the aforementioned zones there is an intermediate one, where reverse ion exchange takes place due to high concentrations of dissolved Na+ and Ca2+ adsorption. The saturation indices (SI) were calculated using the geochemical modeling software PHREEQC. Mineral phases of halite, sylvite, gypsum and anhydrite were estimated to be undersaturated in the water samples, suggesting these phases are minor or absent in the host rock. On the other hand, calcite, aragonite and dolomite are close to equilibrium; these minerals are present in the host rocks or in the unsaturated zone, possibly increasing the Ca2+, Mg2+ and HCO3- concentrations when carbonates are dissolved. The analyses of the bivariate scatter plots, the ionic ratios, the Indices of Base Exchange (IBE), the Gibbs diagram and the dissolution/precipitation reactions show that evaporation and water-rock interaction mechanisms such as dissolution of carbonates, followed by reverse ion exchange, have affected the groundwater chemistry in the study area. The results revealed that groundwater chemistry and therefore the origin of the solutes in the coastal alluvial granular aquifer system of the Marathon coastal plain is primarily affected by a number of factors such as groundwater and mineral equilibrium, seawater intrusion, reverse ion exchange and nitrate concentration. A possible future research could focus on the interaction among hydrogeochemistry, mineral phases and chemical thermodynamic modeling.

  14. Hydrogeochemistry of high-fluoride groundwater at Yuncheng Basin, northern China.

    PubMed

    Li, Chengcheng; Gao, Xubo; Wang, Yanxin

    2015-03-01

    Hydrogeochemical and environmental isotope methods were integrated to delineate the spatial distribution and enrichment of fluoride in groundwater at Yuncheng Basin in northern China. One hundred groundwater samples and 10 Quaternary sediment samples were collected from the Basin. Over 69% of the shallow groundwater (with a F(-) concentration of up to 14.1mg/L), 44% of groundwater samples from the intermediate and 31% from the deep aquifers had F(-) concentrations above the WHO provisional drinking water guideline of 1.5mg/L. Groundwater with high F(-) concentrations displayed a distinctive major ion chemistry: Na-rich and Ca-poor with a high pH value and high HCO3(-) content. Hydrochemical diagrams and profiles and hydrogen and oxygen isotope compositions indicate that variations in the major ion chemistry and pH are controlled by mineral dissolution, cation exchange and evaporation in the aquifer systems, which are important for F(-) mobilization as well. Leakage of shallow groundwater and/or evaporite (gypsum and mirabilite) dissolution may be the major sources for F(-) in groundwater of the intermediate and deep aquifers. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, R.; Ming, D. W.

    1999-01-01

    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  16. Plant Growth Experiments in Zeoponic Substrates: Applications for Advanced Life Support Systems

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Gruener, J. E.; Henderson, K. E.; Steinberg, S. L.; Barta, D. J.; Galindo, C.; Henninger, D. L.

    2001-01-01

    A zeoponic plant-growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component (Allen and Ming, 1995). Zeolites are crystalline, hydrated aluminosilicate minerals that have the ability to exchange constituent cations without major change of the mineral structure. Recently, zeoponic systems developed at the National Aeronautics and Space Administration (NASA) slowly release some (Allen et at., 1995) or all of the essential plant-growth nutrients (Ming et at., 1995). These systems have NH4- and K-exchanged clinoptilolite (a natural zeolite) and either natural or synthetic apatite (a calcium phosphate mineral). For the natural apatite system, Ca and P were made available to the plant by the dissolution of apatite. Potassium and NH4-N were made available by ion-exchange reactions involving Ca(2+) from apatite dissolution and K(+) and NH4(+) on zeolitic exchange sites. In addition to NH4-N, K, Ca, and P, the synthetic apatite system also supplied Mg, S, and other micronutrients during dissolution (Figure 1). The overall objective of this research task is to develop zeoponic substrates wherein all plant growth nutrients are supplied by the plant growth medium for several growth seasons with only the addition of water. The substrate is being developed for plant growth in Advanced Life Support (ALS) testbeds (i.e., BioPLEX) and microgravity plant growth experiments. Zeoponic substrates have been used for plant growth experiments on two Space Shuttle flight experiments (STS-60; STS-63; Morrow et aI., 1995). These substrates may be ideally suited for plant growth experiments on the International Space Station and applications in ALS testbeds. However, there are several issues that need to be resolved before zeoponics will be the choice substrate for plant growth experiments in space. The objective of this paper is to provide an overview on recent research directed toward the refinement of zeoponic plant growth substrates.

  17. FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neeway, James J.; Asmussen, Robert M.; Parruzot, Benjamin PG

    The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based onmore » Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less

  18. Geochemical modeling of reactions and partitioning of trace metals and radionuclides during titration of contaminated acidic sediments.

    PubMed

    Zhang, Fan; Luo, Wensui; Parker, Jack C; Spalding, Brian P; Brooks, Scott C; Watson, David B; Jardine, Philip M; Gu, Baohua

    2008-11-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This studywas undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cation exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/ dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO4(2-) for contaminated sediments indicated close agreement suggesting that the model could potentially be used to predictthe acid-base behavior of the sediment-solution system under variable pH conditions.

  19. Occurrence of natural radium-226 radioactivity in ground water of Sarasota County, Florida

    USGS Publications Warehouse

    Miller, R.L.; Sutcliffe, Horace

    1985-01-01

    Water that contains radium-226 radioactivity in excess of the 5.0-picocurie-per-liter limit set in the National Interim Primary Drinking Water Regulations was found in the majority of wells sampled throughout Sarasota County. Highest levels were found areally near the coast or near rivers and vertically in the Tamiami-upper Hawthorn aquifer where semiconsolidated phosphate pebbles occur. Analysis of data suggests that part of the radium-226 in ground water of Sarasota County is dissolved by alpha particle recoil. In slightly mineralized water, radium-226 concentrations are decreased by ion exchange or sorption. In more mineralized water, other ions compete with radium-226 for ion exchange or sorption sites. Dissolution of minerals containing radium-226 by mineralized water probably contributes a significant fraction of the dissolved radium-226. Two types of mineralized water were present in Sarasota County. One type is a marine-like water, presumably associated with saltwater encroachment in coastal areas; the other is a calcium magnesium strontium surfate bicarbonate type. In general, water that contains high radium-226 radioactivities also contains too much water hardness or dissolved solids to be used for public supply without treatment that would also reduce radium-226 radioactivities. (USGS)

  20. Transient changes in shallow groundwater chemistry during the MSU ZERT CO2 injection experiment

    USGS Publications Warehouse

    Apps, J.A.; Zheng, Lingyun; Spycher, N.; Birkholzer, J.T.; Kharaka, Y.; Thordsen, J.; Kakouros, E.; Trautz, R.

    2011-01-01

    Food-grade CO2 was injected into a shallow aquifer through a perforated pipe placed horizontally 1-2 m below the water table at the Montana State University Zero Emission Research and Technology (MSU-ZERT) field site at Bozeman, Montana. The possible impact of elevated CO2 levels on groundwater quality was investigated by analyzing 80 water samples taken before, during, and following CO2 injection. Field determinations and laboratory analyses showed rapid and systematic changes in pH, alkalinity, and conductance, as well as increases in the aqueous concentrations of trace element species. The geochemical data were first evaluated using principal component analysis (PCA) in order to identify correlations between aqueous species. The PCA findings were then used in formulating a geochemical model to simulate the processes likely to be responsible for the observed increases in the concentrations of dissolved constituents. Modeling was conducted taking into account aqueous and surface complexation, cation exchange, and mineral precipitation and dissolution. Reasonable matches between measured data and model results suggest that: (1) CO2 dissolution in the groundwater causes calcite to dissolve. (2) Observed increases in the concentration of dissolved trace metals result likely from Ca+2-driven ion exchange with clays (smectites) and sorption/desorption reactions likely involving Fe (hydr)oxides. (3) Bicarbonate from CO2 dissolution appears to compete for sorption with anionic species such as HAsO4-2, potentially increasing dissolved As levels in groundwater. ?? 2011 Published by Elsevier Ltd.

  1. Influence of oxalic acid on the dissolution kinetics of manganese oxide

    NASA Astrophysics Data System (ADS)

    Godunov, E. B.; Artamonova, I. V.; Gorichev, I. G.; Lainer, Yu. A.

    2012-11-01

    The kinetics and electrochemical processes of the dissolution of manganese oxides with various oxidation states in sulfuric acid solutions containing oxalate ion additives is studied under variable conditions (concentration, pH, temperature). The parameters favoring a higher degree of the dissolution of manganese oxides in acidic media are determined. The optimal conditions are found for the dissolution of manganese oxides in acidic media in the presence of oxalate ions. The mechanism proposed for the dissolution of manganese oxides in sulfuric acid solutions containing oxalic acid is based on the results of kinetic and electrochemical studies. The steps of the dissolution mechanism are discussed.

  2. Solubility and Cation Exchange Properties of Synthetic Hydroxyapatite and Clinoptilolite Mixtures

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, Raymond E.; Ming, Douglas W.

    2003-01-01

    A zeoponic plant growth system is defined as the cultivation of plants in artificial soils, which have zeolites as a major component. These systems: 1) can serve as a controllable and renewable fertilization system to provide plant growth nutrients; 2) can mitigate the adverse effects of contamination due to leaching of highly soluble and concentrated fertilizers; and 3) are being considered as substrates for plant growth in regenerative life-support systems for long-duration space missions. Batch-equilibrium studies of the dissolution and ion-exchange properties of mixtures of naturally-occurring Wyoming clinoptilolite (a zeolite) exchanged with K(+) or NH4(+); and synthetic hydroxyapatite were conducted to determine: 1) the plant availability of the macro-nutrients NH4-N, P, K, Ca, and Mg and 2) the effects of varying the clinoptilolite to hydroxyapatite ratio and the ratio of exchangeable cations (K(+) vs. NH4(+)) on clinoptilolite extraframework sites. The nutrients NH4-N (19.7 to 73.6 mg L(sup -1), P (0.57 to 14.99 mg L(sup- 1), K (14.8 to 104.9 mg L(sup -1), and Mg (0.11 to 6.68mg L(sup -1) are available to plants at sufficient levels. Solution Ca concentrations (0.47 to 3.40 mg L(sup -1) are less than optimal. Solution concentrations of NH4(+), K(+), Ca(2+), and Mg(2+) all decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. Solution concentrations of phosphorous initially increased, reached a maximum value and then decreased with increasing clinoptilolite to hydroxyapatite ratio in the sample. The NH4(+) -exchanged clinoptilolite is more efficient in dissolving synthetic hydroxyapatite than the K(+) -exchanged clinoptilolite. This suggests that NH4(+), which is less selective at clinoptilolite extraframework sites than K(+) is exchanged more readily by Ca(2+) and thereby enhances the dissolution of the synthetic hydroxyapatite.

  3. Dissolution patterns of biocompatible glasses in 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris) buffer.

    PubMed

    Fagerlund, S; Hupa, L; Hupa, M

    2013-02-01

    A continuous flow measurement system with sensitive on-line ion analysis has been applied to study the initial dissolution behaviour of biocompatible glasses in Tris. Altogether 16 glasses with widely varying compositions were studied. The measurement system allowed for quantitative determination of the time-dependent rates of dissolution of sodium, potassium, calcium, magnesium, silicon and phosphorus during the first 10-15 min in contact with Tris solution. The dissolution rates of the different ions showed significant glass to glass variations, but all glasses studied showed one of four distinct dissolution patterns. The ion dissolution rates after an exposure of 1000 s, expressed as the normalized surface-specific mass loss rates, were compared with the in vitro and in vivo reactivity of the glasses as predicted by models in the literature. The results showed a clear correlation between the dissolution rates of the glasses in Tris and their reactivity as measured by other different methods. Consequently, the measured short-term dissolution patterns could be used to determine which glasses are suitable as bioactive, biodegradable, or inert biomaterials for medical devices. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems.

    PubMed

    Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G

    2018-01-25

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.

  5. Effects of Low-Molecular-Weight Organic Acids on the Dissolution of Hydroxyapatite Nanoparticles in Batch and Column Experiments: A Perspective from Phosphate Oxygen Isotope Fractionation

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jaisi, D. P.; Jin, Y.

    2015-12-01

    Hydroxyapatite nanoparticles (HANPs) are increasingly being advocated as an efficient and environment-friendly "green" phosphorus nanofertilizer attributed to their nanoscale dimension, large reactive surface area, and low leaching potential. However, knowledge of how naturally occurring low-molecular-weight organic acids (LMWOAs) that are secreted by plant roots mediate the dissolution of HANPs (releasing PO43- ion for plant growth) is nonexistent. Here three most commonly encountered LMWOAs (acetic acid, oxalic acid, and citric acid) at environmentally relevant concentration (1 mM) were evaluated for their effects on HANPs' dissolution in static batch and dynamic column systems. Particularly, phosphate oxygen isotope fractionation of HANPs during dissolution was examined to disentangle mechanisms controlling the evolution of O-isotopic composition of dissolved PO43- ion. Our results reveal that in batch experiments the dissolution of HANPs was fast but the overall dissolution efficiency of HANPs was limited (≤30%). In contrast, ~100% HANPs were dissolved in columns where LMWOAs were continuously injected. The limited dissolution of HANPs in static batch systems was due primarily to pH buffer effect (pH increased sharply when LMWOA was added in HANPs suspension), whereas in dynamic column systems the HANPs were continuously dissolved by low pH LMWOAs and leached away. Regardless of LMWOA type and experimental system, the isotopically light phosphate (P16O4) was preferentially released during dissolution and the O-isotopic composition of dissolved PO43- ion increased gradually with increasing dissolution due to equilibrium isotope effect between dissolved PO43- ion and HANPs. However, the overall magnitude of O-isotopic fractionation of dissolved PO43- ion was less in batch than in column systems, due to less mass transfer between dissolved PO43- ions and HANPs in batch relative to column experiments. Our findings provide new insights into bioavailability, transformation, and evolution of O-isotopic signatures of phosphate-based nanoparticles in agricultural soils particularly in the rhizosphere where such LMWOAs are ubiquitous.

  6. Determination of strontium-90 in milk samples using a controlled precipitation clean-up step prior to ion-chromatography.

    PubMed

    Cobb, J; Warwick, P; Carpenter, R C; Morrison, R T

    1995-12-01

    Strontium-90 may be determined by beta-counting its yttrium-90 daughter following separation by ion-chromatography, using a three column system comprising a chelating concentrator column, a cation-exchange column and an anion-exchange separator column. The column system has previously been applied to the determination of strontium-90 in water and urine samples. The applicability of the system to the analysis of milk is hampered by the large concentrations of calcium present, which significantly reduces the extraction of yttrium-90 by the concentrator column. A maximum of approximately 200 mg of calcium can be present for the successful extraction of yttrium-90, which greatly limits the quantity of milk that can be analysed. The quantity of milk analysed can be increased by the inclusion of a controlled precipitation step prior to the ion-chromatographic separation. The precipitation is carried out on acid digested milk samples by the addition of ammonia solution until the addition of one drop causes a reduction in pH resulting in the precipitation of calcium hydrogenphosphate. Under these conditions, approximately 20% of the calcium present in the original milk sample is precipitated, yttrium-90 is precipitated whereas strontium-90 is not precipitated. Dissolution of the precipitate, followed by separation of yttrium-90 using the ion-chromatography system facilitates the analysis of a litre of milk with recoveries of greater than 80%.

  7. Superconcentrated electrolytes for a high-voltage lithium-ion battery

    PubMed Central

    Wang, Jianhui; Yamada, Yuki; Sodeyama, Keitaro; Chiang, Ching Hua; Tateyama, Yoshitaka; Yamada, Atsuo

    2016-01-01

    Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current collector; replacing LiPF6 with more stable lithium salts may diminish transition metal dissolution but unfortunately encounters severe aluminium oxidation. Here we report an electrolyte design that can solve this dilemma. By mixing a stable lithium salt LiN(SO2F)2 with dimethyl carbonate solvent at extremely high concentrations, we obtain an unusual liquid showing a three-dimensional network of anions and solvent molecules that coordinate strongly to Li+ ions. This simple formulation of superconcentrated LiN(SO2F)2/dimethyl carbonate electrolyte inhibits the dissolution of both aluminium and transition metal at around 5 V, and realizes a high-voltage LiNi0.5Mn1.5O4/graphite battery that exhibits excellent cycling durability, high rate capability and enhanced safety. PMID:27354162

  8. Obtaining the porewater composition of a clay rock by modeling the in- and out-diffusion of anions and cations from an in-situ experiment.

    PubMed

    Appelo, C A J; Vinsot, A; Mettler, S; Wechner, S

    2008-10-23

    A borehole in the Callovo-Oxfordian clay rock in ANDRA's underground research facility was sampled during 1 year and chemically analyzed. Diffusion between porewater and the borehole solution resulted in concentration changes which were modeled with PHREEQC's multicomponent diffusion module. In the model, the clay rock's pore space is divided in free porewater (electrically neutral) and diffuse double layer water (devoid of anions). Diffusion is calculated separately for the two domains, and individually for all the solute species while a zero-charge flux is maintained. We explain how the finite difference formulas for radial diffusion can be translated into mixing factors for solutions. Operator splitting is used to calculate advective flow and chemical reactions such as ion exchange and calcite dissolution and precipitation. The ion exchange reaction is formulated in the form of surface complexation, which allows distributing charge over the fixed sites and the diffuse double layer. The charge distribution affects pH when calcite dissolves, and modeling of the experimental data shows that about 7% of the cation exchange capacity resides in the diffuse double layer. The model calculates the observed concentration changes very well and provides an estimate of the pristine porewater composition in the clay rock.

  9. Fluoride occurrence in the groundwater in a coastal region of Andhra Pradesh, India

    NASA Astrophysics Data System (ADS)

    Rao, N. Subba; Rao, P. Surya; Dinakar, A.; Rao, P. V. Nageswara; Marghade, Deepali

    2017-06-01

    Fluoride (F-) content varies from 0.60 to 1.80 mg/L in the coastal region between Chirala and Ongole of Andhra Pradesh, India. It exceeds the threshold limit of 1.20 mg/L in 20 % of the total groundwater samples. The aim of the present study is to assess the controlling factors of F- content. The study area experiences a dry climate and is underlain by Charnockite Group of rocks over which the river and coastal alluvium occur. The results of the study identify the four factors that control the high F- content. First one is related to alkalinity, leading to active dissolution and leaching of F--bearing minerals, which supports the positive correlation of F- with pH and HCO3 -. A longer water residence time in the clays is the second factor, which activates not only solubility and dissolution of F--bearing minerals, but also anion exchange between F- and OH-. Third factor is a result of higher Na+ due to impact of saline water, ion exchange between Na+ and Ca2+, and precipitation of CaCO3. This reduces the Ca2+ content, causing dissolution of CaF2 to maintain the chemical equilibria, which is supported by positive correlation between Na2+ and F-. The influence of anthropogenic activities is the last factor, which acts as an additional source of F-. Thus, the shallow groundwater shows higher content of F- and the hydrogeochemical facies also support this hypothesis. The study suggests the remedial measures to reduce the F- content.

  10. Geochemical Modeling of Reactions and Partitioning of Trace Metals and Radionuclides during Titration of Contaminated Acidic Sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Luo, Wensui

    2008-01-01

    Many geochemical reactions that control aqueous metal concentrations are directly affected by solution pH. However, changes in solution pH are strongly buffered by various aqueous phase and solid phase precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior of the soil-solution system is thus critical to predict metal transport under variable pH conditions. This study was undertaken to develop a practical generic geochemical modeling approach to predict aqueous and solid phase concentrations of metals and anions during conditions of acid or base additions. The method of Spalding and Spalding was utilized to model soil buffer capacity and pH-dependent cationmore » exchange capacity by treating aquifer solids as a polyprotic acid. To simulate the dynamic and pH-dependent anion exchange capacity, the aquifer solids were simultaneously treated as a polyprotic base controlled by mineral precipitation/dissolution reactions. An equilibrium reaction model that describes aqueous complexation, precipitation, sorption and soil buffering with pH-dependent ion exchange was developed using HydroGeoChem v5.0 (HGC5). Comparison of model results with experimental titration data of pH, Al, Ca, Mg, Sr, Mn, Ni, Co, and SO{sub 4}{sup 2-} for contaminated sediments indicated close agreement, suggesting that the model could potentially be used to predict the acid-base behavior of the sediment-solution system under variable pH conditions.« less

  11. Electrokinetic mechanism of wettability alternation at oil-water-rock interface

    NASA Astrophysics Data System (ADS)

    Tian, Huanhuan; Wang, Moran

    2017-12-01

    Design of ions for injection water may change the wettability of oil-brine-rock (OBR) system, which has very important applications in enhanced oil recovery. Though ion-tuned wettability has been verified by various experiments, the mechanism is still not clear. In this review paper, we first present a comprehensive summarization of possible wettability alteration mechanisms, including fines migration or dissolution, multicomponent ion-exchange (MIE), electrical double layer (EDL) interaction between rock and oil, and repulsive hydration force. To clarify the key mechanism, we introduce a complete frame of theories to calculate attribution of EDL repulsion to wettability alteration by assuming constant binding forces (no MIE) and rigid smooth surface (no fines migration or dissolution). The frame consists of three parts: the classical Gouy-Chapman model coupled with interface charging mechanisms to describe EDL in oil-brine-rock systems, three methods with different boundary assumptions to evaluate EDL interaction energy, and the modified Young-Dupré equation to link EDL interaction energy with contact angle. The quantitative analysis for two typical oil-brine-rock systems provides two physical maps that show how the EDL interaction influences contact angle at different ionic composition. The result indicates that the contribution of EDL interaction to ion-tuned wettability for the studied system is not quite significant. The classical and advanced experimental work using microfabrication is reviewed briefly on the contribution of EDL repulsion to wettability alteration and compared with the theoretical results. It is indicated that the roughness of real rock surface may enhance EDL interaction. Finally we discuss some pending questions, perspectives and promising applications based on the mechanism.

  12. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.

    The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less

  13. User's guide to PHREEQC (Version 2) : a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations

    USGS Publications Warehouse

    Parkhurst, David L.; Appelo, C.A.J.

    1999-01-01

    PHREEQC version 2 is a computer program written in the C programming language that is designed to perform a wide variety of low-temperature aqueous geochemical calculations. PHREEQC is based on an ion-association aqueous model and has capabilities for (1) speciation and saturation-index calculations; (2) batch-reaction and one-dimensional (1D) transport calculations involving reversible reactions, which include aqueous, mineral, gas, solid-solution, surface-complexation, and ion-exchange equilibria, and irreversible reactions, which include specified mole transfers of reactants, kinetically controlled reactions, mixing of solutions, and temperature changes; and (3) inverse modeling, which finds sets of mineral and gas mole transfers that account for differences in composition between waters, within specified compositional uncertainty limits.New features in PHREEQC version 2 relative to version 1 include capabilities to simulate dispersion (or diffusion) and stagnant zones in 1D-transport calculations, to model kinetic reactions with user-defined rate expressions, to model the formation or dissolution of ideal, multicomponent or nonideal, binary solid solutions, to model fixed-volume gas phases in addition to fixed-pressure gas phases, to allow the number of surface or exchange sites to vary with the dissolution or precipitation of minerals or kinetic reactants, to include isotope mole balances in inverse modeling calculations, to automatically use multiple sets of convergence parameters, to print user-defined quantities to the primary output file and (or) to a file suitable for importation into a spreadsheet, and to define solution compositions in a format more compatible with spreadsheet programs. This report presents the equations that are the basis for chemical equilibrium, kinetic, transport, and inverse-modeling calculations in PHREEQC; describes the input for the program; and presents examples that demonstrate most of the program's capabilities.

  14. Sorption of Metal Ions on Clay Minerals.

    PubMed

    Schlegel; Charlet; Manceau

    1999-12-15

    The mechanism of Co uptake from aqueous solution onto hectorite (a magnesian smectite) and its impact on the stability of this clay mineral were investigated as a function of Co concentration (TotCo = 20 to 200 µM, 0.3 M NaNO(3)) and ionic strength (0.3 and 0.01 M NaNO(3), TotCo = 100 µM) by combining kinetics measurements and Co K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy. The morphology of the sorbent phase was characterized by atomic force microscopy (AFM) and consists of lath-type particles bounded by large basal planes and layer edges. At low ionic strength (0.01 M NaNO(3)), important Co uptake occurred within the first 5 min of reaction, consistent with Co adsorption on exchange sites of hectorite basal planes. Thereafter, the sorption rate dramatically decreased. In contrast, at high ionic strength (0.3 M NaNO(3)), Co uptake rate was much slower within the first 5 min and afterward higher than at 0.01 M NaNO(3), consistent with Co adsorption on specific surface sites located on the edges of hectorite. Time-dependent isotherms for Co uptake at high ionic strength indicated the existence of several sorption mechanisms having distinct equilibration times. The dissolution of hectorite was monitored before and after Co addition. A congruent dissolution regime was observed prior to Co addition. Just after Co addition, an excess release of Mg relatively to congruent dissolution rates occurred at both high and low ionic strengths. At high ionic strength, this excess release nearly equaled the amount of sorbed Co. The dissolution rate of hectorite then decreased at longer Co sorption times. EXAFS spectra of hectorite reacted with Co at high and low ionic strengths and for reaction times longer than 6 h, exhibited similar features, suggesting that the local structural environments of Co atoms are similar. Spectral simulations revealed the occurrence of approximately 2 Mg and approximately 2 Si neighboring cations at interatomic distances characteristic of edge-sharing linkages between Co and Mg octahedra and corner-sharing linkages between Co octahedra and Si tetrahedra, respectively. This local structure is characteristic of inner sphere mononuclear surface complexes at layer edges of hectorite platelets. The occurrence of these complexes even at low ionic strength apparently conflicts with kinetics results, as exchangeable divalent cations are known to form outer sphere surface complexes. To clarify this issue, the amount of Co adsorbed on exchange sites was calculated from the solute Co concentration, assuming that cation exchange was always at equilibrium. These calculations showed that sorbed Co was transferred within 48 h from exchange sites to edge sorption sites. Copyright 1999 Academic Press.

  15. Interactions between a poorly soluble cationic drug and sodium dodecyl sulfate in dissolution medium and their impact on in vitro dissolution behavior.

    PubMed

    Huang, Zongyun; Parikh, Shuchi; Fish, William P

    2018-01-15

    In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Ke; De Andrade, Vincent; Feng, Zhange

    The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less

  17. Simulating Salt Movement and Transformation using a Coupled Reactive Transport Model in Variably-Saturated Groundwater Systems

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T.

    2016-12-01

    Salinization is one of the major concerns in irrigated agricultural landscapes. Increasing salinity concentrations are due principally to evaporative concentration; dissolution of salts from weathered minerals and bedrock; and a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems; leading to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. In this study, a solute transport model coupled with equilibrium chemistry reactions has been developed to simulate transport of individual salt ions in regional-scale aquifer systems and thereby investigate strategies for salinity remediation. The physically-based numerical model is based on the UZF-RT3D variably-saturated, multi-species groundwater reactive transport modeling code, and accounts for advection, dispersion, carbon and nitrogen cycling, oxidation-reduction reactions, and salt ion equilibrium chemistry reactions such as complexation, ion exchange, and precipitation/dissolution. Each major salt ion (sulfate, chloride, bicarbonate, calcium, sodium, magnesium, potassium) is included. The model has been tested against measured soil salinity at a small scale (soil profile) and against soil salinity, groundwater salinity, and groundwater salinity loading to surface water at the regional scale (500 km2) in the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization for many decades and greatly influenced by gypsum deposits. Preliminary results of using the model in scenario analysis suggest that increasing irrigation efficiency, sealing earthen canals, and rotational fallowing of land can decrease the groundwater salt load to the Arkansas River by 50 to 70% and substantially lower soil salinity in the root zone.

  18. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, Jayne; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (pa??0.05) as a function of soilcounterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, and the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  19. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    USGS Publications Warehouse

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    For more than 40 years, ion-exchange resins have been used to characterize nutrient bioavailability in terrestrial and aquatic ecosystems. To date, however, no standardized methodology has been developed, particularly with respect to the counterions that initially occupy resin exchange sites. To determine whether different resin counterions yield different measures of soil nutrients and rank soils differently with respect to their measured nutrient bioavailability, we compared nutrient measurements by three common counterion combinations (HCl, HOH, and NaHCO3). Five sandy calcareous soils were chosen to represent a range of soil characteristics at Canyonlands National Park, Utah, and resin capsules charged with the different counterions equilibrated in saturated pastes of these soils for one week. Data were converted to proportions of total ions of corresponding charge for ANOVA. Results from the different methods were not comparable with respect to any nutrient. Of eleven nutrients measured, all but iron (Fe2+), manganese (Mn2+), and zinc (Zn2+) differed significantly (p ??? 0.05) as a function of soil x counterion interactions; Fe2+ and Zn2+ varied as functions of counterion alone. Of the counterion combinations, HCl-resins yielded the most net ion exchange with all measured nutrients except Na+, NH4+, and HPO42-, the three of which desorbed in the greatest quantities from HOH-resins. Conventional chemical extractions using ammonium acetate generally yielded high proportional values of Ca2+, K+, and Na+. Further, among-soil rankings of nutrient bioavailability varied widely among methods. This study highlights the fact that various ion-exchange resin techniques for measuring soil nutrients may have differential effects on the soil-resin environment and yield data that should not be compared nor considered interchangeable. The most appropriate methods for characterizing soil-nutrient bioavailability depends on soil characteristics and likely on the physiological uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  20. Nanocomposites coated with xyloglucan for drug delivery: In vitro studies.

    PubMed

    Ribeiro, C; Arizaga, G G C; Wypych, F; Sierakowski, M-R

    2009-02-09

    Enalaprilate (Enal), an active pharmaceutical component, was intercalated into a layered double hydroxide (Mg/Al-LDH) by an ion exchange reaction. The use of a layered double hydroxide (LDH) to release active drugs is limited by the low pH of the stomach (pH approximately 1.2), in whose condition it is readily dissolved. To overcome this limitation, xyloglucan (XG) extracted from Hymenaea courbaril (jatobá) seeds, Brazilian species, was used to protect the LDH and allow the drug to pass through the gastrointestinal tract. All the materials were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, elemental analyses, transmission electronic microscopy, thermal analyses, and a kinetic study of the in vitro release was monitored by ultraviolet spectroscopy. The resulting hybrid system containing HDL-Enal-XG(3) slowly released the Enal. In an 8-h of test, the system protected 40% (w/v) of the drug. The kinetic profile showed that the drug release was a co-effect behavior, involving dissolution of inorganic material and ion exchange between the intercalated anions in the lamella and those of phosphate in the buffer solution. The nanocomposite coated protection with XG was therefore efficient in obtaining a slow release of Enal.

  1. The effect of fission-energy Xe ion irradiation on the structural integrity and dissolution of the CeO2 matrix

    NASA Astrophysics Data System (ADS)

    Popel, A. J.; Le Solliec, S.; Lampronti, G. I.; Day, J.; Petrov, P. K.; Farnan, I.

    2017-02-01

    This work considers the effect of fission fragment damage on the structural integrity and dissolution of the CeO2 matrix in water, as a simulant for the UO2 matrix of spent nuclear fuel. For this purpose, thin films of CeO2 on Si substrates were produced and irradiated by 92 MeV 129Xe23+ ions to a fluence of 4.8 × 1015 ions/cm2 to simulate fission damage that occurs within nuclear fuels along with bulk CeO2 samples. The irradiated and unirradiated samples were characterised and a static batch dissolution experiment was conducted to study the effect of the induced irradiation damage on dissolution of the CeO2 matrix. Complex restructuring took place in the irradiated films and the irradiated samples showed an increase in the amount of dissolved cerium, as compared to the corresponding unirradiated samples. Secondary phases were also observed on the surface of the irradiated CeO2 films after the dissolution experiment.

  2. The initial stages of NaCl dissolution: Ion or ion pair solvation?

    NASA Astrophysics Data System (ADS)

    Klimes, Jiri; Michaelides, Angelos

    2009-03-01

    The interaction of water with rock salt (NaCl) is important in a wide variety of natural processes and human activities. A lot is known about NaCl dissolution at the macroscopic level but we do not yet have a detailed atomic scale picture of how salt crystals dissolve. Here we report an extensive series of density functional theory, forcefield and molecular dynamics studies of water clusters at flat and defective NaCl surfaces and NaCl clusters. The focus is on answering seemingly elementary questions such as how many water molecules are needed before it becomes favorable to extract an ion or a pair of ions from the crystal or the cluster. It turns out, however, that the answers to these questions are not so straightforward: below a certain number of water molecules (˜ 12) solvation of individual ions is less costly and above this number solvation of ion pairs is favored. These results reveal a hitherto unknown complexity in the NaCl dissolution process born out of a subtle interplay between water-water and water-ion interactions.

  3. Hot melt extrusion of ion-exchange resin for taste masking.

    PubMed

    Tan, David Cheng Thiam; Ong, Jeremy Jianming; Gokhale, Rajeev; Heng, Paul Wan Sia

    2018-05-30

    Taste masking is important for some unpleasant tasting bioactives in oral dosage forms. Among many methods available for taste-masking, use of ion-exchange resin (IER) holds promise. IER combined with hot melt extrusion (HME) may offer additional advantages over solvent methods. IER provides taste masking by complexing with the drug ions and preventing drug dissolution in the mouth. Drug-IER complexation approaches described in literatures are mainly based either on batch processing or column eluting. These methods of drug-IER complexation have obvious limitations such as high solvent volume requirements, multiprocessing steps and extended processing time. Thus, the objective of this study was to develop a single-step, solvent-free, continuous HME process for complexation of drug-IER. The screening study evaluated drug to IER ratio, types of IER and drug complexation methods. In the screening study, a potassium salt of a weakly acidic carboxylate-based cationic IER was found suitable for the HME method. Thereafter, optimization study was conducted by varying HME process parameters such as screw speed, extrusion temperature and drug to IER ratio. It was observed that extrusion temperature and drug to IER ratio are imperative in drug-IER complexation through HME. In summary, this study has established the feasibility of a continuous complexation method for drug to IER using HME for taste masking. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Pb 2+–Calcite Interactions under Far-from-Equilibrium Conditions: Formation of Micropyramids and Pseudomorphic Growth of Cerussite

    DOE PAGES

    Yuan, Ke; De Andrade, Vincent; Feng, Zhange; ...

    2018-01-04

    The presence of impurity ions is known to significantly influence mineral surface morphology during crystal growth from aqueous solution, but knowledge on impurity ion-mineral interactions during dissolution under far-from equilibrium conditions remains limited. Here we show that calcite (CaCO 3) exhibits a rich array of dissolution features in the presence of Pb. During the initial stage, calcite exhibits non-classical surface features characterized as micro pyramids developed spontaneously in acidic Pb-bearing solutions. Subsequent pseudomorphic growth of cerussite (PbCO 3) was observed, where nucleation occurred entirely within a pore space created by dissolution at the calcite/substrate interface. Uneven growth rates yielded amore » cerussite shell made of lath- or dendritic-shaped crystals. The cerussite phase was separated from the calcite by pores of less than 200 nm under transmission X-ray microscopy, consistent with the interface-coupled dissolution-precipitation mechanism. These results show that impurity metal ions exert significant control over the microscale dissolution features found on mineral surfaces and provide new insights into interpreting and designing micro structures observed in naturally-occurring and synthetic carbonate minerals by dissolution. In addition, heterogeneous micro-environments created in transport limited reactions under pore spaces may lead to unusual growth forms during crystal nucleation and precipitation.« less

  5. Extent and severity of groundwater contamination based on hydrochemistry mechanism of sandy tropical coastal aquifer.

    PubMed

    Isa, Noorain Mohd; Aris, Ahmad Zaharin; Sulaiman, Wan Nor Azmin Wan

    2012-11-01

    Small islands are susceptible to anthropogenic and natural activities, especially in respect of their freshwater supply. The freshwater supply in small islands may be threatened by the encroachment of seawater into freshwater aquifers, usually caused by over pumping. This study focused on the hydrochemistry of the Kapas Island aquifer, which controls the groundwater composition. Groundwater samples were taken from six constructed boreholes for the analysis and measurement of its in-situ and major ions. The experimental results show a positive and significant correlation between Na-Cl (r=0.907; p<0.01), which can be defined as the effect of salinization. The mechanisms involved in groundwater chemistry changes were ion exchange and mineralization. These processes can be demonstrated using Piper's diagram in which the water type has shifted into a Na-HCO(3) water type from a Ca-HCO(3) water type. Saturation indices have been calculated in order to determine the saturation condition related to dissolution or the precipitation state of the aquifer bedrock. About 76% of collected data (n=108) were found to be in the dissolution process of carbonate minerals. Moreover, the correlation between total CEC and Ca shows a positive and strong relationship (r=0.995; p<0.01). This indicates that the major mineral component in Kapas Island is Ca ion, which contributes to the groundwater chemical composition. The output of this research explains the chemical mechanism attributed to the groundwater condition of the Kapas Island aquifer. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Insights into PEMFC Performance Degradation from HCl in Air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O Baturina; A Epshteyn; P Northrup

    2011-12-31

    The performance degradation of a proton exchange membrane fuel cell (PEMFC) is studied in the presence of HCl in the air stream. The cathode employing carbon-supported platinum nanoparticles (Pt/C) was exposed to 4 ppm HCl in air while the cell voltage was held at 0.6 V. The HCl poisoning results in generation of chloride and chloroplatinate ions on the surface of Pt/C catalyst as determined by a combination of electrochemical tests and ex-situ chlorine K-edge X-Ray absorption near-edge structure (XANES) spectroscopy. The chloride ions inhibit the oxygen reduction reaction (ORR) and likely affect the wetting properties of diffusion media/catalyst layer,more » while the chloroplatinate ions are responsible for enhanced platinum particle growth most likely due to platinum dissolution-redeposition. The chloride ions can cause corrosion of the Pt nanoparticles in the presence of aqueous HCl in air even if no potential is applied. Although the majority of chloride ions are desorbed from the Pt surface by hydrogen treatment of the cathode, they partially remain in the system and re-adsorb on platinum at cell voltages of 0.5-0.9 V. Chloride ions are removed from the system and fuel cell performance at 0.5-0.7 V is restored by multiple exposures to low potentials.« less

  7. Combinatorial localized dissolution analysis: Application to acid-induced dissolution of dental enamel and the effect of surface treatments.

    PubMed

    Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R

    2016-08-15

    A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Electric current density imaging of tablet dissolution.

    PubMed

    Mikac, Ursa; Demsar, Alojz; Sersa, Igor; Demsar, Franci

    2002-01-01

    The Electric current density imaging technique (CDI) was used to monitor the dissolution of and ion migration from tablets of different acids in agar-agar gel. Conventional MRI cannot monitor these processes, since it can only show changes in the size of the tablet during the dissolving process. CDI traces the dissolved ions thanks to changes in conductivity.

  9. 76 FR 69314 - Self-Regulatory Organizations; NASDAQ OMX PHLX LLC; Notice of Filing of Proposed Rule Change...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... organization only if such transfer involves one or more of the following events: (i) The dissolution of a joint...; (ii) the dissolution of a corporation or partnership in which a former nominee of that corporation or... would allow the Exchange to permit transfers in situations involving dissolutions of entities or...

  10. Insights on surface-water/groundwater exchange in the upper Floridan aquifer, north-central Florida (USA), from streamflow data and numerical modeling

    NASA Astrophysics Data System (ADS)

    Sutton, James E.; Screaton, Elizabeth J.; Martin, Jonathan B.

    2015-03-01

    Surface-water/groundwater exchange impacts water quality and budgets. In karst aquifers, these exchanges also play an important role in dissolution. Five years of river discharge data were analyzed and a transient groundwater flow model was developed to evaluate large-scale temporal and spatial variations of exchange between an 80-km stretch of the Suwannee River in north-central Florida (USA) and the karstic upper Floridan aquifer. The one-layer transient groundwater flow model was calibrated using groundwater levels from 59 monitoring wells, and fluxes were compared to the exchange calculated from discharge data. Both the numerical modeling and the discharge analysis suggest that the Suwannee River loses water under both low- and high-stage conditions. River losses appear greatest at the inside of a large meander, and the former river water may continue across the meander within the aquifer rather than return to the river. In addition, the numerical model calibration reveals that aquifer transmissivity is elevated within this large meander, which is consistent with enhanced dissolution due to river losses. The results show the importance of temporal and spatial variations in head gradients to exchange between streams and karst aquifers and dissolution of the aquifers.

  11. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, G.E.; Barnes, J.W.

    1979-10-17

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H/sub 2/O/sub 2/, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  12. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, Glenn E.; Barnes, John W.

    1981-01-01

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H.sub.2 O.sub.2, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  13. Dissolution without disappearing: multicomponent gas exchange for CO2 bubbles in a microfluidic channel.

    PubMed

    Shim, Suin; Wan, Jiandi; Hilgenfeldt, Sascha; Panchal, Prathamesh D; Stone, Howard A

    2014-07-21

    We studied the dissolution dynamics of CO2 gas bubbles in a microfluidic channel, both experimentally and theoretically. In the experiments, spherical CO2 bubbles in a flow of a solution of sodium dodecyl sulfate (SDS) first shrink rapidly before attaining an equilibrium size. In the rapid dissolution regime, the time to obtain a new equilibrium is 30 ms regardless of SDS concentration, and the equilibrium radius achieved varies with the SDS concentration. To explain the lack of complete dissolution, we interpret the results by considering the effects of other gases (O2, N2) that are already dissolved in the aqueous phase, and we develop a multicomponent dissolution model that includes the effect of surface tension and the liquid pressure drop along the channel. Solutions of the model for a stationary gas bubble show good agreement with the experimental results, which lead to our conclusion that the equilibrium regime is obtained by gas exchange between the bubbles and liquid phase. Also, our observations from experiments and model calculations suggest that SDS molecules on the gas-liquid interface form a diffusion barrier, which controls the dissolution behaviour and the eventual equilibrium radius of the bubble.

  14. Effects of selective handling of pyritic, acid-forming materials on the chemistry of pore gas and ground water at a reclaimed surface coal mine in Clarion County, PA, USA

    USGS Publications Warehouse

    Cravotta,, Charles A.; Dugas, Diana L.; Brady, Keith; Kovalchuck, Thomas E.

    1994-01-01

    A change from dragline to “selective handling” mining methods at a reclaimed surface coal mine in western Pennsylvania did not significantly affect concentrations of metals in ground water because oxidation of pyrite and dissolution of siderite were not abated. Throughout the mine, placement of pyritic material near the land surface facilitated the oxidation of pyrite, causing the consumption of oxygen (O2) and release of acid, iron, and sulfate ions. Locally in the unsaturated zone, water sampled within or near pyritic zones was acidic, with concentrations of sulfate exceeding 3,000 milligrams per liter (mg/L). However, acidic conditions generally did not persist below the water table because of neutralization by carbonate minerals. Dissolution of calcite, dolomite, and siderite in unsaturated and saturated zones produced elevated concentrations of carbon dioxide (CO2), alkalinity, calcium, magnesium, iron, and manganese. Alkalinity concentrations of 600 to 800 mg/L as CaCO3 were common in water samples from the unsaturated zone in spoil, and alkalinities of 100 to 400 mg/L as CaCO3 were common in ground-water samples from the underlying saturated zone in spoil and bedrock. Saturation indices indicated that siderite could dissolve in water throughout the spoil, but that calcite dissolution or precipitation could occur locally. Calcite dissolution could be promoted as a result of pyrite oxidation, gypsum precipitation, and calcium ion exchange for sodium. Calcite precipitation could be promoted by evapotranspiration and siderite dissolution, and corresponding increases in concentrations of alkalinity and other solutes. Partial pressures of O2 (Po2) and CO2 (Pco2) in spoil pore gas indicated that oxidation of pyrite and precipitation of ferric hydroxide, coupled with dissolution of calcite, dolomite, and siderite were the primary reactions affecting water quality. Highest vertical gradients in Po2, particularly in the near-surface zone (0-1 m), did not correlate with concentrations of total sulfur in spoil. This lack of correlation could indicate that total sulfur concentrations in spoil do not reflect the amount of reactive pyrite or that oxidation rates can be controlled more by rates of O2 diffusion than the amount of pyrite. Hence, if placed in O2-rich zones near the land surface, even small amounts of disseminated pyritic material can be relatively significant sources of acid and mineralized water.

  15. Transition metal dissolution, ion migration, electrocatalytic reduction and capacity loss in Lithium-ion full cells

    DOE PAGES

    Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.

    2017-01-05

    Continuous operation of full cells with layered transition metal (TM) oxide positive electrodes (NCM523) leads to dissolution of TM ions and their migration and incorporation into the solid electrolyte interphase (SEI) of the graphite-based negative electrode. These processes correlate with cell capacity fade and accelerate markedly as the upper cutoff voltage (UCV) exceeds 4.30 V. At voltages ≥ 4.4 V there is enhanced fracture of the oxide during cycling that creates new surfaces and causes increased solvent oxidation and TM dissolution. Despite this deterioration, cell capacity fade still mainly results from lithium loss in the negative electrode SEI. Among TMs,more » Mn content in the SEI shows a better correlation with cell capacity loss than Co and Ni contents. As Mn ions become incorporated into the SEI, the kinetics of lithium trapping change from power to linear at the higher UCVs, indicating a large effect of these ions on SEI growth and implicating (electro)catalytic reactions. Lastly, we estimate that each Mn II ion deposited in the SEI causes trapping of ~10 2 additional Li + ions thereby hastening the depletion of cyclable lithium ions. Using these results, we sketch a mechanism for cell capacity fade, emphasizing the conceptual picture over the chemical detail.« less

  16. Chemical durability of glaze on Zsolnay architectural ceramics (Budapest, Hungary) in acid solutions

    NASA Astrophysics Data System (ADS)

    Baricza, Ágnes; Bajnóczi, Bernadett; May, Zoltán; Tóth, Mária; Szabó, Csaba

    2015-04-01

    Zsolnay glazed architectural ceramics are among the most famous Hungarian ceramics, however, there is no profound knowledge about the deterioration of these building materials. The present study aims to reveal the influence of acidic solutions in the deterioration of Zsolnay ceramics. The studied ceramics are glazed roof tiles, which originate from two buildings in Budapest: one is located in the densely built-up city centre with high traffic rate and another one is in a city quarter with moderate traffic and more open space. The roof tiles represent the construction and the renovation periods of the buildings. The ceramics were mainly covered by lead glazes in the construction period and mainly alkali glazes in the renovation periods. The glaze of the tiles were coloured with iron (for yellow glaze) or chromium/copper/iron (for green glazes) in the case of the building located in the city centre, whereas cobalt was used as colorant and tin oxide as opacifier for the blue glaze of the ceramics of the other building. Six tiles were selected from each building. Sulphuric acid (H2SO4) solutions of pH2 and pH4 were used to measure the durability of the glazes up to 14 days at room temperature. The surfaces of the glazed ceramics after the treatment were measured by X-ray diffraction, Raman spectroscopy and SEM-EDS techniques to determine the precipitated phases on the surface of the glaze. Electron microprobe analysis was used to quantitatively characterise phases found and to determine the chemical composition of the treated glaze. The recovered sulphuric acid solutions were measured with ICP-OES technique in order to quantify the extent of the ion exchange between the glaze and the solutions. There is a significant difference in the dissolution rates in the treatments with sulphuric acid solutions of pH2 and pH4, respectively. The solution of pH2 induced greater ion exchange (approx. 7-10 times) from the glaze compared to the solution of pH4. Alkali and alkali earth metals and lead indicate the most intensive dissolution. Greater amount of ion-exchange was observed for the lead glaze covering the ceramics from the construction periods of both buildings. Sulphate phases (e.g. anglesite, gypsum, anhydrite) newly appeared on corroded glaze parts and pits are clearly seen on the surface of the ceramics originated especially from the first renovation period of the building located in the city centre.

  17. A procedural manual for measurement of uranium and thorium isotopes utilizing the USGS-Stanford Finnegan Mat 262

    USGS Publications Warehouse

    Shamp, Donald D.

    2001-01-01

    Over the past several decades investigators have extensively examined the 238U-234U- 230Th systematics of a variety of geologic materials using alpha spectroscopy. Analytical uncertainty for 230Th by alpha spectroscopy has been limited to about 2% (2σ). The advantage of thermal ionization mass spectroscopy (TIMS), introduced by Edwards and co-workers in the late 1980’s is the increased detectability of these isotopes by a factor of ~200, and decreases in the uncertainty for 230Th to about 5‰ (2σ) error. This report is a procedural manual for using the USGS-Stanford Finnegan-Mat 262 TIMS to collect and isolate Uranium and Thorium isotopic ratio data. Chemical separation of Uranium and Thorium from the sample media is accomplished using acid dissolution and then processed using anion exchange resins. The Finnegan-Mat262 Thermal Ionization Mass Spectrometer (TIMS) utilizes a surface ionization technique in which nitrates of Uranium and Thorium are placed on a source filament. Upon heating, positive ion emission occurs. The ions are then accelerated and focused into a beam which passes through a curved magnetic field dispersing the ions by mass. Faraday cups and/or an ion counter capture the ions and allow for quantitative analysis of the various isotopes.

  18. Effect of surface chemistries and characteristics of Ti6Al4V on the Ca and P adsorption and ion dissolution in Hank's ethylene diamine tetra-acetic acid solution.

    PubMed

    Chang, E; Lee, T M

    2002-07-01

    This study examined the influence of chemistries and surface characteristics of Ti6Al4V on the adsorption of Ca and P species and ion dissolution behavior of the material exposed in Hank's solution with 8.0 mM ethylene diamine tetra-acetic acid at 37 degrees C. The variation of chemistries of the alloy and nano-surface characteristics (chemistries of nano-surface oxides, amphoteric OH group adsorbed on oxides, and oxide thickness) was effected by surface modification and three passivation methods (34% nitric acid passivation. 400 degrees C heated in air, and aged in 100 degrees C water). X-ray photoelectron spectroscopy and Auger electron spectroscopy were used for surface analyses. The chemistries of nano-surface oxides in a range studied should not change the capability of Ca and P adsorption. Nor is the capability affected significantly by amphoteric OH group and oxide thickness. However, passivations influence the surface oxide thickness and the early stage ion dissolution rate of the alloy. The rate-limiting step of the rate can be best explained by metal-ion transport through the oxide film, rather than hydrolysis of the film. Variation of the chemistries of titanium alloy alters the electromotive force potential of the metal, thereby affecting the corrosion and ion dissolution rate.

  19. Oxidative dissolution of silver nanoparticles: A new theoretical approach.

    PubMed

    Adamczyk, Zbigniew; Oćwieja, Magdalena; Mrowiec, Halina; Walas, Stanisław; Lupa, Dawid

    2016-05-01

    A general model of an oxidative dissolution of silver particle suspensions was developed that rigorously considers the bulk and surface solute transport. A two-step surface reaction scheme was proposed that comprises the formation of the silver oxide phase by direct oxidation and the acidic dissolution of this phase leading to silver ion release. By considering this, a complete set of equations is formulated describing oxygen and silver ion transport to and from particles' surfaces. These equations are solved in some limiting cases of nanoparticle dissolution in dilute suspensions. The obtained kinetic equations were used for the interpretation of experimental data pertinent to the dissolution kinetics of citrate-stabilized silver nanoparticles. In these kinetic measurements the role of pH and bulk suspension concentration was quantitatively evaluated by using the atomic absorption spectrometry (AAS). It was shown that the theoretical model adequately reflects the main features of the experimental results, especially the significant increase in the dissolution rate for lower pH. Also the presence of two kinetic regimes was quantitatively explained in terms of the decrease in the coverage of the fast dissolving oxide layer. The overall silver dissolution rate constants characterizing these two regimes were determined. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. On the influence of etch pits in the overall dissolution rate of apatite basal sections

    NASA Astrophysics Data System (ADS)

    Alencar, Igor; Guedes, Sandro; Palissari, Rosane; Hadler, Julio C.

    2015-09-01

    Determination of efficiencies for particle detection plays a central role for proper estimation of reaction rates. If chemical etching is employed in the revelation of latent particle tracks in solid-state detectors, dissolution rates and etchable lengths are important factors governing the revelation and observation. In this work, the mask method, where a reference part of the sample is protected during dissolution, was employed to measure step heights in basal sections of apatite etched with a nitric acid, HNO, solution at a concentration of 1.1 M and a temperature of 20 °C. We show a drastic increase in the etching velocity as the number of etch pits in the surface augments, in accordance with the dissolution stepwave model, where the outcrop of each etch pit generates a continuous sequence of stepwaves. The number of etch pits was varied by irradiation with neutrons and perpendicularly incident heavy ions. The size dependence of the etch-pit opening with etching duration for ion (200-300 MeV 152Sm and 238U) tracks was also investigated. There is no distinction for the etch pits between the different ions, and the dissolution seems to be governed by the opening velocity when a high number of etch pits are present in the surface. Measurements of the etchable lengths of these ion tracks show an increase in these lengths when samples are not pre-annealed before irradiation. We discuss the implications of these findings for fission-track modelling.

  1. Determination of filter pore size for use in HB line phase II production of plutonium oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shehee, T.; Crowder, M.; Rudisill, T.

    2014-08-01

    H-Canyon and HB-Line are tasked with the production of plutonium oxide (PuO 2) from a feed of plutonium (Pu) metal. The PuO 2 will provide feed material for the Mixed Oxide (MOX) Fuel Fabrication Facility. After dissolution of the Pu metal in H-Canyon, plans are to transfer the solution to HB-Line for purification by anion exchange. Anion exchange will be followed by plutonium(IV) oxalate precipitation, filtration, and calcination to form PuO 2. The filtrate solutions, remaining after precipitation, contain low levels of Pu ions, oxalate ions, and may include solids. These solutions are transferred to H-Canyon for disposition. To mitigatemore » the criticality concern of Pu solids in a Canyon tank, past processes have used oxalate destruction or have pre-filled the Canyon tank with a neutron poison. The installation of a filter on the process lines from the HB-Line filtrate tanks to H-Canyon Tank 9.6 is proposed to remove plutonium oxalate solids. This report describes SRNL’s efforts to determine the appropriate pore size for the filters needed to perform this function. Information provided in this report aids in developing the control strategies for solids in the process.« less

  2. Biopharmaceutical characterisation of ciprofloxacin-metallic ion interactions: comparative study into the effect of aluminium, calcium, zinc and iron on drug solubility and dissolution.

    PubMed

    Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I

    2014-03-01

    Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.

  3. The impact of river infiltration on the chemistry of shallow groundwater in a reclaimed water irrigation area.

    PubMed

    Yin, Shiyang; Wu, Wenyong; Liu, Honglu; Bao, Zhe

    2016-10-01

    Reclaimed water reuse is an effective method of alleviating agricultural water shortages, which entails some potential risks for groundwater. In this study, the impacts of wastewater reuse on groundwater were evaluated by combination of groundwater chemistry and isotopes. In reclaimed water infiltration, salt composition was affected not only by ion exchange and dissolution equilibrium but also by carbonic acid equilibrium. The dissolution and precipitation of calcites and dolomites as well as exchange and adsorption between Na and Ca/Mg were simultaneous, leading to significant changes in Na/Cl, (Ca+Mg)/Cl, electrical conductivity (EC) and sodium adsorption ratio (SAR). The reclaimed water was of the Na-Mg-Ca-HCO 3 -Cl type, and groundwater recharged by reclaimed water was of the Na-Mg-HCO 3 and Mg-Na-HCO 3 types. The hydrogeological conditions characterized by sand-clay alternation led to both total nitrogen (TN) and total phosphorus (TP) removal efficiencies >95%, and there was no significant difference in those contents between aquifers recharged by precipitation and reclamation water. >40years of long-term infiltration and recharge from sewage and reclaimed water did not cause groundwater contamination by nitrogen, phosphorus and heavy metals. These results indicate that characteristics of the study area, such as the lithologic structure with sand-clay alternation, relatively thick clay layer, and relatively large groundwater depth have a significant role in the high vulnerability. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Chemical denudation and the role of sulfide oxidation at Werenskioldbreen, Svalbard

    NASA Astrophysics Data System (ADS)

    Stachnik, Łukasz; Majchrowska, Elżbieta; Yde, Jacob C.; Nawrot, Adam P.; Cichała-Kamrowska, Katarzyna; Ignatiuk, Dariusz; Piechota, Agnieszka

    2016-07-01

    This study aims to determine the rate of chemical denudation and the relationships between dominant geochemical reactions operating in the proglacial and subglacial environments of the polythermal glacier Werenskioldbreen (SW Svalbard) during an entire ablation season. Water sampling for major ion chemistry was performed at a proglacial hydrometric station and from subglacial outflows from May to September 2011. These data were combined with measurements of discharge and supraglacial ablation rates. The slopes and intercepts in best-fit regressions of [*Ca2+ + *Mg2+ vs. *SO42-] and [HCO3- vs. *SO42-] in meltwater from ice-marginal subglacial channels were close to the stoichiometric parameters of sulfide oxidation and simple hydrolysis coupled to carbonate dissolution (*concentrations corrected for input of sea-salt). This shows that these relationships predominates the meltwater chemistry. Our findings also show that sulfide oxidation is a better indicator of the configuration of subglacial drainage systems than, for instance, Na+ and K+. In the proglacial area and in sub-artesian outflows, the ion associations represent sulfide oxidation but other processes such as ion exchange and dissolution of Ca and Mg efflorescent salts may also contribute to the solute variations. These processes may cause enhanced fluxes of Ca2+ and HCO3- from glacierized basins during the early ablation and peak flow seasons as the proglacial salts re-dissolve. The overall chemical denudation rate in the basin for 2011 (ranging from 1601 to 1762 meq m-2 yr-1 (121.9 to 132.2 t km-2 yr-1)) was very high when compared to other Svalbard valley glaciers suggesting that the high rate of chemical denudation was mostly caused by the high rates of discharge and ablation. Chemical weathering intensities (876 and 964 meq m-3 yr-1) exceeded previously reported intensities in Svalbard.

  5. Reduction of liquid metal embrittlement in copper-brazed stainless steel joints

    NASA Astrophysics Data System (ADS)

    Uhlig, T.; Fedorov, V.; Elßner, M.; Wagner, G.; Weis, S.

    2017-03-01

    Due to its very good formability and the low raw material cost, pure copper in form of foils is commonly used to braze plate heat exchangers made of stainless steel. The difference in the electrochemical potentials of brazing filler and base material leads to corrosion effects in contact with electrolytes. This may lead to leakages, which decrease the reliability of the heat exchanger during service in potable water. The dissolution of the emerging corrosion products of brazing filler and base material induces the migration of heavy metal ions, such as Cu2+ and Ni2+, into the potable water. The so-called liquid metal embrittlement, which takes place during the brazing process, may intensify the corrosion. The brazing filler infiltrates the stainless steel along the grain boundaries and causes an embrittlement. This paper deals with the determination of the grain boundary erosion dependent on the degree of deformation and heat treatment of the stainless steel AISI 316L.

  6. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.

    PubMed

    Zhang, Chiqian; Hu, Zhiqiang; Deng, Baolin

    2016-01-01

    Nanosilver (silver nanoparticles or AgNPs) has unique physiochemical properties and strong antimicrobial activities. This paper provides a comprehensive review of the physicochemical behavior (e.g., dissolution and aggregation) and antimicrobial mechanisms of nanosilver in aquatic environments. The inconsistency in calculating the Gibbs free energy of formation of nanosilver [ΔGf(AgNPs)] in aquatic environments highlights the research needed to carefully determine the thermodynamic stability of nanosilver. The dissolutive release of silver ion (Ag(+)) in the literature is often described using a pseudo-first-order kinetics, but the fit is generally poor. This paper proposes a two-stage model that could better predict silver ion release kinetics. The theoretical analysis suggests that nanosilver dissolution could occur under anoxic conditions and that nanosilver may be sulfidized to form silver sulfide (Ag2S) under strict anaerobic conditions, but more investigation with carefully-designed experiments is required to confirm the analysis. Although silver ion release is likely the main antimicrobial mechanism of nanosilver, the contributions of (ion-free) AgNPs and reactive oxygen species (ROS) generation to the overall toxicity of nanosilver must not be neglected. Several research directions are proposed to better understand the dissolution kinetics of nanosilver and its antimicrobial mechanisms under various aquatic environmental conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Montmorillonite dissolution kinetics: Experimental and reactive transport modeling interpretation

    NASA Astrophysics Data System (ADS)

    Cappelli, Chiara; Yokoyama, Shingo; Cama, Jordi; Huertas, F. Javier

    2018-04-01

    The dissolution kinetics of K-montmorillonite was studied at 25 °C, acidic pH (2-4) and 0.01 M ionic strength by means of well-mixed flow-through experiments. The variations of Si, Al and Mg over time resulted in high releases of Si and Mg and Al deficit, which yielded long periods of incongruent dissolution before reaching stoichiometric steady state. This behavior was caused by simultaneous dissolution of nanoparticles and cation exchange between the interlayer K and released Ca, Mg and Al and H. Since Si was only involved in the dissolution reaction, it was used to calculate steady-state dissolution rates, RSi, over a wide solution saturation state (ΔGr ranged from -5 to -40 kcal mol-1). The effects of pH and the degree of undersaturation (ΔGr) on the K-montmorillonite dissolution rate were determined using RSi. Employing dissolution rates farthest from equilibrium, the catalytic pH effect on the K-montmorillonite dissolution rate was expressed as Rdiss = k·aH0.56±0.05 whereas using all dissolution rates, the ΔGr effect was expressed as a non-linear f(ΔGr) function Rdiss = k · [1 - exp(-3.8 × 10-4 · (|ΔGr|/RT)2.13)] The functionality of this expression is similar to the equations reported for dissolution of Na-montmorillonite at pH 3 and 50 °C (Metz, 2001) and Na-K-Ca-montmorillonite at pH 9 and 80 °C (Cama et al., 2000; Marty et al., 2011), which lends support to the use of a single f(ΔGr) term to calculate the rate over the pH range 0-14. Thus, we propose a rate law that also accounts for the effect of pOH and temperature by using the pOH-rate dependence and the apparent activation energy proposed by Rozalén et al. (2008) and Amram and Ganor (2005), respectively, and normalizing the dissolution rate constant with the edge surface area of the K-montmorillonite. 1D reactive transport simulations of the experimental data were performed using the Crunchflow code (Steefel et al., 2015) to quantitatively interpret the evolution of the released cations and to elucidate the stoichiometry of the reaction. After the implementation of (i) the obtained f(ΔGr) term in the K-montmorillonte dissolution rate law, (ii) a fraction of highly reactive particles and surfaces and (iii) the cation exchange reactions between the interlayer K+ and the released Al3+, Mg2+, Ca2+ and H+, the simulations agreed with the experimental concentrations at the outlet. This match indicates that fast dissolution of fine particles and highly reactive sites and exchange between the interlayer K and dissolved structural cations (Al and Mg) and protons are responsible for the temporary incongruency of the K-montmorillonite dissolution reaction. As long as dissolution of the bulk sample predominates, the reaction is stoichiometric.

  8. Dissolution of used nuclear fuel using recycled nitric acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almond, Philip M.; Daniel, Jr., William E.; Rudisill, Tracy S.

    An evaluation was performed on the feasibility of using HB-Line anion exchange column waste streams from Alternate Feedstock 2 (AFS-2) processing for the dissolver solution for used nuclear fuel (UNF) processing. The targeted UNF for dissolution using recycled solution are fuels similar to the University of Missouri Research Reactor (MURR) fuel. Furthermore, the objectives of this experimental program were to validate the feasibility of using impure dissolver solutions with the MURR dissolution flowsheet to verify they would not significantly affect dissolution of the UNF in a detrimental manner.

  9. Dissolution of used nuclear fuel using recycled nitric acid

    DOE PAGES

    Almond, Philip M.; Daniel, Jr., William E.; Rudisill, Tracy S.

    2017-03-20

    An evaluation was performed on the feasibility of using HB-Line anion exchange column waste streams from Alternate Feedstock 2 (AFS-2) processing for the dissolver solution for used nuclear fuel (UNF) processing. The targeted UNF for dissolution using recycled solution are fuels similar to the University of Missouri Research Reactor (MURR) fuel. Furthermore, the objectives of this experimental program were to validate the feasibility of using impure dissolver solutions with the MURR dissolution flowsheet to verify they would not significantly affect dissolution of the UNF in a detrimental manner.

  10. Chemically differentiating ascorbate-mediated dissolution of quantum dots in cell culture media

    NASA Astrophysics Data System (ADS)

    Su, Cheng-Kuan; Sun, Yuh-Chang

    2013-02-01

    To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule.To investigate the dynamic dissolution of quantum dots (QDs) in cell culture media, in this study we constructed an online automatic analytical system comprising a sequential in-tube solid phase extraction (SPE) device and an inductively coupled plasma (ICP) mass spectrometer. By means of selectively extracting QDs and cadmium ions (Cd2+) onto the interior surface of the polytetrafluoroethylene (PTFE) tube, this novel SPE device could be used to determine the degree of QD dissolution through a simple adjustment of sample acidity. To the best of our knowledge, this study is the first to exploit PTFE tubing as a selective SPE adsorbent for the online chemical differentiation of QDs and Cd2+ ions with the goal of monitoring the phenomenon of QD dissolution in complicated biological matrices. We confirmed the analytical reliability of this system through comparison of the measured Cd-to-QD ratios to the expected values. When analyzing QDs and Cd2+ ions at picomolar levels, a temporal resolution of 8 min was required to load sufficient amounts of the analytes to meet the sensitivity requirements of the ICP mass spectrometer. To demonstrate the practicability of this developed method, we measured the dynamic variations in the Cd-to-QD705 ratio in the presence of ascorbate as a physiological stimulant to generate reactive oxygen species in cell culture media and trigger the dissolution of QDs; our results suggest that the ascorbate-induced QD dissolution was dependent on the time, treatment concentration, and nature of the biomolecule. Electronic supplementary information (ESI) available: The operation sequence, optimized parameters, instrumental operation conditions, and schematic representations for the proposed sequential in-tube PTFE SPE-ICP-MS hyphenated system are provided. See DOI: 10.1039/c2nr33365a

  11. The recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor.

    PubMed

    Ren, Xiulian; Wei, Qifeng; Hu, Surong; Wei, Sijie

    2010-09-15

    This paper reports the optimization of the process parameters for recovery of zinc from hot galvanizing slag in an anion-exchange membrane electrolysis reactor. The experiments were carried out in an ammoniacal ammonium chloride system. The influence of composition of electrolytes, pH, stirring rate, current density and temperature, on cathodic current efficiency, specific power consumption and anodic dissolution of Zn were investigated. The results indicate that the cathode current efficiency increases and the hydrogen evolution decreased with increasing the cathode current density. The partial current for electrodeposition of Zn has liner relationship with omega(1/2) (omega: rotation rate). The highest current efficiency for dissolving zinc was obtained when NH(4)Cl concentration was 53.46 g L(-1) and the anodic dissolution of zinc was determined by mass transfer rate at stirring rate 0-300 r min(-1). Increase in temperature benefits to improve CE and dissolution of Zn, and reduce cell voltage. Initial pH of electrolytes plays an important role in the deposition and anodic dissolution of Zn. The results of single factor experiment show that about 50% energy consumption was saved for electrodeposition of Zn in the anion-exchange membrane electrolysis reactor. Copyright 2010 Elsevier B.V. All rights reserved.

  12. Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India.

    PubMed

    Rajmohan, Natarajan; Patel, Neelam; Singh, Gaurav; Amarasinghe, Upali A

    2017-09-01

    Groundwater samples were collected from 44 wells in the Ramganga Sub-Basin (RSB), India, and analysed for major ions, nutrients and trace metals. The primary goal of this study is to evaluate the hydrochemistry and to identify the geochemical processes that govern the water chemistry in the shallow and deep tube wells in the study area using geochemical methods. The knowledge of changes in hydrochemistry of the aquifers is important for both groundwater recharge and use in the region. This study found that there are substantial differences of water chemistry between shallow and deep wells. In the shallow wells, the average concentrations of total dissolved solid (TDS), Na, K, Ca, Mg, HCO 3 , Cl, SO 4 , NO 3 , PO 4 , F, Cu, Mn, Fe and Cr are twofold higher than the deep wells. The concentrations of dissolved silica in the groundwater do not vary with the depth, which implies that the variation in the water chemistry is not due to mineral dissolution alone. Major ion ratios and saturation indices suggest that the water chemistry is predominantly controlled by dissolution of carbonate minerals, silicate weathering and ion exchange reactions. Thermodynamic evaluation (ion activity ratios and stability filed diagrams) indicates that the kaolinite and gibbsite controlled the water chemistry in the both shallow and deep wells. In addition, the groundwater chemistry in the shallow wells is affected by the vertical infiltration of contaminated water from surface contamination sources and nitrification process. In the deep wells, absence of NO 3 and low concentrations of Cl, SO 4 , PO 4 and F imply the role of regional flow and denitrification in the groundwater. Results concluded that proper management plan is necessary to protect the shallow aquifer in the RSB since shallow aquifer pumping is less expensive than the deeper one.

  13. Inverse geochemical modeling of groundwater evolution with emphasis on arsenic in the Mississippi River Valley alluvial aquifer, Arkansas (USA)

    USGS Publications Warehouse

    Sharif, M.U.; Davis, R.K.; Steele, K.F.; Kim, B.; Kresse, T.M.; Fazio, J.A.

    2008-01-01

    Inverse geochemical modeling (PHREEQC) was used to identify the evolution of groundwater with emphasis on arsenic (As) release under reducing conditions in the shallow (25-30 m) Mississippi River Valley Alluvial aquifer, Arkansas, USA. The modeling was based on flow paths defined by high-precision (??2 cm) water level contour map; X-ray diffraction (XRD), scanning electron microscopic (SEM), and chemical analysis of boring-sediments for minerals; and detailed chemical analysis of groundwater along the flow paths. Potential phases were constrained using general trends in chemical analyses data of groundwater and sediments, and saturation indices data (MINTEQA2) of minerals in groundwater. Modeling results show that calcite, halite, fluorite, Fe oxyhydroxide, organic matter, H2S (gas) were dissolving with mole transfers of 1.40E - 03, 2.13E - 04, 4.15E - 06, 1.25E + 01, 3.11, and 9.34, respectively along the dominant flow line. Along the same flow line, FeS, siderite, and vivianite were precipitating with mole transfers of 9.34, 3.11, and 2.64E - 07, respectively. Cation exchange reactions of Ca2+ (4.93E - 04 mol) for Na+ (2.51E - 04 mol) on exchange sites occurred along the dominant flow line. Gypsum dissolution reactions were dominant over calcite dissolution in some of the flow lines due to the common ion effect. The concentration of As in groundwater ranged from <0.5 to 77 ??g/L. Twenty percent total As was complexed with Fe and Mn oxyhydroxides. The redox environment, chemical data of sediments and groundwater, and the results of inverse geochemical modeling indicate that reductive dissolution of Fe oxyhydroxide is the dominant process of As release in the groundwater. The relative rate of reduction of Fe oxyhydroxide over SO42 - with co-precipitation of As into sulfide is the limiting factor controlling dissolved As in groundwater. ?? 2007 Elsevier B.V. All rights reserved.

  14. Stochastic Simulation of Isotopic Exchange Mechanisms for Fe(II)-Catalyzed Recrystallization of Goethite.

    PubMed

    Zarzycki, Piotr; Rosso, Kevin M

    2017-07-05

    Understanding Fe(II)-catalyzed transformations of Fe(III)-(oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014 , 48 , 11302 - 11311 ; Joshi and Gorski Environ. Sci. Technol. 2016 , 50 , 7315 - 7324 ), we developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ∼10 -5 Fe nm -2 s -1 , commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.

  15. Barium isotope fractionation during witherite (BaCO3) dissolution, precipitation and at equilibrium

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; van Zuilen, Kirsten; Purgstaller, Bettina; Baldermann, Andre; Nägler, Thomas F.; Dietzel, Martin

    2016-10-01

    This study examines the behavior of Ba isotope fractionation between witherite and fluid during mineral dissolution, precipitation and at chemical equilibrium. Experiments were performed in batch reactors at 25 °C in 10-2 M NaCl solution where the pH was adjusted by continuous bubbling of a water saturated gas phase of CO2 or atmospheric air. During witherite dissolution no Ba isotope fractionation was observed between solid and fluid. In contrast, during witherite precipitation, caused by a pH increase, a preferential uptake of the lighter 134Ba isotopomer in the solid phase was observed. In this case, the isotope fractionation factor αwitherite-fluid is calculated to be 0.99993 ± 0.00004 (or Δ137/134Bawitherite-fluid ≈ -0.07 ± 0.04‰, 2 sd). The most interesting feature of this study, however, is that after the attainment of chemical equilibrium, the Ba isotope composition of the aqueous phase is progressively becoming lighter, indicating a continuous exchange of Ba2+ ions between witherite and fluid. Mass balance calculations indicate that the detachment of Ba from the solid is not only restricted to the outer surface layer of the solid, but affects several (∼7 unit cells) subsurface layers of the crystal. This observation comes in excellent agreement with the concept of a dynamic system at chemical equilibrium in a mineral-fluid system, denoting that the time required for the achievement of isotopic equilibrium in the witherite-fluid system is longer compared to that observed for chemical equilibrium. Overall, these results indicate that the isotopic composition of Ba bearing carbonates in natural environments may be altered due to changes in fluid composition without a net dissolution/precipitation to be observed.

  16. Reduction of Mn-oxides by ferrous iron in a flow system: column experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Postma, D.; Appelo, C. A. J.

    2000-04-01

    The reduction of Mn-oxide by Fe2+ was studied in column experiments, using a column filled with natural Mn-oxide coated sand. Analysis of the Mn-oxide indicated the presence of both Mn(III) and Mn(IV) in the Mn-oxide. The initial exchange capacity of the column was determined by displacement of adsorbed Ca2+ with Mg2+. Subsequently a FeCl2 solution was injected into the column causing the reduction of the Mn-oxide and the precipitation of Fe(OH)3. Finally the exchange capacity of the column containing newly formed Fe(OH)3 was determined by injection of a KBr solution. During injection of the FeCl2 solution into the column, an ion distribution pattern was observed in the effluent that suggests the formation of separate reaction fronts for Mn(III)-oxide and Mn(IV)-oxide travelling at different velocities through the column. At the proximal reaction front, Fe2+ reacts with MnO2 producing Fe(OH)3, Mn2+ and H+. The protons are transported downstream and cause the disproportionation of MnOOH at a separate reaction front. Between the two Mn reaction fronts, the dissolution and precipitation of Fe(OH)3 and Al(OH)3 act as proton buffers. Reactive transport modeling, using the code PHREEQC 2.0, was done to quantify and analyze the reaction controls and the coupling between transport and chemical processes. A model containing only mineral equilibria constraints for birnessite, manganite, gibbsite, and ferrihydrite, was able to explain the overall reaction pattern with the sequential appearance of Mn2+, Al3+, Fe3+, and Fe2+ in the column outlet solution. However, the initial breakthrough of a peak of Ca2+ and the observed pH buffering indicated that exchange processes were of importance as well. The amount of potential exchangers, such as birnessite and ferrihydrite, did vary in the course of the experiment. A model containing surface complexation coupled to varying concentrations of birnessite and ferrihydrite and a constant charge exchanger in addition to mineral equilibria provided a satisfactory description of the distribution of all solutes in time and space. However, the observed concentration profiles are more gradual than indicated by the equilibrium model. Reaction kinetics for the dissolution of MnO2 and MnOOH and dissolution of Al(OH)3 were incorporated in the model, which explained the shape of the breakthrough curves satisfactorily. The results of this study emphasize the importance of understanding the interplay between chemical reactions and transport in addition to interactions between redox, proton buffering, and adsorption processes when dealing with natural sediments. Reactive transport modeling is a powerful tool to analyze and quantify such interactions.

  17. Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: dissolution behaviour and biological properties after crystallisation.

    PubMed

    Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C

    2014-01-01

    Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.

  18. Hydrochemistry of surface water and groundwater in the shale bedrock, Cross River Basin and Niger Delta Region, Nigeria

    NASA Astrophysics Data System (ADS)

    Nganje, T. N.; Hursthouse, A. S.; Edet, Aniekan; Stirling, D.; Adamu, C. I.

    2017-05-01

    Water chemistry in the shale bedrock of the Cretaceous-Tertiary of the Cross River and Niger Delta hydrological basins has been investigated using major ions. To carry out a characterization of the water bearing units, 30 and 16 representatives surface and groundwater samples were collected. The evolution of the water is characterized by enhanced content of sodium, calcium and sulphate as a result of leaching of shale rock. The spatial changes in groundwater quality of the area shows an anomalous concentrations of ions in the central parts, while lower values characterize the eastern part of the basin covering Ogoja, Ikom and Odukpani areas. The values of total dissolved solids (TDS) and ions increases down gradient in the direction of groundwater flow. The dissolution of halite and gypsum explains part of the contained Na+, Ca2+, Cl- and SO4 2-, but other processes such as ion exchange, silicate weathering and pyrite oxidation also contribute to water composition. The assessment with contamination indicators such as TDS, hardness, chloride, nitrate and sulphate indicates that the water in area is suitable for human consumption in some locations. Modelling using MINTEQA2 program shows that the water from all the shale water bearing units are under saturated with respect to gypsum.

  19. Multicomponent diffusion in basaltic melts at 1350 °C

    NASA Astrophysics Data System (ADS)

    Guo, Chenghuan; Zhang, Youxue

    2018-05-01

    Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.

  20. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    NASA Astrophysics Data System (ADS)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  1. Distribution and source of barium in ground water at Cattaraugus Indian Reservation, southwestern New York

    USGS Publications Warehouse

    Moore, R.B.; Staubitz, W.W.

    1984-01-01

    High concentrations of dissolved barium have been found in ground water from bedrock wells on the Seneca Nation of Indians Reservation on Cattaraugus Creek in southwestern New York. Concentrations in 1982 were as high as 23.0 milligrams per liter , the highest found reported from any natural ground-water system in the world. The highest concentrations are in a bedrock aquifer and in small lenses of saturated gravel between bedrock and the overlying till. The bedrock aquifer is partly confined by silt, clay, and till. The high barium concentrations are attributed to dissolution of the mineral barite (BaSO4), which is present in the bedrock and possibly in overlying silt, clay, or till. The dissolution of barite seems to be controlled by action of sulfate-reducing bacteria, which alter the BaSO4 equilibrium by removing sulfate ions and permitting additional barite to dissolve. Ground water from the surficial, unconsolidated deposits and surface water in streams contain little or no barium. Because barium is chemically similar to calcium, it probably could be removed by cation exchange or treatments similar to those used for water softening. (USGS)

  2. The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel

    DOE PAGES

    Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.; ...

    2017-11-21

    Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less

  3. The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.

    Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less

  4. Calcite Dissolution Kinetics

    NASA Astrophysics Data System (ADS)

    Berelson, W.; Subhas, A.; Dong, S.; Naviaux, J.; Adkins, J. F.

    2016-12-01

    A geological buffer for high atmospheric CO2 concentrations is neutralization via reaction with CaCO3. We have been studying the dissolution kinetics of carbonate minerals using labeled 13C calcite and Picarro-based measurements of 13C enrichments in solution DIC. This methodology has greatly facilitated our investigation of dissolution kinetics as a function of water carbonate chemistry, temperature and pressure. One can adjust the saturation state Omega by changing the ion activity product (e.g. adjusting carbonate ion concentration), or by changing the solubility product (e.g. adjusting temperature or pressure). The canonical formulation of dissolution rate vs. omega has been refined (Subhas et al. 2015) and shows distinct non-linear behavior near equilibrium and rates in sea water of 1-3 e-6 g/cm2day at omega = 0.8. Carbonic anhydrase (CA), an enzyme that catalyzes the hydration of dissolved CO2 to carbonic acid, was shown (in concentrations <=0.04 g/L) to enhance the dissolution rate at low degrees of undersaturation by >500x. This result points to the importance of carbonic acid in enhancing dissolution at low degrees of undersaturation. CA activity and abundance in nature must be considered regarding the role it plays in catalyzing dissolution. We also have been investigating the role of temperature on dissolution kinetics. An increase of 16C yields an order of magnitude increase in dissolution rate. Temperature (and P) also change Omega critical, the saturation state where dissolution rates change substantially. Increasing pressure (achieved in a pressure reaction chamber we built) also shifts Omega critical closer to equilibrium and small pressure increases have large impact on dissolution kinetics. Dissolution rates are enhanced by an order of magnitude for a change in pressure of 1500 psi relative to the dissolution rate achieved by water chemistry effects alone for an omega of 0.8. We've shown that the thermodynamic determination of saturation state does not adequately describe the kinetics of dissolution. The interplay of mineral composition and surface area, solution carbonate chemistry, temperature and pressure are factors the impact carbonate dissolution rates in natural settings. We suggest that these parameters be considered in CO2 mitigation strategies.

  5. Interpenetrating polymer network ion exchange membranes and method for preparing same

    DOEpatents

    Alexandratos, Spiro D.; Danesi, Pier R.; Horwitz, E. Philip

    1989-01-01

    Interpenetrating polymer network ion exchange membranes include a microporous polymeric support film interpenetrated by an ion exchange polymer and are produced by absorbing and polymerizing monomers within the support film. The ion exchange polymer provides ion exchange ligands at the surface of and throughout the support film which have sufficient ligand mobility to extract and transport ions across the membrane.

  6. Halophytes--an emerging trend in phytoremediation.

    PubMed

    Manousaki, Eleni; Kalogerakis, Nicolas

    2011-01-01

    Halophytic plants are of special interest because these plants are naturally present in environments characterized by an excess of toxic ions, mainly sodium and chloride. Several studies have revealed that these plants may also tolerate other stresses including heavy metals based on the findings that tolerance to salt and to heavy metals may, at least partly, rely on common physiological mechanisms. In addition, it has been shown that salt-tolerant plants may also be able to accumulate metals. Therefore, halophytes have been suggested to be naturally better adapted to cope with environmental stresses, including heavy metals compared to salt-sensitive crop plants commonly chosen for phytoextraction purposes. Thus, potentially halophytes are ideal candidates for phytoextraction orphytostabilization of heavy metal polluted soils and moreover of heavy metal polluted soils affected by salinity. Some halophytes use excretion processes in order to remove the excess of salt ions from their sensitive tissues and in some cases these glandular structures are not always specific to Na+ and Cl- and other toxic elements such as cadmium, zinc, lead, or copper are accumulated and excreted by salt glands or trichomes on the surface of the leaves--a novel phytoremediation process called "phytoexcretion". Finally, the use of halophytes has also been proposed for soil desalination through salt accumulation in the plant tissue or dissolution of soil calcite in the rhizosphere to provide Ca2+ that can be exchanged with Na+ at cation exchange sites.

  7. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1988-01-01

    This invention relates to a method for improving the performance of liquid membrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selective for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  8. Liquid membrane coated ion-exchange column solids

    DOEpatents

    Barkey, Dale P.

    1989-01-01

    This invention relates to a method for improving the performance of liquid embrane separations by coating a liquid membrane onto solid ion-exchange resin beads in a fixed bed. Ion-exchange beads fabricated from an ion-exchange resin are swelled with water and are coated with a liquid membrane material that forms a film over the beads. The beads constitute a fixed bed ion-exchange column. Fluid being treated that contains the desired ion to be trapped by the ion-exchange particle is passed through the column. A carrier molecule, contained in the liquid membrane ion-exchange material, is selected for the desired ion in the fluid. The carrier molecule forms a complex with the desired ion, transporting it through the membrane and thus separating it from the other ions. The solution is fed continuously until breakthrough occurs at which time the ion is recovered, and the bed is regenerated.

  9. Influence of Organic Ligands on the Surface Oxidation State and Magnetic Properties of Iron Oxide Particles

    NASA Astrophysics Data System (ADS)

    Goroncy, Christian; Saloga, Patrick E. J.; Gruner, Mathias; Schmudde, Madlen; Vonnemann, Jonathan; Otero, Edwige; Haag, Rainer; Graf, Christina

    2018-05-01

    For the application of iron oxide nanoparticles from thermal decomposition approaches as contrast agents in magnetic resonance imaging (MRI), their initial hydrophobic ligands have to be replaced by hydrophilic ones. This exchange can influence the surface oxidation state and the magnetic properties of the particles. Here, the effect of the anchor group of three organic ligands, citric acid and two catechols, dihydrocaffeic acid and its nitrated derivative nitro dihydrocaffeic acid on iron oxide nanoparticles is evaluated. The oleate ligands of Fe3O4/γ-Fe2O3 nanoparticles prepared by the thermal decomposition of iron oleate were exchanged against the hydrophilic ligands. X-ray absorption spectroscopy, especially X-ray magnetic circular dichroism (XMCD) measurements in the total electron yield (TEY) mode was used to investigate local magnetic and electronic properties of the particles' surface region before and after the ligand exchange. XMCD was combined with charge transfer multiplet calculations which provide information on the contributions of Fe2+ and Fe3+ at different lattice sites, i.e. either in tetrahedral or octahedral environment. The obtained data demonstrate that nitro hydrocaffeic acid leads to least reduction of the magnetizability of the surface region of the iron oxide nanoparticles compared to the two other ligands. For all hydrophilic samples, the proportion of Fe3+ ions in octahedral sites increases at the expense of the Fe2+ in octahedral sites whereas the percentage of Fe3+ in tetrahedral sites hardly changes. These observations suggest that an oxidation process took place, but a selective decrease of the Fe2+ ions in octahedral sites ions due to surface dissolution processes is unlikely. The citrate ligand has the least oxidative effect, whereas the degree of oxidation was similar for both catechol ligands regardless of the nitro group. Twenty-four hours of incubation in isotonic saline has nearly no influences on the magnetic properties of the nanoparticles, the least on those with the nitrated hydrocaffeic acid ligand.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarzycki, Piotr; Rosso, Kevin M.

    Understanding Fe(II)-catalyzed transformations of Fe(III)- (oxyhydr)oxides is critical for correctly interpreting stable isotopic distributions and for predicting the fate of metal ions in the environment. Recent Fe isotopic tracer experiments have shown that goethite undergoes rapid recrystallization without phase change when exposed to aqueous Fe(II). The proposed explanation is oxidation of sorbed Fe(II) and reductive Fe(II) release coupled 1:1 by electron conduction through crystallites. Given the availability of two tracer exchange data sets that explore pH and particle size effects (e.g., Handler et al. Environ. Sci. Technol. 2014, 48, 11302-11311; Joshi and Gorski Environ. Sci. Technol. 2016, 50, 7315-7324), wemore » developed a stochastic simulation that exactly mimics these experiments, while imposing the 1:1 constraint. We find that all data can be represented by this model, and unifying mechanistic information emerges. At pH 7.5 a rapid initial exchange is followed by slower exchange, consistent with mixed surface- and diffusion-limited kinetics arising from prominent particle aggregation. At pH 5.0 where aggregation and net Fe(II) sorption are minimal, that exchange is quantitatively proportional to available particle surface area and the density of sorbed Fe(II) is more readily evident. Our analysis reveals a fundamental atom exchange rate of ~10-5 Fe nm-2 s-1, commensurate with some of the reported reductive dissolution rates of goethite, suggesting Fe(II) release is the rate-limiting step in the conduction mechanism during recrystallization.« less

  11. Biological Impact of Bioactive Glasses and Their Dissolution Products.

    PubMed

    Hoppe, Alexander; Boccaccini, Aldo R

    2015-01-01

    For many years, bioactive glasses (BGs) have been widely considered for bone tissue engineering applications due to their ability to bond to hard as well as soft tissue (a property termed bioactivity) and for their stimulating effects on bone formation. Ionic dissolution products released during the degradation of the BG matrix induce osteogenic gene expression leading to enhanced bone regeneration. Recently, adding bioactive metallic ions (e.g. boron, copper, cobalt, silver, zinc and strontium) to silicate (or phosphate and borate) glasses has emerged as a promising route for developing novel BG formulations with specific therapeutic functionalities, including antibacterial, angiogenic and osteogenic properties. The degradation behaviour of BGs can be tailored by adjusting the glass chemistry making these glass matrices potential carrier systems for controlled therapeutic ion release. This book chapter summarises the fundamental aspects of the effect of ionic dissolution products from BGs on osteogenesis and angiogenesis, whilst discussing novel BG compositions with controlled therapeutic ion release. © 2015 S. Karger AG, Basel.

  12. Use of carbon paste electrodes for the voltammetric detection of silver leached from the oxidative dissolution of silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Mullaugh, Katherine M.; Pearce, Olivia M.

    2017-04-01

    The widespread use of silver nanoparticles (Ag NPs) in consumer goods has raised concerns about the release of silver in environmental waters. Of particular concern is the oxidative dissolution of Ag NPs to release Ag+ ions, which are highly toxic to many aquatic organisms. Here, we have investigated the application of differential pulse stripping voltammetry (DPSV) with carbon paste electrodes (CPEs) in monitoring the oxidation of Ag NPs. Using a commercially available, unmodified carbon paste and 60-s deposition times, a detection limit of 3 nM Ag+ could be achieved. We demonstrate its selectivity for free Ag+ ions over Ag nanoparticles, allowing for analysis of the oxidation of Ag NPs without the need for separation of ions and nanoparticles prior to analysis. We applied this approach to investigate the effect of pH in the oxidative dissolution of Ag NPs, demonstrating the usefulness of CPEs in studies of this type.

  13. Aggregation, sedimentation, dissolution and bioavailability of ...

    EPA Pesticide Factsheets

    To understand their fate and transport in estuarine systems, the aggregation, sedimentation, and dissolution of CdSe quantum dots (QDs) in seawater were investigated. Hydrodynamic size increased from 40 to 60 nm to >1 mm within 1 h in seawater, and the aggregates were highly polydispersed. Their sedimentation rates in seawater were measured to be 4–10 mm/day. Humic acid (HA), further increased their size and polydispersity, and slowed sedimentation. Light increased their dissolution and release of dissolved Cd. The ZnS shell also slowed release of Cd ions. With sufficient light, HA increased the dissolution of QDs, while with low light, HA alone did not change their dissolution. The benthic zone in estuarine systems is the most probable long-term destination of QDs due to aggregation and sedimentation. The bioavailability of was evaluated using the mysid Americamysis bahia. The 7-day LC50s of particulate and dissolved QDs were 290 and 23 μg (total Cd)/L, respectively. For mysids, the acute toxicity appears to be from Cd ions; however, research on the effects of QDs should be conducted with other organisms where QDs may be lodged in critical tissues such as gills or filtering apparatus and Cd ions may be released and delivered directly to those tissues. Because of their increasing use and value to society, cadmium-based quantum dots (QDs) will inevitably find their way into marine systems. In an effort to understand the fate and transport of CdSe QDs in estuar

  14. A study of tablet dissolution by magnetic resonance electric current density imaging.

    PubMed

    Mikac, Ursa; Demsar, Alojz; Demsar, Franci; Sersa, Igor

    2007-03-01

    The electric current density imaging technique (CDI) was used to monitor the dissolution of ion releasing tablets (made of various carboxylic acids and of sodium chloride) by following conductivity changes in an agar-agar gel surrounding the tablet. Conductivity changes in the sample were used to calculate spatial and temporal changes of ionic concentrations in the sample. The experimental data for ion migration were compared to a mathematical model based on a solution of the diffusion equation with moving boundary conditions for the tablet geometry. Diffusion constants for different acids were determined by fitting the model to the experimental data. The experiments with dissolving tablets were used to demonstrate the potential of the CDI technique for measurement of ion concentration in the vicinity of ion releasing samples.

  15. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  16. Kinetics and mechanism of natural fluorapatite dissolution at 25 °C and pH from 3 to 12

    NASA Astrophysics Data System (ADS)

    Chaïrat, Claire; Schott, Jacques; Oelkers, Eric H.; Lartigue, Jean-Eric; Harouiya, Najatte

    2007-12-01

    The dissolution rates of natural fluorapatite (FAP), Ca 10(PO 4) 6F 2, were measured at 25 °C in mixed-flow reactors as a function of pH from 3.0 to 11.7, and aqueous calcium, phosphorus, and fluoride concentration. After an initial preferential Ca and/or F release, stoichiometric Ca, P, and F release was observed. Measured FAP dissolution rates decrease with increasing pH at 3 ⩽ pH ⩽ 7, FAP dissolution rates are pH independent at 7 ⩽ pH ⩽ 10, and FAP dissolution rates again decrease with increasing pH at pH ⩾ 10. Measured FAP dissolution rates are independent of aqueous Ca, P, and F concentration at pH ≈ 3 and pH ≈ 10. Apatite dissolution appears to be initiated by the relatively rapid removal from the near surface of F and the Ca located in the M1 sites, via proton for Ca exchange reactions. Dissolution rates are controlled by the destruction of this F and Ca depleted surface layer. The destruction of this layer is facilitated by the adsorption/penetration of protons into the surface at acidic conditions, and by surface hydration at neutral and basic conditions. Taking into account these two parallel mechanisms, measured fluorapatite forward dissolution rates can be accurately described using r+(molms)=6.61×10-6{aK}/{1+aK+aCa4aF1.4aOH0.6aH6K}+3.69×10-8[tbnd CaOH2+] where ai refers to the activity of the ith aqueous species, [tbnd CaOH2+] denotes the concentration of hydrated calcium sites at the surface of the leached layer (mol m -2), and Kex and Kads stand for the apparent stability constants of the Ca 2+/H + exchange and adsorption/penetration reactions, respectively.

  17. Carbonate dissolution in the South Atlantic Ocean: evidence from ultrastructure breakdown in Globigerina bulloides

    NASA Astrophysics Data System (ADS)

    Dittert, Nicolas; Henrich, Rüdiger

    2000-04-01

    Ultrastructure dissolution susceptibility of the planktic foraminifer Globigerina bulloides, carbonate ion content of the water column, calcium carbonate content of the sediment surface, and carbonate/carbon weight percentage ratio derived from sediment surface samples were investigated in order to reconstruct the position of the calcite saturation horizon, the sedimentary calcite lysocline, and the calcium carbonate compensation depth (CCD) in the modern South Atlantic Ocean. Carbonate ion data from the water column refer to the GEOSECS locations 48, 103, and 109 and calcium carbonate data come from 19 GeoB sediment surface samples of 4 transects into the Brazil, the Guinea, and the Cape Basins. We present a new (paleo-) oceanographic tool, namely the Globigerina bulloides dissolution index (BDX). Further, we give evidence (a) for progressive G. bulloides ultrastructural breakdown with increasing carbonate dissolution even above the lysocline; (b) for a sharp BDX increase at the sedimentary lysocline; and (c) for the total absence of this species at the CCD. BDX puts us in the position to distinguish the upper open ocean and the upwelling influenced continental margin above from the deep ocean below the sedimentary lysocline. Carbonate ion data from water column samples, calcite weight percentage data from surface sediment samples, and carbonate/carbon weight percentage ratio appear to be good proxies to confirm BDX. As shown by BDX both the calcite saturation horizon (in the water column) and the sedimentary lysocline (at the sediment-water interface) mark the boundary between the carbonate ion undersaturated and highly corrosive Antarctic Bottom Water and the carbonate ion saturated North Atlantic Deep Water (NADW) of the modern South Atlantic.

  18. The influence of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions

    NASA Astrophysics Data System (ADS)

    Boehnstedt, W.

    1980-09-01

    The paper describes the effect of electrolyte additives on the anodic dissolution of aluminum in alkaline solutions. The dissolution is accelerated by the addition of small quantities of gallium or indium ions to the electrolyte indicated by the shift of the zero current potential by about 250 mV on the current-potential curve. Scanning electron microscope studies showed that gallium ions produce many small cracks in the aluminum electrode and collect at the grain boundary areas, increasing the electrode surface; this enlargement, in combination with increased electrolyte agitation due to greater hydrogen evolution, provides higher current densities at the same potential. It is concluded that this process will widen the possibilities of using aluminum and its alloys in high-rate batteries.

  19. Surface-ground water interactions and hydrogeochemical evolution in a fluvio-deltaic setting: The case study of the Pinios River delta

    NASA Astrophysics Data System (ADS)

    Matiatos, Ioannis; Paraskevopoulou, Vasiliki; Lazogiannis, Konstantinos; Botsou, Fotini; Dassenakis, Manos; Ghionis, George; Alexopoulos, John D.; Poulos, Serafim E.

    2018-06-01

    River deltas sustain important ecosystems with rich biodiversity and large biomass, as well as human populations via the availability of water and food sources. Anthropogenic activities, such as urbanization, tourism and agriculture, may pose threats to river deltas. The knowledge of the factors controlling the regional water quality regime in these areas is important for planning sustainable use and management of the water resources. Here, hydrochemical methods and multivariate statistical techniques were combined to investigate the shallow aquifer of the Pinios River (Thessaly) deltaic plain with respect to water quality, hydrogeochemical evolution and interactions between groundwater and surface water bodies. Water quality assessment indicated that most of the river and groundwater samples fully comply with the criteria set by the Drinking Water Directive (98/83/EC). The river is recharged mainly from springs of the Tempi valley and the shallow aquifer, and to a lesser degree from precipitation, throughout the year. The hydrogeochemical characteristics indicated a cation (Ca, Mg, and Na) bicarbonate water type, which evolves to calcium-chloride, sodium-bicarbonate and sodium-chloride water type, in the northern part of the delta. Calcite and dolomite dissolution determined the major ion chemistry, but other processes, such as silicate weathering and cation exchange reactions, also contributed. In the northern part of the plain, the interaction with the deeper aquifer enriched the shallow aquifer with Na and Cl ions. Principal Component Analysis showed that five components (PCs) explain 77% of the total variance of water quality parameters; these are: (1) salinity; (2) water-silicate rocks interaction; (3) hardness due to calcite dissolution, and cation exchange processes; (4) nitrogen pollution; and (5) non-N-related artificial fertilizers. This study demonstrated that the variation of water hydrochemistry in the deltaic plain could be attributed to natural and anthropogenic processes. The interpretation of the PCA results dictated the parameters used for the development of a modified Water Quality Index (WQI), to provide a more comprehensive spatial representation of the water quality of the river delta.

  20. Cation Exchange in the Presence of Oil in Porous Media

    PubMed Central

    2017-01-01

    Cation exchange is an interfacial process during which cations on a clay surface are replaced by other cations. This study investigates the effect of oil type and composition on cation exchange on rock surfaces, relevant for a variety of oil-recovery processes. We perform experiments in which brine with a different composition than that of the in situ brine is injected into cores with and without remaining oil saturation. The cation-exchange capacity (CEC) of the rocks was calculated using PHREEQC software (coupled to a multipurpose transport simulator) with the ionic composition of the effluent histories as input parameters. We observe that in the presence of crude oil, ion exchange is a kinetically controlled process and its rate depends on residence time of the oil in the pore, the temperature, and kinetic rate of adsorption of the polar groups on the rock surface. The cation-exchange process occurs in two stages during two phase flow in porous media. Initially, the charged sites of the internal surface of the clays establish a new equilibrium by exchanging cations with the aqueous phase. At later stages, the components of the aqueous and oleic phases compete for the charged sites on the external surface or edges of the clays. When there is sufficient time for crude oil to interact with the rock (i.e., when the core is aged with crude oil), a fraction of the charged sites are neutralized by the charged components stemming from crude oil. Moreover, the positively charged calcite and dolomite surfaces (at the prevailing pH environment of our experiments) are covered with the negatively charged components of the crude oil and therefore less mineral dissolution takes place when oil is present in porous media. PMID:28580442

  1. Ion exchange of Group I metals by hydrous crystalline silicotitanates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Z.; Philip, C.V.; Anthony, R.G.

    1996-11-01

    A new hydrous crystalline silicotitanate, labeled TAM-5 or CST, was developed for removing radioactive Cs{sup +} from aqueous nuclear waste. This material is stable to radiation, highly selective for cesium relative to sodium, potassium, rubidium, and protons, and performs well in acidic, neutral, and basic solutions. Various experiments were conducted to determine the ion exchange properties of TAM-5. Two kinds of ion exchange sites exist in the solid, and cation exchange in one site affects the ion exchange properties of the other site. These two types of sites have different thermal effects: with increasing temperature the pH of one increasesmore » and the pH of the other one decreases. The total ion exchange capacity is 4.6 mequiv/g, but the cesium ion exchange capacity was less, which shows that not all of the ion exchange sites are available for cesium exchange. Step changes were observed in the ion exchange isotherms. The solid phase behaved ideally prior to the step changes. The apparent capacities within the ideal solid region were 0.57 mequiv/g for Cs{sup +}, 1.18 mequiv/g for Rb{sup +}, and 1.2 mequiv/g for K{sup +}. Both direct competition by rubidium and protons and indirect competition by protons and potassium were observed. The rational selectivities, which were measured from binary ion exchange data, can be used in different solutions including the multicomponent ion exchange systems, because they are constant for an ideal solid. Binary ion exchange isotherms were also developed using the rational selectivity as the parameter for the isotherms of cesium, rubidinium, and potassium.« less

  2. Synthesis and Ion-Exchange Properties of Graphene Th(IV) Phosphate Composite Cation Exchanger: Its Applications in the Selective Separation of Lead Metal Ions

    PubMed Central

    Rangreez, Tauseef Ahmad; Alhogbi, Basma G.; Naushad, Mu.

    2017-01-01

    In this study, graphene Th(IV) phosphate was prepared by sol–gel precipitation method. The ion-exchange behavior of this cation-exchanger was studied by investigating properties like ion-exchange capacity for various metal ions, the effect of eluent concentration, elution behavior, and thermal effect on ion-exchange capacity (IEC). Several physicochemical properties as Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) study, thermal studies, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) studies were also carried out. The material possessed an IEC of 1.56 meq·dry·g−1 of the exchanger and was found to be nano-composite. The selectivity studies showed that the material is selective towards Pb(II) ions. The selectivity of this cation-exchanger was demonstrated in the binary separation of Pb(II) ions from mixture with other metal ions. The recovery was found to be both quantitative and reproducible. PMID:28737717

  3. Fixation of radioactive ions in porous media with ion exchange gels

    DOEpatents

    Mercer, Jr., Basil W.; Godfrey, Wesley L.

    1979-01-01

    A method is provided for fixing radioactive ions in porous media by injecting into the porous media water-soluble organic monomers which are polymerizable to gel structures with ion exchange sites and polymerizing the monomers to form ion exchange gels. The ions and the particles of the porous media are thereby physically fixed in place by the gel structure and, in addition, the ions are chemically fixed by the ion exchange properties of the resulting gel.

  4. Identifying and Quantifying Chemical Forms of Sediment-Bound Ferrous Iron.

    NASA Astrophysics Data System (ADS)

    Kohler, M.; Kent, D. B.; Bekins, B. A.; Cozzarelli, I.; Ng, G. H. C.

    2015-12-01

    Aqueous Fe(II) produced by dissimilatory iron reduction comprises only a small fraction of total biogenic Fe(II) within an aquifer. Most biogenic Fe(II) is bound to sediments on ion exchange sites; as surface complexes and, possibly, surface precipitates; or incorporated into solid phases (e.g., siderite, magnetite). Different chemical forms of sediment-bound Fe(II) have different reactivities (e.g., with dissolved oxygen) and their formation or destruction by sorption/desorption and precipitation/dissolution is coupled to different solutes (e.g., major cations, H+, carbonate). We are quantifying chemical forms of sediment-bound Fe(II) using previously published extractions, novel extractions, and experimental studies (e.g., Fe isotopic exchange). Sediments are from Bemidji, Minnesota, where biodegradation of hydrocarbons from a burst oil pipeline has driven extensive dissimilatory Fe(III) reduction, and sites potentially impacted by unconventional oil and gas development. Generally, minimal Fe(II) was mobilized from ion exchange sites (batch desorption with MgCl2 and repeated desorption with NH4Cl). A < 2mm sediment fraction from the iron-reducing zone at Bemidji had 1.8umol/g Fe(II) as surface complexes or carbonate phases (sodium acetate at pH 5) of which ca. 13% was present as surface complexes (FerroZine extractions). Total bioavailable Fe(III) and biogenic Fe(II) (HCl extractions) was 40-50 umole/g on both background and iron-reducing zone sediments . Approximately half of the HCl-extractable Fe from Fe-reducing zone sediments was Fe(II) whereas 12 - 15% of Fe extracted from background sediments was present as Fe(II). One-third to one-half of the total biogenic Fe(II) extracted from sediments collected from a Montana prairie pothole located downgradient from a produced-water disposal pit was present as surface-complexed Fe(II).

  5. Oxidation of cyclohexane catalyzed by metal-ion-exchanged zeolites.

    PubMed

    Sökmen, Ilkay; Sevin, Fatma

    2003-08-01

    The ion-exchange rates and capacities of the zeolite NaY for the Cu(II), Co(II), and Pb(II) metal ions were investigated. Ion-exchange equilibria were achieved in approximately 72 h for all the metal ions. The maximum ion exchange of metal ions into the zeolite was found to be 120 mg Pb(II), 110 mg Cu(II), and 100 mg Co(II) per gram of zeolite NaY. It is observed that the exchange capacity of a zeolite varies with the exchanged metal ion and the amount of metal ions exchanged into zeolite decreases in the sequence Pb(II) > Cu(II) > Co(II). Application of the metal-ion-exchanged zeolites in oxidation of cyclohexane in liquid phase with visible light was examined and it is observed that the order of reactivity of the zeolites for the conversion of cyclohexane to cyclohexanone and cyclohexanol is CuY > CoY > PbY. It is found that conversion increases by increase of the empty active sites of a zeolite and the formation of cyclohexanol is favored initially, but the cyclohexanol is subsequently converted to cyclohexanone.

  6. Effects of the spaces available for cations in strongly acidic cation-exchange resins on the exchange equilibria by quaternary ammonium ions and on the hydration states of metal ions.

    PubMed

    Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio

    2011-10-01

    The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.

  7. Dissolution of barite for the analysis of strontium isotopes and other chemical and isotopic variations using aqueous sodium carbonate

    USGS Publications Warehouse

    Breit, G.N.; Simmons, E.C.; Goldhaber, M.B.

    1985-01-01

    A simple procedure for preparing barite samples for chemical and isotopic analysis is described. Sulfate ion, in barite, in the presence of high concentrations of aqueous sodium carbonate, is replaced by carbonate. This replacement forms insoluble carbonates with the cations commonly in barite: Ba, Sr, Ca and Pb. Sulfate is released into the solution by the carbonate replacement and is separated by filtration. The aqueous sulfate can then be reprecipitated for analysis of the sulfur and oxygen isotopes. The cations in the carbonate phase can be dissolved by acidifying the solid residue. Sr can be separated from the solution for Sr isotope analysis by ion-exchange chromatography. The sodium carbonate used contains amounts of Sr which will affect almost all barite 87Sr 86Sr ratios by less than 0.00001 at 1.95?? of the mean. The procedure is preferred over other techniques used for preparing barite samples for the determination of 87Sr 86Sr ratios because it is simple, rapid and enables simultaneous determination of many compositional parameters on the same material. ?? 1985.

  8. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  9. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOEpatents

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  10. Identification of major sources controlling groundwater chemistry from a hard rock terrain — A case study from Mettur taluk, Salem district, Tamil Nadu, India

    NASA Astrophysics Data System (ADS)

    Srinivasamoorthy, K.; Chidambaram, S.; Prasanna, M. V.; Vasanthavihar, M.; Peter, John; Anandhan, P.

    2008-02-01

    The study area Mettur forms an important industrial town situated NW of Salem district. The geology of the area is mainly composed of Archean crystalline metamorphic complexes. To identify the major process activated for controlling the groundwater chemistry an attempt has been made by collecting a total of 46 groundwater samples for two different seasons, viz., pre-monsoon and post-monsoon. The groundwater chemistry is dominated by silicate weathering and (Na + Mg) and (Cl + SO4) accounts of about 90% of cations and anions. The contribution of (Ca + Mg) and (Na + K) to total cations and HCO3 indicates the domination of silicate weathering as major sources for cations. The plot for Na to Cl indicates higher Cl in both seasons, derived from Anthropogenic (human) sources from fertilizer, road salt, human and animal waste, and industrial applications, minor representations of Na also indicates source from weathering of silicate-bearing minerals. The plot for Na/Cl to EC indicates Na released from silicate weathering process which is also supported by higher HCO3 values in both the seasons. Ion exchange process is also activated in the study area which is indicated by shifting to right in plot for Ca + Mg to SO4 + HCO3. The plot of Na-Cl to Ca + Mg-HCO3-SO4 confirms that Ca, Mg and Na concentrations in groundwater are derived from aquifer materials. Thermodynamic plot indicates that groundwater is in equilibrium with kaolinite, muscovite and chlorite minerals. Saturation index of silicate and carbonate minerals indicate oversaturation during pre-monsoon and undersaturation during post-monsoon, conforming dissolution and dilution process. In general, water chemistry is guided by complex weathering process, ion exchange along with influence of Cl ions from anthropogenic impact.

  11. Porous solid ion exchange wafer for immobilizing biomolecules

    DOEpatents

    Arora, Michelle B.; Hestekin, Jamie A.; Lin, YuPo J.; St. Martin, Edward J.; Snyder, Seth W.

    2007-12-11

    A porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer. Also disclosed is a porous solid ion exchange wafer having a combination of a biomolecule capture-resin and an ion-exchange resin forming a charged capture resin within said wafer containing a biomolecule with a tag. A separate bioreactor is also disclosed incorporating the wafer described above.

  12. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1994-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene disphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  13. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1996-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  14. Coupled acoustic-gravity field for dynamic evaluation of ion exchange with a single resin bead.

    PubMed

    Kanazaki, Takahiro; Hirawa, Shungo; Harada, Makoto; Okada, Tetsuo

    2010-06-01

    A coupled acoustic-gravity field is efficient for entrapping a particle at the position determined by its acoustic properties rather than its size. This field has been applied to the dynamic observation of ion-exchange reactions occurring in a single resin bead. The replacement of counterions in an ion-exchange resin induces changes in its acoustic properties, such as density and compressibility. Therefore, we can visually trace the advancement of an ion-exchange reaction as a time change in the levitation position of a resin bead entrapped in the field. Cation-exchange reactions occurring in resin beads with diameters of 40-120 microm are typically completed within 100-200 s. Ion-exchange equilibrium or kinetics is often evaluated with off-line chemical analyses, which require a batch amount of ion exchangers. Measurements with a single resin particle allow us to evaluate ion-exchange dynamics and kinetics of ions including those that are difficult to measure by usual off-line analyses. The diffusion properties of ions in resins have been successfully evaluated from the time change in the levitation positions of resin beads.

  15. Ion Exchange and Its Relation with Industry. I. Chemistry of Ion Exchangers. Methods of Use; EL CAMBIO DE ION Y SU RELACION CON LA INDUSTRIA. I. QUIMICA DE LOS CAMBIADORES DE ION METODOS DE EMPLEO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez, B.L.; Hueda, A.H.; Jodra, L.G.

    1958-01-01

    The lateest trends in the preparation of modern synthetic ion exchangers obtained by the treatment of polymerization and polycondensation products are reviewed. The physical and chemical characteristics, especially the stability, of exchangers are discussed. The utilization of ion exchangers in basic operations is described and illustrated with the results obtained in its application to the hydrometallurgy of uranium. The life of such materials are also considered. The most important synthetic commercial exchangers and their uses and properties are tabulated. (tr-auth)

  16. RECENT ADVANCES IN ION EXCHANGE MATERIALS AND PROCESSES FOR POLLUTION PREVENTION

    EPA Science Inventory

    The goal of this article was to summarize the recent advances in ion exchange technology for the metal finishing industry. Even though the ion exchange technology is mature and is widely employed in the industry, new applications, approaches and ion exchange materials are emergi...

  17. Pharmaceutical Applications of Ion-Exchange Resins

    ERIC Educational Resources Information Center

    Elder, David

    2005-01-01

    The historical uses of ion-exchanged resins and a summary of the basic chemical principles involved in the ion-exchanged process are discussed. Specific applications of ion-exchange are provided that include drug stabilization, pharmaceutical excipients, taste-masking agents, oral sustained-release products, topical products for local application…

  18. A comparative study of chelating and cationic ion exchange resins for the removal of palladium(II) complexes from acidic chloride media.

    PubMed

    Hubicki, Zbigniew; Wołowicz, Anna

    2009-05-30

    The increasing demand for palladium for technological application requires the development of ion exchange chromatography. Recently ion exchange chromatography has developed largely as a result of new types of ion exchangers available on the market of which two types are widely applied. One of them are selective (chelating) and modified ion exchangers and the other one are liquid exchangers. Two types of ion exchange resins such as chelating (Lewatit TP 214, Purolite S 920) and cationic (Chelite S, Duolite GT 73) ion exchangers are used for the recovery of palladium(II) complexes from chloride media (0.1-2.0M HCl-1.0M NaCl-0.0011 M Pd(II); 0.1-2.0M HCl-2.0M NaCl-0.0011M Pd(II)). The influence of concentration of hydrochloric acid, sodium chloride as well as the phase contact time on the degree of recovery of palladium(II) complexes was studied. Moreover, the amount of palladium(II) chlorocomplexes sorbed onto ion exchangers, the working ion exchange capacities and the weight and bed distribution coefficients were calculated in order to judge which of two types of resins possesses the best performance towards palladium(II) complexes.

  19. Intercalation of gaseous thiols and sulfides into Ag+ ion-exchanged aluminum dihydrogen triphosphate.

    PubMed

    Hayashi, Aki; Saimen, Hiroki; Watanabe, Nobuaki; Kimura, Hitomi; Kobayashi, Ayumi; Nakayama, Hirokazu; Tsuhako, Mitsutomo

    2005-08-02

    Ag(+) ion-exchanged layered aluminum dihydrogen triphosphate (AlP) with the interlayer distance of 0.85 nm was synthesized by the ion-exchange of proton in triphosphate with Ag(+) ion. The amount of exchanged Ag(+) ion depended on the concentration of AgNO(3) aqueous solution. Ag(+) ion-exchanged AlP adsorbed gaseous thiols and sulfides into the interlayer region. The adsorption amounts of thiols were more than those of sulfides, thiols with one mercapto group > thiol with two mercapto groups > sulfides, and depended on the amount of exchanged Ag(+) ion in the interlayer region. The thiols with one mercapto group were intercalated to expand the interlayer distance of Ag(+) ion-exchanged AlP, whereas there was no expansion in the adsorption of sulfide. In the case of thiol with two mercapto groups, there was observed contraction of the interlayer distance through the bridging with Ag(+) ions of the upper and lower sides of the interlayer region.

  20. Pharmaceutical Applications of Ion-Exchange Resins

    NASA Astrophysics Data System (ADS)

    Elder, David P.

    2005-04-01

    The historical uses of ion-exchange resins and a summary of the basic chemical principles involved in the ion-exchange process are discussed. Specific applications of ion-exchange resins are provided. The utility of these agents to stabilize drugs are evaluated. Commonly occurring chemical and physical incompatibilities are reviewed. Ion-exchange resins have found applicability as inactive pharmaceutical constituents, particularly as disintegrants (inactive tablet ingredient whose function is to rapidly disrupt the tablet matrix on contact with gastric fluid). One of the more elegant approaches to improving palatability of ionizable drugs is the use of ion-exchange resins as taste-masking agents. The selection, optimization of drug:resin ratio and particle size, together with a review of scaleup of typical manufacturing processes for taste-masked products are provided. Ion-exchange resins have been extensively utilized in oral sustained-release products. The selection, optimization of drug:resin ratio and particle size, together with a summary of commonly occurring commercial sustained-release products are discussed. Ion-exchange resins have also been used in topical products for local application to the skin, including those where drug flux is controlled by a differential electrical current (ionotophoretic delivery). General applicability of ion-exchange resins, including ophthalmic delivery, nasal delivery, use as drugs in their own right (e.g., colestyramine, formerly referred to as cholestyramine), as well as measuring gastrointestinal transit times, are discussed. Finally, pharmaceutical monographs for ion-exchange resins are reviewed.

  1. Carbon dioxide capture using resin-wafer electrodeionization

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Trachtenberg, Michael S.; Cowan, Robert M.; Datta, Saurav

    2015-09-08

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium. A pH suitable for exchange of CO.sub.2 is electrochemically maintained within the basic and acidic ion exchange wafers by applying an electric potential across the cathode and anode.

  2. Thermochemistry of the Dissolution of Dipeptides Containing DL-α-Alanine in Aqueous Solutions of Sodium Dodecyl Sulfate at 298.15 K

    NASA Astrophysics Data System (ADS)

    Smirnov, V. I.; Badelin, V. G.

    2018-05-01

    Enthalpies of the dissolution of DL-α-alanylglycine (AlaGly), DL-α-alanyl-DL-α-alanine (AlaAla), DL-α-alanyl-DL-α-valine (AlaVal), and DL-α-alanyl-DL-norleucine (AlaNln) in an aqueous solution of sodium dodecyl sulfate (SDS) at SDS concentration of m = 0-0.07 mol kg-1 and temperature T = 298.15 K are measured via calorimetry. The standard values of the enthalpy of dissolution (Δsol H m ) and the transfer of dipeptides (Δtr H m ) from water to aqueous SDS solutions are calculated using the experimental data. The dependences of Δsol H m and Δtr H m the SDS concentration at a constant concentration of dipeptide are established. Thermochemical characteristics of the transfer of AlaGly, AlaAla, AlaVal, and AlaNln in the investigated range of SDS concentrations are compared. The results are interpreted by considering ion-ion, ion-polar, and hydrophobic-hydrophobic interactions between SDS and dipeptide molecules.

  3. Membrane-less hybrid flow battery based on low-cost elements

    NASA Astrophysics Data System (ADS)

    Leung, P. K.; Martin, T.; Shah, A. A.; Mohamed, M. R.; Anderson, M. A.; Palma, J.

    2017-02-01

    The capital cost of conventional redox flow batteries is relatively high (>USD 200/kWh) due to the use of expensive active materials and ion-exchange membranes. This paper presents a membrane-less hybrid organic-inorganic flow battery based on the low-cost elements zinc (92.7% with the use of carbon felt electrodes. In the presence of a fully oxidized active species close to its solubility limit, dissolution of the deposited anode is relatively slow (<2.37 g h-1 cm-2) with an equivalent corrosion current density of <1.9 mA cm-2. In a parallel plate flow configuration, the resulting battery was charge-discharge cycled at 30 mA cm-2 with average coulombic and energy efficiencies of c.a. 71.8 and c.a. 42.0% over 20 cycles, respectively.

  4. Effects of elevated atmospheric CO2 on dissolution of geological fluorapatite in water and soil.

    PubMed

    Li, Zhen; Su, Mu; Tian, Da; Tang, Lingyi; Zhang, Lin; Zheng, Yangfan; Hu, Shuijin

    2017-12-01

    Most of phosphorus (P) is present as insoluble phosphorus-bearing minerals or organic forms in soil. Geological fluorapatite (FAp) is the dominant mineral-weathering source of P. In this study, FAp was added into water and soil under elevated CO 2 to investigate the pathway of P release. Two types of soils (an acidic soil from subtropical China and a saline-alkali soil from Tibet Plateau, China) with similar total P content were studied. In the solution, increased CO 2 in air enhanced the dissolution of FAp, i.e., from 0.04 to 1.18ppm for P and from 2.48 to 13.61ppm for Ca. In addition, release of Ca and P from FAp reached the maximum (2.14ppm for P and 13.84ppm for Ca) under the combination of elevated CO 2 and NaCl due to the increasing ion exchange. Consistent with the results from the solution, CO 2 elevation promoted P release more significantly (triple) in the saline-alkali soil than in the acidic soil. Therefore, saline-alkali soils in Tibet Plateau would be an important reservoir of available P under the global CO 2 rise. This study sheds the light on understanding the geological cycle of phosphorus. Copyright © 2017. Published by Elsevier B.V.

  5. Antibacterial effects and dissolution behavior of six bioactive glasses.

    PubMed

    Zhang, Di; Leppäranta, Outi; Munukka, Eveliina; Ylänen, Heimo; Viljanen, Matti K; Eerola, Erkki; Hupa, Mikko; Hupa, Leena

    2010-05-01

    Dissolution behavior of six bioactive glasses was correlated with the antibacterial effects of the same glasses against sixteen clinically important bacterial species. Powdered glasses (<45 microm) were immersed in simulated body fluid (SBF) for 48 h. The pH in the solution inside the glass powder was measured in situ with a microelectrode. After 2, 4, 27, and 48 h, the pH and concentration of ions after removing the particles and mixing the SBF were measured with a normal glass pH electrode and ICP-OES. The bacteria were cultured in broth with the glass powder for up to 4 days, after which the viability of the bacteria was determined. The antibacterial effect of the glasses increased with increasing pH and concentration of alkali ions and thus with increased dissolution tendency of the glasses, but it also depended on the bacterium type. The changes in the concentrations of Si, Ca, Mg, P, and B ions in SBF did not show statistically significant influence on the antibacterial property. Bioactive glasses showed strong antibacterial effects for a wide selection of aerobic bacteria at a high sample concentration (100 mg/mL). The antibacterial effects increased with glass concentration and a concentration of 50 mg/mL (SA/V 185 cm(-1)) was required to generate the bactericidal effects. Understanding the dissolution mechanisms of bioactive glasses is essential when assessing their antibacterial effects. Copyright 2009 Wiley Periodicals, Inc.

  6. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1996-07-23

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  7. Phosphonic acid based ion exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  8. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    NASA Astrophysics Data System (ADS)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; Chorover, Jon; O'Day, Peggy A.

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium (U) concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this work, the dissolution rates of K- and Na-compreignacite (K2(UO2)6O4(OH)6·8H2O and Na2(UO2)6O4(OH)6·8H2O, respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved carbonate concentration (ca. 0.2 and 2.8 mmol L-1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area, and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total U mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved U was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57 · 10-10 vs. 1.28 · 10-13 mol m-2 s-1 [log R = -9.81 and -12.89] and 5.79 · 10-10 vs. 3.71 · 10-13 mol m-2 s-1 [log R = -9.24 and -12.43] for K- and Na-compreignacite, respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for U mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. This study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as U in porous geomedia.

  9. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  10. Rates and mechanisms of uranyl oxyhydroxide mineral dissolution

    DOE PAGES

    Reinoso-Maset, Estela; Steefel, Carl I.; Um, Wooyong; ...

    2017-06-01

    Uranyl oxyhydroxide minerals are important weathering products in uranium-contaminated surface and subsurface environments that regulate dissolved uranium concentrations. However, dissolution rates for this class of minerals and associated dissolution mechanisms have not been previously reported for circumneutral pH conditions, particularly for the case of flow through porous media. In this paper, the dissolution rates of K- and Na-compreignacite (K 2(UO 2) 6O 4(OH) 6·8H 2O and Na 2(UO 2) 6O 4(OH) 6·8H 2O respectively) were measured using flow-through columns reacted with two simulated background porewater (BPW) solutions of low and high dissolved total carbonate content (ca. 0.2 and 2.8 mmolmore » L -1). Column materials were characterized before and after reaction with electron microscopy, bulk chemistry, and EXAFS to identify structural and chemical changes during dissolution and to obtain insight into molecular-scale processes. The reactive transport code CrunchFlow was used to calculate overall dissolution rates while accounting for fluid transport and changes in mineral volume and reactive surface area and results were compared to steady-state dissolution rate calculations. In low carbonate BPW systems, interlayer K and Na were initially leached from both minerals, and in Na-compreignacite, K and minor divalent cations from the input solution were incorporated into the mineral structure. Results of characterization analyses suggested that after reaction both K- and Na-compreignacite resembled a disordered K-compreignacite with altered surfaces. A 10-fold increase in dissolved carbonate concentration and corresponding increase in pH (from 6.65 to 8.40) resulted in a net removal of 58-87% of total uranium mass from the columns, compared to <1% net loss in low carbonate BPW systems. Steady-state release of dissolved uranium was not observed with high carbonate solutions and post-reaction characterizations indicated a lack of development of leached or altered surfaces. Dissolution rates (normalized to specific surface area) were about 2.5-3 orders-of-magnitude faster in high versus low carbonate BPW systems, with Na-compreignacite dissolving more rapidly than K-compreignacite under both BPW conditions, possibly due to greater ion exchange (1.57·10 -10 vs. 1.28·10 -13 mol m -2 s -1 [log R = -9.81 and -12.89] and 5.79·10 -10 vs. 3.71·10 -13 mol m -2 s -1 [log R = -9.24 and -12.43] for K- and Na-compreignacite respectively). Experimental and spectroscopic results suggest that the dissolution rate is controlled by bond breaking of a uranyl group and detachment from polyhedral layers of the mineral structure. With higher dissolved carbonate concentrations, this rate-determining step is accelerated by the formation of Ca-uranyl carbonate complexes (dominant species under these conditions), which resulted in an increase of the dissolution rates. Optimization of both dissolution rate and mineral volume fraction in the reactive transport model to account for uranium mass removal during dissolution more accurately reproduced effluent data in high carbonate systems, and resulted in faster overall rates compared with a steady-state dissolution assumption. Finally, this study highlights the importance of coupling reaction and transport processes during the quantification of mineral dissolution rates to accurately predict the fate of contaminants such as uranium in porous geomedia.« less

  11. LITERATURE REVIEWS TO SUPPORT ION EXCHANGE TECHNOLOGY SELECTION FOR MODULAR SALT PROCESSING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, W

    2007-11-30

    This report summarizes the results of literature reviews conducted to support the selection of a cesium removal technology for application in a small column ion exchange (SCIX) unit supported within a high level waste tank. SCIX is being considered as a technology for the treatment of radioactive salt solutions in order to accelerate closure of waste tanks at the Savannah River Site (SRS) as part of the Modular Salt Processing (MSP) technology development program. Two ion exchange materials, spherical Resorcinol-Formaldehyde (RF) and engineered Crystalline Silicotitanate (CST), are being considered for use within the SCIX unit. Both ion exchange materials havemore » been studied extensively and are known to have high affinities for cesium ions in caustic tank waste supernates. RF is an elutable organic resin and CST is a non-elutable inorganic material. Waste treatment processes developed for the two technologies will differ with regard to solutions processed, secondary waste streams generated, optimum column size, and waste throughput. Pertinent references, anticipated processing sequences for utilization in waste treatment, gaps in the available data, and technical comparisons will be provided for the two ion exchange materials to assist in technology selection for SCIX. The engineered, granular form of CST (UOP IE-911) was the baseline ion exchange material used for the initial development and design of the SRS SCIX process (McCabe, 2005). To date, in-tank SCIX has not been implemented for treatment of radioactive waste solutions at SRS. Since initial development and consideration of SCIX for SRS waste treatment an alternative technology has been developed as part of the River Protection Project Waste Treatment Plant (RPP-WTP) Research and Technology program (Thorson, 2006). Spherical RF resin is the baseline media for cesium removal in the RPP-WTP, which was designed for the treatment of radioactive waste supernates and is currently under construction in Hanford, WA. Application of RF for cesium removal in the Hanford WTP does not involve in-riser columns but does utilize the resin in large scale column configurations in a waste treatment facility. The basic conceptual design for SCIX involves the dissolution of saltcake in SRS Tanks 1-3 to give approximately 6 M sodium solutions and the treatment of these solutions for cesium removal using one or two columns supported within a high level waste tank. Prior to ion exchange treatment, the solutions will be filtered for removal of entrained solids. In addition to Tanks 1-3, solutions in two other tanks (37 and 41) will require treatment for cesium removal in the SCIX unit. The previous SCIX design (McCabe, 2005) utilized CST for cesium removal with downflow supernate processing and included a CST grinder following cesium loading. Grinding of CST was necessary to make the cesium-loaded material suitable for vitrification in the SRS Defense Waste Processing Facility (DWPF). Because RF resin is elutable (and reusable) and processing requires conversion between sodium and hydrogen forms using caustic and acidic solutions more liquid processing steps are involved. The WTP baseline process involves a series of caustic and acidic solutions (downflow processing) with water washes between pH transitions across neutral. In addition, due to resin swelling during conversion from hydrogen to sodium form an upflow caustic regeneration step is required. Presumably, one of these basic processes (or some variation) will be utilized for MSP for the appropriate ion exchange technology selected. CST processing involves two primary waste products: loaded CST and decontaminated salt solution (DSS). RF processing involves three primary waste products: spent RF resin, DSS, and acidic cesium eluate, although the resin is reusable and typically does not require replacement until completion of multiple treatment cycles. CST processing requires grinding of the ion exchange media, handling of solids with high cesium loading, and handling of liquid wash and conditioning solutions. RF processing requires handling and evaporation of cesium eluates, disposal of spent organic resin, and handling of the various liquid wash and regenerate solutions used. In both cases, the DSS will be immobilized in a low activity waste form. It appears that both technologies are mature, well studied, and generally suitable for this application. Technology selection will likely be based on downstream impacts or preferences between the various processing options for the two materials rather than on some unacceptable performance property identified for one material. As a result, the following detailed technical review and summary of the two technologies should be useful to assist in technology selection for SCIX.« less

  12. Effect of the type of ion exchange membrane on performance, ion transport, and pH in biocatalyzed electrolysis of wastewater.

    PubMed

    Rozendal, R A; Sleutels, T H J A; Hamelers, H V M; Buisman, C J N

    2008-01-01

    Previous studies have shown that the application of cation exchange membranes (CEMs) in bioelectrochemical systems running on wastewater can cause operational problems. In this paper the effect of alternative types of ion exchange membrane is studied in biocatalyzed electrolysis cells. Four types of ion exchange membranes are used: (i) a CEM, (ii) an anion exchange membrane (AEM), (iii) a bipolar membrane (BPM), and (iv) a charge mosaic membrane (CMM). With respect to the electrochemical performance of the four biocatalyzed electrolysis configurations, the ion exchange membranes are rated in the order AEM > CEM > CMM > BPM. However, with respect to the transport numbers for protons and/or hydroxyl ions (t(H/OH)) and the ability to prevent pH increase in the cathode chamber, the ion exchange membranes are rated in the order BPM > AEM > CMM > CEM.

  13. Gadolinium-hydrogen ion exchange of zirconium phosphate

    NASA Technical Reports Server (NTRS)

    Liu, D. C.; Power, J. L.

    1972-01-01

    The Gd(+3)/H(+) ion exchange on a commercial zirconium phosphate ion exchanger was investigated in chloride, sulfate, and phosphate solutions of Gd(+3) at gadolinium concentrations of 0.001 to 1 millimole per cc and in the pH range of 0 to 3.5. Relatively low Gd(+3) capacities, in the range of 0.01 to 0.1 millimole per g of ion exchanger were found at room temperature. A significant difference in Gd(+3) sorption was observed, depending on whether the ion exchanger was converted from initial conditions of greater or lesser Gd(+3) sorption than the specific final conditions. Correlations were found between decrease in Gd(+3) capacity and loss of exchanger phosphate groups due to hydrolysis during washing and between increase in capacity and treatment with H3PO4. Fitting of the experimental data to ideal ion exchange equilibrium expressions indicated that each Gd(+3) ion is sorbed on only one site of the ion exchanger. The selectivity quotient was determined to be 2.5 + or - 0.4 at room temperature on gadolinium desorption in chloride solutions.

  14. Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamil Nadu, India.

    PubMed

    Nagarajan, R; Rajmohan, N; Mahendran, U; Senthamilkumar, S

    2010-12-01

    As groundwater is a vital source of water for domestic and agricultural activities in Thanjavur city due to lack of surface water resources, groundwater quality and its suitability for drinking and agricultural usage were evaluated. In this study, 102 groundwater samples were collected from dug wells and bore wells during March 2008 and analyzed for pH, electrical conductivity, temperature, major ions, and nitrate. Results suggest that, in 90% of groundwater samples, sodium and chloride are predominant cation and anion, respectively, and NaCl and CaMgCl are major water types in the study area. The groundwater quality in the study site is impaired by surface contamination sources, mineral dissolution, ion exchange, and evaporation. Nitrate, chloride, and sulfate concentrations strongly express the impact of surface contamination sources such as agricultural and domestic activities, on groundwater quality, and 13% of samples have elevated nitrate content (>45 mg/l as NO(3)). PHREEQC code and Gibbs plots were employed to evaluate the contribution of mineral dissolution and suggest that mineral dissolution, especially carbonate minerals, regulates water chemistry. Groundwater suitability for drinking usage was evaluated by the World Health Organization and Indian standards and suggests that 34% of samples are not suitable for drinking. Integrated groundwater suitability map for drinking purposes was created using drinking water standards based on a concept that if the groundwater sample exceeds any one of the standards, it is not suitable for drinking. This map illustrates that wells in zones 1, 2, 3, and 4 are not fit for drinking purpose. Likewise, irrigational suitability of groundwater in the study region was evaluated, and results suggest that 20% samples are not fit for irrigation. Groundwater suitability map for irrigation was also produced based on salinity and sodium hazards and denotes that wells mostly situated in zones 2 and 3 are not suitable for irrigation. Both integrated suitability maps for drinking and irrigation usage provide overall scenario about the groundwater quality in the study area. Finally, the study concluded that groundwater quality is impaired by man-made activities, and proper management plan is necessary to protect valuable groundwater resources in Thanjavur city.

  15. Ion-ion charge exchange processes. Final technical report, June 1, 1977-May 31, 1978

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poe, R.T.; Choi, B.H.

    Under the auspices of ERDA, we have undertaken a vigorous study of ion-ion charge exchange process pertinent to the storage-ring configurations in the heavy-ion fusion program. One particular reaction, singly charged helium charge exchange, was investigated in detail. General trend of the singly charged heavy-ion charge exchange reaction can be inferred from the present study. Some of our results were presented at Proceedings of the Heavy-Ion Fusion Workshop, Argonne National Laboratory (September 1978) as a paper entitled Charge Exchange Between Singly Ionized Helium Ions, by B.H. Choi, R.T. Poe and K.T. Tang. Here, we briefly describe our method and reportmore » the results.« less

  16. Interstitial Water Geochemistry and Low Temperature Alteration in Volcaniclastic Sediments from the Amami Sankaku Basin at IODP Site U1438 (Expedition 351)

    NASA Astrophysics Data System (ADS)

    Loudin, L. C.; Yogodzinski, G. M.; Sena, C.; van der Land, C.; Zhang, Z.; Marsaglia, K. M.; Meffre, S.

    2014-12-01

    Interstitial water (IW) geochemistry provides insight into the diagenetic transformation of sediment to rock by component dissolution/alteration and precipitation of new mineral phases as pore-filling cements, as well as providing insight into ion exchange reactions with secondary minerals. At Site U1438, 67 IW samples were collected within a ~950 m section of volcaniclastic sediments. These were analyzed for pH as well as major and trace elements. The corresponding host sediments were mineralogically characterized by XRD and petrographic observations. Three alteration zones are inferred: 1) the upper alteration zone (~0-300 mbsf) characterized by maximum IW concentrations of Si (790.1 μM), Sr (138.5 μM) and Mn (279.5 μM), consistent with volcanic glass and siliceous microfossil dissolution, enhanced reduction of Mn oxides, and carbonate recrystallization. Maximum concentrations in Li and B coupled with the lowest pH (6.7) imply that Li and B are released into the IW due to silicate dissolution and clay desorption. 2) At intermediate depths (~300 to ~550 mbsf) Mg, K, Sr, Si, Mn, Li, and B are at concentration minima, possibly due to growth of authigenic minerals. B and Li minimum concentrations occur at high pH (~9) suggesting that these elements are preferentially removed from high pH waters during the precipitation of clay mineral and zeolite cements in primary and secondary (dissolution) pores. The mineralogy of these phases is confirmed by XRD data, and their pore-filling nature is seen in thin sections of the coarser lithologies. 3) The deep alteration zone (>~550m) is characterized by an increase in B, Li, Sr and Ca. At ~650 mbsf, Ca becomes the dominant cation in solution consistent with either mineral interaction with the IW, or diffusive input from underlying igneous basement (~1400 mbsf).

  17. On the influence of ion exchange on the local structure of the titanosilicate ETS-10.

    PubMed

    Pavel, Claudiu C; Zibrowius, Bodo; Löffler, Elke; Schmidt, Wolfgang

    2007-07-14

    The effect of ion exchange with different monovalent cations (NH(4)(+), K(+), Na(+) and Cs(+)) on the local structure of the titanosilicate ETS-10 has been studied by (29)Si MAS NMR and Raman spectroscopy. Although X-ray diffraction shows no significant influence of ion exchange on the long range order, ammonium exchange is found to result in substantial damage to the local structure. Ion exchange experiments with alkali cations under significantly more acidic conditions clearly show that the structural damage brought about by ammonium exchange is not caused by the low pH of the exchange solution. The exchange with potassium and caesium ions also leads to significant changes in the (29)Si NMR and Raman spectra. However, these changes can largely be reversed by sodium back-exchange.

  18. Kinetic model for the short-term dissolution of a rhyolitic glass

    USGS Publications Warehouse

    White, A.F.; Claassen, H.C.

    1980-01-01

    Aqueous dissolution experiments with the vitric phase of a rhyolitic tuff were performed at 25??C and constant pH in the range 4.5-7.5. Results suggest interchange of aqueous hydrogen ions for cations situated both on the surface and within the glass. At time intervals from 24 to 900 hr., dissolution kinetics are controlled by ion transport to and from sites within the glass. Experimental data indicate that parabolic diffusion rate of a chemical species from the solid is a nonlinear function of its aqueous concentration. A numerical solution to Fick's second law is presented for diffusion of sodium, which relates it's aqueous concentration to it's concentration on glass surface, by a Freundlich adsorption isotherm. The pH influence on sodium diffusion in the model can be accounted for by use of a pH-dependent diffusion coefficient and a pH-independent adsorption isotherm. ?? 1980.

  19. Membrane consisting of polyquaternary amine ion exchange polymer network interpenetrating the chains of thermoplastic matrix polymer

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Wallace, C. J. (Inventor)

    1978-01-01

    An ion exchange membrane was formed from a solution containing dissolved matrix polymer and a set of monomers which are capable of reacting to form a polyquaternary ion exchange material; for example vinyl pyride and a dihalo hydrocarbon. After casting solution and evaporation of the volatile component's, a relatively strong ion exchange membrane was obtained which is capable of removing anions, such as nitrate or chromate from water. The ion exchange polymer forms an interpenetrating network with the chains of the matrix polymer.

  20. Using Ion Exchange Chromatography to Separate and Quantify Complex Ions

    ERIC Educational Resources Information Center

    Johnson, Brian J.

    2014-01-01

    Ion exchange chromatography is an important technique in the separation of charged species, particularly in biological, inorganic, and environmental samples. In this experiment, students are supplied with a mixture of two substitution-inert complex ions. They separate the complexes by ion exchange chromatography using a "flash"…

  1. Contribution of calcium oxalate to soil-exchangeable calcium

    USGS Publications Warehouse

    Dauer, Jenny M.; Perakis, Steven S.

    2013-01-01

    Acid deposition and repeated biomass harvest have decreased soil calcium (Ca) availability in many temperate forests worldwide, yet existing methods for assessing available soil Ca do not fully characterize soil Ca forms. To account for discrepancies in ecosystem Ca budgets, it has been hypothesized that the highly insoluble biomineral Ca oxalate might represent an additional soil Ca pool that is not detected in standard measures of soil-exchangeable Ca. We asked whether several standard method extractants for soil-exchangeable Ca could also access Ca held in Ca oxalate crystals using spike recovery tests in both pure solutions and soil extractions. In solutions of the extractants ammonium chloride, ammonium acetate, and barium chloride, we observed 2% to 104% dissolution of Ca oxalate crystals, with dissolution increasing with both solution molarity and ionic potential of cation extractant. In spike recovery tests using a low-Ca soil, we estimate that 1 M ammonium acetate extraction dissolved sufficient Ca oxalate to contribute an additional 52% to standard measurements of soil-exchangeable Ca. However, in a high-Ca soil, the amount of Ca oxalate spike that would dissolve in 1 M ammonium acetate extraction was difficult to detect against the large pool of exchangeable Ca. We conclude that Ca oxalate can contribute substantially to standard estimates of soil-exchangeable Ca in acid forest soils with low soil-exchangeable Ca. Consequently, measures of exchangeable Ca are unlikely to fully resolve discrepancies in ecosystem Ca mass balance unless the contribution of Ca oxalate to exchangeable Ca is also assessed.

  2. Synthesis, characterization and applications of a new cation exchanger tamarind sulphonic acid (TSA) resin.

    PubMed

    Singh, A V; Sharma, Naresh Kumar; Rathore, Abhay S

    2012-01-01

    A new composite cation exchanger, tamarind sulphonic acid (TSA) resin has been synthesized. The chemically modified TSA ion exchange resin has been used for the removal and preconcentration of Zn2+, Cd2+, Fe2+, Co2+ and Cu2+ ions in aqueous solution and effluent from the Laxmi steel plant in Jodhpur, India. This type of composite represents a new class of hybrid ion exchangers with good ion exchange capacity, stability, reproducibility and selectivity for toxic metal ions found in effluent from the steel industry. The characterization of the resin was carried out by determining the ion-exchange capacity, elemental analysis, pH titration, Fourier transform infrared spectra and thermal analysis. The distribution coefficients (K(d)) of toxic metal ions were determined in a reference aqueous solution and the steel plant effluent at different pH values; the absorbency of different metal ions on the TSA resin was studied for up to 10 cycles. The adsorption of different metal ions on TSA resin follows the order: Co2+ > Cu2+ > Zn2+ > Fe2+ > Cd2+. The ion exchange capacity of TSA resin is 2.87%.

  3. Corrosion inhibition by inorganic cationic inhibitors on the high strength alumunium alloy, 2024-T3

    NASA Astrophysics Data System (ADS)

    Chilukuri, Anusha

    The toxicity and carcinogenic nature of chromates has led to the investigation of environmentally friendly compounds that offer good corrosion resistance to AA 2024-T3. Among the candidate inhibitors are rare earth metal cationic (REM) and zinc compounds, which have received much of attention over the past two decades. A comparative study on the corrosion inhibition caused by rare earth metal cations, Ce3+, Pr3+, La3+ and Zn2+ cations on the alloy was done. Cathodic polarization showed that these inhibitor ions suppress the oxygen reduction reaction (ORR) to varying extents with Zn2+ providing the best inhibition. Pr3+ exhibited windows of concentration (100-300 ppm) in which the corrosion rate is minimum; similar to the Ce3+ cation. Scanning Electron Microscopy (SEM) studies showed that the mechanism of inhibition of the Pr3+ ion is also similar to that of the Ce3+ ion. Potentiodynamic polarization experiments after 30 min immersion time showed greatest suppression of oxygen reduction reaction in neutral chloride solutions (pH 7), which reached a maximum at a Zn2+ ion concentration of 5 mM. Anodic polarization experiments after 30 min immersion time, showed no anodic inhibition by the inhibitor in any concentration (0.1 mM - 10 mM) and at any pH. However, anodic polarization of samples immersed after longer immersion times (upto 4 days) in mildly acidic Zn2+ (pH 4) solutions showed significant reduction in anodic kinetics indicating that zinc also acts as a “slow anodic inhibitor”. In contrast to the polarization experiments, coupons exposed to inhibited acidic solutions at pH 4 showed complete suppression of dissolution of Al2CuMg particles compared to zinc-free solutions in the SEM studies. Samples exposed in pH 4 Zn2+-bearing solution exhibited highest polarization resistance which was also observed to increase with time. In deaerated solutions, the inhibition by Zn2+ at pH 4 is not observed as strongly. The ability to make the interfacial electrolyte alkaline is retarded in the absence of oxygen. As a result precipitation of Zn oxides and hydroxides was suppressed. Impedance in decarbonated chloride solutions showed that the absence of CO 2 reduces inhibition by Zn2+ at pH 4. The carbonate protective layer formed in aerated solutions is essential for providing better protection of the substrate at pH 4. Inhibitor cations were exchanged into insoluble ion-exchanging sodium bentonites and incorporated as pigments in organic coatings applied to AA 2024-T3 substrates. XRD of the pigments ensured ion exchange and UV-visible spectroscopy was used to characterize inhibitor ion release from the bentonites. Salt spray exposure tests on scribed panels were preformed and results were compared to those from SrCrO4 pigmented coatings. Zn-exchanged bentonite pigmented coatings showed better performance compared to the other exchanged bentonites when incorporated into epoxy coatings with total impedance magnitude in the same order as SrCrO4. PVB (Polyvinyl Butyral) coatings containing Zn bentonite, however, did not show superior behaviour in the impedance response due to less or no water uptake. Salt spray exposures for a period of 336 h, showed that Zn bentonite incorporated into PVB suppressed blistering compared to the neat PVB and other pigmented bentonites.

  4. Ion Exchange Formation via Sulfonated Bicomponent Nonwovens

    NASA Astrophysics Data System (ADS)

    Stoughton, Hannah L.

    For many years ion exchange resins were used to: remove heavy metals from water, recover materials from wastewater, and eliminate harmful gases from the air. While use of these resin beads dominates the ion exchange industry, the beads have limitations that should be considered when decisions are made to employ them. For instance, officials must balance the inherent zero sum surface area and porosity of the materials. This series of studies investigates the use of bicomponent nonwovens as a base substrate for producing high surface area ion exchange materials for the removal of heavy metal ions. Functionalized materials were produced in a two-step process: (1) PET/PE spunbond bicomponent fibers were fractured completely, producing the high surface area nonwoven to be used as the base ion exchange material, and (2) the conditions for functionalizing the PET fibers of the nonwoven webs were investigated where an epoxy containing monomer was grafted to the surface followed by sulfonation of the monomer. The functionalization reactions of the PET fibers were monitored based on: weight gain, FTIR, TOF-SIMS, and SEM. Ion exchange properties were evaluated using titration and copper ion removal capacity from test solutions. The relationship between web structure and removal efficiency of the metal ions was defined through a comparison of the bicomponent and homocomponent nonwovens for copper ion removal efficiency. The investigation revealed that utilizing the high surface area, fractured bicomponent nonwoven ion exchange materials with capacities comparable to commercially available ion exchange resins could be produced.

  5. Supplementation of soft drinks with metallic ions reduces dissolution of bovine enamel

    PubMed Central

    PEREIRA, Heloisa Aparecida Barbosa da Silva; LEITE, Aline de Lima; ITALIANI, Flávia de Moraes; KATO, Melissa Thiemi; PESSAN, Juliano Pelim; BUZALAF, Marília Afonso Rabelo

    2013-01-01

    Objective The aim of this study was to evaluate the effect of the addition of metallic ions to carbonated drinks on their erosive potential. Material and Methods Powdered enamel was added to carbonated beverages (Coca-ColaTM or Sprite ZeroTM and shaken for 30 s. The samples were then immediately centrifuged and the supernatant removed. This procedure was repeated 5 times with the beverages containing Cu2+, Mg2+, Mn2+ or Zn2+ (1.25-60 mmol/L). For Coca-ColaTM, the concentration of each ion that exhibited the highest protection was also evaluated in combination with Fe2+. The phosphate or calcium released were analyzed spectrophotometrically. Data were analyzed using ANOVA and Tukey's test (p<0.05). Results For Coca-ColaTM, the best protective effect was observed for Zn2+ alone (10 mmol/L) or in combination (1 mmol/L) with other ions (12% and 27%, respectively, when compared with the control). Regarding Sprite ZeroTM, the best protective effect was observed for Cu2+ at 15 and 30 mmol/L, which decreased the dissolution by 22-23%. Zn2+ at 2.5 mmol/L also reduced the dissolution of powdered enamel by 8%. Conclusions The results suggest that the combination of metallic ions can be an alternative to reduce the erosive potential of Coca-ColaTM. Regarding Sprite ZeroTM, the addition of Cu2+ seems to be the best alternative. PMID:24037077

  6. Removal of hexavalent chromium in carbonic acid solution by oxidizing slag discharged from steelmaking process in electric arc furnace

    NASA Astrophysics Data System (ADS)

    Yokoyama, Seiji; Okazaki, Kohei; Sasano, Junji; Izaki, Masanobu

    2014-02-01

    Hexavalent chromium (Cr(VI)) is well-known to be a strong oxidizer, and is recognized as a carcinogen. Therefore, it is regulated for drinking water, soil, groundwater and sea by the environmental quality standards all over the world. In this study, it was attempted to remove Cr(VI) ion in a carbonic acid solution by the oxidizing slag that was discharged from the normal steelmaking process in an electric arc furnace. After the addition of the slag into the aqueous solution contained Cr(VI) ion, concentrations of Cr(VI) ion and total chromium (Cr(VI) + trivalent chromium (Cr(III)) ions decreased to lower detection limit of them. Therefore, the used slag could reduce Cr(VI) and fix Cr(III) ion on the slag. While Cr(VI) ion existed in the solution, iron did not dissolve from the slag. From the relation between predicted dissolution amount of iron(II) ion and amount of decrease in Cr(VI) ion, the Cr(VI) ion did not react with iron(II) ion dissolved from the slag. Therefore, Cr(VI) ion was removed by the reductive reaction between Cr(VI) ion and the iron(II) oxide (FeO) in the slag. This reaction progressed on the newly appeared surface of iron(II) oxide due to the dissolution of phase composed of calcium etc., which existed around iron(II) oxide grain in the slag.

  7. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  8. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Yen, S. P. S.; Klein, E. (Inventor)

    1976-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, crosslinked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  9. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  10. A review of studies on ion thruster beam and charge-exchange plasmas

    NASA Technical Reports Server (NTRS)

    Carruth, M. R., Jr.

    1982-01-01

    Various experimental and analytical studies of the primary beam and charge-exchange plasmas of ion thrusters are reviewed. The history of plasma beam research is recounted, emphasizing experiments on beam neutralization, expansion of the beam, and determination of beam parameters such as electron temperature, plasma density, and plasma potential. The development of modern electron bombardment ion thrusters is treated, detailing experimental results. Studies on charge-exchange plasma are discussed, showing results such as the relationship between neutralizer emission current and plasma beam potential, ion energies as a function of neutralizer bias, charge-exchange ion current collected by an axially moving Faraday cup-RPA for 8-cm and 30-cm ion thrusters, beam density and potential data from a 15-cm ion thruster, and charge-exchange ion flow around a 30-cm thruster. A 20-cm thruster electrical configuration is depicted and facility effects are discussed. Finally, plasma modeling is covered in detail for plasma beam and charge-exchange plasma.

  11. Aspects of Solvent Chemistry for Calcium Hydroxide Medicaments

    PubMed Central

    Athanassiadis, Basil

    2017-01-01

    Calcium hydroxide pastes have been used in endodontics since 1947. Most current calcium hydroxide endodontic pastes use water as the vehicle, which limits the dissolution of calcium hydroxide that can be achieved and, thereby, the maximum pH that can be achieved within the root canal system. Using polyethylene glycol as a solvent, rather than water, can achieve an increase in hydroxyl ions release compared to water or saline. By adopting non-aqueous solvents such as the polyethylene glycols (PEG), greater dissolution and faster hydroxyl ion release can be achieved, leading to enhanced antimicrobial actions, and other improvements in performance and biocompatibility. PMID:29065542

  12. First-Principles Modeling of the Initial Stages of Organic Solvent Decomposition on Li xMn 2O 4 (100) Surfaces [First principles modeling of Mn(II) migration to and dissolution from Li xMn 2O 4 (100) surfaces

    DOE PAGES

    Leung, Kevin

    2012-04-13

    Density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (100) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is necessary but far from sufficient. Key steps that facilitate Mn(II) ion migration include concerted liquid/solid-state motions, proton-induced weakening of Mn-O bonds forming mobile OH - surface groups; andmore » chemical reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI component facilitates electrochemical reduction and decomposition of LEDC. These findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  13. Phosphonic acid based exchange resins

    DOEpatents

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  14. Evaluation of anion exchange resins Tulsion A-30 and Indion-930A by application of radioanalytical technique

    NASA Astrophysics Data System (ADS)

    Singare, P. U.

    2014-07-01

    Radioanalytical technique using 131I and 82Br was employed to evaluate organic based anion exchange resins Tulsion A-30 and Indion-930A. The evaluation was based on performance of these resins during iodide and bromide ion-isotopic exchange reactions. It was observed that for iodide ion-isotopic exchange reaction by using Tulsion A-30 resin, the values of specific reaction rate (min-1), amount of iodide ion exchanged (mmol), initial rate of iodide ion exchange (mmol/min) and log K d were 0.238, 0.477, 0.114, and 11.0, respectively, which was higher than 0.155, 0.360, 0.056, and 7.3, respectively as that obtained by using Indion-930A resins under identical experimental conditions of 40.0°C, 1.000 g of ion exchange resins and 0.003 M labeled iodide ion solution. Also at a constant temperature of 40.0°C, as the concentration of labeled iodide ion solution increases 0.001 to 0.004 M, for Tulsion A-30 resins the percentage of iodide ions exchanged increases from 59.0 to 65.1%, and from 46.4 to 48.8% for Indion-930A resins under identical experimental conditions. The identical trend was observed for both the resins during bromide ion-isotopic exchange reactions. The overall results indicate that under identical experimental conditions, Tulsion A-30 show superior performance over Indion-930A resins. The results of present experimental work have demonstrated that the radioanalytical technique used here can be successfully applied for characterization of different ion exchange resins so as to evaluate their performance under various process parameters.

  15. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    DOEpatents

    Friesen, D.; Babcock, W.C.; Tuttle, M.

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets. 5 figs.

  16. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  17. Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes

    NASA Astrophysics Data System (ADS)

    Tibbits, Andrew Charles

    Fuel cells are energy conversion devices which directly convert chemical energy into electrical energy and environmentally friendly byproducts (i.e., water) with potential versatility for transportation and portable applications. Hydroxide exchange membrane fuel cells (HEMFCs) have the potential to decrease the overall fuel cell cost through the utilization of non-precious metal catalysts such as nickel and silver as opposed to platinum which is used by the current standard technology, proton exchange membrane fuel cells (PEMFCs). However, substantial improvements in thermal and alkaline stability, hydroxide conductivity, mechanical flexibility, and processing are needed to create a competitive membrane for HEMFC applications. Regardless of the type of membrane, the high water uptake that is typically associated with increased ionic conductivity is problematic and can result in the dissolution of the membrane during fuel cell operation. Covalent crosslinking of the membrane is an approach which has been effectively applied to reduce water uptake without a significant compromise of the hydroxide conductivity. The synthesis and processing of membrane materials is vastly simplified by using click polymerization schemes. Click chemistry is a collection of organic chemical reactions that are rapid, selective, and high yielding. One of the most versatile and facile click reactions is the thiol-ene reaction, which is the radical-mediated addition reaction between a thiol (an -SH group) and an 'ene' (an electron rich vinyl group, C=C) in the presence of a photoinitiator and light. The click attributes of the thiol-ene reaction enables potential of "bottom-up" design of ion-containing polymers via a single step photoinitiated crosslinking reaction with precise control over structure and physicochemical properties not only for fuel cell membranes but also for a range of other applications including separations, sensors, flexible electronics, and coatings. However, a fundamental understanding of the formation and properties of ion-containing thiol-ene materials and their implementation as hydroxide exchange membranes is largely absent from the current literature. The work described herein will highlight the versatility of click reactions, primarily the thiol-ene reaction, for fabrication of ion-containing networks with tunable properties based on the rational design and synthesis of photopolymerizable ionic liquid comonomers with an emphasis on applicability for HEMFC applications. The role of ionic liquid monomer structure on the kinetics and mechanism of thiol-ene ionic network formation and the subsequent properties (i.e., ion conductive, thermomechanical, and structural) will be elucidated to establish a guided framework for click ionic material development. This framework will be directed onto the development of alkaline stable hydroxide-conductive membranes for fuel cell applications as well as the incorporation of catalytic nanoparticles into a photocrosslinkable formulation as a self-standing catalyst layer. Finally, novel approaches to membrane fabrication will be implemented to build on the foundational studies that will simultaneously enhance the ionic conductivity and mechanical properties of the ion-containing polymer materials: these approaches include the synthesis and crosslinking of photopolymerizable cationic surfactants for microphase separated membranes as well as the first "bottom-up" ion-containing polymer synthesized from the photoinitiated copper-catalyzed azide-alkyne cycloaddition (photo-CuAAC) reaction which exhibits enhanced processability and hydroxide conductivity (>50 mS/cm).

  18. Dental erosion--an overview with emphasis on chemical and histopathological aspects.

    PubMed

    Lussi, A; Schlueter, N; Rakhmatullina, E; Ganss, C

    2011-01-01

    The quality of dental care and modern achievements in dental science depend strongly on understanding the properties of teeth and the basic principles and mechanisms involved in their interaction with surrounding media. Erosion is a disorder to which such properties as structural features of tooth, physiological properties of saliva, and extrinsic and intrinsic acidic sources and habits contribute, and all must be carefully considered. The degree of saturation in the surrounding solution, which is determined by pH and calcium and phosphate concentrations, is the driving force for dissolution of dental hard tissue. In relation to caries, with the calcium and phosphate concentrations in plaque fluid, the 'critical pH' below which enamel dissolves is about 5.5. For erosion, the critical pH is lower in products (e.g. yoghurt) containing more calcium and phosphate than plaque fluid and higher when the concentrations are lower. Dental erosion starts by initial softening of the enamel surface followed by loss of volume with a softened layer persisting at the surface of the remaining tissue. Dentine erosion is not clearly understood, so further in vivo studies, including histopathological aspects, are needed. Clinical reports show that exposure to acids combined with an insufficient salivary flow rate results in enhanced dissolution. The effects of these and other interactions result in a permanent ion/substance exchange and reorganisation within the tooth material or at its interface, thus altering its strength and structure. The rate and severity of erosion are determined by the susceptibility of the dental tissues towards dissolution. Because enamel contains less soluble mineral than dentine, it tends to erode more slowly. The chemical mechanisms of erosion are also summarised in this review. Special attention is given to the microscopic and macroscopic histopathology of erosion. Copyright © 2011 S. Karger AG, Basel.

  19. The Controversial Role of Inter-diffusion in Glass Alteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gin, Stephane; Neill, Lindsay; Fournier, M.

    2016-11-15

    Current kinetic models for nuclear waste glasses (e.g. GM2001, GRAAL) are based on a set of mechanisms that have been generally agreed upon within the international waste glass community. These mechanisms are: hydration of the glass, ion exchange reactions (the two processes are referred as inter-diffusion), hydrolysis of the silicate network, and condensation/precipitation of partly or completely hydrolyzed species that produces a porous and amorphous layer and crystalline phases on surface of the altered glass. Recently, a new idea with origins in the mineral dissolution community has been proposed that excludes inter-diffusion process as a potential rate-limiting mechanism. To understandmore » how the so-called interfacial dissolution/precipitation model can change the current understanding of glass behavior, a key experiment used to account for this model was replicated to further revisit the interpretation. This experiment was performed at 50°C, with SON68 glass, in static mode, deionized water and S/V ratio of 10 m-1 for 6 months. It turn out that glass alters in an intermediate kinetic regime between the forward and the residual rate. According to previous and new solid characterizations, it is concluded that neither a simple inter-diffusion model nor the interfacial dissolution precipitation model can account for the observed elemental profiles within the alteration layer. More generally, far and close-to-saturation conditions must be distinguished and literature provides evidences that inter-diffusion takes place in slightly acidic conditions and far from saturation. However, closer to saturation, when a sufficiently dense layer is formed, a new approach is proposed requiring a full description of chemical reactions taking place within the alteration layer and involving water molecules as it is thought that water accessibility to the pristine glass is the rate-limiting process.« less

  20. Process for disposing of radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grantham, L.F.; Gray, R.L.; McCoy, L.R.

    1988-05-03

    A process for removing water from the pores of spent, contaminated radioactive ion exchange resins and encasing radionuclides entrapped within the pores of the resins, the process is described consisting essentially of the sequential steps of: (a) heating the spent ion exchange resins at a temperature of from about 100/sup 0/C to about 150/sup 0/C to remove water from within and fill the pores of the ion exchange resins by heating the ion exchange resins for from about 46 to about 610 hours at a temperature at which the pores of the resins are sealed while avoiding any fusing ormore » melting of the ion exchange resins to encase radionuclides contained within the resins; and (b) cooling the resins to obtain dry, flowable ion exchange resins having radionuclides encased within sealed polymeric spheres.« less

  1. Dissolution Mechanisms of LiNi1/3Mn1/3Co1/3O2 Positive Electrode Material from Lithium-Ion Batteries in Acid Solution.

    PubMed

    Billy, Emmanuel; Joulié, Marion; Laucournet, Richard; Boulineau, Adrien; De Vito, Eric; Meyer, Daniel

    2018-05-04

    The sustainability through the energy and environmental costs involve the development of new cathode materials, considering the material abundance, the toxicity, and the end of life. Currently, some synthesis methods of new cathode materials and a large majority of recycling processes are based on the use of acidic solutions. This study addresses the mechanistic and limiting aspects on the dissolution of the layered LiNi 1/3 Mn 1/3 Co 1/3 O 2 oxide in acidic solution. The results show a dissolution of the active cathode material in two steps, which leads to the formation of a well-defined core-shell structure inducing an enrichment in manganese on the particle surface. The crucial role of lithium extraction is discussed and considered as the source of a "self-regulating" dissolution process. The delithiation involves a cumulative charge compensation by the cationic and anionic redox reactions. The electrons generated from the compensation of charge conduct to the dissolution by the protons. The delithiation and its implications on the side reactions, by the modification of the potential, explain the structural and compositional evolutions observed toward a composite material MnO 2 ·Li x MO 2 (M = Ni, Mn, and Co). The study shows a clear way to produce new cathode materials and recover transition metals from Li-ion batteries by hydrometallurgical processes.

  2. Method for dissolving plutonium dioxide

    DOEpatents

    Tallent, Othar K.

    1978-01-01

    The fluoride-catalyzed, non-oxidative dissolution of plutonium dioxide in HNO.sub.3 is significantly enhanced in rate by oxidizing dissolved plutonium ions. It is believed that the oxidation of dissolved plutonium releases fluoride ions from a soluble plutonium-fluoride complex for further catalytic action.

  3. Comparison of monomode KTiOPO4 waveguide formed by C3+ ion implantation and Rb+ ion exchange

    NASA Astrophysics Data System (ADS)

    Cui, Xiao-Jun; Wang, Liang-Ling

    2017-02-01

    In this work, we report on the formation and characterization of monomode KTiOPO4 waveguide at 1539 nm by 6.0 MeV C3+ ion implantation with the dose of 2×1015 ions/cm2 and Rb+-K+ ion exchange, respectively. The relative intensity of light as a function of effective refractive index of TM modes at 633 nm and 1539 nm for KTiOPO4 waveguide formed by two different methods were compared with the prism coupling technique. The refractive index (nz) profile for the ion implanted waveguide was reconstructed by reflectivity calculation method, and one for the ion exchanged waveguide was by inverse Wentzel-Kramers-Brillouin. The nuclear energy loss versus penetration depth of the C3+ ions implantation into KTiOPO4 was simulated using the Stopping Range of Ions in Matter software. The Rutherford Backscattering Spectrometry spectrum of KTiOPO4 waveguide was analyzed after ions exchanged. The results showed that monomode waveguide at 1539 nm can be formed by ion implantation and Rb+ -K+ ion exchange, respectively.

  4. Designing a dynamic dissolution method: a review of instrumental options and corresponding physiology of stomach and small intestine.

    PubMed

    Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri

    2013-09-01

    Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.

  5. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  6. TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling

    NASA Astrophysics Data System (ADS)

    Benzerara, Karim; Menguy, Nicolas; Guyot, François; Vanni, Christian; Gillet, Philippe

    2005-03-01

    The biogeochemical alteration of an Mg-Fe orthopyroxene, reacted for 70 yr under arid conditions in a desert environment, was studied by transmission electron microscopy. For this purpose, an electron transparent cross-section of the interface between a single microorganism, an orthopyroxene and nanometer-sized calcite crystals, was prepared with a focused ion beam system. X-ray energy dispersive spectrometry and electron energy loss spectroscopy allowed one to clearly distinguish the microorganism en route to fossilization from the nanometer-sized calcite crystals, showing the usefulness of such a protocol for identifying unambiguously traces of life in rocks. A 100-nm-deep depression was observed in the orthopyroxene close to the microorganism, suggesting an enhanced dissolution mediated by the microbe. However, an Al- and Si-rich amorphous altered layer restricted to the area just below the microorganism could be associated with decreased silicate dissolution rates at this location, suggesting complex effects of the microorganism on the silicate dissolution process. The close association observed between silicate dissolution and carbonate formation at the micrometer scale suggests that Urey-type CO 2 sequestration reactions could be mediated by microorganisms under arid conditions.

  7. Beam efflux measurements

    NASA Technical Reports Server (NTRS)

    Komatsu, G. K.; Stellen, J. M., Jr.

    1976-01-01

    Measurements have been made of the high energy thrust ions, (Group I), high angle/high energy ions (Group II), and high angle/low energy ions (Group IV) of a mercury electron bombardment thruster in the angular divergence range from 0 deg to greater than 90 deg. The measurements have been made as a function of thrust ion current, propellant utilization efficiency, bombardment discharge voltage, screen and accelerator grid potential (accel-decel ratio) and neutralizer keeper potential. The shape of the Group IV (charge exchange) ion plume has remained essentially fixed within the range of variation of the engine operation parameters. The magnitude of the charge exchange ion flux scales with thrust ion current, for good propellant utilization conditions. For fixed thrust ion current, charge exchange ion flux increases for diminishing propellant utilization efficiency. Facility effects influence experimental accuracies within the range of propellant utilization efficiency used in the experiments. The flux of high angle/high energy Group II ions is significantly diminished by the use of minimum decel voltages on the accelerator grid. A computer model of charge exchange ion production and motion has been developed. The program allows computation of charge exchange ion volume production rate, total production rate, and charge exchange ion trajectories for "genuine" and "facilities effects" particles. In the computed flux deposition patterns, the Group I and Group IV ion plumes exhibit a counter motion.

  8. Modeling multicomponent ion exchange equilibrium utilizing hydrous crystalline silicotitanates by a multiple interactive ion exchange site model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Z.; Anthony, R.G.; Miller, J.E.

    1997-06-01

    An equilibrium multicomponent ion exchange model is presented for the ion exchange of group I metals by TAM-5, a hydrous crystalline silicotitanate. On the basis of the data from ion exchange and structure studies, the solid phase is represented as Na{sub 3}X instead of the usual form of NaX. By using this solid phase representation, the solid can be considered as an ideal phase. A set of model ion exchange reactions is proposed for ion exchange between H{sup +}, Na{sup +}, K{sup +}, Rb{sup +}, and Cs{sup +}. The equilibrium constants for these reactions were estimated from experiments with simplemore » ion exchange systems. Bromley`s model for activity coefficients of electrolytic solutions was used to account for liquid phase nonideality. Bromley`s model parameters for CsOH at high ionic strength and for NO{sub 2}{sup {minus}} and Al(OH){sub 4}{sup {minus}} were estimated in order to apply the model for complex waste simulants. The equilibrium compositions and distribution coefficients of counterions were calculated for complex simulants typical of DOE wastes by solving the equilibrium equations for the model reactions and material balance equations. The predictions match the experimental results within 10% for all of these solutions.« less

  9. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1980-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  10. Ion-exchange hollow fibers

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Yen, Shiao-Ping S. (Inventor); Klein, Elias (Inventor)

    1977-01-01

    An ion-exchange hollow fiber is prepared by introducing into the wall of the fiber polymerizable liquid monomers, and polymerizing the monomers therein to form solid, insoluble, cross-linked, ion-exchange resin particles which embed in the wall of the fiber. Excess particles blocking the central passage or bore of the fiber are removed by forcing liquid through the fiber. The fibers have high ion-exchange capacity, a practical wall permeability and good mechanical strength even with very thin wall dimensions. Experimental investigation of bundles of ion-exchange hollow fibers attached to a header assembly have shown the fiber to be very efficient in removing counterions from solution.

  11. Enhanced capacity and stability for the separation of cesium in electrically switched ion exchange

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tawfic, A.F.; Dickson, S.E.; Kim, Y.

    2015-03-15

    Electrically switched ion exchange (ESIX) can be used to separate ionic contaminants from industrial wastewater, including that generated by the nuclear industry. The ESIX method involves sequential application of reduction and oxidation potentials to an ion exchange film to induce the respective loading and unloading of cesium. This technology is superior to conventional methods (e.g electrodialysis reversal or reverse osmosis) as it requires very little energy for ionic separation. In previous studies, ESIX films have demonstrated relatively low ion exchange capacities and limited film stabilities over repeated potential applications. In this study, the methodology for the deposition of electro-active filmsmore » (nickel hexacyanoferrate) on nickel electrodes was modified to improve the ion exchange capacity for cesium removal using ESIX. Cyclic voltammetry was used to investigate the ion exchange capacity and stability. Scanning electron microscopy (SEM) was used to characterize the modified film surfaces. Additionally, the films were examined for the separation of cesium ions. This modified film preparation technique enhanced the ion exchange capacity and improves the film stability compared to previous methods for the deposition of ESIX films. (authors)« less

  12. 9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. VIEW, LOOKING WEST, OF GLOVE BOXES ASSOCIATED WITH THE ANION EXCHANGE PROCESS IN ROOM 149. THE GLOVE BOXES ON THE LEFT CONTAIN MIXER STIRRERS THAT AID IN THE DISSOLUTION PROCESS THAT OCCURRED PRIOR TO ANION EXCHANGE. (6/20/60) - Rocky Flats Plant, Plutonium Recovery & Fabrication Facility, North-central section of plant, Golden, Jefferson County, CO

  13. Uranium Anodic Dissolution under Slightly Alkaline Conditions Progress Report Full-Scale Demonstration with DU Foil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelis, A.; Brown, M. A.; Wiedmeyer, S.

    2014-02-18

    Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less

  14. A new configuration of membrane stack for retrieval of nickel absorbed in resins*

    PubMed Central

    Chen, Xue-fen; Wu, Zu-cheng

    2005-01-01

    A new configuration integrated ion exchange effect with both electro-migration and electrochemical reaction in a single cell was developed to effectively retrieve metal ions from simulated wastewater using ion exchange resins without additive chemicals. By simply assembling cation exchange resins and anion exchange resins separated by homogeneous membranes, we found that the system will always be acidic in the concentrate compartment so that ion exchange resins could be in-situ regenerated without hydroxide precipitation. Such a realizable design will be really suitable for wastewater purification. PMID:15909341

  15. Leaching of Zinc Sulfide by Thiobacillus ferrooxidans: Bacterial Oxidation of the Sulfur Product Layer Increases the Rate of Zinc Sulfide Dissolution at High Concentrations of Ferrous Ions

    PubMed Central

    Fowler, T. A.; Crundwell, F. K.

    1999-01-01

    This paper reports the results of leaching experiments conducted with and without Thiobacillus ferrooxidans at the same conditions in solution. The extent of leaching of ZnS with bacteria is significantly higher than that without bacteria at high concentrations of ferrous ions. A porous layer of elemental sulfur is present on the surfaces of the chemically leached particles, while no sulfur is present on the surfaces of the bacterially leached particles. The analysis of the data using the shrinking-core model shows that the chemical leaching of ZnS is limited by the diffusion of ferrous ions through the sulfur product layer at high concentrations of ferrous ions. The analysis of the data shows that diffusion through the product layer does not limit the rate of dissolution when bacteria are present. This suggests that the action of T. ferrooxidans in oxidizing the sulfur formed on the particle surface is to remove the barrier to diffusion by ferrous ions. PMID:10583978

  16. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching

    NASA Astrophysics Data System (ADS)

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-01

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  17. 3D silicon shapes through bulk nano structuration by focused ion beam implantation and wet etching.

    PubMed

    Salhi, Billel; Troadec, David; Boukherroub, Rabah

    2017-05-19

    The work presented in this paper concerns the synthesis of silicon (Si) 2D and 3D nanostructures using the delayed effect, caused by implanted Ga ions, on the dissolution of Si in aqueous solutions of tetramethylammonium hydroxide (TMAH). The crystalline silicon substrates (100) are first cleaned and then hydrogenated by immersion in an aqueous solution of hydrofluoric acid. The ion implantation is then carried out by a focused ion beam by varying the dose and the exposure time. Chemical etching in aqueous solutions of TMAH at 80 °C leads to the selective dissolution of the Si planes not exposed to the ions. The preliminary results obtained in the laboratory made it possible to optimize the experimental conditions for the synthesis of 2D and 3D nanoobjects of controlled shape and size. Analysis by transmission electron microscopy and energy dispersive x-ray showed the amorphous nature of the nanostructures obtained and the presence of 5%-20% Ga in these nanoobjects. The first experiments of recrystallization by rapid thermal annealing allowed to reconstitute the crystal structure of these nanoobjects.

  18. Charged particle measurements on a 30-CM diameter mercury ion engine thrust beam

    NASA Technical Reports Server (NTRS)

    Sellen, J. M., Jr.; Komatsu, G. K.; Hoffmaster, D. K.; Kemp, R. F.

    1974-01-01

    Measurements of both thrust ions and charge exchange ions were made in the beam of a 30 centimeter diameter electron bombardment mercury ion thruster. A qualitative model is presented which describes magnitudes of charge exchange ion formation and motions of these ions in the weak electric field structure of the neutralized thrust beam plasma. Areas of agreement and discrepancy between observed and modeled charge exchange properties are discussed.

  19. Silver-Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy against Methicillin-Resistant Staphylococcus aureus.

    PubMed

    Chen, Shaojiang; Popovich, John; Iannuzo, Natalie; Haydel, Shelley E; Seo, Dong-Kyun

    2017-11-15

    As antibiotic resistance continues to be a major public health problem, antimicrobial alternatives have become critically important. Nanostructured zeolites have been considered as an ideal host for improving popular antimicrobial silver-ion-exchanged zeolites, because with very short diffusion path lengths they offer advantages in ion diffusion and release over their conventional microsized zeolite counterparts. Herein, comprehensive studies are reported on materials characteristics, silver-ion release kinetics, and antibacterial properties of silver-ion-exchanged nanostructured zeolite X with comparisons to conventional microsized silver-ion-exchanged zeolite (∼2 μm) as a reference. The nanostructured zeolites are submicrometer-sized aggregates (100-700 nm) made up of primary zeolite particles with an average primary particle size of 24 nm. The silver-ion-exchanged nanostructured zeolite released twice the concentration of silver ions at a rate approximately three times faster than the reference. The material exhibited rapid antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) with minimum inhibitory concentration (MIC) values ranging from 4 to 16 μg/mL after 24 h exposure in various growth media and a minimum bactericidal concentration (MBC; >99.9% population reduction) of 1 μg/mL after 2 h in water. While high concentrations of silver-ion-exchanged nanostructured zeolite X were ineffective at reducing MRSA biofilm cell viability, efficacy increased at lower concentrations. In consideration of potential medical applications, cytotoxicity of the silver-ion-exchanged nanostructured zeolite X was also investigated. After 4 days of incubation, significant reduction in eukaryotic cell viability was observed only at concentrations 4-16-fold greater than the 24 h MIC, indicating low cytotoxicity of the material. Our results establish silver-ion-exchanged nanostructured zeolites as an effective antibacterial material against dangerous antibiotic-resistant bacteria.

  20. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation.

    PubMed

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar; Chen, George Q; Kentish, Sandra E

    2017-09-14

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique.

  1. Dissolution of covalent adaptable network polymers in organic solvent

    NASA Astrophysics Data System (ADS)

    Yu, Kai; Yang, Hua; Dao, Binh H.; Shi, Qian; Yakacki, Christopher M.

    2017-12-01

    It was recently reported that thermosetting polymers can be fully dissolved in a proper organic solvent utilizing a bond-exchange reaction (BER), where small molecules diffuse into the polymer, break the long polymer chains into short segments, and eventually dissolve the network when sufficient solvent is provided. The solvent-assisted dissolution approach was applied to fully recycle thermosets and their fiber composites. This paper presents the first multi-scale modeling framework to predict the dissolution kinetics and mechanics of thermosets in organic solvent. The model connects the micro-scale network dynamics with macro-scale material properties: in the micro-scale, a model is developed based on the kinetics of BERs to describe the cleavage rate of polymer chains and evolution of chain segment length during the dissolution. The micro-scale model is then fed into a continuum-level model with considerations of the transportation of solvent molecules and chain segments in the system. The model shows good prediction on conversion rate of functional groups, degradation of network mechanical properties, and dissolution rate of thermosets during the dissolution. It identifies the underlying kinetic factors governing the dissolution process, and reveals the influence of different material and processing variables on the dissolution process, such as time, temperature, catalyst concentration, and chain length between cross-links.

  2. Hydrochemical characterization of groundwater in the Akyem area, Ghana

    USGS Publications Warehouse

    Banoeng-Yakubo, B.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2008-01-01

    The Akyem area is a small farming community located in southeastern Ghana. Groundwater samples from wells in the area were analyzed for concentrations of the major ions, silica, electrical conductivity and pH. The objective was to determine the main controls on the hydrochemistry of ground-water. Mass balance modeling was used together with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types exist in this area. The first is influenced most by the weathering of silicate minerals from the underlying geology, and is thus rich in silica, sodium, calcium, bicarbonate, and magnesium ions. The second is water that has been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwaters. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions and a long groundwater residence time, leading to greater exposure of the rock to weathering. Cation exchange processes appear to play minor roles in the hydrochemistry of groundwater.

  3. Explosives Dissolved from Unexploded Ordnance

    DTIC Science & Technology

    2011-10-01

    production) HPLC High performance Liquid Chromatography IC Ion conductivity MMR Massachusetts Military Reservation NCDC National Climatic Data Center...rounds, 2) its dissolution rate in water can be measured using ion chromatography or electrical conductivity, and 3) it has a high water solubility...sample access 29 The water samples were analyzed with an ion chromatography system8. The conductivity of each solution is measured and compared

  4. An Empirical Formula From Ion Exchange Chromatography and Colorimetry.

    ERIC Educational Resources Information Center

    Johnson, Steven D.

    1996-01-01

    Presents a detailed procedure for finding an empirical formula from ion exchange chromatography and colorimetry. Introduces students to more varied techniques including volumetric manipulation, titration, ion-exchange, preparation of a calibration curve, and the use of colorimetry. (JRH)

  5. Effect of silver ions and clusters on the luminescence properties of Eu-doped borate glasses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Qing, E-mail: jiaoqing@nbu.edu.cn; Wang, Xi; Qiu, Jianbei

    2015-12-15

    Highlights: • Ag{sup +} and Ag clusters are investigated in the borate glasses via ion exchange method. • The aggregation of silver ions to the clusters was controlled by the ion exchange concentration. • Eu{sup 3+}/Eu{sup 2+} ions emission was enhanced with the sensitization of the silver species. • Energy transfer process from Ag ions and Ag clusters to Eu ions is identified by the lifetime measurements. - Abstract: Silver ions and clusters were applied to Eu{sup 3+}-doped borate glasses via the Ag{sup +}–Na{sup +} ion exchange method. Eu{sup 3+}/Eu{sup 2+} ion luminescence enhancement was achieved after silver ion exchange.more » Absorption spectra showed no band at 420 nm, which indicates that silver nanoparticles can be excluded as a silver state in the glass. Silver ion aggregation into clusters during the ion exchange process may be inferred. The effect of silver ions and clusters on rare earth emissions was investigated using spectral information and lifetime measurements. Significant luminescence enhancements were observed from the energy transfer of Ag{sup +} ions and clusters to Eu{sup 3+}/Eu{sup 2+} ions, companied with the silver ions aggregated into the clusters state. The results of this research may extend the current understanding of interactions between rare-earth ions and Ag species.« less

  6. Contaminant desorption during long-term leaching of hydroxide-weathered Hanford sediments.

    PubMed

    Thompson, Aaron; Steefel, Carl I; Perdrial, Nicolas; Chorover, Ion

    2010-03-15

    Mineral sorption/coprecipitation is thought to be a principal sequestration mechanism for radioactive (90)Sr and (137)Cs in sediments impacted by hyperalkaline, high-level radioactive waste (HLRW) at the DOE's Hanford site. However, the long-term persistence of neo-formed, contaminant bearing phases after removal of the HLRW source is unknown. We subjected pristine Hanford sediments to hyperalkaline Na-AI-NO(3)-OH solutions containing Sr, Cs, and I at 10(-5), 10(-5), and 10(-7) molal, respectively, for 182 days with either <10 ppmv or 385 ppmv pCO(2). This resulted in the formation of feldspathoid minerals. We leached these weathered sediments with dilute, neutral-pH solutions. After 500 pore volumes (PVs), effluent Sr, Cs, NO(3), Al, Si, and pH reached a steady-state with concentrations elevated above those of feedwater. Reactive transport modeling suggests that even after 500 PV, Cs desorption can be explained by ion exchange reactions, whereas Sr desorption is best described by dissolution of Sr-substituted, neo-formed minerals. While, pCO(2) had no effect on Sr or Cs sorption, sediments weathered at <10 ppmv pCO(2) did desorb more Sr (66% vs 28%) and Cs (13% vs 8%) during leaching than those weathered at 385 ppmv pCO(2). Thus, the dissolution of neo-formed aluminosilicates may represent a long-term, low-level supply of (90)Sr at the Hanford site.

  7. Geochemical transformations and modeling of two deep-well injected hazardous wastes

    USGS Publications Warehouse

    Roy, W.R.; Seyler, B.; Steele, J.D.; Mravik, S.C.; Moore, D.M.; Krapac, I.G.; Peden, J.M.; Griffin, R.A.

    1991-01-01

    Two liquid hazardous wastes (an alkaline brine-like solution and a dilute acidic waste) were mixed with finely ground rock samples of three injection-related lithologies (sandstone, dolomite, and siltstone) for 155 to 230 days at 325??K-10.8 MPa. The pH and inorganic chemical composition of the alkaline waste were not significantly altered by any of the rock samples after 230 days of mixing. The acidic waste was neutralized as a consequence of carbonate dissolution, ion exchange, or clay-mineral dissolution, and hence was transformed into a nonhazardous waste. Mixing the alkaline waste with the solid phases yielded several reaction products: brucite, Mg(OH)2; calcite, CaCO3; and possibly a type of sodium metasilicate. Clay-like minerals formed in the sandstone, and hydrotalcite, Mg6Al2-CO3(OH)16??4H2O, may have formed in the siltstone at trace levels. Mixing the alkaline waste with a synthetic brine yielded brucite, calcite, and whewellite (CaC2O4??H2O). The thermodynamic model PHRQPITZ predicted that brucite and calcite would precipitate from solution in the dolomite and siltstone mixtures and in the alkaline waste-brine system. The dilute acidic waste did not significantly alter the mineralogical composition of the three rock types after 155 days of contact. The model PHREEQE indicated that the calcite was thermodynamically stable in the dolomite and siltstone mixtures.

  8. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel-cadmium, batteries using Cyanex 923 and 272

    NASA Astrophysics Data System (ADS)

    Reddy, B. Ramachandra; Priya, D. Neela

    Studies are conducted on the leaching and solvent extraction separation of metals from chloride leach liquor of spent nickel-cadmium batteries with Cyanex 923 and 272 diluted in kerosene as the extractants. Dissolution of the metals increases with increase in acid concentration and time but decreases with the solids-to-liquid ratio. Complete dissolution of Cd, Co and Ni can be achieved with 1.5 M HCl at 85 °C for 8 h and a solids-to-liquid ratio of 4. Treatment of leach liquor for the separation of metals with Cyanex 923 shows that increase of extractant and chloride ion concentration increases the percentage extraction of cadmium. The plot of log[distribution coefficient] versus log[extractant]/[Cl -] is linear with a slope of 2, which indicates that the extraction follows a solvation mechanism with the extracted species as CdCl 2·2S (S, Cyanex 923). Moreover, Cyanex 923 enables a clear separation of Cd from Co and Ni. Extraction of cobalt with Cyanex 272 involves a cation-exchange mechanism with the formation of a 1:2 metal-to-ligand complex in the organic phase. Based on the distribution data, extractant concentration and equilibrium pH of the aqueous phase, a possible separation process is proposed for the recovery of cadmium, cobalt and nickel with >99% efficiency.

  9. An investigation of ground-water recharge by injection in the Palo Alto Baylands, California : hydraulic and chemical interactions; final report

    USGS Publications Warehouse

    Hamlin, S.N.

    1985-01-01

    The U.S. Geological Survey, in cooperation with the Santa Clara Valley Water District, has completed a study of ground-water recharge by injection in the Palo Alto baylands along San Francisco Bay, California. Selected wells within the Water District 's injection-extraction network were monitored to determine hydraulic and chemical interactions affecting well-field operation. The well field was installed to prevent and eliminate saline contamination in the local shallow aquifer system. The primary focus of this study is on factors that affect injection efficiency, specifically well and aquifer clogging. Mixing and break-through curves for major chemical constituents indicate ion exchange, adsorption, and dissolution reactions. Freshwater breakthrough was detected in water-level data, which reflected fluid-density change as well as head buildup. Dissolution of calcium carbonate caused by dilution of saline ground water probably accounts for an apparent increase in specific capacity possibly related to improved aquifer permeability. Adsorption evidently removed trace elements during passage of injected water through the aquifer. In terms of hydraulic and chemical compatibility, the well field is a viable system for ground-water recharge. Aquifer heterogeneity and operational constraints reduce the efficiency of the system. Efficiency may be maximized by careful attention to extraction distribution and quantity and to injection distribution, quantity, and water quality. (USGS)

  10. Synergistic integration of ion-exchange and catalytic reduction for complete decomposition of perchlorate in waste water.

    PubMed

    Kim, You-Na; Choi, Minkee

    2014-07-01

    Ion-exchange has been frequently used for the treatment of perchlorate (ClO4(-)), but disposal or regeneration of the spent resins has been the major hurdle for field application. Here we demonstrate a synergistic integration of ion-exchange and catalytic decomposition by using Pd-supported ion-exchange resin as an adsorption/catalysis bifunctional material. The ion-exchange capability of the resin did not change after generation of the Pd clusters via mild ethanol reduction, and thus showed very high ion-exchange selectivity and capacity toward ClO4(-). After the resin was saturated with ClO4(-) in an adsorption mode, it was possible to fully decompose the adsorbed ClO4(-) into nontoxic Cl(-) by the catalytic function of the Pd catalysts under H2 atmosphere. It was demonstrated that prewetting the ion-exchange resin with ethanol significantly accelerate the decomposition of ClO4(-) due to the weaker association of ClO4(-) with the ion-exchange sites of the resin, which allows more facile access of ClO4(-) to the catalytically active Pd-resin interface. In the presence of ethanol, >90% of the adsorbed ClO4(-) could be decomposed within 24 h at 10 bar H2 and 373 K. The ClO4(-) adsorption-catalytic decomposition cycle could be repeated up to five times without loss of ClO4(-) adsorption capacity and selectivity.

  11. First-Principles Modeling of Mn(II) Migration above and Dissolution from Li x Mn 2 O 4 (001) Surfaces

    DOE PAGES

    Leung, Kevin

    2016-12-10

    The density functional theory and ab initio molecular dynamics simulations are applied to investigate the migration of Mn(II) ions to above-surface sites on spinel Li xMn 2O 4 (001) surfaces, the subsequent Mn dissolution into the organic liquid electrolyte, and the detrimental effects on graphite anode solid electrolyte interphase (SEI) passivating films after Mn(II) ions diffuse through the separator. The dissolution mechanism proves complex; the much-quoted Hunter disproportionation of Mn(III) to form Mn(II) is far from sufficient. Key steps that facilitate Mn(II) loss include concerted liquid/solid-state motions; proton-induced weakening of Mn–O bonds forming mobile OH – surface groups; and chemicalmore » reactions of adsorbed decomposed organic fragments. Mn(II) lodged between the inorganic Li 2CO 3 and organic lithium ethylene dicarbonate (LEDC) anode SEI components facilitate electrochemical reduction and decomposition of LEDC. Our findings help inform future design of protective coatings, electrolytes, additives, and interfaces.« less

  12. Processes for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil, and apparatuses for treating biomass-derived pyrolysis oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baird, Lance Awender; Brandvold, Timothy A.

    Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed throughmore » the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.« less

  13. Reversible photodeposition and dissolution of metal ions

    DOEpatents

    Foster, Nancy S.; Koval, Carl A.; Noble, Richard D.

    1994-01-01

    A cyclic photocatalytic process for treating waste water containing metal and organic contaminants. In one embodiment of the method, metal ions are photoreduced onto the photocatalyst and the metal concentrated by resolubilization in a smaller volume. In another embodiment of the method, contaminant organics are first oxidized, then metal ions removed by photoreductive deposition. The present invention allows the photocatalyst to be recycled until nearly complete removal of metal ions and organic contaminants is achieved.

  14. Ion Exchange and Adsorption of Inorganic Contaminants

    EPA Science Inventory

    In the first part of the chapter, the fundamentals of ion exchange and adsorption processes are explained, with the goal of demonstrating how these principles influence process design for inorganic contaminant removal. In the second part, ion exchange and adsorption processes th...

  15. Electrochemical electron beam lithography: Write, read, and erase metallic nanocrystals on demand

    PubMed Central

    Park, Jeung Hun; Steingart, Daniel A.; Kodambaka, Suneel; Ross, Frances M.

    2017-01-01

    We develop a solution-based nanoscale patterning technique for site-specific deposition and dissolution of metallic nanocrystals. Nanocrystals are grown at desired locations by electron beam–induced reduction of metal ions in solution, with the ions supplied by dissolution of a nearby electrode via an applied potential. The nanocrystals can be “erased” by choice of beam conditions and regrown repeatably. We demonstrate these processes via in situ transmission electron microscopy using Au as the model material and extend to other metals. We anticipate that this approach can be used to deposit multicomponent alloys and core-shell nanostructures with nanoscale spatial and compositional resolutions for a variety of possible applications. PMID:28706992

  16. On The Molecular Mechanism Of Positive Novolac Resists

    NASA Astrophysics Data System (ADS)

    Huang, Jian-Ping; Kwei, T. K.; Reiser, Arnost

    1989-08-01

    A molecular mechanism for the dissolution of novolac is proposed, based on the idea of a critical degree of deprotonation as being the condition for the transfer of polymer into solution. The rate at which the critical deprotonation condition is achieved is controlled by the supply of developer into a thin penetration zone, and depends in particular on the rate of diffusion of the base cations which are the developer component with the lowest mobility. The penetration zone contains phenolate ions and ion-bound water, but it retains the structure of a rigid polymer membrane, as evidenced by the diffusion coefficient of cations in the pene;tration zone which is several orders of magnitude slower than in an open gel of the same material. When the critical degree of deprotonation is reached, the membrane structure unravels and all subsequent events, chain rearrangement and transfer into solution, occur rapidly. The supralinear dependence of dissolution rate on base concentration and the effect of the size of the base cation are plausibly interpreted by the model. The diffusion of developer components is assumed to occur preferentially via hydrophilic sites in the polymer matrix. These sites define a diffusion path which acts like a hydrophilic diffusion channel. Suitably designed hydrophobic molecules can block some of the channels and in this way alter the dissolution rate. They reduce in effect the diffusion crossect ion of the material. Hydrophilic additives, on the other hand, introduce additional channels into the system and promote dissolution. The concept of diffusion channels appears to provide a unified interpretation for a number of common observations.

  17. Ion exchanger from chemically modified banana leaves.

    PubMed

    El-Gendy, Ahmed A; Mohamed, Samar H; Abd-Elkader, Amal H

    2013-07-25

    Cation exchangers from chemically modified banana leaves have been prepared. Banana leaves were treated with different molarities of KMnO4 and cross linked with epichlorohydrin and their effect on metal ion adsorption was investigated. Phosphorylation of chemically modified banana leaves was also studied. The metal ion uptake by these modified banana leaves was clarified. Effect of different varieties, e.g. activation of produced cation exchanger, concentration of metal ions was also investigated. Characterization of the prepared ion exchangers by using infrared and thermal analysis was also taken in consideration. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Programmatic Re-Evaluation of Ion Exchange as a 1st Generation ITP Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott, A.B.

    This re-evaluation differs from previous work in that (1) the Ion Exchange option was evaluated from a standpoint assuming that ITP would never start up, thus Ion Exchange was the only viable option, (2) the DOE prescribed balanced assumptions were quite different than the WSRC Assumptions used previously, and (3) other Site events and changes within HLWM have tended to reduce the disadvantages of Ion Exchange relative to ITP as the first generation salt decontamination process.

  19. Mg Isotope Evolution During Water-Rock Interaction in a Carbonate Aquifer

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Jacobson, A. D.; Lundstrom, C. C.; Huang, F.

    2008-12-01

    To better understand how Mg isotopes behave during weathering and aqueous transport, we used a Nu Plasma MC-ICP-MS to measure δ26Mg values (relative to DSM-3) in water samples along a 236 km flow path in the Madison aquifer of South Dakota, a confined carbonate aquifer recharging in the igneous Black Hills. We also analyzed local granite and dolomite samples to characterize the Mg isotope composition of source rocks constituting the recharge zone and aquifer, respectively. Repeated analyses of Mg standard solutions yielded external precisions (2σ) better than 0.1 permil for δ26Mg(CAM-1, - 2.584±0.071, n=13; UIMg-1, -2.217±0.087, n=9.). The Madison aquifer provides a unique opportunity to quantify Mg isotope effects during water-rock interaction because (1) fluids and rock have chemically equilibrated over a much longer timescale (up to ~15 kyr) than can be simulated in laboratory experiments and (2) previous studies have determined the rates and mass-balances of de- dolomitization and other geochemical reactions controlling solute evolution along the flow path. Reactions important for changing the concentration and isotope composition of Mg include dolomite dissolution, Mg-for- Na ion exchange, calcite precipitation, and isotope exchange. δ26Mg values within the recharge region (0-17 km along flow path) vary between -1.08 and -1.63 permil, and then remain essentially constant at -1.408±0.010 permil(1σ, 5 samples) from 17 to 189 km. A final sample at 236 km shows an increase to -1.09 permil. Either mixing between different recharge waters or rapid isotope exchange between infiltrating waters and dolomite could control δ26Mg variability between 0 and 17 km. Likewise, reactive transport modeling suggests that preferential uptake of 24Mg during Mg-for-Na ion exchange might cause an increase in δ26Mg between 189 and 236 km. However, unchanging δ26Mg values observed throughout most of the aquifer clearly demonstrate that Mg isotopes are not fractionated during reactive transport. This suggests that Mg isotopes can conservatively trace weathering inputs and groundwater flow in dolomite-rich aquifers.

  20. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga.

    PubMed

    Hofmann, Laurie C; Koch, Marguerite; de Beer, Dirk

    2016-01-01

    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4' diisothiocyanatostilbene-2,2'-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA.

  1. Biotic Control of Surface pH and Evidence of Light-Induced H+ Pumping and Ca2+-H+ Exchange in a Tropical Crustose Coralline Alga

    PubMed Central

    Hofmann, Laurie C.; Koch, Marguerite; de Beer, Dirk

    2016-01-01

    Presently, an incomplete mechanistic understanding of tropical reef macroalgae photosynthesis and calcification restricts predictions of how these important autotrophs will respond to global change. Therefore, we investigated the mechanistic link between inorganic carbon uptake pathways, photosynthesis and calcification in a tropical crustose coralline alga (CCA) using microsensors. We measured pH, oxygen (O2), and calcium (Ca2+) dynamics and fluxes at the thallus surface under ambient (8.1) and low (7.8) seawater pH (pHSW) and across a range of irradiances. Acetazolamide (AZ) was used to inhibit extracellular carbonic anhydrase (CAext), which mediates hydrolysis of HCO3-, and 4,4′ diisothiocyanatostilbene-2,2′-disulphonate (DIDS) that blocks direct HCO3- uptake by anion exchange transport. Both inhibited photosynthesis, suggesting both diffusive uptake of CO2 via HCO3- hydrolysis to CO2 and direct HCO3- ion transport are important in this CCA. Surface pH was raised approximately 0.3 units at saturating irradiance, but less when CAext was inhibited. Surface pH was lower at pHSW 7.8 than pHSW 8.1 in the dark, but not in the light. The Ca2+ fluxes were large, complex and temporally variable, but revealed net Ca2+ uptake under all conditions. The temporal variability in Ca2+ dynamics was potentially related to localized dissolution during epithallial cell sloughing, a strategy of CCA to remove epiphytes. Simultaneous Ca2+ and pH dynamics suggest the presence of Ca2+/H+ exchange. Rapid light-induced H+ surface dynamics that continued after inhibition of photosynthesis revealed the presence of a light-mediated, but photosynthesis-independent, proton pump. Thus, the study indicates metabolic control of surface pH can occur in CCA through photosynthesis and light-inducible H+ pumps. Our results suggest that complex light-induced ion pumps play an important role in biological processes related to inorganic carbon uptake and calcification in CCA. PMID:27459463

  2. Calcium Solubility and Cation Exchange Properties in Zeoponic Soil

    NASA Technical Reports Server (NTRS)

    Beiersdorfer, Raymond E.

    1999-01-01

    An important aspect of a regenerative life support system at a Lunar or Martian outpost is the ability to produce food. Essential plant nutrients, as well as a solid support substrate, can be provided by: (1) treated Lunar or Martian regolith; (2) a synthetic soil or (3) some combination of both. A synthetic soil composed of ammonium- and potassium-saturated chinoptlolite (a zeolite mineral) and apatite, can provide slow-release fertilization of plants via dissolution and ion-exchange reactions. Previous equilibrium studies (Beiersdorfer, 1997) on mixtures of synthetic hydroxyapatite and saturated-clinoptilolite indicate that the concentrations of macro-nutrients such as ammonium, phosphorous, potassium, magnesium, and calcium are a function of the ratio of chinoptilolite to apatite in the sample and to the ratio of potassium to ammonium on the exchange sites in the clinoptilolite. Potassium, ammonium, phosphorous, and magnesium are available to plants at sufficient levels. However, calcium is deficient, due to the high degree of calcium adsorption by the clinoptilolite. Based on a series of batch-equilibration experiments, this calcium deficiency can be reduced by (1) treating the clinoptilolite with CaNO3 or (2) adding a second Ca-bearing mineral (calcite, dolomite or wollastonite) to the soil. Treating the Cp with CaNO3 results in increased Ca in solution, decreased P in solution and decreased NH4 in solution. Concentrations of K were not effected by the CaNO3 treatment. Additions of Cal, Dol and Wol changed the concentrations of Ca and P in solution in a systematic fashion. Cal has the greatest effect, Dol the least and Wol is intermediate. The changes are consistent with changes expected for a common ion effect with Ca. Higher concentrations of Ca in solution with added Cal, Dol or Wol do not result in changes in K or NH4 concentrations.

  3. Ion Mobility Spectrometry-Hydrogen Deuterium Exchange Mass Spectrometry of Anions: Part 1. Peptides to Proteins

    NASA Astrophysics Data System (ADS)

    Donohoe, Gregory C.; Khakinejad, Mahdiar; Valentine, Stephen J.

    2015-04-01

    Ion mobility spectrometry (IMS) coupled with hydrogen deuterium exchange (HDX)-mass spectrometry (MS) has been used to study the conformations of negatively-charged peptide and protein ions. Results are presented for ion conformers of angiotensin 1, a synthetic peptide (SP), bovine insulin, ubiquitin, and equine cytochrome c. In general, the SP ion conformers demonstrate a greater level of HDX efficiency as a greater proportion of the sites undergo HDX. Additionally, these ions exhibit the fastest rates of exchange. Comparatively, the angiotensin 1 ions exhibit a lower rate of exchange and HDX level presumably because of decreased accessibility of exchange sites by charge sites. The latter are likely confined to the peptide termini. Insulin ions show dramatically reduced HDX levels and exchange rates, which can be attributed to decreased conformational flexibility resulting from the disulfide bonds. For the larger ubiquitin and protein ions, increased HDX is observed for larger ions of higher charge state. For ubiquitin, a conformational transition from compact to more elongated species (from lower to higher charge states) is reflected by an increase in HDX levels. These results can be explained by a combination of interior site protection by compact conformers as well as decreased access by charge sites. The elongated cytochrome c ions provide the largest HDX levels where higher values correlate with charge state. These results are consistent with increased exchange site accessibility by additional charge sites. The data from these enhanced IMS-HDX experiments are described in terms of charge site location, conformer rigidity, and interior site protection.

  4. Method of detecting defects in ion exchange membranes of electrochemical cells by chemochromic sensors

    DOEpatents

    Brooker, Robert Paul; Mohajeri, Nahid

    2016-01-05

    A method of detecting defects in membranes such as ion exchange membranes of electrochemical cells. The electrochemical cell includes an assembly having an anode side and a cathode side with the ion exchange membrane in between. In a configuration step a chemochromic sensor is placed above the cathode and flow isolation hardware lateral to the ion exchange membrane which prevents a flow of hydrogen (H.sub.2) between the cathode and anode side. The anode side is exposed to a first reactant fluid including hydrogen. The chemochromic sensor is examined after the exposing for a color change. A color change evidences the ion exchange membrane has at least one defect that permits H.sub.2 transmission therethrough.

  5. Evolution of chemical and isotopic composition of inorganic carbon in a complex semi-arid zone environment: Consequences for groundwater dating using radiocarbon

    NASA Astrophysics Data System (ADS)

    Meredith, K. T.; Han, L. F.; Hollins, S. E.; Cendón, D. I.; Jacobsen, G. E.; Baker, A.

    2016-09-01

    Estimating groundwater age is important for any groundwater resource assessment and radiocarbon (14C) dating of dissolved inorganic carbon (DIC) can provide this information. In semi-arid zone (i.e. water-limited environments), there are a multitude of reasons why 14C dating of groundwater and traditional correction models may not be directly transferable. Some include; (1) the complex hydrological responses of these systems that lead to a mixture of different ages in the aquifer(s), (2) the varied sources, origins and ages of organic matter in the unsaturated zone and (3) high evaporation rates. These all influence the evolution of DIC and are not easily accounted for in traditional correction models. In this study, we determined carbon isotope data for; DIC in water, carbonate minerals in the sediments, sediment organic matter, soil gas CO2 from the unsaturated zone, and vegetation samples. The samples were collected after an extended drought, and again after a flood event, to capture the evolution of DIC after varying hydrological regimes. A graphical method (Han et al., 2012) was applied for interpretation of the carbon geochemical and isotopic data. Simple forward mass-balance modelling was carried out on key geochemical processes involving carbon and agreed well with observed data. High values of DIC and δ13CDIC, and low 14CDIC could not be explained by a simple carbonate mineral-CO2 gas dissolution process. Instead it is suggested that during extended drought, water-sediment interaction leads to ion exchange processes within the top ∼10-20 m of the aquifer which promotes greater calcite dissolution in saline groundwater. This process was found to contribute more than half of the DIC, which is from a mostly 'dead' carbon source. DIC is also influenced by carbon exchange between DIC in water and carbonate minerals found in the top 2 m of the unsaturated zone. This process occurs because of repeated dissolution/precipitation of carbonate that is dependent on the water salinity driven by drought and periodic flooding conditions. This study shows that although 14C cannot be directly applied as a dating tool in some circumstances, carbon geochemical/isotopic data can be useful in hydrological investigations related to identifying groundwater sources, mixing relations, recharge processes, geochemical evolution, and interaction with surface water.

  6. The Role of Ion Exchange Membranes in Membrane Capacitive Deionisation

    PubMed Central

    Hassanvand, Armineh; Wei, Kajia; Talebi, Sahar

    2017-01-01

    Ion-exchange membranes (IEMs) are unique in combining the electrochemical properties of ion exchange resins and the permeability of a membrane. They are being used widely to treat industrial effluents, and in seawater and brackish water desalination. Membrane Capacitive Deionisation (MCDI) is an emerging, energy efficient technology for brackish water desalination in which these ion-exchange membranes act as selective gates allowing the transport of counter-ions toward carbon electrodes. This article provides a summary of recent developments in the preparation, characterization, and performance of ion exchange membranes in the MCDI field. In some parts of this review, the most relevant literature in the area of electrodialysis (ED) is also discussed to better elucidate the role of the ion exchange membranes. We conclude that more work is required to better define the desalination performance of the proposed novel materials and cell designs for MCDI in treating a wide range of feed waters. The extent of fouling, the development of cleaning strategies, and further techno-economic studies, will add value to this emerging technique. PMID:28906442

  7. High-capacity cation-exchange column for enhanced resolution of adjacent peaks of cations in ion chromatography.

    PubMed

    Rey, M A

    2001-06-22

    One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.

  8. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2002-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  9. Ion Exchange Equilibrium and Kinetic Properties of Polyacrylate Films and Applications to Chemical Analysis and Environmental Decontamination

    NASA Technical Reports Server (NTRS)

    Tanner, Stephen P.

    1997-01-01

    One of the goals of the original proposal was to study how cross-linking affects the properties of an ion exchange material(IEM) developed at Lewis Research Center. However, prior to the start of this work, other workers at LERC investigated the effect of cross-linking on the properties of this material. Other than variation in the ion exchange capacity, the chemical characteristics were shown to be independent of the cross-linking agent, and the degree of cross-linking. New physical forms of the film were developed (film, supported film, various sizes of beads, and powder). All showed similar properties with respect to ion exchange equilibria but the kinetics of ion exchange depended on the surface area per unit mass; the powder form of the IEM exchanging much more rapidly than the other forms. The research performed under this grant was directed towards the application of the IEM to the analysis of metal ions at environmental concentrations.

  10. Properties of a Novel Ion-Exchange Film

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W.; Hill, Carol M.; Philipp, Warren H.; Tanner, Stephen P.; Gorse, Joseph; Lusk, Amy; Taylor, Jason; Dickens, Jason

    2004-01-01

    A new ion-exchange material (based on polyacrylic acid) and some of its analytical applications have been reported. This paper contains data on the ion-exchange properties of the film form of the material and its potential application to the decontamination of waste water and drinking water. The film has a high exchange capacity of 5 to 6 meq/g and a pK(sub a) of 5.7. The calcium form is the most effective for removing metal ions from solution, and the optimum pH range is between 5 and 7. The exchange rates are slower for the film than for bead and powder forms of the ion-exchange material; otherwise, the properties are similar. The film is effective when hard water solutions are employed and also when metal ions are in the complex matrix of waste water from electroplating. The film can be used in flow systems having a flow channel large enough to allow passage of turbid solutions.

  11. Investigation of the Dissolution-Reformation Cycle of the Passive Oxide Layer on NiTi Orthodontic Archwires

    NASA Astrophysics Data System (ADS)

    Uzer, B.; Birer, O.; Canadinc, D.

    2017-09-01

    Dissolution-reformation cycle of the passive oxide layer on the nickel-titanium (NiTi) orthodontic archwires was investigated, which has recently been recognized as one of the key parameters dictating the biocompatibility of archwires. Specifically, commercially available NiTi orthodontic archwires were immersed in artificial saliva solutions of different pH values (2.3, 3.3, and 4.3) for four different immersion periods: 1, 7, 14, and 30 days. Characterization of the virgin and tested samples revealed that the titanium oxide layer on the NiTi archwire surfaces exhibit a dissolution-reformation cycle within the first 14 days of the immersion period: the largest amount of Ni ion release occurred within the first week of immersion, while it significantly decreased during the reformation period from day 7 to day 14. Furthermore, the oxide layer reformation was catalyzed on the grooves within the peaks and valleys due to relatively larger surface energy of these regions, which eventually decreased the surface roughness significantly within the reformation period. Overall, the current results clearly demonstrate that the analyses of dissolution-reformation cycle of the oxide layer in orthodontic archwires, surface roughness, and ion release behavior constitute utmost importance in order to ensure both the highest degree of biocompatibility and an efficient medical treatment.

  12. Corrosion of dental aluminium bronze in neutral saline and saline lactic acid.

    PubMed

    Tibballs, J E; Erimescu, Raluca

    2006-09-01

    To compare the corrosion behaviours of two aluminium bronze, dental casting alloys during a standard immersion test and for immersion in neutral saline. Cast specimens of aluminium bronzes with 1.4 wt% Fe (G) and 4 wt% Fe (N) were subject to progressively longer periods (up to in total 7 days) immersed in 0.1 M saline, 0.1 M lactic acid solutions and examined by scanning electron microscopy with EDX analysis. Immersion in 0.1M neutral saline was for 7 days. In the acidic solution, exposed interdendritic volumes in alloy N corroded completely away in 7 days with dissolution of Ni-enriched precipitate species as well as the copper-rich matrix. Alloy G begins to corrode more slowly but by a similar mechanism. The number density of an Fe-enriched species is insufficient to maintain a continuous galvanic potential to the copper matrix, and dissolution becomes imperceptible. In neutral saline solution, galvanic action alone caused pit-etching, without the dissolution of either precipitate species. The upper limit for the total dissolution of metallic ions in the standard immersion test can be set at 200 microg cm(-2). Aluminium bronze dental alloys can be expected to release both copper and nickel ions into an acidic oral environment.

  13. Crystal faces of anhydrite (CaSO 4) and their preferential dissolution in aqueous solutions studied with AFM

    NASA Astrophysics Data System (ADS)

    Shindo, H.; Kaise, M.; Kondoh, H.; Nishihara, C.; Nozoye, H.

    Structures of cleaved surfaces of anhydrite were studied with atomic force microscopy (AFM) before and after partial dissolution in aqueous solutions of NH 4Cl and NaHSO 4. Two crystal faces showed atom-resolved images just after cleavage, (100) and (010), of which the former was roughened by the dissolution, while step structures were developed on the latter. After dissolution, steplines ran along the a- and c-axes on the (010) face, while they ran in directions inclined to these axes before. It was revealed that the arrangement of dipoles is a key factor in determining stabilities of step structures on crystal faces. On the terraces, the arrangement of oxygen atoms of the sulfate groups and calcium ions were clearly observed.

  14. Experimental study of copper-alkali ion exchange in glass

    NASA Astrophysics Data System (ADS)

    Gonella, F.; Caccavale, F.; Bogomolova, L. D.; D'Acapito, F.; Quaranta, A.

    1998-02-01

    Copper-alkali ion exchange was performed by immersing different silicate glasses (soda-lime and BK7) in different molten eutectic salt baths (CuSO4:Na2SO4 and CuSO4:K2SO4). The obtained optical waveguides were characterized by m-lines spectroscopy for the determination of refractive index profiles, and by secondary ion mass spectrometry for the concentration profiles of the ion species involved in the exchange process. The different oxidation states of copper inside the glass structure were studied by electron paramagnetic resonance and x-ray absorption techniques. Interdiffusion copper coefficients were also determined. The Cu-alkali exchange was observed to give rise to local structural rearrangement of the atoms in the glass matrix. The Cu+ ion was found to mainly govern the exchange process, while competition between Cu-Na and K-Na exchanges occurred when a potassium sulfate bath was used. In this case, significant waveguide modal birefringence was observed.

  15. Preparation and characterization of (St-DVB-MAA) ion exchange resins

    NASA Astrophysics Data System (ADS)

    Jiang, Shanquan; Sun, Xiangwei; Ling, Lixing; Wang, Shumin; Wu, Wufeng; Cheng, Shihong; Hu, Yue; Zhong, Chunyan

    2017-08-01

    In this paper, used polyvinyl alcohol as dispersing agent, Benzoyl peroxide as initiator of polymerization, Divinyl benzene as cross-linking agent, Styrene and 2-Methylpropenoic acid as monomer, ion exchange resin (copolymer of St-DVB-MAA)were prepared by suspension polymerization on 80°C. The structures, components and properties of the prepared composite micro gels were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA). The experiment of ion exchange was conducted by resin to deal with copper ions in the solution. The result showed that performance of the ion exchange capacity was excellent, which impacted by pH.

  16. Internal gas and liquid distributor for electrodeionization device

    DOEpatents

    Lin, YuPo J.; Snyder, Seth W.; Henry, Michael P.; Datta, Saurav

    2016-05-17

    The present invention provides a resin-wafer electrodeionization (RW-EDI) apparatus including cathode and anode electrodes separated by a plurality of porous solid ion exchange resin wafers, which when in use are filled with an aqueous fluid. The apparatus includes one or more wafers comprising a basic ion exchange medium, and preferably includes one or more wafers comprising an acidic ion exchange medium. The wafers are separated from one another by ion exchange membranes. The gas and aqueous fluid are introduced into each basic wafer via a porous gas distributor which disperses the gas as micro-sized bubbles laterally throughout the distributor before entering the wafer. The fluid within the acidic and/or basic ion exchange wafers preferably includes, or is in contact with, a carbonic anhydrase (CA) enzyme or inorganic catalyst to facilitate conversion of bicarbonate ion to carbon dioxide within the acidic medium.

  17. Biogeochemical processes controlling the mobility of major ions and trace metals in aquitard sediments beneath an oil sand tailing pond: laboratory studies and reactive transport modeling.

    PubMed

    Holden, A A; Haque, S E; Mayer, K U; Ulrich, A C

    2013-08-01

    Increased production and expansion of the oil sand industry in Alberta are of great benefit to the economy, but they carry major environmental challenges. The volume of fluid fine tailings requiring storage is 840×10(6) m(3) and growing, making it imperative that we better understand the fate and transport of oil sand process-affected water (OSPW) seepage from these facilities. Accordingly, the current study seeks to characterize both a) the potential for major ion and trace element release, and b) the principal biogeochemical processes involved, as tailing pond OSPW infiltrates into, and interacts with, underlying glacial till sediments prior to reaching down gradient aquifers or surface waters. Objectives were addressed through a series of aqueous and solid phase experiments, including radial diffusion cells, an isotope analysis, X-ray diffraction, and sequential extractions. The diffusion cells were also simulated in a reactive transport framework to elucidate key reaction processes. The experiments indicate that the ingress and interaction of OSPW with the glacial till sediment-pore water system will result in: a mitigation of ingressing Na (retardation), displacement and then limited precipitation of exchangeable Ca and Mg (as carbonates), sulfate reduction and subsequent precipitation of the produced sulfides, as well as biodegradation of organic carbon. High concentrations of ingressing Cl (~375 mg L(-1)) and Na (~575 mg L(-1)) (even though the latter is delayed, or retarded) are expected to migrate through the till and into the underlying sand channel. Trace element mobility was influenced by ion exchange, oxidation-reduction, and mineral phase reactions including reductive dissolution of metal oxyhydroxides - in accordance with previous observations within sandy aquifer settings. Furthermore, although several trace elements showed the potential for release (Al, B, Ba, Cd, Mn, Pb, Si, Sr), large-scale mobilization is not supported. Thus, the present results suggest that in addition to the commonly cited naphthenic acids, remediation of OSPW-impacted groundwater will need to address high concentrations of major ions contributing to salinization. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Mineral Separation in a CELSS by Ion-exchange Chromatography

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1982-01-01

    Operational parameters pertinent to ion exchange chromatography separation were identified. The experiments were performed with 9 mm diameter ion exchange columns and conventional column accessories. The cation separation beds were packed with AG 50W-X2 strong acid cation exchange resin in H(+) form and 200-400 dry mesh particle size. The stripper beds used in some experiments were packed with AG 1-XB strong base cation exchange resin in OH(-) form and 200-400 dry mesh particle size.

  19. The Award for the Development of Ion Exchange Systems for Food Processing

    NASA Astrophysics Data System (ADS)

    Yao, Eiya

    In the food industry, ion exchange resins have been used not only for water treatment, but also for the purification of foodstuff itself. Here I will introduce some topics in the development and improvement of ion exchange systems for food proccssing that I have worked on.

  20. ION-EXCHANGE METHOD FOR SEPARATING RADIUM FROM RADIUM-BARIUM MIXTURES

    DOEpatents

    Fuentevilla, M.E.

    1959-06-30

    An improved process is presented for separating radium from an aqueous feed solution containing radium and barium values and a complexing agent for these metals. In this process a feed solutlon containing radium and barium ions and a complexing agent for said ions ls cycled through an exchange zone in resins. The radiumenriched resin is then stripped of radium values to form a regeneration liquid, a portion of which is collected as an enriched product, the remaining portion being recycled to the exchange zone to further enrich the ion exchange resin in radium.

  1. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf])

    NASA Astrophysics Data System (ADS)

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J.; Cisneros, G. Andrés

    2018-01-01

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO4]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf]- anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  2. Molecular dynamics investigation of water-exchange reactions on lanthanide ions in water/1-ethyl-3-methylimidazolium trifluoromethylsufate ([EMIm][OTf]).

    PubMed

    Tu, Yi-Jung; Lin, Zhijin; Allen, Matthew J; Cisneros, G Andrés

    2018-01-14

    We report a kinetic study of the water exchange on lanthanide ions in water/[1-ethyl-3-methylimidazolium][trifluoromethylsufate] (water/[EMIm][OTf]). The results from 17 O-NMR measurements show that the water-exchange rates in water/[EMIm][OTf] increase with decreasing size of the lanthanide ions. This trend for water-exchange is similar to the previously reported trend in water/1-ethyl-3-methylimidazolium ethyl sulfate (water/[EMIm][EtSO 4 ]) but opposite to that in water. To gain atomic-level insight into these water-exchange reactions, molecular dynamics simulations for lanthanide ions in water/[EMIm][OTf] have been performed using the atomic-multipole-optimized-energetics-for-biomolecular-application polarizable force field. Our molecular dynamics simulations reproduce the experimental water-exchange rates in terms of the trend and provide possible explanations for the observed experimental behavior. The smaller lanthanide ions in water/[EMIm][OTf] undergo faster water exchange because the smaller lanthanide ions coordinate to the first shell [OTf] - anions more tightly, resulting in a stronger screening effect for the second-shell water. The screening effect weakens the interaction of the lanthanide ions with the second-shell water molecules, facilitating the dissociation of water from the second-shell and subsequent association of water molecules from the outer solvation shells.

  3. Use of natural clays as sorbent materials for rare earth ions: Materials characterization and set up of the operative parameters.

    PubMed

    Iannicelli-Zubiani, Elena Maria; Cristiani, Cinzia; Dotelli, Giovanni; Gallo Stampino, Paola; Pelosato, Renato; Mesto, Ernesto; Schingaro, Emanuela; Lacalamita, Maria

    2015-12-01

    Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Catalysis and chemical mechanisms of calcite dissolution in seawater.

    PubMed

    Subhas, Adam V; Adkins, Jess F; Rollins, Nick E; Naviaux, John; Erez, Jonathan; Berelson, William M

    2017-07-18

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric [Formula: see text] on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13 C-labeled calcites in natural seawater. We show that the time-evolving enrichment of [Formula: see text] in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13 C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution-precipitation shifts significantly toward a dissolution-dominated mechanism below about [Formula: see text] Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of [Formula: see text] is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid-solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at [Formula: see text], which we interpret as the onset of homogeneous etch pit nucleation.

  5. Effects of vacuum and ageing on Zr4/Cr3 based conversion coatings on aluminium alloys

    NASA Astrophysics Data System (ADS)

    Thirupathi, Kalaivanan; Bárczy, Pál; Vad, Kálmán; Csik, Attila; Somosvári, Béla Márton

    2018-05-01

    In this study, we investigate the impact of ageing and high vacuum on existing environmentally friendly Zr4/Cr3-based conversion coatings. The freshly formed coating undergoes several changes during ageing and exposure to high vacuum. Based on the present data, we propose that the coating formed over AA6082 and AA7075 alloys is sol-gel in nature, confirmed by secondary neutral mass spectroscopy (SNMS) using the depth profiling technique. Our findings reveal that there are elemental level changes that result in shrinkage of the coating. Most Zr ions in the coating are in the solute form, with lesser number of Cr and Al ions that disappear under high vacuum over a certain period of time. The remaining Cr, Zr and O atoms exist in a gelatinous state. During ageing, there is a continuous transition of ions from solute to gelatinous state. In addition, the deposition of coating ions is directly influenced by the substrates and their constituents. The extent of dissolution of aluminium in the conversion bath determines both Zr and Cr ion deposition. For a highly alloyed metal like AA7075, the dissolution rate is disturbed by copper and zinc.

  6. New Metal Niobate and Silicotitanate Ion Exchangers: Development and Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alexandra Navrotsky; Mary Lou Balmer; Tina M. Nenoff

    2003-12-05

    This renewal proposal outlines our current progress and future research plans for ion exchangers: novel metal niobate and silicotitanate ion exchangers and their ultimate deployment in the DOE complex. In our original study several forms (including Cs exchanged) of the heat treated Crystalline Silicotitanates (CSTs) were fully characterized by a combination of high temperature synthesis and phase identification, low temperature synthesis and phase identification, and thermodynamics. This renewal proposal is predicated on work completed in our current EMSP program: we have shown preliminary data of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionallymore » high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), in addition to novel silicotitanate phases which are also selective for divalent cations. Furthermore, these materials are easily converted by a high temperature in-situ heat treatment into a refractory ceramic waste form with low cation leachability. The new waste form is a perovskite phase, which is also a major component of Synroc, a titanate ceramic waste form used for sequestration of HLW wastes from reprocessed, spent nuclear fuel. These new niobate ion exchangers also shown orders of magnitude better selectivity for Sr2+ under acid conditions than any other material. The goal of the program is to reduce the costs associated with divalent cation waste removal and disposal, to minimize the risk of contamination to the environment during ion exchanger processing, and to provide DOE with materials for near-term lab-bench stimulant testing, and eventual deployment. The proposed work will provide information on the structure/property relationship between ion exchanger frameworks and selectivity for specific ions, allowing for the eventual ''tuning'' of framework for specific ion exchange needs. To date, DOE sites have become interested in on-site testing of these materials; ongoing discussions and initial experiments are occurring with Dr. Dean Peterman, Idaho National Engineering and Environmental Laboratory (INEEL) (location of the DOE/EM Waste Treatment Focus Area), and Dr. John Harbour, Savannah River Site (SRS). Yet the materials have not been optimized, and further research and development of the novel ion exchangers and testing conditions with simulants are needed. In addition, studies of the ion exchanger composition versus ion selectivity, ion exchange capacity and durability of final waste form are needed. This program will bring together three key institutions to address scientific hurdles of the separation process associated with metal niobate and silicotitanate ion exchangers, in particular for divalent cations (e.g., Sr2+). The program involves a joint effort between researchers at Pacific Northwest National Laboratory, who are leaders in structure/property relations in silicotitanates and in waste form development and performance assessment, Sandia National Laboratories, who discovered and developed crystalline silicotitanate ion exchangers (with Texas A&M and UOP) and also the novel class of divalent metal niobate ion exchangers, and the Thermochemistry Facility at UC Davis, who are world renowned experts in calorimetry and have already performed extensive thermodynamic studies on silicotitanate materials. In addition, Dr. Rodney Ewing of University of Michigan, an expert in radiation effects on materials, and Dr. Robert Roth of the National Institute of Standards and Technology and The Viper Group, a leader in phase equilibria development, will be consultants for radiation and phase studies. The research team will focus on three tasks that will provide both the basic research necessary for the development of highly selective ion exchange materials and also materials for short-term deployment within the DOE complex: (1) Structure/property relationships of a novel class of niobate-based molecular sieves (Na/Nb/M/O, M = transition metals), which show exceptionally high selectivity for divalent cations under extreme conditions (acid solutions, competing cations), (2) the role of ion exchanger structure change (both niobates and silicotitanates) on the exchange capacity (for elements such as Sr and actinide-surrogates) which results from exposure to DOE complex waste simulants, (3) thermodynamic stability of metal niobates and silicotitanate ion exchangers.« less

  7. In Situ Tracking Kinetic Pathways of Li+/Na+ Substitution during Ion-Exchange Synthesis of LixNa1.5-xVOPO4F0.5.

    PubMed

    Park, Young-Uk; Bai, Jianming; Wang, Liping; Yoon, Gabin; Zhang, Wei; Kim, Hyungsub; Lee, Seongsu; Kim, Sung-Wook; Looney, J Patrick; Kang, Kisuk; Wang, Feng

    2017-09-13

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials with metastable structure for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li + /Na + substitution during solvothermal ion-exchange synthesis of Li x Na 1.5-x VOPO 4 F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-time observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li + , leading to peculiar Na + /Li + /vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.

  8. Dissolution of steel slags in aqueous media.

    PubMed

    Yadav, Shashikant; Mehra, Anurag

    2017-07-01

    Steel slag is a major industrial waste in steel industries, and its dissolution behavior in water needs to be characterized in the larger context of its potential use as an agent for sequestering CO 2 . For this purpose, a small closed system batch reactor was used to conduct the dissolution of steel slags in an aqueous medium under various dissolution conditions. In this study, two different types of steel slags were procured from steel plants in India, having diverse structural features, mineralogical compositions, and particle sizes. The experiment was performed at different temperatures for 240 h of dissolution at atmospheric pressure. The dissolution rates of major and minor slag elements were quantified through liquid-phase elemental analysis using an inductively coupled plasma atomic emission spectroscopy at different time intervals. Advanced analytical techniques such as field emission gun-scanning electron microscope, energy-dispersive X-ray, BET, and XRD were also used to analyze mineralogical and structural changes in the slag particles. High dissolution of slags was observed irrespective of the particle size distribution, which suggests high carbonation potential. Concentrations of toxic heavy metals in the leachate were far below maximum acceptable limits. Thus, the present study investigates the dissolution behavior of different mineral ions of steel slag in aqueous media in light of its potential application in CO 2 sequestration.

  9. Studying ion exchange in solution and at biological membranes by FCS.

    PubMed

    Widengren, Jerker

    2013-01-01

    By FCS, a wide range of processes can be studied, covering time ranges from subnanoseconds to seconds. In principle, any process at equilibrium conditions can be measured, which reflects itself by a change in the detected fluorescence intensity. In this review, it is described how FCS and variants thereof can be used to monitor ion exchange, in solution and along biological membranes. Analyzing fluorescence fluctuations of ion-sensitive fluorophores by FCS offers selective advantages over other techniques for measuring local ion concentrations, and, in particular, for studying exchange kinetics of ions on a very local scale. This opens for several areas of application. The FCS approach was used to investigate fundamental aspects of proton exchange at and along biological membranes. The protonation relaxation rate, as measured by FCS for a pH-sensitive dye, can also provide information about local accessibility/interaction of a particular labeling site and conformational states of biomolecules, in a similar fashion as in a fluorescence quenching experiment. The same FCS concept can also be applied to ion exchange studies using other ion-sensitive fluorophores, and by use of dyes sensitive to other ambient conditions the concept can be extended also beyond ion exchange studies. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Ion-exchange and iontophoresis-controlled delivery of apomorphine.

    PubMed

    Malinovskaja, Kristina; Laaksonen, Timo; Kontturi, Kyösti; Hirvonen, Jouni

    2013-04-01

    The objective of this study was to test a drug delivery system that combines iontophoresis and cation-exchange fibers as drug matrices for the controlled transdermal delivery of antiparkinsonian drug apomorphine. Positively charged apomorphine was bound to the ion-exchange groups of the cation-exchange fibers until it was released by mobile counter-ions in the external solution. The release of the drug was controlled by modifying either the fiber type or the ionic composition of the external solution. Due to high affinity of apomorphine toward the ion-exchanger, a clear reduction in the in vitro transdermal fluxes from the fibers was observed compared to the respective fluxes from apomorphine solutions. Changes in the ionic composition of the donor formulations affected both the release and iontophoretic flux of the drug. Upon the application of higher co-ion concentrations or co-ions of higher valence in the donor formulation, the release from the fibers was enhanced, but the iontophoretic steady-state flux was decreased. Overall, the present study has demonstrated a promising approach using ion-exchange fibers for controlling the release and iontophoretic transdermal delivery of apomorphine. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Recent developments on ion-exchange membranes and electro-membrane processes.

    PubMed

    Nagarale, R K; Gohil, G S; Shahi, Vinod K

    2006-02-28

    Rapid growth of chemical and biotechnology in diversified areas fuels the demand for the need of reliable green technologies for the down stream processes, which include separation, purification and isolation of the molecules. Ion-exchange membrane technologies are non-hazardous in nature and being widely used not only for separation and purification but their application also extended towards energy conversion devices, storage batteries and sensors etc. Now there is a quite demand for the ion-exchange membrane with better selectivities, less electrical resistance, high chemical, mechanical and thermal stability as well as good durability. A lot of work has been done for the development of these types of ion-exchange membranes during the past twenty-five years. Herein we have reviewed the preparation of various types of ion-exchange membranes, their characterization and applications for different electro-membrane processes. Primary attention has been given to the chemical route used for the membrane preparation. Several general reactions used for the preparation of ion-exchange membranes were described. Methodologies used for the characterization of these membranes and their applications were also reviewed for the benefit of readers, so that they can get all information about the ion-exchange membranes at one platform. Although there are large number of reports available regarding preparations and applications of ion-exchange membranes more emphasis were predicted for the usefulness of these membranes or processes for solving certain type of industrial or social problems. More efforts are needed to bring many products or processes to pilot scale and extent their applications.

  12. Using MODFLOW with CFP to understand conduit-matrix exchange in a karst aquifer during flooding

    NASA Astrophysics Data System (ADS)

    Spellman, P.; Screaton, E.; Martin, J. B.; Gulley, J.; Brown, A.

    2011-12-01

    Karst springs may reverse flow when allogenic runoff increases river stage faster than groundwater heads and may exchange of surface water with groundwater in the surrounding aquifer matrix. Recharged flood water is rich in nutrients, metals, and organic matter and is undersaturated with respect to calcite. Understanding the physical processes controlling this exchange of water is critical to understanding metal cycling, redox chemistry and dissolution in the subsurface. Ultimately the magnitude of conduit-matrix exchange should be governed by head gradients between the conduit and the aquifer which are affected by the hydraulic conductivity of the matrix, conduit properties and antecedent groundwater heads. These parameters are interrelated and it is unknown which ones exert the greatest control over the magnitude of exchange. This study uses MODFLOW-2005 coupled with the Conduit Flow Processes (CFP) package to determine how physical properties of conduits and aquifers influence the magnitude of surface water-groundwater exchange. We use hydraulic data collected during spring reversals in a mapped underwater cave that sources Madison Blue Spring in north-central Florida to explore which factors are most important in governing exchange. The simulation focused on a major flood in 2009, when river stage increased by about 10 meters over 9 days. In a series of simulations, we varied hydraulic conductivity, conduit diameter, roughness height and tortuosity in addition to antecedent groundwater heads to estimate the relative effects of each parameter on the magnitude of conduit-matrix exchange. Each parameter was varied across plausible ranges for karst aquifers. Antecedent groundwater heads were varied using well data recorded through wet and dry seasons throughout the spring shed. We found hydraulic conductivity was the most important factor governing exchange. The volume of exchange increased by about 61% from the lowest value (1.8x10-6 m/d) to the highest value (6 m/d) of matrix hydraulic conductivity. Other factors increased the amount of exchange by 1% or less, with tortuosity (which varied from 1 to 2) being most significant with a 1% increase, followed by conduit diameter (1 to 5 m) and roughness height (0.1 to 5m) with increases in exchange of 0.4% and 0.3% respectively. Antecedent aquifer conditions were also seen to exert important controls on influencing exchange with greater exchange occurring in floods following dry periods than during wet periods. These preliminary results indicate that heterogeneity of the hydraulic conductivity across karst aquifers will control the distribution of flood waters that enter into the aquifer matrix. Because flood waters are typically undersaturated with respect to the carbonate minerals, the location of this infiltrated water into the highest hydraulic conductivity zones should enhance dissolution, thereby increasing hydraulic conductivity in a feedback loop that will enhance future infiltration of floodwater. Portions of the aquifer prone to infiltrating flood water and dissolution will also be most sensitive to contamination from surface water infiltration.

  13. Groundwater transport of strontium 90 in a glacial outwash environment

    USGS Publications Warehouse

    Kipp, Kenneth L.; Stollenwerk, Kenneth G.; Grove, David B.

    1986-01-01

    As part of the investigation of groundwater contamination at a uranium-scrap recovery plant at Wood River Junction, Rhode Island, laboratory experiments led to the development of a model for predicting the transport of strontium 90 in glacial outwash sediments based on an approximate mechanism for ion exchange. The multicomponent system was simplified to two components by regarding all exchangeable cations other than strontium 90 as a single component. The binary ion-exchange parameter was a function of the variable, total ion concentration. A one-dimensional solute transport model was formulated to evaluate the time necessary for natural groundwater flow to remove the strontium 90 contamination plume from the groundwater system to the Pawcatuck River. The finite difference transport equations were solved sequentially for total ion concentrations, then strontium 90 concentrations. Clay-free quartz and feldspar sands at the study site have little potential for strontium 90 sorption, and high calcium, magnesium, and sodium concentrations compete for the few ion exchange sites. As the total ion concentration plume moves out of the system, ion exchange of strontium 90 increases, reducing the strontium 90 concentration in the groundwater. Cleanout times predicted using the binary ion exchange mechanism were about two thirds of those predicted using a constant distribution coefficient. It is suggested that this type of model can simulate solute transport more realistically in many groundwater systems where the total ion concentration is not constant.

  14. The influence of cation exchange treatment on the final characteristics of red wines.

    PubMed

    Lasanta, Cristina; Caro, Ildefonso; Pérez, Luis

    2013-06-01

    Ion exchange technology has been applied to adjust the pH of red wine and improve its tartaric and oxidative stability. Ion exchange appears to be a useful technique to achieve these objectives. Regarding the effect of ion exchange on organoleptic characteristics and the quality of the obtained wines, a slight decrease in both anthocyanin and tannin contents was observed along with a small drop in the aromatic content. However, the treated wines had lower hue and higher colour intensity and gave better punctuations in the sensory evaluation. These results confirm that ion exchange is an interesting technique for application in red winemaking. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Titania bound sodium titanate ion exchanger

    DOEpatents

    DeFilippi, Irene C. G.; Yates, Stephen Frederic; Shen, Jian-Kun; Gaita, Romulus; Sedath, Robert Henry; Seminara, Gary Joseph; Straszewski, Michael Peter; Anderson, David Joseph

    1999-03-23

    This invention is method for preparing a titania bound ion exchange composition comprising admixing crystalline sodium titanate and a hydrolyzable titanium compound and, thereafter drying the titania bound crystalline sodium titanate and subjecting the dried titania bound ion exchange composition to optional compaction and calcination steps to improve the physical strength of the titania bound composition.

  16. Mechanical-structural investigation of chemical strengthening aluminosilicate glass through introducing phosphorus pentoxide

    NASA Astrophysics Data System (ADS)

    Zeng, Huidan; Wang, Ling; Ye, Feng; Yang, Bin; Chen, Jianding; Chen, Guorong; Sun, Luyi

    2016-11-01

    Chemical strengthening of aluminosilicate glasses through K+-Na+ ion exchange has attracted tremendous attentions because of the accelerating demand for high strength and damage resistance glasses. However, a paramount challenge still exists to fabricate glasses with a higher strength and greater depth of ion-exchange layer. Herein, aluminosilicate glasses with different contents of P2O5 were prepared and the influence of P2O5 on the increased compressive stress and depth of ion-exchange layer was investigated by micro-Raman technique. It was noticed that the hardness, compressive stress, as well as the depth of ion-exchange layer substantially increased with an increasing concentration of P2O5 varied from 1 to 7 mol%. The obtained micro-Raman spectra confirmed the formation of relatively depolymerized silicate anions that accelerated the ion exchange. Phosphorus containing aluminosilicate glasses with a lower polymerization degree exhibited a higher strength and deeper depth of ion-exchange layer, which suggests that the phosphorus containing aluminosilicate glasses have promising applications in flat panel displays, windshields, and wafer sealing substrates.

  17. Experimental findings on actinide recovery utilizing oxidation by peroxydisulfate followed by ion exchange: Fuel cycle research & development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hobbs, D. T.; Shehee, T. C.

    2015-08-31

    Our research seeks to determine if inorganic ion-exchange materials can be exploited to provide effective minor actinide (Am, Cm) separation from lanthanides. Previous work has established that a number of inorganic and UMOF ion-exchange materials exhibit varying affinities for actinides and lanthanides, which may be exploited for effective separations. During FY15, experimental work focused on investigating methods to oxidize americium in dilute nitric and perchloric acid with subsequent ion-exchange performance measurements of ion exchangers with the oxidized americium in dilute nitric acid. Ion-exchange materials tested included a variety of alkali titanates. Americium oxidation testing sought to determine the influence thatmore » other redox active components may have on the oxidation of Am III. Experimental findings indicated that Ce III, Np V, and Ru II are oxidized by peroxydisulfate, but there are no indications that the presence of Ce III, Np V, and Ru II affected the rate or extent of americium oxidation at the concentrations of peroxydisulfate being used.« less

  18. Coordinating subdomains of ferritin protein cages with catalysis and biomineralization viewed from the C4 cage axes.

    PubMed

    Theil, Elizabeth C; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-06-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3·H2O minerals from Fe(2+) for metabolic iron concentrates and oxidant protection; biomineral order differs in different ferritin proteins. The conserved 432 geometric symmetry of ferritin protein cages parallels the subunit dimer, trimer, and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self-assembling ferritin nanocages have functional relationships to cage symmetry such as Fe(2+) transport though ion channels (threefold symmetry), biomineral nucleation/order (fourfold symmetry), and mineral dissolution (threefold symmetry) studied in ferritin variants. On the basis of the effects of natural or synthetic subunit dimer cross-links, cage subunit dimers (twofold symmetry) influence iron oxidation and mineral dissolution. 2Fe(2+)/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n = 3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of three subunits. Here, we study 2Fe(2+) + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3·H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein twofold and threefold cage axes to show function at ferritin fourfold cage axes. Here, conserved amino acids facilitate dissolution of ferritin-protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage fourfold symmetry and solid-state mineral properties remain largely unexplored.

  19. Coordinating Subdomains of Ferritin Protein Cages with Catalysis and Biomineralization viewed from the C4 Cage Axes

    PubMed Central

    Theil, Elizabeth C.; Turano, Paola; Ghini, Veronica; Allegrozzi, Marco; Bernacchioni, Caterina

    2014-01-01

    Integrated ferritin protein cage function is the reversible synthesis of protein-caged, solid Fe2O3•H2O minerals from Fe2+, for metabolic iron concentrates and oxidant protection; biomineral order varies in different ferritin proteins. The conserved 4, 3, 2 geometric symmetry of ferritin protein cages, parallels subunit dimer, trimer and tetramer interfaces, and coincides with function at several cage axes. Multiple subdomains distributed in the self- assembling ferritin nanocages have functional relationships to cage symmetry such as Fe2+ transport though ion channels (3-fold symmetry), biomineral nucleation/order (4-fold symmetry) and mineral dissolution (3-fold symmetry) studied in ferritin variants. Cage subunit dimers (2-fold symmetry) influence iron oxidation and mineral dissolution, based on effects of natural or synthetic subunit dimer crosslinks. 2Fe2+/O2 catalysis in ferritin occurs in single subunits, but with cooperativity (n=3) that is possibly related to the structure/function of the ion channels, which are constructed from segments of 3 subunits. Here, we study 2Fe2+ + O2 protein catalysis (diferric peroxo formation) and dissolution of ferritin Fe2O3•H2O biominerals in variants with altered subunit interfaces for trimers (ion channels), E130I, and external dimer surfaces (E88A) as controls, and altered tetramer subunit interfaces (L165I and H169F). The results extend observations on the functional importance of structure at ferritin protein 2-fold and 3-fold cage axes to show function at ferritin 4-fold cage axes. Here, conserved amino acids facilitate dissolution of ferritin protein-caged iron biominerals. Biological and nanotechnological uses of ferritin protein cage 4-fold symmetry and solid state mineral properties remain largely unexplored. PMID:24504941

  20. Electrochemical Applications in Metal Bioleaching.

    PubMed

    Tanne, Christoph Kurt; Schippers, Axel

    2017-12-10

    Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.

  1. Transport, charge exchange and loss of energetic heavy ions in the earth's radiation belts - Applicability and limitations of theory

    NASA Technical Reports Server (NTRS)

    Spjeldvik, W. N.

    1981-01-01

    Computer simulations of processes which control the relative abundances of ions in the trapping regions of geospace are compared with observations from discriminating ion detectors. Energy losses due to Coulomb collisions between ions and exospheric neutrals are considered, along with charge exchange losses and internal charge exchanges. The time evolution of energetic ion fluxes of equatorially mirroring ions under radial diffusion is modelled to include geomagnetic and geoelectric fluctutations. Limits to the validity of diffusion transport theory are discussed, and the simulation is noted to contain provisions for six ionic charge states and the source effect on the radiation belt oxygen ion distributions. Comparisons are made with ion flux data gathered on Explorer 45 and ISEE-1 spacecraft and results indicate that internal charge exchanges cause the radiation belt ion charge state to be independent of source charge rate characteristics, and relative charge state distribution is independent of the radially diffusive transport rate below the charge state redistribution zone.

  2. Decontamination of spent ion-exchangers contaminated with cesium radionuclides using resorcinol-formaldehyde resins.

    PubMed

    Palamarchuk, Marina; Egorin, Andrey; Tokar, Eduard; Tutov, Mikhail; Marinin, Dmitry; Avramenko, Valentin

    2017-01-05

    The origin of the emergence of radioactive contamination not removable in the process of acid-base regeneration of ion-exchange resins used in treatment of technological media and liquid radioactive waste streams has been determined. It has been shown that a majority of cesium radionuclides not removable by regeneration are bound to inorganic deposits on the surface and inside the ion-exchange resin beads. The nature of the above inorganic inclusions has been investigated by means of the methods of electron microscopy, IR spectrometry and X-ray diffraction. The method of decontamination of spent ion-exchange resins and zeolites contaminated with cesium radionuclides employing selective resorcinol-formaldehyde resins has been suggested. Good prospects of such an approach in deep decontamination of spent ion exchangers have been demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Isotopic evidence of enhanced carbonate dissolution at a coal mine drainage site in Allegheny County, Pennsylvania, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Shikha; Sack, Andrea; Adams, James P.

    Stable isotopes were used to determine the sources and fate of dissolved inorganic C (DIC) in the circumneutral pH drainage from an abandoned bituminous coal mine in western Pennsylvania. The C isotope signatures of DIC (δ{sup 13}C{sub DIC}) were intermediate between local carbonate and organic C sources, but were higher than those of contemporaneous Pennsylvanian age groundwaters in the region. This suggests a significant contribution of C enriched in {sup 13}C due to enhanced carbonate dissolution associated with the release of H{sub 2}SO{sub 4} from pyrite oxidation. The Sr isotopic signature of the drainage was similar to other regional minemore » waters associated with the same coal seam and reflected contributions from limestone dissolution and cation exchange with clay minerals. The relatively high δ{sup 34}S{sub SO4} and δ{sup 18}O{sub SO4} isotopic signatures of the mine drainage and the presence of presumptive SO{sub 4}-reducing bacteria suggest that SO{sub 4} reduction activity also contributes C depleted in {sup 13}C isotope to the total DIC pool. With distance downstream from the mine portal, C isotope signatures in the drainage increased, accompanied by decreased total DIC concentrations and increased pH. These data are consistent with H{sub 2}SO{sub 4} dissolution of carbonate rocks, enhanced by cation exchange, and C release to the atmosphere via CO{sub 2} outgassing.« less

  4. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal.

    PubMed

    Grierson, B A; Burrell, K H; Chrystal, C; Groebner, R J; Haskey, S R; Kaplan, D H

    2016-11-01

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. The unique combination of experimentally measured main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.

  5. Humic Acid Isolations from Lignite by Ion Exchange Method

    NASA Astrophysics Data System (ADS)

    Kurniati, E.; Muljani, S.; Virgani, D. G.; Neno, B. P.

    2018-01-01

    The humic liquid is produced from lignite extraction using alkali solution. Conventional humic acid is obtained by acidifying a humic solution using HCl. The purpose of this research is the formation of solid humic acid from lignite by ion exchange method using cation resin. The results showed that the addition of cation resin was able to reduce the pH from 14 to pH 2 as well as the addition of acid (HCl), indicating the exchange of Na + ions with H + ions. The reduction of pH in the humic solution is influenced by the concentration of sodium ions in the humic solution, the weight of the cation resin, and the ion exchange time. The IR spectra results are in good agreement for humic acid from lignite characterization.

  6. Antifungal activities against toxigenic Fusarium specie and deoxynivalenol adsorption capacity of ion-exchanged zeolites.

    PubMed

    Savi, Geovana D; Cardoso, William A; Furtado, Bianca G; Bortolotto, Tiago; Zanoni, Elton T; Scussel, Rahisa; Rezende, Lucas F; Machado-de-Ávila, Ricardo A; Montedo, Oscar R K; Angioletto, Elidio

    2018-03-04

    Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn 2+ , Li + , Cu 2+ and Co 2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li + , Cu 2+ , and Co 2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn 2+ , Li + , Cu 2+ , and Co 2+ . The fungi growth inhibition decreased as zeolite-Cu 2+ >zeolite-Li + >zeolite-Co 2+ >zeolite-Zn 2+ . In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li + were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL -1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li + , which showed to be a promising agent against F. graminearum and its toxin.

  7. Process and apparatus for the production of BI-213 cations

    DOEpatents

    Horwitz, E. Philip; Hines, John J.; Chiarizia, Renato; Dietz, Mark

    1998-01-01

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed.

  8. Process and apparatus for the production of Bi-213 cations

    DOEpatents

    Horwitz, E.P.; Hines, J.J.; Chiarizia, R.; Dietz, M.

    1998-12-29

    A process for producing substantially impurity-free Bi-213 cations is disclosed. An aqueous acid feed solution containing Ac-225 cations is contacted with an ion exchange medium to bind the Ac-225 cations and form an Ac-225-laden ion exchange medium. The bound Ac-225 incubates on the ion exchange medium to form Bi-213 cations by radioactive decay. The Bi-213 cations are then recovered from the Ac-225-laden ion exchange medium to form a substantially impurity-free aqueous Bi-213 cation acid solution. An apparatus for carrying out this process is also disclosed. 7 figs.

  9. Evidence for the dissolution of molybdenum during tribocorrosion of CoCrMo hip implants in the presence of serum protein.

    PubMed

    Simoes, Thiago A; Bryant, Michael G; Brown, Andy P; Milne, Steven J; Ryan, Mary; Neville, Anne; Brydson, Rik

    2016-11-01

    We have characterized CoCrMo, Metal-on-Metal (MoM) implant, wear debris particles and their dissolution following cycling in a hip simulator, and have related the results to the tribocorrosion of synthetic wear debris produced by milling CoCrMo powders in solutions representative of environments in the human body. Importantly, we have employed a modified ICP-MS sample preparation procedure to measure the release of ions from CoCrMo alloys during wear simulation in different media; this involved use of nano-porous ultrafilters which allowed complete separation of particles from free ions and complexes in solution. As a result, we present a new perspective on the release of metal ions and formation of metal complexes from CoCrMo implants. The new methodology enables the mass balance of ions relative to complexes and particles during tribocorrosion in hip simulators to be determined. A much higher release of molybdenum ions relative to cobalt and chromium has been measured. The molybdenum dissolution was enhanced by the presence of bovine serum albumin (BSA), possibly due to the formation of metal-protein complexes. Overall, we believe that the results could have significant implications for the analysis and interpretation of metal ion levels in fluids extracted from hip arthroplasty patients; we suggest that metal levels, including molybdenum, be analysed in these fluids using the protocol described here. We have developed an important new protocol for the analysis of metal ion levels in fluids extracted from hip implant patients and also hip simulators. Using this procedure, we present a new perspective on the release of metal ions from CoCrMo alloy implants, revealing significantly lower levels of metal ion release during tribocorrosion in hip simulators than previously thought, combined with the release of much higher percentages of molybdenum ions relative to cobalt and chromium. This work is of relevance, both from the perspective of the fundamental science and study of metal-protein interactions, enabling understanding of the ongoing problem associated with the biotribocorrosion and the link to inflammation associated with Metal-on-Metal (MoM) hip implants made from CoCrMo alloys. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Dissolution of Nickel Ferrite in Aqueous Solutions Containing Oxalic Acid and Ferrous Salts.

    PubMed

    Figueroa, Carlos A.; Sileo, Elsa E.; Morando, Pedro J.; Blesa, Miguel A.

    2000-05-15

    The dissolution of nickel ferrite in oxalic acid and in ferrous oxalate-oxalic acid aqueous solution was studied. Nickel ferrite was synthesized by thermal decomposition of a mixed tartrate; the particles were shown to be coated with a thin ferric oxide layer. Dissolution takes place in two stages, the first one corresponding to the dissolution of the ferric oxide outer layer and the second one being the dissolution of Ni(1.06)Fe(1.96)O(4). The kinetics of dissolution during this first stage is typical of ferric oxides: in oxalic acid, both a ligand-assisted and a redox mechanism operates, whereas in the presence of ferrous ions, redox catalysis leads to a faster dissolution. The rate dependence on both oxalic acid and on ferrous ion is described by the Langmuir-Hinshelwood equation; the best fitting corresponds to K(1)(ads)=25.6 mol(-1) dm(-3) and k(1)(max)=9.17x10(-7) mol m(-2) s(-1) and K(2)(ads)=37.1x10(3) mol(-1) dm(-3) and k(2)(max)=62.3x10(-7) mol m(-2) s(-1), respectively. In the second stage, Langmuir-Hinshelwood kinetics also describes the dissolution of iron and nickel from nickel ferrite, with K(1)(ads)=20.8 mol(-1) dm(3) and K(2)(ads)=1.16x10(5) mol(-1) dm(3). For iron, k(1)(max)=1.02x10(-7) mol of Fe m(-2) s(-1) and k(2)(max)=2.38x10(-7) mol of Fe m(-2) s(-1); for nickel, the rate constants k(1)(max) and k(2)(max) are 2.4 and 1.79 times smaller, respectively. The factor 1.79 agrees nicely with the stoichiometric ratio, whereas the factor 2.4 implies the accumulation of some nickel in the residual particles. The rate of nickel dissolution in oxalic acid is higher than that in bunsenite by a factor of 8, whereas hematite is more reactive by a factor of 9 (in the absence of Fe(II)) and 27 (in the presence of Fe (II)). It may be concluded that oxalic acid operates to dissolve iron, and the ensuing disruption of the solid framework accelerates the release of nickel. Copyright 2000 Academic Press.

  11. Crystal structure and cation exchanging properties of a novel open framework phosphate of Ce (IV)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevara, Samatha; Achary, S. N., E-mail: sachary@barc.gov.in; Tyagi, A. K.

    2016-05-23

    Herein we report preparation, crystal structure and ion exchanging properties of a new phosphate of tetravalent cerium, K{sub 2}Ce(PO{sub 4}){sub 2}. A monoclinic structure having framework type arrangement of Ce(PO{sub 4}){sub 6} units formed by C2O{sub 8} square-antiprism and PO{sub 4} tetrahedra is assigned for K{sub C}e(PO{sub 4}){sub 2}. The K{sup +} ions are occupied in the channels formed by the Ce(PO{sub 4})6 and provide overall charge neutrality. The unique channel type arrangements of the K+ make them exchangeable with other cations. The ion exchanging properties of K2Ce(PO4)2 has been investigated by equilibrating with solution of 90Sr followed by radiometricmore » analysis. In optimum conditions, significant exchange of K+ with Sr2+ with Kd ~ 8000 mL/g is observed. The details of crystal structure and ion exchange properties are explained and a plausible mechanism for ion exchange is presented.« less

  12. Further studies of the anodic dissolution in sodium chloride electrolyte of aluminium alloys containing tin and gallium

    NASA Astrophysics Data System (ADS)

    Nestoridi, Maria; Pletcher, Derek; Wharton, Julian A.; Wood, Robert J. K.

    As part of a programme to develop a high power density, Al/air battery with a NaCl brine electrolyte, the high rate dissolution of an aluminium alloy containing tin and gallium was investigated in a small volume cell. The objective was to define the factors that limit aluminium dissolution in condition that mimic a high power density battery. In a cell with a large ratio of aluminium alloy to electrolyte, over a range of current densities the extent of dissolution was limited to ∼1000 C cm -2 of anode surface by a thick layer of loosely bound, crystalline deposit on the Al alloy anode formed by precipitation from solution. This leads to a large increase in impedance and acts as a barrier to transport of ions.

  13. Catalysis and chemical mechanisms of calcite dissolution in seawater

    PubMed Central

    Adkins, Jess F.; Rollins, Nick E.; Naviaux, John; Erez, Jonathan; Berelson, William M.

    2017-01-01

    Near-equilibrium calcite dissolution in seawater contributes significantly to the regulation of atmospheric CO2 on 1,000-y timescales. Despite many studies on far-from-equilibrium dissolution, little is known about the detailed mechanisms responsible for calcite dissolution in seawater. In this paper, we dissolve 13C-labeled calcites in natural seawater. We show that the time-evolving enrichment of 𝜹13C in solution is a direct measure of both dissolution and precipitation reactions across a large range of saturation states. Secondary Ion Mass Spectrometer profiles into the 13C-labeled solids confirm the presence of precipitated material even in undersaturated conditions. The close balance of precipitation and dissolution near equilibrium can alter the chemical composition of calcite deeper than one monolayer into the crystal. This balance of dissolution–precipitation shifts significantly toward a dissolution-dominated mechanism below about Ω= 0.7. Finally, we show that the enzyme carbonic anhydrase (CA) increases the dissolution rate across all saturation states, and the effect is most pronounced close to equilibrium. This finding suggests that the rate of hydration of CO2 is a rate-limiting step for calcite dissolution in seawater. We then interpret our dissolution data in a framework that incorporates both solution chemistry and geometric constraints on the calcite solid. Near equilibrium, this framework demonstrates a lowered free energy barrier at the solid–solution interface in the presence of CA. This framework also indicates a significant change in dissolution mechanism at Ω= 0.7, which we interpret as the onset of homogeneous etch pit nucleation. PMID:28720698

  14. Effect of synovial fluid, phosphate-buffered saline solution, and water on the dissolution and corrosion properties of CoCrMo alloys as used in orthopedic implants.

    PubMed

    Lewis, A C; Kilburn, M R; Papageorgiou, I; Allen, G C; Case, C P

    2005-06-15

    The corrosion and dissolution of high- and low-carbon CoCrMo alloys, as used in orthopedic joint replacements, were studied by immersing samples in phosphate-buffered saline (PBS), water, and synovial fluid at 37 degrees C for up to 35 days. Bulk properties were analyzed with a fine ion beam microscope. Surface analyses by X-ray photoelectron spectroscopy and Auger electron spectroscopy showed surprisingly that synovial fluid produced a thin oxide/hydroxide layer. Release of ions into solution from the alloy also followed an unexpected pattern where synovial fluid, of all the samples, had the highest Cr concentration but the lowest Co concentration. The presence of carbide inclusions in the alloy did not affect the corrosion or the dissolution mechanisms, although the carbides were a significant feature on the metal surface. Only one mechanism was recognized as controlling the thickness of the oxide/hydroxide interface. The analysis of the dissolved metal showed two mechanisms at work: (1) a protein film caused ligand-induced dissolution, increasing the Cr concentration in synovial fluid, and was explained by the equilibrium constants; (2) corrosion at the interface increased the Co in PBS. The effect of prepassivating the samples (ASTM F-86-01) did not always have the desired effect of reducing dissolution. The release of Cr into PBS increased after prepassivation. The metal-synovial fluid interface did not contain calcium phosphate as a deposit, typically found where samples are exposed to calcium rich bodily fluids. (c) 2005 Wiley Periodicals, Inc.

  15. Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction

    NASA Astrophysics Data System (ADS)

    Lu, J.; Mickler, P. J.; Nicot, J. P.

    2014-12-01

    It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.

  16. A Geochemical Reaction Model for Titration of Contaminated Soil and Groundwater at the Oak Ridge Reservation

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Parker, J. C.; Gu, B.; Luo, W.; Brooks, S. C.; Spalding, B. P.; Jardine, P. M.; Watson, D. B.

    2007-12-01

    This study investigates geochemical reactions during titration of contaminated soil and groundwater at the Oak Ridge Reservation in eastern Tennessee. The soils and groundwater exhibits low pH and high concentrations of aluminum, calcium, magnesium, manganese, various trace metals such as nickel and cobalt, and radionuclides such as uranium and technetium. The mobility of many of the contaminant species diminishes with increasing pH. However, base additions to increase pH are strongly buffered by various precipitation/dissolution and adsorption/desorption reactions. The ability to predict acid-base behavior and associated geochemical effects is thus critical to evaluate remediation performance of pH manipulation strategies. This study was undertaken to develop a practical but generally applicable geochemical model to predict aqueous and solid-phase speciation during soil and groundwater titration. To model titration in the presence of aquifer solids, an approach proposed by Spalding and Spalding (2001) was utilized, which treats aquifer solids as a polyprotic acid. Previous studies have shown that Fe and Al-oxyhydroxides strongly sorb dissolved Ni, U and Tc species. In this study, since the total Fe concentration is much smaller than that of Al, only ion exchange reactions associated with Al hydroxides are considered. An equilibrium reaction model that includes aqueous complexation, precipitation, ion exchange, and soil buffering reactions was developed and implemented in the code HydroGeoChem 5.0 (HGC5). Comparison of model results with experimental titration curves for contaminated groundwater alone and for soil- water systems indicated close agreement. This study is expected to facilitate field-scale modeling of geochemical processes under conditions with highly variable pH to develop practical methods to control contaminant mobility at geochemically complex sites.

  17. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    PubMed

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  18. Charge-exchange plasma environment for an ion drive spacecraft. [a model for describing mercury ion engines and its effect on spacecraft subsystems

    NASA Technical Reports Server (NTRS)

    Kaufman, H. R.; Carruth, M. R., Jr.

    1979-01-01

    The charge exchange plasma environment around a spacecraft that uses mercury ion thrusters for propulsion is described. The interactions between the plasma environment and the spacecraft are determined and a model which describes the propagation of the mercury charge exchange plasma is discussed. The model is extended to describe the flow of the molybdenum component of the charge exchange plasma. The uncertainties in the models for various conditions are discussed and current drain to the solar array, charge exchange plasma material deposition, and the effects of space plasma on the charge exchange plasma propagation are addressed.

  19. AFS-2 FLOWSHEET MODIFICATIONS TO ADDRESS THE INGROWTH OF PU(VI) DURING METAL DISSOLUTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crapse, K.; Rudisill, T.; O'Rourke, P.

    2014-07-02

    In support of the Alternate Feed Stock Two (AFS-2) PuO{sub 2} production campaign, Savannah River National Laboratory (SRNL) conducted a series of experiments concluding that dissolving Pu metal at 95°C using a 6–10 M HNO{sub 3} solution containing 0.05–0.2 M KF and 0–2 g/L B could reduce the oxidation of Pu(IV) to Pu(VI) as compared to dissolving Pu metal under the same conditions but at or near the boiling temperature. This flowsheet was demonstrated by conducting Pu metal dissolutions at 95°C to ensure that PuO{sub 2} solids were not formed during the dissolution. These dissolution parameters can be used formore » dissolving both Aqueous Polishing (AP) and MOX Process (MP) specification materials. Preceding the studies reported herein, two batches of Pu metal were dissolved in the H-Canyon 6.1D dissolver to prepare feed solution for the AFS-2 PuO{sub 2} production campaign. While in storage, UV-visible spectra obtained from an at-line spectrophotometer indicated the presence of Pu(VI). Analysis of the solutions also showed the presence of Fe, Ni, and Cr. Oxidation of Pu(IV) produced during metal dissolution to Pu(VI) is a concern for anion exchange purification. Anion exchange requires Pu in the +4 oxidation state for formation of the anionic plutonium(IV) hexanitrato complex which absorbs onto the resin. The presence of Pu(VI) in the anion feed solution would require a valence adjustment step to prevent losses. In addition, the presence of Cr(VI) would result in absorption of chromate ion onto the resin and could limit the purification of Pu from Cr which may challenge the purity specification of the final PuO{sub 2} product. Initial experiments were performed to quantify the rate of oxidation of Pu(IV) to Pu(VI) (presumed to be facilitated by Cr(VI)) as functions of the HNO{sub 3} concentration and temperature in simulated dissolution solutions containing Cr, Fe, and Ni. In these simulated Pu dissolutions studies, lowering the temperature from near boiling to 95 °C reduced the oxidation rate of Pu(IV) to Pu(VI). For 8.1 M HNO{sub 3} simulated dissolution solutions, at near boiling conditions >35% Pu(VI) was present in 50 h while at 95 °C <10% Pu(VI) was present at 50 h. At near boiling temperatures, eliminating the presence of Cr and varying the HNO{sub 3} concentration in the range of 7–8.5 M had little effect on the rate of conversion of Pu(IV) to Pu(VI). HNO{sub 3} oxidation of Pu(IV) to Pu(VI) in a pure solution has been reported previously. Based on simulated dissolution experiments, this study concluded that dissolving Pu metal at 95°C using a 6 to 10 M HNO{sub 3} solution 0.05–0.2 M KF and 0–2 g/L B could reduce the rate of oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. To demonstrate this flowsheet, two small-scale experiments were performed dissolving Pu metal up to 6.75 g/L. No Pu-containing residues were observed in the solutions after cooling. Using Pu metal dissolution rates measured during the experiments and a correlation developed by Holcomb, the time required to completely dissolve a batch of Pu metal in an H-Canyon dissolver using this flowsheet was estimated to require nearly 5 days (120 h). This value is reasonably consistent with an estimate based on the Batch 2 and 3 dissolution times in the 6.1D dissolver and Pu metal dissolution rates measured in this study and by Rudisill et al. Data from the present and previous studies show that the Pu metal dissolution rate decreases by a factor of approximately two when the temperature decreased from boiling (112 to 116°C) to 95°C. Therefore, the time required to dissolve a batch of Pu metal in an H-Canyon dissolver at 95°C would likely double (from 36 to 54 h) and require 72 to 108 h depending on the surface area of the Pu metal. Based on the experimental studies, a Pu metal dissolution flowsheet utilizing 6–10 M HNO{sub 3} containing 0.05–0.2 M KF (with 0–2 g/L B) at 95°C is recommended to reduce the oxidation of Pu(IV) to Pu(VI) as compared to near boiling conditions. The time required to completely dissolve a batch of Pu metal will increase, however, by approximately a factor of two as compared to initial dissolutions at near boiling (assuming the KF concentration is maintained at nominally 0.1 M). By lowering the temperature to 95°C under otherwise the same operating parameters as previous dissolutions, the Pu(VI) concentration should not exceed 15% after a 120 h heating cycle. Increasing the HNO{sub 3} concentration and lowering Pu concentration are expected to further limit the amount of Pu(VI) formed.« less

  20. In Situ Tracking Kinetic Pathways of Li + /Na + Substitution during Ion-Exchange Synthesis of Li xNa 1.5–x VOPO 4 F 0.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Young-Uk; Bai, Jianming; Wang, Liping

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li +/Na + substitution during solvothermal ion-exchange synthesis of Li xNa 1.5-xVOPO 4F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-timemore » observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li +, leading to peculiar Na +/Li +/vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.« less

  1. In Situ Tracking Kinetic Pathways of Li + /Na + Substitution during Ion-Exchange Synthesis of Li xNa 1.5–x VOPO 4 F 0.5

    DOE PAGES

    Park, Young-Uk; Bai, Jianming; Wang, Liping; ...

    2017-08-29

    Ion exchange is a ubiquitous phenomenon central to wide industrial applications, ranging from traditional (bio)chemical separation to the emerging chimie douce synthesis of materials for batteries and other energy applications. The exchange process is complex, involving substitution and transport of different ions under non-equilibrium conditions, and thus difficult to probe, leaving a gap in mechanistic understanding of kinetic exchange pathways toward final products. Herein, we report in situ tracking kinetic pathways of Li +/Na + substitution during solvothermal ion-exchange synthesis of Li xNa 1.5-xVOPO 4F 0.5 (0 ≤ x ≤ 1.5), a promising multi-Li polyanionic cathode for batteries. The real-timemore » observation, corroborated by first-principles calculations, reveals a selective replacement of Na + by Li +, leading to peculiar Na +/Li +/vacancy orderings in the intermediates. Contradicting the traditional belief of facile topotactic substitution via solid solution reaction, an abrupt two-phase transformation occurs and predominantly governs the kinetics of ion exchange and transport in the 1D polyanionic framework, consequently leading to significant difference of Li stoichiometry and electrochemical properties in the exchanged products. The findings may help to pave the way for rational design of ion exchange synthesis for making new materials.« less

  2. Hydrogeochemical quality and suitability studies of groundwater in northern Bangladesh.

    PubMed

    Islam, M J; Hakim, M A; Hanafi, M M; Juraimi, Abdul Shukor; Aktar, Sharmin; Siddiqa, Aysha; Rahman, A K M Shajedur; Islam, M Atikul; Halim, M A

    2014-07-01

    Agriculture, rapid urbanization and geochemical processes have direct or indirect effects on the chemical composition of groundwater and aquifer geochemistry. Hydro-chemical investigations, which are significant for assessment of water quality, were carried out to study the sources of dissolved ions in groundwater of Dinajpur district, northern Bangladesh. The groundwater samplish were analyzed for physico-chemical properties like pH, electrical conductance, hardness, alkalinity, total dissolved solids and Ca2+, Mg2+, Na+, K+, CO3(2-), HCO3(-), SO4(2-) and Cl- ions, respectively. Based on the analyses, certain parameters like sodium adsorption ratio, soluble sodium percentage, potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio were also calculated. The results showed that the groundwater of study area was fresh, slightly acidic (pH 5.3-6.4) and low in TDS (35-275 mg I(-1)). Ground water of the study area was found suitable for irrigation, drinking and domestic purposes, since most of the parameters analyzed were within the WHO recommended values for drinking water. High concentration of NO3- and Cl- was reported in areas with extensive agriculture and rapid urbanization. Ion-exchange, weathering, oxidation and dissolution of minerals were major geochemical processes governing the groundwater evolution in study area. Gibb's diagram showed that all the samples fell in the rock dominance field. Based on evaluation, it is clear that groundwater quality of the study area was suitable for both domestic and irrigation purposes.

  3. Water quality characterization in some birimian aquifers of the Birim Basin, Ghana

    USGS Publications Warehouse

    Bruce, B.-Y.; Yidana, S.M.; Anku, Y.; Akabzaa, T.; Asiedu, D.

    2009-01-01

    The objective of this study was to determine the main controls on the hydrochemistry of groundwater in the study area. Mass balance modeling was used simultaneously with multivariate R-mode hierarchical cluster analysis to determine the significant sources of variation in the hydrochemistry. Two water types have been revealed in this area: (1) waters influenced more significantly by the weathering of silicate minerals from the underlying geology, and are rich in silica, sodium, calcium, bicarbonate, and magnesium ions, and (2) waters that have been influenced by the effects of fertilizers and other anthropogenic activities in the area. Mineral speciation and silicate mineral stability diagrams generated from the data suggest that montmorillonite, probably derived from the incongruent dissolution of feldspars and micas, is the most stable silicate phase in the groundwater. The apparent incongruent weathering of silicate minerals in the groundwater system has led to the enrichment of sodium, calcium, magnesium and bicarbonate ions as well as silica, leading to the supersaturation of calcite, aragonite, dolomite and quartz. Stability in the montmorillonite field suggests restricted flow conditions whereby groundwater residence time is relatively high, leading to greater contact of groundwater with the rock to enhance weathering. Cation exchange processes have also been determined to play minor roles in the hydrochemistry.

  4. Adsorption of tranexamic acid on hydroxyapatite: Toward the development of biomaterials with local hemostatic activity.

    PubMed

    Sarda, Stéphanie; Errassifi, Farid; Marsan, Olivier; Geffre, Anne; Trumel, Catherine; Drouet, Christophe

    2016-09-01

    This work proposes to combine tranexamic acid (TAX), a clinically used antifibrinolytic agent, and hydroxyapatite (HA), widely used in bone replacement, to produce a novel bioactive apatitic biomaterial with intrinsic hemostatic properties. The aim of this study was to investigate adsorptive behavior of the TAX molecule onto HA and to point out its release in near physiological conditions. No other phase was observed by X-ray diffraction or transmission electron microscopy, and no apparent change in crystal size was detected. The presence of TAX on the powders was lightly detected on Raman spectra after adsorption. The adsorption data could be fitted with a Langmuir-Freundlich equation, suggesting a strong interaction between adsorbed molecules and the formation of multilayers. The concentration of calcium and phosphate ions in solution remained low and stable during the adsorption process, thus ion exchange during the adsorption process could be ruled out. The release of TAX was fast during the first hours and was governed by a complex process that likely involved both diffusion and dissolution of HA. Preliminary aPTT (activated partial thromboplastin time) hemostasis tests offered promising results for the development of osteoconductive apatitic biomaterials with intrinsic hemostatic properties, whether for dental or orthopedic applications. Copyright © 2016. Published by Elsevier B.V.

  5. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao

    2016-04-12

    We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  6. Silver release from nanocomposite Ag/alginate hydrogels in the presence of chloride ions: experimental results and mathematical modeling

    NASA Astrophysics Data System (ADS)

    Kostic, Danijela; Vidovic, Srđan; Obradovic, Bojana

    2016-03-01

    A stepwise experimental and mathematical modeling approach was used to assess silver release from nanocomposite Ag/alginate microbeads in wet and dried forms into water and into normal saline solution chosen as a simplified model for certain biological fluids (e.g., blood plasma, wound exudates, sweat, etc). Three phenomena were connected and mathematically described: diffusion of silver nanoparticles (AgNPs) within the alginate hydrogel, AgNP oxidation/dissolution and reaction with chloride ions, and diffusion of the resultant silver-chloride species. Mathematical modeling results agreed well with the experimental data with the AgNP diffusion coefficient estimated as 1.3 × 10-18 m2 s-1, while the first-order kinetic rate constant of AgNP oxidation/dissolution and diffusivity of silver-chloride species were shown to be inversely related. In specific, rapid rehydration and swelling of dry Ag/alginate microbeads induced fast AgNP oxidation/dissolution reaction with Cl- and AgCl precipitation within the microbeads with the lowest diffusivity of silver-chloride species compared to wet microbeads in normal saline. The proposed mathematical model provided an insight into the phenomena related to silver release from nanocomposite Ca-alginate hydrogels relevant for use of antimicrobial devices and established, at the same time, a basis for further in-depth studies of AgNP interactions in hydrogels in the presence of chloride ions.

  7. Adsorption and ion exchange: basic principles and their application in food processing.

    PubMed

    Kammerer, Judith; Carle, Reinhold; Kammerer, Dietmar R

    2011-01-12

    A comprehensive overview of adsorption and ion exchange technology applied for food and nutraceutical production purposes is given in the present paper. Emanating from these fields of application, the main adsorbent and ion-exchange resin materials, their historical development, industrial production, and the main parameters characterizing these sorbents are covered. Furthermore, adsorption and ion exchange processes are detailed, also providing profound insights into kinetics, thermodynamics, and equilibrium model assumptions. In addition, the most important industrial adsorber and ion exchange processes making use of vessels and columns are summarized. Finally, an extensive overview of selected industrial applications of these technologies is provided, which is divided into general applications, food production applications, and the recovery of valuable bio- and technofunctional compounds from the byproducts of plant food processing, which may be used as natural food additives or for their potential health-beneficial effects in functional or enriched foods and nutraceuticals.

  8. Ion-exchange chromatography separation applied to mineral recycle in closed systems

    NASA Technical Reports Server (NTRS)

    Ballou, E.; Spitze, L. A.; Wong, F. W.; Wydeven, T.; Johnson, C. C.

    1981-01-01

    As part of the controlled ecological life support system (CELSS) program, a study is being made of mineral separation on ion-exchange columns. The purpose of the mineral separation step is to allow minerals to be recycled from the oxidized waste products of plants, man, and animals for hydroponic food production. In the CELSS application, relatively large quantities of minerals in a broad concentration range must be recovered by the desired system, rather than the trace quantities and very low concentrations treated in analytical applications of ion-exchange chromatography. Experiments have been carried out to assess the parameters pertinent to the scale-up of ion-exchange chromatography and to determine feasibility. Preliminary conclusions are that the column scale-up is in a reasonable size range for the CELSS application. The recycling of a suitable eluent, however, remains a major challenge to the suitability of using ion exchange chromatography in closed systems.

  9. Lead Removal From Synthetic Leachate Matrices by a Novel Ion-Exchange Material

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Hovanitz, Edward S.; Chi, Sulan

    2002-01-01

    This report discusses the application of a novel polyacrylate-based ion-exchange material (IEM) for the removal of lead (Pb) ions from water. Preliminary testing includes the establishment of the operating pH range, capacity information, and the effect of calcium and anions in the matrix. Batch testing with powder indicates slightly different optimal operational conditions from those used for column testing. The ion exchanger is excellent for removing lead from aqueous solutions.

  10. Synthesis of ion-exchange resin for selective thorium and uranyl ions sorption

    NASA Astrophysics Data System (ADS)

    Konovalov, Konstantin; Sachkov, Victor

    2017-11-01

    In this work, the method of ion-exchange resin synthesis selective to radionuclides (uranium and thorium) is presented. The method includes synthesis of polymeric styrene-divinylbenzene macroporous matrix with size of 0.1-0.2 mm, and its subsequent transformation by nitration and then reduction by tin (II) chloride. For passivation of active primary amines partially oxidation by oxygen from air is used. Obtained ion-exchange resin has ratio of sorption sum U+Th to sorption sum of other total rare-earth elements as 1:1.88 at ratio of solid to liquid phase 1:200. The proposed method of ion-exchange resin synthesis is scaled-up for laboratory reactors with volume of 5 and 50 liters.

  11. High resolution main-ion charge exchange spectroscopy in the DIII-D H-mode pedestal

    DOE PAGES

    Grierson, B. A.; Burrell, K. H.; Chrystal, C.; ...

    2016-09-12

    A new high spatial resolution main-ion (deuterium) charge-exchange spectroscopy system covering the tokamak boundary region has been installed on the DIII-D tokamak. Sixteen new edge main-ion charge-exchange recombination sightlines have been combined with nineteen impurity sightlines in a tangentially viewing geometry on the DIII-D midplane with an interleaving design that achieves 8 mm inter-channel radial resolution for detailed profiles of main-ion temperature, velocity, charge-exchange emission, and neutral beam emission. At the plasma boundary, we find a strong enhancement of the main-ion toroidal velocity that exceeds the impurity velocity by a factor of two. Furthermore, the unique combination of experimentally measuredmore » main-ion and impurity profiles provides a powerful quasi-neutrality constraint for reconstruction of tokamak H-mode pedestals.« less

  12. Ion exchange materials, method of forming ion exchange materials, and methods of treating liquids

    DOEpatents

    Wertsching, Alan K.; Peterson, Eric S.; Wey, John E.

    2007-12-25

    The invention includes an ion affinity material having an organic component which is sulfonated and which is chemically bonded to an inorganic substrate component. The invention includes a method of forming a metal binding material. A solid support material comprising surface oxide groups is provided and an organic component having at least one alkyl halide is covalently linked to at least some of the surface oxide groups to form a modified support material. The at least one alkyl halide is subsequently converted into an alkyl sulfonate. The invention further includes a method and system for extracting ions from a liquid. An ion exchange material having a sulfonated alkyl silane component covalently bonded to a metal oxide support material is provided and a liquid is exposed to the ion exchange material.

  13. Probing peptide fragment ion structures by combining sustained off-resonance collision-induced dissociation and gas-phase H/D exchange (SORI-HDX) in Fourier transform ion-cyclotron resonance (FT-ICR) instruments.

    PubMed

    Somogyi, Arpád

    2008-12-01

    The usefulness of gas-phase H/D exchange is demonstrated to probe heterogeneous fragment and parent ion populations. Singly and multiply protonated peptides/proteins were fragmented by using sustained off-resonance irradiation collision-induced dissociation (SORI-CID). The fragments and the surviving precursor ions then all undergo H/D exchange in the gas-phase with either D(2)O or CD(3)OD under the same experimental conditions. Usually, 10 to 60 s of reaction time is adequate to monitor characteristic differences in the H/D exchange kinetic rates. These differences are then correlated to isomeric ion structures. The SORI-HDX method can be used to rapidly test fragment ion structures and provides useful insights into peptide fragmentation mechanisms.

  14. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals.

    PubMed

    Rungrodnimitchai, Supitcha

    2014-01-01

    This work describes the preparation of the cellulose phosphate with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. In this study, rice straw and bagasse were modified by the reaction with phosphoric acid in the presence of urea. The introduced phosphoric group is an ion exchangeable site for heavy metal ions. The reaction by microwave heating yielded modified rice straw and modified bagasse with greater ion exchange capacities (∼3.62 meq/g) and shorter reaction time (1.5-5.0 min) than the phosphorylation by oil bath heating. Adsorption experiments towards Pb²⁺, Cd²⁺, and Cr³⁺ ions of the modified rice straw and the modified bagasse were performed at room temperature (heavy metal concentration 40 ppm, adsorbent 2.0 g/L). The kinetics of adsorption agreed with the pseudo-second-order model. It was shown that the modified rice straw and the modified bagasse could adsorb heavy metal ions faster than the commercial ion exchange resin (Dowax). As a result of Pb²⁺ sorption test, the modified rice straw (RH-NaOH 450W) removed Pb²⁺ much faster in the initial step and reached 92% removal after 20 min, while Dowax (commercial ion exchange resin) took 90 min for the same removal efficiency.

  15. Characterization of xenon ion and neutral interactions in a well-characterized experiment

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Wirz, Richard E.

    2018-06-01

    Interactions between fast ions and slow neutral atoms are commonly dominated by charge-exchange and momentum-exchange collisions, which are important to understanding and simulating the performance and behavior of many plasma devices. To investigate these interactions, this work developed a simple, well-characterized experiment that accurately measures the behavior of high energy xenon ions incident on a background of xenon neutral atoms. By using well-defined operating conditions and a simple geometry, these results serve as canonical data for the development and validation of plasma models and models of neutral beam sources that need to ensure accurate treatment of angular scattering distributions of charge-exchange and momentum-exchange ions and neutrals. The energies used in this study are relevant for electric propulsion devices ˜1.5 keV and can be used to improve models of ion-neutral interactions in the plume. By comparing these results to both analytical and computational models of ion-neutral interactions, we discovered the importance of (1) accurately treating the differential cross-sections for momentum-exchange and charge-exchange collisions over a large range of neutral background pressures and (2) properly considering commonly overlooked interactions, such as ion-induced electron emission from nearby surfaces and neutral-neutral ionization collisions.

  16. Synthesis of hydroxyapatite whiskers through dissolution reprecipitation process using EDTA

    NASA Astrophysics Data System (ADS)

    Seo, Dong Seok; Lee, Jong Kook

    2008-04-01

    Hydroxyapatite (HA) has been of interest in many industrial applications, such as ion exchange, catalysis and biomaterials. Chelating agents have often been used to prepare inorganic powders in the form of sphere, rod, whisker and fiber. In this study, HA whiskers were synthesized directly from typically shaped HA powders by refluxing at 80 and 100 °C for 24 h using ethylenediamine tetraacetic acid (EDTA). 3% or 6% of hydrogen peroxide (H 2O 2) was used to promote precipitation of HA crystals. The pH of the solution was adjusted at 7 or 9 by adding ammonia solution. The higher the H 2O 2 concentration, pH value and refluxing temperature, the longer and thinner whiskers were formed. The whiskers produced at 100 °C with 6% of H 2O 2 and pH 9 had the highest aspect ratio of about 50-60 (a length of 3 μm and a width of 0.05 μm).

  17. Versatile ligands for high-performance liquid chromatography: An overview of ionic liquid-functionalized stationary phases.

    PubMed

    Zhang, Mingliang; Mallik, Abul K; Takafuji, Makoto; Ihara, Hirotaka; Qiu, Hongdeng

    2015-08-05

    Ionic liquids (ILs), a class of unique substances composed purely by cation and anions, are renowned for their fascinating physical and chemical properties, such as negligible volatility, high dissolution power, high thermal stability, tunable structure and miscibility. They are enjoying ever-growing applications in a great diversity of disciplines. IL-modified silica, transforming the merits of ILs into chromatographic advantages, has endowed the development of high-performance liquid chromatography (HPLC) stationary phase with considerable vitality. In the last decade, IL-functionalized silica stationary phases have evolved into a series of branches to accommodate to different HPLC modes. An up-to-date overview of IL-immobilized stationary phases is presented in this review, and divided into five parts according to application mode, i.e., ion-exchange, normal-phase, reversed-phase, hydrophilic interaction and chiral recognition. Specific attention is channeled to synthetic strategies, chromatographic behavior and separation performance of IL-functionalized silica stationary phases. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Quantitative in vitro assessment of Mg65 Zn30 Ca5 degradation and its effect on cell viability.

    PubMed

    Cao, Jake D; Martens, Penny; Laws, Kevin J; Boughton, Philip; Ferry, Michael

    2013-01-01

    A bulk metallic glass (BMG) of composition Mg(65) Zn(30) Ca(5) was cast directly from the melt and explored as a potential bioresorbable metallic material. The in vitro degradation behavior of the amorphous alloy and its associated effects on cellular activities were assessed against pure crystalline magnesium. Biocorrosion tests using potentiodynamic polarization showed that the amorphous alloy corroded at a much slower rate than the crystalline Mg. Analysis of the exchanged media using inductively coupled plasma optical emission spectrometry revealed that the dissolution rate of Mg ions in the BMG was 446 μg/cm(2)/day, approximately half the rate of crystalline Mg (859 μg/cm(2)/day). A cytotoxicity study, using L929 murine fibroblasts, revealed that both the BMG and pure Mg are capable of supporting cellular activities. However, direct contact with the samples created regions of minimal cell growth around both amorphous and crystalline samples, and no cell attachment was observed. Copyright © 2012 Wiley Periodicals, Inc.

  19. Understanding arsenic mobilization using reactive transport modeling of groundwater hydrochemistry in the Datong basin study plot, China.

    PubMed

    Mapoma, Harold Wilson Tumwitike; Xie, Xianjun; Pi, Kunfu; Liu, Yaqing; Zhu, Yapeng

    2016-03-01

    This paper discusses the reactive transport and evolution of arsenic along a selected flow path in a study plot within the central part of Datong basin. The simulation used the TOUGHREACT code. The spatial and temporal trends in hydrochemistry and mineral volume fraction along a flow path were observed. Furthermore, initial simulation of major ions and pH fits closely to the measured data. The study shows that equilibrium conditions may be attained at different stress periods for each parameter simulated. It is noted that the variations in ionic chemistry have a greater impact on arsenic distribution while reducing conditions drive the mobilization of arsenic. The study concluded that the reduction of Fe(iii) and As(v) and probably SO4/HS cycling are significant factors affecting localized mobilization of arsenic. Besides cation exchange and water-rock interaction, incongruent dissolution of silicates is also a significant control mechanism of general chemistry of the Datong basin aquifer.

  20. Estimating 14C groundwater ages in a methanogenic aquifer

    USGS Publications Warehouse

    Aravena, Ramon; Wassenaar, Leonard I; Plummer, Niel

    1995-01-01

    This paper addresses the problem of 14C age dating of groundwaters in a confined regional aquifer affected by methanogenesis. Increasing CH4 concentrations along the groundwater flow system and 13C and 14C isotopic data for dissolved inorganic carbon, dissolved organic carbon, and CH4 clearly show the effect of methanogenesis on groundwater chemistry. Inverse reaction path modeling using NETPATH indicates the predominant geochemical reactions controlling the chemical evolution of groundwater in the aquifer are incongruent dissolution of dolomite, ion exchange, methanogenesis, and oxidation of sedimentary organic matter. Modeling of groundwater 14C ages using NETPATH indicates that a significant part of groundwater in the Alliston aquifer is less than 13,000 years old; however, older groundwater in the range of 15,000–23,000 years is also present in the aquifer. This paper demonstrates that 14C ages calculated using NETPATH, incorporating the effects of methanogenesis on the carbon pools, provide reasonable groundwater ages that were not possible by other isotopic methods.

  1. Visual Observation of Dissolution of Copper Ions from a Copper Electrode

    ERIC Educational Resources Information Center

    Ikemoto, Isao; Saitou, Kouichi

    2013-01-01

    During electrolysis, to visually observe the conversion of a metal to its cation, either the cation or its complex ion should have a distinct color while the electrolyte solution must be colorless and transparent. A demonstration is described in which copper is used as the electrodes and sodium polyacrylate (a superabsorbent polymer) solution is…

  2. Regeneration of spent powdered activated carbon saturated with inorganic ions by cavitation united with ion exchange method.

    PubMed

    Li, Gang; Gao, Hong; Li, Yansheng; Yang, Huixin

    2011-06-01

    Using ion exchange resin as transfer media, regenerate powdered activated carbon (PAC) adsorbed inorganic ions by cavitation to enhance the transfer; we studied how the regeneration time and the mass ratio of resin and PAC influence the regeneration rate respectively through re-adsorption. The result showed that the effective regeneration of PAC saturated with inorganic ions was above 90% using ion exchange resin as media and transfer carrier, the quantity of PAC did not reduced but activated in the process. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  3. Ion-exchange selectivity of diclofenac, ibuprofen, ketoprofen, and naproxen in ureolyzed human urine.

    PubMed

    Landry, Kelly A; Sun, Peizhe; Huang, Ching-Hua; Boyer, Treavor H

    2015-01-01

    This research advances the knowledge of ion-exchange of four non-steroidal anti-inflammatory drugs (NSAIDs) - diclofenac (DCF), ibuprofen (IBP), ketoprofen (KTP), and naproxen (NPX) - and one analgesic drug-paracetamol (PCM) - by strong-base anion exchange resin (AER) in synthetic ureolyzed urine. Freundlich, Langmuir, Dubinin-Astakhov, and Dubinin-Radushkevich isotherm models were fit to experimental equilibrium data using nonlinear least squares method. Favorable ion-exchange was observed for DCF, KTP, and NPX, whereas unfavorable ion-exchange was observed for IBP and PCM. The ion-exchange selectivity of the AER was enhanced by van der Waals interactions between the pharmaceutical and AER as well as the hydrophobicity of the pharmaceutical. For instance, the high selectivity of the AER for DCF was due to the combination of Coulombic interactions between quaternary ammonium functional group of resin and carboxylate functional group of DCF, van der Waals interactions between polystyrene resin matrix and benzene rings of DCF, and possibly hydrogen bonding between dimethylethanol amine functional group side chain and carboxylate and amine functional groups of DCF. Based on analysis of covariance, the presence of multiple pharmaceuticals did not have a significant effect on ion-exchange removal when the NSAIDs were combined in solution. The AER reached saturation of the pharmaceuticals in a continuous-flow column at varying bed volumes following a decreasing order of DCF > NPX ≈ KTP > IBP. Complete regeneration of the column was achieved using a 5% (m/m) NaCl, equal-volume water-methanol solution. Results from multiple treatment and regeneration cycles provide insight into the practical application of pharmaceutical ion-exchange in ureolyzed urine using AER.

  4. Group IV nanocrystals with ion-exchangeable surface ligands and methods of making the same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.

    Methods are described that include reacting a starting nanocrystal that includes a starting nanocrystal core and a covalently bound surface species to create an ion-exchangeable (IE) nanocrystal that includes a surface charge and a first ion-exchangeable (IE) surface ligand ionically bound to the surface charge, where the starting nanocrystal core includes a group IV element.

  5. Ion-exchange sorption of silver(I) chloride complexes from aqueous HCl solutions

    NASA Astrophysics Data System (ADS)

    Kononova, O. N.; Duba, E. V.; Medovikov, D. V.; Efimova, A. S.; Ivanov, A. I.; Krylov, A. S.

    2017-12-01

    The ion-exchange sorption of silver(I) chloride complexes from 1-4 M aqueous solutions of HCl on a series of Purolite anionites with various functional groups was studied. The ion-exchange equilibria in the systems were found to be anomalous according to Raman spectroscopy, which does not significantly affect the sorption properties of the ionites.

  6. Ion exchange of H+, Na+, Mg2+, Ca2+, Mn2+, and Ba2+, on wood pulp

    Treesearch

    Alan W. Rudie; Alan Ball; Narendra Patel

    2006-01-01

    Ion exchange selectivity coefficients were measured for the partition of metals between solution and pulp fibers. The method accurately models the ion exchange isotherms for all cation pairs evaluated and is accurate up to approximately 0.05 molar concentrations. Selectivity coefficients were determined for calcium and magnesium with each other and with hydrogen....

  7. The use of fibrous ion exchangers in gold hydrometallurgy

    NASA Astrophysics Data System (ADS)

    Kautzmann, R. M.; Sampaio, C. H.; Cortina, J. L.; Soldatov, V.; Shunkevich, A.

    2002-10-01

    This article examines a family of ion-exchange fibers, FIBAN, containing primary and secondary amine groups. These ion exchangers have a fiber diameter of 20 40 Μm, high osmotic and mechanic stability, a high rate of adsorption and regeneration, and excellent dynamic characteristics as filtering media. Inparticular, this article discusses the use of FIBAN fibrous ion exchangers in the recovery of gold cyanide andbase-metal cyanides (copper and mercury) from mineral-leaching solutions. The influence of polymer structure and water content on their extraction ability is described, along with key parameters of gold hydrometallurgy such as extraction efficiency, selectivity, pH dependence, gold cyanide loading, kinetics, and stripping.

  8. Adsorption of three pharmaceuticals on two magnetic ion-exchange resins.

    PubMed

    Jiang, Miao; Yang, Weiben; Zhang, Ziwei; Yang, Zhen; Wang, Yuping

    2015-05-01

    The presence of pharmaceuticals in aquatic environments poses potential risks to the ecology and human health. This study investigated the removal of three widely detected and abundant pharmaceuticals, namely, ibuprofen (IBU), diclofenac (DC), and sulfadiazine (SDZ), by two magnetic ion-exchange resins. The adsorption kinetics of the three adsorbates onto both resins was relatively fast and followed pseudo-second-order kinetics. Despite the different pore structures of the two resins, similar adsorption patterns of DC and SDZ were observed, implying the existence of an ion-exchange mechanism. IBU demonstrated a combination of interactions during the adsorption process. These interactions were dependent on the specific surface area and functional groups of the resin. The adsorption isotherm fittings verified the differences in the behavior of the three pharmaceuticals on the two magnetic ion-exchange resins. The presence of Cl- and SO4(2-) suppressed the adsorption amount, but with different inhibition levels for different adsorbates. This work facilitates the understanding of the adsorption behavior and mechanism of pharmaceuticals on magnetic ion-exchange resins. The results will expand the application of magnetic ion-exchange resins to the removal of pharmaceuticals in waters. Copyright © 2015. Published by Elsevier B.V.

  9. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... the starting quantity of cellulose. (b) Ion-exchange resins are used in the purification of foods, including potable water, to remove undesirable ions or to replace less desirable ions with one or more of...) (12) and (16) of this section are used to treat water for use in the manufacture of distilled...

  10. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... the starting quantity of cellulose. (b) Ion-exchange resins are used in the purification of foods, including potable water, to remove undesirable ions or to replace less desirable ions with one or more of...) (12) and (16) of this section are used to treat water for use in the manufacture of distilled...

  11. Intensification of ammonia removal from waste water in biologically active zeolitic ion exchange columns.

    PubMed

    Almutairi, Azel; Weatherley, Laurence R

    2015-09-01

    The use of nitrification filters for the removal of ammonium ion from waste-water is an established technology deployed extensively in municipal water treatment, in industrial water treatment and in applications such as fish farming. The process involves the development of immobilized bacterial films on a solid packing support, which is designed to provide a suitable host for the film, and allow supply of oxygen to promote aerobic action. Removal of ammonia and nitrite is increasingly necessary to meet drinking water and discharge standards being applied in the US, Europe and other places. Ion-exchange techniques are also effective for removal of ammonia (as the ammonium ion) from waste water and have the advantage of fast start-up times compared to biological filtration which in some cases may take several weeks to be fully operational. Here we explore the performance of ion exchange columns in which nitrifying bacteria are cultivated, with the goal of a "combined" process involving simultaneous ion-exchange and nitrification, intensified by in-situ aeration with a novel membrane module. There were three experimental goals. Firstly, ion exchange zeolites were characterized and prepared for comparative column breakthrough studies for ammonia removal. Secondly effective in-situ aeration for promotion of nitrifying bacterial growth was studied using a number of different membranes including polyethersulfone (PES), polypropylene (PP), nylon, and polytetra-fluoroethylene (PTFE). Thirdly the breakthrough performance of ion exchange columns filled with zeolite in the presence of aeration and in the presence of nitrifying bacteria was determined to establish the influence of biomass, and aeration upon breakthrough during ammonium ion uptake. The methodology adopted included screening of two types of the naturally occuring zeolite clinoptilolite for effective ammonia removal in continuous ion-exchange columns. Next, the performance of fixed beds of clinoptilolite in the presence of nitrifying bacteria is compared to that in columns in which only ion exchange is occurring. The aeration performance of each of the chosen membranes was compared experimentally using a newly developed membrane support module which is also described. Comparison of ammonia removal in columns equipped with in-situ aeration using each membrane was undertaken and the breakthrough characteristics determined. The results showed that ammonia removal in the presence of the nitrifiers was significantly intensified. Column operation with membrane aeration showed further enhancement of ammonia removal. The greatest enhancement was observed in the case of the polyethersulfone membrane (PES). It is concluded that combined nitrification and ion-exchange is significantly intensified in packed columns by in-situ aeration using a novel membrane module. There is significant potential for extending the ion-exchange cycle time and thus potential cost reduction. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of Chloride Ion and Temperature on the Corrosion Behavior of Ni-Fe-Cr Alloy 028

    NASA Astrophysics Data System (ADS)

    Zhang, L. N.; Dong, J. X.; Szpunar, J. A.; Zhang, M. C.; Basu, R.

    Recently, the working condition of tubing systems used in oil and natural gas industries are severer than before with the increasing exploitation of acidic gas fields. The corrosion problems induced from the corrosive environment with chloride ion medium and high temperature have been much more concerned. The presence of chloride ion can accelerate the dissolution of metals. The corrosion performance is also sensitive to the operating temperature. Classic localized corrosions such as the pitting or the crevice type due to environmental temperature and chloride ion.

  13. On the existence of stationary reaction fronts in precipitation-dissolution systems

    NASA Astrophysics Data System (ADS)

    Kondratiuk, Paweł; Nizinkiewicz, Hanna; Ladd, Anthony JC; Szymczak, Piotr

    2014-05-01

    Coupled precipitation-dissolution processes are ubiquitous in hydrogeochemical systems which are out of chemical equilibrium. However, as already remarked by Ortoleva et al. [1], the precipitation front will in general move with a velocity different form that of a dissolution front; thus the distance between them will increase in time. However, there are a number of systems where the both fronts appear to move with the same velocity. One example is the terra rossa formation process [2], in which kaolinite precipitation produces hydrogen ions that dissolve the underlying calcite. In this case the velocities of the dissolution and precipitation front agree to within 1%, which does not seem accidental. In this communication, we propose a possible mechanism of such a front synchronization, and study its further implications for the dynamics of the system. [1] P. Ortoleva et al., Physica D: 19, 334 (1986) [2] E. Merino and A. Banjerjee, J. Geol., 116, 62 (2008)

  14. Comparative study of the biodegradability of porous silicon films in simulated body fluid.

    PubMed

    Peckham, J; Andrews, G T

    2015-01-01

    The biodegradability of oxidized microporous, mesoporous and macroporous silicon films in a simulated body fluid with ion concentrations similar to those found in human blood plasma were studied using gravimetry. Film dissolution rates were determined by periodically weighing the samples after removal from the fluid. The dissolution rates for microporous silicon were found to be higher than those for mesoporous silicon of comparable porosity. The dissolution rate of macroporous silicon was much lower than that for either microporous or mesoporous silicon. This is attributed to the fact that its specific surface area is much lower than that of microporous and mesoporous silicon. Using an equation adapted from [Surf. Sci. Lett. 306 (1994), L550-L554], the dissolution rate of porous silicon in simulated body fluid can be estimated if the film thickness and specific surface area are known.

  15. Accurate rates of the complex mechanisms for growth and dissolu-tion of minerals using a combination of rare event theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stack, Andrew G; Raiten, Paolo; Gale, Julian D.

    2012-01-01

    Mineral growth and dissolution are often treated as occurring via a single, reversible process that governs the rate of reaction. We show that multiple, distinct intermediate states can occur during both growth and dissolution. Specifically, we have used metadynamics, a method to efficiently explore the free energy landscape of a system, coupled to umbrella sampling and reactive flux calculations, to examine the mechanism and rates of attachment and detachment of a barium ion onto a stepped, barite (BaSO4) surface. The activation energies calculated for the rate limiting reactions, which are different for attachment and detachment, precisely match those measured experimentallymore » during both growth and dissolution. These results can potentially explain anomalous, non-steady state mineral reaction rates observed experimentally, and will enable the design of more efficient growth inhibitors and facilitate an understanding of the effect of impurities.« less

  16. The dissolution mechanisms of silicate and glass-ionomer dental cements.

    PubMed

    Kuhn, A T; Wilson, A D

    1985-11-01

    The mechanism of dissolution of two dental cements of the acid-base setting types (silicate and glass-ionomer) is considered. Dissolution is incongruent, probably because most of the leached species can derive both from the matrix (polysalt gel) and the partly reacted glass particles. The release occurs by means of three discrete mechanisms, surface wash-off, diffusion through pores and cracks or diffusion through the bulk. Such behaviour is shown to be capable of being modelled with extremely high goodness-of-fit values, using equations such as y = const + at1/2 + bt. Analogies with research from the fields of geochemistry and nuclear fuel storage are made and these systems obey similar relationships. The dental cement systems differ, however, in that their dissolution is to some extent reversible. This is explained in terms of formation of insoluble complexes, either by reaction of the constituent ions, or by replacement of OH-, for example, with F-.

  17. A comparison of experimental and computer model results on the charge-exchange plasma flow from a 30 cm mercury ion thruster

    NASA Technical Reports Server (NTRS)

    Gabriel, S. B.; Kaufman, H. R.

    1982-01-01

    Ion thrusters can be used in a variety of primary and auxiliary space-propulsion applications. A thruster produces a charge-exchange plasma which can interact with various systems on the spacecraft. The propagation of the charge-exchange plasma is crucial in determining the interaction of that plasma with the spacecraft. This paper compares experimental measurements with computer model predictions of the propagation of the charge-exchange plasma from a 30 cm mercury ion thruster. The plasma potentials, and ion densities, and directed energies are discussed. Good agreement is found in a region upstream of, and close to, the ion thruster optics. Outside of this region the agreement is reasonable in view of the modeling difficulties.

  18. Production of High Energy Ions Near an Ion Thruster Discharge Hollow Cathode

    NASA Technical Reports Server (NTRS)

    Katz, Ira; Mikellides, I. G.; Goebel, D. M.; Jameson, K. K.; Wirz, R.; Polk, James E.

    2006-01-01

    Several researchers have measured ions leaving ion thruster discharge chambers with energies far greater than measured discharge chamber potentials. Presented in this paper is a new mechanism for the generation of high energy ions and a comparison with measured ion spectra. The source of high energy ions has been a puzzle because they not only have energies in excess of measured steady state potentials, but as reported by Goebel et. al. [1], their flux is independent of the amplitude of time dependent plasma fluctuations. The mechanism relies on the charge exchange neutralization of xenon ions accelerated radially into the potential trough in front of the discharge cathode. Previous researchers [2] have identified the importance of charge exchange in this region as a mechanism for protecting discharge cathode surfaces from ion bombardment. This paper is the first to identify how charge exchange in this region can lead to ion energy enhancement.

  19. Mechanism of extracellular ion exchange and binding-site occlusion in the sodium-calcium exchanger

    PubMed Central

    Lee, ChangKeun; Huang, Yihe; Faraldo-Gómez, José D.; Jiang, Youxing

    2016-01-01

    Na+/Ca2+ exchangers utilize the Na+ electrochemical gradient across the plasma membrane to extrude intracellular Ca2+, and play a central role in Ca2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na+, Ca2+ or Sr2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3Na+:1Ca2+ exchange stoichiometry, and reveals the conformational changes at the onset of the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. These calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na+/Ca2+ antiport. PMID:27183196

  20. Mechanism of extracellular ion exchange and binding-site occlusion in a sodium/calcium exchanger

    DOE PAGES

    Liao, Jun; Marinelli, Fabrizio; Lee, Changkeun; ...

    2016-05-16

    Na +/Ca 2+ exchangers utilize the Na + electrochemical gradient across the plasma membrane to extrude intracellular Ca 2+, and play a central role in Ca 2+ homeostasis. Here, we elucidate their mechanisms of extracellular ion recognition and exchange through a structural analysis of the exchanger from Methanococcus jannaschii (NCX_Mj) bound to Na +, Ca 2+ or Sr 2+ in various occupancies and in an apo state. This analysis defines the binding mode and relative affinity of these ions, establishes the structural basis for the anticipated 3:1Na +/Ca 2+ exchange stoichiometry, and reveals the conformational changes at the onset ofmore » the alternating-access transport mechanism. An independent analysis of the dynamics and conformational free-energy landscape of NCX_Mj in different ion-occupancy states, based on enhanced-sampling molecular-dynamics simulations, demonstrates that the crystal structures reflect mechanistically relevant, interconverting conformations. Lastly, these calculations also reveal the mechanism by which the outward-to-inward transition is controlled by the ion-occupancy state, thereby explaining the emergence of strictly-coupled Na +/Ca 2+ antiport.« less

  1. Vitrification of ion exchange resins

    DOEpatents

    Cicero-Herman, Connie A.; Workman, Rhonda Jackson

    2001-01-01

    The present invention relates to vitrification of ion exchange resins that have become loaded with hazardous or radioactive wastes, in a way that produces a homogenous and durable waste form and reduces the disposal volume of the resin. The methods of the present invention involve directly adding borosilicate glass formers and an oxidizer to the ion exchange resin and heating the mixture at sufficient temperature to produce homogeneous glass.

  2. The fate of silicon during glass corrosion under alkaline conditions: A mechanistic and kinetic study with the International Simple Glass

    NASA Astrophysics Data System (ADS)

    Gin, Stéphane; Jollivet, Patrick; Fournier, Maxime; Berthon, Claude; Wang, Zhaoying; Mitroshkov, Alexandre; Zhu, Zihua; Ryan, Joseph V.

    2015-02-01

    International Simple Glass - a six oxide borosilicate glass selected by the international nuclear glass community to improve the understanding of glass corrosion mechanisms and kinetics - was altered at 90 °C in a solution initially saturated with respect to amorphous 29SiO2. The pH90°C, was fixed at 9 at the start of the experiment and raised to 11.5 after 209 d by the addition of KOH. Isotope sensitive analytical techniques were used to analyze the solution and altered glass samples, helping to understand the driving forces and rate limiting processes controlling long-term glass alteration. At pH 9, the corrosion rate continuously drops and the glass slowly transforms into a uniform, homogeneous amorphous alteration layer. The mechanisms responsible for this transformation are water penetration through the growing alteration layer and ion exchange. We demonstrate that this amorphous alteration layer is not a precipitate resulting from the hydrolysis of the silicate network; it is mostly inherited from the glass structure from which the most weakly bonded cations (Na, Ca and B) have been released. At pH 11.5, the alteration process is very different: the high solubility of glass network formers (Si, Al, Zr) triggers the rapid and complete dissolution of the glass (dissolution becomes congruent) and precipitation of amorphous and crystalline phases. Unlike at pH 9 where glass corrosion rate decreased by 3 orders of magnitude likely due to the retroaction of the alteration layer on water dynamics/reactivity at the reaction front, the rate at pH 11.5 is maintained at a value close to the forward rate due to both the hydrolysis of the silicate network promoted by OH- and the precipitation of CSH and zeolites. This study provides key information for a unified model for glass dissolution.

  3. Strengthening, Crack Arrest And Multiple Cracking In Brittle Materials Using Residual Stresses.

    DOEpatents

    Green, David J.; Sglavo, Vincenzo M.; Tandon, Rajan

    2003-02-11

    Embodiments include a method for forming a glass which displays visible cracking prior to failure when subjected to predetermined stress level that is greater than a predetermined minimum stress level and less than a failure stress level. The method includes determining a critical flaw size in the glass and introducing a residual stress profile to the glass so that a plurality of visible cracks are formed prior to failure when the glass is subjected to a stress that is greater than the minimum stress level and lower than the critical stress. One method for forming the residual stress profile includes performing a first ion exchange so that a first plurality of ions of a first element in the glass are exchanged with a second plurality of ions of a second element that have a larger volume than the first ions. A second ion exchange is also performed so that a plurality of the second ions in the glass are exchanged back to ions of the first element.

  4. Synthesis, characterization and analytical application of hybrid; acrylamide zirconium (IV) arsenate a cation exchanger, effect of dielectric constant on distribution coefficient of metal ions.

    PubMed

    Nabi, Syed A; Shalla, Aabid H

    2009-04-30

    A new hybrid inorganic-organic cation exchanger acrylamide zirconium (IV) arsenate has been synthesized, characterized and its analytical application explored. The effect of experimental parameters such as mixing ratio of reagents, temperature, and pH on the properties of material has been studied. FTIR, TGA, X-ray, UV-vis spectrophotometry, SEM and elemental analysis were used to determine the physiochemical properties of this hybrid ion exchanger. The material behaves as a monofunctional acid with ion-exchange capacity of 1.65 meq/g for Na(+) ions. The chemical stability data reveals that the exchanger is quite stable in mineral acids, bases and fairly stable in organic solvents, while as thermal analysis shows that the material retain 84% of its ion-exchange capacity up to 600 degrees C. Adsorption behavior of metal ions in solvents with increasing dielectric constant has also been explored. The sorption studies reveal that the material is selective for Pb(2+) ions. The analytical utility of the material has been explored by achieving some binary separations of metal ions on its column. Pb(2+) has been selectively removed from synthetic mixtures containing Mg(2+), Ca(2+), Sr(2+), Zn(2+) and Cu(2+), Al(3+), Ni(2+), Fe(3+). In order to demonstrate practical utility of the material quantitative separation of the Cu(2+) and Zn(2+) in brass sample has been achieved on its columns.

  5. Efficient and selective heavy metal sequestration from water by using layered sulfide K 2x Sn 4-x S 8-x (x = 0.65–1; KTS-3)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarma, Debajit; Islam, Saiful M.; Subrahmanyam, K. S.

    Heavy metal ions (Cd 2+, Hg 2+, As 3+ and Pb 2+) are an important contributor to the contamination of groundwater and other water bodies in and around industrial areas. Herein, we demonstrate the rapid and efficient capacity of a layered metal sulfide material, K2xSn4-xS8-x (x = 0.65-1, KTS-3) for heavy metal ion removal from water. The effect of concentration, pH, kinetics, and competitive ions such as Na +/Ca 2+ on the heavy metal ion removal capacity of KTS-3 was systematically investigated. X-ray photoelectron spectroscopy (XPS), elemental analyses, and powder X-ray diffraction studies revealed that the heavy metal ion-exchange ofmore » KTS-3 is complete (quantitative replacement of all potassium ions) and topotactic. The heavy metal ion-exchange by using KTS-3 follows the Langmuir-Freundlich model with high exchange capacities, q(m) 205(17) mg g -1 for Cd 2+, 372(21) mg g -1 for Hg 2+ and 391(89) mg g -1 for Pb 2+. KTS-3 retains excellent heavy metal ion-exchange capacity even in very high concentration (1 M) of competing ions (Na +/Ca 2+) and also over a broad pH range (2-12). KTS-3 also exhibits very good ion-exchange capacity for precious Ag + and toxic As 3+ ions. The kinetics of heavy metal ion adsorption by KTS-3 are rapid (absorbs all ions within a few minutes). These properties and the environmentally friendly character of KTS-3 make it a promising candidate for sequestration of heavy metal ions from water.« less

  6. Modeling the ion transfer and polarization of ion exchange membranes in bioelectrochemical systems.

    PubMed

    Harnisch, Falk; Warmbier, Robert; Schneider, Ralf; Schröder, Uwe

    2009-06-01

    An explicit numerical model for the charge balancing ion transfer across monopolar ion exchange membranes under conditions of bioelectrochemical systems is presented. Diffusion and migration equations have been solved according to the Nernst-Planck Equation and the resulting ion concentrations, pH values and the resistance values of the membrane for different conditions were computed. The modeling results underline the principle limitations of the application of ion exchange membranes in biological fuel cells and electrolyzers, caused by the inherent occurrence of a pH-gradient between anode and cathode compartment, and an increased ohmic membrane resistance at decreasing electrolyte concentrations. Finally, the physical and numerical limitations of the model are discussed.

  7. Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials

    PubMed Central

    Isik, Mehmet; Sardon, Haritz; Mecerreyes, David

    2014-01-01

    Due to its abundance and a wide range of beneficial physical and chemical properties, cellulose has become very popular in order to produce materials for various applications. This review summarizes the recent advances in the development of new cellulose materials and technologies using ionic liquids. Dissolution of cellulose in ionic liquids has been used to develop new processing technologies, cellulose functionalization methods and new cellulose materials including blends, composites, fibers and ion gels. PMID:25000264

  8. Electrochemical Dissolution of Iridium and Iridium Oxide Particles in Acidic Media: Transmission Electron Microscopy, Electrochemical Flow Cell Coupled to Inductively Coupled Plasma Mass Spectrometry, and X-ray Absorption Spectroscopy Study.

    PubMed

    Jovanovič, Primož; Hodnik, Nejc; Ruiz-Zepeda, Francisco; Arčon, Iztok; Jozinović, Barbara; Zorko, Milena; Bele, Marjan; Šala, Martin; Šelih, Vid Simon; Hočevar, Samo; Gaberšček, Miran

    2017-09-13

    Iridium-based particles, regarded as the most promising proton exchange membrane electrolyzer electrocatalysts, were investigated by transmission electron microscopy and by coupling of an electrochemical flow cell (EFC) with online inductively coupled plasma mass spectrometry. Additionally, studies using a thin-film rotating disc electrode, identical location transmission and scanning electron microscopy, as well as X-ray absorption spectroscopy have been performed. Extremely sensitive online time-and potential-resolved electrochemical dissolution profiles revealed that Ir particles dissolve well below oxygen evolution reaction (OER) potentials, presumably induced by Ir surface oxidation and reduction processes, also referred to as transient dissolution. Overall, thermally prepared rutile-type IrO 2 particles are substantially more stable and less active in comparison to as-prepared metallic and electrochemically pretreated (E-Ir) analogues. Interestingly, under OER-relevant conditions, E-Ir particles exhibit superior stability and activity owing to the altered corrosion mechanism, where the formation of unstable Ir(>IV) species is hindered. Due to the enhanced and lasting OER performance, electrochemically pre-oxidized E-Ir particles may be considered as the electrocatalyst of choice for an improved low-temperature electrochemical hydrogen production device, namely a proton exchange membrane electrolyzer.

  9. Hydrogeochemical processes in the Plio-Quaternary Remila aquifer (Khenchela, Algeria)

    NASA Astrophysics Data System (ADS)

    Aouidane, Laiche; Belhamra, Mohamed

    2017-06-01

    The Remila Plain is a synclinal structure in northeast Algeria, situated within a semi-arid climate zone and composed of Mio-Pliocene-Quaternary deposits. Within the syncline, the Plio-Quaternary aquifer is the main source of drinking water for cattle and for agricultural irrigation water. This work aims to investigate the origin of groundwater mineralization and to identify the primary hydrogeochemical processes controlling groundwater evolution in the Remila aquifer. A total of 86 water samples from boreholes were analyzed for major, minor and stable isotopes (18O, 2H) over three seasons: first during low water levels in 2013, second during high water levels in 2014 and third for stable isotopes during low water levels in 2015. The analysis showed that the aquifer is controlled by five principal geochemical processes: (I) the dissolution of evaporite rocks, (II) cation exchange and reverse exchange reactions, (III) congruent dissolution of carbonates (calcite, dolomite) coupled with the dissolution of gypsum and calcite precipitation, (IV) sulfate reduction under anaerobic conditions, and (V) saltwater intrusion in the northeastern Sabkha plains. The 18O and deuterium concentrations in groundwater are very low, indicating that the aquifer is recharged by evaporated rainfall originating from the north slope of the Aurès Mountains which confirms that the aquifer is recharged in the southern part of the plain.

  10. Extraction of steroidal glucosiduronic acids from aqueous solutions by anionic liquid ion-exchangers

    PubMed Central

    Mattox, Vernon R.; Litwiller, Robert D.; Goodrich, June E.

    1972-01-01

    A pilot study on the extraction of three steroidal glucosiduronic acids from water into organic solutions of liquid ion-exchangers is reported. A single extraction of a 0.5mm aqueous solution of either 11-deoxycorticosterone 21-glucosiduronic acid or cortisone 21-glucosiduronic acid with 0.1m-tetraheptylammonium chloride in chloroform took more than 99% of the conjugate into the organic phase; under the same conditions, the very polar conjugate, β-cortol 3-glucosiduronic acid, was extracted to the extent of 43%. The presence of a small amount of chloride, acetate, or sulphate ion in the aqueous phase inhibited extraction, but making the aqueous phase 4.0m with ammonium sulphate promoted extraction strongly. An increase in the concentration of ion-exchanger in the organic phase also promoted extraction. The amount of cortisone 21-glucosiduronic acid extracted by tetraheptylammonium chloride over the pH range of 3.9 to 10.7 was essentially constant. Chloroform solutions of a tertiary, a secondary, or a primary amine hydrochloride also will extract cortisone 21-glucosiduronic acid from water. The various liquid ion exchangers will extract steroidal glucosiduronic acid methyl esters from water into chloroform, although less completely than the corresponding free acids. The extraction of the glucosiduronic acids from water by tetraheptylammonium chloride occurs by an ion-exchange process; extraction of the esters does not involve ion exchange. PMID:5075264

  11. Hydrogeochemical assessment of groundwater in Kashmir Valley, India

    NASA Astrophysics Data System (ADS)

    Jeelani, G. H.; Shah, Rouf Ahmad; Hussain, Aadil

    2014-06-01

    Groundwater samples ( n = 163) were collected across Kashmir Valley in 2010 to assess the hydrogeochemistry of the groundwater in shallow and deep aquifers and its suitability for domestic, agriculture, horticulture, and livestock purposes. The groundwater is generally alkaline in nature. The electrical conductivity (EC) which is an index to represent the total concentration of soluble salts in water was used to measure the salinity hazard to crops as it reflects the TDS in groundwater ranging from 97 to 1385 μS/cm, except one well in Sopore. The average concentration of major ions was higher in shallow aquifers than in deeper aquifers. In general, Ca2+ is the dominant cation and HCO the dominant anion. Ca-HCO3, Mg-HCO3, Ca-Mg-HCO3, Na-HCO3 were the dominant hydrogeochemical facies. High concentration of HCO3 and pH less than 8.8 clearly indicated that intense chemical weathering processes have taken place in the study area. The groundwater flow pattern in the area follows the local surface topography which not only modifies the hydrogeochemical facies but also controls their distribution. The groundwater in valley flows into four directions, i.e., SW-NE, NE-W, SE-NW and SE-NE directions. The results suggest that carbonate dissolution is the dominant source of major ions followed by silicate weathering and ion-exchange processes. The concentrations of all the major ions determined in the present study are within the permissible limits of WHO and BIS standards. The results of Total Hardness, SAR, Na%, Kelly Index, USDA classification, Magnesium absorption ratio, residual sodium carbonate, and PI suggested that groundwater is good for drinking, livestock, and irrigation purposes.

  12. Spatial heterogeneity of high-resolution Chalk groundwater geochemistry - Underground quarry at Saint Martin-le-Noeud, France

    NASA Astrophysics Data System (ADS)

    Barhoum, S.; Valdès, D.; Guérin, R.; Marlin, C.; Vitale, Q.; Benmamar, J.; Gombert, P.

    2014-11-01

    Chalk groundwater is an important aquifer resource in France because it accounts for a production of 12 million m3 y-1 with a large proportion reserved for drinking water. Processes occurring in the unsaturated zone (UZ) and the overlying superficial formations have a high impact on Chalk groundwater geochemistry and require better understanding. The study site is a former underground Chalk quarry located near Beauvais (France) that extends over 1200 m in length, at a depth ranging from 20 to 30 m. The water table intersects the cavity creating 15 underground ;lake; that give access to the Chalk groundwater. Lakes geochemistry has been studied: water samples were collected in July 2013 and major ion concentrations were analyzed. UZ and clay-with-flints thickness above each lake were estimated qualitatively using an electromagnetic sensor (EM31) and Underground GPS. The results unexpectedly showed that groundwater quality varied widely in spatial terms for both allochthonous and autochthonous ions (e.g., HCO3- ranged from 2.03 to 4.43 meq L-1, NO3- ranged from 0.21 to 1.33 meq L-1). Principal component analysis indicated the impact of agricultural land use on water quality, with the intake of NO3- as well as SO42-, Cl- and Ca2+. Chalk groundwater geochemistry is compared with the nature and structure of the UZ. We highlight correlations (1) between thick clay-with-flints layers and the ions Mg2+ and K+, and (2) between UZ thickness and Na+. In conclusion, this paper identifies various ion sources (agriculture, clay-with-flints and Chalk) and demonstrates different processes in the UZ: dissolution, ionic exchange and solute storage.

  13. Effect of iron on inhibition of acid demineralisation of bovine dental enamel in vitro.

    PubMed

    Buzalaf, Marília Afonso Rabelo; de Moraes Italiani, Flávia; Kato, Melissa Thiemi; Martinhon, Cleide Cristina Rodrigues; Magalhães, Ana Carolina

    2006-10-01

    Iron ions (Fe(2+)) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120mmol/L) of Fe(2+) on the dissolution of enamel. Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO(4)x7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p<0.05). The degree of protection was found to approach maximum at about 15mmol/L Fe(2+). Higher concentrations of Fe(2+) did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15mmol/L Fe(2+) against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1mL of 10mmol/L acetic acid. The acid in vial 4 was made 15mmol/L with respect to FeSO(4)x7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p<0.05). Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7. Thus, our data suggest that Fe(2+) can be effective on inhibition of dissolution of enamel and that this effect may be durable.

  14. Carbonate ions and arsenic dissolution by groundwater

    USGS Publications Warehouse

    Kim, M.-J.; Nriagu, J.; Haack, S.

    2000-01-01

    Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.Samples of Marshall Sandstone, a major source of groundwater with elevated arsenic levels in southeast Michigan, were exposed to bicarbonate ion under controlled chemical conditions. In particular, effects of pH and redox conditions on arsenic release were evaluated. The release of arsenic from the aquifer rock was strongly related to the bicarbonate concentration in the leaching solution. The results obtained suggest that the carbonation of arsenic sulfide minerals, including orpiment (As2S3) and realgar (As2S2), is an important process in leaching arsenic into groundwater under anaerobic conditions. The arseno-carbonate complexes formed, believed to be As(CO3)2-, As(CO3)(OH)2-, and AsCO3+, are stable in groundwater. The reaction of ferrous ion with the thioarsenite from carbonation process can result in the formation of arsenopyrite which is a common mineral in arsenic-rich aquifers.The role of bicarbonate in leaching arsenic into groundwater was investigated by conducting batch experiments using core samples of Marshall Sandstone from southeast Michigan and different bicarbonate solutions. The effects of pH and redox conditions on As dissolution were examined. Results showed that As was not leached significantly out of the Marshall Sandstone samples after 3 d using either deionized water or groundwater, but As was leached efficiently by sodium bicarbonate, potassium bicarbonate, and ferric chloride solutions. The leaching rate with sodium bicarbonate was about 25% higher than that with potassium bicarbonate. The data indicated that bicarbonate ion was involved primarily in As dissolution and that hydroxyl radical ion did not affect As dissolution to any significant degree. The amount of As leached was dependent upon the sodium bicarbonate concentration, increasing with reaction time for each concentration. Significant As leaching was found in the extreme pH ranges of <1.9 and 8.0-10.4. The resulting arseno-carbonate complexes formed were stable in groundwater.

  15. New influence factor inducing difficulty in selective flotation separation of Cu-Zn mixed sulfide minerals

    NASA Astrophysics Data System (ADS)

    Deng, Jiu-shuai; Mao, Ying-bo; Wen, Shu-ming; Liu, Jian; Xian, Yong-jun; Feng, Qi-cheng

    2015-02-01

    Selective flotation separation of Cu-Zn mixed sulfides has been proven to be difficult. Thus far, researchers have found no satisfactory way to separate Cu-Zn mixed sulfides by selective flotation, mainly because of the complex surface and interface interaction mechanisms in the flotation solution. Undesired activation occurs between copper ions and the sphalerite surfaces. In addition to recycled water and mineral dissolution, ancient fluids in the minerals are observed to be a new source of metal ions. In this study, significant amounts of ancient fluids were found to exist in Cu-Zn sulfide and gangue minerals, mostly as gas-liquid fluid inclusions. The concentration of copper ions released from the ancient fluids reached 1.02 × 10-6 mol/L, whereas, in the cases of sphalerite and quartz, this concentration was 0.62 × 10-6 mol/L and 0.44 × 10-6 mol/L, respectively. As a result, the ancient fluid is a significant source of copper ions compared to mineral dissolution under the same experimental conditions, which promotes the unwanted activation of sphalerite. Therefore, the ancient fluid is considered to be a new factor that affects the selective flotation separation of Cu-Zn mixed sulfide ores.

  16. 21 CFR 173.25 - Ion-exchange resins.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... weight of the starting quantity of cellulose. (b) Ion-exchange resins are used in the purification of foods, including potable water, to remove undesirable ions or to replace less desirable ions with one or... paragraphs (a) (12) and (16) of this section are used to treat water for use in the manufacture of distilled...

  17. Double-Track Electrochemical Green Approach for Simultaneous Dissolution Profiling of Naproxen Sodium and Diphenhydramine Hydrochloride.

    PubMed

    Shehata, Mostafa A; Fawaz, Esraa M; El-Rahman, Mohamed K Abd; Abdel-Moety, Ezzat M

    2017-11-30

    Acquisition of the dissolution profiles of more than single active ingredient in a multi-analyte pharmaceutical formulation is a mandatory manufacturing practice that is dominated by utilization of the off-line separation-based chromatographic methods. This contribution adopts a new "Double-Track" approach with the ultimate goal of advancing the in-line potentiometric sensors to their most effective applicability for simultaneous acquisition of the dissolution profiles of two active ingredients in a binary pharmaceutical formulation. The unique abilities of these sensors for real-time measurements is the key driver for adoption of "green analytical chemistry" (GAC) principles aiming to expand the application of eco-friendly analytical methods With the aim of performing a side-by-side comparison, this work investigates the degree of adherence of ISEs to the 12 principles of GAC in multicomponent dissolution profiling with respect to the HPLC. For the proof of concept, a binary mixture of naproxen sodium (NAPR) and diphenhydramine hydrochloride (DIPH) marketed as Aleve pm ® tablets was selected as a model for which dissolution profiles were attained by two techniques. The first "Double-Track" in-line strategy depends on dipping two highly integrated membrane sensors for continuous monitoring of the dissolution of each active pharmaceutical ingredient (API) by tracing the e.m.f change over the time scale. For the determination of NAPR, sensor I was developed using tridodecyl methyl ammonium chloride as an anion exchanger, while sensor II was developed for the determination of DIPH using potassium tetrakis (4-chlorophenyl) borate as a cation exchanger. The second off-line strategy utilizes a separation-based HPLC method via off-line tracking the increase of peak area by UV detection at 220nm over time using a mobile phase of acetonitrile: water (90:10) pH 3. The advantages of the newly introduced "Double-Track" approach regarding GAC principles are highlighted, and the merits of these benign real-time analyzers (ISEs) that can deliver equivalent analytical results as HPLC while significantly reducing solvent consumption/waste generation are described. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A novel electrochemical ion exchange system and its application in water treatment.

    PubMed

    Li, Yansheng; Li, Yongbin; Liu, Zhigang; Wu, Tao; Tian, Ying

    2011-06-01

    A novel electrochemical ion exchange system with porous cylinder electrodes is proposed for treatment of wastewater. This system can be used for desalination without the costly ion-exchange membrane and extra chemical reagents. Since the electrodes are completely uniform and no ion-exchange membrane was used in this system, it can be operated by switching anodes and cathodes flexibly for eliminating the scaling on the surface of electrodes. The strong base ion-exchange resin grains placed among the anode and cathode have played as supporting electrolyte, which is capable for the treatment of wastewater with low conductivity. The concentrated and neutralized anolyte containing chlorine is effective for disinfection and contaminants removal. Under the experimental conditions, the removal percentage of total dissolved salts was 83% and the removal percentage of chemical oxygen demand was 92% without consumption of extra chemical reagents. Copyright © 2011 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  19. The transfer behavior of different ions across anion and cation exchange membranes under vanadium flow battery medium

    NASA Astrophysics Data System (ADS)

    Sun, Jiawei; Li, Xianfeng; Xi, Xiaoli; Lai, Qinzhi; Liu, Tao; Zhang, Huamin

    2014-12-01

    The transfer behavior of different ions (V2+, V3+, VO2+, VO2+, H+, SO42-) across ion exchange membranes is investigated under vanadium flow battery (VFB) operating condition. VX-20 anion exchange membrane (AEM) and Nafion 115 cation exchange membrane (CEM) are selected to investigate the influence of fixed charged groups on the transfer behavior of different ions. The interaction between different ions and water is discussed in detail aiming to ascertain the variation of different ions in the charge-discharge process. Under the VFB medium, the transfer behavior and function of different ions are very different for the AEM and CEM. V2+ ions at the negative side accumulate when VFB is assembled with Nafion 115, while the VO2+ ions at the positive side accumulate for VX-20. The SO42- ions will transfer across Nafion 115 to balance the charges and the protons can balance the charges of VX-20. Finally the capacity fade mechanism of different membranes is investigated, showing that the capacity decay of VFB assembled with Nafion 115 mainly results from the cross mix of vanadium ions across the membrane, however, for VX-20, the side reactions can be the major reason. This paper provides important information about electrolyte for the application of VFB.

  20. The international water conference proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guseman, J.R.

    1984-10-01

    This book provides information on computer applications to water chemistry control, groundwater, membrane technology, instrumentation/analytical techniques and ion exchange. Other topics of discussion include cooling water, biocontrol, the hydraulic properties of ion exchange resins, steam electric power plant aqueous discharges and colorimetric determination of trace benzotriazole or tolytriazole. Water chemistry guidelines for large steam generating power plants is discussed, as well as wastewater treatment, boiler water conditioning and ion exchange/computer related topics.

  1. Experiments on Anion Exchange with Amberlite Ir-120 Resin; ENSAYOS DE INTERCAMBIO ANIONICO CON RESINA AMBERLITA Ir-120

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cellini, R.F.; Palomino, J.V.

    1956-01-01

    The ion exchange of the uranyl ion on Amberlite Ir-120 resin was studied with different uranyl ion concentrations. Elution with sulfuric acid was investlgated and the elution curve for the experimental conditions was determined. From the concentrations of the ions of Cu/sup 2+/, Ni/sup 2+/, Fe/sup 3+/, Cd/sup 2+/, Mn/sup 2+/, and Cr/sup 3+/ the maximum exchange capacity was tested and elation curves with 4 N sulfuric acid were obtained. (tr-auth)

  2. Effect of grinding and fluoride-gel exposure on strength of ion-exchanged porcelain.

    PubMed

    Anusavice, K J; Hojjatie, B; Chang, T C

    1994-08-01

    Strengthening of dental porcelain through a diffusion heat treatment at 450 degrees C of a potassium-enriched, ion-exchange surface coating has been demonstrated in several recent studies. However, little attention has been focused on the potential strength reduction of these materials when the treated surfaces are ground or etched under clinically simulated conditions. The objective of this study was to test the hypothesis that partial removal of the surface layers of ion-exchanged porcelains by grinding or exposure to acidulated fluoride gel will significantly reduce their flexure strength. Nine groups of body porcelain disks were ion-exchanged at 450 degrees C for 30 min. One of these groups was subjected to ion exchange and no further surface treatment. Eight specimen groups were subjected to the following procedures after ion exchange: grinding to depths of 50 microns, 100 microns, 150 microns, 200 microns, and 250 microns, and exposure to acidulated fluoride for 30 min, 60 min, and 300 min. A tenth group (FC) was fired at 960 degrees C and fast-cooled in air, but the disks were not subjected to the ion-exchange treatment. Surface stress was calculated from measured values of cracks induced in the treated surfaces. Fluoride exposure for up to 60 min resulted in a significant decrease in surface compression (P < or = 0.05), although this treatment had no effect on strength. Grinding to a depth of from 100 microns to 250 microns caused a significant decrease in strength, while removal of a 50-microns layer caused no significant change (P > 0.05).

  3. Plasma particle simulation of electrostatic ion thrusters

    NASA Technical Reports Server (NTRS)

    Peng, Xiaohang; Keefer, Dennis; Ruyten, Wilhelmus

    1990-01-01

    Charge exchange collisons between beam ions and neutral propellant gas can result in erosion of the accelerator grid surfaces of an ion engine. A particle in cell (PIC) is developed along with a Monte Carlo method to simulate the ion dynamics and charge exchange processes in the grid region of an ion thruster. The simulation is two-dimensional axisymmetric and uses three velocity components (2d3v) to investigate the influence of charge exchange collisions on the ion sputtering of the accelerator grid surfaces. An example calculation has been performed for an ion thruster operated on xenon propellant. The simulation shows that the greatest sputtering occurs on the downstream surface of the grid, but some sputtering can also occur on the upstream surface as well as on the interior of the grid aperture.

  4. Specific ion effects on membrane potential and the permselectivity of ion exchange membranes.

    PubMed

    Geise, Geoffrey M; Cassady, Harrison J; Paul, Donald R; Logan, Bruce E; Hickner, Michael A

    2014-10-21

    Membrane potential and permselectivity are critical parameters for a variety of electrochemically-driven separation and energy technologies. An electric potential is developed when a membrane separates electrolyte solutions of different concentrations, and a permselective membrane allows specific species to be transported while restricting the passage of other species. Ion exchange membranes are commonly used in applications that require advanced ionic electrolytes and span technologies such as alkaline batteries to ammonium bicarbonate reverse electrodialysis, but membranes are often only characterized in sodium chloride solutions. Our goal in this work was to better understand membrane behaviour in aqueous ammonium bicarbonate, which is of interest for closed-loop energy generation processes. Here we characterized the permselectivity of four commercial ion exchange membranes in aqueous solutions of sodium chloride, ammonium chloride, sodium bicarbonate, and ammonium bicarbonate. This stepwise approach, using four different ions in aqueous solution, was used to better understand how these specific ions affect ion transport in ion exchange membranes. Characterization of cation and anion exchange membrane permselectivity, using these ions, is discussed from the perspective of the difference in the physical chemistry of the hydrated ions, along with an accompanying re-derivation and examination of the basic equations that describe membrane potential. In general, permselectivity was highest in sodium chloride and lowest in ammonium bicarbonate solutions, and the nature of both the counter- and co-ions appeared to influence measured permselectivity. The counter-ion type influences the binding affinity between counter-ions and polymer fixed charge groups, and higher binding affinity between fixed charge sites and counter-ions within the membrane decreases the effective membrane charge density. As a result permselectivity decreases. The charge density and polarizability of the co-ions also appeared to influence permselectivity leading to ion-specific effects; co-ions that are charge dense and have low polarizability tended to result in high membrane permselectivity.

  5. Characterization of the internal ion environment of biofilms based on charge density and shape of ion.

    PubMed

    Kurniawan, Andi; Tsuchiya, Yuki; Eda, Shima; Morisaki, Hisao

    2015-12-01

    Biofilm polymers contain both electrically positively and negatively charged sites. These charged sites enable the biofilm to trap and retain ions leading to an important role of biofilm such as nutrient recycling and pollutant purification. Much work has focused on the ion-exchange capacity of biofilms, and they are known to adsorb ions through an exchange mechanism between the ions in solution and the ions adsorbed to the charged sites on the biofilm polymer. However, recent studies suggest that the adsorption/desorption behavior of ions in a biofilm cannot be explained solely by this ion exchange mechanism. To examine the possibility that a substantial amount of ions are held in the interstitial region of the biofilm polymer by an electrostatic interaction, intact biofilms formed in a natural environment were immersed in distilled water and ion desorption was investigated. All of the detected ion species were released from the biofilms over a short period of time, and very few ions were subsequently released over more time, indicating that the interstitial region of biofilm polymers is another ion reserve. The extent of ion retention in the interstitial region of biofilms for each ion can be determined largely by charge density, |Z|/r, where |Z| is the ion valence as absolute value and r is the ion radius. The higher |Z|/r value an ion has, the stronger it is retained in the interstitial region of biofilms. Ion shape is also a key determinant of ion retention. Spherical and non-spherical ions have different correlations between the condensation ratio and |Z|/r. The generality of these findings were assured by various biofilm samples. Thus, the internal regions of biofilms exchange ions dynamically with the outside environment. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Dissolution characteristics of sericite in chalcopyrite bioleaching and its effect on copper extraction

    NASA Astrophysics Data System (ADS)

    Dong, Ying-bo; Li, Hao; Lin, Hai; Zhang, Yuan

    2017-04-01

    The effects of sericite particle size, rotation speed, and leaching temperature on sericite dissolution and copper extraction in a chalcopyrite bioleaching system were examined. Finer particles, appropriate temperature and rotation speed for Acidithiobacillus ferrooxidans resulted in a higher Al3+ dissolution concentration. The Al3+ dissolution concentration reached its highest concentration of 38.66 mg/L after 48-d leaching when the sericite particle size, temperature, and rotation speed were -43 μm, 30°C, and 160 r/min, respectively. Meanwhile, the sericite particle size, rotation speed, and temperature can affect copper extraction. The copper extraction rate is higher when the sericite particle size is finer. An appropriately high temperature is favorable for copper leaching. The dissolution of sericite fitted the shrinking core model, 1-(2/3) α-(1- α)2/3 = k 1 t, which indicates that internal diffusion is the decision step controlling the overall reaction rate in the leaching process. Scanning electron microscopy analysis showed small precipitates covered on the surface of sericite after leaching, which increased the diffusion resistance of the leaching solution and dissolved ions.

  7. The dissolution of calcite in CO2-saturated solutions at 25°C and 1 atmosphere total pressure

    USGS Publications Warehouse

    Plummer, Niel; Wigley, T.M.L.

    1976-01-01

    The dissolution of Iceland spar in CO2-saturated solutions at 25°C and 1 atm total pressure has been followed by measurement of pH as a function of time. Surface concentrations of reactant and product species have been calculated from bulk fluid data using mass transport theory and a model that accounts for homogeneous reactions in the bulk fluid. The surface concentrations are found to be close to bulk solution values. This indicates that calcite dissolution under the experimental conditions is controlled by the kinetics of surface reaction. The rate of calcite dissolution follows an empirical second order relation with respect to calcium and hydrogen ion from near the initial condition (pH 3.91) to approximately pH 5.9. Beyond pH 5.9 the rate of surface reaction is greatly reduced and higher reaction orders are observed. Calculations show that the rate of calcite dissolution in natural environments may be influenced by both transport and surface-reaction processes. In the absence of inhibition, relatively short times should be sufficient to establish equilibrium.

  8. Inorganic Geochemistry of Flowback Water from the Montney Formation: Potential Sources of Elevated Ion Concentrations

    NASA Astrophysics Data System (ADS)

    Owen, J.; Bustin, R.

    2016-12-01

    An inorganic geochemical analysis was conducted on flowback water from hydraulically fractured oil and gas wells of the Montney Formation of varying thermal maturity and stratigraphy in the Western Canadian Sedimentary Basin. The results of this study provide insight into potential sources of the elevated ion concentrations and can be used to assist with wastewater management and blending of water for reuse. Samples were obtained from 31 wells across the Montney and include wells completed in the lower, middle, and upper units. Selected fluid samples from each well were analyzed using ICP-OES, ICP-MS, and IC. Oxygen and hydrogen isotope analysis was performed using a liquid-water isotope analyzer. The flowback waters are classified as sodium-chloride type. In addition to Na and Cl, calcium, potassium, magnesium, and strontium are elevated and increase during the flowback period. Barium, iron, and lithium are also elevated at some locations. The early flowback water chemistry varies within the formation: higher initial TDS values of approximately 50,000mg/L in Upper Montney flowback water relative to the initial TDS from both Middle and Lower Montney wells (<25,000mg/L and <15,000mg/L, respectively). However, overall, the maximum TDS attained later in the flowback period does not show a consistent stratigraphic trend (range: 55,000 - 130,000mg/L) except for one region in the Middle Montney where the maximum TDS remains consistently lower than other areas (<50,000mg/L). Barium is notable in Montney flowback due to its high variability, with the lowest concentrations occurring in Middle Montney flowback and the highest in Lower Montney flowback. Comparing closely spaced wells completed on the same pad and in the same zone, the flowback waters generally have similar ion concentrations and consistent ion ratios. The increasing ion concentrations as well as the stable water isotopes support mixing between the hydraulic fracturing fluid, which has relatively low ion concentrations, and more saline connate formation water. Geochemical modeling indicates the ion concentrations in the flowback water are a complex product of mineral precipitation/dissolution, ion exchange with the reservoir, geochemistry of the connate water and water saturation of the reservoir.

  9. On-Demand Dissolution of Chemically Cross-Linked Hydrogels.

    PubMed

    Konieczynska, Marlena D; Grinstaff, Mark W

    2017-02-21

    The formation and subsequent on-demand dissolution of chemically cross-linked hydrogels is of keen interest to chemists, engineers, and clinicians. In this Account, we summarize our recent advances in the area of dissolvable chemically cross-linked hydrogels and provide a comparative discussion of other recent hydrogel systems. Using biocompatible macromonomers, we developed a library of cross-linked dendritic hydrogels that possess favorable properties, including biocompatibility, tissue adhesion, and swelling. Additionally, these hydrogels possess the unique ability to dissolve on-demand via application of a biocompatible aqueous solution. Each of the three hydrogel systems described employs a thiol-thioester exchange reaction as the mechanism of dissolution. These new materials successfully decrease bleeding in in vivo models of hepatic and aortic hemorrhage and dissolve on-demand, providing easy removal. In addition, we evaluated these hydrogels as dressings for second-degree burn wounds and performed proof-of-concept in vivo studies. These hydrogel wound dressings provide a means of repeatedly changing the dressing in a minimally invasive and atraumatic manner while also serving as a protective barrier against bacterial infection. Finally, we highlight the seminal work of other researchers in the field of dissolvable chemically cross-linked hydrogels using thiol-disulfide exchange, retro-Michael-type, and retro-Diels-Alder reactions. These chemistries provide a versatile synthetic toolbox to dissolve hydrogels in a controlled manner on time scales from minutes to weeks. Continued investigation of these dissolution approaches as well as the development of new chemical reactions will open doors to other avenues of on-demand dissolution and expand the application space for these materials. In summary, the management and closure of wounds after traumatic injury or surgical intervention are of significant clinical importance. Stimuli-responsive hydrogels that function as sealants, adhesives, or dressings are emerging as vital alternatives to current standards of care that rely upon conventional sutures, staples, or dressings.

  10. ION EXCHANGE SOFTENING: EFFECTS ON METAL CONCENTRATIONS

    EPA Science Inventory

    A corrosion control pipe loop study to evaluate the effect of ion exchange water softening on metal leaching from household plumbing materials was conducted on two different water qualities having different pH's and hardness levels. The results showed that removing hardness ions ...

  11. Qualitative analysis scheme based on the properties of ion exchangers (in French)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machiroux, R.; Merciny, E.; Schreiber, A.

    1973-01-01

    A systematic scheme of qualitative analysis of some cations is presented. For didactic purposes the properties of cationic and anionic ion exchangers were used. At the present time, this scheme is limited to 23 ions, including Sr. (auth)

  12. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE PAGES

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...

    2017-02-18

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  13. Accelerated Leach Testing of Glass (ALTGLASS): II. Mineralization of hydrogels by leachate strong bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.

    The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less

  14. Mathematical modeling of drug dissolution.

    PubMed

    Siepmann, J; Siepmann, F

    2013-08-30

    The dissolution of a drug administered in the solid state is a pre-requisite for efficient subsequent transport within the human body. This is because only dissolved drug molecules/ions/atoms are able to diffuse, e.g. through living tissue. Thus, generally major barriers, including the mucosa of the gastro intestinal tract, can only be crossed after dissolution. Consequently, the process of dissolution is of fundamental importance for the bioavailability and, hence, therapeutic efficacy of various pharmaco-treatments. Poor aqueous solubility and/or very low dissolution rates potentially lead to insufficient availability at the site of action and, hence, failure of the treatment in vivo, despite a potentially ideal chemical structure of the drug to interact with its target site. Different physical phenomena are involved in the process of drug dissolution in an aqueous body fluid, namely the wetting of the particle's surface, breakdown of solid state bonds, solvation, diffusion through the liquid unstirred boundary layer surrounding the particle as well as convection in the surrounding bulk fluid. Appropriate mathematical equations can be used to quantify these mass transport steps, and more or less complex theories can be developed to describe the resulting drug dissolution kinetics. This article gives an overview on the current state of the art of modeling drug dissolution and points out the assumptions the different theories are based on. Various practical examples are given in order to illustrate the benefits of such models. This review is not restricted to mathematical theories considering drugs exhibiting poor aqueous solubility and/or low dissolution rates, but also addresses models quantifying drug release from controlled release dosage forms, in which the process of drug dissolution plays a major role. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Kinetics of Inorganic Calcite Dissolution in Seawater under Pressure

    NASA Astrophysics Data System (ADS)

    Dong, S.; Subhas, A.; Rollins, N.; Berelson, W.; Adkins, J. F.

    2016-02-01

    While understanding calcium carbonate dissolution is vital in constructing global carbon cycles and predicting the effect of seawater acidification as a result of increasing atmospheric CO2, there is still a major debate over the basic formulation of a dissolution rate law. The kinetics of calcium carbonate dissolution are typically described by the equation: Rate=k(1-Ω)n, while Ω=[Ca2+][CO32-]/Ksp. In this study, 13C-labeled calcite is dissolved in unlabeled seawater and the evolving d13C composition of the fluid is traced over time to establish dissolution rate. Instead of changing ion concentration to obtain varying Ω (as in our previous study; Subhas et al. 2015), we changed Ksp by conducting experiments under different pressures (described in theory as ∂lnKsp/∂P=-ΔV/RT, where ΔV is partial molal volume). This involved the construction of a pressure vessel that could hold our sample bag and provide aliquots while remaining pressurized. Pressure experiments were conducted between 0-2000PSI. Results support the conclusion in our previous study that near-equilibrium dissolution rates are highly nonlinear, but give a disparate relationship between undersaturation and dissolution rate if Ω is calculated assuming the specific ΔV embedded in CO2SYS. A revised ΔV from -37cm3 to -65cm3 would make the dissolution formulation equation agree, but clearly appears unreasonable. Our results are explained by a pressure effect on carbonate dissolution kinetics over and above the influence of pressure on Ω. If this is a phenomenon that occurs in nature, then we would predict that dissolution should be occurring shallower in the water column (as sometimes observed) than indicated by standard Ω calculations.

  16. Effect of the size of nanoparticles on their dissolution within metal-glass nanocomposites under sustained irradiation

    NASA Astrophysics Data System (ADS)

    Vu, T. H. Y.; Ramjauny, Y.; Rizza, G.; Hayoun, M.

    2016-01-01

    We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4-100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 1016 cm-2. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45-100 nm) and exponential for small NPs (4-25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effects and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.

  17. Kinetics of dissolution of UO2 in nitric acid solutions: A multiparametric study of the non-catalysed reaction

    NASA Astrophysics Data System (ADS)

    Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.

    2017-12-01

    UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.

  18. A new approach to evaluate natural zeolite ability to sorb lead (Pb) from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Drosos, Evangelos I. P.; Karapanagioti, Hrissi K.

    2013-04-01

    Lead (Pb) is a hazardous pollutant commonly found in aquatic ecosystems. Among several methods available, the addition of sorbent amendments to soils or sediments is attractive, since its application is relatively simple, while it can also be cost effective when a low cost and re-usable sorbent is used; e.g. natural zeolites. Zeolites are crystalline aluminosilicates with a three-dimensional structure composed of a set of cavities occupied by large ions and water molecules. Zeolites can accommodate a wide variety of cations, such as Na+, K+, Ca2+, Mg2+, which are rather loosely held and can readily be exchanged for others in an aqueous solution. Natural zeolites are capable of removing cations, such as lead, from aqueous solutions by ion exchange. There is a wide variation in the cation exchange capacity (CEC) of natural zeolites because of the different nature of various zeolites cage structures, natural structural defects, adsorbed ions, and their associated gangue minerals. Naturally occurring zeolites are rarely pure and are contaminated to varying degrees by other minerals, such as clays and feldspars, metals, quartz, or other zeolites as well. These impurities affect the CEC even for samples originated from the same region but from a different source. CEC of the material increases with decreasing impurity content. Potentially exchangeable ions in such impurities do not necessarily participate in ion exchange mechanism, while, in some cases, impurities may additionally block the access to active sites. For zeoliferous rocks having the same percentage of a zeolitic phase, the CEC increases with decreasing Si/Al ratio, as the more Si ions are substituted by Al ions, the more negative the valence of the matrix becomes. Sodium seems to be the most effective exchangeable ion for lead. On the contrary, it is unlikely that the potassium content of the zeolite would be substituted. A pretreatment with high concentration solutions of Na, such as 2 M NaCl, can significantly improve zeolite CEC by bringing the material to near homoionic form. pH and temperature are the critical parameters for using natural zeolites as sorbents. Zeolites should not be used in extremely acidic, neither in extremely basic pH conditions, except for very short times. The exchange of Pb, requires low solution pH, to avoid precipitation but not too low because the H+ are competitive ions for ion exchange; as a result the zeolite CEC related to Pb removal may be downgraded. If pH enters the basic range (e.g. pH>8), more aquatic complexes with lower positive valence than those prevailing in lower pH are produced; these complexes are less attracted by the negative charged zeolitic matrix. Pb uptake is favored at higher temperatures as ion exchange (including the diffusion of exchangeable ions inside the material and the medium, and vice versa) is an endothermic process. With the increase of temperature there is a decrease in hydration of all available exchangeable cations that eases the movement within the channels of the solid matrix. Additionally, the mobility of the potassium ions, present in the zeolitic material, also increases with the temperature resulting in enhanced CEC.

  19. Biotic and abiotic interactions in aquatic microcosms determine fate and toxicity of Ag nanoparticles. Part 1. Aggregation and dissolution.

    PubMed

    Unrine, Jason M; Colman, Benjamin P; Bone, Audrey J; Gondikas, Andreas P; Matson, Cole W

    2012-07-03

    To better understand their fate and toxicity in aquatic environments, we compared the aggregation and dissolution behavior of gum arabic (GA) and polyvinylpyrrolidone (PVP) coated Ag nanoparticles (NPs) in aquatic microcosms. There were four microcosm types: surface water; water and sediment; water and aquatic plants; or water, sediment, and aquatic plants. Dissolution and aggregation behavior of AgNPs were examined using ultracentrifugation, ultrafiltration, and asymmetrical flow field flow fractionation coupled to ultraviolet-visible spectroscopy, dynamic and static laser light scattering, and inductively coupled plasma mass spectrometry. Plants released dissolved organic matter (DOM) into the water column either through active or passive processes in response to Ag exposure. This organic matter fraction readily bound Ag ions. The plant-derived DOM had the effect of stabilizing PVP-AgNPs as primary particles, but caused GA-AgNPs to be removed from the water column, likely by dissolution and binding of released Ag ions on sediment and plant surfaces. The destabilization of the GA-AgNPs also corresponded with X-ray absorption near edge spectroscopy results which suggest that 22-28% of the particulate Ag was associated with thiols and 5-14% was present as oxides. The results highlight the potential complexities of nanomaterial behavior in response to biotic and abiotic modifications in ecosystems, and may help to explain differences in toxicity of Ag observed in realistic exposure media compared to simplified laboratory exposures.

  20. Hyperpolarized 13C metabolic imaging using dissolution dynamic nuclear polarization.

    PubMed

    Hurd, Ralph E; Yen, Yi-Fen; Chen, Albert; Ardenkjaer-Larsen, Jan Henrik

    2012-12-01

    This article describes the basic physics of dissolution dynamic nuclear polarization (dissolution-DNP), and the impact of the resulting highly nonequilibrium spin states, on the physics of magnetic resonance imaging (MRI) detection. The hardware requirements for clinical translation of this technology are also presented. For studies that allow the use of externally administered agents, hyperpolarization offers a way to overcome normal magnetic resonance sensitivity limitations, at least for a brief T(1)-dependent observation window. A 10,000-100,000-fold signal-to-noise advantage provides an avenue for real-time measurement of perfusion, metabolite transport, exchange, and metabolism. The principles behind these measurements, as well as the choice of agent, and progress toward the application of hyperpolarized (13)C metabolic imaging in oncology, cardiology, and neurology are reviewed. Copyright © 2012 Wiley Periodicals, Inc.

  1. Effects of Thermal and Pressure Histories on the Chemical Strengthening of Sodium Aluminosilicate Glass

    NASA Astrophysics Data System (ADS)

    Svenson, Mouritz; Thirion, Lynn; Youngman, Randall; Mauro, John; Bauchy, Mathieu; Rzoska, Sylwester; Bockowski, Michal; Smedskjaer, Morten

    2016-03-01

    Glasses can be chemically strengthened through the ion exchange process, wherein smaller ions in the glass (e.g., Na+) are replaced by larger ions from a salt bath (e.g., K+). This develops a compressive stress (CS) on the glass surface, which, in turn, improves the damage resistance of the glass. The magnitude and depth of the generated CS depends on the thermal and pressure histories of the glass prior to ion exchange. In this study, we investigate the ion exchange-related properties (mutual diffusivity, CS, and hardness) of a sodium aluminosilicate glass, which has been densified through annealing below the initial fictive temperature of the glass or through pressure-quenching from the glass transition temperature at 1 GPa prior to ion exchange. We show that the rate of alkali interdiffusivity depends only on the density of the glass, rather than on the applied densification method. However, we also demonstrate that for a given density, the increase in CS and increase in hardness induced by ion exchange strongly depends on the densification method. Specifically, at constant density, the CS and hardness values achieved through thermal annealing are larger than those achieved through pressure-quenching. These results are discussed in relation to the structural changes in the environment of the network-modifier and the overall network densification.

  2. Antimicrobial properties of zeolite-X and zeolite-A ion-exchanged with silver, copper, and zinc against a broad range of microorganisms.

    PubMed

    Demirci, Selami; Ustaoğlu, Zeynep; Yılmazer, Gonca Altın; Sahin, Fikrettin; Baç, Nurcan

    2014-02-01

    Zeolites are nanoporous alumina silicates composed of silicon, aluminum, and oxygen in a framework with cations, water within pores. Their cation contents can be exchanged with monovalent or divalent ions. In the present study, the antimicrobial (antibacterial, anticandidal, and antifungal) properties of zeolite type X and A, with different Al/Si ratio, ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions were investigated individually. The study presents the synthesis and manufacture of four different zeolite types characterized by scanning electron microscopy and X-ray diffraction. The ion loading capacity of the zeolites was examined and compared with the antimicrobial characteristics against a broad range of microorganisms including bacteria, yeast, and mold. It was observed that Ag(+) ion-loaded zeolites exhibited more antibacterial activity with respect to other metal ion-embedded zeolite samples. The results clearly support that various synthetic zeolites can be ion exchanged with Ag(+), Zn(2+), and Cu(2+) ions to acquire antimicrobial properties or ion-releasing characteristics to provide prolonged or stronger activity. The current study suggested that zeolite formulations could be combined with various materials used in manufacturing medical devices, surfaces, textiles, or household items where antimicrobial properties are required.

  3. Synthesis of polymer ion-exchange hydrogels under γ - irradiation 60Co

    NASA Astrophysics Data System (ADS)

    Le, V. M.; Zhevnyak, V. D.; Pak, V. Kh; Ananev, V. A.; Borodin, U. V.

    2015-04-01

    We have reported earlier about the modification of ion-exchange hydrogel under the influence of gamma radiation. The optimal absorbed dose of irradiation had been choosen for radiation modification of polymer hydrogels by ionits to produce products with a high content of the gel - fractions and sufficient mechanical properties. The dependence of the static exchange capacity of hydrogels on the type of ionit and its fractional composition had been studied. The dependence of the static exchange capacity of the quantitative composition of the ionit in the volume of the hydrogel had been investigated. The ion-exchange medical eye lenses had been made under selected conditions of synthesis. Their sorption properties had been studied.

  4. Separation of hemicellulose-derived saccharides from wood hydrolysate by lime and ion exchange resin.

    PubMed

    Wang, Xiaojun; Zhuang, Jingshun; Fu, Yingjuan; Tian, Guoyu; Wang, Zhaojiang; Qin, Menghua

    2016-04-01

    A combined process of lime treatment and mixed bed ion exchange was proposed to separate hemicellulose-derived saccharides (HDS) from prehydrolysis liquor (PHL) of lignocellulose as value added products. The optimization of lime treatment achieved up to 44.2% removal of non-saccharide organic compounds (NSOC), mainly colloidal substances, with negligible HDS degradation at 0.5% lime level and subsequent neutralization by phosphoric acid. The residual NSOC and calcium ions in lime-treated PHL were eliminated by mixed bed ion exchange. The breakthrough curves of HDS and NSOC showed selective retention toward NSOC, leading to 75% HDS recovery with 95% purity at 17 bed volumes of exchange capacity. In addition, macroporous resin showed higher exchange capacity than gel resin as indicated by the triple processing volume. The remarkable selectivity of the combined process suggested the feasibility for HDS separation from PHL. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Predicting Salt Permeability Coefficients in Highly Swollen, Highly Charged Ion Exchange Membranes.

    PubMed

    Kamcev, Jovan; Paul, Donald R; Manning, Gerald S; Freeman, Benny D

    2017-02-01

    This study presents a framework for predicting salt permeability coefficients in ion exchange membranes in contact with an aqueous salt solution. The model, based on the solution-diffusion mechanism, was tested using experimental salt permeability data for a series of commercial ion exchange membranes. Equilibrium salt partition coefficients were calculated using a thermodynamic framework (i.e., Donnan theory), incorporating Manning's counterion condensation theory to calculate ion activity coefficients in the membrane phase and the Pitzer model to calculate ion activity coefficients in the solution phase. The model predicted NaCl partition coefficients in a cation exchange membrane and two anion exchange membranes, as well as MgCl 2 partition coefficients in a cation exchange membrane, remarkably well at higher external salt concentrations (>0.1 M) and reasonably well at lower external salt concentrations (<0.1 M) with no adjustable parameters. Membrane ion diffusion coefficients were calculated using a combination of the Mackie and Meares model, which assumes ion diffusion in water-swollen polymers is affected by a tortuosity factor, and a model developed by Manning to account for electrostatic effects. Agreement between experimental and predicted salt diffusion coefficients was good with no adjustable parameters. Calculated salt partition and diffusion coefficients were combined within the framework of the solution-diffusion model to predict salt permeability coefficients. Agreement between model and experimental data was remarkably good. Additionally, a simplified version of the model was used to elucidate connections between membrane structure (e.g., fixed charge group concentration) and salt transport properties.

  6. Waste separation and pretreatment using crystalline silicotitanate ion exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadros, M.E.; Miller, J.E.; Anthony, R.G.

    1997-10-01

    A new class of inorganic ion exchangers called crystalline silicotitanates (CSTs) has been developed jointly by Sandia National Laboratories and Texas A&M University to selectively remove Cs and other radionuclides from a wide spectrum of radioactive defense wastes. The CST exhibits high selectivity and affinity for Cs and Sr under a wide range of conditions. Tests show it can remove part-per-million concentrations of Cs{sup +} from highly alkaline, high-sodium simulated radioactive waste solutions modeled after those at Hanford, Oak Ridge, and Savannah River. The materials exhibit ion exchange properties based on ionic size selectivity. Specifically, crystalline lattice spacing is controlledmore » to be highly selective for Cs ions even in waste streams containing very high (5 to 10 M) concentrations of sodium. The CST technology is being demonstrated with actual waste at several DOE facilities. The use of inorganic ion exchangers. The inorganics are more resistant to chemical, thermal, and radiation degradation. Their high selectivities result in more efficient operations offering the possibility of a simple single-pass operation. In contrast, regenerable organic ion exchangers require additional processing equipment to handle the regeneration liquids and the eluant with the dissolved Cs.« less

  7. DNAPL Dissolution in Bedrock Fractures And Fracture Networks

    DTIC Science & Technology

    2011-06-01

    were filtered through a 0.2 micron filter and then analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). An additional set of sorption...analyzed via ion chromatography ( Dionex DX-120, Sunnyvale, CA). The effluent pH was monitored periodically with pH test strips. Aqueous DHC...liquid EDTA ethylenediaminetetraacetic acid GC gas chromatograph HPLC high-performance liquid chromatography ISCO in situ chemical oxidation

  8. Contact ion pair formation between hard acids and soft bases in aqueous solutions observed with 2DIR spectroscopy.

    PubMed

    Sun, Zheng; Zhang, Wenkai; Ji, Minbiao; Hartsock, Robert; Gaffney, Kelly J

    2013-12-12

    The interaction of charged species in aqueous solution has important implications for chemical, biological, and environmental processes. We have used 2DIR spectroscopy to study the equilibrium dynamics of thiocyanate chemical exchange between free ion (NCS(-)) and contact ion pair configurations (MNCS(+)), where M(2+) = Mg(2+) or Ca(2+). Detailed studies of the influence of anion concentration and anion speciation show that the chemical exchange observed with the 2DIR measurements results from NCS(-) exchanging with other anion species in the first solvation shell surrounding Mg(2+) or Ca(2+). The presence of chemical exchange in the 2DIR spectra provides an indirect, but robust, determinant of contact ion pair formation. We observe preferential contact ion pair formation between soft Lewis base anions and hard Lewis acid cations. This observation cannot be easily reconciled with Pearson's acid-base concept or Collins' Law of Matching Water Affinities. The anions that form contact ion pairs also correspond to the ions with an affinity for water and protein surfaces, so similar physical and chemical properties may control these distinct phenomena.

  9. Study of Some Mineral Exchangers for Use in Water at High Temperature; ETUDE DE QUELQUES ECHANGEURS MINERAUX UTILISABLES DANS L'EAU A HAUTE TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hure, J.; Platzer, R.; Bittel, R.

    1959-10-31

    The study of the use of ion exchangers at high temperatures was made with a view to the purification of water in reactors. Natural ion exchangers with mineral structures (clay of the montmorillonite type), natural mineral compounds so treated as to give them the properties of ion exchangers (activated graphite), and synthetic mineral compounds (zirconium phosphates and hydroxides and thorium hydroxide) were investigated. The preparation of the minerals is described, and the results obtained with them are discussed in detail. (J.S.R.)

  10. Ion temperature profiles in front of a negative planar electrode studied by a one-dimensional two-fluid model

    NASA Astrophysics Data System (ADS)

    Gyergyek, T.; Kovačič, J.

    2016-06-01

    Plasma-wall transition is studied by a one-dimensional steady state two-fluid model. Continuity and momentum exchange equations are used for the electrons, while the continuity, momentum exchange, and energy transport equation are used for the ions. Electrons are assumed to be isothermal. The closure of ion equations is made by the assumption that the heat flux is zero. The model equations are solved for potential, ion and electron density, and velocity and ion temperature as independent variables. The model includes coulomb collisions between ions and electrons and charge exchange collisions between ions and neutral atoms of the same species and same mass. The neutral atoms are assumed to be essentially at rest. The model is solved for finite ratio ɛ = /λ D L between the Debye length and λD and ionization length L in the pre-sheath and in the sheath at the same time. Charge exchange collisions heat the ions in the sheath and the pre-sheath. Even a small increase of the frequency of charge exchange collisions causes a substantial increase of ion temperature. Coulomb collisions have negligible effect on ion temperature in the pre-sheath, while in the sheath they cause a small cooling of ions. The increase of ɛ causes the increase of ion temperature. From the ion density and temperature profiles, the polytropic function κ is calculated according to its definition given by Kuhn et al. [Phys. Plasmas 13, 013503 (2006)]. The obtained profiles of κ indicate that the ion flow is isothermal only in a relatively narrow region in the pre-sheath, while close to the sheath edge and in the sheath it is closer to adiabatic. The ion sound velocity is space dependent and exhibits a maximum. This maximum indicates the location of the sheath edge only in the limit ɛ → 0 .

  11. Ion exchange phenomena

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bourg, I.C.; Sposito, G.

    Ion exchange phenomena involve the population of readily exchangeable ions, the subset of adsorbed solutes that balance the intrinsic surface charge and can be readily replaced by major background electrolyte ions (Sposito, 2008). These phenomena have occupied a central place in soil chemistry research since Way (1850) first showed that potassium uptake by soils resulted in the release of an equal quantity of moles of charge of calcium and magnesium. Ion exchange phenomena are now routinely modeled in studies of soil formation (White et al., 2005), soil reclamation (Kopittke et al., 2006), soil fertilitization (Agbenin and Yakubu, 2006), colloidal dispersion/flocculationmore » (Charlet and Tournassat, 2005), the mechanics of argillaceous media (Gajo and Loret, 2007), aquitard pore water chemistry (Tournassat et al., 2008), and groundwater (Timms and Hendry, 2007; McNab et al., 2009) and contaminant hydrology (Chatterjee et al., 2008; van Oploo et al., 2008; Serrano et al., 2009).« less

  12. Semi-aerobic stabilized landfill leachate treatment by ion exchange resin: isotherm and kinetic study

    NASA Astrophysics Data System (ADS)

    Zamri, Mohd Faiz Muaz Ahmad; Kamaruddin, Mohamad Anuar; Yusoff, Mohd Suffian; Aziz, Hamidi Abdul; Foo, Keng Yuen

    2017-05-01

    This study was carried out to investigate the treatability of ion exchange resin (Indion MB 6 SR) for the removal of chromium (VI), aluminium (III), zinc (II), copper (II), iron (II), and phosphate (PO4)3-, chemical oxygen demand (COD), ammonia nitrogen (NH3-N) and colour from semi-aerobic stabilized leachate by batch test. A range of ion exchange resin dosage was tested towards the removal efficiency of leachate parameters. It was observed that equilibrium data were best represented by the Langmuir model for metal ions and Freundlich was ideally fit for COD, NH3-N and colour. Intra particle diffusion model, pseudo first-order and pseudo second-order isotherm models were found ideally fit with correlation of the experimental data. The findings revealed that the models could describe the ion exchange kinetic behaviour efficiently, which further suggests comprehensive outlook for the future research in this field.

  13. Atomic sites and stability of Cs+ captured within zeolitic nanocavities

    PubMed Central

    Yoshida, Kaname; Toyoura, Kazuaki; Matsunaga, Katsuyuki; Nakahira, Atsushi; Kurata, Hiroki; Ikuhara, Yumi H.; Sasaki, Yukichi

    2013-01-01

    Zeolites have potential application as ion-exchangers, catalysts and molecular sieves. Zeolites are once again drawing attention in Japan as stable adsorbents and solidification materials of fission products, such as 137Cs+ from damaged nuclear-power plants. Although there is a long history of scientific studies on the crystal structures and ion-exchange properties of zeolites for practical application, there are still open questions, at the atomic-level, on the physical and chemical origins of selective ion-exchange abilities of different cations and detailed atomic structures of exchanged cations inside the nanoscale cavities of zeolites. Here, the precise locations of Cs+ ions captured within A-type zeolite were analyzed using high-resolution electron microscopy. Together with theoretical calculations, the stable positions of absorbed Cs+ ions in the nanocavities are identified, and the bonding environment within the zeolitic framework is revealed to be a key factor that influences the locations of absorbed cations. PMID:23949184

  14. Method of uranium reclamation from aqueous systems by reactive ion exchange. [US DOE patent application; anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands

    DOEpatents

    Maya, L.

    1981-11-05

    A reactive ion exchange method for separation and recovery of values of uranium, neptunium, plutonium, or americium from substantially neutral aqueous systems of said metals comprises contacting said system with an effective amount of a basic anion exchange resin of copolymerized divinyl-benzene and styrene having quarternary ammonium groups and bicarbonate ligands to achieve nearly 100% sorption of said actinyl ion onto said resin and an aqueous system practically free of said actinyl ions. The method is operational over an extensive range of concentrations from about 10/sup -6/ M to 1.0 M actinyl ion and a pH range of about 4 to 7. The method has particulr application to treatment of waste streams from Purex-type nuclear fuel reprocessing facilities and hydrometallurgical processes involving U, Np, P, or Am.

  15. Fe(+) chemical ionization of peptides.

    PubMed

    Speir, J P; Gorman, G S; Amster, I J

    1993-02-01

    Laser-desorbed peptide neutral molecules were allowed to react with Fe(+) in a Fourier transform mass spectrometer, using the technique of laser desorption/chemical ionization. The Fe(+) ions are formed by laser ablation of a steel target, as well as by dissociative charge-exchange ionization of ferrocene with Ne(+). Prior to reaction with laser-desorbed peptide molecules, Fe(+) ions undergo 20-100 thermalizin collisions with xenon to reduce the population of excited-state metal ion species. The Fe(+) ions that have not experienced thermalizing collisions undergo charge exchange with peptide molecules. Iron ions that undergo thermalizing collisions before they are allowed to react with peptides are found to undergo charge exchange and to form adduct species [M + Fe(+)] and fragment ions that result from the loss of small, stable molecules, such as H2O, CO, and CO2, from the metal ion-peptide complex.

  16. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Svoboda, Martin; Lísal, Martin

    2018-06-01

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  17. Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses

    NASA Astrophysics Data System (ADS)

    Shaharyar, Yaqoot

    The dissolution of fluoride-containing bioactive glasses critically affects their biomedical applications. Most commercial fluoride-releasing bioactive glasses have been designed in the soda-lime-silica system. However, their relatively slow chemical dissolution and the adverse effect of fluoride on their bioactivity are stimulating the study of novel biodegradable materials with higher bioactivity, such as biodegradable phosphate-based bioactive glasses, which can be a viable alternative for applications where a fast release of active ions is sought. In order to design new biomaterials with controlled degradability and high bioactivity, it is essential to understand the connection between chemical composition, molecular structure, and solubility in physiological fluids.Accordingly, in this work we have combined the strengths of various experimental techniques with Molecular Dynamics (MD) simulations, to elucidate the impact of fluoride ions on the structure and chemical dissolution of bioactive phosphate glasses in the system: 10Na2O - (45-x) CaO - 45P2O5 - xCaF2, where x varies between 0 -- 10 mol.%. NMR and MD data reveal that the medium-range atomic-scale structure of thse glasses is dominated by Q2 phosphate units followed by Q1 units, and the MD simulations further show that fluoride tends to associate with network modifier cations to form alkali/alkaline-earth rich ionic aggregates. On a macroscopic scale, we find that incorporating fluoride in phosphate glasses does not affect the rate of apatite formation on the glass surface in simulated body fluid (SBF). However, fluoride has a marked favorable impact on the glass dissolution in deionized water. Similarly, fluoride incorporation in the glasses results in significant weight gain due to adsorption of water (in the form of OH ions). These macroscopic trends are discussed on the basis of the F effect on the atomistic structure of the glasses, such as the F-induced phosphate network re-polymerization, in a first attempt to establish composition-structure-property relationships for these biomaterials.

  18. Concentrated aqueous sodium chloride solution in clays at thermodynamic conditions of hydraulic fracturing: Insight from molecular dynamics simulations.

    PubMed

    Svoboda, Martin; Lísal, Martin

    2018-06-14

    To address a high salinity of flow-back water during hydraulic fracturing, we use molecular dynamics (MD) simulations and study the thermodynamics, structure, and diffusion of concentrated aqueous salt solution in clay nanopores. The concentrated solution results from the dissolution of a cubic NaCl nanocrystal, immersed in an aqueous NaCl solution of varying salt concentration and confined in clay pores of a width comparable to the crystal size. The size of the nanocrystal equals to about 18 Å which is above a critical nucleus size. We consider a typical shale gas reservoir condition of 365 K and 275 bar, and we represent the clay pores as pyrophyllite and Na-montmorillonite (Na-MMT) slits. We employ the Extended Simple Point Charge (SPC/E) model for water, Joung-Cheatham model for ions, and CLAYFF for the slit walls. We impose the pressure in the normal direction and the resulting slit width varies from about 20 to 25 Å when the salt concentration in the surrounding solution increased from zero to an oversaturated value. By varying the salt concentration, we observe two scenarios. First, the crystal dissolves and its dissolution time increases with increasing salt concentration. We describe the dissolution process in terms of the number of ions in the crystal, and the crystal size and shape. Second, when the salt concentration reaches a system solubility limit, the crystal grows and attains a new equilibrium size; the crystal comes into equilibrium with the surrounding saturated solution. After crystal dissolution, we carry out canonical MD simulations for the concentrated solution. We evaluate the hydration energy, density profiles, orientation distributions, hydrogen-bond network, radial distribution functions, and in-plane diffusion of water and ions to provide insight into the microscopic behaviour of the concentrated aqueous sodium chloride solution in interlayer galleries of the slightly hydrophobic pyrophyllite and hydrophilic Na-MMT pores.

  19. Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.

    PubMed

    Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H

    2017-04-15

    Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Cooling field and temperature dependent exchange bias in Gd substituted YFe0.5Cr0.5O3

    NASA Astrophysics Data System (ADS)

    Singh, Karan; Mukherjee, K.

    2018-04-01

    We report the results of our investigation of cooling field and temperature dependence of exchange bias on Gd substituted mixed metal oxide YFe0.5Cr0.5O3. A negative exchange bias is observed in the Gd-substituted compounds, in contrast to the positive exchange bias in parent compound, YFe0.5Cr0.5O3 [1]. With the increase in Gd concentration it is noted that the exchange bias decreases. It was noted that the paramagnetic contribution from Gd ions plays the leading role in comparison to the antiferromagnetic type correlations among spins as is observed for the parent compound. Due to magnetic rare earth ion, additional exchange interaction of the form Gd-O-Fe/Cr dominates the magnetic interaction arising due to the transition metal ions, resulting in the reduction in exchange bias value.

  1. The effect of ion-exchange purification on the determination of plutonium at the New Brunswick Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, W.G.; Spaletto, M.I.; Lewis, K.

    The method of plutonium (Pu) determination at the Brunswick Laboratory (NBL) consists of a combination of ion-exchange purification followed by controlled-potential coulometric analysis (IE/CPC). The present report's purpose is to quantify any detectable Pu loss occurring in the ion-exchange (IE) purification step which would cause a negative bias in the NBL method for Pu analysis. The magnitude of any such loss would be contained within the reproducibility (0.05%) of the IE/CPC method which utilizes a state-of-the-art autocoulometer developed at NBL. When the NBL IE/CPC method is used for Pu analysis, any loss in ion-exchange purification (<0.05%) is confounded with themore » repeatability of the ion-exchange and the precision of the CPC analysis technique (<0.05%). Consequently, to detect a bias in the IE/CPC method due to the IE alone using the IE/CPC method itself requires that many randomized analyses on a single material be performed over time and that statistical analysis of the data be performed. The initial approach described in this report to quantify any IE loss was an independent method, Isotope Dilution Mass Spectrometry; however, the number of analyses performed was insufficient to assign a statistically significant value to the IE loss (<0.02% of 10 mg samples of Pu). The second method used for quantifying any IE loss of Pu was multiple ion exchanges of the same Pu aliquant; the small number of analyses possible per individual IE together with the column-to-column variability over multiple ion exchanges prevented statistical detection of any loss of <0.05%. 12 refs.« less

  2. Dissolution behaviour of ferric pyrophosphate and its mixtures with soluble pyrophosphates: Potential strategy for increasing iron bioavailability.

    PubMed

    Tian, Tian; Blanco, Elena; Smoukov, Stoyan K; Velev, Orlin D; Velikov, Krassimir P

    2016-10-01

    Ferric pyrophosphate (FePP) is a widely used iron source in food fortification and in nutritional supplements, due to its white colour, that is very uncommon for insoluble Fe salts. Although its dissolution is an important determinant of Fe adsorption in human body, the solubility characteristics of FePP are complex and not well understood. This report is a study on the solubility of FePP as a function of pH and excess of pyrophosphate ions. FePP powder is sparingly soluble in the pH range of 3-6 but slightly soluble at pH<2 and pH>8. In the presence of pyrophosphate ions the solubility of FePP strongly increases at pH 5-8.5 due to formation a soluble complex between Fe(III) and pyrophosphate ions, which leads to an 8-10-fold increase in the total ionic iron concentration. This finding is beneficial for enhancing iron bioavailability, which important for the design of fortified food, beverages, and nutraceutical products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Improving Cellulose Dissolution in Ionic Liquids by Tuning the Size of the Ions: Impact of the Length of the Alkyl Chains in Tetraalkylammonium Carboxylate.

    PubMed

    Meng, Xiangqian; Devemy, Julien; Verney, Vincent; Gautier, Arnaud; Husson, Pascale; Andanson, Jean-Michel

    2017-04-22

    Twenty ionic liquids based on tetraalkylammonium cations and carboxylate anions have been synthesized, characterized, and tested for cellulose dissolution. The amount of cellulose dissolved in these ionic liquids depends strongly on the size of the ions: from 0 to 22 wt % cellulose can be dissolved at 90 °C. The best ionic liquids are less viscous and ammonium carboxylate based ionic liquids can dissolve as much as imidazolium-based ones. The viscosity of an ionic liquid can be decreased by the addition of DMSO as a cosolvent. After the addition of cosolvent, similar amounts of cellulose per ions are reached for most ionic liquids. As observed by rheology, ionic liquids with the longest alkyl chains form a gel when a high amount of cellulose is dissolved; this drastically limits their potential. Molecular simulations and IR spectroscopy have also been used with the aim of understanding how molecular interactions differ between efficient and inefficient ionic liquids. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Self-regenerating column chromatography

    DOEpatents

    Park, Woo K.

    1995-05-30

    The present invention provides a process for treating both cations and anions by using a self-regenerating, multi-ionic exchange resin column system which requires no separate regeneration steps. The process involves alternating ion-exchange chromatography for cations and anions in a multi-ionic exchange column packed with a mixture of cation and anion exchange resins. The multi-ionic mixed-charge resin column works as a multi-function column, capable of independently processing either cationic or anionic exchange, or simultaneously processing both cationic and anionic exchanges. The major advantage offered by the alternating multi-function ion exchange process is the self-regeneration of the resins.

  5. Ion Exchange Method - Diffusion Barrier Investigations

    NASA Astrophysics Data System (ADS)

    Pielak, G.; Szustakowski, M.; Kiezun, A.

    1990-01-01

    Ion exchange method is used to GRIN-rod lenses manufacturing. In this process the ion exchange occurs between bulk glass (rod) and a molten salt. It was find that diffusion barrier exists on a border of glass surface and molten salt. The investigations of this barrier show that it value varies with ion exchange time and process temperature. It was find that in the case when thalium glass rod was treated in KNO3, bath, the minimum of the potential after 24 h was in temperature of 407°C, after 48 h in 422°C, after 72 h in 438°C and so on. So there are the possibility to keep the minimum of diffusion barrier by changing the temperature of the process and then the effectiveness of ion exchange process is the most effective. The time needed to obtain suitable refractive index distribution in a process when temperature was linearly changed from 400°C to 460°C was shorter of about 30% compare with the process in which temperature was constant and equal 450°C.

  6. A practical method for measuring the ion exchange capacity decrease of hydroxide exchange membranes during intrinsic degradation

    NASA Astrophysics Data System (ADS)

    Kreuer, Klaus-Dieter; Jannasch, Patric

    2018-01-01

    In this work we present a practical thermogravimetric method for quantifying the IEC (ion exchange capacity) decrease of hydroxide exchange membranes (HEMs) during intrinsic degradation mainly occurring through nucleophilic attack of the anion exchanging group by hydroxide ions. The method involves measuring weight changes under controlled temperature and relative humidity. These conditions are close to these in a fuel cell, i.e. the measured degradation rate includes all effects originating from the polymeric structure, the consumption of hydroxide ions and the release of water. In particular, this approach involves no added solvents or base, thereby avoiding inaccuracies that may arise in other methods due to the presence of solvents (other than water) or co-ions (such as Na+ or K+). We demonstrate the method by characterizing the decomposition of membranes consisting of poly(2,6-dimethyl-1,4-phenylene oxide) functionalized with trimethyl-pentyl-ammonium side chains. The decomposition rate is found to depend on temperature, relative humidity RH (controlling the hydration number λ) and the total water content (controlled by the actual IEC and RH).

  7. Acceleration of chemical weathering related to intensive agriculture: evidence from groundwater dating

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Marçais, Jean; de Dreuzy, Jean-Raynald; Labasque, Thierry; Abbott, Ben; Vergnaud, Virginie; Walter, Christian; Viville, Daniel; Chabaux, François; Pinay, Gilles

    2017-04-01

    Agricultural pollution is a matter of political and scientific concern throughout the world. Intensive agriculture can cause nutrient contamination of groundwater and surface water. Nutrient pollution causes eutrophication in freshwater and estuarine ecosystems. A secondary effect of agricultural intensification is river acidification. Oxidation of chemical fertilizers such as ammonium (NH4+) to nitrate (NO3-) produces H+ ions that cause leaching of cations from soil and deeper material to maintain charge balance. Monitoring of various rivers in Brittany (western France) revealed that agriculture intensification has led to increased cation export starting in the 1980s. From the cation ratios, we deduced that cation increase comes approximately equally from dissolution of carbonate added to soil (liming practices) and silicate dissolution. Cation export represented about 30% of the soil cation exchange potential. If compensated by liming, it may constitute a non-negligible source to atmospheric CO2 (Aquilina et al., 2012). We further investigated the potential for silicate dissolution through the use of groundwater dating in various sites of Brittany. Coupling chemical analyses to groundwater ages in a large range of aquifers and a large range of depths (down to 110m) allowed us to reconstruct a chronicle for the last 50 yrs of the cation concentrations of groundwater. It clearly shows a contemporaneous increase in sodium and nitrate and a decrease in calcium, with the most dramatic changes occurring during the 70s and 80s. Using groundwater dating, we were also able to determine a silica production geochronometer. A tight and linear relationship between silica concentration and groundwater age (Figure) was observed and allowed a production rate in groundwater to be determined. Except for short residence-times (Kerrien), the silica production rate for different granitic catchments was consistent, ranging from 0.3 to 0.4 mg.L-1.yr-1. To assess the role of anthropogenic activity in silica production rate, we compared production rates from Brittany with catchments in the Vosges Mountains, a relatively pristine area. Dissolution rates were much higher in the Brittany catchments, indicating the effect of human activities on chemical weathering and cation export at the catchment scale. Aquilina L. et al., 2012 - Long-term effects of high nitrogen loads on cation and carbon riverine export in agricultural catchments. Env. Sci & Technology 46-17, 9447-9455..

  8. Transport of Zn(OH4)(2-) Ions Across a Polyolefin Microporous Membrane

    DTIC Science & Technology

    1992-12-22

    studied using polarography and conductometry . Soluble Nafion as an ion exchange modifying agent was applied to the membrane by several techniques. The...polypropylene membranes was studied using polarography and conductometry . Soluble Nafion as an ion exchange modifying agent was applied to the membrane by

  9. Cesium and strontium ion exchange on the framework titanium silicate M2Ti2O3SiO4.nH2O (M = H, Na).

    PubMed

    Solbrå, S; Allison, N; Waite, S; Mikhalovsky, S V; Bortun, A I; Bortun, L N; Clearfield, A

    2001-02-01

    The ion exchange properties of the titanium silicate, M2Ti2O3SiO4.nH2O (M = H, Na), toward stable and radioactive 137Cs+ and 89Sr2+, have been examined. By studying the cesium and strontium uptake in the presence of NaNO3, CaCl2, NaOH, and HNO3 (in the range of 0.01-6 M) the sodium titanium silicate was found to be an efficient Cs+ ion exchanger in acid, neutral, and alkaline media and an efficient Sr2+ ion exchanger in neutral and alkaline media, which makes it promising for treatment of contaminated environmental media and biological systems.

  10. Corrosion of steel drums containing cemented ion-exchange resins as intermediate level nuclear waste

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Farina, S. B.; Schulz, F. M.

    2013-07-01

    Exhausted ion-exchange resins used in nuclear reactors are immobilized by cementation before being stored. They are contained in steel drums that may undergo internal corrosion depending on the presence of certain contaminants. The objective of this work is to evaluate the corrosion susceptibility of steel drums in contact with cemented ion-exchange resins with different aggressive species. The corrosion potential and the corrosion rate of the steel, and the electrical resistivity of the matrix were monitored for 900 days. Results show that the cementation of ion-exchange resins seems not to pose special risks regarding the corrosion of the steel drums. The corrosion rate of the steel in contact with cemented ion-exchange resins in the absence of contaminants or in the presence of 2.3 wt.% sulphate content remains low (less than 0.1 μm/year) during the whole period of the study (900 days). The presence of chloride ions increases the corrosion rate of the steel at the beginning of the exposure but, after 1 year, the corrosion rate drops abruptly reaching a value close to 0.1 μm/year. This is probably due to the lack of water to sustain the corrosion process. When applying the results obtained in the present work to estimate the corrosion depth of the steel drums containing the cemented radioactive waste after a period of 300 years, it is found that in the most unfavourable case (high chloride contamination), the corrosion penetration will be considerably lower than the thickness of the wall of the steel drums. Cementation of ion-exchange resins does not seem to pose special risks regarding the corrosion of the steel drums that contained them; even in the case the matrix is highly contaminated with chloride ions.

  11. Truly incomplete and complex exchanges in prematurely condensed chromosomes of human fibroblasts exposed in vitro to energetic heavy ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, Marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG1522) were irradiated with gamma rays, 490 MeV/nucleon silicon ions, or iron ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 degrees C for 24 h after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. To verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole-chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after irradiation with the heavy ions of high LET, and consequently the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/microm, the highest LET included in the present study. For samples exposed to 200 MeV/nucleon iron ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique, which allows identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy iron ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges; these ratios were higher than those obtained after exposure to 6 Gy gamma rays. After 0.7 Gy of iron ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single iron-ion track.

  12. Artificial Neural Network Modeling of Pt/C Cathode Degradation in PEM Fuel Cells

    NASA Astrophysics Data System (ADS)

    Maleki, Erfan; Maleki, Nasim

    2016-08-01

    Use of computational modeling with a few experiments is considered useful to obtain the best possible result for a final product, without performing expensive and time-consuming experiments. Proton exchange membrane fuel cells (PEMFCs) can produce clean electricity, but still require further study. An oxygen reduction reaction (ORR) takes place at the cathode, and carbon-supported platinum (Pt/C) is commonly used as an electrocatalyst. The harsh conditions during PEMFC operation result in Pt/C degradation. Observation of changes in the Pt/C layer under operating conditions provides a tool to study the lifetime of PEMFCs and overcome durability issues. Recently, artificial neural networks (ANNs) have been used to solve, predict, and optimize a wide range of scientific problems. In this study, several rates of change at the cathode were modeled using ANNs. The backpropagation (BP) algorithm was used to train the network, and experimental data were employed for network training and testing. Two different models are constructed in the present study. First, the potential cycles, temperature, and humidity are used as inputs to predict the resulting Pt dissolution rate of the Pt/C at the cathode as the output parameter of the network. Thereafter, the Pt dissolution rate and Pt ion diffusivity are regarded as inputs to obtain values of the Pt particle radius change rate, Pt mass loss rate, and surface area loss rate as outputs. The networks are finely tuned, and the modeling results agree well with experimental data. The modeled responses of the ANNs are acceptable for this application.

  13. LITERATURE REVIEW FOR OXALATE OXIDATION PROCESSES AND PLUTONIUM OXALATE SOLUBILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nash, C.

    2012-02-03

    A literature review of oxalate oxidation processes finds that manganese(II)-catalyzed nitric acid oxidation of oxalate in precipitate filtrate is a viable and well-documented process. The process has been operated on the large scale at Savannah River in the past, including oxidation of 20 tons of oxalic acid in F-Canyon. Research data under a variety of conditions show the process to be robust. This process is recommended for oxalate destruction in H-Canyon in the upcoming program to produce feed for the MOX facility. Prevention of plutonium oxalate precipitation in filtrate can be achieved by concentrated nitric acid/ferric nitrate sequestration of oxalate.more » Organic complexants do not appear practical to sequester plutonium. Testing is proposed to confirm the literature and calculation findings of this review at projected operating conditions for the upcoming campaign. H Canyon plans to commence conversion of plutonium metal to low-fired plutonium oxide in 2012 for eventual use in the Mixed Oxide Fuel (MOX) Facility. The flowsheet includes sequential operations of metal dissolution, ion exchange, elution, oxalate precipitation, filtration, and calcination. All processes beyond dissolution will occur in HB-Line. The filtration step produces an aqueous filtrate that may have as much as 4 M nitric acid and 0.15 M oxalate. The oxalate needs to be removed from the stream to prevent possible downstream precipitation of residual plutonium when the solution is processed in H Canyon. In addition, sending the oxalate to the waste tank farm is undesirable. This report addresses the processing options for destroying the oxalate in existing H Canyon equipment.« less

  14. UREA/ammonium ion removal system for the orbiting frog otolith experiment. [ion exchange resins for water treatment during space missions

    NASA Technical Reports Server (NTRS)

    Schulz, J. R.; Anselmi, R. T.

    1976-01-01

    The feasibility of using free urease enzyme and ANGC-101 ion exchange resin to remove urea and ammonium ion for space system waste water applications was studied. Specifically examined is the prevention of urea and ammonia toxicity in a 30-day Orbiting Frog Otolith (OFO) flight experiment. It is shown that free urease enzyme used in conjunction with ANGC-101 ion-exchange resin and pH control can control urea and amonium ion concentration in unbuffered recirculating water. In addition, the resin does not adversely effect the bullfrogs by lowering the concentration of cations below critical minimum levels. Further investigations on bioburden control, frog waste excretion on an OFO diet, a trade-off analysis of methods of automating the urea/ammonium ion removal system and fabrication and test of a semiautomated breadboard were recommended as continuing efforts. Photographs of test equipment and test animals are shown.

  15. Solvent screening for a hard-to-dissolve molecular crystal.

    PubMed

    Maiti, A; Pagoria, P F; Gash, A E; Han, T Y; Orme, C A; Gee, R H; Fried, L E

    2008-09-01

    Materials with a high-degree of inter- and intra-molecular hydrogen bonding generally have limited solubility in conventional organic solvents. This presents a problem for the dissolution, manipulation and purification of these materials. Using a state-of-the-art density-functional-theory based quantum chemical solvation model we systematically evaluated solvents for a known hydrogen-bonded molecular crystal. This, coupled with direct solubility measurements, uncovered a class of ionic liquids involving fluoride anions that possess more than two orders of magnitude higher solvation power as compared with the best conventional solvents. The crystal structure of one such ionic liquid, determined by X-ray diffraction spectroscopy, indicates that F- ions are stabilized through H-bonded chains with water. The presence of coordinating water in such ionic liquids seems to facilitate the dissolution process by keeping the chemical activity of the F- ions in check.

  16. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  17. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE PAGES

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan; ...

    2017-02-16

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  18. Stability of nanosized oxides in ferrite under extremely high dose self ion irradiations

    DOE PAGES

    Aydogan, E.; Almirall, N.; Odette, G. R.; ...

    2017-01-10

    We produced a nanostructured ferritic alloy (NFA), 14YWT, in the form of thin walled tubing. The stability of the nano-oxides (NOs) was determined under 3.5 MeV Fe +2 irradiations up to a dose of ~585 dpa at 450 °C. Transmission electron microscopy (TEM) and atom probe tomography (APT) show that severe ion irradiation results in a ~25% reduction in size between the unirradiated and irradiated case at 270 dpa while no further reduction within the experimental error was seen at higher doses. Conversely, number density increased by ~30% after irradiation. Moreover, this ‘inverse coarsening’ can be rationalized by the competitionmore » between radiation driven ballistic dissolution and diffusional NO reformation. There were no significant changes in the composition of the matrix or NOs observed after irradiation. Modeling the experimental results also indicated a dissolution of the particles.« less

  19. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries.

    PubMed

    Ma, Tianyuan; Xu, Gui-Liang; Li, Yan; Wang, Li; He, Xiangming; Zheng, Jianming; Liu, Jun; Engelhard, Mark H; Zapol, Peter; Curtiss, Larry A; Jorne, Jacob; Amine, Khalil; Chen, Zonghai

    2017-03-02

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated from the electrochemical oxidation are energetically unstable and readily undergo a deprotonation reaction that generates protons and promotes the dissolution of Al 3+ from the aluminum foil. This new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.

  20. Dissolution and precipitation behaviors of silicon-containing ceramic coating on Mg-Zn-Ca alloy in simulated body fluid.

    PubMed

    Pan, Yaokun; Chen, Chuanzhong; Wang, Diangang; Huang, Danlan

    2014-10-01

    We prepared Si-containing and Si-free coatings on Mg-1.74Zn-0.55Ca alloy by micro-arc oxidation. The dissolution and precipitation behaviors of Si-containing coating in simulated body fluid (SBF) were discussed. Corrosion products were characterized by scanning electron microscope (SEM), X-ray diffractometer (XRD), fourier transform infrared spectrometer (FT-IR) and X-ray photoelectron spectrometer (XPS). Electrochemical workstation, inductively coupled plasma atomic emission spectrometer (ICP-AES), flame atomic absorption spectrophotometer (AAS) and pH meter were employed to detect variations of electrochemical parameter and ions concentration respectively. Results indicate that the fast formation of calcium phosphates is closely related to the SiOx(n-) groups, which induce the heterogeneous nucleation of amorphous hydroxyapatite (HA) by sorption of calcium and phosphate ions. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Revisiting the Corrosion of the Aluminum Current Collector in Lithium-Ion Batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Tianyuan; Xu, Gui -Liang; Li, Yan

    The corrosion of aluminum current collectors and the oxidation of solvents at a relatively high potential have been widely investigated with an aim to stabilize the electrochemical performance of lithium-ion batteries using such components. The corrosion behavior of aluminum current collectors was revisited using a home-build high-precision electrochemical measurement system, and the impact of electrolyte components and the surface protection layer on aluminum foil was systematically studied. The electrochemical results showed that the corrosion of aluminum foil was triggered by the electrochemical oxidation of solvent molecules, like ethylene carbonate, at a relative high potential. The organic radical cations generated frommore » the electrochemical oxidation are energetically unstable, and readily undergo a deprotonation reaction that generates protons and promote the dissolution of Al 3+ from the aluminum foil. Finally, this new reaction mechanism can also shed light on the dissolution of transitional metal at high potentials.« less

  2. Application of oxybutynin selective sensors for monitoring the dissolution profile and assay of pharmaceutical dosage forms.

    PubMed

    El Hamshary, Marwa S; Salem, Omar H; El Nashar, Rasha M

    2010-01-01

    Two ion-selective sensors of the plastic membrane type were prepared for the determination of oxybutynin hydrochloride (OxCl). They depend on the incorporation of the ion-associates with phosphotungestic acid or phosphomolybdic acid in a PVC matrix. A comparative study is made between their performance characteristics in batch and FIA conditions. The sensors have nearly the same usable concentration, temperature and pH range. They have a wide range of selectivity and can be applied for the determination of the relevant drug with nearly the same precision and accuracy in vitro. Dissolution testing was applied using the sensors; this offers a simple, rapid, cheap way out of sophisticated and high cost instruments used in the pharmacopeial method using HPLC. The investigated drug was determined in its pure and pharmaceutical preparations. The results were accurate and precise, as indicated by the recovery values and coefficients of variation.

  3. Role of Disproportionation in the Dissolution of Mn from Lithium Manganate Spinel

    DOE PAGES

    Benedek, Roy

    2017-09-18

    Dissolution of Mn from lithium-manganese spinel has hindered its commercialization as a cathode material in Li-ion batteries. Disproportionation of near-surface Mn(III), in the presence of acid, has been widely thought to result in dissolved divalent Mn. To what extent stray acidic water in the cell (as opposed to the organic electrolyte) acts as the solvent for Mn ions has not been established. Simulations by Leung show that a small displacement of trivalent Mn from its equilibrium site at an LiMn 2O 4 (001)/ ethylene carbonate interface leads to its reduction to Mn(II). In the present work, Thermodynamic Integration is performed,more » based on first-principles molecular dynamics simulations within the Blue-Moon ensemble, for the detachment of Mn(III) ions at the LiMn 2O 4 (001)/water interface. The results show that reduction of Mn(III) to Mn(II) occurs also in the case of an aqueous interface. The simulations were performed for both neutral and acidic water (in the presence of HF), with the coordination number of the dissolving Mn ion with substrate oxygen ions taken as the reaction coordinate. The simulations indicate that an F - ion strongly binds to a surface Mn(III) ion, and weakens its adhesion to the substrate. Owing to this weakening, a surface Mn-F complex traverses regions of phase space at room temperature where disproportionation becomes energetically favorable. Although this disproportionation occurs close to the substrate, where the Mn coordination number is only slightly lowered from its equilibrium value, we argue that the likelihood of reattachment after disproportionation is small (Leung arrived at a similar interpretation in the case of the LiMn 2O 4 (001)/ EC interface). We suggest that the critical role of F - in promoting dissolution is to weaken the Mn binding to the substrate so as to enable disproportionation. The partially detached MnF complex may then undergo additional interaction with the solvent to form, e.g., MnF 2, which would enable transport away from the substrate. In conclusion, the EPR measurements by Shilina et al. which appear to show Mn(III) as the predominant solvated species are discussed.« less

  4. Dynamics of radiocesium exchange and interstratification in anhydrous clay interlayers: Bridging the atom and single crystal scales

    NASA Astrophysics Data System (ADS)

    Lammers, L. N.; Pestana, L. R.; Schaettle, K. B.; Head-Gordon, T.

    2016-12-01

    High structural charge clay minerals govern the transport and retention of radiocesium in soils and clay-rich geologic repositories. Cation exchange capacities in these phases are typically assumed to be limited to fast-exchanging basal and high-affinity edge sites, while ions in anhydrous interlayers, usually K+, are considered non-exchangeable. However, recent high resolution imaging and spectroscopic studies have demonstrated that Cs ions can in fact exchange with interlayer K without the formation of a hydrated intermediate.1,2 These exchange reactions result in sharp exchange fronts wherein K+ ions are completely replaced by Cs+ at the exchange interface, and the rate of exchange varies from layer to layer, resulting in the formation of interstratified structures (i.e., randomly alternating layers of exchanged and pristine interlayers). Currently, this process cannot be explained by any known exchange mechanism, and consequently, no kinetic expressions are available to account for this phenomenon in models of subsurface radiocesium fate and transport. We present a mesoscale model for direct exchange in anhydrous clay interlayers that is based on the kinetics of single ion migration events. Single atom migration kinetics derived from density functional theory (DFT) calculations are used as inputs to kinetic Monte Carlo (kMC) simulations, which capture the collective dynamics of the exchange process over length- and timescales relevant for implementation in reactive transport models. Potential energy surfaces derived from DFT demonstrate that exchange of Cs+ for K+ in anhydrous interlayers lowers the energy barrier to K ion migration by 145 kJ/mol, leading to a positive feedback mechanism that generates atomically sharp exchange fronts. Our work demonstrates the application of "coarse-graining" techniques to develop models for processes with characteristic length- and timescales not accessible by direct atomistic simulation. 1 Okumura T. et al. (2014) Direct observation of cesium at the interlayer region in phlogopite mica. Microscopy 63(1), 65-72. 2 Fuller A. J. et al. (2015) Caesium incorporation and retention in illite interlayers. Appl. Clay Sci. 108, 128-134.

  5. Replica-exchange molecular dynamics simulations of cellulose solvated in water and in the ionic liquid 1-butyl-3-methylimidazolium chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostofian, Barmak; Cheng, Xiaolin; Smith, Jeremy C.

    2014-09-02

    Ionic liquids have become a popular solvent for cellulose pretreatment in biorefineries due to their efficiency in dissolution and their reusability. Understanding the interactions between cations, anions, and cellulose is key to the development of better solvents and the improvement of pretreatment conditions. While previous studies described the interactions between ionic liquids and cellulose fibers, shedding light on the initial stages of the cellulose dissolution process, we study the end state of that process by exploring the structure and dynamics of a single cellulose decamer solvated in 1-butyl-3-methyl-imidazolium chloride (BmimCl) and in water using replica-exchange molecular dynamics. In both solvents,more » global structural features of the cellulose chain are similar. However, analyses of local structural properties show that cellulose explores greater conformational variability in the ionic liquid than in water. For instance, in BmimCl the cellulose intramolecular hydrogen bond O3H'••• O5 is disrupted more often resulting in greater flexibility of the solute. Our results indicate that the cellulose chain is more dynamic in BmimCl than in water, which may play a role in the favorable dissolution of cellulose in the ionic liquid. Here, the calculation of the configurational entropy of the cellulose decamer confirms its higher conformational flexibility in BmimCl than in water at elevated temperatures.« less

  6. Silver Dissolution and Release from Ceramic Water Filters.

    PubMed

    Mittelman, Anjuliee M; Lantagne, Daniele S; Rayner, Justine; Pennell, Kurt D

    2015-07-21

    Application of silver nanoparticles (nAg) or silver nitrate (AgNO3) has been shown to improve the microbiological efficacy of ceramic water filters used for household water treatment. Silver release, however, can lead to undesirable health effects and reduced filter effectiveness over time. The objectives of this study were to evaluate the contribution of nanoparticle detachment, dissolution, and cation exchange to silver elution, and to estimate silver retention under different influent water chemistries. Dissolved silver (Ag(+)) and nAg release from filter disks painted with 0.03 mg/g casein-coated nAg or AgNO3 were measured as a function of pH (5-9), ionic strength (1-50 mM), and cation species (Na(+), Ca(2+), Mg(2+)). Silver elution was controlled by dissolution as Ag(+) and subsequent cation exchange reactions regardless of the applied silver form. Effluent silver levels fell below the drinking water standard (0.1 mg/L) after flushing with 30-42 pore volumes of pH 7, 10 mM NaNO3 at pH 7. When the influent water was at pH 5, contained divalent cations or 50 mM NaNO3, silver concentrations were 5-10 times above the standard. Our findings support regular filter replacement and indicate that saline, hard, or acidic waters should be avoided to minimize effluent silver concentrations and preserve silver treatment integrity.

  7. Rate theory of solvent exchange and kinetics of Li(+) - BF4 (-)/PF6 (-) ion pairs in acetonitrile.

    PubMed

    Dang, Liem X; Chang, Tsun-Mei

    2016-09-07

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li(+) and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li(+) in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li(+)-[BF4] and Li(+)-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li(+). We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li(+)-[BF4] and Li(+)-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  8. Rate theory of solvent exchange and kinetics of Li+ - BF4-/PF6- ion pairs in acetonitrile

    NASA Astrophysics Data System (ADS)

    Dang, Liem X.; Chang, Tsun-Mei

    2016-09-01

    In this paper, we describe our efforts to apply rate theories in studies of solvent exchange around Li+ and the kinetics of ion pairings in lithium-ion batteries (LIBs). We report one of the first computer simulations of the exchange dynamics around solvated Li+ in acetonitrile (ACN), which is a common solvent used in LIBs. We also provide details of the ion-pairing kinetics of Li+-[BF4] and Li+-[PF6] in ACN. Using our polarizable force-field models and employing classical rate theories of chemical reactions, we examine the ACN exchange process between the first and second solvation shells around Li+. We calculate exchange rates using transition state theory and weighted them with the transmission coefficients determined by the reactive flux, Impey, Madden, and McDonald approaches, and Grote-Hynes theory. We found the relaxation times changed from 180 ps to 4600 ps and from 30 ps to 280 ps for Li+-[BF4] and Li+-[PF6] ion pairs, respectively. These results confirm that the solvent response to the kinetics of ion pairing is significant. Our results also show that, in addition to affecting the free energy of solvation into ACN, the anion type also should significantly influence the kinetics of ion pairing. These results will increase our understanding of the thermodynamic and kinetic properties of LIB systems.

  9. Intermolecular electron-transfer mechanisms via quantitative structures and ion-pair equilibria for self-exchange of anionic (dinitrobenzenide) donors.

    PubMed

    Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K

    2005-05-25

    Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.

  10. A NEW TWO-PHASE FLOW AND TRANSPORT MODEL WITH INTERPHASE MASS EXCHANGE

    EPA Science Inventory

    The focus of this numerical investigation is on modelling the emplacement and subsequent removal, through dissolution, of a Denser-than-water Non-Aqueous Phase Liquid (DNAPL) in a saturated groundwater system. pecifically the model must address two flow and transport regimes. irs...

  11. Structural transformation of Si-rich SiNx film on Si via swift heavy ions irradiation

    NASA Astrophysics Data System (ADS)

    Murzalinov, D.; Akilbekov, A.; Dauletbekova, A.; Vlasukova, L.; Makhavikov, M.; Zdorovets, M.

    2018-03-01

    The effects of 200 MeV-Xe+ irradiation with fluencies of (109–1014) cm‑2 on the phase-structural transformation of Si-rich SiNx film deposited on Si substrate by low-pressure chemical vapor deposition have been reported. It has been shown from Raman scattering data that the swift heavy ions irradiation results in the dissolution of amorphous Si nanoclusters in nitride matrix. It has been shown, too, that the swift heavy ion irradiation leads to quenching a visual photoluminescence from nitride films.

  12. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period.

    PubMed

    Carlyle, Harriet F; Tellam, John H; Parker, Karen E

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na(+), K(+), Ca(2+), and Mg(2+) were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in approximately 1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO(3) and pH values. However, by including partial CO(2) degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO(4), HCO(3), and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  13. The use of laboratory-determined ion exchange parameters in the predictive modelling of field-scale major cation migration in groundwater over a 40-year period

    NASA Astrophysics Data System (ADS)

    Carlyle, Harriet F.; Tellam, John H.; Parker, Karen E.

    2004-01-01

    An attempt has been made to estimate quantitatively cation concentration changes as estuary water invades a Triassic Sandstone aquifer in northwest England. Cation exchange capacities and selectivity coefficients for Na +, K +, Ca 2+, and Mg 2+ were measured in the laboratory using standard techniques. Selectivity coefficients were also determined using a method involving optimized back-calculation from flushing experiments, thus permitting better representation of field conditions; in all cases, the Gaines-Thomas/constant cation exchange capacity (CEC) model was found to be a reasonable, though not perfect, first description. The exchange parameters interpreted from the laboratory experiments were used in a one-dimensional reactive transport mixing cell model, and predictions compared with field pumping well data (Cl and hardness spanning a period of around 40 years, and full major ion analyses in ˜1980). The concentration patterns predicted using Gaines-Thomas exchange with calcite equilibrium were similar to the observed patterns, but the concentrations of the divalent ions were significantly overestimated, as were 1980 sulphate concentrations, and 1980 alkalinity concentrations were underestimated. Including representation of sulphate reduction in the estuarine alluvium failed to replicate 1980 HCO 3 and pH values. However, by including partial CO 2 degassing following sulphate reduction, a process for which there is 34S and 18O evidence from a previous study, a good match for SO 4, HCO 3, and pH was attained. Using this modified estuary water and averaged values from the laboratory ion exchange parameter determinations, good predictions for the field cation data were obtained. It is concluded that the Gaines-Thomas/constant exchange capacity model with averaged parameter values can be used successfully in ion exchange predictions in this aquifer at a regional scale and over extended time scales, despite the numerous assumptions inherent in the approach; this has also been found to be the case in the few other published studies of regional ion exchanging flow.

  14. Ion transport in the microporous titanosilicate ETS-10.

    PubMed

    Wei, Ta-Chen; Hillhouse, Hugh W

    2006-07-20

    Impedance spectroscopy was used to investigate ion transport in the microporous crystalline framework titanosilicate ETS-10 in the frequency range from 1 Hz to 10 MHz. These data were compared to measured data from the microporous aluminosilicate zeolite X. Na-ETS-10 was found to have a lower activation energy for ion conduction than that of NaX, 58.5 kJ/mol compared to 66.8 kJ/mol. However, the dc conductivity and ion hopping rate for Na-ETS-10 were also lower than NaX. This was found to be due to the smaller entropy contribution in Na-ETS-10 because of its high cation site occupancy. This was verified by ion exchanging Na(+) with Cu(2+) in both microporous frameworks. This exchange decreases the cation site occupancy and reduces correlation effects. The exchanged Cu-ETS-10 was found to have both lower activation energy and higher ionic conductivity than CuX. Zeolite X has the highest ion conductivity among the zeolites, and thus the data shown here indicate that ETS-10 has more facile transport of higher valence cations which may be important for ion-exchange, environmental remediation of radionucleotides, and nanofabrication.

  15. Influence of oxygen, albumin and pH on copper dissolution in a simulated uterine fluid.

    PubMed

    Bastidas, D M; Cano, E; Mora, E M

    2005-06-01

    The aim of this paper is to study the influence of albumin content, from 5 to 45 g/L, on copper dissolution and compounds composition in a simulated uterine solution. Experiments were performed in atmospheric pressure conditions and with an additional oxygen pressure of 0.2 atmospheres, at 6.3 and 8.0 pH values, and at a temperature of 37 +/- 0.1 degrees C for 1, 3, 7, and 30 days experimentation time. The copper dissolution rate has been determined using absorbance measurements, finding the highest value for pH 8.0, 35 g/L albumin, and with an additional oxygen pressure of 0.2 atmospheres: 674 microg/day for 1 day, and 301 microg/day for 30 days. X-ray photoelectron spectroscopy (XPS) results show copper(II) as the main copper oxidation state at pH 8.0; and copper(I) and metallic copper at pH 6.3. The presence of albumin up to 35 g/L, accelerates copper dissolution. For high albumin content a stabilisation on the copper dissolution takes place. Corrosion product layer morphology is poorly protective, showing paths through which copper ions can release.

  16. Suppressing Manganese Dissolution from Lithium Manganese Oxide Spinel Cathodes with Single-Layer Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaber-Ansari, Laila; Puntambekar, Kanan P.; Kim, Soo

    2015-06-24

    Spinel-structured LiMn 2 O 4 (LMO) is a desirable cathode material for Li-ion batteries due to its low cost, abundance, and high power capability. However, LMO suffers from limited cycle life that is triggered by manganese dissolution into the electrolyte during electrochemical cycling. Here, it is shown that single-layer graphene coatings suppress manganese dissolution, thus enhancing the performance and lifetime of LMO cathodes. Relative to lithium cells with uncoated LMO cathodes, cells with graphene-coated LMO cathodes provide improved capacity retention with enhanced cycling stability. X-ray photoelectron spectroscopy reveals that graphene coatings inhibit manganese depletion from the LMO surface. Additionally, transmissionmore » electron microscopy demonstrates that a stable solid electrolyte interphase is formed on graphene, which screens the LMO from direct contact with the electrolyte. Density functional theory calculations provide two mechanisms for the role of graphene in the suppression of manganese dissolution. First, common defects in single-layer graphene are found to allow the transport of lithium while concurrently acting as barriers for manganese diffusion. Second, graphene can chemically interact with Mn 3+ at the LMO electrode surface, promoting an oxidation state change to Mn 4+ , which suppresses dissolution.« less

  17. Electrochemically Controlled Ion-exchange Property of Carbon Nanotubes/Polypyrrole Nanocomposite in Various Electrolyte Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Daiwon; Zhu, Chengzhou; Fu, Shaofang

    2016-09-15

    The electrochemically controlled ion-exchange properties of multi-wall carbon nanotube (MWNT)/electronically conductive polypyrrole (PPy) polymer composite in the various electrolyte solutions have been investigated. The ion-exchange behavior, rate and capacity of the electrochemically deposited polypyrrole with and without carbon nanotube (CNT) were compared and characterized using cyclic voltammetry (CV), chronoamperometry (CA), electrochemical quartz crystal microbalance (EQCM), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It has been found that the presence of carbon nanotube backbone resulted in improvement in ion-exchange rate, stability of polypyrrole, and higher anion loading capacity per PPy due to higher surface area, electronic conductivity, porous structuremore » of thin film, and thinner film thickness providing shorter diffusion path. Chronoamperometric studies show that electrically switched anion exchange could be completed more than 10 times faster than pure PPy thin film. The anion selectivity of CNT/PPy film is demonstrated using X-ray photoelectron spectroscopy (XPS).« less

  18. Antimicrobial Activity of Silver Ions Released from Zeolites Immobilized on Cellulose Nanofiber Mats.

    PubMed

    Rieger, Katrina A; Cho, Hong Je; Yeung, Hiu Fai; Fan, Wei; Schiffman, Jessica D

    2016-02-10

    In this study, we exploit the high silver ion exchange capability of Linde Type A (LTA) zeolites and present, for the first time, electrospun nanofiber mats decorated with in-house synthesized silver (Ag(+)) ion exchanged zeolites that function as molecular delivery vehicles. LTA-Large zeolites with a particle size of 6.0 μm were grown on the surface of the cellulose nanofiber mats, whereas LTA-Small zeolites (0.2 μm) and three-dimensionally ordered mesoporous-imprinted (LTA-Meso) zeolites (0.5 μm) were attached to the surface of the cellulose nanofiber mats postsynthesis. After the three zeolite/nanofiber mat assemblies were ion-exchanged with Ag(+) ions, their ion release profiles and ability to inactivate Escherichia coli (E. coli) K12 were evaluated as a function of time. LTA-Large zeolites immobilized on the nanofiber mats displayed more than an 11 times greater E. coli K12 inactivation than the Ag-LTA-Large zeolites that were not immobilized on the nanofiber mats. This study demonstrates that by decorating nanometer to micrometer scale Ag(+) ion-exchanged zeolites on the surface of high porosity, hydrophilic cellulose nanofiber mats, we can achieve a tunable release of Ag(+) ions that inactivate bacteria faster and are more practical to use in applications over powder zeolites.

  19. Co2+-exchange mechanism of birnessite and its application for the removal of Pb2+ and As(III).

    PubMed

    Yin, Hui; Liu, Fan; Feng, Xionghan; Liu, Mingming; Tan, Wenfeng; Qiu, Guohong

    2011-11-30

    Co-containing birnessites were obtained by ion exchange at different initial concentrations of Co(2+). Ion exchange of Co(2+) had little effect on birnessite crystal structure and micromorphology, but resulted in an increase in specific surface areas from 19.26 to 33.35 m(2)g(-1), and a decrease in both crystallinity and manganese average oxidation state. It was due to that Mn(IV) in the layer structure was reduced to Mn(III) during the oxidation process of Co(2+) to Co(III). The hydroxyl groups on the surface of Co-containing birnessites gradually decreased with an increase of Co/Mn molar ratio owing to the occupance of Co(III) into vacancies and the location of large amounts of Co(2+/3+) and Mn(2+/3+) above/below the vacant sites. This greatly accounted for the monotonous reduction in Pb(2+) adsorption capacity, from 2538 mmol kg(-1) for the unmodified birnessite to 1500 mmol kg(-1) for the Co(2+) ion-exchanged birnessite with a Co/Mn molar ratio of 0.16. The amount of As(III) oxidized by birnessite was enhanced after ion exchange, but the apparent initial reaction rate was greatly decreased. The present work demonstrates that Co(2+) ion exchange has great influence on the adsorption and oxidation behavior of inorganic toxic metal ions by birnessite in water environments. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  1. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data.

    PubMed

    Hamuro, Yoshitomo; E, Sook Yen

    2018-05-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. Graphical Abstract ᅟ.

  2. Determination of Backbone Amide Hydrogen Exchange Rates of Cytochrome c Using Partially Scrambled Electron Transfer Dissociation Data

    NASA Astrophysics Data System (ADS)

    Hamuro, Yoshitomo; E, Sook Yen

    2018-03-01

    The technological goal of hydrogen/deuterium exchange-mass spectrometry (HDX-MS) is to determine backbone amide hydrogen exchange rates. The most critical challenge to achieve this goal is obtaining the deuterium incorporation in single-amide resolution, and gas-phase fragmentation may provide a universal solution. The gas-phase fragmentation may generate the daughter ions which differ by a single amino acid and the difference in deuterium incorporations in the two analogous ions can yield the deuterium incorporation at the sub-localized site. Following the pioneering works by Jørgensen and Rand, several papers utilized the electron transfer dissociation (ETD) to determine the location of deuterium in single-amide resolution. This paper demonstrates further advancement of the strategy by determining backbone amide hydrogen exchange rates, instead of just determining deuterium incorporation at a single time point, in combination with a wide time window monitoring. A method to evaluate the effects of scrambling and to determine the exchange rates from partially scrambled HDX-ETD-MS data is described. All parent ions for ETD fragmentation were regio-selectively scrambled: The deuterium in some regions of a peptide ion was scrambled while that in the other regions was not scrambled. The method determined 31 backbone amide hydrogen exchange rates of cytochrome c in the non-scrambled regions. Good fragmentation of a parent ion, a low degree of scrambling, and a low number of exchangeable hydrogens in the preceding side chain are the important factors to determine the exchange rate. The exchange rates determined by the HDX-MS are in good agreement with those determined by NMR. [Figure not available: see fulltext.

  3. Estimate of the frequency of true incomplete exchanges in human lymphocytes exposed to 1 GeV/u Fe ions in vitro

    NASA Technical Reports Server (NTRS)

    Wu, H.; George, K.; Yang, T. C.

    1999-01-01

    PURPOSE: To study the frequency of true incomplete exchanges induced by high-LET radiation. MATERIALS AND METHODS: Human lymphocytes were exposed to 1 GeV/u Fe ions (LET = 140 keV/microm). Chromosome aberrations were analysed by a fluorescence in situ hybridization using a combination of whole-chromosome-specific probes and human telomere probes. Chromosomes 1, 3 and 4 were investigated. RESULTS: The percentage of incomplete exchanges was between 23 and 29% if telomere signals were not considered. The percentage decreased to approximately 10% after ruling out false incomplete exchanges containing telomere signals. The final estimation of true incomplete exchanges was <10%. CONCLUSION: Within a degree of uncertainty, the percentage of true incomplete exchanges in 1 GeV/u Fe ion-irradiated human lymphocytes was similar to that induced by gamma rays.

  4. Ion temperatures in HIP-1 and SUMMA from charge-exchange neutral optical emission spectra

    NASA Technical Reports Server (NTRS)

    Patch, R. W.; Lauver, M. R.

    1976-01-01

    Ion temperatures were obtained from observations of the H sub alpha, D sub alpha, and He 587.6 nm lines emitted from hydrogen, deuterium, and helium plasmas in the SUMMA and HIP-1 mirror devices at Lewis Research Center. Steady state discharges were formed by applying a radially inward dc electric field between cylindrical or annular anodes and hollow cathodes located at the peaks of the mirrors. The ion temperatures were found from the Doppler broadening of the charge-exchange components of spectral lines. A statistical method was developed for obtaining scaling relations of ion temperature as a function of current, voltage, and magnetic flux density. Derivations are given that take into account triangular monochromator slit functions, loss cones, and superimposed charge-exchange processes. In addition, the Doppler broadening was found to be sensitive to the influence of drift on charge-exchange cross section. The effects of finite ion-cyclotron radius, cascading, and delayed emission are reviewed.

  5. Experimental studies of alunite: II. Rates of alunite-water alkali and isotope exchange

    USGS Publications Warehouse

    Stoffregen, R.E.; Rye, R.O.; Wasserman, M.D.

    1994-01-01

    Rates of alkali exchange between alunite and water have been measured in hydrothermal experiments of 1 hour to 259 days duration at 150 to 400??C. Examination of run products by scanning electron microscope indicates that the reaction takes place by dissolution-reprecipitation. This exchange is modeled with an empirical rate equation which assumes a linear decrease in mineral surface area with percent exchange (f) and a linear dependence of the rate on the square root of the affinity for the alkali exchange reaction. This equation provides a good fit of the experimental data for f = 17% to 90% and yields log rate constants which range from -6.25 moles alkali m-2s-1 at 400??C to - 11.7 moles alkali m-2s-1 at 200??C. The variation in these rates with temperature is given by the equation log k* = -8.17(1000/T(K)) + 5.54 (r2 = 0.987) which yields an activation energy of 37.4 ?? 1.5 kcal/mol. For comparison, data from O'Neil and Taylor (1967) and Merigoux (1968) modeled with a pseudo-second-order rate expression give an activation energy of 36.1 ?? 2.9 kcal/mol for alkali-feldspar water Na-K exchange. In the absence of coupled alkali exchange, oxygen isotope exchange between alunite and water also occurs by dissolution-reprecipitation but rates are one to three orders of magnitude lower than those for alkali exchange. In fine-grained alunites, significant D-H exchange occurs by hydrogen diffusion at temperatures as low as 100??C. Computed hydrogen diffusion coefficients range from -15.7 to -17.3 cm2s-1 and suggest that the activation energy for hydrogen diffusion may be as low as 6 kcal/mol. These experiments indicate that rates of alkali exchange in the relatively coarse-grained alunites typical of hydrothermal ore deposits are insignificant, and support the reliability of K-Ar age data from such samples. However, the fine-grained alunites typical of low temperature settings may be susceptible to limited alkali exchange at surficial conditions which could cause alteration of their radiometric ages. Furthermore, the rapid rate of hydrogen diffusion observed at 100-150??C suggests that fine-grained alunites are susceptible to rapid D-H re-equilibration even at surficial conditions. ?? 1994.

  6. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles.

    PubMed

    Pokhrel, Lok R; Dubey, Brajesh; Scheuerman, Phillip R

    2013-11-19

    Key understanding of potential transformations that may occur on silver nanoparticle (AgNP) surface upon interaction with naturally ubiquitous organic ligands (e.g., -SH (thoil), humic acid, or -COO (carboxylate)) is limited. Herein we investigated how dissolved organic carbon (DOC), -SH (in cysteine, a well-known Ag(+) chelating agent), and -COO (in trolox, a well-known antioxidant) could alter the colloidal stability, dissolution rate, and toxicity of citrate-functionalized AgNPs (citrate-AgNPs) against a keystone crustacean Daphnia magna. Cysteine, DOC, or trolox amendment of citrate-AgNPs differentially modified particle size, surface properties (charge, plasmonic spectra), and ion release dynamics, thereby attenuating (with cysteine or trolox) or promoting (with DOC) AgNP toxicity. Except with DOC amendment, the combined toxicity of AgNPs and released Ag under cysteine or trolox amendment was lower than of AgNO3 alone. The results of this study show that citrate-AgNP toxicity can be associated with oxidative stress, ion release, and the organism biology. Our evidence suggests that specific organic ligands available in the receiving waters can differentially surface modify AgNPs and alter their environmental persistence (changing dissolution dynamics) and subsequently the toxicity; hence, we caveat to generalize that surface modified nanoparticles upon environmental release may not be toxic to receptor organisms.

  7. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria.

    PubMed

    Xin, Baoping; Zhang, Di; Zhang, Xian; Xia, Yunting; Wu, Feng; Chen, Shi; Li, Li

    2009-12-01

    The bioleaching mechanism of Co and Li from spent lithium-ion batteries by mixed culture of sulfur-oxidizing and iron-oxidizing bacteria was investigated. It was found that the highest release of Li occurred at the lowest pH of 1.54 with elemental sulfur as an energy source, the lowest occurred at the highest pH of 1.69 with FeS(2). In contrast, the highest release of Co occurred at higher pH and varied ORP with S + FeS(2), the lowest occurred at almost unchanged ORP with S. It is suggested that acid dissolution is the main mechanism for Li bioleaching independent of energy matters types, however, apart from acid dissolution, Fe(2+) catalyzed reduction takes part in the bioleaching process as well. Co(2+) was released by acid dissolution after insoluble Co(3+) was reduced into soluble Co(2+) by Fe(2+) in both FeS(2) and FeS(2) + S systems. The proposed bioleaching mechanism mentioned above was confirmed by the further results obtained from the experiments of bioprocess-stimulated chemical leaching and from the changes in structure and component of bioleaching residues characterized by XPS, SEM and EDX.

  8. Coexisting stable conformations of gaseous protein ions.

    PubMed Central

    Suckau, D; Shi, Y; Beu, S C; Senko, M W; Quinn, J P; Wampler, F M; McLafferty, F W

    1993-01-01

    For further insight into the role of solvent in protein conformer stabilization, the structural and dynamic properties of protein ions in vacuo have been probed by hydrogen-deuterium exchange in a Fourier-transform mass spectrometer. Multiply charged ions generated by electrospray ionization of five proteins show exchange reactions with 2H2O at 10(-7) torr (1 torr = 133.3 Pa) exhibiting pseudo-first-order kinetics. Gas-phase compactness of the S-S cross-linked RNase A relative to denatured S-derivatized RNase A is indicated by exchange of 35 and 135 hydrogen atoms, respectively. For pure cytochrome c ions, the existence of at least three distinct gaseous conformers is indicated by the substantially different values--52, 113, and 74--of reactive H atoms; the observation of these same values for ions of a number--2, 7, and 5, respectively--of different charge states indicates conformational insensitivity to coulombic forces. For each of these conformers, the compactness in vacuo indicated by these values corresponds directly to that of a known conformer structure in the solution from which the conformer ions are produced by electrospray. S-derivatized RNase A ions also exist as at least two gaseous conformers exchanging 50-140 H atoms. Gaseous conformer ions are isometrically stable for hours; removal of solvent greatly increases conformational rigidity. More specific ion-molecule reactions could provide further details of conformer structures. Images PMID:8381533

  9. Soil organic matter regulates molybdenum storage and mobility in forests

    USGS Publications Warehouse

    Marks, Jade A; Perakis, Steven; King, Elizabeth K.; Pett-Ridge, Julie

    2015-01-01

    The trace element molybdenum (Mo) is essential to a suite of nitrogen (N) cycling processes in ecosystems, but there is limited information on its distribution within soils and relationship to plant and bedrock pools. We examined soil, bedrock, and plant Mo variation across 24 forests spanning wide soil pH gradients on both basaltic and sedimentary lithologies in the Oregon Coast Range. We found that the oxidizable organic fraction of surface mineral soil accounted for an average of 33 %of bulk soil Mo across all sites, followed by 1.4 % associated with reducible Fe, Al, and Mn-oxides, and 1.4 % in exchangeable ion form. Exchangeable Mo was greatest at low pH, and its positive correlation with soil carbon (C) suggests organic matter as the source of readily exchangeable Mo. Molybdenum accumulation integrated over soil profiles to 1 m depth (τMoNb) increased with soil C, indicating that soil organic matter regulates long-term Mo retention and loss from soil. Foliar Mo concentrations displayed no relationship with bulk soil Mo, and were not correlated with organic horizon Mo or soil extractable Mo, suggesting active plant regulation of Mo uptake and/or poor fidelity of extractable pools to bioavailability. We estimate from precipitation sampling that atmospheric deposition supplies, on average, over 10 times more Mo annually than does litterfall to soil. In contrast, bedrock lithology had negligible effects on foliar and soil Mo concentrations and on Mo distribution among soil fractions. We conclude that atmospheric inputs may be a significant source of Mo to forest ecosystems, and that strong Mo retention by soil organic matter limits ecosystem Mo loss via dissolution and leaching pathways.

  10. Reaction of subsurface coastal aquifers to climate and land use changes in Greece: modelling of groundwater refreshening patterns under natural recharge conditions

    NASA Astrophysics Data System (ADS)

    Lambrakis, N.; Kallergis, G.

    2001-05-01

    This paper studies the multicomponent ion exchange process and freshening time under natural recharge conditions for three coastal aquifers in Greece. Due to over-pumping and the dry years of 1980-1990 decline in groundwater quality has been observed in most of the Greek coastal aquifers. This decline is caused by a lack of reliable water resource management, water abstraction from great depths, and seawater intrusion resulting in a rise of the fresh/salt water interface (salinisation process) due to a negative water balance. The reverse phenomenon, which should lead to groundwater freshening, is a long process. The freshening process shows chromatographic patterns that are due to chemical reactions such as calcite dissolution and cation exchange, and simultaneously occurring transport and dispersion processes. Using the geochemical simulation codes PHREEQE and PHREEQM (Parkhurst et al., US Geol. Surv. Water Resour. Invest., 80-96 (1980) 210; Appelo and Postma, Geochemistry, Groundwater and Pollution (1994)), these patterns were analysed and the above-mentioned processes were simulated for carefully selected aquifers in Peloponnesus and Crete (Greece). Aquifers of the Quaternary basin of Glafkos in Peloponnesus, the Neogene formations in Gouves, Crete, and the carbonate aquifer of Malia, Crete, were examined as representative examples of Greek coastal aquifer salinisation. The results show that when pumping was discontinued, the time required for freshening under natural conditions of the former two aquifers is long and varies between 8000 and 10,000 years. The Malia aquifer on the other hand, has a freshening time of 15 years. Freshening time was shown to depend mainly on cation exchange capacities and the recharge rate of the aquifers.

  11. Microbial metabolism alters pore water chemistry and increases consolidation of oil sands tailings.

    PubMed

    Arkell, Nicholas; Kuznetsov, Petr; Kuznetsova, Alsu; Foght, Julia M; Siddique, Tariq

    2015-01-01

    Tailings produced during bitumen extraction from surface-mined oil sands ores (tar sands) comprise an aqueous suspension of clay particles that remain dispersed for decades in tailings ponds. Slow consolidation of the clays hinders water recovery for reuse and retards volume reduction, thereby increasing the environmental footprint of tailings ponds. We investigated mechanisms of tailings consolidation and revealed that indigenous anaerobic microorganisms altered porewater chemistry by producing CO and CH during metabolism of acetate added as a labile carbon amendment. Entrapped biogenic CO decreased tailings pH, thereby increasing calcium (Ca) and magnesium (Mg) cations and bicarbonate (HCO) concentrations in the porewater through dissolution of carbonate minerals. Soluble ions increased the porewater ionic strength, which, with higher exchangeable Ca and Mg, decreased the diffuse double layer of clays and increased consolidation of tailings compared with unamended tailings in which little microbial activity was observed. These results are relevant to effective tailings pond management strategies. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. LiCoO2 Concaved Cuboctahedrons from Symmetry-Controlled Topological Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H.; Wu, L.; Zhang, L.

    2011-01-19

    Morphology control of functional materials is generally performed by controlling the growth rates on selected orientations or faces. Here, we control particle morphology by 'crystal templating': by choosing appropriate precursor crystals and reaction conditions, we demonstrate that a material with rhombohedral symmetry - namely the layered, positive electrode material, LiCoO{sub 2} - can grow to form a quadruple-twinned crystal with overall cubic symmetry. The twinned crystals show an unusual, concaved-cuboctahedron morphology, with uniform particle sizes of 0.5-2 {micro}m. On the basis of a range of synthetic and analytical experiments, including solid-state NMR, X-ray powder diffraction analysis and HRTEM, we proposemore » that these twinned crystals form via selective dissolution and an ion-exchange reaction accompanied by oxidation of a parent crystal of CoO, a material with cubic symmetry. This template crystal serves to nucleate the growth of four LiCoO{sub 2} twin crystals and to convert a highly anisotropic, layered material into a pseudo-3-dimensional, isotropic material.« less

  13. Pectin-based nanocomposite aerogels for potential insulated food packaging application.

    PubMed

    Nešić, Aleksandra; Gordić, Milan; Davidović, Sladjana; Radovanović, Željko; Nedeljković, Jovan; Smirnova, Irina; Gurikov, Pavel

    2018-09-01

    Environmental-friendly pectin-TiO 2 nanocomposite aerogels were prepared via sol-gel process and subsequent drying under supercritical conditions. The first step includes dissolution of pectin in water, addition of proper amount of TiO 2 colloid and crosslinking reaction induced in the presence of tert-butanol and zinc ions. Then, the gels are subjected to the solvent exchange and supercritical CO 2 drying. The influence of TiO 2 nanoparticles on the textural, mechanical, thermal and antibacterial properties of aerogels was investigated. Results indicate that in the presence of TiO 2 nanoparticles (NPs) mechanical, thermal and antimicrobial properties of pectin-based aerogels are improved in comparison to the control pectin aerogels. It should be emphasized that the thermal conductivity of pectin-based aerogels (0.022-0.025 W m -1  K -1 ) is lower than the thermal conductivity of air. Generally, the results propose that the pectin-TiO 2 nanocomposite aerogels, as bio-based material, might have potential application for the storage of temperature-sensitive food. Copyright © 2018 Elsevier Ltd. All rights reserved.

  14. Geochemical Assessment of Fluoride Pollution in Groundwater of Tribal Region in India.

    PubMed

    Anshumali; Kumar, Manish; Chanda, Nikki; Kumar, Abhay; Kumar, Bijendra; Venkatesh, Madavi

    2018-03-01

    This study assessed the fluoride (F - ) pollution in groundwater samples (n = 170) of tribal regions around Bailadila Iron Ore Mines [BIOM] Complex of Dantewada District, India. Weathering of carbonate and silicate clays were important geogenic sources of dissolved ions. A Piper diagram showed a Ca-HCO 3 water type, with positive chloro-alkaline indices illustrating the occurrence of direct base-exchange reactions. The F - concentrations varied from 0.08 to 1.95 mg L -1 with a mean value of 0.9 ± 0.3 mg L -1 . Only two groundwater samples showed F - concentrations > 1.5 mg L -1 , the drinking water guideline established by the World Health Organization (WHO) and Bureau of Indian Standards (BIS). Factor analysis showed high loadings of HCO 3 - and F - , indicating alkaline conditions, favoring the dissolution of F - in the groundwater. The K fluor value is less than 10 -10.6 , indicating that the dissociation of fluorite is very slow. As a result, groundwater locations were under-saturated with respect to fluorite.

  15. Neutral dynamics and ion energy transport in MST plasma

    NASA Astrophysics Data System (ADS)

    Xing, Zichuan; Nornberg, Mark; den Hartog, Daniel; Kumar, Santosh; Anderson, Jay

    2015-11-01

    Neutral dynamics can have a significant effect on ion energy transport through charge exchange collisions. Whereas previously charge exchange was considered a direct loss mechanism in MST plasmas, new analysis indicates that significant thermal charge exchange neutrals are reionized. Further, the temperatures of the neutral species in the core of the plasma are suspected to be much higher than room temperature, which has a large effect on ion energy losses due to charge exchange. The DEGAS2 Monte Carlo simulation code is applied to the MST reversed field pinch experiment to estimate the density and temperature profile of the neutral species. The result is then used to further examine the effect of the neutral species on ion energy transport in improved confinement plasmas. This enables the development of a model that accounts for collisional equilibration between species, classical convective and conductive energy transport, and energy loss due to charge exchange collisions. The goal is to quantify classical, stochastic, and anomalous ion heating and transport in RFP plasmas. Work supported by the US DOE. DEGAS2 is provided by PPPL and STRAHL is provided by Ralph Dux of the Max-Planck-Institut fur Plasmaphysik.

  16. Ion Exchange Polymeric Coatings for Selective Capacitive Deionization

    NASA Astrophysics Data System (ADS)

    Jain, Amit; Kim, Jun; Li, Qilin; Verduzco, Rafael

    Capacitive deionization (CDI) is an energy-efficient technology for adsorbing and removing scalants and foulants from water by utilizing electric potential between porous carbon electrodes. Currently, industrial application of CDI is limited to low salinity waters due to the limited absorption capacities of carbon electrodes. However, CDI can potentially be used as a low-cost approach to selectively remove divalent ions from high salinity water. Divalent ions such as sulfonates and carbonates cause scaling and thus performance deterioration of membrane-based desalination systems. In this work, we investigated ion-exchange polymer coatings for use in a membrane capacitive deionization (MCDI) process for selective removal of divalent ions. Poly-Vinyl Alcohol (PVA) base polymer was crosslinked and charged using sulfo-succinic acid (SSA) to give a cation exchange layer. 50 um thick standalone polymer films had a permeability of 4.25*10-7 cm2/s for 10mM NaCl feed. Experiments on electrodes with as low as 10 υm thick coating of cation exchange polymer are under progress and will be evaluated on the basis of their selective salt removal efficiency and charge efficiency, and in future we will extend this work to sulfonated block copolymers and anion exchange polymers.

  17. Matrilineal Family Ties and Marital Dissolution in Ghana

    ERIC Educational Resources Information Center

    Takyi, Baffour K.; Gyimah, Stephen Obeng

    2007-01-01

    Although previous work has attributed the instability of African marriages to the diffusion of Western norms and values in the region, fewer attempts have been made to empirically assess how Africa's internal institutional structures, such as extended kinship ties, impact marital outcomes. Guided by rational choice and exchange theories, we argue…

  18. On the structure and dynamics of the hydrated sulfite ion in aqueous solution--an ab initio QMCF MD simulation and large angle X-ray scattering study.

    PubMed

    Eklund, Lars; Hofer, Thomas S; Pribil, Andreas B; Rode, Bernd M; Persson, Ingmar

    2012-05-07

    Theoretical ab initio quantum mechanical charge field molecular dynamics (QMCF MD) formalism has been applied in conjunction to experimental large angle X-ray scattering to study the structure and dynamics of the hydrated sulfite ion in aqueous solution. The results show that there is a considerable effect of the lone electron-pair on sulfur concerning structure and dynamics in comparison with the sulfate ion with higher oxidation number and symmetry of the hydration shell. The S-O bond distance in the hydrated sulfite ion has been determined to 1.53(1) Å by both methods. The hydrogen bonds between the three water molecules bound to each sulfite oxygen are only slightly stronger than those in bulk water. The sulfite ion can therefore be regarded as a weak structure maker. The water exchange rate is somewhat slower for the sulfite ion than for the sulfate ion, τ(0.5) = 3.2 and 2.6 ps, respectively. An even more striking observation in the angular radial distribution (ARD) functions is that the for sulfite ion the water exchange takes place in close vicinity of the lone electron-pair directed at its sides, while in principle no water exchange did take place of the water molecules hydrogen bound to sulfite oxygens during the simulation time. This is also confirmed when detailed pathway analysis is conducted. The simulation showed that the water molecules hydrogen bound to the sulfite oxygens can move inside the hydration shell to the area outside the lone electron-pair and there be exchanged. On the other hand, for the hydrated sulfate ion in aqueous solution one can clearly see from the ARD that the distribution of exchange events is symmetrical around the entire hydration sphere.

  19. Steady-State Ion Beam Modeling with MICHELLE

    NASA Astrophysics Data System (ADS)

    Petillo, John

    2003-10-01

    There is a need to efficiently model ion beam physics for ion implantation, chemical vapor deposition, and ion thrusters. Common to all is the need for three-dimensional (3D) simulation of volumetric ion sources, ion acceleration, and optics, with the ability to model charge exchange of the ion beam with a background neutral gas. The two pieces of physics stand out as significant are the modeling of the volumetric source and charge exchange. In the MICHELLE code, the method for modeling the plasma sheath in ion sources assumes that the electron distribution function is a Maxwellian function of electrostatic potential over electron temperature. Charge exchange is the process by which a neutral background gas with a "fast" charged particle streaming through exchanges its electron with the charged particle. An efficient method for capturing this is essential, and the model presented is based on semi-empirical collision cross section functions. This appears to be the first steady-state 3D algorithm of its type to contain multiple generations of charge exchange, work with multiple species and multiple charge state beam/source particles simultaneously, take into account the self-consistent space charge effects, and track the subsequent fast neutral particles. The solution used by MICHELLE is to combine finite element analysis with particle-in-cell (PIC) methods. The basic physics model is based on the equilibrium steady-state application of the electrostatic particle-in-cell (PIC) approximation employing a conformal computational mesh. The foundation stems from the same basic model introduced in codes such as EGUN. Here, Poisson's equation is used to self-consistently include the effects of space charge on the fields, and the relativistic Lorentz equation is used to integrate the particle trajectories through those fields. The presentation will consider the complexity of modeling ion thrusters.

  20. Equilibrium lithium-ion transport between nanocrystalline lithium-inserted anatase TiO2 and the electrolyte.

    PubMed

    Ganapathy, Swapna; van Eck, Ernst R H; Kentgens, Arno P M; Mulder, Fokko M; Wagemaker, Marnix

    2011-12-23

    The power density of lithium-ion batteries requires the fast transfer of ions between the electrode and electrolyte. The achievable power density is directly related to the spontaneous equilibrium exchange of charged lithium ions across the electrolyte/electrode interface. Direct and unique characterization of this charge-transfer process is very difficult if not impossible, and consequently little is known about the solid/liquid ion transfer in lithium-ion-battery materials. Herein we report the direct observation by solid-state NMR spectroscopy of continuous lithium-ion exchange between the promising nanosized anatase TiO(2) electrode material and the electrolyte. Our results reveal that the energy barrier to charge transfer across the electrode/electrolyte interface is equal to or greater than the barrier to lithium-ion diffusion through the solid anatase matrix. The composition of the electrolyte and in turn the solid/electrolyte interface (SEI) has a significant effect on the electrolyte/electrode lithium-ion exchange; this suggests potential improvements in the power of batteries by optimizing the electrolyte composition. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. ELUTION OF URANIUM VALUES FROM ION EXCHANGE RESINS

    DOEpatents

    Kennedy, R.H.

    1959-11-24

    A process is described for eluting complex uranium ions absorbed on ion exchange resins. The resin is subjected to the action of an aqueous eluting solution contuining sulfuric acid and an alkali metal, ammonium, or magnesium chloride or nitrate, the elution being carried out until the desired amount of the uranium is removed from the resin.

  2. Characterization of an atomic hydrogen source for charge exchange experiments

    DOE PAGES

    Leutenegger, M. A.; Beiersdorfer, P.; Betancourt-Martinez, G. L.; ...

    2016-07-02

    Here, we characterized the dissociation fraction of a thermal dissociation atomic hydrogen source by injecting the mixed atomic and molecular output of the source into an electron beam ion trap containing highly charged ions and recording the x-ray spectrum generated by charge exchange using a high-resolution x-ray calorimeter spectrometer. We exploit the fact that the charge exchange state-selective capture cross sections are very different for atomic and molecular hydrogen incident on the same ions, enabling a clear spectroscopic diagnostic of the neutral species.

  3. Rupture loop annex ion exchange RLAIX vault deactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ham, J.E.; Harris, D.L., Westinghouse Hanford

    This engineering report documents the deactivation, stabilization and final conditions of the Rupture Loop Annex Ion Exchange (RLAIX) Vault located northwest of the 309 Building`s Plutonium Recycle Test Reactor (PRTR). Twelve ion exchange columns, piping debris, and column liquid were removed from the vault, packaged and shipped for disposal. The vault walls and floor were decontaminated, and portions of the vault were painted to fix loose contamination. Process piping and drains were plugged, and the cover blocks and rain cover were installed. Upon closure,the vault was empty, stabilized, isolated.

  4. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1998-01-27

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange-resin are also disclosed.

  5. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, A.W.; Gatrone, R.C.; Alexandratos, S.; Horwitz, E.P.

    1997-04-08

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorus. The pendent groups have the formula as shown in the patent wherein R is hydrogen, a cation or mixtures thereof; and R{sup 1} is hydrogen or an C{sub 1}-C{sub 2} alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  6. Grafted methylenediphosphonate ion exchange resins

    DOEpatents

    Trochimcznk, Andrzej W.; Gatrone, Ralph C.; Alexandratos, Spiro; Horwitz, E. Philip

    1997-01-01

    An ion exchange resin is disclosed that is comprised of an insoluble copolymer onto which are grafted pendent groups that provide 1.0 to about 10 mmol/g dry weight phosphorous. The pendent groups have the formula ##STR1## wherein R is hydrogen, a cation or mixtures thereof; and R.sup.1 is hydrogen or an C.sub.1 -C.sub.2 alkyl group. The resin also contains zero to about 5 mmol/g dry weight of pendent aromatic sulfonate groups. Processes for making and using an ion exchange resin are also disclosed.

  7. Solubility of pyromorphite Pb 5(PO 4) 3Cl at 5–65°C and its experimentally determined thermodynamic parameters

    DOE PAGES

    Topolska, Justyna; Manecki, Maciej; Bajda, Tomasz; ...

    2016-03-19

    Here, the solubility of synthetic pyromorphite Pb 5(PO 4) 3Cl was determined in a series of dissolution experiments conducted at 5–65 °C and at pH = 2.0. The equilibrium was established within 4 months. The dissolution of pyromorphite was congruent at all the temperatures, and the measured solubility product log K sp,298 for the dissolution reaction: Pb 5(PO 4) 3Cl ⇌ 5Pb 2+ + 3PO 4 3- + Cl - was determined to be –79.6 ± 0.15. The equilibrium ion activity product of pyromorphite increased with temperature, indicating a positive enthalpy of the dissolution reaction in the temperature range frommore » 5 to 65 °C. The temperature dependence of the log K sp was nonlinear: log K sp = A – B/T + D log(T), where A = 478.77 ± 136.62, B = 29,378 ± 6215, and D = –185.81 ± 46.77. This allowed for calculation of ΔG° r = 454.0 ± 1.7 kJ·mol –1, ΔH° r = 101.8 ± 6.0 J·mol –1·K –1, ΔC° p,r = –1545 ± 388.9 J·mol –1·K –1, and ΔS° r = –1181 ± 382 J·mol –1·K –1 of the dissolution reaction. Using these values and the published standard state quantities for constituent ions, the values of ΔG° f = –3764.3 ± 3.5 kJ·mol –1, ΔH° f = –4108.4 ± 7.9 J·mol –1·K –1, S° f = 622 ± 382 J·mol –1·K –1, and C° pf = 402 ± 398 J·mol –1·K –1 were calculated for synthetic pyromorphite Pb 5(PO 4) 3Cl.« less

  8. A dynamic system for the simulation of fasting luminal pH-gradients using hydrogen carbonate buffers for dissolution testing of ionisable compounds.

    PubMed

    Garbacz, Grzegorz; Kołodziej, Bartosz; Koziolek, Mirko; Weitschies, Werner; Klein, Sandra

    2014-01-23

    The hydrogen carbonate buffer is considered as the most biorelevant buffer system for the simulation of intestinal conditions and covers the physiological pH range of the luminal fluids from pH 5.5 to about pH 8.4. The pH value of a hydrogen carbonate buffer is the result of a complex and dynamic interplay of the concentration of hydrogen carbonate ions, carbonic acid, the concentration of dissolved and solvated carbon dioxide and its partial pressure above the solution. The complex equilibrium between the different ions results in a thermodynamic instability of hydrogen carbonate solutions. In order to use hydrogen carbonate buffers with pH gradients in the physiological range and with the dynamics observed in vivo without changing the ionic strength of the solution, we developed a device (pHysio-grad®) that provides both acidification of the dissolution medium by microcomputer controlled carbon dioxide influx and alkalisation by degassing. This enables a continuous pH control and adjustment during dissolution of ionisable compounds. The results of the pH adjustment indicate that the system can compensate even rapid pH changes after addition of a basic or acidic moiety in amounts corresponding up to 90% of the overall buffer capacity. The results of the dissolution tests performed for a model formulation containing ionizable compounds (Nexium 20mg mups) indicate that both the simulated fasting intraluminal pH-profiles and the buffer species can significantly affect the dissolution process by changing the lag time prior to initial drug release and the release rate of the model compound. A prediction of the in vivo release behaviour of this formulation is thus most likely strongly related to the test conditions such as pH and buffer species. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Thermally Cross-Linked Anion Exchange Membranes from Solvent Processable Isoprene Containing Ionomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Tsung-Han; Ertem, S. Piril; Maes, Ashley M.

    2015-01-28

    Random copolymers of isoprene and 4-vinylbenzyl chloride (VBCl) with varying compositions were synthesized via nitroxide-mediated polymerization. Subsequent quaternization afforded solvent processable and cross-linkable ionomers with a wide range of ion exchange capacities (IECs). Solution cast membranes were thermally cross-linked to form anion exchange membranes. Cross-linking was achieved by taking advantage of the unsaturations on the polyisoprene backbone, without added cross-linkers. A strong correlation was found between water uptake and ion conductivity of the membranes: conductivities of the membranes with IECs beyond a critical value were found to be constant related to their high water absorption. Environmentally controlled small-angle X-ray scatteringmore » experiments revealed a correlation between the average distance between ionic clusters and the ion conductivity, indicating that a well-connected network of ion clusters is necessary for efficient ion conduction and high ion conductivity.« less

  10. Developing a polymeric sensor to monitor intracellular conditions

    NASA Astrophysics Data System (ADS)

    Mudarri, Timothy C.; Leo, Donald J.; Wood, Brett C.; Shires, Peter K.

    2004-07-01

    Ionic electroactive polymers have been developed as mechanical sensors or actuators, taking advantage of the electromechanical coupling of the materials. This research attempts to take advantage of the chemomechanical and chemoelectrical coupling by characterizing the transient response as the polymer undergoes an ion exchange, thus using the polymer for ionic sensing. Nafion is a biocompatible material, and an implantable polymeric ion sensor which has applications in the biomedical field for bone healing research. An ion sensor and a strain gauge could determine the effects of motion allowed at the fracture site, thus improving rehabilitation procedures for bone fractures. The charge sensitivity of the material and the capacitance of the material were analyzed to determine the transient response. Both measures indicate a change when immersed in ionic salt solutions. It is demonstrated that measuring the capacitance is the best indicator of an ion exchange. Relative to a flat response in deionized water (+/-2%), the capacitance of the polymer exhibits an exponential decay of ~25% of its peak when placed in a salt solution. A linear correlation between the time constant of the decay and the ionic size of the exchanging ion was developed that could reasonably predict a diffusing ion. Tests using an energy dispersive spectrometer (EDS) indicate that 90% of the exchange occurs in the first 20 minutes, shown by both capacitance decay and an atomic level scan. The diffusion rate time constant was found to within 0.3% of the capacitance time constant, confirming the ability of capacitance to measure ion exchange.

  11. Effect of the size of nanoparticles on their dissolution within metal-glass nanocomposites under sustained irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vu, T. H. Y., E-mail: thi-hai-yen.vu@polytechnique.edu; Ramjauny, Y.; Rizza, G.

    2016-01-21

    We investigate the dissolution law of metallic nanoparticles (NPs) under sustained irradiation. The system is composed of isolated spherical gold NPs (4–100 nm) embedded in an amorphous silica host matrix. Samples are irradiated at room temperature in the nuclear stopping power regime with 4 MeV Au ions for fluences up to 8 × 10{sup 16 }cm{sup −2}. Experimentally, the dependence of the dissolution kinetics on the irradiation fluence is linear for large NPs (45–100 nm) and exponential for small NPs (4–25 nm). A lattice-based kinetic Monte Carlo (KMC) code, which includes atomic diffusion and ballistic displacement events, is used to simulate the dynamical competition between irradiation effectsmore » and thermal healing. The KMC simulations allow for a qualitative description of the NP dissolution in two main stages, in good agreement with the experiment. Moreover, the perfect correlation obtained between the evolution of the simulated flux of ejected atoms and the dissolution rate in two stages implies that there exists an effect of the size of NPs on their dissolution and a critical size for the transition between the two stages. The Frost-Russell model providing an analytical solution for the dissolution rate, accounts well for the first dissolution stage but fails in reproducing the data for the second stage. An improved model obtained by including a size-dependent recoil generation rate permits fully describing the dissolution for any NP size. This proves, in particular, that the size effect on the generation rate is the principal reason for the existence of two regimes. Finally, our results also demonstrate that it is justified to use a unidirectional approximation to describe the dissolution of the NP under irradiation, because the solute concentration is particularly low in metal-glass nanocomposites.« less

  12. Tuning a High Transmission Ion Guide to Prevent Gas-Phase Proton Exchange During H/D Exchange MS Analysis.

    PubMed

    Guttman, Miklos; Wales, Thomas E; Whittington, Dale; Engen, John R; Brown, Jeffery M; Lee, Kelly K

    2016-04-01

    Hydrogen/deuterium exchange (HDX) mass spectrometry (MS) for protein structural analysis has been adopted for many purposes, including biopharmaceutical development. One of the benefits of examining amide proton exchange by mass spectrometry is that it can readily resolve different exchange regimes, as evidenced by either binomial or bimodal isotope patterns. By careful analysis of the isotope pattern during exchange, more insight can be obtained on protein behavior in solution. However, one must be sure that any observed bimodal isotope patterns are not artifacts of analysis and are reflective of the true behavior in solution. Sample carryover and certain stationary phases are known as potential sources of bimodal artifacts. Here, we describe an additional undocumented source of deuterium loss resulting in artificial bimodal patterns for certain highly charged peptides. We demonstrate that this phenomenon is predominantly due to gas-phase proton exchange between peptides and bulk solvent within the initial stages of high-transmission conjoined ion guides. Minor adjustments of the ion guide settings, as reported here, eliminate the phenomenon without sacrificing signal intensity. Such gas-phase deuterium loss should be appreciated for all HDX-MS studies using such ion optics, even for routine studies not focused on interpreting bimodal spectra. Graphical Abstract ᅟ.

  13. Bismuth generator method

    DOEpatents

    Bray, Lane Allan; DesChane, Jaquetta R.

    1998-01-01

    A method for separating .sup.213 Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon .sup.213 Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as .sup.225 Ra, .sup.225 Ac, and .sup.221 Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The .sup.213 Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the .sup.213 Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the .sup.213 Bi. A preferred stripping solution for purification of .sup.213 Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc, to receive the .sup.213 Bi as it is being released from the anion exchange resin.

  14. Bismuth generator method

    DOEpatents

    Bray, L.A.; DesChane, J.R.

    1998-05-05

    A method is described for separating {sup 213}Bi from a solution of radionuclides wherein the solution contains a concentration of the chloride ions and hydrogen ions adjusted to allow the formation of a chloride complex. The solution is then brought into contact with an anion exchange resin, whereupon {sup 213}Bi is absorbed from the solution and adhered onto the anion exchange resin in the chloride complex. Other non-absorbing radionuclides such as {sup 225}Ra, {sup 225}Ac, and {sup 221}Fr, along with HCl are removed from the anion exchange resin with a scrub solution. The {sup 213}Bi is removed from the anion exchange resin by washing the anion exchange resin with a stripping solution free of chloride ions and with a reduced hydrogen ion concentration which breaks the chloride anionic complex, releasing the {sup 213}Bi as a cation. In a preferred embodiment of the present invention, the anion exchange resin is provided as a thin membrane, allowing for extremely rapid adherence and stripping of the {sup 213}Bi. A preferred stripping solution for purification of {sup 213}Bi for use in medical applications includes sodium acetate, pH 5.5. A protein conjugated with bifunctional chelating agents in vivo with the NaOAc receives the {sup 213}Bi as it is being released from the anion exchange resin. 10 figs.

  15. Isotopic exchange in mineral-fluid systems. IV. The crystal chemical controls on oxygen isotope exchange rates in carbonate-H 2O and layer silicate-H 2O systems

    NASA Astrophysics Data System (ADS)

    Cole, David R.

    2000-03-01

    Oxygen isotope exchange between minerals and water in systems far from chemical equilibrium is controlled largely by surface reactions such as dissolution-precipitation. In many cases, this behavior can be modeled adequately by a simple pseudo-first order rate model that accounts for changes in surface area of the solid. Previous modeling of high temperature isotope exchange data for carbonates, sulfates, and silicates indicated that within a given mineral group there appears to be a systematic relationship between rate and mineral chemistry. We tested this idea by conducting oxygen isotope exchange experiments in the systems, carbonate-H 2O and layer silicate-H 2O at 300 and 350°C, respectively. Witherite (BaCO 3), strontianite (SrCO 3) and calcite (CaCO 3) were reacted with pure H 2O for different lengths of time (271-1390 h) at 300°C and 100 bars. The layer silicates, chlorite, biotite and muscovite were reacted with H 2O for durations ranging from 132 to 3282 h at 350°C and 250 bars. A detailed survey of grain sizes and grain habits using scanning electron microscopy (SEM) indicated that grain regrowth occurred in all experiments to varying extents. Changes in the mean grain diameters were particularly significant in experiments involving withertite, strontianite and biotite. The variations in the extent of oxygen isotope exchange were measured as a function of time, and fit to a pseudo-first order rate model that accounted for the change in surface area of the solid during reaction. The isotopic rates (ln r) for the carbonate-H 2O system are -20.75 ± 0.44, -18.95 ± 0.62 and -18.51 ± 0.48 mol O m -2 s -1 for calcite, strontianite and witherite, respectively. The oxygen isotope exchange rates for layer silicate-H 2O systems are -23.99 ± 0.89, -23.14 ± 0.74 and -22.40 ± 0.66 mol O m -2 s -1 for muscovite, biotite and chlorite, respectively. The rates for the carbonate-H 2O systems increase in order from calcite to strontianite to witherite. This order clearly reflects the influence of the change in cation chemistry, i.e., Ba > Sr > Ca. A similar pattern is observed for the layer silicate-H 2O systems, where chlorite>biotite>muscovite. The link between cation chemistry and rate is more complicated in this case, but in general, the order follows a trend where Mg-Fe > K-Mg > K, with an associated increase in Si and Al, and decrease in hydroxyl. The isotopic-chemical relations suggest that oxygen isotope exchange behavior monitored experimentally in this study is the net result of bond-breaking and dissolution of the mineral, complex ion formation in solution and growth of the mineral, whose structure is controlled, in large part, by the lattice energy. We compared the rates against the electrostatic attractive lattice energies (neglecting the repulsive forces), normalized per number of cations. The correlations between rates and lattice energies are quite good for both mineral-H 2O systems. The increase in rates correlated with a decrease in the electrostatic attractive lattice energies, i.e., the greater the lattice energy required to break up the crystal, the more sluggish the rates for both chemical and isotopic exchange. By establishing an unambiguous relationship between rate, lattice energy, and ultimately temperature, we can begin to develop empirical equations useful in predicting rates of isotopic exchange for minerals for which experimental data are lacking.

  16. Adsorption studies of heavy metal ions on mesoporous aluminosilicate, novel cation exchanger.

    PubMed

    Sepehrian, H; Ahmadi, S J; Waqif-Husain, S; Faghihian, H; Alighanbari, H

    2010-04-15

    Mesoporous aluminosilicates, have been prepared with various mole ratios of Si/Al and Cethyltrimethylammonium bromide (CTAB). They have been characterized by XRD, nitrogen adsorption/desorption measurements, FT-IR and thermogravimetry. Adsorption behavior of heavy metal ions on this adsorbent have been studied and discussed. The results show that incorporation of aluminum ions in the framework of the mesoporous MCM-41 has transformed it into an effective cation exchanger. The K(d) values of several metal ions have been increased. Separation of Sr(II)-Ce(III), Sr(II)-U(VI) and Cd(II)-Ce(III) has been developed on columns of this novel mesoporous cation exchanger. 2009 Elsevier B.V. All rights reserved.

  17. Unidirectional Flux Balance of Monovalent Ions in Cells with Na/Na and Li/Na Exchange: Experimental and Computational Studies on Lymphoid U937 Cells

    PubMed Central

    Vereninov, Igor A.; Yurinskaya, Valentina E.; Model, Michael A.; Vereninov, Alexey A.

    2016-01-01

    Monovalent ion traffic across the cell membrane occurs via various pathways. Evaluation of individual fluxes in whole cell is hampered by their strong interdependence. This difficulty can be overcome by computational analysis of the whole cell flux balance. However, the previous computational studies disregarded ion movement of the self-exchange type. We have taken this exchange into account. The developed software allows determination of unidirectional fluxes of all monovalent ions via the major pathways both under the balanced state and during transient processes. We show how the problem of finding the rate coefficients can be solved by measurement of monovalent ion concentrations and some of the fluxes. Interdependence of fluxes due to the mandatory conditions of electroneutrality and osmotic balance and due to specific effects can be discriminated, enabling one to identify specific changes in ion transfer machinery under varied conditions. To test the effectiveness of the developed approach we made use of the fact that Li/Na exchange is known to be an analogue of the coupled Na/Na exchange. Thus, we compared the predicted and experimental data obtained on U937 cells under varied Li+ concentrations and following inhibition of the sodium pump with ouabain. We found that the coupled Na/Na exchange in U937 cells comprises a significant portion of the entire Na+ turnover. The data showed that the loading of the sodium pump by Li/Na exchange involved in the secondary active Li+ transport at 1–10 mM external Li+ is small. This result may be extrapolated to similar Li+ and Na+ flux relationships in erythrocytes and other cells in patients treated with Li+ in therapeutic doses. The developed computational approach is applicable for studying various cells and can be useful in education for demonstrating the effects of individual transporters and channels on ion gradients, cell water content and membrane potential. PMID:27159324

  18. Characterisation of landfill leachate by EEM-PARAFAC-SOM during physical-chemical treatment by coagulation-flocculation, activated carbon adsorption and ion exchange.

    PubMed

    Oloibiri, Violet; De Coninck, Sam; Chys, Michael; Demeestere, Kristof; Van Hulle, Stijn W H

    2017-11-01

    The combination of fluorescence excitation-emission matrices (EEM), parallel factor analysis (PARAFAC) and self-organizing maps (SOM) is shown to be a powerful tool in the follow up of dissolved organic matter (DOM) removal from landfill leachate by physical-chemical treatment consisting of coagulation, granular activated carbon (GAC) and ion exchange. Using PARAFAC, three DOM components were identified: C1 representing humic/fulvic-like compounds; C2 representing tryptophan-like compounds; and C3 representing humic-like compounds. Coagulation with ferric chloride (FeCl 3 ) at a dose of 7 g/L reduced the maximum fluorescence of C1, C2 and C3 by 52%, 17% and 15% respectively, while polyaluminium chloride (PACl) reduced C1 only by 7% at the same dose. DOM removal during GAC and ion exchange treatment of raw and coagulated leachate exhibited different profiles. At less than 2 bed volumes (BV) of treatment, the humic components C1 and C3 were rapidly removed, whereas at BV ≥ 2 the tryptophan-like component C2 was preferentially removed. Overall, leachate treated with coagulation +10.6 BV GAC +10.6 BV ion exchange showed the highest removal of C1 (39% - FeCl 3 , 8% - PACl), C2 (74% - FeCl 3 , 68% - PACl) and no C3 removal; whereas only 52% C2 and no C1 and C3 removal was observed in raw leachate treated with 10.6 BV GAC + 10.6 BV ion exchange only. Analysis of PARAFAC-derived components with SOM revealed that coagulation, GAC and ion exchange can treat leachate at least 50% longer than only GAC and ion exchange before the fluorescence composition of leachate remains unchanged. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Cooling field and ion-beam bombardment effects on exchange bias behavior in NiFe/(Ni,Fe)O bilayers.

    PubMed

    Lin, K W; Wei, M R; Guo, J Y

    2009-03-01

    The dependence of the cooling field and the ion-beam bombardment on the exchange bias effects in NiFe/(Ni,Fe)O bilayers were investigated. The positive exchange bias was found in the zero-field-cooled (ZFC) process whereas a negative exchange bias occurred in the FC process. The increased exchange field, H(ex) with increasing (Ni,Fe)O thicknesses indicates the thicker the AF (Ni,Fe)O, the stronger the exchange coupling between the NiFe layer and the (Ni,Fe)O layer. In addition, the dependence of the H(ex) (ZFC vs. FC) on the (Ni,Fe)O thicknesses reflects the competition between the applied magnetic field and the (Ni,Fe)O surface layer exchange coupled to the NiFe layer. Further, an unusual oscillating exchange bias was observed in NiFe/(Ni,Fe)O bilayers that results from the surface of the (Ni,Fe)O layer being bombarded with different Ar-ion energies using End-Hall deposition voltages (V(EH)) from 0 to 150 V. The behavior of the H(ex) and the H(c) with the V(EH) is attributed to the surface spin reorientation that is due to moderate ion-beam bombardment effects on the surface of the (Ni,Fe)O layer. Whether the (Ni,Fe)O antiferromagnetic spins are coupled to the NiFe moments antiferromagnetically or ferromagnetically changes the sign of the exchange bias.

  20. Modeling the adsorption of hydrogen, sodium, chloride and phthalate on goethite using a strict charge-neutral ion-exchange theory.

    PubMed

    Schulthess, Cristian P; Ndu, Udonna

    2017-01-01

    Simultaneous adsorption modeling of four ions was predicted with a strict net charge-neutral ion-exchange theory and its corresponding equilibrium and mass balance equations. An important key to the success of this approach was the proper collection of all the data, particularly the proton adsorption data, and the inclusion of variable concentrations of conjugate ions from the experimental pH adjustments. Using IExFit software, the ion-exchange model used here predicted the competitive retention of several ions on goethite by assuming that the co-adsorption or desorption of all ions occurred in the correct stoichiometries needed to maintain electroneutrality. This approach also revealed that the retention strength of Cl- ions on goethite increases in the presence of phthalate ions. That is, an anion-anion enhancement effect was observed. The retention of Cl- ions was much weaker than phthalate ions, and this also resulted in a higher sensitivity of the Cl- ions toward minor variations in the surface reactivity. The proposed model uses four goethite surface sites. The drop in retention of phthalate ions at low pH was fully described here as resulting from competitive Cl- reactions, which were introduced in increasing concentrations into the matrix as the conjugate base to the acid added to lower the pH.

  1. Free-bound electron exchange contribution to l-split atomic structure in dense plasmas

    NASA Astrophysics Data System (ADS)

    Bennadji, K.; Rosmej, F.; Lisitsa, V. S.

    2013-11-01

    An analytical expression for the exchange energy between the bound electron in hydrogen-like ions and the free electrons of plasma is proposed. Two limiting cases are identified: 1) the low temperature limit where the energy depends linearly on density and on the ion charge as 1/Z2 but does not depend on the temperature itself, 2) the high temperature limit where the energy depends on temperature as 1/T but does not depend on the ion charge. These two regimes are separated by a characteristic temperature (T∗ = 4Z2Ry) which is a universal parameter depending only on the charge Z of the ions. We presented numerical results for aluminum: the exchange energy contributes about 15% to the total plasma energy and can reach an order of 10-4 of the total transition energy. Comparison to the Local-density Approximation (Kohn-Sham) exchange energy shows a good agreement.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, Renee L.; Fiskum, Sandra K.; Smoot, Margaret R.

    Washington River Protection Solutions (WRPS) is developing a Low-Activity Waste Pretreatment System (LAWPS) to provide low-activity waste (LAW) directly to the Hanford Tank Waste Treatment and Immobilization Plant (WTP) Low-Activity Waste Facility for immobilization. The pretreatment that will be conducted on tank waste supernate at the LAWPS facility entails filtration to remove entrained solids and cesium (Cs) ion exchange to remove Cs from the product sent to the WTP. Currently, spherical resorcinol-formaldehyde (sRF) resin (Microbeads AS, Skedsmokorset, Norway) is the Cs ion exchange resin of choice. Most work on Cs ion exchange efficacy in Hanford tank waste has been conductedmore » at nominally 5 M sodium (Na). WRPS is examining the possibility of processing supernatant at high Na concentrations—up to 8 M Na—to maximize processing efficiency through the LAWPS. Minimal Cs ion exchange work has been conducted at 6 M and 8 M Na concentrations..« less

  3. A Charge-Exchange Neutral Particle Analyzer for an Inertial Electrostatic Confinement Fusion Device

    NASA Astrophysics Data System (ADS)

    Becerra, Gabriel; Kulcinski, Gerald; Santarius, John; Emmert, Gilbert

    2013-10-01

    An electrostatic energy analyzer for outgoing charge-exchange neutral particles has been designed and constructed for application on HELIOS, an inertial electrostatic confinement (IEC) fusion device designed for advanced fuel studies. Ions are extracted from an external helicon plasma source and subsequently accelerated radially into an electrostatic potential well set up by a semi-transparent cathode grid inside the HELIOS spherical chamber. Analysis of fast neutrals produced by charge exchange between energetic ions and background gas yields information on primary ion energy spectra, as well as a quantitative measure of charge exchange as an energy loss mechanism in IEC devices. Preliminary data with helium is used to benchmark the two-charge-state helium formalism of VICTER, a numerical code on spherically convergent ion flow, as it relates to IEC operation with helium-3 fuel. Research supported by the Greatbatch Foundation.

  4. Polarizability, volume expansion, and stress contributions to the refractive index change of Cu+-Na+ ion exchanged waveguides in glass.

    PubMed

    Oven, Robert

    2011-09-10

    The refractive index of optical waveguides formed by electric field assisted Cu(+)-Na(+) ion exchange in two types of glass is measured. Assuming, as in a previously published work, that the observed refractive index increase is solely due to polarizability changes, the difference in electronic polarizability between Cu(+) and Na(+) ions is determined by applying the Lorentz-Lorenz equation to the data. In our work, the concentration of exchanged ions, which is a necessary input to the Lorentz-Lorenz equation, is determined by combining optical data and electrical data obtained during the exchange. Values for the electronic polarizability difference are in agreement with that in the literature. However, when a correction is made, taking into consideration the measured volume expansion and stress in the glass, the calculated electronic polarizability difference is shown to increase by 19%.

  5. Exchange, interpretation, and database-search of ion mobility spectra supported by data format JCAMP-DX

    NASA Technical Reports Server (NTRS)

    Baumback, J. I.; Davies, A. N.; Vonirmer, A.; Lampen, P. H.

    1995-01-01

    To assist peak assignment in ion mobility spectrometry it is important to have quality reference data. The reference collection should be stored in a database system which is capable of being searched using spectral or substance information. We propose to build such a database customized for ion mobility spectra. To start off with it is important to quickly reach a critical mass of data in the collection. We wish to obtain as many spectra combined with their IMS parameters as possible. Spectra suppliers will be rewarded for their participation with access to the database. To make the data exchange between users and system administration possible, it is important to define a file format specially made for the requirements of ion mobility spectra. The format should be computer readable and flexible enough for extensive comments to be included. In this document we propose a data exchange format, and we would like you to give comments on it. For the international data exchange it is important, to have a standard data exchange format. We propose to base the definition of this format on the JCAMP-DX protocol, which was developed for the exchange of infrared spectra. This standard made by the Joint Committee on Atomic and Molecular Physical Data is of a flexible design. The aim of this paper is to adopt JCAMP-DX to the special requirements of ion mobility spectra.

  6. FOURTH ANNUAL REPORT ON DISTRIBUTION STUDIES BETWEEN MELTS AND SOLID PHASES USING RADIOACTIVE TRACERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, R.; Orr, W.C.; Katz, L.

    Cerium(III) ion in a barium chloride flux does not readily exchangs with any of the ions in solid BaZrO/sub 3/ or BaTiO/sub 3/. It reacts to form new solid phases, which are identified, and does not enter the original crystal lattices at an appreciable rate. The strontium was found to exchange at a measurable rate with barium in BaTiO/sub 3/ and with the corresponding ions in alkaline-earth zirconates. Results of a series of equilibrium and rate measurements were interpreted to ahow that the exchange produces an additional solid phase, SrTiO/sub 3/, rather than the mixed phase, or solid solution, thatmore » ndght have been expected. The significance of this observation is discussed. The self-exchange of yttnium ions between a solid compound of yttrium and an alkali chloride flux in which yttrium chloride is dissolved appears in the systems studied to depend primaaily on the solubility of the solid. Exchange is rapid and complete in the case of yttrium oxychlonide, which is soluble to the extent of 0.6%, but is limited to the surface of yttrium chromium oxide, which has no measurable solubility in the flux. The introduction of yttrium ion vacancies in the lattice of yttrium chromium oxide has no detectable effect in promoting exchange. (For preceding period see NYO-3279.) (auth)« less

  7. The erosion of carbonate stone by acid rain: Laboratory and field investigations

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.

    1993-01-01

    One of the goals of research on the effects of acidic deposition on carbonate stone surfaces is to define the incremental impact of acidic deposition relative to natural weathering processes on the rate of carbonate stone erosion. If rain that impacts carbonate stone surfaces is resident on the surface long enough to approach chemical equilibrium, the incremental effect of hydrogen ion is expected to be small (i.e., 6% for a rain of pH 4.0). Under nonequilibrium (i.e., high flow rate) conditions, kinetic considerations suggest that the incremental effect of hydrogen ion deposition could be quite significant. Field run-off experiments involving the chemical analysis of rain collected from inclined stone slabs have been used to evaluate stone dissolution processes under ambient conditions of wet and dry deposition of acidic species. The stoichiometry of the reaction of stone with hydrogen ion is difficult to define from the field data due to scatter in the data attributed to hydrodynamic effects. Laboratory run-off experiments show that the stoichiometry is best defined by a reaction with H+ in which CO2 is released from the system. The baseline effect caused by water in equilibrium with atmospheric CO2 is identical in the field and in laboratory simulation. The experiments show that the solutions are close enough to equilibrium for the incremental effect of hydrogen ion to be minor (i.e., 24% for marble for a rain of pH 4.0) relative to dissolution due to water and carbonic acid reactions. Stone erosion rates based on physical measurement are approximately double the recession rates that are due to dissolution (estimated from the observed calcium content of the run-off solutions). The difference may reflect the loss of granular material not included in recession estimates based on the run-off data. Neither the field nor the laboratory run-off experiments indicate a pH dependence for the grain-removal process.

  8. Thermal dissociation of ions limits the degree of the gas-phase H/D exchange at the atmospheric pressure.

    PubMed

    Kostyukevich, Y; Kononikhin, A; Popov, I; Nikolaev, E

    2017-04-01

    We present the application of the extended desolvating capillaries for increasing the degree of the gas-phase hydrogen/deuterium exchange reaction at atmospheric pressure. The use of the extended capillaries results in the increase of the time that ions spend in the high pressure region, what leads to the significant improvement of the efficiency of the reaction. For the small protein ubiquitin, it was observed that for the same temperature, the number of exchanges increases with the decrease of the charge state so that the lowest charge state can exchange twice the number of hydrogen than the highest one. With the increase of the temperature, the difference decreases, and eventually, the number of exchanges equalizes for all charge states. The value of this temperature and the corresponding number of exchanges depend on the geometric parameters of the capillary. Further increase of the temperature leads to the thermal dissociation of the protein ion. The observed b/y fragments are identical to those produced by collision-induced dissociation performed in the ion trap. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  9. Secondary water pore formation for proton transport in a ClC exchanger revealed by an atomistic molecular-dynamics simulation.

    PubMed

    Ko, Youn Jo; Jo, Won Ho

    2010-05-19

    Several prokaryotic ClC proteins have been demonstrated to function as exchangers that transport both chloride ions and protons simultaneously in opposite directions. However, the path of the proton through the ClC exchanger, and how the protein brings about the coupled movement of both ions are still unknown. In this work, we use an atomistic molecular dynamics (MD) simulation to demonstrate that a previously unknown secondary water pore is formed inside an Escherichia coli ClC exchanger. The secondary water pore is bifurcated from the chloride ion pathway at E148. From the systematic simulations, we determined that the glutamate residue exposed to the intracellular solution, E203, plays an important role as a trigger for the formation of the secondary water pore, and that the highly conserved tyrosine residue Y445 functions as a barrier that separates the proton from the chloride ion pathways. Based on our simulation results, we conclude that protons in the ClC exchanger are conducted via a water network through the secondary water pore, and we propose a new mechanism for the coupled transport of chloride ions and protons. It has been reported that several members of ClC proteins are not just channels that simply transport chloride ions across lipid bilayers; rather, they are exchangers that transport both the chloride ion and proton in opposite directions. However, the ion transit pathways and the mechanism of the coupled movement of these two ions have not yet been unveiled. In this article, we report a new finding (to our knowledge) of a water pore inside a prokaryotic ClC protein as revealed by computer simulation. This water pore is bifurcated from the putative chloride ion, and water molecules inside the new pore connect two glutamate residues that are known to be key residues for proton transport. On the basis of our simulation results, we conclude that the water wire that is formed inside the newly found pore acts as a proton pathway, which enables us to resolve many problems that could not be addressed by previous experimental studies. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  11. In vitro dynamic solubility test: influence of various parameters.

    PubMed

    Thélohan, S; de Meringo, A

    1994-10-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)

  12. Three-grid accelerator system for an ion propulsion engine

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1994-01-01

    An apparatus is presented for an ion engine comprising a three-grid accelerator system with the decelerator grid biased negative of the beam plasma. This arrangement substantially reduces the charge-exchange ion current reaching the accelerator grid at high tank pressures, which minimizes erosion of the accelerator grid due to charge exchange ion sputtering, known to be the major accelerator grid wear mechanism. An improved method for life testing ion engines is also provided using the disclosed apparatus. In addition, the invention can also be applied in materials processing.

  13. Truly Incomplete and Complex Chromosomal Exchanges in Human Fibroblast Cells Exposed In Situ to Energetic Heavy Ions

    NASA Technical Reports Server (NTRS)

    Wu, Honglu; Durante, marco; Furusawa, Yoshiya; George, Kerry; Kawata, Tetsuya; Cucinotta, Francis A.

    2003-01-01

    Confluent human fibroblast cells (AG 1522) were irradiated with gamma rays, 490 MeV/nucleon Si, or with Fe ions at either 200 or 500 MeV/nucleon. The cells were allowed to repair at 37 C for 24 hours after exposure, and a chemically induced premature chromosome condensation (PCC) technique was used to condense chromosomes in the G2 phase of the cell cycle. Incomplete and complex exchanges were analyzed in the irradiated samples. In order to verify that chromosomal breaks were truly unrejoined, chromosome aberrations were analyzed using a combination of whole chromosome specific probes and probes specific for the telomere region of the chromosome. Results showed that the frequency of unrejoined chromosome breaks was higher after high-LET radiation, and consequently, the ratio of incomplete to complete exchanges increased steadily with LET up to 440 keV/micron, the highest LET value in the present study. For samples exposed to 200 MeV/nucleon Fe ions, chromosome aberrations were analyzed using the multicolor FISH (mFISH) technique that allow identification of both complex and truly incomplete exchanges. Results of the mFISH study showed that 0.7 and 3 Gy dose of the Fe ions produced similar ratios of complex to simple exchanges and incomplete to complete exchanges, values for which were higher than those obtained after a 6 Gy gamma exposure. After 0.7 Gy of Fe ions, most complex aberrations were found to involve three or four chromosomes, which is a likely indication of the maximum number of chromosome domains traversed by a single Fe ion track.

  14. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3T3 mouse fibroblasts.

    PubMed

    Sabbioni, Enrico; Fortaner, Salvador; Farina, Massimo; Del Torchio, Riccardo; Petrarca, Claudia; Bernardini, Giovanni; Mariani-Costantini, Renato; Perconti, Silvia; Di Giampaolo, Luca; Gornati, Rosalba; Di Gioacchino, Mario

    2014-02-01

    The mechanistic understanding of nanotoxicity requires the physico-chemical characterisation of nanoparticles (NP), and their comparative investigation relative to the corresponding ions and microparticles (MP). Following this approach, the authors studied the dissolution, interaction with medium components, bioavailability in culture medium, uptake and intracellular distribution of radiolabelled Co forms (CoNP, CoMP and Co(2+)) in Balb/3T3 mouse fibroblasts. Co(2+) first saturates the binding sites of molecules in the extracellular milieu (e.g., albumin and histidine) and on the cell surface. Only after saturation, Co(2+) is actively uptaken. CoNP, instead, are predicted to be internalised by endocytosis. Dissolution of Co particles allows the formation of Co compounds (CoNP-rel), whose mechanism of cellular internalisation is unknown. Co uptake (ranking CoMP > CoNP > Co(2+)) reached maximum at 4 h. Once inside the cell, CoNP spread into the cytosol and organelles. Consequently, massive amounts of Co ions and CoNP-rel can reach subcellular compartments normally unexposed to Co(2+). This could explain the fact that the nuclear and mitochondrial Co concentrations resulted significantly higher than those obtained with Co(2+).

  15. Synthesis, characterization and application of ion exchange resin as a slow-release fertilizer for wheat cultivation in space

    NASA Astrophysics Data System (ADS)

    Li, Bowei; Dong, Chen; Chu, Zhengpei; Zhang, Weizhe; Wang, Minjuan; Liu, Hong; Xie, Beizhen

    2016-10-01

    In addition to the bio-regenerative air revitalization, water recycling and waste management systems and their associated challenges, enhancing the crop yield with less fertilizer input for sustainable food production in space is also a challenge that needs to be overcome. The purpose of this study is to investigate the feasibility of applying ion exchange resin as a slow-release fertilizer for wheat cultivation in space. Strong-acid cationic exchange resins and weak-base anion exchange resins soaked in 1X, 5X, 10X and 15X Hoagland nutrient solutions, respectively, were used as fertilizers in clinoptilolite to cultivate wheat plants, and the morphological and physiological characteristics of the wheat plants were studied and compared with that of the wheat planted in vermiculite and nutrient solutions. The results showed that more ions were attached on the surface of the ion exchange resins as the solution concentration increased. After 14 days, the fresh weight of wheat planted in the ion exchange resin-clinoptilolite (IER-clinoptilolite) treated with 10X and 15X solutions were 190% and 192% higher than that of wheat planted in nutrient solution with the same concentration. Chlorophyll content of wheat plants cultivated in the two kinds of solid medium is significantly higher than that of liquid cultivation. The lowest peroxidase (POD) activity and malondialdehyde (MDA) contents of wheat plants cultivated in the IER-clinoptilolite appeared on the 14th day. According to all the experimental data, it's promising to produce slow-release nutrient fertilizer by using strong-acid cationic exchange resins and weak-base anion exchange resins for wheat cultivation in space.

  16. Structure-Functional Basis of Ion Transport in Sodium–Calcium Exchanger (NCX) Proteins

    PubMed Central

    Giladi, Moshe; Shor, Reut; Lisnyansky, Michal; Khananshvili, Daniel

    2016-01-01

    The membrane-bound sodium–calcium exchanger (NCX) proteins shape Ca2+ homeostasis in many cell types, thus participating in a wide range of physiological and pathological processes. Determination of the crystal structure of an archaeal NCX (NCX_Mj) paved the way for a thorough and systematic investigation of ion transport mechanisms in NCX proteins. Here, we review the data gathered from the X-ray crystallography, molecular dynamics simulations, hydrogen–deuterium exchange mass-spectrometry (HDX-MS), and ion-flux analyses of mutants. Strikingly, the apo NCX_Mj protein exhibits characteristic patterns in the local backbone dynamics at particular helix segments, thereby possessing characteristic HDX profiles, suggesting structure-dynamic preorganization (geometric arrangements of catalytic residues before the transition state) of conserved α1 and α2 repeats at ion-coordinating residues involved in transport activities. Moreover, dynamic preorganization of local structural entities in the apo protein predefines the status of ion-occlusion and transition states, even though Na+ or Ca2+ binding modifies the preceding backbone dynamics nearby functionally important residues. Future challenges include resolving the structural-dynamic determinants governing the ion selectivity, functional asymmetry and ion-induced alternating access. Taking into account the structural similarities of NCX_Mj with the other proteins belonging to the Ca2+/cation exchanger superfamily, the recent findings can significantly improve our understanding of ion transport mechanisms in NCX and similar proteins. PMID:27879668

  17. Structure-Functional Basis of Ion Transport in Sodium-Calcium Exchanger (NCX) Proteins.

    PubMed

    Giladi, Moshe; Shor, Reut; Lisnyansky, Michal; Khananshvili, Daniel

    2016-11-22

    The membrane-bound sodium-calcium exchanger (NCX) proteins shape Ca 2+ homeostasis in many cell types, thus participating in a wide range of physiological and pathological processes. Determination of the crystal structure of an archaeal NCX (NCX_Mj) paved the way for a thorough and systematic investigation of ion transport mechanisms in NCX proteins. Here, we review the data gathered from the X-ray crystallography, molecular dynamics simulations, hydrogen-deuterium exchange mass-spectrometry (HDX-MS), and ion-flux analyses of mutants. Strikingly, the apo NCX_Mj protein exhibits characteristic patterns in the local backbone dynamics at particular helix segments, thereby possessing characteristic HDX profiles, suggesting structure-dynamic preorganization (geometric arrangements of catalytic residues before the transition state) of conserved α₁ and α₂ repeats at ion-coordinating residues involved in transport activities. Moreover, dynamic preorganization of local structural entities in the apo protein predefines the status of ion-occlusion and transition states, even though Na⁺ or Ca 2+ binding modifies the preceding backbone dynamics nearby functionally important residues. Future challenges include resolving the structural-dynamic determinants governing the ion selectivity, functional asymmetry and ion-induced alternating access. Taking into account the structural similarities of NCX_Mj with the other proteins belonging to the Ca 2+ /cation exchanger superfamily, the recent findings can significantly improve our understanding of ion transport mechanisms in NCX and similar proteins.

  18. Method for treating beta-spodumene ceramics

    DOEpatents

    Day, J. Paul; Hickman, David L.

    1994-09-27

    A vapor-phase method for treating a beta-spodumene ceramic article to achieve a substitution of exchangeable hydrogen ions for the lithium present in the beta-spodumene crystals, wherein a barrier between the ceramic article and the source of exchangeable hydrogen ions is maintained in order to prevent lithium contamination of the hydrogen ion source and to generate highly recoverable lithium salts, is provided.

  19. Systematics of heavy-ion charge-exchange straggling

    NASA Astrophysics Data System (ADS)

    Sigmund, P.; Schinner, A.

    2016-10-01

    The dependence of heavy-ion charge-exchange straggling on the beam energy has been studied theoretically for several ion-target combinations. Our previous work addressed ions up to krypton, while the present study focuses on heavier ions, especially uranium. Particular attention has been paid to a multiple-peak structure which has been predicted theoretically in our previous work. For high-Z1 and high-Z2 systems, exemplified by U in Au, we identify three maxima in the energy dependence of charge-exchange straggling, while the overall magnitude is comparable with that of collisional straggling. Conversely, for U in C, charge-exchange straggling dominates, but only two peaks lie in the energy range where we presently are able to produce credible predictions. For U-Al we find good agreement with experiment in the energy range around the high-energy maximum. The position of the high-energy peak - which is related to processes in the projectile K shell - is found to scale as Z12, in contrast to the semi-empirical Z13/2 dependence proposed by Yang et al. Measurements for heavy ions in heavy targets are suggested in order to reconcile a major discrepancy between the present calculations and the frequently-used formula by Yang et al.

  20. The Determination of Calcium in Dietary Supplement Tablets by Ion-Exchange.

    ERIC Educational Resources Information Center

    Dietz, Mark L.

    1986-01-01

    An experimental simple ion-exchange experiment in which the amount of calcium present in dietary supplement tablets has been developed is described and some typical student results for several brands of tablets are presented. (JN)

  1. Ion exchange substrates for plant cultivation in extraterrestrial stations and space crafts

    NASA Astrophysics Data System (ADS)

    Soldatov, Vladimir

    2012-07-01

    Ion exchange substrates Biona were specially designed at the Belarus Academy of Sciences for plants cultivation in spacecrafts and extraterrestrial stations. The first versions of such substrates have been successfully used in several space experiments and in a long-term experiment in which three soviet test-spacemen spent a full year in hermetic cabin imitating a lunar station cabin (1067-1968). In this experiment the life support system included a section with about one ton of the ion exchange substrate, which was used to grow ten vegetations of different green cultures used in the food of the test persons. Due to failure of a number of Soviet space experiments, decay of the Soviet Union and the following economic crisis the research in this field carried out in Belarus were re-directed to the needs of usual agriculture, such as adaptation of cell cultures, growing seedlings, rootage of cuttings etc. At present ion exchange substrate Biona are produced in limited amounts at the experimental production plant of the Institute of Physical Organic Chemistry and used in a number of agricultural enterprises. New advanced substrates and technologies for their production have been developed during that time. In the presentation scientific principles of preparation and functioning of ion exchange substrates as well as results of their application for cultivation different plants are described. The ion exchange substrate is a mixture of cation and anion exchangers saturated in a certain proportions with all ions of macro and micro elements. These chemically bound ions are not released to water and become available for plants in exchange to their root metabolites. The substrates contain about 5% mass of nutrient elements far exceeding any other nutrient media for plants. They allow generating 3-5 kg of green biomass per kilogram of substrate without adding any fertilizers; they are sterile by the way of production and can be sterilized by usual methods; allow regeneration after exhausting. They can serve without additional fertilizers for several years. Their service in the course of exploitation includes only watering. By appearance granular Biona substrate are solid particles with size 0.5-2 mm. Special varieties of Biona substrates, designed for the spacecrafts to withstand zero-gravity conditions, have been made in form of continuous textile materials

  2. Photo-Cross-Linked Anion Exchange Membranes with Improved Water Management and Conductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ertem, S. Piril; Tsai, Tsung-Han; Donahue, Melissa M.

    Robust, cross-linked anion exchange membranes (AEMs) were prepared from solvent-processable polyisoprene- ran -poly(vinylbenzyltrimethylammonium chloride) (PI- ran -P- [VBTMA][Cl]) ionomers via photoinitiated thiol - ene chem- istry. Two series of membranes were prepared choosing two dithiol cross-linkers, 1,10-decanedithiol and 2,2 ' - (ethylenedioxy)diethanethiol, selected for their di ff erent hydro- phobicities. A strong correlation was found between the choice of dithiol cross-linker, water uptake, morphology, and the ion conductivity of the membranes. Results were compared with previous fi ndings of thermally cross-linked AEMs from analogous random copolymers. Comparably high chloride ion conductivities were obtained at low to moderate ion exchange capacitiesmore » (IECs) with signi fi cantly low water uptake values. It was shown that by choosing a hydrophilic cross-linker ion cluster formation may be suppressed and ion conduction improved. This study highlights that it is possible to promote ion conductivities for low IEC membranes (<1 mmol/g) by forming well- connected, ion conducting network morphology. This observation paves the way for mechanically robust ion conducting membranes with enhanced conductivities and better water management.« less

  3. Gas-Phase Hydrogen-Deuterium Exchange Labeling of Select Peptide Ion Conformer Types: a Per-Residue Kinetics Analysis.

    PubMed

    Khakinejad, Mahdiar; Kondalaji, Samaneh Ghassabi; Tafreshian, Amirmahdi; Valentine, Stephen J

    2015-07-01

    The per-residue, gas-phase hydrogen deuterium exchange (HDX) kinetics for individual amino acid residues on selected ion conformer types of the model peptide KKDDDDDIIKIIK have been examined using ion mobility spectrometry (IMS) and HDX-tandem mass spectrometry (MS/MS) techniques. The [M + 4H](4+) ions exhibit two major conformer types with collision cross sections of 418 Å(2) and 446 Å(2); the [M + 3H](3+) ions also yield two different conformer types having collision cross sections of 340 Å(2) and 367 Å(2). Kinetics plots of HDX for individual amino acid residues reveal fast- and slow-exchanging hydrogens. The contributions of each amino acid residue to the overall conformer type rate constant have been estimated. For this peptide, N- and C-terminal K residues exhibit the greatest contributions for all ion conformer types. Interior D and I residues show decreased contributions. Several charge state trends are observed. On average, the D residues of the [M + 3H](3+) ions show faster HDX rate contributions compared with [M + 4H](4+) ions. In contrast the interior I8 and I9 residues show increased accessibility to exchange for the more elongated [M + 4H](4+) ion conformer type. The contribution of each residue to the overall uptake rate showed a good correlation with a residue hydrogen accessibility score model calculated using a distance from charge site and initial incorporation site for nominal structures obtained from molecular dynamic simulations (MDS).

  4. Porous PVDF/PANI ion-exchange membrane (IEM) modified by polyvinylpyrrolidone (PVP) and lithium chloride in the application of membrane capacitive deionisation (MCDI).

    PubMed

    Zhang, Yiming; Zhang, Wei; Cházaro-Ruiz, Luis F

    2018-05-01

    In this work, polyvinylidene fluoride (PVDF)/polyaniline (PANI) heterogeneous anion-exchange membranes filled with pore-forming agents polyvinylpyrrolidone (PVP) and lithium chloride were prepared by the solution-casting technique using the solvent 1-methyl-2-pyrrolidone (NMP) and a two-step phase inversion procedure. Key properties of the as-prepared membranes, such as hydrophilicity, water content, ion exchange capacity, fixed ion concentration, conductivity and transport number were examined and compared between membranes in different conditions. The pore-forming hydrophilic additives PVP and lithium chloride to the casting solution appeared to improve the ion-exchange membranes (IEMs) by increasing the conductivity, transport number and hydrophilicity. The effects of increasing membrane drying time on the porosity of the as-prepared membranes were found to lower membrane porosity by reducing membrane water content. However, pore-forming agents were found to be able to stabilise membrane transport number with different drying times. As-prepared PVDF/PANI anion-exchange membrane with pore-forming agent is demonstrated to be a more efficient candidate for water purification (e.g. desalination) and other industrial applications.

  5. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A.

    PubMed

    Guélat, Bertrand; Ströhlein, Guido; Lattuada, Marco; Morbidelli, Massimo

    2010-08-27

    A model for the adsorption equilibrium of proteins in ion-exchange chromatography explicitly accounting for the effect of pH and salt concentration in the limit of highly diluted systems was developed. It is based on the use of DLVO theory to estimate the electrostatic interactions between the charged surface of the ion-exchanger and the proteins. The corresponding charge distributions were evaluated as a function of pH and salt concentration using a molecular approach. The model was verified for the adsorption equilibrium of lysozyme, chymotrypsinogen A and four industrial monoclonal antibodies on two strong cation-exchangers. The adsorption equilibrium constants of these proteins were determined experimentally at various pH values and salt concentrations and the model was fitted with a good agreement using three adjustable parameters for each protein in the whole range of experimental conditions. Despite the simplifications of the model regarding the geometry of the protein-ion-exchanger system, the physical meaning of the parameters was retained. 2010 Elsevier B.V. All rights reserved.

  6. Preparation of Ion Exchange Films for Solid-Phase Spectrophotometry and Solid-Phase Fluorometry

    NASA Technical Reports Server (NTRS)

    Hill, Carol M.; Street, Kenneth W.; Tanner, Stephen P.; Philipp, Warren H.

    2000-01-01

    Atomic spectroscopy has dominated the field of trace inorganic analysis because of its high sensitivity and selectivity. The advantages gained by the atomic spectroscopies come with the disadvantage of expensive and often complicated instrumentation. Solid-phase spectroscopy, in which the analyte is preconcentrated on a solid medium followed by conventional spectrophotometry or fluorometry, requires less expensive instrumentation and has considerable sensitivity and selectivity. The sensitivity gains come from preconcentration and the use of chromophore (or fluorophore) developers and the selectivity is achieved by use of ion exchange conditions that favor the analyte in combination with speciative chromophores. Little work has been done to optimize the ion exchange medium (IEM) associated with these techniques. In this report we present a method for making ion exchange polymer films, which considerably simplify the solid-phase spectroscopic techniques. The polymer consists of formaldehyde-crosslinked polyvinyl alcohol with polyacrylic acid entrapped therein. The films are a carboxylate weak cation exchanger in the calcium form. They are mechanically sturdy and optically transparent in the ultraviolet and visible portion of the spectrum, which makes them suitable for spectrophotometry and fluorometry.

  7. Electrochemical evidences and consequences of significant differences in ions diffusion rate in polyacrylate-based ion-selective membranes.

    PubMed

    Woźnica, Emilia; Mieczkowski, Józef; Michalska, Agata

    2011-11-21

    The origin and effect of surface accumulation of primary ions within the ion-selective poly(n-butyl acrylate)-based membrane, obtained by thermal polymerization, is discussed. Using a new method, based on the relation between the shape of a potentiometric plot and preconditioning time, the diffusion of copper ions in the membrane was found to be slow (the diffusion coefficient estimated to be close to 10(-11) cm(2) s(-1)), especially when compared to ion-exchanger counter ions--sodium cations diffusion (a diffusion coefficient above 10(-9) cm(2) s(-1)). The higher mobility of sodium ions than those of the copper-ionophore complex results in exposed ion-exchanger role leading to undesirably exposed sensitivity to sodium or potassium ions.

  8. Effect of Phosphate on the Oxidation of Hydroxysulfate Green Rust

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benali, Omar; Abdelmoula, Mustapha; Genin, Jean-Marie R.

    During Hydroxysulfate green rust GR(SO{sub 4}{sup 2}) oxidation, lepidocrocite and goethite were formed. The oxidation of GR(SO{sub 4}{sup 2-}) in the presence of phosphate ions, also involved the formation of poorly crystallized lepidocrocite but not that of goethite. The dissolution of lepidocrocite is inhibited by adsorption of phosphate ions as confirmed by X-ray photoelectron spectroscopy. The formation of the poorly crystallized protective layer against corrosion is effectively due to the phosphate ions which adsorb on the surface of lepidocrocite, and prevents it to turn into a well crystallized oxide.

  9. Hydrochemical evolution of sodium-sulfate and sodium-chloride groundwater beneath the Northern Chihuahuan Desert, Trans-Pecos, Texas, USA

    USGS Publications Warehouse

    Fisher, R.S.; Mullican, W. F.

    1997-01-01

    Groundwater beneath the northern Chihuahuan Desert, Trans-Pecos, Texas, USA, occurs in both carbonate and siliciclastic aquifers beneath a thick unsaturated zone and in shallow Rio Grande alluvium. Groundwater hydrochemical evolution was investigated by analyzing soils, soil leachates, bolson-fill sediments, water from the unsaturated zone, and groundwater from three major aquifers. Ionic relations, mineral saturation states, and geochemical modeling show that groundwater compositions are controlled by reactions in the unsaturated zone, mineralogy of unsaturated sediments and aquifers, position in the groundwater flow system, and extensive irrigation. Recharge to aquifers unaffected by irrigation is initially a Ca-HCO3 type as a result of dissolving carbonate surficial salts. With continued flow and mineral-water interaction, saturation with calcite and dolomite is maintained, gypsum is dissolved, and aqueous Ca and Mg are exchanged for adsorbed Na to produce a Na-SO4 water. Groundwater in Rio Grande alluvium is a Na-Cl type, reflecting river-water composition and the effects of irrigation, evapotranspiration, and surficial salt recycling. These results document two hydrochemical evolution paths for groundwater in arid lands. If recharge is dilute precipitation, significant changes in water chemistry can occur in unsaturated media, ion exchange can be as important as dissolution-precipitation reactions in determining groundwater composition, and mineral-water reactions ultimately control groundwater composition. If recharge is return flow of irrigation water that already contains appreciable solutes, mineral-water reactions are less important than irrigation-water composition in determining groundwater chemistry.

  10. Nanoscale Structure at Mineral-Fluid Interfaces

    NASA Astrophysics Data System (ADS)

    Sturchio, N. C.; Sturchio, N. C.; Fenter, P.; Cheng, L.; Park, C.; Zhang, Z.; Zhang, Z.; Nagy, K. L.; Schlegel, M. L.

    2001-12-01

    The nature of nanoparticles and their role in the natural environment is currently a subject of renewed interest. The high surface area (and surface area-to-volume ratio) of nanoparticles exerts a widespread influence on geochemical reactions and transport processes. A thorough understanding of the nanoscale world remains largely hypothetical, however, because of the challenges associated with characterizing nanoscale structures and processes. Recent insights gained from high-resolution synchrotron x-ray reflectivity measurements at the solid-fluid interfaces of macroscopic (i.e., mm-scale) mineral particles may provide relevant guidelines for expected nanoparticle surface structures. For example, at calcite-water and barite-water interfaces, undercoordinated surface cations bond with water species of variable protonation, and modest relaxations (to several hundredths of a nanometer) affect the outermost unit cells [1,2]. Undercoordinated tetrahedral ions at aluminosilicate surfaces also bond with water species, whereas interstitial or interlayer alkali or alkaline earth ions at the surface may readily exchange with hydronium or other ions; modest relaxations also affect the outermost unit cells [3,4]. Modulation of liquid water structure out to about one nanometer has been observed at the (001) cleavage surface of muscovite in deionized water, and may be present at other mineral-fluid interfaces [4]. Dissolution mechanisms at the orthoclase-water interface have been clarified by combining x-ray reflectivity and scanning force microscopy measurements [5]. Further progress in understanding nanoscale structures and processes at macroscopic mineral-water interfaces is likely to benefit nanoparticle studies. [1] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 1221-1228. [2] Fenter et al. (2001) J. Phys. Chem. B 105(34), 8112-8119. [3] Fenter et al. (2000) Geochim. Cosmochim. Acta 64, 3663-3673. [4] Cheng et al. (2001) Phys. Rev. Lett., (in press). [5] Teng et al. (2001) Geochim. Cosmochim. Acta 65, (in press).

  11. Multinuclear NMR Study of the Pressure Dependence for Carbonate Exchange in the UO 2(CO 3) 3 4-(aq) Ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rene L.; Harley, Stephen J.; Ohlin, C. André

    2011-09-16

    Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO 2(CO 3) 3 4-(aq) (see picture) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.

  12. Multinuclear NMR study of the pressure dependence for carbonate exchange in the [UO2(CO3)3]4- (aq) ion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Rene L.; Harley, S. J.; Ohlin, C. A.

    2011-09-16

    Rates of carbonate exchange by two pH-sensitive pathways between aqueous carbonate ion and UO₂(CO₃)₃⁴⁻(aq) are measured by high-pressure NMR. To accomplish this, a custom pulse sequence is employed to achieve selective inversion. Rates of chemical exchange are determined by modeling the return to equilibrium.

  13. Controls on Fe(II)-Activated Trace Element Release from Goethite and Hematite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frierdich, Andrew J.; Catalano, Jeffrey G.

    2012-03-26

    Electron transfer and atom exchange (ETAE) between aqueous Fe(II) and Fe(III) oxides induces surface growth and dissolution that affects trace element fate and transport. We have recently demonstrated Ni(II) cycling through goethite and hematite (adsorbed Ni incorporates into the mineral structure and preincorporated Ni releases to solution) during Fe(II)-Fe(III) ETAE. However, the chemical parameters affecting net trace element release remain unknown. Here, we examine the chemical controls on Ni(II) and Zn(II) release from Ni- and Zn-substituted goethite and hematite during reaction with Fe(II). Release follows a rate law consistent with surface reaction limited mineral dissolution and suggests that release occursmore » near sites of Fe(III) reductive dissolution during Fe(II)-Fe(III) ETAE. Metal substituent type affects reactivity; Zn release is more pronounced from hematite than goethite, whereas the opposite trend occurs for Ni. Buildup of Ni or Zn in solution inhibits further release but this resumes upon fluid exchange, suggesting that sustained release is possible under flow conditions. Mineral and aqueous Fe(II) concentrations as well as pH strongly affect sorbed Fe(II) concentrations, which directly control the reaction rates and final metal concentrations. Our results demonstrate that structurally incorporated trace elements are mobilized from iron oxides into fluids without abiotic or microbial net iron reduction. Such release may affect micronutrient availability, contaminant transport, and the distribution of redox-inactive trace elements in natural and engineered systems.« less

  14. Competitive migration behaviors of multiple ions and their impacts on ion-exchange resin packed microbial desalination cell.

    PubMed

    Zuo, Kuichang; Yuan, Lulu; Wei, Jincheng; Liang, Peng; Huang, Xia

    2013-10-01

    Mixed ion-exchange resins packed microbial desalination cell (R-MDC) could stabilize the internal resistance, however, the impacts of multiple ions on R-MDC performance was unclear. This study investigated the desalination performance, multiple ions migration behaviors and their impacts on R-MDCs fed with salt solution containing multiple anions and cations. Results showed that R-MDC removed multiple anions better than multiple cations with desalination efficiency of 99% (effluent conductivity <0.05 ms/cm) at hydraulic retention time of 50 h. Competitive migration order was SO4(2-)>NO3(-)>Cl(-) for anions and Ca(2+)≈Mg(2+)>NH4(+)>Na(+) for cations, jointly affected by both their molar conductivity and exchange selectivity on resins. After long-term operation, the existence of higher concentration Ca(2+) and Mg(2+) caused the electric conductivity of mixed resins decrease and scaling on the surface of cation-exchange membrane adjoined with cathode chamber, suggesting that R-MDC would be more suitable for desalination of water with lower hardness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Santanu; Dang, Liem X.

    In this paper, we present the first computer simulation of methanol exchange dynamics between the first and second solvation shells around different cations and anions. After water, methanol is the most frequently used solvent for ions. Methanol has different structural and dynamical properties than water, so its ion solvation process is different. To this end, we performed molecular dynamics simulations using polarizable potential models to describe methanol-methanol and ion-methanol interactions. In particular, we computed methanol exchange rates by employing the transition state theory, the Impey-Madden-McDonald method, the reactive flux approach, and the Grote-Hynes theory. We observed that methanol exchange occursmore » at a nanosecond time scale for Na+ and at a picosecond time scale for other ions. We also observed a trend in which, for like charges, the exchange rate is slower for smaller ions because they are more strongly bound to methanol. This work was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. The calculations were carried out using computer resources provided by the Office of Basic Energy Sciences.« less

  16. Chromosomal intrachanges induced by swift iron ions

    NASA Astrophysics Data System (ADS)

    Horstmann, M.; Durante, M.; Johannes, C.; Obe, G.

    We measured the induction of structural aberrations in human chromosome 5 induced by iron ions using the novel technique of multicolor banding in situ hybridization (mBAND). Human lymphocytes isolated from whole blood were exposed in vitro to 500 MeV/n (LET = 200 keV/μm, doses 1 or 4 Gy) Fe nuclei at the HIMAC accelerator in Chiba (Japan). Chromosomes were prematurely condensed by calyculin A after 48 h in culture and slides were painted by mBAND. We found a frequency of 0.11 and 0.57 residual breakpoints per chromosome 5 after 1 and 4 Gy Fe-ions, respectively. Inter-chromosomal exchanges were the prevalent aberration type measured at both doses, followed by terminal deletions, and by intra-chromosomal exchanges. Among intra-chromosomal exchanges, intra-arm events were more frequent than inter-arm, but a significant number of intra-changes was associated to inter-changes involving the same chromosome after 4 Gy of iron ions. These events show that the complexity of chromosomal exchanges induced by heavy ions can be higher than expected by previous FISH studies.

  17. Atomistic understanding of cation exchange in PbS nanocrystals using simulations with pseudoligands

    PubMed Central

    Fan, Zhaochuan; Lin, Li-Chiang; Buijs, Wim; Vlugt, Thijs J. H.; van Huis, Marijn A.

    2016-01-01

    Cation exchange is a powerful tool for the synthesis of nanostructures such as core–shell nanocrystals, however, the underlying mechanism is poorly understood. Interactions of cations with ligands and solvent molecules are systematically ignored in simulations. Here, we introduce the concept of pseudoligands to incorporate cation-ligand-solvent interactions in molecular dynamics. This leads to excellent agreement with experimental data on cation exchange of PbS nanocrystals, whereby Pb ions are partially replaced by Cd ions from solution. The temperature and the ligand-type control the exchange rate and equilibrium composition of cations in the nanocrystal. Our simulations reveal that Pb ions are kicked out by exchanged Cd interstitials and migrate through interstitial sites, aided by local relaxations at core–shell interfaces and point defects. We also predict that high-pressure conditions facilitate strongly enhanced cation exchange reactions at elevated temperatures. Our approach is easily extendable to other semiconductor compounds and to other families of nanocrystals. PMID:27160371

  18. Evaluating the Development of Biocatalytic Technology for the Targeted Removal of Perchlorate from Drinking Water.

    PubMed

    Hutchison, Justin M; Guest, Jeremy S; Zilles, Julie L

    2017-06-20

    Removing micropollutants is challenging in part because of their toxicity at low concentrations. A biocatalytic approach could harness the high affinity of enzymes for their substrates to address this challenge. The potential of biocatalysis relative to mature (nonselective ion exchange, selective ion exchange, and whole-cell biological reduction) and emerging (catalysis) perchlorate-removal technologies was evaluated through a quantitative sustainable design framework, and research objectives were prioritized to advance economic and environmental sustainability. In its current undeveloped state, the biocatalytic technology was approximately 1 order of magnitude higher in cost and environmental impact than nonselective ion exchange. Biocatalyst production was highly correlated with cost and impact. Realistic improvement scenarios targeting biocatalyst yield, biocatalyst immobilization for reuse, and elimination of an electron shuttle could reduce total costs to $0.034 m -3 and global warming potential (GWP) to 0.051 kg CO 2 eq m -3 : roughly 6.5% of cost and 7.3% of GWP of the background from drinking water treatment and competitive with the best performing technology, selective ion exchange. With less stringent perchlorate regulatory limits, ion exchange technologies had increased cost and impact, in contrast to biocatalytic and catalytic technologies. Targeted advances in biocatalysis could provide affordable and sustainable treatment options to protect the public from micropollutants.

  19. New ion-exchanged zeolite derivatives: antifungal and antimycotoxin properties against Aspergillus flavus and aflatoxin B1

    NASA Astrophysics Data System (ADS)

    Savi, Geovana D.; Cardoso, Willian A.; Furtado, Bianca G.; Bortolotto, Tiago; Da Agostin, Luciana O. V.; Nones, Janaína; Torres Zanoni, Elton; Montedo, Oscar R. K.; Angioletto, Elidio

    2017-08-01

    Zeolites are microporous crystalline hydrated aluminosilicates with absorbent and catalytic properties. This material can be used in many applications in stored-pest management such as: pesticide and fertilizer carriers, animal feed additives, mycotoxin binders and food packaging materials. Herein, four 4A zeolite forms were prepared by ion-exchange and their antifungal effect against Aspergillus flavus was highlighted. Additionally, the antimycotoxin activity and the aflatoxin B1 (AFB1) adsorption capacity of these zeolites as well as their toxic effects on Artemia sp. were investigated. The ion-exchanged zeolites with Li+ and Cu2+ showed the best antifungal activity against A. flavus, including effects on conidia germination and hyphae morphological alterations. Regarding to antimycotoxin activity, all zeolite samples efficiently inhibited the AFB1 production by A. flavus. However, the ion-exchanged zeolites exhibited better results than the 4A zeolite. On the other hand, the AFB1 adsorption capacity was only observed by the 4A zeolite and zeolite-Li+. Lastly, our data showed that all zeolites samples used at effective concentrations for antifungal and antimycotoxin assays (2 mg ml-1) showed no toxic effects towards Artemia sp. Results suggest that some these ion-exchanged zeolites have great potential as an effective fungicide and antimycotoxin agent for agricultural and food safety applications.

  20. Growth of oxide exchange bias layers

    DOEpatents

    Chaiken, Alison; Michel, Richard P.

    1998-01-01

    An oxide (NiO, CoO, NiCoO) antiferromagnetic exchange bias layer produced by ion beam sputtering of an oxide target in pure argon (Ar) sputtering gas, with no oxygen gas introduced into the system. Antiferromagnetic oxide layers are used, for example, in magnetoresistive readback heads to shift the hysteresis loops of ferromagnetic films away from the zero field axis. For example, NiO exchange bia layers have been fabricated using ion beam sputtering of an NiO target using Ar ions, with the substrate temperature at 200.degree. C., the ion beam voltage at 1000V and the beam current at 20 mA, with a deposition rate of about 0.2 .ANG./sec. The resulting NiO film was amorphous.

Top