Ibrahim, Sarah A; Martini, Luigi
2014-08-01
Dissolution method transfer is a complicated yet common process in the pharmaceutical industry. With increased pharmaceutical product manufacturing and dissolution acceptance requirements, dissolution testing has become one of the most labor-intensive quality control testing methods. There is an increased trend for automation in dissolution testing, particularly for large pharmaceutical companies to reduce variability and increase personnel efficiency. There is no official guideline for dissolution testing method transfer from a manual, semi-automated, to automated dissolution tester. In this study, a manual multipoint dissolution testing procedure for an enteric-coated aspirin tablet was transferred effectively and reproducibly to a fully automated dissolution testing device, RoboDis II. Enteric-coated aspirin samples were used as a model formulation to assess the feasibility and accuracy of media pH change during continuous automated dissolution testing. Several RoboDis II parameters were evaluated to ensure the integrity and equivalency of dissolution method transfer from a manual dissolution tester. This current study provides a systematic outline for the transfer of the manual dissolution testing protocol to an automated dissolution tester. This study further supports that automated dissolution testers compliant with regulatory requirements and similar to manual dissolution testers facilitate method transfer. © 2014 Society for Laboratory Automation and Screening.
Bajerski, Lisiane; Rossi, Rochele Cassanta; Dias, Carolina Lupi; Bergold, Ana Maria; Fröehlich, Pedro Eduardo
2010-06-01
A dissolution test for tablets containing 40 mg of olmesartan medoxomil (OLM) was developed and validated using both LC-UV and UV methods. After evaluation of the sink condition, dissolution medium, and stability of the drug, the method was validated using USP apparatus 2, 50 rpm rotation speed, and 900 ml of deaerated H(2)O + 0.5% sodium lauryl sulfate (w/v) at pH 6.8 (adjusted with 18% phosphoric acid) as the dissolution medium. The model-independent method using difference factor (f(1)) and similarity factor (f(2)), model-dependent method, and dissolution efficiency were employed to compare dissolution profiles. The kinetic parameters of drug release were also investigated. The obtained results provided adequate dissolution profiles. The developed dissolution test was validated according to international guidelines. Since there is no monograph for this drug in tablets, the dissolution method presented here can be used as a quality control test for OLM in this dosage form, especially in a batch to batch evaluation.
Velaga, Sitaram P; Djuris, Jelena; Cvijic, Sandra; Rozou, Stavroula; Russo, Paola; Colombo, Gaia; Rossi, Alessandra
2018-02-15
In vitro dissolution testing is routinely used in the development of pharmaceutical products. Whilst the dissolution testing methods are well established and standardized for oral dosage forms, i.e. tablets and capsules, there are no pharmacopoeia methods or regulatory requirements for testing the dissolution of orally inhaled powders. Despite this, a wide variety of dissolution testing methods for orally inhaled powders has been developed and their bio-relevance has been evaluated. This review provides an overview of the in vitro dissolution methodologies for dry inhalation products, with particular emphasis on dry powder inhalers, where the dissolution behavior of the respirable particles can have a role on duration and absorption of the drug. Dissolution mechanisms of respirable particles as well as kinetic models have been presented. A more recent biorelevant dissolution set-ups and media for studying inhalation biopharmaceutics were also reviewed. In addition, factors affecting interplay between dissolution and absorption of deposited particles in the context of biopharmaceutical considerations of inhalation products were examined. Copyright © 2017 Elsevier B.V. All rights reserved.
Lyophilic matrix method for dissolution and release studies of nanoscale particles.
Pessi, Jenni; Svanbäck, Sami; Lassila, Ilkka; Hæggström, Edward; Yliruusi, Jouko
2017-10-25
We introduce a system with a lyophilic matrix to aid dissolution studies of powders and particulate systems. This lyophilic matrix method (LM method) is based on the ability to discriminate between non-dissolved particles and the dissolved species. In the LM method the test substance is embedded in a thin lyophilic core-shell matrix. This permits rapid contact with the dissolution medium while minimizing dispersion of non-dissolved particles without presenting a substantial diffusion barrier. The method produces realistic dissolution and release results for particulate systems, especially those featuring nanoscale particles. By minimizing method-induced effects on the dissolution profile of nanopowders, the LM method overcomes shortcomings associated with current dissolution tests. Copyright © 2017 Elsevier B.V. All rights reserved.
Seeger, Nicole; Lange, Sigrid; Klein, Sandra
2015-08-01
Dissolution testing is an in vitro procedure which is widely used in quality control (QC) of solid oral dosage forms and, given that real biorelevant test conditions are applied, can also be used as a predictive tool for the in vivo performance of such formulations. However, if a dissolution method is intended to be used for such purposes, it has to deliver results that are only determined by the quality of the test product, but not by other variables. In the recent past, more and more questions were arising on how to address the effects of vibration on dissolution test results. The present study was performed to screen for the correlation of prednisone dissolution of USP Prednisone Tablets RS with vibration caused by a commercially available vibration source as well as to investigate how drug release from a range of immediate release formulations containing class 1-4 drugs of the biopharmaceutical classification scheme is affected by vibration when performing dissolution experiments at different agitation rates. Results of the present study show that the dissolution process of oral drug formulations can be affected by vibration. However, it also becomes clear that the degree of which a certain level of vibration impacts dissolution is strongly dependent on several factors such as drug properties, formulation parameters, and the design of the dissolution method. To ensure the establishment of robust and predictive dissolution test methods, the impact of variation should thus be considered in method design and validation.
Mirza, Tahseen; Liu, Qian Julie; Vivilecchia, Richard; Joshi, Yatindra
2009-03-01
There has been a growing interest during the past decade in the use of fiber optics dissolution testing. Use of this novel technology is mainly confined to research and development laboratories. It has not yet emerged as a tool for end product release testing despite its ability to generate in situ results and efficiency improvement. One potential reason may be the lack of clear validation guidelines that can be applied for the assessment of suitability of fiber optics. This article describes a comprehensive validation scheme and development of a reliable, robust, reproducible and cost-effective dissolution test using fiber optics technology. The test was successfully applied for characterizing the dissolution behavior of a 40-mg immediate-release tablet dosage form that is under development at Novartis Pharmaceuticals, East Hanover, New Jersey. The method was validated for the following parameters: linearity, precision, accuracy, specificity, and robustness. In particular, robustness was evaluated in terms of probe sampling depth and probe orientation. The in situ fiber optic method was found to be comparable to the existing manual sampling dissolution method. Finally, the fiber optic dissolution test was successfully performed by different operators on different days, to further enhance the validity of the method. The results demonstrate that the fiber optics technology can be successfully validated for end product dissolution/release testing. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association
NASA Astrophysics Data System (ADS)
Dewantara, Fauzi; Budianto, Emil
2018-04-01
Chitosan-methyl cellulose semi-IPN hydrogel is used as floating drug delivery system, and calcium carbonate also added as pore forming agent. The hydrogel network arranged by not only using biopolymer chitosan and methyl cellulose, but also the crosslink agent that is glutaraldehyde. Amoxicillin trihydrate entrapped into the polymer network with two different method, in situ loading and post loading. Furthermore both method has been tested for drug entrapment efficiency along with drug dissolution test, and the result for drug entrapment efficiency is in situ loading method has highest value of 100%, compared to post loading method which has value only 71%. Moreover, at the final time of drug dissolution test shows in situ loading method has value of 96% for total accumulative of drug dissolution, meanwhile post loading method has 72%. The value of drug dissolution test from both method is used for analyzing drug dissolution mechanism of amoxicillin trihydrate from hydrogel network with four mathematical drug mechanism models as parameter. The polymer network encounter destructive degradation causes by acid solution which used as dissolution medium, and the level of degradation is observed with optical microscope. However the result shows that degradation of the polymer network doesn't affect drug dissolution mechanism directly. Although the pore forming agent causes the pore inside the hydrogel network create interconnection and it was quite influential to drug dissolution mechanism. Interconnected pore is observed with Scanning Electron Microscope (SEM) and shows that the amount and area of interconnected pore inside the hydrogel network is increasing as drug dissolution goes on.
Development and Validation of New Discriminative Dissolution Method for Carvedilol Tablets
Raju, V.; Murthy, K. V. R.
2011-01-01
The objective of the present study was to develop and validate a discriminative dissolution method for evaluation of carvedilol tablets. Different conditions such as type of dissolution medium, volume of dissolution medium and rotation speed of paddle were evaluated. The best in vitro dissolution profile was obtained using Apparatus II (paddle), 50 rpm, 900 ml of pH 6.8 phosphate buffer as dissolution medium. The drug release was evaluated by high-performance liquid chromatographic method. The dissolution method was validated according to current ICH and FDA guidelines using parameters such as the specificity, accuracy, precision and stability were evaluated and obtained results were within the acceptable range. The comparison of the obtained dissolution profiles of three different products were investigated using ANOVA-based, model-dependent and model-independent methods, results showed that there is significant difference between the products. The dissolution test developed and validated was adequate for its higher discriminative capacity in differentiating the release characteristics of the products tested and could be applied for development and quality control of carvedilol tablets. PMID:22923865
Development and Validation of Discriminating and Biorelevant Dissolution Test for Lornoxicam Tablets
Anumolu, P. D.; Sunitha, G.; Bindu, S. Hima; Satheshbabu, P. R.; Subrahmanyam, C. V. S.
2015-01-01
The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias. PMID:26180277
Anumolu, P D; Sunitha, G; Bindu, S Hima; Satheshbabu, P R; Subrahmanyam, C V S
2015-01-01
The establishment of biorelevant and discriminating dissolution procedure for drug products with limited water solubility is a useful technique for qualitative forecasting of the in vivo behavior of formulations. It also characterizes the drug product performance in pharmaceutical development. Lornoxicam, a BCS class-II drug is a nonsteroidal antiinflammatory drug of the oxicam class, has no official dissolution media available in the literature. The objective of present work was to develop and validate a discriminating and biorelevant dissolution test for lornoxicam tablet dosage forms. To quantify the lornoxicam in dissolution samples, UV spectrophotometric method was developed using 0.01M sodium hydroxide solution as solvent at λma×376 nm. After evaluation of saturation solubility, dissolution, sink conditions and stability of lornoxicam bulk drug in different pH solutions and biorelevant media, the dissolution method was optimized using USP paddle type apparatus at 50 rpm rotation speed and 500 ml simulated intestinal fluid as discriminating and biorelevant dissolution medium. The similarity factor (f2) were investigated for formulations with changes in composition and manufacturing variations, values revealed that dissolution method having discriminating power and method was validated as per standard guidelines. The proposed dissolution method can be effectively applied for routine quality control in vitro dissolution studies of lornoxicam in tablets and helpful to pharmacopoeias.
Ozkan Cansel, Kose; Ozgur, Esim; Sevinc, Kurbanoglu; Ayhan, Savaser; Ozkan, Sibel A; Yalcin, Ozkan
2016-01-01
Pharmaceutical preparations of ezetimibe and atorvastatin are generally used to regulate the lipid level in blood. It decreases the secondary events for patients with high cholesterol and clinical cardiovascular disease such as non-fatal or fatal heart attack. There is no any pharmacopoeia method available for the dissolution testing recommended by the FDA. Development of dissolution tests method is very critical parameter especially for the pharmaceutical preparations that contain Class II drugs (slightly soluble, good permeable). In the proposed method, the effects of pH and surfactant on the dissolution of poorly water soluble combined drug therapy with a different pKa values in an in vitro environment is investigated. The content of our study was designed to answer these open-ended questions. The optimized test conditions achieved under sink conditions with USP apparatus 2 at a paddle rotation speed of 75 rpm and 900 ml in 0.01 M Acetate buffer (pH= 6.8) containing 0.45% SDS as a dissolution medium. Quantification of dissolution samples were analyzed with a new fully validated RP-LC method with UV detection at 242 nm.
Errors in reporting on dissolution research: methodological and statistical implications.
Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria
2017-02-01
In vitro dissolution testing provides useful information at clinical and preclinical stages of the drug development process. The study includes pharmaceutical papers on dissolution research published in Polish journals between 2010 and 2015. They were analyzed with regard to information provided by authors about chosen methods, performed validation, statistical reporting or assumptions used to properly compare release profiles considering the present guideline documents addressed to dissolution methodology and its validation. Of all the papers included in the study, 23.86% presented at least one set of validation parameters, 63.64% gave the results of the weight uniformity test, 55.68% content determination, 97.73% dissolution testing conditions, and 50% discussed a comparison of release profiles. The assumptions for methods used to compare dissolution profiles were discussed in 6.82% of papers. By means of example analyses, we demonstrate that the outcome can be influenced by the violation of several assumptions or selection of an improper method to compare dissolution profiles. A clearer description of the procedures would undoubtedly increase the quality of papers in this area.
Kotla, Niranjan G; Singh, Sima; Maddiboyina, Balaji; Sunnapu, Omprakash; Webster, Thomas J
2016-01-01
The aim of this study was to develop a novel microbially triggered and animal-sparing dissolution method for testing of nanorough polysaccharide-based micron granules for colonic drug delivery. In this method, probiotic cultures of bacteria present in the colonic region were prepared and added to the dissolution media and compared with the performance of conventional dissolution methodologies (such as media with rat cecal and human fecal media). In this study, the predominant species (such as Bacteroides, Bifidobacterium, Lactobacillus species, Eubacterium and Streptococcus) were cultured in 12% w/v skimmed milk powder and 5% w/v grade "A" honey. Approximately 10(10)-10(11) colony forming units m/L of probiotic culture was added to the dissolution media to test the drug release of polysaccharide-based formulations. A USP dissolution apparatus I/II using a gradient pH dissolution method was used to evaluate drug release from formulations meant for colonic drug delivery. Drug release of guar gum/Eudragit FS30D coated 5-fluorouracil granules was assessed under gastric and small intestine conditions within a simulated colonic environment involving fermentation testing with the probiotic culture. The results with the probiotic system were comparable to those obtained from the rat cecal and human fecal-based fermentation model, thereby suggesting that a probiotic dissolution method can be successfully applied for drug release testing of any polysaccharide-based oral formulation meant for colonic delivery. As such, this study significantly adds to the nanostructured biomaterials' community by elucidating an easier assay for colonic drug delivery.
Deng, Jia; Staufenbiel, Sven; Bodmeier, Roland
2017-07-15
The purpose of this study was to discriminate three crystal forms of carbamazepine (a BCS II drug) by in vitro dissolution testing and to correlate in vitro data with published in vivo data. A biphasic dissolution system (phosphate buffer pH6.8 and octanol) was used to evaluate the dissolution of the three polymorphic forms and to compare it with conventional single phase dissolution tests performed under sink and non-sink conditions. Similar dissolution profiles of three polymorphic forms were observed in the conventional dissolution test under sink conditions. Although a difference in dissolution was seen in the single phase dissolution test under non-sink conditions as well as in the aqueous phase of the biphasic test, little relevance for in vivo data was observed. In contrast, the biphasic dissolution system could discriminate between the different polymorphic forms in the octanol phase with a ranking of form III>form I>dihydrate form. This was in agreement with the in vivo performance. The dissolved drug available for oral absorption, which was dominated by dissolution and solution-mediated phase transformation, could be reflected in the biphasic dissolution test. Moreover, a good correlation was established between in vitro dissolution in the octanol phase of the biphasic test and in vivo pharmacokinetic data (R 2 =0.99). The biphasic dissolution method is a valuable tool to discriminate between different crystal forms in the formulations of poorly soluble drugs. Copyright © 2017. Published by Elsevier B.V.
Rajan, Sekar; Colaco, Socorrina; Ramesh, N; Meyyanathan, Subramania Nainar; Elango, K
2014-02-01
This study describes the development and validation of dissolution tests for sustained release Dextromethorphan hydrobromide tablets using an HPLC method. Chromatographic separation was achieved on a C18 column utilizing 0.5% triethylamine (pH 7.5) and acetonitrile in the ratio of 50:50. The detection wavelength was 280 nm. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The suitable conditions were clearly decided after testing sink conditions, dissolution medium and agitation intensity. The most excellent dissolution conditions tested, for the Dextromethorphan hydrobromide was applied to appraise the dissolution profiles. The method was validated and response was found to be linear in the drug concentration range of 10-80 microg mL(-1). The method was established to have sufficient intermediate precision as similar separation was achieved on another instrument handled by different operators. Mean Recovery was 101.82%. Intra precisions for three different concentrations were 1.23, 1.10 0.72 and 1.57, 1.69, 0.95 and inter run precisions were % RSD 0.83, 1.36 and 1.57%, respectively. The method was successfully applied for dissolution study of the developed Dextromethorphan hydrobromide tablets.
Discriminative Dissolution Method for Benzoyl Metronidazole Oral Suspension.
da Silva, Aline Santos; da Rosa Silva, Carlos Eduardo; Paula, Fávero Reisdorfer; da Silva, Fabiana Ernestina Barcellos
2016-06-01
A dissolution method for benzoyl metronidazole (BMZ) oral suspensions was developed and validated using a high-performance liquid chromatography (HPLC) method. After determination of sink conditions, dissolution profiles were evaluated using different dissolution media and agitation speeds. The sample insertion mode in dissolution media was also evaluated. The best conditions were obtained using a paddle, 50 rpm stirring speed, simulated gastric fluid (without pepsin) as the dissolution medium, and sample insertion by a syringe. These conditions were suitable for providing sink conditions and discriminatory power between different formulations. Through the tested conditions, the results can be considered specific, linear, precise, accurate, and robust. The dissolution profiles of five samples were compared using the similarity factor (f 2) and dissolution efficiency. The dissolution kinetics were evaluated and described by the Weibull model. Whereas there is no monograph for this pharmaceutical formulation, the dissolution method proposed can be considered suitable for quality control and dissolution profile comparison of different commercial formulations.
Machado, J C; Lange, A D; Todeschini, V; Volpato, N M
2014-02-01
A dissolution method to analyze atorvastatin tablets using in vivo data for RP and test pilot (PB) was developed and validated. The appropriate conditions were determined after solubility tests using different media, and sink conditions were established. The conditions used were equipment paddle at 50 rpm and 900 mL of potassium phosphate buffer pH 6.0 as dissolution medium. In vivo release profiles were obtained from the bioequivalence study of RP and the generic candidate PB. The fraction of dose absorbed was calculated using the Loo-Riegelman method. It was necessary to use a scale factor of time similar to 6.0, to associate the values of absorbed fraction and dissolved fraction, obtaining an in vivo-in vitro correlation level A. The dissolution method to quantify the amount of drug dissolved was validated using high-performance liquid chromatography and ultraviolet spectrophotometry, and validated according to the USP protocol. The discriminative power of dissolution conditions was assessed using two different pilot batches of atorvastatin tablets (PA and PB) and RP. The dissolution test was validated and may be used as a discriminating method in quality control and in the development of the new formulations.
Üstündağ, Özgür; Dinç, Erdal; Özdemir, Nurten; Tilkan, M Günseli
2015-01-01
In the development strategies of new drug products and generic drug products, the simultaneous in-vitro dissolution behavior of oral dosage formulations is the most important indication for the quantitative estimation of efficiency and biopharmaceutical characteristics of drug substances. This is to force the related field's scientists to improve very powerful analytical methods to get more reliable, precise and accurate results in the quantitative analysis and dissolution testing of drug formulations. In this context, two new chemometric tools, partial least squares (PLS) and principal component regression (PCR) were improved for the simultaneous quantitative estimation and dissolution testing of zidovudine (ZID) and lamivudine (LAM) in a tablet dosage form. The results obtained in this study strongly encourage us to use them for the quality control, the routine analysis and the dissolution test of the marketing tablets containing ZID and LAM drugs.
Jasińska-Stroschein, Magdalena; Kurczewska, Urszula; Orszulak-Michalak, Daria
2017-05-01
When performing in vitro dissolution testing, especially in the area of biowaivers, it is necessary to follow regulatory guidelines to minimize the risk of an unsafe or ineffective product being approved. The present study examines model-independent and model-dependent methods of comparing dissolution profiles based on various compared and contrasted international guidelines. Dissolution profiles for immediate release solid oral dosage forms were generated. The test material comprised tablets containing several substances, with at least 85% of the labeled amount dissolved within 15 min, 20-30 min, or 45 min. Dissolution profile similarity can vary with regard to the following criteria: time point selection (including the last time point), coefficient of variation, and statistical method selection. Variation between regulatory guidance and statistical methods can raise methodological questions and result potentially in a different outcome when reporting dissolution profile testing. The harmonization of existing guidelines would address existing problems concerning the interpretation of regulatory recommendations and research findings. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer-Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible.
Uebbing, Lukas; Klumpp, Lukas; Webster, Gregory K; Löbenberg, Raimar
2017-01-01
Drug product performance testing is an important part of quality-by-design approaches, but this process often lacks the underlying mechanistic understanding of the complex interactions between the disintegration and dissolution processes involved. Whereas a recent draft guideline by the US Food and Drug Administration (FDA) has allowed the replacement of dissolution testing with disintegration testing, the mentioned criteria are not globally accepted. This study provides scientific justification for using disintegration testing rather than dissolution testing as a quality control method for certain immediate release (IR) formulations. A mechanistic approach, which is beyond the current FDA criteria, is presented. Dissolution testing via United States Pharmacopeial Convention Apparatus II at various paddle speeds was performed for immediate and extended release formulations of metronidazole. Dissolution profile fitting via DDSolver and dissolution profile predictions via DDDPlus™ were performed. The results showed that Fickian diffusion and drug particle properties (DPP) were responsible for the dissolution of the IR tablets, and that formulation factors (eg, coning) impacted dissolution only at lower rotation speeds. Dissolution was completely formulation controlled if extended release tablets were tested and DPP were not important. To demonstrate that disintegration is the most important dosage form attribute when dissolution is DPP controlled, disintegration, intrinsic dissolution and dissolution testing were performed in conventional and disintegration impacting media (DIM). Tablet disintegration was affected by DIM and model fitting to the Korsmeyer–Peppas equation showed a growing effect of the formulation in DIM. DDDPlus was able to predict tablet dissolution and the intrinsic dissolution profiles in conventional media and DIM. The study showed that disintegration has to occur before DPP-dependent dissolution can happen. The study suggests that disintegration can be used as performance test of rapidly disintegrating tablets beyond the FDA criteria. The scientific criteria and justification is that dissolution has to be DPP dependent, originated from active pharmaceutical ingredient characteristics and formulations factors have to be negligible. PMID:28442890
Fang, Jiang B; Robertson, Vivian K; Rawat, Archana; Flick, Tawnya; Tang, Zhe J; Cauchon, Nina S; McElvain, James S
2010-10-04
Dissolution testing is frequently used to determine the rate and extent at which a drug is released from a dosage form, and it plays many important roles throughout drug product development. However, the traditional dissolution approach often emphasizes its application in quality control testing and usually strives to obtain 100% drug release. As a result, dissolution methods are not necessarily biorelevant and meaningful application of traditional dissolution methods in the early phases of drug product development can be very limited. This article will describe the development of a biorelevant in vitro dissolution method using USP apparatus 4, biorelevant media, and real-time online UV analysis. Several case studies in the areas of formulation selection, lot-to-lot variability, and food effect will be presented to demonstrate the application of this method in early phase formulation development. This biorelevant dissolution method using USP apparatus 4 provides a valuable tool to predict certain aspects of the in vivo drug release. It can be used to facilitate the formulation development/selection for pharmacokinetic (PK) and clinical studies. It may also potentially be used to minimize the number of PK studies, and to aid in the design of more efficient PK and clinical studies.
Purohit, Hitesh S; Trasi, Niraj S; Sun, Dajun D; Chow, Edwin C Y; Wen, Hong; Zhang, Xinyuan; Gao, Yi; Taylor, Lynne S
2018-05-01
Delivering a drug in amorphous form in a formulated product is a strategy used to enhance the apparent solubility of a drug substance and its oral bioavailability. Drug crystallization in such products may occur during the manufacturing process or on storage, reducing the solubility advantage of the amorphous drug. However, the impact of partial drug crystallization in the drug product on the resulting bioavailability and pharmacokinetics is unknown. In this study, dissolution testing of commercial tacrolimus capsules (which are formulated to contain amorphous drug), both fresh and those containing different amounts of crystalline drug, was conducted using both United States Pharmacopeia and noncompendial dissolution tests with different dissolution media and volumes. A physiologically based pharmacokinetic (PBPK) absorption model was developed to predict the impact of crystallinity extent on the oral absorption of the products and to evaluate the discriminatory ability of the different dissolution methods. Virtual bioequivalence simulations between partially crystallized tacrolimus capsules versus fresh Prograf or generic tacrolimus capsules were performed using the PBPK model and in vitro dissolution data of the various fresh and partially crystallized capsules under United States Pharmacopeia and noncompendial dissolution conditions. The results suggest that compendial dissolution tests may not be sufficiently discriminatory with respect to the presence of crystallinity in an amorphous formulation. Nonsink dissolution tests using lower dissolution volumes generate more discriminatory profiles that predict different pharmacokinetics of tacrolimus capsules containing different extents of drug crystallinity. In conclusion, the PBPK modeling approach can be used to assess the impact of partial drug crystallinity in the formulated product and to guide the development of appropriate dissolution methods. Copyright © 2018 American Pharmacists Association®. All rights reserved.
ERIC Educational Resources Information Center
Kimaru, Irene; Koether, Marina; Chichester, Kimberly; Eaton, Lafayette
2017-01-01
Analytical method transfer (AMT) and dissolution testing are important topics required in industry that should be taught in analytical chemistry courses. Undergraduate students in senior level analytical chemistry laboratory courses at Kennesaw State University (KSU) and St. John Fisher College (SJFC) participated in development, validation, and…
Tajiri, Tomokazu; Morita, Shigeaki; Sakamoto, Ryosaku; Mimura, Hisahi; Ozaki, Yukihiro; Reppas, Christos; Kitamura, Satoshi
2015-07-25
The objective of this study was to develop an in vitro dissolution test method with discrimination ability for an extended-release solid dispersion matrix of a lipophilic drug using the United States Pharmacopeia (USP) Apparatus 4, flow-through cell apparatus. In the open-loop configuration, the sink condition was maintained by manipulating the flow rate of the dissolution medium. To evaluate the testing conditions, the drug release mechanism from an extended-release solid dispersion matrix containing hydrophobic and hydrophilic polymers was investigated. As the hydroxypropyl methylcellulose (HPMC) maintained concentrations of indomethacin higher than the solubility in a dissolution medium, the release of HPMC into the dissolution medium was also quantified using size-exclusion chromatography. We concluded that the USP Apparatus 4 is suitable for application to an in vitro dissolution method for orally administered extended-release solid dispersion matrix formulations containing poorly water-soluble drugs. Copyright © 2015 Elsevier B.V. All rights reserved.
Wu, Chunnuan; Liu, Yan; He, Zhonggui; Sun, Jin
2016-01-01
To assess in vivo behavior through in vitro method, the dissolution test is mostly used, both for quality control (QC) and for development purpose. In view of the fact that a dissolution test can hardly achieve two goals at the same time, the design of dissolution testing generally varies along with the development stage of drug products and therefore the selection of dissolution media may change with the goals of the dissolution test. To serve the QC purpose, a dissolution medium is designed to provide a sink condition; for development purpose, the dissolution medium is required to simulate the physiological conditions in the gastrointestinal tract as far as possible. In this review, we intended to provide an initial introduction to the various dissolution media applied for QC and formulation development purposes for poorly water soluble drugs. We focused on these methods like addition of cosolvents, surfactants and utilization of biphasic media, applied to provide sink conditions which are difficult to be achieved by simple aqueous buffers for lipophilic drugs, and introduced the development of physiologically relevant media for human and animals like dog and rat with respect to the choice of buffers, bile salts, lipids and so on. In addition, we further discussed the influence of biorelevant dissolution media on the modification of drug Biopharmaceutical Classification System (BCS) classification, especially for BCS class II drugs with low solubility and high permeability, the solubility of which is relatively sensitive to the presence of bile salts and lipids.
Stupák, Ivan; Pavloková, Sylvie; Vysloužil, Jakub; Dohnal, Jiří; Čulen, Martin
2017-11-23
Biorelevant dissolution instruments represent an important tool for pharmaceutical research and development. These instruments are designed to simulate the dissolution of drug formulations in conditions most closely mimicking the gastrointestinal tract. In this work, we focused on the optimization of dissolution compartments/vessels for an updated version of the biorelevant dissolution apparatus-Golem v2. We designed eight compartments of uniform size but different inner geometry. The dissolution performance of the compartments was tested using immediate release caffeine tablets and evaluated by standard statistical methods and principal component analysis. Based on two phases of dissolution testing (using 250 and 100 mL of dissolution medium), we selected two compartment types yielding the highest measurement reproducibility. We also confirmed a statistically ssignificant effect of agitation rate and dissolution volume on the extent of drug dissolved and measurement reproducibility.
Kulinowski, Piotr; Hudy, Wiktor; Mendyk, Aleksander; Juszczyk, Ewelina; Węglarz, Władysław P; Jachowicz, Renata; Dorożyński, Przemysław
2016-06-01
In the last decade, imaging has been introduced as a supplementary method to the dissolution tests, but a direct relationship of dissolution and imaging data has been almost completely overlooked. The purpose of this study was to assess the feasibility of relating magnetic resonance imaging (MRI) and dissolution data to elucidate dissolution profile features (i.e., kinetics, kinetics changes, and variability). Commercial, hydroxypropylmethyl cellulose-based quetiapine fumarate controlled-release matrix tablets were studied using the following two methods: (i) MRI inside the USP4 apparatus with subsequent machine learning-based image segmentation and (ii) dissolution testing with piecewise dissolution modeling. Obtained data were analyzed together using statistical data processing methods, including multiple linear regression. As a result, in this case, zeroth order release was found to be a consequence of internal structure evolution (interplay between region's areas-e.g., linear relationship between interface and core), which eventually resulted in core disappearance. Dry core disappearance had an impact on (i) changes in dissolution kinetics (from zeroth order to nonlinear) and (ii) an increase in variability of drug dissolution results. It can be concluded that it is feasible to parameterize changes in micro/meso morphology of hydrated, controlled release, swellable matrices using MRI to establish a causal relationship between the changes in morphology and drug dissolution. Presented results open new perspectives in practical application of combined MRI/dissolution to controlled-release drug products.
Yoshida, Hiroyuki; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro
2017-01-01
The current Japanese Ministry of Health Labour and Welfare (MHLW)'s Guideline for Bioequivalence Studies of Generic Products uses averaged dissolution rates for the assessment of dissolution similarity between test and reference formulations. This study clarifies how the application of model-independent multivariate confidence region procedure (Method B), described in the European Medical Agency and U.S. Food and Drug Administration guidelines, affects similarity outcomes obtained empirically from dissolution profiles with large variations in individual dissolution rates. Sixty-one datasets of dissolution profiles for immediate release, oral generic, and corresponding innovator products that showed large variation in individual dissolution rates in generic products were assessed on their similarity by using the f 2 statistics defined in the MHLW guidelines (MHLW f 2 method) and two different Method B procedures, including a bootstrap method applied with f 2 statistics (BS method) and a multivariate analysis method using the Mahalanobis distance (MV method). The MHLW f 2 and BS methods provided similar dissolution similarities between reference and generic products. Although a small difference in the similarity assessment may be due to the decrease in the lower confidence interval for expected f 2 values derived from the large variation in individual dissolution rates, the MV method provided results different from those obtained through MHLW f 2 and BS methods. Analysis of actual dissolution data for products with large individual variations would provide valuable information towards an enhanced understanding of these methods and their possible incorporation in the MHLW guidelines.
NASA Astrophysics Data System (ADS)
Fimantari, Khansa; Budianto, Emil
2018-04-01
Helicobacterpylori infection can be treated using trihydrate amoxicillin. However, this treatment is not effective enough, as the conventional dosage treatment has a relatively short retention time in the human stomach. In the present study, the amoxicillin trihydrate drug will be encapsulated into a semi-IPN K-PNVP hydrogel matrix with 7,5% KHCO3 as a pore-forming agent. The encapsulated drug is tested with in vitro method to see the efficiency of its encapsulation and dissolution. The hydrogel in situ loading produces an encapsulation efficiency value. The values of the encapsulation efficiency are 95% and 98%, while post loading hydrogel yields an encapsulation efficiency value is 77% and the dissolution is 84%. The study of drug dissolution mechanism was done by using mathematical equation model to know its kinetics and its mechanism of dissolution. The post loading hydrogel was done by using thefirst-order model, while hydrogel in situ loading used Higuchi model. The Korsmeyer-Peppas model shows that post loading hydrogel dissolution mechanism is a mixture of diffusion and erosion, and in situ loading hydrogel in the form of diffusion. It is supported by the results of hydrogel characterization, before and after dissolution test with an optical microscope. The results of the optical microscope show that the hydrogel surface before and after the dissolution tested for both methods shows the change becomes rougher.
In-vitro Drug Dissolution Studies in Medicinal Compounds.
Bozal-Palabiyik, Burcin; Uslu, Bengi; Ozkan, Yalcin; Ozkan, Sibel A
2018-03-22
After oral administration, drug absorption from solid dosage forms depend on the release of the drug active compounds from the dosage form, the dissolution or solubilization of the drug under physiological conditions, and the permeability across the gastrointestinal tract. Dissolution testing is an essential part of designing more effective solid dosage forms in pharmaceutical industry. Moreover dissolution testing contributes to the selection of appropriate formulation excipients for improving the dosage form efficiency. This study aims to analyze in-vitro drug dissolution testing in solid dosage forms since 2010 in order to present a comprehensive outlook of recent trends. In doing that the previous studies in the literature are summarized in the form of a table to demonstrate the apparatuses used for dissolution testing, the media in which the solid dosage form is dissolved, the method preferred for analysis from dissolution media, the conditions of analyses and the results obtained. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Grady, Haiyan; Elder, David; Webster, Gregory K; Mao, Yun; Lin, Yiqing; Flanagan, Talia; Mann, James; Blanchard, Andy; Cohen, Michael J; Lin, Judy; Kesisoglou, Filippos; Hermans, Andre; Abend, Andreas; Zhang, Limin; Curran, David
2018-01-01
This article intends to summarize the current views of the IQ Consortium Dissolution Working Group, which comprises various industry companies, on the roles of dissolution testing throughout pharmaceutical product development, registration, commercialization, and beyond. Over the past 3 decades, dissolution testing has evolved from a routine and straightforward test as a component of end-product release into a comprehensive set of tools that the developer can deploy at various stages of the product life cycle. The definitions of commonly used dissolution approaches, how they relate to one another and how they may be applied in modern drug development, and life cycle management is described in this article. Specifically, this article discusses the purpose, advantages, and limitations of quality control, biorelevant, and clinically relevant dissolution methods. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Cardot, J-M; Roudier, B; Schütz, H
2017-07-01
The f 2 test is generally used for comparing dissolution profiles. In cases of high variability, the f 2 test is not applicable, and the Multivariate Statistical Distance (MSD) test is frequently proposed as an alternative by the FDA and EMA. The guidelines provide only general recommendations. MSD tests can be performed either on raw data with or without time as a variable or on parameters of models. In addition, data can be limited-as in the case of the f 2 test-to dissolutions of up to 85% or to all available data. In the context of the present paper, the recommended calculation included all raw dissolution data up to the first point greater than 85% as a variable-without the various times as parameters. The proposed MSD overcomes several drawbacks found in other methods.
Skripnik, K K S; Riekes, M K; Pezzini, B R; Cardoso, S G; Stulzer, H K
2017-07-01
In the absence of an official dissolution method for modified-release tablets of gliclazide, dissolution parameters, such as apparatuses (1, 2, and 3), rotation speeds, pH, and composition of the dissolution medium were investigated. The results show that although the drug presents a pH-mediated solubility (pH 7.0 > 6.8 > 6.4 > 6.0 > 5.5 > 4.5), the in vitro release of the studied tablets was not dependent on this parameter, despite of the apparatus tested. On the other hand, the rotation speed demonstrated a greater influence (100 rpm >50 rpm). Using similar hydrodynamic conditions, the three different apparatuses were compared in pH 6.8 and provided the following trend: apparatus 1 at 100 rpm >2 at 50 rpm ≈3 at 10 dpm. As a complete, but slow release is expected from modified-release formulations, apparatus 2, in phosphate buffer pH 6.8 and 100 rpm, were selected as the optimized dissolution method. In comparison to apparatus 1 under the same conditions, the paddle avoids the stickiness of formulation excipients at the mesh of the basket, which could prejudice the release of gliclazide. Results obtained with biorelevant medium through the developed dissolution method were similar to the buffer solution pH 6.8. The application of the optimized method as a quality control test between two different brands of gliclazide modified-release tablets showed that both dissolution profiles were considered similar by the similarity factor (f2 = 51.8). The investigation of these dissolution profiles indicated a dissolution kinetic following first-order model.
Andreas, Cord J; Tomaszewska, Irena; Muenster, Uwe; van der Mey, Dorina; Mueck, Wolfgang; Dressman, Jennifer B
2016-08-01
Food intake is known to have various effects on gastrointestinal luminal conditions in terms of transit times, hydrodynamic forces and/or luminal fluid composition and can therefore affect the dissolution behavior of solid oral dosage forms. The aim of this study was to investigate and detect the dosage form-dependent food effect that has been observed for two extended-release formulations of nifedipine using in vitro dissolution tests. Two monolithic extended release formulations, the osmotic pump Adalat® XL 60mg and matrix-type Adalat® Eins 30mg formulation, were investigated with biorelevant dissolution methods using the USP apparatus III and IV under both simulated prandial states, and their corresponding quality control dissolution method. In vitro data were compared to published and unpublished in vivo data using deconvolution-based in vitro - in vivo correlation (IVIVC) approaches. Quality control dissolution methods tended to overestimate the dissolution rate due to the excessive solubilizing capabilities of the sodium dodecyl sulfate (SDS)-containing dissolution media. Using Level II biorelevant media the dosage form dependent food effect for nifedipine was described well when studied with the USP apparatus III, whereas the USP apparatus IV failed to detect the positive food effect for the matrix-type dosage form. It was demonstrated that biorelevant methods can serve as a useful tool during formulation development as they were able to qualitatively reflect the in vivo data. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and validation of a dissolution test for lodenafil carbonate based on in vivo data.
Codevilla, Cristiane Franco; Castilhos, Tamara dos Santos; Cirne, Carolina Araújo; Froehlich, Pedro Eduardo; Bergold, Ana Maria
2014-04-01
Lodenafil carbonate is a phosphodiesterase type 5 inhibitor used for the treatment of erectile dysfunction. Currently, there is no dissolution test reported for lodenafil carbonate and this drug is not listed in any pharmacopoeia. The present study focused on the development and validation of a dissolution test for lodenafil carbonate tablets, using a simulated absorption profile based on in vivo data. The appropriate conditions were determined after testing sink conditions. Different conditions as medium, surfactant concentration and rotation speed were evaluated. The percentage of dose absorbed was calculated by deconvolution, using the Wagner-Nelson method. According to the obtained results, the use of 0.1 M HCl + 1.5% SLS (900 mL, at 37 + 0.5 °C) as the dissolution medium, paddles at 25 rpm were considered adequate. The samples were quantified by UV spectroscopy at 295 nm and the validation was performed according to international guidelines. The method showed specificity, linearity, accuracy and precision, within the acceptable range. Kinetics of drug release was better described by the first-order model. The proposed dissolution test can be used for the routine quality control of lodenafil carbonate in tablets.
Yadav, Ankit Kumar; Sadora, Manik; Singh, Sachin Kumar; Gulati, Monica; Maharshi, Peddi; Sharma, Abhinav; Kumar, Bimlesh; Rathee, Harish; Ghai, Deepak; Malik, Adil Hussain; Garg, Varun; Gowthamrajan, K
2017-01-01
To overcome the limitations of the conventionally used methods for evaluation of orally administered colon-targeted delivery systems, a novel dissolution method using probiotics has been recently reported. In the present study, universal suitability of this medium composed of five different probiotics is established. Different delivery systems - mini tablets, liquisolid compacts, and microspheres coated with different polysaccharides - were prepared and subjected to sequential dissolution testing in medium with and without microbiota. The results obtained from fluid thioglycollate medium (FTM)-based probiotic medium for all the polysaccharide-based formulations showed statistically similar dissolution profile to that in the rat and goat cecal content media. Hence, it can be concluded that the developed FTM-based probiotic medium, once established, may eliminate the need for further animal sacrifice in the dissolution testing of polysaccharide-based colon-targeted delivery system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, William D.; Hay, Michael S.
Solubility testing with actual High Level Waste tank sludge has been conducted in order to evaluate several alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge sluicing efforts. Tests were conducted with archived Savannah River Site (SRS) radioactive sludge solids that had been retrieved from Tank 5F in order to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent toward dissolving the bulk non-radioactive waste components. Solubility tests were performed by direct sludge contact with the oxalic/nitric acid reagent and with sludge that had beenmore » pretreated and acidified with dilute nitric acid. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid following current baseline tank chemical cleaning methods. One goal of testing with the optimized reagent was to compare the total amounts of oxalic acid and water required for sludge dissolution using the baseline and optimized cleaning methods. A second objective was to compare the two methods with regard to the dissolution of actinide species known to be drivers for SRS tank closure Performance Assessments (PA). Additionally, solubility tests were conducted with Tank 5 sludge using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species.« less
Physiological Parameters for Oral Delivery and In vitro Testing
Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.
2010-01-01
Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152
Deng, Jia; Staufenbiel, Sven; Hao, Shilei; Wang, Bochu; Dashevskiy, Andriy; Bodmeier, Roland
2017-06-10
The purpose of this study was to discriminate the release behavior from three differently formulated racecadotril (BCS II) granules and to establish an in vitro-in vivo correlation. Three granule formulations of the lipophilic drug were prepared with equivalent composition but prepared with different manufacturing processes (dry granulation, wet granulation with or without binder). In vitro release of the three granules was investigated using a biphasic dissolution system (phosphate buffer pH6.8 and octanol) and compared to the conventional single phase USP II dissolution test performed under sink and non-sink conditions. In vivo studies with each granule formulation were performed in rats. Interestingly, the granule formulations exhibited pronouncedly different behavior in the different dissolution systems depending on different wetting and dissolution conditions. Single phase USP II dissolution tests lacked discrimination. In contrast, remarkable discrimination between the granule formulations was observed in the octanol phase of biphasic dissolution system with a rank order of release from granules prepared by wet granulation with binder>wet granulation without binder>dry granulation. This release order correlated well with the wettability of these granules. An excellent correlation was also established between in vitro release in the octanol phase of the biphasic test and in vivo data (R 2 =0.999). Compared to conventional dissolution methods, the biphasic method provides great potential to discriminate between only minor formulation and process changes within the same dosage form for poorly soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Initial dissolution kinetics of cocrystal of carbamazepine with nicotinamide.
Hattori, Yusuke; Sato, Maiko; Otsuka, Makoto
2015-11-01
Objectives of this study are investigating the initial dissolution kinetics of the cocrystal of carbamazepine (CBZ) with nicotinamide (NIC) and understanding its initial dissolution process. Cocrystal solids of CBZ with NIC were prepared by co-milling and solvent evaporation methods. The formation of cocrystal solid was verified via X-ray diffraction measurement. Dissolution tests of the solids were performed using an original flow cell and ultraviolet-visible spectroscopic detector. The spectra monitored in situ were analyzed to determine the dissolved compounds separately using the classical least squares regression method. The initial dissolution profiles were interpreted using simultaneous model of dissolution and phase changes. In the initial dissolution, CBZ in the cocrystal structure dissolved in water and it was suggested that CBZ reached a metastable intermediate state simultaneously with dissolution. The cocrystal solid prepared by solvent evaporation provided a higher rate constant of the phase change than that prepared by co-milling. Our results thus support the use of evaporation as the method of choice to produce ordered cocrystal structures. We suggest that CBZ forms dihydrate during the dissolution process; however, during the initial phase of dissolution, CBZ changes to a metastable intermediate phase. © 2015 Royal Pharmaceutical Society.
Hori, Seiichi; Kawada, Tsubasa; Kogure, Sanae; Yabu, Shinako; Mori, Kenji; Akimoto, Masayuki
2017-02-01
The release characteristics of lipophilic suppositories containing acetaminophen (AAP) were examined using four types of dissolution methods: the basket, paddle, dialysis tubing (DT) and flow-through cell (FTC) methods. The suitability of each apparatus for quality control in AAP compounded suppositories was evaluated using statistical procedures. More than 80% of the drug was released over 60 min in all the release methods studied, with the exception of the basket method. Reproducible and faster release was achieved using the paddle method at 100 and 200 rpm, whereas poor release occurred with the basket method. The mean dissolution time (MDT), maximum dissolved quantity of AAP at the end of the sampling time (Q) and dissolution efficiency (DE) were calculated by model-independent methods. The FTC method with a single chamber used in this study was also appreciable for AAP suppositories (Q of 100%, MDT of 71-91 min and DE of 75-80%). The DT apparatus is considered similar to the FTC apparatus from a quality control perspective for judging the release properties of lipophilic base suppositories containing AAP. However, even the single chamber FTC used in this study has potential as an in vitro drug release test for suppositories. The comparative dissolution method is expected to become one of the valuable tools for selecting an adequate dissolution test.
Fussell, Andrew L.; Kleinebudde, Peter; Herek, Jennifer; Strachan, Clare J.; Offerhaus, Herman L.
2014-01-01
Traditional pharmaceutical dissolution tests determine the amount of drug dissolved over time by measuring drug content in the dissolution medium. This method provides little direct information about what is happening on the surface of the dissolving tablet. As the tablet surface composition and structure can change during dissolution, it is essential to monitor it during dissolution testing. In this work coherent anti-Stokes Raman scattering microscopy is used to image the surface of tablets during dissolution while UV absorption spectroscopy is simultaneously providing inline analysis of dissolved drug concentration for tablets containing a 50% mixture of theophylline anhydrate and ethyl cellulose. The measurements showed that in situ CARS microscopy is capable of imaging selectively theophylline in the presence of ethyl cellulose. Additionally, the theophylline anhydrate converted to theophylline monohydrate during dissolution, with needle-shaped crystals growing on the tablet surface during dissolution. The conversion of theophylline anhydrate to monohydrate, combined with reduced exposure of the drug to the flowing dissolution medium resulted in decreased dissolution rates. Our results show that in situ CARS microscopy combined with inline UV absorption spectroscopy is capable of monitoring pharmaceutical tablet dissolution and correlating surface changes with changes in dissolution rate. PMID:25045833
Correlation of dissolution and disintegration results for an immediate-release tablet.
Nickerson, Beverly; Kong, Angela; Gerst, Paul; Kao, Shangming
2018-02-20
The drug release rate of a rapidly dissolving immediate-release tablet formulation with a highly soluble drug is proposed to be controlled by the disintegration rate of the tablet. Disintegration and dissolution test methods used to evaluate the tablets were shown to discriminate manufacturing process differences and compositionally variant tablets. In addition, a correlation was established between disintegration and dissolution. In accordance with ICH Q6A, this work demonstrates that disintegration in lieu of dissolution is suitable as the drug product quality control method for evaluating this drug product. Copyright © 2017 Elsevier B.V. All rights reserved.
Al Ameri, Mubarak Nasser; Nayuni, Nanda; Anil Kumar, K.G.; Perrett, David; Tucker, Arthur; Johnston, Atholl
2011-01-01
Introduction Dissolution is the amount of substance that goes into solution per unit time under standardised conditions of liquid/solid interface, solvent composition and temperature. Dissolution is one of the most important tools to predict the in-vivo bioavailability and in some cases to determine bioequivalence and assure interchangeability. Aim To compare the differences in dissolution behaviour of solid dosage forms between innovators (reference products) and their generic counterparts (tested products). Methods Four replicates for each batch of 37 tested medicines was carried out using A PT-DT70 dissolution tester from Pharma Test. A total of 13 branded medicines and 24 generic counterparts were obtained locally and internationally to detect any differences in their dissolution behaviour. They were tested according to the British Pharmacopeia, European Pharmacopeia and the US Pharmacopeia with the rate of dissolution determined by ultra-violet Spectrophotometery. Results Most tested medicines complied with the pharmacopoeial specifications and achieved 85% dissolution in 60 min. However, some generic medicines showed significant differences in dissolution rate at 60 and 120 min. Many generic medicines showed a slower dissolution rate than their branded counterparts such as the generic forms of omeprazole 20 mg. Some showed an incomplete dissolution such as the generic form of nifedipine 10 mg. Other generics showed faster dissolution rate than their branded counterpart such as the generic forms of meloxicam 15 mg. Moreover, some generics from different batches of the same manufacturer showed significant differences in their dissolution rate such as the generic forms of meloxicam 7.5 mg. Nevertheless, some generic medicines violated the EMA and the FDA guidelines for industry when they failed to achieve 85% dissolution at 60 min, such as the generic form of diclofenac sodium 50 mg. Conclusion Most medicines in this study complied with the pharmacopeial limits. However, some generics dissolved differently than their branded counterparts. This can clearly question the interchangeability between the branded and its generic counterpart or even among generics. PMID:25755988
Hens, Bart; Sinko, Patrick; Job, Nicholas; Dean, Meagan; Al-Gousous, Jozef; Salehi, Niloufar; Ziff, Robert M; Tsume, Yasuhiro; Bermejo, Marival; Paixão, Paulo; Brasseur, James G; Yu, Alex; Talattof, Arjang; Benninghoff, Gail; Langguth, Peter; Lennernäs, Hans; Hasler, William L; Marciani, Luca; Dickens, Joseph; Shedden, Kerby; Sun, Duxin; Amidon, Gregory E; Amidon, Gordon L
2018-06-23
Over the past decade, formulation predictive dissolution (fPD) testing has gained increasing attention. Another mindset is pushed forward where scientists in our field are more confident to explore the in vivo behavior of an oral drug product by performing predictive in vitro dissolution studies. Similarly, there is an increasing interest in the application of modern computational fluid dynamics (CFD) frameworks and high-performance computing platforms to study the local processes underlying absorption within the gastrointestinal (GI) tract. In that way, CFD and computing platforms both can inform future PBPK-based in silico frameworks and determine the GI-motility-driven hydrodynamic impacts that should be incorporated into in vitro dissolution methods for in vivo relevance. Current compendial dissolution methods are not always reliable to predict the in vivo behavior, especially not for biopharmaceutics classification system (BCS) class 2/4 compounds suffering from a low aqueous solubility. Developing a predictive dissolution test will be more reliable, cost-effective and less time-consuming as long as the predictive power of the test is sufficiently strong. There is a need to develop a biorelevant, predictive dissolution method that can be applied by pharmaceutical drug companies to facilitate marketing access for generic and novel drug products. In 2014, Prof. Gordon L. Amidon and his team initiated a far-ranging research program designed to integrate (1) in vivo studies in humans in order to further improve the understanding of the intraluminal processing of oral dosage forms and dissolved drug along the gastrointestinal (GI) tract, (2) advancement of in vitro methodologies that incorporates higher levels of in vivo relevance and (3) computational experiments to study the local processes underlying dissolution, transport and absorption within the intestines performed with a new unique CFD based framework. Of particular importance is revealing the physiological variables determining the variability in in vivo dissolution and GI absorption from person to person in order to address (potential) in vivo BE failures. This paper provides an introduction to this multidisciplinary project, informs the reader about current achievements and outlines future directions. Copyright © 2018. Published by Elsevier B.V.
The use of ordered mixtures for improving the dissolution rate of low solubility compounds.
Nyström, C; Westerberg, M
1986-03-01
The dissolution rate of micronized griseofulvin has been investigated, both for the agglomerated raw material and the material formulated as an ordered mixture, by means of the USP XX paddle method. During the experiments, which were performed at sink condition and constant temperature, the effects of adding a surfactant and of agitation were tested. The ordered mixture with sodium chloride gave a fast dissolution rate, practically independent of the test parameters. Micronized griseofulvin alone gave dissolution profiles that were improved by adding polysorbate 80 and by increased agitation, but the dissolution rates obtained were much lower than those for the ordered mixture. It was concluded that the rate limiting step in the dissolution of griseofulvin as the raw material is the penetration of the dissolution medium into the agglomerates. With an ordered mixture, these agglomerates were deaggregated during the mixing process, producing a system in which the entire external surface area of the primary particles was exposed to the dissolution medium. This conclusion was supported by calculation of the contact surface areas taking part in the dissolution process for the systems tested. The procedure developed in this study could be applied to preformulation work where a cohesive, low solubility drug of hydrophobic nature is to be formulated.
Díaz de León-Ortega, Ricardo; D'Arcy, Deirdre M; Bolhuis, A; Fotaki, N
2018-06-01
Guidance on dissolution testing for parenteral formulations is limited and not often related in vivo performance. Critically ill patients represent a target cohort, frequently hypoalbuminaemic, to whom certain parenteral formulations are administered. Amphotericin B (AmB) is a poorly soluble, highly protein-bound drug, available as lipid-based formulations and used in critical illness. The aim of this study was to develop media representing hypoalbuminaemic and healthy plasma, and to understand and simulate the dissolution profile of AmB in biorelevant media. Dissolution media were prepared with bovine serum albumin (BSA) in Krebs-Ringer buffer, and tested in a flow through cell apparatus and a bottle/stirrer setup. Drug activity was tested against Candida albicans. BSA concentration was positively associated with solubility, degradation rate and maximum amount dissolved and negatively associated with dissolution rate constant and antifungal activity. In the bottle/stirrer setup, a biexponential model successfully described simultaneous dissolution and degradation and increased in agitation reduced the discriminatory ability of the test. The hydrodynamics provided by the flow-through cell apparatus was not adequate to dissolve the drug. Establishing discriminating test methods with albumin present in the dissolution media, representing the target population, supports future development of biorelevant and clinically relevant tests for parenteral formulations. Copyright © 2018 Elsevier B.V. All rights reserved.
Rivelli, Graziella Gomes; Ricoy, Letícia Brandão Magalhães; César, Isabela Costa; Fernandes, Christian; Pianetti, Gérson Antônio
2018-06-05
Malaria is the most incident parasite infection worldwide. Artemisinin based combination therapy (ACT) has been proposed as a promising treatment for malaria, and artemether + lumefantrine (20 + 120 mg) is the recommended association in endemic areas. Despite its widespread use, there is still scarce information about dissolution of artemether and lumefantrine, reflecting in the absence of a specific method in pharmacopoeias and international compendia. Because the of their low solubility, both artemether and lumefantrine are candidates for in vitro-in vivo correlation (IVIVC) studies. Previous equilibrium solubility studies have been carried out for both drugs using the shake-flask method and dissolution profiles. Experiments were conducted with a range of parameters such as medium composition, pH and surfactants. In vivo data obtained in a previous pharmacokinetic study was used to select the optimum conditions for dissolution test, based on IVIVC. For drug quantitation, a selective method by high performance liquid chromatography was optimized and validated. For this dosage form, the best dissolution conditions found for artemether were: paddles, 900 mL of dissolution medium containing phosphate buffer pH 6.8 with 1.0% sodium lauryl sulfate and rotation speed of 100 rpm. The same was obtained for lumefantrine, except the dissolution medium, which was pH 1.2 with 1.0% polysorbate 80. After obtaining the curve of in vitro dissolved fraction versus in vivo absorbed fraction, the calculated coefficient of determination (R squared) was close to 1.00 for both drugs, indicating a level A correlation. Therefore, a novel method for assessing dissolution of arthemeter and lumefantrine tablets was established and validated. Copyright © 2018 Elsevier B.V. All rights reserved.
An overview of in vitro dissolution/release methods for novel mucosal drug delivery systems.
Jug, Mario; Hafner, Anita; Lovrić, Jasmina; Kregar, Maja Lusina; Pepić, Ivan; Vanić, Željka; Cetina-Čižmek, Biserka; Filipović-Grčić, Jelena
2018-01-05
In vitro dissolution/release tests are an important tool in the drug product development phase as well as in its quality control and the regulatory approval process. Mucosal drug delivery systems are aimed to provide both local and systemic drug action via mucosal surfaces of the body and exhibit significant differences in formulation design, as well as in their physicochemical and release characteristics. Therefore it is not possible to devise a single test system which would be suitable for release testing of such complex dosage forms. This article is aimed to provide a comprehensive review of both compendial and noncompendial methods used for in vitro dissolution/release testing of novel mucosal drug delivery systems aimed for ocular, nasal, oromucosal, vaginal and rectal administration. Copyright © 2017 Elsevier B.V. All rights reserved.
AlKhalidi, Bashar A; Shtaiwi, Majed; AlKhatib, Hatim S; Mohammad, Mohammad; Bustanji, Yasser
2008-01-01
A fast and reliable method for the determination of repaglinide is highly desirable to support formulation screening and quality control. A first-derivative UV spectroscopic method was developed for the determination of repaglinide in tablet dosage form and for dissolution testing. First-derivative UV absorbance was measured at 253 nm. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), and limit of quantitation (LOQ) in comparison to the U.S. Pharmacopeia (USP) column high-performance liquid chromatographic (HPLC) method. The first-derivative UV spectrophotometric method showed excellent linearity [correlation coefficient (r) = 0.9999] in the concentration range of 1-35 microg/mL and precision (relative standard deviation < 1.5%). The LOD and LOQ were 0.23 and 0.72 microg/mL, respectively, and good recoveries were achieved (98-101.8%). Statistical comparison of results of the first-derivative UV spectrophotometric and the USP HPLC methods using the t-test showed that there was no significant difference between the 2 methods. Additionally, the method was successfully used for the dissolution test of repaglinide and was found to be reliable, simple, fast, and inexpensive.
Martins, Danielly da Fonte Carvalho; Florindo, Lorena Coimbra; Machado, Anna Karolina Mouzer da Silva; Todeschini, Vítor; Sangoi, Maximiliano da Silva
2017-11-01
This study presents the development and validation of UV spectrophotometric methods for the determination of pinaverium bromide (PB) in tablet assay and dissolution studies. The methods were satisfactorily validated according to International Conference on Harmonization guidelines. The response was linear (r2 > 0.99) in the concentration ranges of 2-14 μg/mL at 213 nm and 10-70 μg/mL at 243 nm. The LOD and LOQ were 0.39 and 1.31 μg/mL, respectively, at 213 nm. For the 243 nm method, the LOD and LOQ were 2.93 and 9.77 μg/mL, respectively. Precision was evaluated by RSD, and the obtained results were lower than 2%. Adequate accuracy was also obtained. The methods proved to be robust using a full factorial design evaluation. For PB dissolution studies, the best conditions were achieved using a United States Pharmacopeia Dissolution Apparatus 2 (paddle) at 50 rpm and with 900 mL 0.1 M hydrochloric acid as the dissolution medium, presenting satisfactory results during the validation tests. In addition, the kinetic parameters of drug release were investigated using model-dependent methods, and the dissolution profiles were best described by the first-order model. Therefore, the proposed methods were successfully applied for the assay and dissolution analysis of PB in commercial tablets.
Validation of Dissolution Testing with Biorelevant Media: An OrBiTo Study.
Mann, James; Dressman, Jennifer; Rosenblatt, Karin; Ashworth, Lee; Muenster, Uwe; Frank, Kerstin; Hutchins, Paul; Williams, James; Klumpp, Lukas; Wielockx, Kristina; Berben, Philippe; Augustijns, Patrick; Holm, Rene; Hofmann, Michael; Patel, Sanjaykumar; Beato, Stefania; Ojala, Krista; Tomaszewska, Irena; Bruel, Jean-Luc; Butler, James
2017-12-04
Dissolution testing with biorelevant media has become widespread in the pharmaceutical industry as a means of better understanding how drugs and formulations behave in the gastrointestinal tract. Until now, however, there have been few attempts to gauge the reproducibility of results obtained with these methods. The aim of this study was to determine the interlaboratory reproducibility of biorelevant dissolution testing, using the paddle apparatus (USP 2). Thirteen industrial and three academic laboratories participated in this study. All laboratories were provided with standard protocols for running the tests: dissolution in FaSSGF to simulate release in the stomach, dissolution in a single intestinal medium, FaSSIF, to simulate release in the small intestine, and a "transfer" (two-stage) protocol to simulate the concentration profile when conditions are changed from the gastric to the intestinal environment. The test products chosen were commercially available ibuprofen tablets and zafirlukast tablets. The biorelevant dissolution tests showed a high degree of reproducibility among the participating laboratories, even though several different batches of the commercially available medium preparation powder were used. Likewise, results were almost identicalbetween the commercial biorelevant media and those produced in-house. Comparing results to previous ring studies, including those performed with USP calibrator tablets or commercially available pharmaceutical products in a single medium, the results for the biorelevant studies were highly reproducible on an interlaboratory basis. Interlaboratory reproducibility with the two-stage test was also acceptable, although the variability was somewhat greater than with the single medium tests. Biorelevant dissolution testing is highly reproducible among laboratories and can be relied upon for cross-laboratory comparisons.
Rapid analysis of drug dissolution by paper spray ionization mass spectrometry.
Liu, Yang; Liu, Ning; Zhou, Ya-Nan; Lin, Lan; He, Lan
2017-03-20
With a great quantity of solid dosage tested by dissolution technology, developing a rapid and sensitive method to access the content of drug within dissolution media is highly desired by analysts and scientists. Traditionally, dissolution media is not compatible with mass spectrometry since the inorganic salts in the media might damage the mass spectrometer. Here, paper spray ionization mass spectrometry (PSI-MS), one of the ambient mass spectrometry technologies, is developed to characterize the content of drugs in dissolution media. The porous structure of paper can effectively retain salts from entering mass spectrometer. This makes the measurement of drug content within dissolution media by mass spectrometer possible. After the experimental parameters were optimized, calibration curves of model drugs - enalapril, quinapril and benazepril were established by using corresponding deuterated internal standards. PSI-MS was then deployed to characterize the content of enalapril from the dissolution testing of enalapril tablets. The results from PSI-MS are comparable to those from HPLC characterization. More importantly, the analysis time of 6 samples is shortened from 90min to 6min. Detection limit of enalapril maleate tablets by PSI-MS is 1/300 of LC. PSI-MS is rapid, sensitive and accurate in analyzing drug content from dissolution tests. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Pareizs, J.; Coleman, C.
For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) tests the applicability of the digestion methods used by the DWPF Laboratory for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) Receipt samples and SRAT Product process control samples. DWPF SRAT samples are typically dissolved using a method referred to as the DWPF Cold Chemical or Cold Chem Method (CC), (see DWPF Procedure SW4- 15.201). Testing indicates that the CC method produced mixed results. The CC method did not result in complete dissolution of either the SRAT Receipt ormore » SRAT Product with some fine, dark solids remaining. However, elemental analyses did not reveal extreme biases for the major elements in the sludge when compared with analyses obtained following dissolution by hot aqua regia (AR) or sodium peroxide fusion (PF) methods. The CC elemental analyses agreed with the AR and PF methods well enough that it should be adequate for routine process control analyses in the DWPF after much more extensive side-by-side tests of the CC method and the PF method are performed on the first 10 SRAT cycles of the Sludge Batch 9 (SB9) campaign. The DWPF Laboratory should continue with their plans for further tests of the CC method during these 10 SRAT cycles.« less
Suarez-Sharp, Sandra; Delvadia, Poonam R; Dorantes, Angelica; Duan, John; Externbrink, Anna; Gao, Zongming; Ghosh, Tapash; Miksinski, Sarah Pope; Seo, Paul
2016-05-01
Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.
Otsuka, Makoto; Tanabe, Hideaki; Osaki, Kazuo; Otsuka, Kuniko; Ozaki, Yukihiro
2007-04-01
The purpose of this study was to use near-infrared spectrometry (NIR) with chemoinformetrics to predict the change of dissolution properties in indomethacin (IMC) tablets during the manufacturing process. A comparative evaluation of the dissolution properties of the tablets was performed by the diffused reflectance (DRNIR) and transmittance (TNIR) NIR spectroscopic methods. Various kinds of IMC tablets (200 mg) were obtained from a powder (20 mg of IMC, 18 mg of microcrystalline cellulose, 160 mg of lactose, and 2 mg of magnesium stearate) under various compression pressures (60-398 MPa). Dissolution tests were performed in phosphate buffer, and the time required for 75% dissolution (T75) and mean dissolution time (MDT) were calculated. DRNIR and TNIR spectra were recorded, and the both NIR spectra used to establish a calibration model for predicting the dissolution properties by principal component regression analysis (PCR). The T75 and MDT increased as the compression pressure increased, since tablet porosity decreased with increasing pressure. Intensity of the DRNIR spectra of the compressed tablets decreased as the compression pressure increased. However, the intensity of TNIR spectra increased along with the pressure. The calibration models used to evaluate the dissolution properties of tablets were established by using PCR based on both DRNIR and TNIR spectra of the tablets. The multiple correlation coefficients of the relationship between the actual and predictive T75 by the DRNIR and TNIR methods were 0.831 and 0.962, respectively. It is possible to predict the dissolution properties of pharmaceutical preparations using both DRNIR and TNIR chemoinformetric methods. The TNIR method was more accurate for predictions of the dissolution behavior of tablets than the DRNIR method. (c) 2007 Wiley-Liss, Inc.
Saleh, Ashraf; McGarry, Kenneth; Chaw, Cheng Shu; Elkordy, Amal Ali
2018-02-01
Hydrophobic drugs are facing a major challenge in dissolution rate enhancement and solubility in aqueous solutions; therefore, a variety of methods have been used to improve dissolution rate and/or solubility of bendroflumethiazide as a model hydrophobic drug. In this study, two main methods (physical mixing and lyophilisation) were used with gluconolactone, hydroxyl propyl γ-ccyclodextrin, and trehalose to explore this challenge. Bendroflumethiazide, practically insoluble in water, was mixed with one of the three excipients gluconolactone, hydroxyl propyl γ-cyclodextrin, and trehalose in three different ratios 1:1, 1:2, 1:5. To the best of our knowledge, the dissolution of the drug has not been previously enhanced by using either these methods or any of the used excipients. Samples containing drug and each of the excipients were characterized via dissolution testing, Fourier Transform infra-red spectroscopy, differential scanning calorimetry, and scanning electron microscopy. The used methods showed a significant enhancement in dug dissolution rate; physical mixing significantly, p < 0.05, increased the percentage of the drug released with time; for example, bendroflumethiazide dissolution in distilled water was improved from less than 20% to 99.79% within 90 min for physically mixed drug-cyclodextrin 1:5. The lyophilisation process was enhanced and the drug dissolution rate and the highest drug dissolution was achieved for (drug-gluconolactone 1:1) with 98.98% drug release within 90 min. the physical mixing and freeze drying processes significantly increased the percentage of drug release with time.
Culen, Martin; Rezacova, Anna; Jampilek, Josef; Dohnal, Jiri
2013-09-01
Development of new pharmaceutical compounds and dosage forms often requires in vitro dissolution testing with the closest similarity to the human gastrointestinal (GI) tract. To create such conditions, one needs a suitable dissolution apparatus and the appropriate data on the human GI physiology. This review discusses technological approaches applicable in biorelevant dissolutions as well as the physiology of stomach and small intestine in both fasted and fed state, that is, volumes of contents, transit times for water/food and various solid oral dosage forms, pH, osmolality, surface tension, buffer capacity, and concentrations of bile salts, phospholipids, enzymes, and Ca(2+) ions. The information is aimed to provide clear suggestions on how these conditions should be set in a dynamic biorelevant dissolution test. Copyright © 2013 Wiley Periodicals, Inc.
Manrique, Yady J; Lee, Danielle J; Islam, Faiza; Nissen, Lisa M; Cichero, Julie A Y; Stokes, Jason R; Steadman, Kathryn J
2014-01-01
To evaluate the influence of co-administered vehicles on in vitro dissolution in simulated gastric fluid of crushed immediate release tablets as an indicator for potential drug bioavailability compromise. Release and dissolution of crushed amlodipine, atenolol, carbamazepine and warfarin tablets were tested with six foods and drinks that are frequently used in the clinical setting as mixers for crushed medications (water, orange juice, honey, yoghurt, strawberry jam and water thickened with Easythick powder) in comparison to whole tablets. Five commercial thickening agents (Easythick Advanced, Janbak F, Karicare, Nutilis, Viscaid) at three thickness levels were tested for their effect on the dissolution of crushed atenolol tablets. Atenolol dissolution was unaffected by mixing crushed tablets with thin fluids or food mixers in comparison to whole tablets or crushed tablets in water, but amlodipine was delayed by mixing with jam. Mixing crushed warfarin and carbamazepine tablets with honey, jam or yoghurt caused them to resemble the slow dissolution of whole tablets rather than the faster dissolution of crushed tablets in water or orange juice. Crushing and mixing any of the four medications with thickened water caused a significant delay in dissolution. When tested with atenolol, all types of thickening agents at the greatest thickness significantly restricted dissolution, and products that are primarily based on xanthan gum also delayed dissolution at the intermediate thickness level. Dissolution testing, while simplistic, is a widely used and accepted method for comparing drug release from different formulations as an indicator for in vivo bioavailability. Thickened fluids have the potential to retard drug dissolution when used at the thickest levels. These findings highlight potential clinical implications of the addition of these agents to medications for the purpose of dose delivery and indicate that further investigation of thickened fluids and their potential to influence therapeutic outcomes is warranted.
Martín-Sabroso, Cristina; Tavares-Fernandes, Daniel Filipe; Espada-García, Juan Ignacio; Torres-Suárez, Ana Isabel
2013-12-15
In this work a protocol to validate analytical procedures for the quantification of drug substances formulated in polymeric systems that comprise both drug entrapped into the polymeric matrix (assay:content test) and drug released from the systems (assay:dissolution test) is developed. This protocol is applied to the validation two isocratic HPLC analytical procedures for the analysis of dexamethasone phosphate disodium microparticles for parenteral administration. Preparation of authentic samples and artificially "spiked" and "unspiked" samples is described. Specificity (ability to quantify dexamethasone phosphate disodium in presence of constituents of the dissolution medium and other microparticle constituents), linearity, accuracy and precision are evaluated, in the range from 10 to 50 μg mL(-1) in the assay:content test procedure and from 0.25 to 10 μg mL(-1) in the assay:dissolution test procedure. The robustness of the analytical method to extract drug from microparticles is also assessed. The validation protocol developed allows us to conclude that both analytical methods are suitable for their intended purpose, but the lack of proportionality of the assay:dissolution analytical method should be taken into account. The validation protocol designed in this work could be applied to the validation of any analytical procedure for the quantification of drugs formulated in controlled release polymeric microparticles. Copyright © 2013 Elsevier B.V. All rights reserved.
Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan
2015-01-01
Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.
Bench Scale Saltcake Dissolution Test Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
BECHTOLD, D.B.; PACQUET, E.A.
A potential scenario for retrieving saltcake from single shell tanks is the ''Rainbird{reg_sign} sprinkler'' method. Water is distributed evenly across the surface of the saltcake and allowed to percolate by gravity through the waste. The salt dissolves in the water, forming a saturated solution. The saturated liquid is removed by a saltwell pump situated near the bottom of the tank. By this method, there is never a large inventory of liquid in the tank that could pose a threat of leakage. There are many variables or factors that can influence the hydrodynamics of this retrieval process. They include saltcake porosity;more » saltwell pumping rate; salt dissolution chemistry; factors that could promote flow channeling (e.g. tank walls, dry wells, inclusions or discontinuities in the saltcake); method of water distribution; plug formation due to crystal formations or accumulation of insoluble solids. A brief literature search indicates that very little experimental data exist on these aspects of saltcake dissolution (Wiersma 1996, 1997). The tests reported here were planned (Herting, 2000) to provide preliminary data and information for planning future, scaled-up tests of the sprinkler method.« less
Electrochemical polishing of thread fastener test specimens of nickel-chromium iron alloys
Kephart, Alan R.
1991-01-01
An electrochemical polishing device and method for selective anodic dissolution of the surface of test specimens comprised, for example, of nickel-chromium-iron alloys, which provides for uniform dissolution at the localized sites to remove metal through the use of a coiled wire electrode (cathode) placed in the immediate proximity of the working, surface resulting in a polished and uniform grain boundary.
NASA Astrophysics Data System (ADS)
Zhu, C.; Rimstidt, J. D.; Liu, Z.; Yuan, H.
2016-12-01
The principle of detailed balance (PDB) has been a cornerstone for irreversible thermodynamics and chemical kinetics for a long time, and its wide application in geochemistry has mostly been implicit and without experimental testing of its applicability. Nevertheless, many extrapolations based on PDB without experimental validation have far reaching impacts on society's mega environmental enterprises. Here we report an isotope doping method that independently measures simultaneous dissolution and precipitation rates and can test this principle. The technique reacts a solution enriched in a rare isotope of an element with a solid having natural isotopic abundances (Beck et al., 1992; Gaillardet, 2008; Gruber et al., 2013). Dissolution and precipitation rates are found from the changing isotopic ratios. Our quartz experiment doped with 29Si showed that the equilibrium dissolution rate remains unchanged at all degrees of undersaturation. We recommend this approach to test the validity of using the detailed balance relationship in rate equations for other substances.
Huang, Jun; Goolcharran, Chimanlall; Ghosh, Krishnendu
2011-05-01
This paper presents the use of experimental design, optimization and multivariate techniques to investigate root-cause of tablet dissolution shift (slow-down) upon stability and develop control strategies for a drug product during formulation and process development. The effectiveness and usefulness of these methodologies were demonstrated through two application examples. In both applications, dissolution slow-down was observed during a 4-week accelerated stability test under 51°C/75%RH storage condition. In Application I, an experimental design was carried out to evaluate the interactions and effects of the design factors on critical quality attribute (CQA) of dissolution upon stability. The design space was studied by design of experiment (DOE) and multivariate analysis to ensure desired dissolution profile and minimal dissolution shift upon stability. Multivariate techniques, such as multi-way principal component analysis (MPCA) of the entire dissolution profiles upon stability, were performed to reveal batch relationships and to evaluate the impact of design factors on dissolution. In Application II, an experiment was conducted to study the impact of varying tablet breaking force on dissolution upon stability utilizing MPCA. It was demonstrated that the use of multivariate methods, defined as Quality by Design (QbD) principles and tools in ICH-Q8 guidance, provides an effective means to achieve a greater understanding of tablet dissolution upon stability. Copyright © 2010 Elsevier B.V. All rights reserved.
Dinç, Erdal; Özdemir, Nurten; Üstündağ, Özgür; Tilkan, Müşerref Günseli
2013-01-01
Dissolution testing has a very vital importance for a quality control test and prediction of the in vivo behavior of the oral dosage formulation. This requires the use of a powerful analytical method to get reliable, accurate and precise results for the dissolution experiments. In this context, new signal processing approaches, continuous wavelet transforms (CWTs) were improved for the simultaneous quantitative estimation and dissolution testing of lamivudine (LAM) and zidovudine (ZID) in a tablet dosage form. The CWT approaches are based on the application of the continuous wavelet functions to the absorption spectra-data vectors of LAM and ZID in the wavelet domain. After applying many wavelet functions, the families consisting of Mexican hat wavelet with the scaling factor a=256, Symlets wavelet with the scaling factor a=512 and the order of 5 and Daubechies wavelet at the scale factor a=450 and the order of 10 were found to be suitable for the quantitative determination of the mentioned drugs. These wavelet applications were named as mexh-CWT, sym5-CWT and db10-CWT methods. Calibration graphs for LAM and ZID in the working range of 2.0-50.0 µg/mL and 2.0-60.0 µg/mL were obtained measuring the mexh-CWT, sym5-CWT and db10-CWT amplitudes at the wavelength points corresponding to zero crossing points. The validity and applicability of the improved mexh-CWT, sym5-CWT and db10-CWT approaches was carried out by the analysis of the synthetic mixtures containing the analyzed drugs. Simultaneous determination of LAM and ZID in tablets was accomplished by the proposed CWT methods and their dissolution profiles were graphically explored.
Tuszyński, Paweł K.; Polak, Sebastian; Jachowicz, Renata; Mendyk, Aleksander; Dohnal, Jiří
2015-01-01
Different batches of atorvastatin, represented by two immediate release formulation designs, were studied using a novel dynamic dissolution apparatus, simulating stomach and small intestine. A universal dissolution method was employed which simulated the physiology of human gastrointestinal tract, including the precise chyme transit behavior and biorelevant conditions. The multicompartmental dissolution data allowed direct observation and qualitative discrimination of the differences resulting from highly pH dependent dissolution behavior of the tested batches. Further evaluation of results was performed using IVIVC/IVIVR development. While satisfactory correlation could not be achieved using a conventional deconvolution based-model, promising results were obtained through the use of a nonconventional approach exploiting the complex compartmental dissolution data. PMID:26120580
Estimating rock and slag wool fiber dissolution rate from composition.
Eastes, W; Potter, R M; Hadley, J G
2000-12-01
A method was tested for calculating the dissolution rate constant in the lung for a wide variety of synthetic vitreous silicate fibers from the oxide composition in weight percent. It is based upon expressing the logarithm of the dissolution rate as a linear function of the composition and using a different set of coefficients for different types of fibers. The method was applied to 29 fiber compositions including rock and slag fibers as well as refractory ceramic and special-purpose, thin E-glass fibers and borosilicate glass fibers for which in vivo measurements have been carried out. These fibers had dissolution rates that ranged over a factor of about 400, and the calculated dissolution rates agreed with the in vivo values typically within a factor of 4. The method presented here is similar to one developed previously for borosilicate glass fibers that was accurate to a factor of 1.25. The present coefficients work over a much broader range of composition than the borosilicate ones but with less accuracy. The dissolution rate constant of a fiber may be used to estimate whether disease would occur in animal inhalation or intraperitoneal injection studies of that fiber.
Tang, L; Khan, S U; Muhammad, N A
2001-11-01
The purpose of this work is to develop a bio-relevant dissolution method for formulation screening in order to select an enhanced bioavailable formulation for a poorly water-soluble drug. The methods used included a modified rotating disk apparatus for measuring intrinsic dissolution rate of the new chemical entity (NCE) and the USP dissolution method II for evaluating dissolution profiles of the drug in three different dosage forms. The in vitro dissolution results were compared with the in vivo bioavailability for selecting a bio-relevant medium. The results showed that the solubility of the NCE was proportional to the concentration of sodium lauryl sulfate (SLS) in the media. The apparent intrinsic dissolution rate of the NCE was linear to the rotational speed of the disk, which indicated that the dissolution of the drug is a diffusion-controlled mechanism. The apparent intrinsic dissolution rate was also linear to the surfactant concentration in the media, which was interpreted using the Noyes and Whitney Empirical Theory. Three formulations were studied in three different SLS media using the bulk drug as a reference. The dissolution results were compared with the corresponding bioavailability results in dogs. In the 1% SLS--sink conditions--the drug release from all the formulations was complete and the dissolution results were discriminative for the difference in particle size of the drug in the formulations. However, the data showed poor IVIV correlation. In the 0.5% SLS medium--non-sink conditions--the dissolution results showed the same rank order among the tested formulations as the bioavailability. The best IVIV correlation was obtained from the dissolution in 0.25% SLS medium, an over-saturated condition. The conclusions are: a surfactant medium increases the apparent intrinsic dissolution rate of the NCE linearly due to an increase in solubility. A low concentration of surfactant in the medium (0.25%) is more bio-relevant than higher concentrations of surfactant in the media for the poorly water-soluble drug. Creating sink conditions (based on bulk drug solubilities) by using a high concentration of a surfactant in the dissolution medium may not be a proper approach in developing a bio-relevant dissolution method for a poorly water-soluble drug.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Dorożyński, Przemysław P
2015-04-30
Motivation for the study was the lack of dedicated and effective research and development (R&D) in vitro methods for oral, generic, modified release formulations. The purpose of the research was to assess multimodal in vitro methodology for further bioequivalence study risk minimization. Principal results of the study are as follows: (i) Pharmaceutically equivalent quetiapine fumarate extended release dosage form of Seroquel XR was developed using a quality by design/design of experiment (QbD/DoE) paradigm. (ii) The developed formulation was then compared with originator using X-ray microtomography, magnetic resonance imaging and texture analysis. Despite similarity in terms of compendial dissolution test, developed and original dosage forms differed in micro/meso structure and consequently in mechanical properties. (iii) These differences were found to be the key factors of failure of biorelevant dissolution test using the stress dissolution apparatus. Major conclusions are as follows: (i) Imaging methods allow to assess internal features of the hydrating extended release matrix and together with the stress dissolution test allow to rationalize the design of generic formulations at the in vitro level. (ii) Technological impact on formulation properties e.g., on pore formation in hydrating matrices cannot be overlooked when designing modified release dosage forms. Copyright © 2015 Elsevier B.V. All rights reserved.
Geng, Yajie; Fu, Qiang; Guo, Bei; Li, Yun; Zhang, Xiangrong; Wang, Xianglin; Zhang, Tianhong
2016-01-01
The aim of this study was to design a silica-supported solid dispersion of lacidipine (LCDP) to enhance the dissolution rate and oral absorption using supercritical CO2 (scCO2) as a solvent. The formulation was characterized using differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy and fourier transformed infrared spectroscopy. In the dissolution test, LCDP-scCO2 formulation showed a significantly enhanced dissolution compared with LCDPsilica physical mixture and a faster dissolution rate than Lacipil® under different dissolution conditions. In an in vivo test, the area under concentration-time curve and Cmax of LCDP-scCO2 formulation was 9.23 and 23.78 fold greater than LCDP-silica physical mixture (1:15, w/w), respectively, whereas the corresponding values were 1.92 and 2.80 fold greater than Lacipil®, respectively. Our results showed that the solid dispersion prepared by supercritical fluids technology is a feasible method to enhance the oral bioavailability of LCDP.
Ito, Atsuo; Sogo, Yu; Yamazaki, Atsushi; Aizawa, Mamoru; Osaka, Akiyoshi; Hayakawa, Satoshi; Kikuchi, Masanori; Yamashita, Kimihiro; Tanaka, Yumi; Tadokoro, Mika; de Sena, Lídia Ágata; Buchanan, Fraser; Ohgushi, Hajime; Bohner, Marc
2015-10-01
A potential standard method for measuring the relative dissolution rate to estimate the resorbability of calcium-phosphate-based ceramics is proposed. Tricalcium phosphate (TCP), magnesium-substituted TCP (MgTCP) and zinc-substituted TCP (ZnTCP) were dissolved in a buffer solution free of calcium and phosphate ions at pH 4.0, 5.5 or 7.3 at nine research centers. Relative values of the initial dissolution rate (relative dissolution rates) were in good agreement among the centers. The relative dissolution rate coincided with the relative volume of resorption pits of ZnTCP in vitro. The relative dissolution rate coincided with the relative resorbed volume in vivo in the case of comparison between microporous MgTCPs with different Mg contents and similar porosity. However, the relative dissolution rate was in poor agreement with the relative resorbed volume in vivo in the case of comparison between microporous TCP and MgTCP due to the superimposition of the Mg-mediated decrease in TCP solubility on the Mg-mediated increase in the amount of resorption. An unambiguous conclusion could not be made as to whether the relative dissolution rate is predictive of the relative resorbed volume in vivo in the case of comparison between TCPs with different porosity. The relative dissolution rate may be useful for predicting the relative amount of resorption for calcium-phosphate-based ceramics having different solubility under the condition that the differences in the materials compared have little impact on the resorption process such as the number and activity of resorbing cells. The evaluation and subsequent optimization of the resorbability of calcium phosphate are crucial in the use of resorbable calcium phosphates. Although the resorbability of calcium phosphates has usually been evaluated in vivo, establishment of a standard in vitro method that can predict in vivo resorption is beneficial for accelerating development and commercialization of new resorbable calcium phosphate materials as well as reducing use of animals. However, there are only a few studies to propose such an in vitro method within which direct comparison was carried out between in vitro and in vivo resorption. We propose here an in vitro method based on measuring dissolution rate. The efficacy and limitations of the method were evaluated by international round-robin tests as well as comparison with in vivo resorption studies for future standardization. This study was carried out as one of Versailles Projects on Advanced Materials and Standards (VAMAS). Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Singh, Sachin Kumar; Yadav, Ankit Kumar; Prudhviraj, G; Gulati, Monica; Kaur, Puneet; Vaidya, Yogyata
2015-06-20
The most extensively used test for predicting in-vivo release kinetics of a drug from its orally administered dosage forms is dissolution testing. For polysaccharide based, colon targeted oral delivery systems, the entire path of the gut traversed by the dosage form needs to be simulated for assessing its in-vivo dissolution pattern. This includes the dissolution testing sequentially in simulated gastric fluid (SGF), simulated intestinal fluid (SIF) and simulated colonic fluid (SCF). For SGF and SIF, simple and standardized composition is well-known. However, preparation of SCF requires addition of either the colonic contents of rodents or human faecal slurry. A method is proposed, wherein a mixture of five probiotics cultured in the presence of a prebiotic under anaerobic conditions is able to surrogate the colonic fluid. Release profiles of drug from colon targeted delivery systems in this medium were studied and compared to those generated in the conventionally used media containing rodent caecal contents and human faecal slurry. The results from the three studies were found to be quite similar. These findings suggest that the proposed medium may prove to be useful not only as a biorelevant and discriminatory method but may also help in achieving the 3Rs objective regarding the ethical use of animals. Copyright © 2015 Elsevier B.V. All rights reserved.
Consumer vinegar test for determining calcium disintegration.
Mason, N A; Patel, J D; Dressman, J B; Shimp, L A
1992-09-01
A consumer test and standardized methods were compared for measuring the disintegration of calcium tablets, and the disintegration results were compared with results of dissolution testing to determine the ability of the consumer test of disintegration to predict bioavailability of calcium. Disintegration of 17 calcium supplement products, in tablet form, was studied in Simulated Gastric Fluid Test Solution, USP, without pepsin (GF), in distilled water, and in white distilled vinegar. For disintegration testing with GF and with distilled water, six tablets of each product were placed in an apparatus and immersed in the solution at 37 degrees C for 60 minutes. Six tablets of each product were tested in 200 mL of vinegar at room temperature for 30 minutes. Disintegration was determined by visual observation. Seven products were tested for dissolution in GF or water. Three samples of each product were tested at intervals over 120 minutes for calcium content. Results of testing with an ion-selective electrode were converted to milligrams and compared with the calcium content of the tablets (as claimed on the package label). The mean disintegration times of various calcium products in vinegar ranged from 1.8 to greater than 30 minutes. The mean time in distilled water and GF ranged from 1.6 to greater than 60 minutes and from 1.0 to greater than 60 minutes, respectively. Results were in agreement in 87% to 93% of cases between the consumer vinegar test and the standardized disintegration test methods, a significant correlation. No correlation was found between disintegration time and the extent of dissolution. The disintegration and dissolution of commercially available calcium tablets was highly variable.(ABSTRACT TRUNCATED AT 250 WORDS)
[Comparison in dissolution behavior of ethical and over-the counter scopolamine butylbromide].
Suzuki, Ichie; Miyazaki, Yasunori; Uchino, Tomonobu; Kagawa, Yoshiyuki
2011-01-01
Marketing authorization holders do not disclose any information on the pharmaceutical properties of over-the-counter drugs (OTC). When a drug is switched from a prescription drug to OTC, pharmacists can acquire that information from the corresponding ethical drug (ED) through the package insert, interview form, and so on. However, the pharmaceutical equivalence between ED and OTC is unclear. In this study, we examined the drug dissolution behavior of both ED and OTCs containing scopolamine butylbromide. Dissolution tests were performed by the paddle method using Japanese Pharmacopeia (JP) XV test fluids at pH 1.2, 4.0 and 6.8 and water based on the guidelines for bioequivalence studies of generic products. The dissolution profiles of OTCs differed significantly from ED showing a similarity factor (f2) value ranging from 8.9 to 42.9. Time until 85% dissolution ranged from 23 to 95 min and from 17 to 174 min at pH 1.2 and pH 6.8, respectively. Then JP XV disintegration tests were conducted to investigate differences in the disintegration process. The disintegration time of preparations showing delayed dissolution was prolonged compared to that of others, suggesting that the disintegration of the tablet or capsule is one of the important factors affecting the drug dissolution. These differences in the disintegration and drug dissolution might cause differences in the bioavailability of the drug. For patient safety, more detailed product information of OTCs should be supplied by the manufacturer, and not be assumed from that of corresponding ED.
[Effect of stability and dissolution of realgar nano-particles using solid dispersion technology].
Guo, Teng; Shi, Feng; Yang, Gang; Feng, Nian-Ping
2013-09-01
To improve the stability and dissolution of realgar nano-particles by solid dispersion. Using polyethylene glycol 6000 and poloxamer-188 as carriers, the solid dispersions were prepare by melting method. XRD, microscopic inspection were used to determine the status of realgar nano-particles in solid dispersions. The content and stability test of As(2)0(3) were determined by DDC-Ag method. Hydride generation atomic absorption spectrometry was used to determine the content of Arsenic and investigated the in vitro dissolution behavior of solid dispersions. The results of XRD and microscopic inspection showed that realgar nano-particles in solid dispersions were amorphous. The dissolution amount and rate of Arsenic from realgar nano-particles of all solid dispersions were increased significantly, the reunion of realgar nano-particles and content of As(2)0(3) were reduced for the formation of solid dispersions. The solid dispersion of realgar nano-particles with poloxamer-188 as carriers could obviously improve stability, dissolution and solubility.
Seefelt, Ellen L.; Self-Trail, Jean; Schultz, Arthur P.
2015-01-01
In an attempt to halt or reduce dissolution of calcareous nannofossils in organic and/or pyrite-rich sediments, three different methods of short-term storage preservation were tested for efficacy: vacuum packing, argon gas replacement, and buffered water. Abundance counts of calcareous nannofossil assemblages over a six month period showed that none of the three preservation methods were consistently effective in reducing assemblage loss due to dissolution. In most cases, the control slides made at the drill site had more abundant calcareous nannofossil assemblages than those slides made from sediments stored via vacuum packing, argon gas replacement, or buffered water. Thin section and XRD analyses showed that in most cases, <1% pyrite was needed to drive the oxidation-reduction reaction that resulted in dissolution, even in carbonate-rich sediments.
[Preparation and in vitro dissolution of magnolol solid dispersion].
Tang, Lan; Qiu, Shuai-Bo; Wu, Lan; Lv, Long-Fei; Lv, Hui-Xia; Shan, Wei-Guang
2016-02-01
In this study, solid dispersion system of magnolol in croscarmellose sodium was prepared by using the solvent evaporation method, in order to increase the drug dissolution. And its dissolution behavior, stability and physical characteristics were studied. The solid dispersion was prepared with magnolol and croscarmellose sodium, with the proportion of 1∶5, the in vitro dissolution of magnolol solid dispersion was up to 80.66% at 120 min, which was 6.9 times of magnolol. The results of DSC (differential scanning calorimetry), IR (infra-red) spectrum and SEM (scanning electron microscopy) showed that magnolol existed in solid dispersion in an amorphous form. After an accelerated stability test for six months, the drug dissolution and content in magnolol solid dispersion showed no significant change. So the solid dispersion prepared with croscarmellose sodium as the carrier can remarkably improve the stability and dissolution of magnolol. Copyright© by the Chinese Pharmaceutical Association.
Aluminum Target Dissolution in Support of the Pu-238 Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarlane, Joanna; Benker, Dennis; DePaoli, David W
2014-09-01
Selection of an aluminum alloy for target cladding affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the caustic dissolution step, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. We present a study to maximize dissolution of aluminum metal alloy, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as a function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. These datamore » have been compared with published calculations of aluminum phase diagrams. Temperature logging during the transients has been investigated as a means to generate kinetic and mass transport data on the dissolution process. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less
Dissolution of Material and Test reactor Fuel in an H-Canyon Dissolver
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Rudisill, T. S.; O'Rourke, P. E.
2017-01-26
In an amended record of decision for the management of spent nuclear fuel (SNF) at the Savannah River Site, the US Department of Energy has authorized the dissolution and recovery of U from 1000 bundles of Al-clad SNF. The SNF is fuel from domestic and foreign research reactors and is typically referred to as Material Test Reactor (MTR) fuel. Bundles of MTR fuel containing assemblies fabricated from U-Al alloys (or other U compounds) are currently dissolved using a Hg-catalyzed HNO3 flowsheet. Since the development of the existing flowsheet, improved experimental methods have been developed to more accurately characterize the offgasmore » composition and generation rate during laboratory dissolutions. Recently, these new techniques were successfully used to develop a flowsheet for the dissolution of High Flux Isotope Reactor (HFIR) fuel. Using the data from the HFIR dissolution flowsheet development and necessary laboratory experiments, the Savannah River National Laboratory (SRNL) was requested to define flowsheet conditions for the dissolution of MTR fuels. With improved offgas characterization techniques, SRNL will be able define the number of bundles of fuel which can be charged to an H-Canyon dissolver with much less conservatism.« less
Yekpe, Ketsia; Abatzoglou, Nicolas; Bataille, Bernard; Gosselin, Ryan; Sharkawi, Tahmer; Simard, Jean-Sébastien; Cournoyer, Antoine
2018-07-01
This study applied the concept of Quality by Design (QbD) to tablet dissolution. Its goal was to propose a quality control strategy to model dissolution testing of solid oral dose products according to International Conference on Harmonization guidelines. The methodology involved the following three steps: (1) a risk analysis to identify the material- and process-related parameters impacting the critical quality attributes of dissolution testing, (2) an experimental design to evaluate the influence of design factors (attributes and parameters selected by risk analysis) on dissolution testing, and (3) an investigation of the relationship between design factors and dissolution profiles. Results show that (a) in the case studied, the two parameters impacting dissolution kinetics are active pharmaceutical ingredient particle size distributions and tablet hardness and (b) these two parameters could be monitored with PAT tools to predict dissolution profiles. Moreover, based on the results obtained, modeling dissolution is possible. The practicality and effectiveness of the QbD approach were demonstrated through this industrial case study. Implementing such an approach systematically in industrial pharmaceutical production would reduce the need for tablet dissolution testing.
Chu, Chunxia; Liu, Muhua; Wang, Dongmei; Guan, Jibin; Cai, Cuifang; Sun, Yuanpeng; Zhang, Tianhong
2014-06-01
The aim of this study was to enhance the dissolution rate and oral bioavailability of probucol. Probucol was adsorbed onto aerosils via supercritical carbon dioxide (ScCO2) and the physicochemistry properties of probucol-aerosil powder were evaluated by differential scanning calorimetry, X-ray diffraction, infrared spectroscopy and scanning electron microscopy. Tablets of the probucol-aerosil powder were prepared by direct compression method. In the dissolution test, the probucol-aerosil tablets showed a significant enhanced dissolution rate compared with commercial tablets. Bioavailability study was carried out in beagle dogs. Probucol-aerosil tablets exhibited higher AUC and Cmax than commercial tablets. The improved dissolution and bioavailability of probucol-aerosil tablets were attributed to the amorphous state and good dispersion of probucol. It is a feasible method to enhance the oral bioavailability by adsorbing probucol onto aerosils via ScCO2.
Albertini, Beatrice; Cavallari, Cristina; Passerini, Nadia; Voinovich, Dario; González-Rodríguez, Marisa L; Magarotto, Lorenzo; Rodriguez, Lorenzo
2004-02-01
The aim of this study was to prepare and to investigate acetaminophen taste-masked granules obtained in a high-shear mixer using three different wet granulation methods (method A: water granulation, method B: granulation with a polyvinylpyrrolidone (PVP) binding solution and method C: steam granulation). The studied formulation was: acetaminophen 15%, alpha-lactose monohydrate 30%, cornstarch 45%, polyvinylpyrrolidone K30 5% and orange flavour 5% (w/w). In vitro dissolution studies, performed at pH 6.8, showed that steam granules enabled the lower dissolution rate in comparison to the water and binding solution granules; these results were then confirmed by their lower surface reactivity (D(R)) during the dissolution process. Moreover, the results of the gustatory sensation test performed by six volunteers confirmed the taste-masking effects of the granules, especially steam granules (P<0.001). Morphological, fractal and porosity analysis were then performed to explain the dissolution profiles and the results of the gustatory sensation test. Scanning electron microscopy (SEM) analysis revealed the smoother and the more regular surface of steam granules with respect to the samples obtained using methods A and B; these results were also confirmed by their lower fractal dimension (D(s)) and porosity values. Finally, differential scanning calorimetry (DSC) results showed a shift of the melting point of the drug, which was due to the simple mixing of the components and not to the granulation processes. In conclusion, the steam granulation technique resulted a suitable method to comply the purpose of this work, without modifying the availability of the drug.
Huang, Zongyun; Parikh, Shuchi; Fish, William P
2018-01-15
In the pharmaceutical industry, in vitro dissolution testing ofsolid oral dosage forms is a very important tool for drug development and quality control. However, ion-pairing interaction between the ionic drugand surfactants in dissolution medium often occurs, resulting in inconsistent and incomplete drug release. The aim of this study is toevaluate the effects ofsodium dodecyl sulfate (SDS) mediated medium onthe dissolution behaviors of a poorly soluble cationic drug (Drug B). The study was carried out by measuring solubility of Drug B substance and dissolution rate of Drug B product in media containing SDS.Desolubilization of Drug B substance was observed at pH 4.5 in the presence of SDS at concentrations below critical micelle concentration (CMC) which is attributed to the formation of an insoluble di-dodecyl sulfate salt between SDS and Drug B. This ion-pairing effect is less significant with increasing medium pH where Drug B is less ionized and CMC of SDS is lower. In medium at pH 4.5, dissolution of Drug B product was found incomplete with SDS concentration below CMC due to the desolubilization of Drug B substance. In media with SDS level above CMC, the dissolution rate is rather slower with higher inter-vessel variations compared to that obtained in pH 4.5 medium without SDS. The dissolution results demonstrate that the presence of SDS in medium generates unexpected irregular dissolution profiles for Drug B which are attributed to incompatible dissolution medium for this particular drug. Therefore, non-ionic surfactant was selected for Drug B product dissolution method and ion-pairing effect in SDS mediated medium should be evaluated when developing a dissolution method for any poorly soluble cationic drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug
NASA Astrophysics Data System (ADS)
Tingming, Fu; Liwei, Guo; Kang, Le; Tianyao, Wang; Jin, Lu
2010-09-01
The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20PO 70EO 20) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.
[Study on solid dispersion of copovidone-based tanshinone II(A)].
Jiang, Yan-Rong; Zhang, Zhen-Hai; Xia, Hai-Jiang; Jia, Xiao-Bin
2013-01-01
To apply PVP-S630 in the preparation of tanshinone II(A) (TS II(A)) solid dispersion, in order to improve its dissolution in vitro and reduce the moisture absorption of the solid dispersion. Tanshinone II(A) solid dispersion was prepared by spray drying method. Such analytical methods as SEM, DSC, XRD were used to characterize their phases and detect their dissolution, moisture absorption and stability. In the solid dispersion prepared with tanshinone II(A) and copovidone with proportion of 1:10, tanshinone II(A) was scattered on the surface of the carrier in the amorphous form, with a dissolution in vitro up to 100% at 0.5 h and a lower moisture absorption than PVP-K30 solid dispersion prepared with the same proportion. After a three-month accelerated stability test, it showed no significant change in drug dissolution and content. The solid dispersion prepared with copovidone as the carrier can significantly improve the dissolution of tanshinone II(A), with a relatively low moisture absorption and high stability, thereby having a good prospect of application.
Engel, A; Plöger, M; Mulac, D; Langer, K
2014-01-30
Nanoparticles composed of poly(DL-lactide-co-glycolide) (PLGA) represent promising colloidal drug carriers for improved drug targeting. Although most research activities are focused on intravenous application of these carriers the peroral administration is described to improve bioavailability of poorly soluble drugs. Based on these insights the manuscript describes a model tablet formulation for PLGA-nanoparticles and especially its analytical characterisation with regard to a nanosized drug carrier. Besides physico-chemical tablet characterisation according to pharmacopoeias the main goal of the study was the development of a suitable analytical method for the quantification of nanoparticle release from tablets. An analytical flow field-flow fractionation (AF4) method was established and validated which enables determination of nanoparticle content in solid dosage forms as well as quantification of particle release during dissolution testing. For particle detection a multi-angle light scattering (MALS) detector was coupled to the AF4-system. After dissolution testing, the presence of unaltered PLGA-nanoparticles was successfully proved by dynamic light scattering and scanning electron microscopy. Copyright © 2013 Elsevier B.V. All rights reserved.
Lai, Hong-qiang; Hu, Yue; Li, Xiao-dong
2015-06-01
To discuss the availability of evaluation on the dissolution studies of the multicomponents in traditional Chinese medicine, the in vitro dissolution of total composition of the tablet of rhizomes of Ligusticum chuanxiong components and its correlation with the in vivo were studied by the method of area under the absorbance-wavelength curve (AUAWC). Taken the tablet of rhizomes of Ligusticum chuanxiong components which is composed of sodium ferulate and ligustrazine hydrochloride as subject model, the dissolution tests were carried out with basket method. The plasma concentrations of tablets in different rats were determined by AUAWC at different interval times. The in vivo absorption percentage was calculated by Wagner-Nelson equation to evaluate the in vitro and in vivo correlation. According to the results, the cumulative dissolution in vitro of total composition of tablets of rhizomes of Ligusticum chuanxiong components at 60 min was 90.65% in water by AUAWC. The in vivo pharmacokinetics is fitted with an one-compartment model. The linear equation based on the cumulative dissolution rate (fr) and absorption percentage (fa) at 5, 10, 20, 30 and 60 min was fa = 0.819 7 fr+0.183 and the correlation coefficient was 0.959 5, which showed a good correlation between the in vitro dissolution and the in vivo absorption percentage. The method of AUAWC can be used accurately, feasibly and conveniently to evaluate the in vitro and in vivo correlation of total composition of tablets of rhizomes of Ligusticum chuanxiong components, which will provide better guidance to study the in vitro and in vivo correlation of sustained release preparation etc under complex system of traditional Chinese medicine in the future.
NASA Astrophysics Data System (ADS)
Korany, Mohamed A.; Mahgoub, Hoda; Haggag, Rim S.; Ragab, Marwa A. A.; Elmallah, Osama A.
2018-06-01
A green, simple and cost effective chemometric UV-Vis spectrophotometric method has been developed and validated for correcting interferences that arise during conducting biowaiver studies. Chemometric manipulation has been done for enhancing the results of direct absorbance, resulting from very low concentrations (high incidence of background noise interference) of earlier points in the dissolution timing in case of dissolution profile using first and second derivative (D1 & D2) methods and their corresponding Fourier function convoluted methods (D1/FF& D2/FF). The method applied for biowaiver study of Donepezil Hydrochloride (DH) as a representative model was done by comparing two different dosage forms containing 5 mg DH per tablet as an application of a developed chemometric method for correcting interferences as well as for the assay and dissolution testing in its tablet dosage form. The results showed that first derivative technique can be used for enhancement of the data in case of low concentration range of DH (1-8 μg mL-1) in the three different pH dissolution media which were used to estimate the low drug concentrations dissolved at the early points in the biowaiver study. Furthermore, the results showed similarity in phosphate buffer pH 6.8 and dissimilarity in the other 2 pH media. The method was validated according to ICH guidelines and USP monograph for both assays (HCl of pH 1.2) and dissolution study in 3 pH media (HCl of pH 1.2, acetate buffer of pH 4.5 and phosphate buffer of pH 6.8). Finally, the assessment of the method greenness was done using two different assessment techniques: National Environmental Method Index label and Eco scale methods. Both techniques ascertained the greenness of the proposed method.
Korany, Mohamed A; Mahgoub, Hoda; Haggag, Rim S; Ragab, Marwa A A; Elmallah, Osama A
2018-06-15
A green, simple and cost effective chemometric UV-Vis spectrophotometric method has been developed and validated for correcting interferences that arise during conducting biowaiver studies. Chemometric manipulation has been done for enhancing the results of direct absorbance, resulting from very low concentrations (high incidence of background noise interference) of earlier points in the dissolution timing in case of dissolution profile using first and second derivative (D1 & D2) methods and their corresponding Fourier function convoluted methods (D1/FF& D2/FF). The method applied for biowaiver study of Donepezil Hydrochloride (DH) as a representative model was done by comparing two different dosage forms containing 5mg DH per tablet as an application of a developed chemometric method for correcting interferences as well as for the assay and dissolution testing in its tablet dosage form. The results showed that first derivative technique can be used for enhancement of the data in case of low concentration range of DH (1-8μgmL -1 ) in the three different pH dissolution media which were used to estimate the low drug concentrations dissolved at the early points in the biowaiver study. Furthermore, the results showed similarity in phosphate buffer pH6.8 and dissimilarity in the other 2pH media. The method was validated according to ICH guidelines and USP monograph for both assays (HCl of pH1.2) and dissolution study in 3pH media (HCl of pH1.2, acetate buffer of pH4.5 and phosphate buffer of pH6.8). Finally, the assessment of the method greenness was done using two different assessment techniques: National Environmental Method Index label and Eco scale methods. Both techniques ascertained the greenness of the proposed method. Copyright © 2018 Elsevier B.V. All rights reserved.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2006-08-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the entire release properties. As the first step, the dissolution test under various conditions is selected for the in vitro test, and usually the results are analyzed following Drug Approval and Licensing Procedures. In this test, 3 time points for each release ratio, such as 0.2-0.4, 0.4-0.6, and over 0.7, respectively, should be selected in advance. These are analyzed as to whether their values are inside or outside the prescribed aims at each time point. This method is very simple and useful but the details of the release properties can not be clarified or confirmed. The validity of the dissolution test in analysis using a combination of the square-root time law and cube-root law equations to understand all the drug release properties was confirmed by comparing the simulated value with that measured in the previous papers. Dissolution tests under various conditions affecting drug release properties in the human body were then examined, and the results were analyzed by both methods to identify their strengths and weaknesses. Hereafter, the control of pharmaceutical preparation, the manufacturing process, and understanding the drug release properties will be more efficient. It is considered that analysis using the combination of the square-root time law and cube-root law equations is very useful and efficient. The accuracy of predicting drug release properties in the human body was improved and clarified.
NASA Astrophysics Data System (ADS)
Londhe, Vaishali Y.; Deshmane, Aishwarya B.; Singh, Sarita R.; Kulkarni, Yogesh A.
2018-04-01
Lurasidone hydrochloride (LHD) is an atypical antipsychotic drug has poor aqueous solubility and low bioavailability (9-19%). This study describes effect of different methods of complex formation with β-cyclodextrin (BCD) on enhancement of dissolution and on antidepressant, antipsychotic effects of LHD. Other purpose of this study is to compare pharmacodynamic effects of complexes with that of self microemulsifying drug delivery system of LHD (SMEDDS). Inclusion complexes (IC) of LHD and BCD were prepared by physical mixing (PM), kneading (KN) and spray drying (SD) in a 1:1 M ratio. These complexes were characterized by different techniques. KN and SD showing enhancement in dissolution, were compared with SMEDDS using Forced swim test (FST) and Tail suspension test (TST) for antidepressant action and Paw test for antipsychotic activity. Characterization of complexes confirmed interaction between LHD and BCD. Enhancement in dissolution is seen in following order SD > KN > PM > LHD. In all three animal models, SD, KN and SMEDDS showed statistically significant effect (p < .05) than drug alone showing enhancement in bioavailability. Complexation of LHD with BCD enhances dissolution which reflected in improvement of antidepressant and antipsychotic activity of drug. Solubility enhancement methods like complexation and self microemulsion improves pharmacodynamic activities of drug. Improvement of pharmacodynamic effect is seen in order, SD ≥ SMEDDS ≥ KN > LHD.
Disintegration of highly soluble immediate release tablets: a surrogate for dissolution.
Gupta, Abhay; Hunt, Robert L; Shah, Rakhi B; Sayeed, Vilayat A; Khan, Mansoor A
2009-01-01
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria.
Démuth, B; Galata, D L; Szabó, E; Nagy, B; Farkas, A; Balogh, A; Hirsch, E; Pataki, H; Rapi, Z; Bezúr, L; Vigh, T; Verreck, G; Szalay, Z; Demeter, Á; Marosi, G; Nagy, Z K
2017-11-06
Disadvantageous crystallization phenomenon of amorphous itraconazole (ITR) occurring in the course of dissolution process was investigated in this work. A perfectly amorphous form (solid dispersion) of the drug was generated by the electroblowing method (with vinylpyrrolidone-vinyl acetate copolymer), and the obtained fibers were formulated into tablets. Incomplete dissolution of the tablets was noticed under the circumstances of the standard dissolution test, after which a precipitated material could be filtered. The filtrate consisted of ITR and stearic acid since no magnesium content was detectable in it. In parallel with dissolution, ITR forms an insoluble associate, stabilized by hydrogen bonding, with stearic acid deriving from magnesium stearate. This is why dissolution curves do not have the plateaus at 100%. Two ways are viable to tackle this issue: change the lubricant (with sodium stearyl fumarate >95% dissolution can be accomplished) or alter the polymer in the solid dispersion to a type being able to form hydrogen bonds with ITR (e.g., hydroxypropyl methylcellulose). This work draws attention to one possible phenomenon that can lead to a deterioration of originally good dissolution of an amorphous solid dispersion.
Lu, Tianshu; Sun, Yinghua; Ding, Dawei; Zhang, Qi; Fan, Rui; He, Zhonggui; Wang, Jing
2017-02-01
The purpose of this study was to develop a combination method of wet milling and spray-drying technologies to prepare the solid dispersion and improve the dissolution rate of poorly water-soluble drug candidates. Azilsartan (AZL) was selected as the model drug for its poor water solubility. In the study, AZL-loaded solid dispersion was prepared with polyethylene glycol 6000 (PEG6000) and hydroxypropyl cellulose with super low viscosity (HPC-SL) as stabilizers by using combination of wet grinding and spray-drying methods. The high AZL loading solid dispersion was then characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and Fourier transform infrared spectroscopy (FTIR). Besides, dissolution test was carried out by the paddle method and stability investigation was also conducted. As a result, the dissolution rate of the solid dispersion tablets was found to be greater than conventional tablets, but in close agreement with market tablets. Furthermore, the formulation was shown to be stable at 40 ± 2°C and 75 ± 5% for at least 6 months, owing to its decreased particle size, morphology, and its crystal form. It was concluded that the combination of wet milling and spray-drying approaches to prepare solid dispersion would be a prospective method to improve the dissolution rate of poorly water-soluble drugs.
Dissolution and Separation of Aluminum and Aluminosilicates
McFarlane, Joanna; Benker, Dennis; DePaoli, David W.; ...
2015-12-19
The selection of an aluminum alloy for target irradiation affects post-irradiation target dissolution and separations. Recent tests with aluminum alloy 6061 yielded greater than expected precipitation in the dissolver, forming up to 10 wt.% solids of aluminum hydroxides and aluminosilicates. Aluminosilicate dissolution presents challenges in a number of different areas, metals extraction from minerals, flyash treatment, and separations from aluminum alloys. We present experimental work that attempts to maximize dissolution of aluminum metal, along with silicon, magnesium, and copper impurities, through control of temperature, the rate of reagent addition, and incubation time. Aluminum phase transformations have been identified as amore » function of time and temperature, using X-ray diffraction. Solutions have been analyzed using wet chemical methods and X-ray fluorescence. Our data have been compared with published calculations of aluminum phase diagrams. Approaches are given to enhance the dissolution of aluminum and aluminosilicate phases in caustic solution.« less
Bioequivalence and in vitro antimicrobial activity between generic and brand-name levofloxacin.
Sun, Hsin-Yun; Liao, Hsiao-Wei; Sheng, Meng-Huei; Tai, Hui-Min; Kuo, Ching-Hua; Sheng, Wang-Huei
2016-07-01
Generic agents play a crucial role in reducing the cost of medical care in many countries. However, the therapeutic equivalence remains a great concern. Our study aims to assess the in vitro antimicrobial activity and bioequivalence between generic and brand-name levofloxacin. Enantiomeric purity test, dissolution test, and in vitro antimicrobial susceptibility against seven clinically important pathogens by the agar dilution method were employed to assess the similarity between four generic products and brand-name levofloxacin (Daiichi Sankyo). All the generic and brand-name levofloxacin passed enantiomeric purity test. The results of dissolution tests were not similar among the generic products and the brand-name levofloxacin. Compared with the generic products, the brand-name levofloxacin had the smallest mean variations (-25% to 13%) with reference standard (United States Pharmacopeia levofloxacin Reference Standards). Variations were observed particularly in dissolution profiles and in vitro activity between generic products and brand-name levofloxacin. Copyright © 2016 Elsevier Inc. All rights reserved.
MRI studies of the hydrodynamics in a USP 4 dissolution testing cell.
Shiko, G; Gladden, L F; Sederman, A J; Connolly, P C; Butler, J M
2011-03-01
We present a detailed study of hydrodynamics inside the flow-through dissolution apparatus when operated according to USP recommendations. The pulsatile flow inside the flow-through cell was measured quantitatively using magnetic resonance imaging (MRI) at a spatial resolution of 234 × 234 μm(2) and slice thickness of 1 mm. We report the experimental protocols developed for in situ MRI studies and the effect that the operating conditions and tablet orientation have on the hydrodynamics inside commercial flow cells. It was found that the flow field inside the dissolution cells was, at most operating conditions, heterogeneous, rather than fully developed laminar flow, and characterised by re-circulation and backward flow. A model tablet was shown to be contacted by a wide distribution of local velocities as a function of position and orientation in the flow cell. The use of 1 mm beads acted as a distributor of the flow but did not suffice to ensure a fully developed laminar flow profile. These results emphasise the necessity to understand the influence of test conditions on dissolution behaviour in defining robust flow-through dissolution methods. Copyright © 2010 Wiley-Liss, Inc.
de Oliveira Neves, Ana Carolina; Soares, Gustavo Mesquita; de Morais, Stéphanie Cavalcante; da Costa, Fernanda Saadna Lopes; Porto, Dayanne Lopes; de Lima, Kássio Michell Gomes
2012-01-05
This work utilized the near-infrared spectroscopy (NIRS) and multivariate calibration to measure the percentage drug dissolution of four active pharmaceutical ingredients (APIs) (isoniazid, rifampicin, pyrazinamide and ethambutol) in finished pharmaceutical products produced in the Federal University of Rio Grande do Norte (Brazil). The conventional analytical method employed in quality control tests of the dissolution by the pharmaceutical industry is high-performance liquid chromatography (HPLC). The NIRS is a reliable method that offers important advantages for the large-scale production of tablets and for non-destructive analysis. NIR spectra of 38 samples (in triplicate) were measured using a Bomen FT-NIR 160 MB in the range 1100-2500nm. Each spectrum was the average of 50 scans obtained in the diffuse reflectance mode. The dissolution test, which was initially carried out in 900mL of 0.1N hydrochloric acid at 37±0.5°C, was used to determine the percentage a drug that dissolved from each tablet measured at the same time interval (45min) at pH 6.8. The measurement of the four API was performed by HPLC (Shimadzu, Japan) in the gradiente mode. The influence of various spectral pretreatments (Savitzky-Golay smoothing, Multiplicative Scatter Correction (MSC), and Savitzky-Golay derivatives) and multivariate analysis using the partial least squares (PLS) regression algorithm was calculated by the Unscrambler 9.8 (Camo) software. The correlation coefficient (R(2)) for the HPLC determination versus predicted values (NIRS) ranged from 0.88 to 0.98. The root-mean-square error of prediction (RMSEP) obtained from PLS models were 9.99%, 8.63%, 8.57% and 9.97% for isoniazid, rifampicin, ethambutol and pyrazinamide, respectively, indicating that the NIR method is an effective and non-destructive tool for measurement of drug dissolution from tablets. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.
Extraction and quantitative analysis of iodine in solid and solution matrixes.
Brown, Christopher F; Geiszler, Keith N; Vickerman, Tanya S
2005-11-01
129I is a contaminant of interest in the vadose zone and groundwater at numerous federal and privately owned facilities. Several techniques have been utilized to extract iodine from solid matrixes; however, all of them rely on two fundamental approaches: liquid extraction or chemical/heat-facilitated volatilization. While these methods are typically chosen for their ease of implementation, they do not totally dissolve the solid. We defined a method that produces complete solid dissolution and conducted laboratory tests to assess its efficacy to extract iodine from solid matrixes. Testing consisted of potassium nitrate/potassium hydroxide fusion of the sample, followed by sample dissolution in a mixture of sulfuric acid and sodium bisulfite. The fusion extraction method resulted in complete sample dissolution of all solid matrixes tested. Quantitative analysis of 127I and 129I via inductively coupled plasma mass spectrometry showed better than +/-10% accuracy for certified reference standards, with the linear operating range extending more than 3 orders of magnitude (0.005-5 microg/L). Extraction and analysis of four replicates of standard reference material containing 5 microg/g 127I resulted in an average recovery of 98% with a relative deviation of 6%. This simple and cost-effective technique can be applied to solid samples of varying matrixes with little or no adaptation.
A new method for evaluating the dissolution of orodispersible films.
Xia, Yiran; Chen, Fang; Zhang, Huiping; Luo, Chunlin
2015-05-01
The aim of this research was to develop and assess a new dissolution apparatus for orodispersible films (ODFs). The new apparatus was based on a flow-through cell design which requires only a limited amount of dissolution medium and can automatically collect samples in short-time intervals. Compared with the dissolution method in Chinese Pharmacopeia, our method simulated the flow condition of the oral cavity and resulted in reproducible dissolution data and remarkably discriminating capability. Therefore, we concluded that the proposed dissolution method was particularly suitable for evaluating the dissolution of ODFs and should also be applicable to other fast-dissolving solid dosage forms.
Perng, Cherng-Yih; Kearney, Albert S; Palepu, Nagesh R; Smith, Brian R; Azzarano, Leonard M
2003-01-02
SB-247083 is a potent, nonpeptidic, orally active, ETA-selective, endothelin receptor antagonist. The diacid form and three salts (monoarginine, diarginine and disodium) of SB-247083 were evaluated during the pre-clinical phase of development. The developability attributes (i.e. hygroscopicity, thermal behavior, aqueous solubility, and drug-excipient compatibility) of these compounds were evaluated. In addition to these attributes, the flow-through cell (FTC) dissolution testing (using USP Apparatus 4) was used as a screening technique to evaluate several SB-247083 formulations of the diacid and its salts. FTC dissolution testing offers two distinct advantages over the more traditional static-condition dissolution testing: (1) maintenance of sink conditions; and (2) the ability to change the dissolution medium during a dissolution run. The former advantage is especially important for poorly aqueous soluble drugs having associated dissolution-rate-limitations, and the latter advantage allows one to more closely simulate the pH gradient associated with transit through the GI tract. Based on the comparative dissolution data, three formulations were chosen for oral dosing in dogs. The reasonable correlation found between the FTC dissolution results and the oral bioavailability data demonstrate that FTC dissolution testing can be a valuable tool for aiding in salt (solid-state form) and formulation selection in the early stages of development of drug candidates.
NASA Astrophysics Data System (ADS)
Rongstad, Brigitta L.; Marchitto, Thomas M.; Herguera, Juan Carlos
2017-12-01
It is well documented that partial dissolution of planktic foraminiferal tests results in a reduction of Mg/Ca ratios, and hence of inferred calcification temperatures; however, traditional analysis techniques have made it difficult to identify the exact mechanism through which Mg is lost. Three hypotheses have been proposed as models for Mg loss for a given extent of dissolution: (1) a percent loss of Mg in individuals, (2) a molar loss of Mg in individuals, and (3) a loss of the highest-Mg (warmest) individuals from a population. It is vital to better constrain these models as they have very different implications for Mg/Ca paleotemperature dissolution corrections. Here we use a novel individual foraminifera Mg/Ca method to examine the effects of dissolution on the Mg/Ca paleothermometer in three species of planktic foraminifera, Globigerinoides ruber, Neogloboquadrina dutertrei, and Pulleniatina obliquiloculata, from a depth transect of core tops on the Ontong Java Plateau in the western equatorial Pacific. With the exception of the most heavily dissolved population of P. obliquiloculata, our data best support a percent Mg loss model as indicated by the preservation of inferred temperature distribution shapes among the sampled populations and the close fit of the simulated percent Mg loss model to the observed data. Coupled with estimates for foraminiferal dissolution, identification of the percent Mg loss model will allow for more accurate dissolution corrections in Mg/Ca paleothermometry work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.
In far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this paper is to study effects of these variables on three model waste glasses (SON68, ISG, AFCI). To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH(RT) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. The results from these tests were then used to parameterize a kinetic rate model based on transition state theory. Both the absolute dissolution rates andmore » the rate model parameters are compared with previous results. Discrepancies in the absolute dissolution rates as compared to those obtained using other test methods are discussed. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies. The results were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), which is capable of providing a robust uncertainty analysis. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, the effect of glass composition on the rate parameter values could possibly be obtained. This would allow for the possibility of predicting the forward dissolution rate of glass based solely on composition« less
Tomic, I; Vidis-Millward, A; Mueller-Zsigmondy, M; Cardot, J-M
2016-05-30
The objective of this study was development of accelerated in vitro release method for peptide loaded PLGA microspheres using flow-through apparatus and assessment of the effect of dissolution parameters (pH, temperature, medium composition) on drug release rate and mechanism. Accelerated release conditions were set as pH 2 and 45°C, in phosphate buffer saline (PBS) 0.02M. When the pH was changed from 2 to 4, diffusion controlled phases (burst and lag) were not affected, while release rate during erosion phase decreased two-fold due to slower ester bonds hydrolyses. Decreasing temperature from 45°C to 40°C, release rate showed three-fold deceleration without significant change in release mechanism. Effect of medium composition on drug release was tested in PBS 0.01M (200 mOsm/kg) and PBS 0.01M with glucose (380 mOsm/kg). Buffer concentration significantly affected drug release rate and mechanism due to the change in osmotic pressure, while ionic strength did not have any effect on peptide release. Furthermore, dialysis sac and sample-and-separate techniques were used, in order to evaluate significance of dissolution technique choice on the release process. After fitting obtained data to different mathematical models, flow-through method was confirmed as the most appropriate for accelerated in vitro dissolution testing for a given formulation. Copyright © 2016 Elsevier B.V. All rights reserved.
Computational fluid dynamics (CFD) studies of a miniaturized dissolution system.
Frenning, G; Ahnfelt, E; Sjögren, E; Lennernäs, H
2017-04-15
Dissolution testing is an important tool that has applications ranging from fundamental studies of drug-release mechanisms to quality control of the final product. The rate of release of the drug from the delivery system is known to be affected by hydrodynamics. In this study we used computational fluid dynamics to simulate and investigate the hydrodynamics in a novel miniaturized dissolution method for parenteral formulations. The dissolution method is based on a rotating disc system and uses a rotating sample reservoir which is separated from the remaining dissolution medium by a nylon screen. Sample reservoirs of two sizes were investigated (SR6 and SR8) and the hydrodynamic studies were performed at rotation rates of 100, 200 and 400rpm. The overall fluid flow was similar for all investigated cases, with a lateral upward spiraling motion and central downward motion in the form of a vortex to and through the screen. The simulations indicated that the exchange of dissolution medium between the sample reservoir and the remaining release medium was rapid for typical screens, for which almost complete mixing would be expected to occur within less than one minute at 400rpm. The local hydrodynamic conditions in the sample reservoirs depended on their size; SR8 appeared to be relatively more affected than SR6 by the resistance to liquid flow resulting from the screen. Copyright © 2017 Elsevier B.V. All rights reserved.
Results of Characterization and Retrieval Testing on Tank 241-C-109 Heel Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, William S.
Eight samples of heel solids from tank 241-C-109 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, one-half to two-thirds of the solids were off-white to tan solids that, visually, were fairly evenly graded in size from coarse silt (30-60 μm) to medium pebbles (8-16 mm). The remaining solids were mostly strongly cemented aggregates ranging from coarse pebbles (16-32 mm) to fine cobbles (6-15 cm) in size. Solid phase characterization and chemical analysis indicated that the air-dry heel solids contained ≈58 wt% gibbsite [Al(OH){sub 3}] and ≈37 wt% natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}·19H{sub 2}O].more » The strongly cemented aggregates were mostly fine-grained gibbsite cemented with additional gibbsite. Dissolution testing was performed on two test samples. One set of tests was performed on large pieces of aggregate solids removed from the heel solids samples. The other set of dissolution tests was performed on a composite sample prepared from well-drained, air-dry heel solids that were crushed to pass a 1/4-in. sieve. The bulk density of the composite sample was 2.04 g/mL. The dissolution tests included water dissolution followed by caustic dissolution testing. In each step of the three-step water dissolution tests, a volume of water approximately equal to 3 times the initial volume of the test solids was added. In each step, the test samples were gently but thoroughly mixed for approximately 2 days at an average ambient temperature of 25 °C. The caustic dissolution tests began with the addition of sufficient 49.6 wt% NaOH to the water dissolution residues to provide ≈3.1 moles of OH for each mole of Al estimated to have been present in the starting composite sample and ≈2.6 moles of OH for each mole of Al potentially present in the starting aggregate sample. Metathesis of gibbsite to sodium aluminate was then allowed to proceed over 10 days of gentle mixing of the test samples at temperatures ranging from 26-30 °C. The metathesized sodium aluminate was then dissolved by addition of volumes of water approximately equal to 1.3 times the volumes of caustic added to the test slurries. Aluminate dissolution was allowed to proceed for 2 days at ambient temperatures of ≈29 °C. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.0 wt% of the tank 241-C-109 crushed heel solids composite test sample. The 20 wt% of solids remaining after the dissolution tests were 85-88 wt% gibbsite. If the density of the residual solids was approximately equal to that of gibbsite, they represented ≈17 vol% of the initial crushed solids composite test sample. In the water dissolution tests, addition of a volume of water ≈6.9 times the initial volume of the crushed solids composite was sufficient to dissolve and recover essentially all of the natrophosphate present. The ratio of the weight of water required to dissolve the natrophosphate solids to the estimated weight of natrophosphate present was 8.51. The Environmental Simulation Program (OLI Systems, Inc., Morris Plains, New Jersey) predicts that an 8.36 w/w ratio would be required to dissolve the estimated weight of natrophosphate present in the absence of other components of the heel solids. Only minor amounts of Al-bearing solids were removed from the composite solids in the water dissolution tests. The caustic metathesis/aluminate dissolution test sequence, executed at temperatures ranging from 27-30 °C, dissolved and recovered ≈69 wt% of the gibbsite estimated to have been present in the initial crushed heel solids composite. This level of gibbsite recovery is consistent with that measured in previous scoping tests on the dissolution of gibbsite in strong caustic solutions. Overall, the sequential water and caustic dissolution tests dissolved and removed 80.3 wt% of the tank 241-C-109 aggregate solids test sample. The residual solids were 92-95 wt% gibbsite. Only a minor portion (≈4.5 wt%) of the aggregate solids was dissolved and recovered in the water dissolution test. Other than some smoothing caused by continuous mixing, the aggregates were essentially unaffected by the water dissolution tests. During the caustic metathesis/aluminate dissolution test sequence, ≈81 wt% of the gibbsite estimated to have been present in the aggregate solids was dissolved and recovered. The pieces of aggregate were significantly reduced in size but persisted as distinct pieces of solids. The increased level of gibbsite recovery, as compared to that for the crushed heel solids composite, suggests that the way the gibbsite solids and caustic solution are mixed is a key determinant of the overall efficiency of gibbsite dissolution and recovery. The liquids recovered after the caustic dissolution tests on the crushed solids composite and the aggregate solids were observed for 170 days. No precipitation of gibbsite was observed. The distribution of particle sizes in the residual solids recovered following the dissolution tests on the crushed heel solids composite was characterized. Wet sieving indicated that 21.4 wt% of the residual solids were >710 μm in size, and laser light scattering indicated that the median equivalent spherical diameter in the <710-μm solids was 35 μm. The settling behavior of the residual solids following the large-scale dissolution tests was also studied. When dispersed at a concentration of ≈1 vol% in water, ≈24 wt% of the residual solids settled at a rate >0.43 in./s; ≈68 wt% settled at rates between 0.02 and 0.43 in./s; and ≈7 wt% settled slower than 0.02 in./s.« less
Jiang, Tongying; Wu, Chao; Gao, Yikun; Zhu, Wenquan; Wan, Long; Wang, Zhanyou; Wang, Siling
2014-02-01
Organic porous material is a promising carrier for enhancing the dissolution of poorly water soluble drug. The aim of the present study was to enhance dissolution and oral bioavailability of lovastatin (LV) by preparing a porous starch microsphere foam (PSM) using a novel method, meanwhile, looking into the mechanism of improving dissolution of LV. PSM was prepared by the W/O emulsion-freeze thawing method. The porous structure of PSM was characterized by scanning electron microscopy (SEM) and nitrogen adsorption/desorption analysis. The adsorption role of nanopores on the drug dissolution and physical state of LV was systematically studied by instrumental analysis, and in vitro and in vivo drug dissolution studies. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to evaluate carrier cytotoxicity. The SEM images of PSM showed nanometer-sized pores. Physical state characterization indicated that porous structure effectively limited the degree of crystallinity of LV. The results of in vitro and in vivo tests testified that PSM accelerated the release of LV and enhanced its oral bioavailability in comparison with crude LV and commercial capsules. The loaded PSM powder indicated a good physical stability under storage for 12 months. MTT assay shows PSM has no toxicity for Caco-2 cell. The preparation was a promising method to produce small and uniform PSM with markedly enhanced dissolution rate and oral bioavailability due to the spatial confinement effect of porous structure. The present work demonstrates the significant potential for the use of PSM as a novel delivery system for poorly water soluble drugs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelis, A.; Brown, M. A.; Wiedmeyer, S.
2014-02-18
Argonne National Laboratory (Argonne) is developing an alternative method for digesting irradiated low enriched uranium (LEU) foil targets to produce 99Mo in neutral/alkaline media. This method consists of the electrolytic dissolution of irradiated uranium foil in sodium bicarbonate solution, followed by precipitation of base-insoluble fission and activation products, and uranyl-carbonate species with CaO. The addition of CaO is vital for the effective anion exchange separation of 99MoO 4 2- from the fission products, since most of the interfering anions (e.g., CO 3 2-) are removed from the solution, while molybdate remains in solution. An anion exchange is used to retainmore » and to purify the 99Mo from the filtrate. The electrochemical dissolver has been designed and fabricated in 304 stainless-steel (SS), and tested for the dissolution of a full-size depleted uranium (DU) target, wrapped in Al foil. Future work will include testing with low-burn-up DU foil at Argonne and later with high-burn-up LEU foils at Oak Ridge National Laboratory.« less
Enhanced dissolution of sildenafil citrate as dry foam tablets.
Sawatdee, Somchai; Atipairin, Apichart; Sae Yoon, Attawadee; Srichana, Teerapol; Changsan, Narumon
2017-01-30
Dry foam formulation technology is alternative approach to enhance dissolution of the drug. Sildenafil citrate was suspended in sodium dodecyl sulfate solution and adding a mixture of maltodextrin and mannitol as diluent to form a paste. Sildenafil citrate paste was passed through a nozzle spray bottle to obtain smooth foam. The homogeneous foam was dried in a vacuum oven and sieved to obtain dry foam granules. The granules were mixed with croscarmellose sodium, magnesium stearate and compressed into tablet. All formulations were evaluated for their physicochemical properties and dissolution profiles. All the tested excipients were compatible with sildenafil citrate by both differential scanning calorimetry (DSC) and infrared (IR) analysis. There are no X-ray diffraction (XRD) peaks representing crystals of sildenafil citrate observed form dry foam formulations. The hardness of tablets was about 5 kg, friability test <1% with a disintegration time <5 min. The sildenafil citrate dry foam tablet had higher dissolution rate in 0.1 N HCl in comparison with commercial sildenafil citrate tablet, sildenafil citrate prepared by direct compression and wet granulation method. Sildenafil citrate dry foam tablet with the high-level composition of surfactant, water and diluent showed enhanced dissolution rate than that of the lower-level composition of these excipients. This formulation was stable under accelerated conditions for at least 6 months.
Dissolution testing of orally disintegrating tablets.
Kraemer, Johannes; Gajendran, Jayachandar; Guillot, Alexis; Schichtel, Julian; Tuereli, Akif
2012-07-01
For industrially manufactured pharmaceutical dosage forms, product quality tests and performance tests are required to ascertain the quality of the final product. Current compendial requirements specify a disintegration and/or a dissolution test to check the quality of oral solid dosage forms. These requirements led to a number of compendial monographs for individual products and, at times, the results obtained may not be reflective of the dosage form performance. Although a general product performance test is desirable for orally disintegrating tablets (ODTs), the complexity of the release controlling mechanisms and short time-frame of release make such tests difficult to establish. For conventional oral solid dosage forms (COSDFs), disintegration is often considered to be the prerequisite for subsequent dissolution. Hence, disintegration testing is usually insufficient to judge product performance of COSDFs. Given the very fast disintegration of ODTs, the relationship between disintegration and dissolution is worthy of closer scrutiny. This article reviews the current status of dissolution testing of ODTs to establish the product quality standards. Based on experimental results, it appears that it may be feasible to rely on the dissolution test without a need for disintegration studies for selected ODTs on the market. © 2012 The Authors. JPP © 2012 Royal Pharmaceutical Society.
Dissolution Failure of Solid Oral Drug Products in Field Alert Reports.
Sun, Dajun; Hu, Meng; Browning, Mark; Friedman, Rick L; Jiang, Wenlei; Zhao, Liang; Wen, Hong
2017-05-01
From 2005 to 2014, 370 data entries of dissolution failures of solid oral drug products were assessed with respect to the solubility of drug substances, dosage forms [immediate release (IR) vs. modified release (MR)], and manufacturers (brand name vs. generic). The study results show that the solubility of drug substances does not play a significant role in dissolution failures; however, MR drug products fail dissolution tests more frequently than IR drug products. When multiple variables were analyzed simultaneously, poorly water-soluble IR drug products failed the most dissolution tests, followed by poorly soluble MR drug products and very soluble MR drug products. Interestingly, the generic drug products fail dissolution tests at an earlier time point during a stability study than the brand name drug products. Whether the dissolution failure of these solid oral drug products has any in vivo implication will require further pharmacokinetic, pharmacodynamic, clinical, and drug safety evaluation. Food and Drug Administration is currently conducting risk-based assessment using in-house dissolution testing, physiologically based pharmacokinetic modeling and simulation, and post-market surveillance tools. At the meantime, this interim report will outline a general scheme of monitoring dissolution failures of solid oral dosage forms as a pharmaceutical quality indicator. Published by Elsevier Inc.
Evaluation of various dissolution media for predicting in vivo performance of class I and II drugs.
Galia, E; Nicolaides, E; Hörter, D; Löbenberg, R; Reppas, C; Dressman, J B
1998-05-01
In this paper we seek to verify the differences in dissolution behavior between class I and class II drugs and to evaluate the suitability of two new physiologically based media, of Simulated Gastric Fluid (SGF) and of milk for their ability to forecast trends in the in vivo performance of class II compounds and their formulations. Dissolution behavior of two class I drugs, i.e. acetaminophen and metoprolol, and of three class II drugs, i.e. danazol, mefenamic acid and ketoconazole, was studied with USP Apparatus 2 in water, SGF, milk, Simulated Intestinal Fluid without pancreatin (SIFsp) and in two media simulating the small intestinal contents in the fed (FeSSIF) and fasted (FaSSIF) states, respectively. Class I powders dissolved rapidly in all media tested. Acetaminophen dissolution in milk was slow from one tablet formulation, in all other cases dissolution was more than 85% complete in 15 minutes. The dissolution rate of metoprolol was shown to be dependent on formulation and manufacturing method, and one of the three tablet formulations did not meet compendial specifications (80%/30 minutes). Dissolution behavior of class II drugs was greatly affected by choice of medium. Dissolution from a capsule formulation of danazol proved to be dependent on the concentration of solubilizing agents, with a the 30-fold increase in percentage dissolved within 90 minutes upon changing from aqueous media without surfactants to FaSSIF. Use of FeSSIF or milk as the dissolution medium resulted in an even greater increase in percentage dissolved, 100 and 180-fold respectively. Dissolution of the weak acid mefenamic acid from a capsule formulation is dependent on both pH and bile salt concentration, which leads to an offset between increased bile salt concentration and lower pH in the fed state compared to the fasted state medium. The weak base ketoconazole showed complete dissolution from a tablet formulation in Simulated Gastric Fluid without pepsin (SGFsp) within 30 minutes, 70% dissolution in 2 hours under fed state simulated upper jejunal conditions but only 6% dissolution in 2 hours under fasted state conditions. As predicted, dissolution of class II drugs proved to be in general much more dependent on the medium than class I drugs. With the array of compendial and physiological media available, it should be possible to design a suitable set of tests to predict the in vivo dissolution of both class I and II drugs from immediate release formulations.
Sun, Jiao; Wang, Fan; Sui, Yue; She, Zhennan; Zhai, Wenjun; Wang, Chunling; Deng, Yihui
2012-01-01
In this paper work, four naked nanocrystals (size range 80–700 nm) were prepared without any surfactant or polymer using the solvent/nonsolvent method. The effects of particle size on their solubility, dissolution, and oral bioavailability were investigated. Solubility and dissolution testing were performed in three types of dissolution medium, and the studies demonstrated that the equilibrium solubilities of coenzyme Q10 nanocrystals and bulk drugs were not affected by the dissolution media but the kinetic solubilities were. Kinetic solubility curves and changes in particle size distribution were determined and well explained by the proposed solubilization model for the nanocrystals and bulk drugs. The particle size effect on dissolution was clearly influenced by the diffusion coefficients of the various dissolution media, and the dissolution velocity of coenzyme Q10 increased as particle size decreased. The bioavailability of coenzyme Q10 after oral administration in beagle dogs was improved by reducing the particle size. For 700 nm nanocrystals, the AUC0–48 was 4.4-fold greater than that for the coarse suspensions, but a further decrease in particle size from 700 nm to 120 nm did not contribute to improvement in bioavailability until the particle size was reduced to 80 nm, when bioavailability was increased by 7.3-fold. PMID:23166438
Alternative Chemical Cleaning Methods for High Level Waste Tanks: Simulant Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; King, W.; Hay, M.
Solubility testing with simulated High Level Waste tank heel solids has been conducted in order to evaluate two alternative chemical cleaning technologies for the dissolution of sludge residuals remaining in the tanks after the exhaustion of mechanical cleaning and sludge washing efforts. Tests were conducted with non-radioactive pure phase metal reagents, binary mixtures of reagents, and a Savannah River Site PUREX heel simulant to determine the effectiveness of an optimized, dilute oxalic/nitric acid cleaning reagent and pure, dilute nitric acid toward dissolving the bulk non-radioactive waste components. A focus of this testing was on minimization of oxalic acid additions duringmore » tank cleaning. For comparison purposes, separate samples were also contacted with pure, concentrated oxalic acid which is the current baseline chemical cleaning reagent. In a separate study, solubility tests were conducted with radioactive tank heel simulants using acidic and caustic permanganate-based methods focused on the “targeted” dissolution of actinide species known to be drivers for Savannah River Site tank closure Performance Assessments. Permanganate-based cleaning methods were evaluated prior to and after oxalic acid contact.« less
Petrović, Jelena; Ibrić, Svetlana; Betz, Gabriele; Đurić, Zorica
2012-05-30
The main objective of the study was to develop artificial intelligence methods for optimization of drug release from matrix tablets regardless of the matrix type. Static and dynamic artificial neural networks of the same topology were developed to model dissolution profiles of different matrix tablets types (hydrophilic/lipid) using formulation composition, compression force used for tableting and tablets porosity and tensile strength as input data. Potential application of decision trees in discovering knowledge from experimental data was also investigated. Polyethylene oxide polymer and glyceryl palmitostearate were used as matrix forming materials for hydrophilic and lipid matrix tablets, respectively whereas selected model drugs were diclofenac sodium and caffeine. Matrix tablets were prepared by direct compression method and tested for in vitro dissolution profiles. Optimization of static and dynamic neural networks used for modeling of drug release was performed using Monte Carlo simulations or genetic algorithms optimizer. Decision trees were constructed following discretization of data. Calculated difference (f(1)) and similarity (f(2)) factors for predicted and experimentally obtained dissolution profiles of test matrix tablets formulations indicate that Elman dynamic neural networks as well as decision trees are capable of accurate predictions of both hydrophilic and lipid matrix tablets dissolution profiles. Elman neural networks were compared to most frequently used static network, Multi-layered perceptron, and superiority of Elman networks have been demonstrated. Developed methods allow simple, yet very precise way of drug release predictions for both hydrophilic and lipid matrix tablets having controlled drug release. Copyright © 2012 Elsevier B.V. All rights reserved.
Dissolution enhancement of tadalafil by liquisolid technique.
Lu, Mei; Xing, Haonan; Yang, Tianzhi; Yu, Jiankun; Yang, Zhen; Sun, Yanping; Ding, Pingtian
2017-02-01
This study aimed to enhance the dissolution of tadalafil, a poorly water-soluble drug by applying liquisolid technique. The effects of two critical formulation variables, namely drug concentration (17.5% and 35%, w/w) and excipients ratio (10, 15 and 20) on dissolution rates were investigated. Pre-compression tests, including particle size distribution, flowability determination, Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and scanning electron microscopy (SEM), were carried out to investigate the mechanism of dissolution enhancement. Tadalafil liquisolid tablets were prepared and their quality control tests, dissolution study, contact angle measurement, Raman mapping, and storage stability test were performed. The results suggested that all the liquisolid tablets exhibited significantly higher dissolution rates than the conventional tablets and pure tadalafil. FT-IR spectrum reflected no drug-excipient interactions. DSC and XRD studies indicated reduction in crystallinity of tadalafil, which was further confirmed by SEM and Raman mapping outcomes. The contact angle measurement demonstrated obvious increase in wetting property. Taken together, the reduction of particle size and crystallinity, and the improvement of wettability were the main mechanisms for the enhanced dissolution rate. No significant changes were observed in drug crystallinity and dissolution behavior after storage based on XRD, SEM and dissolution results.
Pestieau, Aude; Krier, Fabrice; Brouwers, Adeline; Streel, Bruno; Evrard, Brigitte
2016-09-20
Fenofibrate, a BCS class II compound, has a low bioavailability especially when taken orally on an empty stomach. The challenge to find a new formulation for providing bioavailability, independent of food, is still ongoing. If the development of a suitable oral delivery formulation of BCS class II compounds is a frequent and great challenge to formulation scientists, the in vitro evaluation of these new formulations is also a great challenge. The purpose of this study was therefore to select an in vitro dissolution test that would be useful and as biorelevant as possible for the development of fenofibrate self-emulsifying lipid-based formulations. In this context, three different fenofibrate formulations, for which in vivo data are available in the literature, were tested using different dissolution tests until we found the one that was the most suitable. As part of this approach, we started with the simplest in vitro dissolution tests and progressed to tests that were increasingly more complex. The first tests were different single phase dissolution tests: a test under sink conditions based on the USP monograph, and different tests under non-sink conditions in non-biorelevant and biorelevant media. Given the inconclusive results obtained with these tests, biphasic dissolution systems were then tested: one with USP apparatus type II alone and another which combined USP apparatus types II and IV. This last combined test seemed the most suitable in vitro dissolution test for the development of the future fenofibrate lipid-based formulations we intend to develop in our own laboratory. Copyright © 2016 Elsevier B.V. All rights reserved.
Taneja, Sonali; Mishra, Neha; Malik, Shubhra
2014-01-01
Introduction: Irrigation plays an indispensable role in removal of tissue remnants and debris from the complicated root canal system. This study compared the human pulp tissue dissolution by different concentrations of chlorine dioxide, calcium hypochlorite and sodium hypochlorite. Materials and Methods: Pulp tissue was standardized to a weight of 9 mg for each sample. In all,60 samples obtained were divided into 6 groups according to the irrigating solution used- 2.5% sodium hypochlorite (NaOCl), 5.25% NaOCl, 5% calcium hypochlorite (Ca(OCl)2), 10% Ca(OCl)2, 5%chlorine dioxide (ClO2) and 13% ClO2. Pulp tissue was placed in each test tube carrying irrigants of measured volume (5ml) according to their specified subgroup time interval: 30 minutes (Subgroup A) and 60 minutes (Subgroup B). The solution from each sample test tube was filtered and was left for drying overnight. The residual weight was calculated by filtration method. Results: Mean tissue dissolution increases with increase in time period. Results showed 5.25% NaOCl to be most effective at both time intervals followed by 2.5% NaOCl at 60 minutes, 10%Ca(OCl)2 and 13% ClO2 at 60 minutes. Least amount of tissue dissolving ability was demonstrated by 5% Ca(OCl)2 and 5% ClO2 at 30 minutes. Distilled water showed no pulp tissue dissolution. Conclusion: Withinthe limitations of the study, NaOCl most efficiently dissolved the pulp tissue at both concentrations and at both time intervals. Mean tissue dissolution by Ca(OCl)2 and ClO2 gradually increased with time and with their increase in concentration. PMID:25506141
Gowda, Veeran; Pabari, Ritesh M; Kelly, John G; Ramtoola, Zebunnissa
2015-06-01
The objective of the present study was to evaluate the influence of Prosolv® and Prosolv®: Mannitol 200 direct compression (DC) fillers on the physicomechanical characteristics of oral dispersible tablets (ODTs) of crystalline atorvastatin calcium. ODTs were formulated by DC and were analyzed for weight uniformity, hardness, friability, drug content, disintegration and dissolution. Three disintegration time (DT) test methods; European Pharmacopoeia (EP) method for conventional tablets (Method 1), a modification of this method (Method 2) and the EP method for oral lyophilisates (Method 3) were compared as part of this study. All ODTs showed low weight variation of <2.5%. Prosolv® only ODTs showed the highest tablet hardness of ∼ 73 N, hardness decreased with increasing mannitol content. Friability of all formulations was <1% although friability of Prosolv®:Mannitol ODTs was higher than for pure Prosolv®. DT of all ODTs was <30 s. Method 2 showed the fastest DT. Method 3 was non-discriminatory giving a DT of 13-15 s for all formulations. Atorvastatin dissolution from all ODTs was >60% within 5 min despite the drug being crystalline. Prosolv® and Prosolv®:Mannitol-based ODTs are suitable for ODT formulations by DC to give ODTs with high mechanical strength, rapid disintegration and dissolution.
NASA Technical Reports Server (NTRS)
Gratz, Andrew J.; Bird, Peter; Quiro, Glenn B.
1990-01-01
A highly accurate method, called the negative crystal method, for determining the rate of dissolution on specific crystallographic faces of crystals was developed, in which the dissolution rates of nominally perfect crystal faces are obtained by measuring the size of individual negative crystals during a sequence of dissolution steps. The method was applied to determine the apparent activation energy and rate constants for the dissolution of quartz in 0.01 M KOH solutions at temperatures from 106 to 236 C. Also investigated were the effects of hydroxyl activity and ionic strength. The apparent activation energies for the dissolution of the prism and of the rhomb were determined.
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-01-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964
In vitro dynamic solubility test: influence of various parameters.
Thélohan, S; de Meringo, A
1994-10-01
This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS)
NASA Astrophysics Data System (ADS)
Wang, F.; Annable, M. D.; Jawitz, J. W.
2012-12-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a PCE-contaminated dry cleaner site, located in Jacksonville, Florida. The EST is an analytical solution with field-measurable input parameters. Here, measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ alcohol (ethanol) flood. In addition, a simulated partitioning tracer test from a calibrated spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The ethanol prediction based on both the field partitioning tracer test and the UTCHEM tracer test simulation closely matched the field data. The PCE EST prediction showed a peak shift to an earlier arrival time that was concluded to be caused by well screen interval differences between the field tracer test and alcohol flood. This observation was based on a modeling assessment of potential factors that may influence predictions by using UTCHEM simulations. The imposed injection and pumping flow pattern at this site for both the partitioning tracer test and alcohol flood was more complex than the natural gradient flow pattern (NGFP). Both the EST model and UTCHEM were also used to predict PCE dissolution under natural gradient conditions, with much simpler flow patterns than the forced-gradient double five spot of the alcohol flood. The NGFP predictions based on parameters determined from tracer tests conducted with complex flow patterns underestimated PCE concentrations and total mass removal. This suggests that the flow patterns influence aqueous dissolution and that the aqueous dissolution under the NGFP is more efficient than dissolution under complex flow patterns.
Underwood, F L; Cadwallader, D E
1978-08-01
An automated potentiometric procedure was used for studying in vitro dissolution kinetics of acidic drugs. Theoretical considerations indicated that the pH-stat method could be used to establish approximate sink conditions or, possibly, a perfect sink. Data obtained from dissolution studies using the pH-stat method were compared with data obtained from known sink and nonsink conditions. These comparisons indicated that the pH-stat method can be used to establish a sink condition for dissolution studies. The effective diffusion layer thicknesses for benzoic and salicylic acids dissolving in water were determined, and a theoretical dissolution rate was calculated utilizing these values. The close agreement between the experimental dissolution rates obtained under pH-stat conditions and theoretical dissolution rates indicated that perfect sink conditions were established under the experimental conditions used.
Tredwin, Christopher J; Young, Anne M; Abou Neel, Ensanya A; Georgiou, George; Knowles, Jonathan C
2014-01-01
Hydroxyapatite (HA), fluor-hydroxyapatite (FHA) with varying levels of fluoride ion substitution and fluorapatite (FA) were synthesised by the sol-gel method as possible implant coating or bone-grafting materials. Calcium nitrate and triethyl phosphite were used as precursors under an ethanol-water based solution. Different amounts of ammonium fluoride were incorporated for the preparation of the FHA and FA sol-gels. After heating and powdering the sol-gels, dissolution behaviour was assessed using ion chromatography to measure Ca(2+) and PO4 (3-) ion release. Biological behaviour was assessed using cellular proliferation with human osteosarcoma cells and alamarBlue™ assay. Statistical analysis was performed with a two way analysis of variance and post hoc testing with a Bonferroni correction. Increasing fluoride substitution into an apatite structure decreased the dissolution rate. Increasing the firing temperature of the HA, FHA and FA sol-gels up to 1,000 °C decreased the dissolution rate. There was significantly higher cellular proliferation on highly substituted FHA and FA than on HA or Titanium. The properties of an implant coating or bone grafting material can be tailored to meet specific requirements by altering the amount of fluoride that is incorporated into the original apatite structure. The dissolution behaviour can further be altered by the temperature at which the sol-gel is fired.
Patel, V. F.; Sarai, J.
2014-01-01
The present study was aimed at investigating the effect of hydrotrope and surfactant on poor solubility of atorvastatin calcium. Excipients screening followed by factorial design was performed to study effect of excipients and manufacturing methods on solubility of drug. Three independent factors (carrier, surfactant and manufacturing method) were evaluated at two levels using solubility as a dependant variable. Solid-state characterisation was performed using Fourier transform infrared spectroscopy and differential scanning calorimetry. Optimised complex were incorporated into orally disintegrating micro tablets and in vitro dissolution test was performed. Nicotinamide, Plasdone and sodium dodecyl sulphate were emerged as promising excipients from excipient screening. General regression analysis revealed only the type of carrier has significantly enhanced (P<0.05) the solubility of drug while other factors were found to be nonsignificant. Ratio optimisation trial revealed that drug to nicotinamide ratio is more critical in enhancing the solubility of drug (40 fold increases in solubility compared to pure drug) in comparison to drug-surfactant ratio; however the presence of surfactant deemed essential. Significantly higher rate and extent of dissolution was observed from solid dispersion complex and tablets compared to dissolution of pure drug (P<0.05). Study revealed hydrotrope and surfactant have synergistic effect on solubility and dissolution of atorvastatin calcium and this can be explored further. PMID:25593381
DOE Office of Scientific and Technical Information (OSTI.GOV)
Edwards, T.; Hera, K.; Coleman, C.
2011-12-05
Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testingmore » for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the Cs{sub 2}CO{sub 3} method for the measurement of magnesium (Mg), sodium (Na), and zirconium (Zr) with additional testing of the method by DWPF Laboratory being needed before further implementation of the Cs{sub 2}CO{sub 3} method at that laboratory. While the SME acceptability testing of the Isolok does not address any of the open issues remaining after the publication of the recommendation for the replacement of the mixed acid method by the Cs{sub 2}CO{sub 3} method (since those issues are to be addressed by the DWPF Laboratory), the Cs{sub 2}CO{sub 3} testing associated with the Isolok testing does provide additional insight into the performance of the method as conducted by SRNL. The performance is to be investigated by looking to the composition measurement data generated by the samples of a standard glass, the Analytical Reference Glass - 1 (ARG-1), that were prepared by the Cs{sub 2}CO{sub 3} method and included in the SME acceptability testing of the Isolok. The measurements of these samples were presented as part of the study results, but no statistical analysis of these measurements was conducted as part of those results. It is the purpose of this report to provide that analysis, which was supported using JMP Version 7.0.2.« less
Jiang, Ping; Li, Yanbin; Liu, Guangliang; ...
2016-06-02
Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg 2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L –1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less
Kremr, Daniel; Cocovi-Solberg, David J; Bajerová, Petra; Ventura, Karel; Miró, Manuel
2017-05-01
A novel fully automated in-vitro oral dissolution test assay as a front-end to liquid chromatography has been developed and validated for on-line chemical profiling and monitoring of temporal release profiles of three caffeoylquinic acid (CQA) isomers, namely, 3-CQA,4-CQA and 5-CQA, known as chlorogenic acids, in dietary supplements. Tangential-flow filtration is harnessed as a sample processing approach for on-line handling of CQA containing extracts of hard gelatin capsules and introduction of protein-free samples into the liquid chromatograph. Oral bioaccessibility/dissolution test assays were performed at 37.0±0.5°C as per US Pharmacopeia recommendations using pepsin with activity of ca. 749,000 USP units/L in 0.1mol/L HCl as the extraction medium and a paddle apparatus stirred at 50rpm. CQA release rates and steady-state dissolution conditions were determined accurately by fitting the chromatographic datasets, namely, the average cumulative concentrations of bioaccessible pools of every individual isomer monitored during 200min, with temporal resolutions of ≥10min, to a first-order dissolution kinetic model. Distinct solid-to-liquid phase ratios in the mimicry of physiological extraction conditions were assessed. Relative standard deviations for intra-day repeatability and inter-day intermediate precision of 5-CQA within the 5-40µg/mL concentration range were <3.4% and <5.5%, respectively. Trueness of the automatic flow method for determination of 5-CQA released from dietary supplements in gastric fluid surrogate was demonstrated by spike recoveries, spanning from 91.5-104.0%, upon completion of the dissolution process. The proposed hyphenated setup was resorted for evaluating potential differences in dissolution profiles and content of the three most abundant chlorogenic acid isomers in dietary supplements from varied manufacturers. Copyright © 2016 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
STALLINGS, MARY
This report presents findings from tests investigating the dissolution of simulated and radioactive Savannah River Site sludges with 4 per cent oxalic acid and mixtures of oxalic and citric acid previously recommended by a Russian team from the Khlopin Radium Institute and the Mining and Chemical Combine (MCC). Testing also included characterization of the simulated and radioactive waste sludges. Testing results showed the following: Dissolution of simulated HM and PUREX sludges with oxalic and citric acid mixtures at SRTC confirmed general trends reported previously by Russian testing. Unlike the previous Russian testing six sequential contacts of a mixture of oxalicmore » acid citric acids at a 2:1 ratio (v/w) of acid to sludge did not produce complete dissolution of simulated HM and PUREX sludges. We observed that increased sludge dissolution occurred at a higher acid to sludge ratio, 50:1 (v/w), compared to the recommended ratio of 2:1 (v/w). We observed much lower dissolution of aluminum in a simulated HM sludge by sodium hydroxide leaching. We attribute the low aluminum dissolution in caustic to the high fraction of boehmite present in the simulated sludge. Dissolution of HLW sludges with 4 per cent oxalic acid and oxalic/citric acid followed general trends observed with simulated sludges. The limited testing suggests that a mixture of oxalic and citric acids is more efficient for dissolving HM and PUREX sludges and provides a more homogeneous dissolution of HM sludge than oxalic acid alone. Dissolution of HLW sludges in oxalic and oxalic/citric acid mixtures produced residual sludge solids that measured at higher neutron poison to equivalent 235U weight ratios than that in the untreated sludge solids. This finding suggests that residual solids do not present an increased nuclear criticality safety risk. Generally the neutron poison to equivalent 235U weight ratios of the acid solutions containing dissolved sludge components are lower than those in the untreated sludge solids. We recommend that these results be evaluated further to determine if these solutions contain sufficient neutron poisons. We observed low general corrosion rates in tests in which carbon steel coupons were contacted with solutions of oxalic acid, citric acid and mixtures of oxalic and citric acids. Wall thinning can be minimized by maintaining short contact times with these acid solutions. We recommend additional testing with oxalic and oxalic/citric acid mixtures to measure dissolution performance of sludges that have not been previously dried. This testing should include tests to clearly ascertain the effects of total acid strength and metal complexation on dissolution performance. Further work should also evaluate the downstream impacts of citric acid on the SRS High-Level Waste System (e.g., radiochemical separations in the Salt Waste Processing Facility and addition of organic carbon in the Saltstone and Defense Waste Processing facilities).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Ping; Li, Yanbin; Liu, Guangliang
Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbedmore » Hg on cinnabar surface via the reduction in spiked 202Hg 2+. By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred g L –1, while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. Lastly, these results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies.« less
NASA Astrophysics Data System (ADS)
Sun, Liqun; Chen, Yudao; Jiang, Lingzhi; Cheng, Yaping
2018-01-01
The water level fluctuation of groundwater will affect the BTEX dissolution in the fuel leakage source zone. In order to study the effect, a leakage test of gasoline was performed in the sand-tank model in the laboratory, and the concentrations of BTEX along with water level were monitored over a long period. Combined with VISUAL MODFLOW software, RT3D module was used to simulate the concentrations of BTEX, and mass flux method was used to evaluate the effects of water level fluctuation on the BTEX dissolution. The results indicate that water level fluctuation can significantly increase the concentration of BTEX dissolved in the leakage source zone. The dissolved amount of BTEX can reach up to 2.4 times under the water level fluctuation condition. The method of numerical simulation combined with mass flux calculation can be used to evaluate the effect of water level fluctuation on BTEX dissolution.
Chaudhary, Sushant; Garg, Tarun; Rath, Goutam; Murthy, Rs Rayasa; Goyal, Amit K
2016-05-01
The method based on integrating the principles of solid dispersion and nanocrystal techniques was developed to prepare polymer crystals (PCs) of mebendazole (MBZ) and polyethylene glycol (PEG). Powder X-Ray diffraction (PXRD) of the PC crystals shows the required integrated crystalline and amorphous regions. The in vitro solubility studies showed a 32-fold increase in the solubility of the drug. Tests of dissolution of the PCs showed that the crystals have an enhanced dissolution rate in comparison to those in the MF. The results of the pharmacokinetic study showed a 2.12-fold increase in the bioavailability of the drug. Thus, the present study has proved the potential in enhancing solubility, dissolution, and bioavailability of the drug.
Effect of iron on inhibition of acid demineralisation of bovine dental enamel in vitro.
Buzalaf, Marília Afonso Rabelo; de Moraes Italiani, Flávia; Kato, Melissa Thiemi; Martinhon, Cleide Cristina Rodrigues; Magalhães, Ana Carolina
2006-10-01
Iron ions (Fe(2+)) have been shown to be cariostatic in many studies particularly by their ability to reduce bacterial metabolism. Nevertheless, the role of iron ions on dissolution of enamel is unexplored. The aim of the present study was therefore to investigate the protective effect of increasing concentrations (0-120mmol/L) of Fe(2+) on the dissolution of enamel. Enamel powder was subjected to acetic acid made with increasing concentrations with respect to FeSO(4)x7H(2)O. In order to determine the amount of enamel dissolved, the phosphate released in the medium was analysed spectrophotometrically using the Fiske-Subarrow method. Data were tested using Kruskall-Wall and Dunn's tests (p<0.05). The degree of protection was found to approach maximum at about 15mmol/L Fe(2+). Higher concentrations of Fe(2+) did not have an extra effect on inhibition of dissolution of enamel powder. In the next step, the protective effect of 15mmol/L Fe(2+) against mineral dissolution of the bovine enamel was evaluated using a simple abiotic model system. Enamel blocks were exposed to a sequence of seven plastic vials, each containing 1mL of 10mmol/L acetic acid. The acid in vial 4 was made 15mmol/L with respect to FeSO(4)x7H(2)O. The mineral dissolved during each challenge was thus determined by phosphate released as described above. Data were tested using two-way ANOVA (p<0.05). Lower demineralisation (around 45%) was found in vial 4 (with Fe) that continued stable until vial 7. Thus, our data suggest that Fe(2+) can be effective on inhibition of dissolution of enamel and that this effect may be durable.
Fong, Sophia Yui Kau; Poulsen, Jessie; Brandl, Martin; Bauer-Brandl, Annette
2017-01-01
A novel microdialysis-dissolution/permeation (M-D/P) system was developed for the biopharmaceutical assessment of oral drug formulations. This system consists of a side-by-side diffusion chamber, a microdialysis unit fixed within the dissolution chamber for continuous sampling, and a biomimetic Permeapad® as the intestinal barrier. In the M-D/P system, the concentration of the molecularly dissolved drug (with MWCO <20kDa) was measured over time in the dissolution compartment (representing the gastrointestinal tract) while the concentration of the permeated drug was measured in the acceptor compartment (representing the blood). The kinetics of both the dissolution process and the permeation process were simultaneously quantified under circumstances that mimic physiological conditions. For the current proof-of-concept study, hydrocortisone (HCS) in the form of slowly dissolving solvate crystals and buffer and the biorelevant fasted state simulated intestinal fluids (FaSSIF), were employed as the model drug and dissolution media, respectively. The applicability of the M-D/P system to dissolution and permeation profiling of HCS in buffer and in FaSSIF has been successfully demonstrated. Compared to the conventional direct sampling method (using filter of 0.1-0.45μm), sampling by the M-D/P system exhibited distinct advantages, including (1) showing minimal disturbance of the permeation process, (2) differentiating "molecularly" dissolved drugs from "apparently" dissolved drugs during dissolution of HCS in FaSSIF, and (3) being less laborious and having better sampling temporal resolution. M-D/P system appeared to be a promising, simple and routine tool that allows for the researchers' intensive comprehension of the interplay of dissolution and permeation thus helping for better oral formulation screening and as an ultimate goal, for better dosage forms assessment. Copyright © 2016. Published by Elsevier B.V.
DEVELOPMENT OF AN INSOLUBLE SALT SIMULANT TO SUPPORT ENHANCED CHEMICAL CLEANING TESTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eibling, R
The closure process for high level waste tanks at the Savannah River Site will require dissolution of the crystallized salts that are currently stored in many of the tanks. The insoluble residue from salt dissolution is planned to be removed by an Enhanced Chemical Cleaning (ECC) process. Development of a chemical cleaning process requires an insoluble salt simulant to support evaluation tests of different cleaning methods. The Process Science and Engineering section of SRNL has been asked to develop an insoluble salt simulant for use in testing potential ECC processes (HLE-TTR-2007-017). An insoluble salt simulant has been developed based uponmore » the residues from salt dissolution of saltcake core samples from Tank 28F. The simulant was developed for use in testing SRS waste tank chemical cleaning methods. Based on the results of the simulant development process, the following observations were developed: (1) A composition based on the presence of 10.35 grams oxalate and 4.68 grams carbonate per 100 grams solids produces a sufficiently insoluble solids simulant. (2) Aluminum observed in the solids remaining from actual waste salt dissolution tests is probably precipitated from sodium aluminate due to the low hydroxide content of the saltcake. (3) In-situ generation of aluminum hydroxide (by use of aluminate as the Al source) appears to trap additional salts in the simulant in a manner similar to that expected for actual waste samples. (4) Alternative compositions are possible with higher oxalate levels and lower carbonate levels. (5) The maximum oxalate level is limited by the required Na content of the insoluble solids. (6) Periodic mixing may help to limit crystal growth in this type of salt simulant. (7) Long term storage of an insoluble salt simulant is likely to produce a material that can not be easily removed from the storage container. Production of a relatively fresh simulant is best if pumping the simulant is necessary for testing purposes. The insoluble salt simulant described in this report represents the initial attempt to represent the material which may be encountered during final waste removal and tank cleaning. The final selected simulant was produced by heating and evaporation of a salt slurry sample to remove excess water and promote formation and precipitation of solids with solubility characteristics which are consistent with actual tank insoluble salt samples. The exact anion composition of the final product solids is not explicitly known since the chemical components in the final product are distributed between the solid and liquid phases. By combining the liquid phase analyses and total solids analysis with mass balance requirements a calculated composition of assumed simple compounds was obtained and is shown in Table 0-1. Additional improvements to and further characterization of the insoluble salt simulant are possible. During the development of these simulants it was recognized that: (1) Additional waste characterization on the residues from salt dissolution tests with actual waste samples to determine the amount of species such as carbonate, oxalate and aluminosilicate would allow fewer assumptions to be made in constructing an insoluble salt simulant. (2) The tank history will impact the amount and type of insoluble solids that exist in the salt dissolution solids. Varying the method of simulant production (elevated temperature processing time, degree of evaporation, amount of mixing (shear) during preparation, etc.) should be tested.« less
Spectrometer Sensitivity Investigations on the Spectrometric Oil Analysis Program.
1983-04-22
31 H. ACID DISSOLUTION METHOD (ADM) ........... 90 31 I. ANALYSIS OF SAMPLES............................ 31 jJ. PARTICLE TRANSPORT EFFICIENCY OF...THE ROTATING *DISK.................................... 32 I .K. A/E35U-3 ACID DISSOLUTION METHOD.................. 32 L. BURN TIME... ACID DISSOLUTION METHOD ......... ,...,....... 95 3. EFFECT OF BURN TIME ............ 95 4. DIRECT SAMPLE INTRODUCTION .......................... 95
Jiang, Ping; Li, Yanbin; Liu, Guangliang; Yang, Guidi; Lagos, Leonel; Yin, Yongguang; Gu, Baohua; Jiang, Guibin; Cai, Yong
2016-11-05
Cinnabar dissolution is an important factor controlling mercury (Hg) cycling. Recent studies have suggested the co-occurrence of re-adsorption of the released Hg during the course of cinnabar dissolution. However, there is a lack of feasible techniques that can quantitatively assess the amount of Hg re-adsorbed on cinnabar when investigating cinnabar dissolution. In this study, a new method, based on isotope tracing and dilution techniques, was developed to study the role of Hg re-adsorption in cinnabar dissolution. The developed method includes two key components: (1) accurate measurement of both released and spiked Hg in aqueous phase and (2) estimation of re-adsorbed Hg on cinnabar surface via the reduction in spiked (202)Hg(2+). By adopting the developed method, it was found that the released Hg for trials purged with oxygen could reach several hundred μgL(-1), while no significant cinnabar dissolution was detected under anaerobic condition. Cinnabar dissolution rate when considering Hg re-adsorption was approximately 2 times the value calculated solely with the Hg detected in the aqueous phase. These results suggest that ignoring the Hg re-adsorption process can significantly underestimate the importance of cinnabar dissolution, highlighting the necessity of applying the developed method in future cinnabar dissolution studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Perez-Rea, Daysi; Bergenståhl, Björn; Nilsson, Lars
2016-02-01
In this paper, we investigate whether dissolution in water under autoclaving conditions (140 °C, 20 min) or in dimethyl sulfoxide, DMSO (100 °C, 1 h), is preferable for characterization of amylose. Two types of amylose, potato and maize, were dissolved either in water using an autoclave or in DMSO. On the aqueous solutions obtained, the extent of molecular dissolution of the sample (referred to as the dissolution yield) was determined by enzymatic analysis as well as the molecular properties, such as molar mass and root-mean-square radius, obtained with asymmetrical flow field-flow fractionation coupled to multi-angle light scattering and differential refractive index detection (AF4-MALS-dRI). The results showed that both dissolution methods are efficient at dissolving amylose. However, AF4-MALS-dRI analysis revealed substantial differences. Amylose aqueous solutions obtained by dissolution in DMSO were relatively stable over time, but the dissolution method in autoclave caused some degradation of the molecules, and their solutions display a high tendency to retrograde.
In Vitro Dissolution as a Tool for Formulation Selection: Telmisartan Two-Step IVIVC.
Ruiz Picazo, Alejandro; Martinez-Martinez, Ma Teresa; Colón-Useche, Sarin; Iriarte, Ramon; Sánchez-Dengra, Bárbara; González-Álvarez, Marta; García-Arieta, Alfredo; González-Álvarez, Isabel; Bermejo, Marival
2018-05-17
The purpose of this investigation was to develop an exploratory two-step level A IVIVC for three telmisartan oral immediate release formulations, the reference product Micardis, and two generic formulations (X1 and X2). Correlation was validated with a third test formulation, Y1. Experimental solubility and permeability data were obtained to confirm that telmisartan is a class II compound under the Biopharmaceutic Classification System. Bioequivalence (BE) studies plasma profiles were combined using a previously published reference scaling procedure. X2 demonstrated in vivo BE, while X1 and Y1 failed to show BE due to the lower boundary of the 90% confidence interval for C max being outside the acceptance limits. Average plasma profiles were deconvoluted by the Loo-Riegelman method to obtain the oral fractions absorbed ( f a ). Fractions dissolved ( f diss ) were obtained in several conditions in USP II and USP IV apparatus, and later, the results were compared in order to find the most biopredictive model, calculating the f 2 similarity factor. The apparatus and conditions showing the same rank order than in vivo data were selected for further refinement of conditions. A Levy plot was constructed to estimate the time scaling factor and to make both processes, dissolution and absorption, superimposable. The in vitro dissolution experiment that reflected more accurately the in vivo behavior of the different formulations of telmisartan employed the USP IV dissolution apparatus and a dissolution environment with a flow rate of 8 mL/min and a three-step pH change, from 1.2 to 4.5 and 6.8, with a 0.05% of Tween 80. Thus, these conditions gave rise to a biopredictive dissolution test. This new model is able to predict the formulation differences in dissolution that were previously observed in vivo, which could be used as a risk-analysis tool for formulation selection in future bioequivalence trials.
Li, B; Zhang, Z; Liu, W
2001-05-30
A simple and sensitive flow-injection chemiluminescence (CL) system for automated dissolution testing is described and evaluated for monitoring of dissolution profiles of isoniazid tablets. The undissolved suspended particles in the dissolved solution were eliminated via on-line filter. The novel CL system of KIO(4)-isoniazid was also investigated. The sampling frequency of the system was 120 h(-1). The dissolution profiles of isoniazid fast-release tablets from three sources were determined, which demonstrates the stability, great sensitivity, large dynamic measuring range and robustness of the system.
Iwao, Yasunori
2015-01-01
With the aim of directly predicting the functionality and mechanism of pharmaceutical excipients, we investigated an analysis method based on available surface area (S(t)), which is the surface area of a drug in direct contact with the external solvent during dissolution. First, to study the effect of lubricant concentration on the dissolution rate of acetaminophen (APAP), the dissolution behaviors as well as the change over time in S(t) of APAP tablets were examined. In the dissolution tests, a retarded dissolution of APAP was not observed with new lubricant triglycerin full behenate (TR-FB), whereas magnesium stearate (Mg-St) retarded the dissolution. The S(t) profiles for APAP with Mg-St at>0.5% showed downward curvature indicating a gradual decrease in surface area over time. Conversely, with TR-FB, even when its concentration was increased, the S(t) profile for APAP had a maximum value. The differences between Mg-St and TR-FB could be explained by the differences in extensibility deriving from their morphology. Next, we evaluated the effect of disintegtant concentration using five disintegrants. When disintegrant was added to ethenzamide tablet formulation, an increase in the dissolution rate and S(t) dependent on disintegrant concentration was observed, according to the type of disintegrant. It was found that the water absorption ability of disintegrants had strong correlations with the parameters of S(t). Taken together, this study demonstrates that analysis of S(t) can directly provide useful information, especially about the functionality of pharmaceutical excipients.
Formulation studies for mirtazapine orally disintegrating tablets.
Yıldız, Simay; Aytekin, Eren; Yavuz, Burçin; Bozdağ Pehlivan, Sibel; Ünlü, Nurşen
2016-01-01
Orally disintegrating tablets (ODTs) recently have gained much attention to fulfill the needs for pediatric, geriatric, and psychiatric patients with dysphagia. Aim of this study was to develop new ODT formulations containing mirtazapine, an antidepressant drug molecule having bitter taste, by using simple and inexpensive preparation methods such as coacervation, direct compression and to compare their characteristics with those of reference product (Remereon SolTab). Coacervation method was chosen for taste masking of mirtazapine. In vitro characterization studies such as diameter and thickness, weight variation, tablet hardness, tablet friability and disintegration time were performed on tablet formulations. Wetting time and in vitro dissolution tests of developed ODTs also studied using 900 mL 0.1 N HCl medium, 900 mL pH 6.8 phosphate buffer or 900 mL pH 4.5 acetate buffer at 37 ± 0.2 °C as dissolution medium. Ratio of Eudragit® E-100 was chosen as 6% (w/w) since the dissolution profile of A1 (6% Eudragit® E-100) was found closer to the reference product than A2 (4% Eudragit® E-100) and A3 (8% Eudragit® E-100). Group D, E and F formulations were presented better results in terms of disintegration time. Dissolution results indicated that Group E and F formulations showed optimum properties in all three dissolution media. Formulations D1, D4, D5, E3, E4, F1 and F5 found suitable as ODT formulations due to their favorable disintegration times and dissolution profiles. Developed mirtazapine ODTs were found promising in terms of showing the similar characteristics to the original formulation.
DISSOLUTION OF PLUTONIUM METAL IN 8-10 M NITRIC ACID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudisill, T.; Pierce, R.
2012-02-21
The H-Canyon facility will be used to dissolve Pu metal for subsequent purification and conversion to plutonium dioxide (PuO{sub 2}) using Phase II of HB-Line. To support the new mission, the development of a Pu metal dissolution flowsheet which utilizes concentrated (8-10 M) nitric acid (HNO{sub 3}) solutions containing potassium fluoride (KF) is required. Dissolution of Pu metal in concentrated HNO{sub 3} is desired to eliminate the need to adjust the solution acidity prior to purification by anion exchange. The preferred flowsheet would use 8-10 M HNO{sub 3}, 0.015-0.07 M KF, and 0.5-1.0 g/L Gd to dissolve the Pu upmore » to 6.75 g/L. An alternate flowsheet would use 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B to dissolve the Pu. The targeted average Pu metal dissolution rate is 20 mg/min-cm{sup 2}, which is sufficient to dissolve a 'standard' 2250-g Pu metal button in 24 h. Plutonium metal dissolution rate measurements showed that if Gd is used as the nuclear poison, the optimum dissolution conditions occur in 10 M HNO{sub 3}, 0.04-0.05 M KF, and 0.5-1.0 g/L Gd at 112 to 116 C (boiling). These conditions will result in an estimated Pu metal dissolution rate of {approx}11-15 mg/min-cm{sup 2} and will result in dissolution times of 36-48 h for standard buttons. The recommended minimum and maximum KF concentrations are 0.03 M and 0.07 M, respectively. The maximum KF concentration is dictated by a potential room-temperature Pu-Gd-F precipitation issue at low Pu concentrations. The purpose of the experimental work described in this report was two-fold. Initially a series of screening experiments was performed to measure the dissolution rate of Pu metal as functions of the HNO{sub 3}, KF, and Gd or B concentrations. The objective of the screening tests was to propose optimized conditions for subsequent flowsheet demonstration tests. Based on the rate measurements, this study found that optimal dissolution conditions in solutions containing 0.5-1.0 g/L Gd occurred in 8-10 M HNO{sub 3} with 0.04-0.05 M KF at 112 to 116 C (boiling). The testing also showed that solutions containing 8-10 M HNO{sub 3}, 0.1-0.2 M KF, and 1-2 g/L B achieved acceptable dissolution rates in the same temperature range. To confirm that conditions identified by the dissolution rate measurements for solutions containing Gd or B can be used to dissolve Pu metal up to 6.75 g/L in the presence of Fe, demonstration experiments were performed using concentrations in the optimal ranges. In two of the demonstration experiments using Gd and in one experiment using B, the offgas generation during the dissolution was measured and samples were analyzed for H{sub 2}. The experimental methods used to perform the dissolution rate measurements and flowsheet demonstrations and a discussion of the results are presented.« less
Yoshida, Hiroyuki; Kuwana, Akemi; Shibata, Hiroko; Izutsu, Ken-Ichi; Goda, Yukihiro
2016-06-01
To clarify the effects of pump pulsation and flow-through cell (FTC) dissolution system settings on the hydrodynamic properties and dissolution profiles of model formulations. Two FTC systems with different cell temperature control mechanisms were used. Particle image velocimetry (PIV) was used to analyze the hydrodynamic properties of test solutions in the flow-through dissolution test cell. Two pulsation pumps (semi-sine, full-sine) and a non-pulsatile pump were used to study the effects of varied flows on the dissolution profiles of United States Pharmacopeia standard tablets. PIV analysis showed periodic changes in the aligned upward fluid flow throughout the dissolution cell that was designed to reduce the temperature gradient during pump pulsation (0.5 s/pulse). The maximum instantaneous flow from the semi-sine pump was higher than that of the full-sine pump under all conditions. The flow from the semi-sine wave pump showed faster dissolution of salicylic acid and prednisone tablets than those from other pumps. The semi-sine wave pump flow showed similar dissolution profiles in the two FTC systems. Variations in instantaneous fluid flow caused by pump pulsation that meets the requirements of pharmacopoeias are a factor that affects the dissolution profiles of tablets in FTC systems.
Yang, Caiqin; Xu, Xiujuan; Wang, Jing; An, Zhiqian
2012-01-01
The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10 min of the SD with a 1 : 3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.
Hydrodynamic investigation of USP dissolution test apparatus II.
Bai, Ge; Armenante, Piero M; Plank, Russell V; Gentzler, Michael; Ford, Kenneth; Harmon, Paul
2007-09-01
The USP Apparatus II is the device commonly used to conduct dissolution testing in the pharmaceutical industry. Despite its widespread use, dissolution testing remains susceptible to significant error and test failures, and limited information is available on the hydrodynamics of this apparatus. In this work, laser-Doppler velocimetry (LDV) and computational fluid dynamics (CFD) were used, respectively, to experimentally map and computationally predict the velocity distribution inside a standard USP Apparatus II under the typical operating conditions mandated by the dissolution test procedure. The flow in the apparatus is strongly dominated by the tangential component of the velocity. Secondary flows consist of an upper and lower recirculation loop in the vertical plane, above and below the impeller, respectively. A low recirculation zone was observed in the lower part of the hemispherical vessel bottom where the tablet dissolution process takes place. The radial and axial velocities in the region just below the impeller were found to be very small. This is the most critical region of the apparatus since the dissolving tablet will likely be at this location during the dissolution test. The velocities in this region change significantly over short distances along the vessel bottom. This implies that small variations in the location of the tablet on the vessel bottom caused by the randomness of the tablet descent through the liquid are likely to result in significantly different velocities and velocity gradients near the tablet. This is likely to introduce variability in the test. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.
Modeling solid-state transformations occurring in dissolution testing.
Laaksonen, Timo; Aaltonen, Jaakko
2013-04-15
Changes in the solid-state form can occur during dissolution testing of drugs. This can often complicate interpretation of results. Additionally, there can be several mechanisms through which such a change proceeds, e.g. solvent-mediated transformation or crystal growth within the drug material itself. Here, a mathematical model was constructed to study the dissolution testing of a material, which undergoes such changes. The model consisted of two processes: the recrystallization of the drug from a supersaturated liquid state caused by the dissolution of the more soluble solid form and the crystal growth of the stable solid form at the surface of the drug formulation. Comparison to experimental data on theophylline dissolution showed that the results obtained with the model matched real solid-state changes and that it was able to distinguish between cases where the transformation was controlled either by solvent-mediated crystallization or solid-state crystal growth. Copyright © 2013 Elsevier B.V. All rights reserved.
Meka, Venkata Srikanth; Yee, Phung; Sheshala, Ravi
2016-01-01
In the past few years, there are number of researchers carrying out their research on the excipients derived from polysaccharides and some of these researches show that natural excipients are comparable and can serve as an alternative to the synthetic excipients. Hence, the objectives of this research are to characterize the naturally sourced chickpea starch powder and to study the pharmaceutical excipient behavior of chickpea starch in gliclazide immediate release (IR) tablets. In this research, the binding properties of chickpea starch were compared to that of povidone, whereas the disintegrant properties of chickpea starch were compared to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Flow property of chickpea starch was assessed with the measurement of bulk density, tapped density, compressibility index and angle of repose. Calibration curve for gliclazide in phosphate buffer pH 7.4 was developed. Gliclazide IR tablets were then produced with direct compression method. Physicochemical characteristics of the tablets, including thickness, tablet weight uniformity, hardness, disintegration time and friability were evaluated. Then, in vitro dissolution studies were performed by following United States Pharmacopeia (USP) dissolution method. The dissolution results were analyzed and compared with t30, t50, dissolution efficiency (DE). Lastly, drug-excipient compatibility studies, including Fourier transform infrared (FTIR) spectroscopic analysis and differential scanning calorimetric (DSC) analysis were carried out. Fair flow property was observed in the chickpea starch powder. Furthermore, the tablets produced passed all the tests in physicochemical characteristics evaluation except hardness and disintegration test. Additionally, in vitro dissolution studies show that chickpea starch acted as a disintegrant instead of a binder in gliclazide IR tablets and its disintegrant properties were comparable to those of crospovidone, croscarmellose sodium and sodium starch glycolate. Besides that, gliclazide was also compatible with the excipients used. Chickpea starch acted as a disintegrant in gliclazide IR tablets, instead of a binder. Therefore, chickpea starch can be a promising disintegrant in gliclazide IR tablets.
Takekuma, Yoh; Ishizaka, Haruka; Sumi, Masato; Sato, Yuki; Sugawara, Mitsuru
Storage under high temperature and humid conditions has been reported to decrease the dissolution rate for some kinds of tablets containing polyvinylpolypyrrolidone (PVPP) as a disintegrant. The aim of this study was to elucidate the properties of pharmaceutical formulations with PVPP that cause a decrease in the dissolution rate after storage under high temperature and humid conditions by using model tablets with a simple composition. Model tablets, which consisted of rosuvastatin calcium or 5 simple structure compounds, salicylic acid, 2-aminodiphenylmethane, 2-aminobiphenyl, 2-(p-tolyl)benzoic acid or 4.4'-biphenol as principal agents, cellulose, lactose hydrate, PVPP and magnesium stearate as additives, were made by direct compression. The model tables were wrapped in paraffin papers and stored for 2 weeks at 40°C/75% relative humidity (RH). Dissolution tests were carried out by the paddle method in the Japanese Pharmacopoeia 16th edition. Model tablets with a simple composition were able to reproduce a decreased dissolution rate after storage at 40°C/75% RH. These tablets showed significantly decreased water absorption activities after storage. In the case of tablets without lactose hydrate by replacing with cellulose, a decreased dissolution rate was not observed. Carboxyl and amino groups in the structure of the principal agent were not directly involved in the decreased dissolution. 2-Benzylaniline tablets showed a remarkably decreased dissolution rate and 2-aminobiphenyl and 2-(p-tolyl)benzoic acid tablets showed slightly decreased dissolution rates, though 4,4'-biphenol tablets did not show a decrease dissolution rate. We demonstrated that additives and structure of the principal agent were involved in the decreased in dissolution rate for tablets with PVPP. The results suggested that one of the reasons for a decreased dissolution rate was the inclusion of lactose hydrate in tablets. The results also indicated that compounds as principal agents with low affinity for PVPP may be easily affected by airborne water under high temperature and humid conditions. This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.
Li, Zi-Qiang; Tian, Shuang; Gu, Hui; Wu, Zeng-Guang; Nyagblordzro, Makafui; Feng, Guo; He, Xin
2018-05-01
Each of dissolution and permeation may be a rate-limiting factor in the absorption of oral drug delivery. But the current dissolution test rarely took into consideration of the permeation property. Drug dissolution/absorption simulating system (DDASS) valuably gave an insight into the combination of drug dissolution and permeation processes happening in human gastrointestinal tract. The simulated gastric/intestinal fluid of DDASS was improved in this study to realize the influence of dynamic pH change on the complete oral dosage form. To assess the effectiveness of DDASS, six high-permeability drugs were chosen as model drugs, including theophylline (pK a1 = 3.50, pK a2 = 8.60), diclofenac (pK a = 4.15), isosorbide 5-mononitrate (pK a = 7.00), sinomenine (pK a = 7.98), alfuzosin (pK a = 8.13), and metoprolol (pK a = 9.70). A general elution and permeation relationship of their commercially available extended-release tablets was assessed as well as the relationship between the cumulative permeation and the apparent permeability. The correlations between DDASS elution and USP apparatus 2 (USP2) dissolution and also between DDASS permeation and beagle dog absorption were developed to estimate the predictability of DDASS. As a result, the common elution-dissolution relationship was established regardless of some variance in the characteristic behavior between DDASS and USP2 for drugs dependent on the pH for dissolution. Level A in vitro-in vivo correlation between DDASS permeation and dog absorption was developed for drugs with different pKa. The improved DDASS will be a promising tool to provide a screening method on the predictive dissolution-permeation-absorption dynamics of solid drug dosage forms in the early-phase formulation development.
Hydrodynamics-induced variability in the USP apparatus II dissolution test.
Baxter, Jennifer L; Kukura, Joseph; Muzzio, Fernando J
2005-03-23
The USP tablet dissolution test is an analytical tool used for the verification of drug release processes and formulation selection within the pharmaceutical industry. Given the strong impact of this test, it is surprising that operating conditions and testing devices have been selected empirically. In fact, the flow phenomena in the USP test have received little attention in the past. An examination of the hydrodynamics in the USP apparatus II shows that the device is highly vulnerable to mixing problems that can affect testing performance and consistency. Experimental and computational techniques reveal that the flow field within the device is not uniform, and dissolution results can vary dramatically with the position of the tablet within the vessel. Specifically, computations predict sharp variations in the shear along the bottom of the vessel where the tablet is most likely to settle. Experiments in which the tablet location was carefully controlled reveal that the variation of shear within the testing device can affect the measured dissolution rate.
Indomethacin-Kollidon VA64 Extrudates: A Mechanistic Study of pH-Dependent Controlled Release.
Tres, Francesco; Treacher, Kevin; Booth, Jonathan; Hughes, Leslie P; Wren, Stephen A C; Aylott, Jonathan W; Burley, Jonathan C
2016-03-07
Because of its weakly acidic nature (pKa of 4.5), indomethacin presents an aqueous solubility that significantly increases when changing from acidic to neutral/alkaline pH (1.5 μg/mL at pH 1.2 and 105.2 μg/mL at pH 7.4). We have therefore investigated the impact of the dissolution medium pH on the dissolution performance of indomethacin:Kollidon VA64 extrudates. The impact of the drug loading on the dissolution properties of these systems was also examined (5%, 15%, 30%, 50%, 70%, and 90% drug loading). Time-resolved Raman spectroscopy along with in-line UV-vis spectrophotometry was employed to directly relate changes in dissolution behavior to physicochemical changes that occur to the extrudate during the test. The dissolution tests were performed in pH 2 HCl (to mimic the stomach conditions), and this was then switched during the experiment to pH 6.8 phosphate buffer (to simulate the poststomach conditions). The rotating disc dissolution rate test was also used to simultaneously measure the dissolution rate of both the drug and the polymer. We found that in pH 2 HCl buffer, for the 15% or higher drug-loaded extrudates, Kollidon VA64 preferentially dissolves from the exterior of the compact leaving an amorphous drug-rich hydrophobic shell, which, similarly to an enteric coating, inhibits the drug release. The in situ formation of an enteric coating has been previously hypothesized, and this has been the first time that is directly observed in a pH-variable dissolution test. The dissolution medium switch to pH 6.8 phosphate buffer, due to the large increase of the aqueous solubility of indomethacin at this pH, leads to rapid dissolution of the material forming the coating and therefore total drug release. In contrast, the 5% extrudate is fully hydrated and quickly dissolves at low pH pointing to a dissolution performance dependent on highly water-soluble Kollidon VA64.
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; ...
2018-02-10
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
The dissolution behavior of borosilicate glasses in far-from equilibrium conditions
NASA Astrophysics Data System (ADS)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.; Ryan, Joseph V.; Asmussen, R. Matthew
2018-04-01
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted at temperatures of 23, 40, 70, and 90 °C and pH (22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. The higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.
The Dissolution Behavior of Borosilicate Glasses in Far-From Equilibrium Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Rieke, Peter C.; Parruzot, Benjamin P.
An area of agreement in the waste glass corrosion community is that, at far-from-equilibrium conditions, the dissolution of borosilicate glasses used to immobilize nuclear waste is known to be a function of both temperature and pH. The aim of this work is to study the effects of temperature and pH on the dissolution rate of three model nuclear waste glasses (SON68, ISG, AFCI). The dissolution rate data are then used to parameterize a kinetic rate model based on Transition State Theory that has been developed to model glass corrosion behavior in dilute conditions. To do this, experiments were conducted atmore » temperatures of 23, 40, 70, and 90 °C and pH(22 °C) values of 9, 10, 11, and 12 with the single-pass flow-through (SPFT) test method. Both the absolute dissolution rates and the rate model parameters are compared with previous results. Rate model parameters for the three glasses studied here are nearly equivalent within error and in relative agreement with previous studies though quantifiable differences exist. The glass dissolution rates were analyzed with a linear multivariate regression (LMR) and a nonlinear multivariate regression performed with the use of the Glass Corrosion Modeling Tool (GCMT), with which a robust uncertainty analysis is performed. This robust analysis highlights the high degree of correlation of various parameters in the kinetic rate model. As more data are obtained on borosilicate glasses with varying compositions, a mathematical description of the effect of glass composition on the rate parameter values should be possible. This would allow for the possibility of calculating the forward dissolution rate of glass based solely on composition. In addition, the method of determination of parameter uncertainty and correlation provides a framework for other rate models that describe the dissolution rates of other amorphous and crystalline materials in a wide range of chemical conditions. As a result, the higher level of uncertainty analysis would provide a basis for comparison of different rate models and allow for a better means of quantifiably comparing the various models.« less
Jones, Justin A.; Harris, Thomas I.; Oliveira, Paula F.; Bell, Brianne E.; Alhabib, Abdulrahman; Lewis, Randolph V.
2016-01-01
The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution. PMID:27886066
Jones, Justin A; Harris, Thomas I; Oliveira, Paula F; Bell, Brianne E; Alhabib, Abdulrahman; Lewis, Randolph V
2016-11-23
The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution time increasing with higher molecular weight constructs, increasing concentration of rSSPs, protein type, and salt concentration. It has proven successful in solvating a number of different rSSPs including native-like sequences (MaSp1, MaSp2, piriform, and aggregate) as well as chimeric sequences (FlAS) in varied concentrations that have been spun into fibers and formed into films, foams, sponges, gels, coatings, macro and micro spheres and adhesives. The system is effective but inherently unpredictable and difficult to control. Provided that the materials that can be generated from this method of dissolution are impressive, an alternative means of applying heat and pressure that is controllable and predictable has been developed. Results indicate that there are combinations of heat and pressure (135 °C and 140 psi) that result in maximal dissolution without degrading the recombinant MaSp2 protein tested, and that heat and pressure are the key elements to the method of dissolution.
Jiang, Qikun; Li, Yuanyuan; Fu, Qiang; Geng, Yajie; Zhao, Juanhang; Ma, Panqin; Zhang, Tianhong
2015-02-01
The aim of this study was to improve the oral bioavailability of spironolactone (SP). SP was adsorbed on the fumed silica using supercritical CO2 (scCO2) technology and further compressed into tablets. The morphology was observed by scanning electron microscopy (SEM), and the crystalline form was investigated by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD). The dissolution test was performed in water, 0.1 M HCl solution, pH 4.5 acetate buffers and pH 6.8 phosphate buffers using the paddle method. The pharmacokinetics was undertaken in six dogs in a crossover fashion. SP was successfully prepared into tablets and presented in amorphous state. SP-silica scCO2 tablets displayed higher dissolution profiles than SP-silica physical mixtures tablets in different media. The AUC0-t and Cmax of SP-silica supercritical CO2 was 1.61- and 1.52-fold greater than those of SP-silica physical mixtures (p < 0.05), respectively. It is a promising method in improving dissolution and bioavailability by adsorbing SP, a poorly soluble drug, on the fumed silica using rapid expansion of supercritical solutions.
Disintegration/dissolution profiles of copies of Fosamax (alendronate).
Epstein, S; Cryer, B; Ragi, S; Zanchetta, J R; Walliser, J; Chow, J; Johnson, M A; Leyes, A E
2003-01-01
Poor quality has been reported for some generics and other copies of original products. We performed a pilot study to compare the disintegration/dissolution profiles of FOSAMAX (alendronate) 70 mg tablets with those of copies of FOSAMAX that were manufactured outside the United States. We used the standard United States Pharmacopeia (USP) disintegration method to evaluate FOSAMAX 70 mg tablets and 13 copies. At least 12 (n = 12) dosage units were tested for each product (except Fosmin, n = 10). The dissolution profiles of FOSAMAX and one representative copy were also compared. Nine copies (Osteomax, Defixal, Fosmin, Endronax, Osteomix, Genalmen, Fixopan, Osteoplus, and Fosval) disintegrated two- to ten-fold faster than FOSAMAX. Three other copies (Neobon, Regenesis, and Ostenan) disintegrated at least five-fold slower than FOSAMAX. Neobon is a softgel capsule, so special consideration was given to this different dosage form. One copy (Arendal) did not fall into either category but exhibited potentially large inter- and intra-lot variability. Dissolution of alendronate from Regenesis lagged behind that from FOSAMAX. Slower disintegration may reduce efficacy because bisphosphonates must be taken in the fasting state and contact with food or even certain beverages severely reduces bioavailability. Faster disintegration (or the use of gel-caps or other alterations to the drug formulation) could increase the risk of esophagitis, an adverse event associated with prolonged contact of the esophagus with bisphosphonates. These disintegration and dissolution results suggest that important differences may exist between FOSAMAX and its copies with regard to bioavailability, pharmacokinetics, and clinical efficacy and safety profiles. Additional testing is warranted to evaluate the pharmacokinetics and clinical safety of these copies.
Evaluating bioequivalence of meloxicam tablets: is in-vitro dissolution test overdiscriminating?
Jin, Chan; Zhao, Chenyao; Shen, Dachao; Dong, Wenxiang; Liu, Hongzhuo; He, Zhonggui
2018-02-01
The aim of the study was to assess the impact of the differences in dissolution profiles of meloxicam tablets on the in-vivo bioavailability parameters after oral administration. Compare in-vitro dissolution testing in the recommended media to evaluate in-vivo bioequivalence outcomes for the Biopharmaceutics Classification System Class II weak acidic drugs. Nine Beagle dogs received a single oral administration of each formulation (7.5 mg) in a three-way crossover design. The dissolution of meloxicam from both test products showed marked differences with that from the reference tablet in pH 1.0, 4.5 and 6.8 media at 50 or 75 rpm. Both formulations exhibiting slow or fast dissolution were then compared with the reference product for in-vivo bioequivalence study. Both products were bioequivalent with the reference tablet in either extent or rate of oral absorption. It indicated that the dissolution profiles which discriminated between the formulations in vitro did not accurately predict the in-vivo bioequivalence outcomes. Comparative dissolution profiles using similarity factor (f 2 ) in the recommended media should be relaxed to fulfil the requirements for the development, scale-up and postapproval changes to immediate release oral solid dosage forms of meloxicam. © 2017 Royal Pharmaceutical Society.
Collier, Jarrod W; Thakare, Mohan; Garner, Solomon T; Israel, Bridg'ette; Ahmed, Hisham; Granade, Saundra; Strong, Deborah L; Price, James C; Capomacchia, A C
2009-01-01
Theophylline controlled release capsules (THEO-24 CR) were used as a model system to evaluate accelerated dissolution tests for process and quality control and formulation development of controlled release formulations. Dissolution test acceleration was provided by increasing temperature, pH, flow rate, or adding surfactant. Electron microscope studies on the theophylline microspheres subsequent to each experiment showed that at pH values of 6.6 and 7.6 the microspheres remained intact, but at pH 8.6 they showed deterioration. As temperature was increased from 37-57 degrees C, no change in microsphere integrity was noted. Increased flow rate also showed no detrimental effect on integrity. The effect of increased temperature was determined to be the statistically significant variable.
Caffeine: a potential complexing agent for solubility and dissolution enhancement of celecoxib.
Shakeel, Faiyaz; Faisal, Mohammed S
2010-01-01
Complexation of caffeine with the drug celecoxib was used to enhance its solubility as well as in vitro dissolution in the present investigation. Caffeine was extracted from tea leaves using the sublimation method. A molecular complex (1:1) of caffeine-celecoxib was prepared using the solubility method. The solubility of celecoxib in distilled water and the caffeine complex was determined using a HPLC method at a wavelength of 250 nm. Dissolution studies of pure celecoxib, a marketed capsule (Celebrex), and the complex were performed using USP dissolution apparatus I for pure celecoxib and the complex and apparatus II for the capsule in distilled water. The highest solubility (48.32 mg/mL) as well as percent dissolution (90.54%) of celecoxib was obtained with the caffeine-celecoxib complex. The results for solubility and dissolution were highly significant as compared to pure celecoxib and the marketed capsule (p < 0.01). These results suggest that caffeine is a promising complexing agent for solubility as well as dissolution enhancement of the poorly soluble drug celecoxib.
Jahangiri, Azin; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef; Hamishehkar, Hamed; Adibkia, Khosro
2017-09-01
In the present study, electrospraying was applied as a novel method for the fabrication of amorphous nano-solid dispersions (N-SDs) of atorvastatin calcium (ATV), ezetimibe (EZT), and ATV/EZT combination as poorly water-soluble drugs. N-SDs were prepared using polyvinylpyrrolidone K30 as an amorphous carrier in 1:1 and 1:5 drug to polymer ratios and the total solid (including drug and polymer) concentrations of 10 and 20% (w/v). The prepared formulations were further investigated for their morphological, physicochemical, and dissolution properties. Scanning electron microscopy studies indicated that the morphology and diameter of the electrosprayed samples (ESs) were influenced by the solution concentration and drug:polymer ratio, so that an increase in the solution concentration resulted in fiber formation while an increase in the polymer ratio led to enhancement of the particle diameter. Differential scanning calorimetry and X-ray powder diffraction studies together with in vitro dissolution test revealed that the ESs were present in an amorphous form with improved dissolution properties. Infrared spectroscopic studies showed hydrogen-bonding interaction between the drug and polymer in ESs. Since the electrospraying method benefits from the both amorphization and nanosizing effect, this novel approach seems to be an efficient method for the fabrication of N-SDs of poorly water-soluble drugs.
Comparison of chemiluminescence methods for analysis of hydrogen peroxide and hydroxyl radicals
NASA Astrophysics Data System (ADS)
Pehrman, R.; Amme, M.; Cachoir, C.
2006-01-01
Assessment of alpha radiolysis influence on the chemistry of geologically disposed spent fuel demands analytical methods for radiolytic product determination at trace levels. Several chemiluminescence methods for the detection of radiolytic oxidants hydrogen peroxide and hydroxyl radicals are tested. Two of hydrogen peroxide methods use luminol, catalyzed by either μ-peroxidase or hemin, one uses 10-methyl-9-(p-formylphenyl)-acridinium carboxylate trifluoromethanesulfonate and one potassium periodate. All recipes are tested as batch systems in basic conditions. For hydroxyl radical detection luminophores selected are 3-hydroxyphthalic hydrazide and rutin. Both methods are tested as batch systems. The results are compared and the applicability of the methods for near-field dissolution studies is discussed.
Pilot-scale tests of HEME and HEPA dissolution process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qureshi, Z.H.; Strege, D.K.
A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsedmore » with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.« less
Friendship Dissolution Within Social Networks Modeled Through Multilevel Event History Analysis
Dean, Danielle O.; Bauer, Daniel J.; Prinstein, Mitchell J.
2018-01-01
A social network perspective can bring important insight into the processes that shape human behavior. Longitudinal social network data, measuring relations between individuals over time, has become increasingly common—as have the methods available to analyze such data. A friendship duration model utilizing discrete-time multilevel survival analysis with a multiple membership random effect structure is developed and applied here to study the processes leading to undirected friendship dissolution within a larger social network. While the modeling framework is introduced in terms of understanding friendship dissolution, it can be used to understand microlevel dynamics of a social network more generally. These models can be fit with standard generalized linear mixed-model software, after transforming the data to a pair-period data set. An empirical example highlights how the model can be applied to understand the processes leading to friendship dissolution between high school students, and a simulation study is used to test the use of the modeling framework under representative conditions that would be found in social network data. Advantages of the modeling framework are highlighted, and potential limitations and future directions are discussed. PMID:28463022
Kurek, Mateusz; Woyna-Orlewicz, Krzysztof; Khalid, Mohammad Hassan; Jachowicz, Renata
2016-09-01
The great number of drug substances currently used in solid oral dosage forms is characterized by poor water solubility. Therefore, various methods of dissolution rate enhancement are an important topic of research interest in modem drug technology. The purpose of this study was to enhance the furosemide dissolution rate from liquisolid tablets while maintaining an acceptable size and mass. Two types of dibasic calcium phosphate (Fujicalin®/Emcompress®) and microcrystalline cellulose (Vivapur® 102/Vivapur® 12) were used as carriers and magnesium aluminometasilicate (Neusilin® US2) was used as a coating material. The flowable liquid retention potential for those excipients was tested by measuring the angle of slide. To evaluate the impact of used excipients on tablet properties fourteen tablet formulations were prepared. It was found that LS2 tablets containing spherically granulated dibasic calcium phosphate and magnesium aluminometasilicate exhibit the best dissolution profile and mechanical properties while tablets composed only with Neusilin® US2 was characterized by the smallest size and mass with preserved good mechanical properties and furosemide dissolution.
Quantitative determinations using portable Raman spectroscopy.
Navin, Chelliah V; Tondepu, Chaitanya; Toth, Roxana; Lawson, Latevi S; Rodriguez, Jason D
2017-03-20
A portable Raman spectrometer was used to develop chemometric models to determine percent (%) drug release and potency for 500mg ciprofloxacin HCl tablets. Parallel dissolution and chromatographic experiments were conducted alongside Raman experiments to assess and compare the performance and capabilities of portable Raman instruments in determining critical drug attributes. All batches tested passed the 30min dissolution specification and the Raman model for drug release was able to essentially reproduce the dissolution profiles obtained by ultraviolet spectroscopy at 276nm for all five batches of the 500mg ciprofloxacin tablets. The five batches of 500mg ciprofloxacin tablets also passed the potency (assay) specification and the % label claim for the entire set of tablets run were nearly identical, 99.4±5.1 for the portable Raman method and 99.2±1.2 for the chromatographic method. The results indicate that portable Raman spectrometers can be used to perform quantitative analysis of critical product attributes of finished drug products. The findings of this study indicate that portable Raman may have applications in the areas of process analytical technology and rapid pharmaceutical surveillance. Published by Elsevier B.V.
Mizumoto, Takao; Tamura, Tetsuya; Kawai, Hitoshi; Kajiyama, Atsushi; Itai, Shigeru
2008-04-01
In this study, the taste-masking of famotidine, which could apply to any fast-disintegrating tablet, was investigated using the spray-dry method. The target characteristics of taste-masked particles were set as follows: the dissolution rate is not to be more than 30% at 1 min and not less than 85% at 15 min, and the particle size is not to be more than 150 microm in diameter to avoid a gritty feeling in the mouth. The target dissolution profiles of spray-dried particles consisting of Aquacoat ECD30 and Eudragit NE30D or triacetin was accomplished by the screening of formulas and the appropriate lab-scale manufacturing conditions. Lab-scale testing produced taste-masked particles that met the formulation targets. On the pilot scale, spray-dried particles with attributes, such as dissolution rate and particle size, of the same quality were produced, and reproducibility was also confirmed. This confirmed that the spray-dry method produced the most appropriate taste-masked particles for fast-disintegrating dosage forms.
Komersová, Alena; Lochař, Václav; Myslíková, Kateřina; Mužíková, Jitka; Bartoš, Martin
2016-12-01
The aim of this study is to present the possibility of using of co-processed dry binders for formulation of matrix tablets with drug controlled release. Hydrophilic matrix tablets with tramadol hydrochloride, hypromellose and different co-processed dry binders were prepared by direct compression method. Hypromelloses Methocel™ K4M Premium CR or Methocel™ K100M Premium CR were used as controlled release agents and Prosolv® SMCC 90 or Disintequik™ MCC 25 were used as co-processed dry binders. Homogeneity of the tablets was evaluated using scanning electron microscopy and energy dispersive X-ray microanalysis. The release of tramadol hydrochloride from prepared formulations was studied by dissolution test method. The dissolution profiles obtained were evaluated by non-linear regression analysis, release rate constants and other kinetic parameters were determined. It was found that matrix tablets based on Prosolv® SMCC 90 and Methocel™ Premium CR cannot control the tramadol release effectively for >12h and tablets containing Disintequik™ MCC 25 and Methocel™ Premium CR >8h. Copyright © 2016 Elsevier B.V. All rights reserved.
Majerik, Viktor; Horváth, Géza; Szokonya, László; Charbit, Gérard; Badens, Elisabeth; Bosc, Nathalie; Teillaud, Eric
2007-09-01
The objective of this work was to improve the dissolution rate and aqueous solubility of oxeglitazar. Solid dispersions of oxeglitazar in PVP K17 (polyvinilpyrrolidone) and poloxamer 407 (polyoxyethylene-polyoxypropylene block copolymer) were prepared by supercritical antisolvent (SAS) and coevaporation (CoE) methods. Drug-carrier formulations were characterized by powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, gas chromatography, UV/VIS spectroscopy and in vitro dissolution tests. The highest dissolution rate (nearly 3-fold higher than raw drug) was achieved by preparation of drug/PVP K17 coevaporate. Oxeglitazar/PVP K17 solid dispersions were stabilized by hydrogen bonding but contained higher amount of residual dichloromethane (DCM) than poloxamer 407 formulations regardless of the method of preparation. SAS prepared oxeglitazar/poloxamer 407 dissolved more than two times faster than raw drug. However, unlike PVP K17, poloxamer 407 did not form a single phase amorphous solid solution with oxeglitazar which has been manifested in higher degrees of crystallinity, too. Among the two techniques, evaluated in this work, conventional coevaporation resulted in higher amorphous content but SAS reduced residual solvent content more efficiently.
Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering
NASA Astrophysics Data System (ADS)
Kone, S.
2014-12-01
An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.
NASA Astrophysics Data System (ADS)
Sung, Menghau; Teng, Chun-Hao; Yang, Tsung-Hsien
2017-07-01
Soil flushing using micro-nano-sized bubbles (MNB) in water as the flushing solution was tested in laboratory sand columns for the cleanup of residual trichloroethene (TCE) non-aqueous-phase-liquid (NAPL). Experiments considering flushing with MNB as well as ozone MNB (OZMNB) in water to treat soils contaminated with residual TCE liquid were conducted to examine effects of ozone on dissolution enhancement. The degrees of residual TCE saturation in soils, ranging from 0.44% to 7.6%, were tested. During flushings, aqueous TCE concentrations at the column exit were monitored and TCE masses remained in the columns after flushing were determined. Experimental results between runs with MNB and OZMNB in water revealed that dissolution enhancement was dependent on residual saturation conditions, and the maximum enhancement was around 9%. Governing equations consisting of three coupled partial differential equations (PDEs) were developed to model the system, and high-order finite difference (HOFD) method was employed to solve these PDEs. From mathematical modeling of reactive mass transfer under low residual saturation conditions (0.44% and 1.9%), experimental data were simulated and important controlling mechanisms were identified. It was concluded that a specific parameter pertinent to NAPL-water interfacial area in the Sherwood number had to be modified to satisfactorily describe the dissolution of TCE in the presence of MNB in water.
Hobbs, David; Karagianis, Jamie; Treuer, Tamas; Raskin, Joel
2013-12-01
Orodispersible tablets (ODTs) are tablet or wafer forms of medication that disintegrate in the mouth, aided only by saliva. ODTs rely on different fast dissolve/disintegration manufacturing technologies. Disintegration time differences for several olanzapine ODT forms were investigated. Risperdal M-Tab(®) was included as a non-olanzapine ODT comparator. Eleven olanzapine ODT examples and orodispersible risperidone strengths were evaluated in vitro for formulation composition, manufacturing method, disintegration and dissolution characteristics, and formulation differences in comparison with freeze dried Zydis(®) ODT. Automated dissolution test equipment captured ODT dissolution rates by measuring real-time release of active ingredient. A high-speed video camera was used to capture tablet disintegration times in warm simulated saliva. The main outcome measure was the disintegration and dissolution characteristics of the ODT formulations. The ODT manufacturing method was associated with time to disintegrate; the fastest were freeze dried tablets, followed by soft compressed tablets and then hard/dense tablets. Olanzapine Zydis(®) was the only ODT that completely disintegrated in less than 4 s for all strengths (5, 10, 15, and 20 mg), followed by 5-mg Prolanz FAST(®) (12 s) and then risperidone ODT 4 mg (40 s). Reasons for slow dissolution of the olanzapine generics may include low product potency, excipient binding, excipient solubility, active ingredient particle size and incomplete disintegration. Differences in the formulation and manufacturing process of olanzapine ODTs appear to have a strong influence on the disintegration time of the active compound; differences that may potentially impact their use in clinical practice.
FY2017 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Asmussen, Robert M.; Cordova, Elsa
The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various conditions. To accomplish this, an IDF PA glass dissolution model basedmore » on Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon solution concentrations, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the ion exchange process. The effect of temperature, pH, H4SiO4 activity, and the rate of ion exchange can be parameterized and implemented directly into the PA rate model. The rate model parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. The provided data can be used by glass researchers to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate model parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less
Etching of semiconductor cubic crystals: Determination of the dissolution slowness surfaces
NASA Astrophysics Data System (ADS)
Tellier, C. R.
1990-03-01
Equations of the representative surface of dissolution slowness for cubic crystals are determined in the framework of a tensorial approach of the orientation-dependent etching process. The independent dissolution constants are deduced from symmetry considerations. Using previous data on the chemical etching of germanium and gallium arsenide crystals, some possible polar diagrams of the dissolution slowness are proposed. A numerical and graphical simulation method is used to obtain the derived dissolution shapes. The influence of extrema in the dissolution slowness on the successive dissolution shapes is also examined. A graphical construction of limiting shapes of etched crystals appears possible using the tensorial representation of the dissolution slowness.
[Key physical parameters of hawthorn leaf granules by stepwise regression analysis method].
Jiang, Qie-Ying; Zeng, Rong-Gui; Li, Zhe; Luo, Juan; Zhao, Guo-Wei; Lv, Dan; Liao, Zheng-Gen
2017-05-01
The purpose of this study was to investigate the effect of key physical properties of hawthorn leaf granule on its dissolution behavior. Hawthorn leaves extract was utilized as a model drug. The extract was mixed with microcrystalline cellulose or starch with the same ratio by using different methods. Appropriate amount of lubricant and disintegrating agent was added into part of the mixed powder, and then the granules were prepared by using extrusion granulation and high shear granulation. The granules dissolution behavior was evaluated by using equilibrium dissolution quantity and dissolution rate constant of the hypericin as the indicators. Then the effect of physical properties on dissolution behavior was analyzed through the stepwise regression analysis method. The equilibrium dissolution quantity of hypericin and adsorption heat constant in hawthorn leaves were positively correlated with the monolayer adsorption capacity and negatively correlated with the moisture absorption rate constant. The dissolution rate constants were decreased with the increase of Hausner rate, monolayer adsorption capacity and adsorption heat constant, and were increased with the increase of Carr index and specific surface area. Adsorption heat constant, monolayer adsorption capacity, moisture absorption rate constant, Carr index and specific surface area were the key physical properties of hawthorn leaf granule to affect its dissolution behavior. Copyright© by the Chinese Pharmaceutical Association.
Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers.
Rinehart, J D; Taylor, T D; Tian, Y; Latour, R A
1999-01-01
The objective of this study was to develop an efficient "real time" measurement system able to directly measure, with microgram resolution, the dissolution rate of absorbable glass fibers, and utilize the system to evaluate the effectiveness of silane-based sizing as a means to delay the fiber dissolution process. The absorbable glass fiber used was calcium phosphate (CaP), with tetramethoxysilane selected as the sizing agent. E-glass fiber was used as a relatively nondegrading control. Both the unsized-CaP and sized-CaP degraded linearly at both the 37 degrees C and 60 degrees C test temperature levels used. No significant decrease in weight-loss rate was recorded when the CaP fiber tows were pretreated, using conventional application methods, with the tetramethoxysilane sizing for either temperature condition. The unsized-CaP and sized-CaP weight loss rates were each significantly higher at 60 than at 37 degrees C (both p < 0.02), as expected from dissolution kinetics. In terms of actual weight loss rate measured using our system for phosphate glass fiber, the unsized-CaP fiber we studied dissolved at a rate of 10.90 x 10(-09) and 41.20 x 10(-09) g/min-cm(2) at 37 degrees C and 60 degrees C, respectively. Considering performance validation of the developed system, the slope of the weight loss vs. time plot for the tested E-glass fiber was not significantly different compared to a slope equal to zero for both test temperatures. Copyright 1999 John Wiley & Sons, Inc.
Khan, Kamran Ahmad; Khan, Gul Majid; Zeeshan Danish, Muhammad; Akhlaq; Khan, Haroon; Rehman, Fazal; Mehsud, Saifullah
2015-12-30
Current study was aimed to develop 200mg controlled release matrix tablets of Losartan Potassium using Ethocel 100 Premium and Ethocel 100 FP Premium as rate controlling polymer. In-vitro studies were performed according to USP Method-I in phosphate buffer (PH 6.8) using pharma test dissolution apparatus. The temperature of the dissolution medium was kept constant at 37±0.5°C at 100rpm. Flow properties, physical quality control tests, effect of polymer size and drug-to-polymers ratios were studied using different kinetics models such as 1st-order, zero-order, Hixon Crowell model, Highuchi model and Power law. Difference factor f1 and similarity factor f2 were applied for dissolution profiles against Cardaktin® tablets used as a reference formulation. The matrices with polymer ethocel 100 FP Premiums have prolonged the drug release rate as compared to polymer ethocel 100 Premiums. The n values matrices with polymer ethocel grade 100 ranged from 0.603 to 0.857 indicating that the drug release occurred by anomalous non fickian diffusion kinetics while then value of reference Cardaktin® tablet was measured as 0.125 indicating that these tablets do not follow power law. The dissolution profiles of test formulations were different than that of reference Cardaktin®. This suggests the polymer Ethocel grade 100 can be proficiently incorporated in fabrication and development of once a day controlled release matrix tablets. Copyright © 2015. Published by Elsevier B.V.
Okino, L A; Siqueira, E L; Santos, M; Bombana, A C; Figueiredo, J A P
2004-01-01
To evaluate the activity of various root canal irrigants on bovine pulp tissue. The irrigants tested were: 0.5, 1.0 and 2.5% sodium hypochlorite; 2% aqueous solution of chlorhexidine digluconate; 2% chlorhexidine digluconate gel (Natrosol); and distilled water as control. Bovine pulp fragments were weighed and placed in contact with 20 mL of each tested substance in a centrifuge at 150 r.p.m. until total dissolution. Dissolution speed was calculated by dividing pulp weight by dissolution time. Statistical analysis was performed using the Kruskal-Wallis test. Distilled water and both solutions of chlorhexidine did not dissolve the pulp tissue within 6 h. Mean dissolution speeds for 0.5, 1.0 and 2.5% sodium hypochlorite solutions were 0.31, 0.43 and 0.55 mg min(-1), respectively. The solvent ability of chlorhexidine solutions was similar to that of distilled water. The results for sodium hypochlorite solutions, chlorhexidine solutions and distilled water were statistically different (P>0.01). Both chlorhexidine preparations and distilled water were not able to dissolve pulp tissue. All sodium hypochlorite solutions were efficient in dissolving pulp tissue; the dissolution speed varied with the concentration of the solution.
Oral Solid Dosage Form Disintegration Testing - The Forgotten Test.
Al-Gousous, Jozef; Langguth, Peter
2015-09-01
Since its inception in the 1930s, disintegration testing has become an important quality control (QC) test in pharmaceutical industry, and disintegration test procedures for various dosage forms have been described by the different pharmacopoeias, with harmonization among them still not quite complete. However, because of the fact that complete disintegration does not necessarily imply complete dissolution, much more research has been focused on dissolution rather than on disintegration testing. Nevertheless, owing to its simplicity, disintegration testing seems to be an attractive replacement to dissolution testing as recognized by the International Conference on Harmonization guidelines, in some cases. Therefore, with proper research being carried out to overcome the associated challenges, the full potential of disintegration testing could be tapped saving considerable efforts allocated to QC testing and quality assurance. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kambayashi, Atsushi; Blume, Henning; Dressman, Jennifer B
2014-07-01
The objective of this research was to characterize the dissolution profile of a poorly soluble drug, diclofenac, from a commercially available multiple-unit enteric coated dosage form, Diclo-Puren® capsules, and to develop a predictive model for its oral pharmacokinetic profile. The paddle method was used to obtain the dissolution profiles of this dosage form in biorelevant media, with the exposure to simulated gastric conditions being varied in order to simulate the gastric emptying behavior of pellets. A modified Noyes-Whitney theory was subsequently fitted to the dissolution data. A physiologically-based pharmacokinetic (PBPK) model for multiple-unit dosage forms was designed using STELLA® software and coupled with the biorelevant dissolution profiles in order to simulate the plasma concentration profiles of diclofenac from Diclo-Puren® capsule in both the fasted and fed state in humans. Gastric emptying kinetics relevant to multiple-units pellets were incorporated into the PBPK model by setting up a virtual patient population to account for physiological variations in emptying kinetics. Using in vitro biorelevant dissolution coupled with in silico PBPK modeling and simulation it was possible to predict the plasma profile of this multiple-unit formulation of diclofenac after oral administration in both the fasted and fed state. This approach might be useful to predict variability in the plasma profiles for other drugs housed in multiple-unit dosage forms. Copyright © 2014 Elsevier B.V. All rights reserved.
Integrating In Vitro, Modeling, and In Vivo Approaches to Investigate Warfarin Bioequivalence
Wen, H; Fan, J; Vince, B; Li, T; Gao, W; Kinjo, M; Brown, J; Sun, W; Jiang, W; Lionberger, R
2017-01-01
We demonstrate the use of modeling and simulation to investigate bioequivalence (BE) concerns raised about generic warfarin products. To test the hypothesis that the loss of isopropyl alcohol and slow dissolution in acidic pH has significant impact on the pharmacokinetics of warfarin sodium tablets, we conducted physiologically based pharmacokinetic absorption modeling and simulation using formulation factors or in vitro dissolution profiles as input parameters. Sensitivity analyses indicated that warfarin pharmacokinetics was not sensitive to solubility, particle size, density, or dissolution rate in pH 4.5, but was affected by dissolution rate in pH 6.8 and potency. Virtual BE studies suggested that stressed warfarin sodium tablets with slow dissolution rate in pH 4.5 but having similar dissolution rate in pH 6.8 would be bioequivalent to the unstressed warfarin sodium tablets. A four‐way, crossover, single‐dose BE study in healthy subjects was conducted to test the same hypothesis and confirmed the simulation conclusion. PMID:28379643
Mäkelä, Valtteri; Wahlström, Ronny; Holopainen-Mantila, Ulla; Kilpeläinen, Ilkka; King, Alistair W T
2018-05-14
Herein, we describe a new method of assessing the kinetics of dissolution of single fibers by dissolution under limited dissolving conditions. The dissolution is followed by optical microscopy under limited dissolving conditions. Videos of the dissolution were processed in ImageJ to yield kinetics for dissolution, based on the disappearance of pixels associated with intact fibers. Data processing was performed using the Python language, utilizing available scientific libraries. The methods of processing the data include clustering of the single fiber data, identifying clusters associated with different fiber types, producing average dissolution traces and also extraction of practical parameters, such as, time taken to dissolve 25, 50, 75, 95, and 99.5% of the clustered fibers. In addition to these simple parameters, exponential fitting was also performed yielding rate constants for fiber dissolution. Fits for sample and cluster averages were variable, although demonstrating first-order kinetics for dissolution overall. To illustrate this process, two reference pulps (a bleached softwood kraft pulp and a bleached hardwood pre-hydrolysis kraft pulp) and their cellulase-treated versions were analyzed. As expected, differences in the kinetics and dissolution mechanisms between these samples were observed. Our initial interpretations are presented, based on the combined mechanistic observations and single fiber dissolution kinetics for these different samples. While the dissolution mechanisms observed were similar to those published previously, the more direct link of mechanistic information with the kinetics improve our understanding of cell wall structure and pre-treatments, toward improved processability.
Shibata, Hiroko; Yoshida, Hiroyuki; Izutsu, Ken-Ichi; Goda, Yukihiro
2016-04-01
The aim of this study was to assess the effects of buffer systems (bicarbonate or phosphate at different concentrations) on the in vitro dissolution profiles of commercially available enteric-coated tablets. In vitro dissolution tests were conducted using an USP apparatus II on 12 enteric-coated omeprazole and rabeprazole tablets, including innovator and generic formulations in phosphate buffers, bicarbonate buffers and a media modified Hanks (mHanks) buffer. Both omeprazole and rabeprazole tablets showed similar dissolution profiles among products in the compendial phosphate buffer system. However, there were large differences between products in dissolution lag time in mHanks buffer and bicarbonate buffers. All formulations showed longer dissolution lag times at lower concentrations of bicarbonate or phosphate buffers. The dissolution rank order of each formulation differed between mHanks buffer and bicarbonate buffers. A rabeprazole formulation coated with a methacrylic acid copolymer showed the shortest lag time in the high concentration bicarbonate buffer, suggesting varied responses depending on the coating layer and buffer components. Use of multiple dissolution media during in vitro testing, including high concentration bicarbonate buffer, would contribute to the efficient design of enteric-coated drug formulations. © 2016 Royal Pharmaceutical Society, Journal of Pharmacy and Pharmacology.
[Evaluation of Dissolution Profiles of Famotidine from Over-the-counter Drugs].
Saito, Yuji; Adachi, Naoki; Kato, Miki; Nadai, Masayuki
2018-03-27
In recent years, self-medication has started to receive more attention in Japan owing to increasing medical costs and health awareness among people. One of the main roles of pharmacists in self-medication is to provide appropriate information regarding over-the-counter (OTC) drugs. However, pharmacists promoting the proper use of OTC drugs have little information on their formulation properties. In this study, we performed dissolution tests on both OTC drugs and ethical drug (ED) containing famotidine, and evaluated the differences in their dissolution profiles. Marked differences in dissolution profiles of OTC drugs were observed in test solutions at pH 1.2, 4.0, and 6.8 and in water. To evaluate the differences quantitatively, we calculated the lag time and dissolution rate constant from the dissolution profiles. Significant differences in lag times and dissolution rate constants between some OTC drugs and ED were observed. We also used similarity factor (f2), to quantify the similarity between dissolution profiles of OTC drugs and ED. f2 values less than 42 were observed in some OTC drugs, suggesting that these differences might influence absorption in vivo resulting in differences in their onset time and efficacy. The findings of this study will provide useful information for the promotion of proper use of OTC drugs.
Dissolution assessment of allopurinol immediate release tablets by near infrared spectroscopy.
Smetiško, Jelena; Miljanić, Snežana
2017-10-25
The purpose of this study was to develop a NIR spectroscopic method for assessment of drug dissolution from allopurinol immediate release tablets. Thirty three different batches of allopurinol immediate release tablets containing constant amount of the active ingredient, but varying in excipients content and physical properties were introduced in a PLS calibration model. Correlating allopurinol dissolution reference values measured by the routinely used UV/Vis method, with the data extracted from the NIR spectra, values of correlation coefficient, bias, slope, residual prediction determination and root mean square error of prediction (0.9632, 0.328%, 1.001, 3.58, 3.75%) were evaluated. The obtained values implied that the NIR diffuse reflectance spectroscopy could serve as a faster and simpler alternative to the conventional dissolution procedure, even for the tablets with a very fast dissolution rate (>85% in 15minutes). Apart from the possibility of prediction of the allopurinol dissolution rate, the other multivariate technique, PCA, provided additional data on the non-chemical characteristics of the product, which could not be obtained from the reference dissolution values. Analysis on an independent set of samples confirmed that a difference between the UV/Vis reference method and the proposed NIR method was not significant. According to the presented results, the proposed NIR method may be suitable for practical application in routine analysis and for continuously monitoring the product's chemical and physical properties responsible for expected quality. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guilmette, R.A.; Hoover, M.D.
1995-12-01
The revised 10 CFR Part 20 has adopted the ICRP Publication 30 method for calculating the committed effective dose equivalent from intakes of radionuclides. This dosimetry scheme requires knowledge or assumptions about the chemical form of the radionuclide, its particle size, and its known or assumed solubility. The solubility is classified as being either D (relatively soluble), W, or Y (relatively insoluble), depending on whether the material dissolves over periods of days, weeks, or years. Although Nuclear Regulatory Commission licensees may wish to take advantage of material-specific knowledge in order to adjust annual limits on intake and derived air concentrations,more » relatively few radioactive materials to which workers and the general population may be exposed have been adequately characterized either in terms of physicochemical form or solubility. Experimental measurement of solubility using some type of in vitro dissolution measurement system is therefore needed. However, there is currently no clear consensus regarding the appropriate design of in vitro dissolution systems, particularly when considering the range of different radionuclides to be studied, and the complexity of the biological mechanisms involved in the retention and clearance of inhaled deposited radioactive particles. The purpose of this study was to evaluate the effect of the several solvents on the dissolution of four test aerosols ({sup 57}Co{sub 3}O{sub 4}, {sup 241}AmO{sub 2}, ammonium diuranate [ADU], and U{sub 3}O{sub 8}) selected to encompass a variety of chemical and biochemical properties in vivo. The results of this study provide some guidance on the usefulness of in vitro dissolution tests for estimating the solubility of unknown radionuclide particles within the context of a simple model such as the class D, W, and Y formulation of ICRP 30.« less
Factors Affecting the Dissolution of Indomethacin Solid Dispersions.
Zhang, Wei; Zhang, Chen-Ning; He, Yue; Duan, Ban-Yan; Yang, Guang-Yi; Ma, Wei-Dong; Zhang, Yong-Hong
2017-11-01
The aim of this study was to investigate the influence of factors such as carrier type, drug/carrier ratio, binary carriers, and preparation method on the dissolution of an insoluble drug, indomethacin (IM), under supersaturation conditions. Using a solvent evaporation (SE) method, poloxamer 188 and PVP K30 showed better dissolution among the selected carriers. Furthermore, as the ratio of carriers increased (drug/carrier ratio from 1:0.5 to 1:2), the dissolution rate increased especially in almost two times poloxamer 188 solid dispersions (SDs), while the reverse results were observed for PVP K30 SDs. For the binary carrier SD, a lower dissolution was found. Under hot melt extrusion (HME), the dissolution of poloxamer 188 SD and PVP K30 SD was 0.83- and 0.94-folds lower than that using SE, respectively, while the binary carrier SD showed the best dissolution. For poloxamer 188 SDs, the drug's crystal form changed when using SE, while no crystal form change was observed using HME. IM was amorphous in PVP K30 SDs prepared by both methods. For binary carrier systems, amorphous and crystalline drugs coexisted in SD using SE, and negligible amorphous IM was in SD using HME. This study indicated that a higher amorphous proportion in SD did not correlate with higher dissolution rate, and other factors, such as carrier type, particle size, and density, were also critical.
[Troubleshooting of bioinequivalence of compound valsartan tablets].
Shao, Da; Zhang, Yi-Fan; Zhan, Yan; Chen, Xiao-Yan; Zhong, Da-Fang
2014-04-01
The study aims to evaluate the bioequivalence of valsartan hydrochlorothiazide tablets, and to investigate the potential cause of bioinequivalence. This was a single-center study with an open, randomized double-way crossover design. Test and reference preparations containing 160 mg of valsartan and 25 mg of hydrochlorothiazide were given to 36 healthy male volunteers. Plasma concentrations of valsartan and hydrochlorothiazide were determined simultaneously by LC-MS/MS. The pharmacokinetic parameters and relative bioavailability were calculated, while the bioequivalence between test and reference preparations were evaluated. The dissolution profiles of test and reference preparations in four different mediums were determined via dissolution test and HPLC. The similarity was investigated according to the similarity factors (f2). The F(o-t) and F(0-infinity) were (139.4 +/- 65.2)% and (137.5 +/- 61.2)% for valsartan of test preparations. It led to get the conclusion that test and reference preparations were not bioequivalent for valsartan. A significant difference was observed between test and reference tablets in the valsartan dissolution test of pH 1.2 hydrochloric acid solution. The key factor of the bioinequivalence might be that dissolution of valsartan in acid medium has marked difference between two preparations.
Li, Cong; Ning, Li-Dan; Si, Jin-Ping; Wu, Ling-Shang; Liu, Jing-Jing; Song, Xian-Shui; Yu, Qiao-Xian
2013-02-01
To reveal the quality variation of polysaccharide in Dendrobium officinale by post-harvest processing and extraction methods, and provide a basis for post-harvest processing and clinical and hygienical applications of Tiepifengdou (Dendrobii Officinalis Caulis). The content of polysaccharides were studied by 4 post-harvest processing methods, i. e. drying by drying closet, drying after scalding by boiling water, drying while twisting, and drying while twisting after scalding by boiling water. And a series of temperatures were set in each processing procedure. An orthogonal test L9 (3(4)) with crushed degrees, solid-liquid ratio, extraction time and extraction times as factors were designed to analyze the dissolution rate of polysaccharides in Tiepifengdou processed by drying while twisting at 80 degrees C. The content of polysaccharides was ranged from 26.59% to 32.70% in different samples processed by different processing methods, among which drying while twisting at 80 degrees C and 100 degrees C respectively were the best. Crushed degree was the most important influence on the dissolution rate of polysaccharides. The dissolution rate of polysaccharides was extremely low when the sample was boiled directly without crushing and sieving. Drying while twisting at 80 degrees C was the best post-harvest processing method, which can help to dry the fresh herbs and improve the accumulation of polysaccharides. Boiling the uncrushed Tiepifengdou for a long time as traditional method could not fully extract polysaccharides, while boiling the crushed Tiepifengdou can efficiently extract polysaccharides.
Choi, Jin-Seok; Lee, Sang-Eun; Jang, Woo Suk; Byeon, Jong Chan; Park, Jeong-Sook
2018-09-01
The aim of this study was to develop a dutasteride (DUT) solid dispersion (SD) using hydrophilic substances to enhance its dissolution (%) and oral bioavailability in rats. DUT-SD formulations were prepared with various co-polymers using a solvent evaporation method. The physical properties of DUT-SD formulations were confirmed using field emission scanning electron microscopy (FE-SEM), differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), and attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. The toxicity and oral bioavailability of DUT-SD formulations were evaluated. Tocopheryl polyethylene glycol-1000-succinate (TPGS) was chosen as the solubilizer; and methylene chloride, and Aerosil® 200 or microcrystalline cellulose (MCC) were chosen as the solvent and carrier, respectively, based on a solubility test and pre-dissolution study. The dissolution levels of DUT-SD formulations were 86.3 ± 2.3% (F15) and 95.1 ± 1.9% (F16) after 1 h, which were higher than those of the commercial product, i.e., Avodart® (75.8 ± 1.5%) in 0.1 N HCl containing 1% (w/v) sodium lauryl sulfate (SLS). The F16 formulation was found to be stable, after assessing its dissolution (%) and drug content (%) for 6 months. The DUT-SD formulations resulted in relative bioavailability (BA) values of 126.4% (F15) and 132.1% (F16), which were enhanced compared to that of Avodart®. Dissolution (%) and relative BA values were both increased by hydrogen interaction between TPGS and DUT. This study might contribute to a new formulation (powder) whose oral bioavailability is greater than that of Avodart® (soft capsule), which could facilitate to the use of the SD system during the production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Rapid fusion method for the determination of refractory thorium and uranium isotopes in soil samples
Maxwell, Sherrod L.; Hutchison, Jay B.; McAlister, Daniel R.
2015-02-14
Recently, approximately 80% of participating laboratories failed to accurately determine uranium isotopes in soil samples in the U.S Department of Energy Mixed Analyte Performance Evaluation Program (MAPEP) Session 30, due to incomplete dissolution of refractory particles in the samples. Failing laboratories employed acid dissolution methods, including hydrofluoric acid, to recover uranium from the soil matrix. The failures illustrate the importance of rugged soil dissolution methods for the accurate measurement of analytes in the sample matrix. A new rapid fusion method has been developed by the Savannah River National Laboratory (SRNL) to prepare 1-2 g soil sample aliquots very quickly, withmore » total dissolution of refractory particles. Soil samples are fused with sodium hydroxide at 600 ºC in zirconium crucibles to enable complete dissolution of the sample. Uranium and thorium are separated on stacked TEVA and TRU extraction chromatographic resin cartridges, prior to isotopic measurements by alpha spectrometry on cerium fluoride microprecipitation sources. Plutonium can also be separated and measured using this method. Batches of 12 samples can be prepared for measurement in <5 hours.« less
Yousaf, Abid Mehmood; Kim, Dong Wuk; Oh, Yu-Kyoung; Yong, Chul Soon; Kim, Jong Oh; Choi, Han-Gon
2015-01-01
Background The intention of this research was to prepare and compare various solubility-enhancing nanoparticulated systems in order to select a nanoparticulated formulation with the most improved oral bioavailability of poorly water-soluble fenofibrate. Methods The most appropriate excipients for different nanoparticulated preparations were selected by determining the drug solubility in 1% (w/v) aqueous solutions of each carrier. The polyvinylpyrrolidone (PVP) nanospheres, hydroxypropyl-β-cyclodextrin (HP-β-CD) nanocorpuscles, and gelatin nanocapsules were formulated as fenofibrate/PVP/sodium lauryl sulfate (SLS), fenofibrate/HP-β-CD, and fenofibrate/gelatin at the optimized weight ratios of 2.5:4.5:1, 1:4, and 1:8, respectively. The three solid-state products were achieved using the solvent-evaporation method through the spray-drying technique. The physicochemical characterization of these nanoparticles was accomplished by powder X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and Fourier-transform infrared spectroscopy. Their physicochemical properties, aqueous solubility, dissolution rate, and pharmacokinetics in rats were investigated in comparison with the drug powder. Results Among the tested carriers, PVP, HP-β-CD, gelatin, and SLS showed better solubility and were selected as the most appropriate constituents for various nanoparticulated systems. All of the formulations significantly improved the aqueous solubility, dissolution rate, and oral bioavailability of fenofibrate compared to the drug powder. The drug was present in the amorphous form in HP-β-CD nanocorpuscles; however, in other formulations, it existed in the crystalline state with a reduced intensity. The aqueous solubility and dissolution rates of the nanoparticles (after 30 minutes) were not significantly different from one another. Among the nanoparticulated systems tested in this study, the initial dissolution rates (up to 10 minutes) were higher with the PVP nanospheres and HP-β-CD nanocorpuscles; however, neither of them resulted in the highest oral bioavailability. Irrespective of relatively retarded dissolution rate, gelatin nanocapsules showed the highest apparent aqueous solubility and furnished the most improved oral bioavailability of the drug (~5.5-fold), owing to better wetting and diminution in crystallinity. Conclusion Fenofibrate-loaded gelatin nanocapsules prepared using the solvent-evaporation method through the spray-drying technique could be a potential oral pharmaceutical product for administering the poorly water-soluble fenofibrate with an enhanced bioavailability. PMID:25784807
Arsenic concentrations (Total Recoverable As by EPA Method 3051) and solid-phase speciation (by X-ray Absorption Near-Edge Spectroscopy-XANES) were assessed as a function of depth through Fe-media beds for two commercially available products from pilot-scale field tests. These re...
The Use of Artificial Neural Network for Prediction of Dissolution Kinetics
Elçiçek, H.; Akdoğan, E.; Karagöz, S.
2014-01-01
Colemanite is a preferred boron mineral in industry, such as boric acid production, fabrication of heat resistant glass, and cleaning agents. Dissolution of the mineral is one of the most important processes for these industries. In this study, dissolution of colemanite was examined in water saturated with carbon dioxide solutions. Also, prediction of dissolution rate was determined using artificial neural networks (ANNs) which are based on the multilayered perceptron. Reaction temperature, total pressure, stirring speed, solid/liquid ratio, particle size, and reaction time were selected as input parameters to predict the dissolution rate. Experimental dataset was used to train multilayer perceptron (MLP) networks to allow for prediction of dissolution kinetics. Developing ANNs has provided highly accurate predictions in comparison with an obtained mathematical model used through regression method. We conclude that ANNs may be a preferred alternative approach instead of conventional statistical methods for prediction of boron minerals. PMID:25028674
Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara
2018-06-10
There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.
Andreas, Cord J; Chen, Ying-Chen; Markopoulos, Constantinos; Reppas, Christos; Dressman, Jennifer
2015-11-01
Postprandial administration of solid oral dosage forms greatly changes the dissolution environment compared to fasted state administration. The aims of this study were to investigate and forecast the effect of co-administration of a meal on drug release for delayed and/or extended release mesalamine formulations as well as design of in vitro tests to distinguish among formulations in a biorelevant way. Five different mesalamine formulations (Asacol® 400 mg, Mezavant® 1200 mg, Pentasa® 500 mg and Salofalk® in the 250 mg and 500 mg strengths) were investigated with biorelevant dissolution methods using the USP apparatus III and USP apparatus IV (open loop mode) under both fasted and fed state conditions, as well as with the dissolution methods described in pharmacopeia for delayed and extended release mesalamine products. Using the biorelevant experimental conditions proposed in this study, changes in release in the proximal gut due to meal intake are forecast to be minimal for Asacol®, Mezavant®, Pentasa® and Salofalk® 500 mg, while for Salofalk® 250 mg release was predicted to occur much earlier under fed state conditions. The USP apparatus III generally tended to result in faster dissolution rates and forecast more pronounced food effects for Salofalk® 250 mg than the USP apparatus IV. The biorelevant dissolution gradients were also able to reflect the in vivo behavior of the formulations. In vitro biorelevant models can be useful in the comparison of the release behavior from different delayed and extended release mesalamine formulations as well as forecasting effects of concomitant meal intake on drug release. Copyright © 2015 Elsevier B.V. All rights reserved.
Smith, D.B.; Hoover, D.B.; Sanzolone, R.F.
1993-01-01
The CHIM electrogeochemical exploration technique was developed in the former Soviet Union about 20 years ago and is claimed to be effective in exploration for concealed mineral deposits that are not detectable by other geochemical or geophysical techniques. The method involves providing a high-voltage direct current to an anode and an array of special collector cathodes. Cations mobile in the electric field are collected at the cathodes and their concentrations determined. The U.S. Geological Survey started a study of the CHIM method by conducting tests over a precious- and base-metal-bearing quartz vein covered with 3 m of colluvial soil and weathered bedrock near the Kokomo Mine, Colorado. The tests show that the CHIM method gives better definition of the vein than conventional soil geochemistry based on a total-dissolution technique. The CHIM technique gives reproducible geochemical anomaly patterns, but the absolute concentrations depend on local site variability as well as temporal variations. Weak partial dissolutions of soils at the Kokomo Mine by an enzyme leach, a dilute acetic acid leach, and a dilute hydrochloric acid leach show results comparable to those from the CHIM method. This supports the idea that the CHIM technique is essentially a weak in-situ partial extraction involving only ions able to move in a weak electric field. ?? 1993.
Borbás, Enikő; Nagy, Zsombor K; Nagy, Brigitta; Balogh, Attila; Farkas, Balázs; Tsinman, Oksana; Tsinman, Konstantin; Sinkó, Bálint
2018-03-01
In this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%. Changing the salt forming agent as well resulted in approximately 20% of flux reduction compared to the brand formulation. This significant difference was clearly shown in the published in vivo results as well. The use of additional lactose monohydrate in the formulation also leads to approximately 10% reduction in flux. The results show that by changing excipients, the dissolution of telmisartan was not altered significantly, but the flux through the membrane was found to be significantly changed. These results pointed out the limitations of traditional USP dissolution tests and emphasized the importance of simultaneously measuring dissolution and absorption, which allows the complex effect of formulation excipients on both processes to be measured. Moreover, the in vivo predictive power of the simultaneous dissolution-absorption test was demonstrated by comparing the in vitro fluxes to in vivo bioequivalence study results. Copyright © 2018 Elsevier B.V. All rights reserved.
Chen, Yong; Feng, Tingting; Li, Yong; Du, Bin; Weng, Weiyu
2017-03-01
A major challenge of orally disintegrating tablet (ODT) development is predicting its bioequivalence to its corresponding marketed product. Therefore, comparing ODT dissolution profiles to those of the corresponding marketed product is very important. The objective of this study was to develop a 5.2-mg montelukast sodium (MS) ODT with a similar dissolution profile to that of the marketed chewable tablet. Dissolution profiles were examined in different media to screen each formulation. We found that MS dissolution from ODTs in acidic medium heavily depended on manufacturing methods. All MS ODTs prepared using direct compression rapidly disintegrated in acidic medium. However, dispersed MS powders aggregated into sticky masses, resulting in slow dissolution. In contrast, MS ODTs prepared using wet granulation had much faster dissolution rates in acidic medium with no obvious aggregation. Additionally, the optimized formulation, prepared using wet granulation, displayed similar dissolution profiles to the marketed reference in all four types of media examined (f 2 > 50). The in vitro disintegration time of the optimized ODT was 9.5 ± 2.4 s, which meets FDA requirements. In conclusion, the wet granulation preparation method of MS ODTs resulted in a product with equivalent dissolution profiles as those of the marketed product.
Cullen, James K T; Wealleans, James A; Kirkpatrick, Timothy C; Yaccino, John M
2015-06-01
The purpose of this study was to evaluate the effect of various concentrations of sodium hypochlorite (NaOCl), including 8.25%, on dental pulp dissolution and dentin flexural strength and modulus. Sixty dental pulp samples and 55 plane parallel dentin bars were retrieved from extracted human teeth. Five test groups (n = 10) were formed consisting of a pulp sample and dentin bar immersed in various NaOCl solutions. The negative control group (n = 5) consisted of pulp samples and dentin bars immersed in saline. The positive control group (n = 5) consisted of pulp samples immersed in 8.25% NaOCl without a dentin bar. Every 6 minutes for 1 hour, the solutions were refreshed. The dentin bars were tested for flexural strength and modulus with a 3-point bend test. The time until total pulp dissolution and any changes in dentin bar flexural strength and modulus for the different NaOCl solutions were statistically analyzed. An increase in NaOCl concentration showed a highly significant decrease in pulp dissolution time. The pulp dissolution property of 8.25% NaOCl was significantly faster than any other tested concentration of NaOCl. The presence of dentin did not have a significant effect on the dissolution capacity of NaOCl if the solutions were refreshed. NaOCl concentration did not have a statistically significant effect on dentin flexural strength or modulus. Dilution of NaOCl decreases its pulp dissolution capacity. Refreshing the solution is essential to counteract the effects of dentin. In this study, NaOCl did not have a significant effect on dentin flexural strength or modulus. Published by Elsevier Inc.
Al Durdunji, Amal; AlKhatib, Hatim S; Al-Ghazawi, Mutasim
2016-05-01
In a biphasic dissolution medium, the integration of the in vitro dissolution of a drug in an aqueous phase and its subsequent partitioning into an organic phase is hypothesized to simulate the in vivo drug absorption. Such a methodology is expected to improve the probability of achieving a successful in vitro-in vivo correlation. Dissolution of Dispersible tablets of Deferasirox, a biopharmaceutics classification system type II compound, was studied in a biphasic dissolution medium using a flow-through dissolution apparatus coupled to a paddle apparatus. The experimental parameters associated with dissolution were optimized to discriminate between Deferasirox dispersible tablets of different formulations. The dissolution profiles obtained from this system were subsequently used to construct a level A in vitro-in vivo correlation. Copyright © 2016 Elsevier B.V. All rights reserved.
Tissue dissolution by a novel multisonic ultracleaning system and sodium hypochlorite.
Haapasalo, Markus; Wang, Zhejun; Shen, Ya; Curtis, Allison; Patel, Payal; Khakpour, Mehrzad
2014-08-01
This study aimed to evaluate the effectiveness of a novel Multisonic Ultracleaning System (Sonendo Inc, Laguna Hills, CA) in tissue dissolution in comparison with conventional irrigation devices. Pieces of bovine muscle tissue (68 ± 2 mg) were placed in 0.7-mL test tubes (height: 23.60 mm, inner diameter: 6.00 mm, outer diameter: 7.75 mm) and exposed to 5 minutes of irrigation by different devices. Endodontic devices included the Multisonic Ultracleaning System, the Piezon Master 700 (EMS, Dallas, TX) ultrasonic system with agitation, the EndoVac negative-pressure irrigation system (SybronEndo, Orange, CA), and a conventional positive-pressure 27-G irrigation needle at a flow rate of 10 mL/min. The systems were tested with 0.5%, 3%, and 6% sodium hypochlorite (NaOCl) at room temperature (21°C) as well as 40°C. Irrigation with sterile water was used as a control. The mass of tissue specimens was measured and recorded before and after the use of each device, and if the specimen was completely dissolved visually within 5 minutes, the dissolution time was recorded. The rate of tissue dissolution (%/s) was then calculated. The Multisonic Ultracleaning System had the fastest rate of tissue dissolution (P < .05), at 1.0% ± 0.1% per second using 0.5% NaOCl, 2.3% ± 0.9% per second using 3% NaOCl, and 2.9% ± 0.7% per second using 6% NaOCl. This tissue dissolution rate was more than 8 times greater than the second fastest device tested (P < .01), the Piezon Master 700 ultrasonic system, which resulted in a tissue dissolution rate of 0.328% ± 0.002% per second using 6% NaOCl at 40°C. For all irrigation devices tested, the rate of tissue dissolution increased with a higher concentration and temperature of the NaOCl solution. The novel Multisonic Ultracleaning System achieved a significantly faster tissue dissolution rate when compared with the other systems examined in vitro. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wingert, Nathalie R; Dos Santos, Natália O; Campanharo, Sarah C; Simon, Elisa S; Volpato, Nadia M; Steppe, Martin
2018-05-01
This study aimed to develop and validate an in vitro dissolution method based on in silico-in vivo data to determine whether an in vitro-in vivo relationship could be established for rivaroxaban in immediate-release tablets. Oral drugs with high permeability but poorly soluble in aqueous media, such as the anticoagulant rivaroxaban, have a major potential to reach a high level of in vitro-in vivo relationship. Currently, there is no study on scientific literature approaching the development of RIV dissolution profile based on its in vivo performance. Drug plasma concentration values were modeled using computer simulation with adjustment of pharmacokinetic properties. Those values were converted into drug fractions absorbed by the Wagner-Nelson deconvolution approach. Gradual and continuous dissolution of RIV tablets was obtained with a 30 rpm basket on 50 mM sodium acetate +0.2% SDS, pH 6.5 medium. Dissolution was conducted for up to 180 min. The fraction absorbed was plotted against the drug fraction dissolved, and a linear point-to-point regression (R 2 = 0.9961) obtained. The in vitro dissolution method designed promoted a more convenient dissolution profile of RIV tablets, whereas it suggests a better relationship with in vivo performance.
Dissolution process analysis using model-free Noyes-Whitney integral equation.
Hattori, Yusuke; Haruna, Yoshimasa; Otsuka, Makoto
2013-02-01
Drug dissolution process of solid dosages is theoretically described by Noyes-Whitney-Nernst equation. However, the analysis of the process is demonstrated assuming some models. Normally, the model-dependent methods are idealized and require some limitations. In this study, Noyes-Whitney integral equation was proposed and applied to represent the drug dissolution profiles of a solid formulation via the non-linear least squares (NLLS) method. The integral equation is a model-free formula involving the dissolution rate constant as a parameter. In the present study, several solid formulations were prepared via changing the blending time of magnesium stearate (MgSt) with theophylline monohydrate, α-lactose monohydrate, and crystalline cellulose. The formula could excellently represent the dissolution profile, and thereby the rate constant and specific surface area could be obtained by NLLS method. Since the long time blending coated the particle surface with MgSt, it was found that the water permeation was disturbed by its layer dissociating into disintegrant particles. In the end, the solid formulations were not disintegrated; however, the specific surface area gradually increased during the process of dissolution. The X-ray CT observation supported this result and demonstrated that the rough surface was dominant as compared to dissolution, and thus, specific surface area of the solid formulation gradually increased. Copyright © 2012 Elsevier B.V. All rights reserved.
Gniado, Katarzyna; Löbmann, Korbinian; Rades, Thomas; Erxleben, Andrea
2016-05-17
A comprehensive study on the dissolution properties of three co-amorphous sulfamerazine/excipient systems, namely sulfamerazine/deoxycholic acid, sulfamerazine/citric acid and sulfamerazine/sodium taurocholate (SMZ/DA, SMZ/CA and SMZ/NaTC; 1:1 molar ratio), is reported. While all three co-formers stabilize the amorphous state during storage, only co-amorphization with NaTC provides a dissolution advantage over crystalline SMZ and the reasons for this were analyzed. In the case of SMZ/DA extensive gelation of DA protects the amorphous phase from crystallization upon contact with buffer, but at the same time prevents the release of SMZ into solution. Disk dissolution studies showed an improved dissolution behavior of SMZ/CA compared to crystalline SMZ. However, enhanced dissolution properties were not seen in powder dissolution testing due to poor dispersibility. Co-amorphization of SMZ and NaTC resulted in a significant increase in dissolution rate, both in powder and disk dissolution studies. Copyright © 2016. Published by Elsevier B.V.
Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets.
Martinez, Pamela Robles; Goyanes, Alvaro; Basit, Abdul W; Gaisford, Simon
2018-06-08
Additive manufacturing (3D printing) permits the fabrication of tablets in shapes unattainable by powder compaction, and so the effects of geometry on drug release behavior is easily assessed. Here, tablets (printlets) comprising of paracetamol dispersed in polyethylene glycol were printed using stereolithographic 3D printing. A number of geometric shapes were produced (cube, disc, pyramid, sphere and torus) with either constant surface area (SA) or constant surface area/volume ratio (SA/V). Dissolution testing showed that printlets with constant SA/V ratio released drug at the same rate, while those with constant SA released drug at different rates. A series of tori with increasing SA/V ratio (from 0.5 to 2.4) were printed, and it was found that dissolution rate increased as the SA/V ratio increased. The data show that printlets can be fabricated in multiple shapes and that dissolution performance can be maintained if the SA/V ratio is constant or that dissolution performance of printlets can be fine-tuned by varying SA/V ratio. The results suggest that 3D printing is therefore a suitable manufacturing method for personalized dosage forms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
Biocompatibility of “On-Command” Dissolvable Tympanostomy Tube in the Rat Model
Mai, Johnny P.; Dumont, Matthieu; Rossi, Christopher; Cleary, Kevin; Wiedermann, Joshua; Reilly, Brian K.
2016-01-01
Objectives/Hypothesis A prototype tympanostomy tube, composed of (polybutyl/methyl methacrylate-co-dimethyl amino ethyl methacrylate (PBM)), was tested to (1) evaluate the effect of PBM tubes on rat dermis as a corollary for biocompatibility and (2) to observe the efficacy of dissolution with isopropyl alcohol (iPrOH) and ethanol (EtOH). Subjects and Methods A two-part study was conducted to assess biocompatible substance with inducible dissolvability as a critical characteristic for a newly engineered tympanostomy tube. First, tympanostomy tubes were inserted subcutaneously in 10 rats, which served as an animal model for biosafety and compared to traditional tubes with respect to histologic reaction. Tissue surrounding the PBM prototype tubes was submitted for histopathology and demonstrated no tissue reactivity or signs of major inflammation. In the second part, we evaluated the dissolvability of the tube with either isopropyl alcohol, ethanol, ofloxacin, ciprodex, water, and soapy water. PBM tubes were exposed to decreasing concentrations of iPrOH and EtOH with interval qualitative assessment of dissolution. Results (1) Histologic examination did not reveal pathology with PBM tubes; (2) Concentrations of at least 50% iPrOH and EtOH dissolve PBM tubes within 48 hours while concentrations of at least 75% iPrOH and EtOH were required for dissolution when exposure was limited to four 20-minute intervals. Conclusion PBM is biocompatible in the rat model. Additionally, PBM demonstrates rapid dissolution upon alcohol-based stimuli, validating the proof-of-concept of dissolvable “on-command” or biocommandible ear tubes. Further testing of PBM is needed with a less ototoxic dissolver and in a better simulated middle ear environment, before testing can be performed in humans. PMID:27796039
Pulp tissue dissolution capacity of QMix 2in1 irrigation solution
Arslan, Dilara; Guneser, Mehmet Burak; Kustarci, Alper; Er, Kursat; Siso, Seyda Herguner
2015-01-01
Objective: The aim of this study was to evaluate the tissue dissolution efficacy of four root canal irrigation solutions (sodium hypochlorite [NaOCl], chlorhexidine gluconate [CHX], Octenidine [OCT], and QMix 2in1) on bovine pulp tissue. Materials and Methods: Fifty bovine pulp tissue samples, each weighing 6.55 mg, were prepared and randomly divided into four experimental groups and one control group (n = 10) according to the dissolution irrigants used: (1) 5.25% NaOCl group; (2) 2% CHX group; (3) OCT group; (4) QMix 2in1 group; and (5) control group (saline solution). These samples were then placed into special bovine dentin reservoir models and immersed for 1 h with each test solution (0.1 mL of each) at room temperature. The pulp samples were then blotted dry and weighed again. The percentage of weight loss was calculated. Statistically analyzed with one-way analysis of variance and post-hoc Tukey tests (P = 0.05). Results: Saline solution did not dissolve the bovine pulp tissue. All groups, except OCT, dissolved pulp samples more effectively than the control group (P < 0.05). The highest tissue dissolution was observed in 5.25% NaOCl group (P < 0.05). No statistically significant difference was found between the tissue-dissolving effect between QMix 2in1 and those of 2% CHX. Conclusions: Within the limitations of this in vitro study, NaOCl exhibited the best tissue-dissolving effect out of all solutions tested. CHX and QMix 2in1 were able to dissolve pulp tissue but less than NaOCl. OCT and saline solutions could not exhibit significantly tissue-dissolving effectiveness. This study shown that QMix 2in1 has little capacity to dissolve pulp tissue therefore used alone is not sufficient for this purpose. PMID:26430374
Aman, Michael; Espinoza, D. Nicolas; Ilgen, Anastasia G.; ...
2017-09-22
Here, the injection of carbon dioxide (CO 2) into geological formations results in a chemical re-equilibration between the mineral assemblage and the pore fluid, with ensuing mineral dissolution and re-precipitation. Hence, target rock formations may exhibit changes of mechanical and petrophysical properties due to CO 2 exposure. We conducted batch reaction experiments with Entrada Sandstone and Summerville Siltstone exposed to de-ionized water and synthetic brine under reservoir pressure (9–10 MPa) and temperature (80°C) for up to four weeks. Samples originate from the Crystal Geyser field site, where a naturally occurring CO 2 seepage alters portions of these geologic formations. Wemore » conducted micro-scratch tests on rock samples without alteration, altered under laboratory conditions, and naturally altered over geologic time. Scratch toughness and hardness decrease as a function of exposure time and water salinity up to 52% in the case of Entrada and 87% in the case of Summerville after CO 2-induced alteration in the laboratory. Imaging of altered cores with SEM-EDS and X-ray microCT methods show dissolution of carbonate and silica cements and matrix accompanied by minor dissolution of Fe-oxides, clays, and other silicates. Parallel experiments using powdered samples confirm that dissolution of carbonate and silica are the primary reactions. The batch reaction experiments in the autoclave utilize a high fluid to rock volume ratio and represent an end member of possible alteration associated with CO 2 storage systems. These types of tests serve as a pre-screening tool to identify the susceptibility of rock facies to CO 2-related chemical-mechanical alteration during long-term CO 2 storage.« less
Maswadeh, Hamzah A; Al-Hanbali, Othman A; Kanaan, Reem A; Shakya, Ashok K; Maraqa, Anwar
2010-01-01
In vitro release kinetics of three commercially available sustained release tablets (SR) diltiazem hydrochloride were studied at pH 1.1 for 2 h and for another 6 h at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process was studied by analyzing the dissolution data using five kinetic equations: the zero-order equation, the first-order equation, the Higuchi square root equation, the Hixson-Crowell cube root law and the Peppas equation. Analyses of the dissolution kinetic data for diltiazem hydrochloride commercial SR tablets showed that both Dilzacard and Dilzem SR tablets released drug by Non-Fickian (Anomalous transport) release with release exponent (n) equal to 0.59 and 0.54, respectively, which indicate the summation of both diffusion and dissolution controlled drug release. Bi-Tildiem SR tablets released drug by super case II (n = 1.29) which indicate zero-order release due to the dissolution of polymeric matrix and relaxation of the polymer chain. This finding was also in agreement with results obtained from application of zero-order and Hixson-Crowell equations. A dissolution profile comparative study was done to test the lyoequivelancy of the three products by using the mean dissolution time (MDT), dissimilarity factor f1 and similarity factor f2. Results showed that the three products are different and not lyoequivalent.
75 FR 8081 - Patrick J. Lais: Debarment Order
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-23
..., among other things, subpotent burn spray, aspirin that had failed dissolution testing, and antacid... as ``Uncoated Aspirin.'' This drug failed its final dissolution testing. Neither Mr. Lais nor the... coated the failed aspirin and renumbered the lot. Part of this lot then was packaged as ``Coated Aspirin...
Ultrasound enhanced process for extracting metal species in supercritical fluids
Wai, Chien M.; Enokida, Youichi
2006-10-31
Improved methods for the extraction or dissolution of metals, metalloids or their oxides, especially lanthanides, actinides, uranium or their oxides, into supercritical solvents containing an extractant are disclosed. The disclosed embodiments specifically include enhancing the extraction or dissolution efficiency with ultrasound. The present methods allow the direct, efficient dissolution of UO2 or other uranium oxides without generating any waste stream or by-products.
Paonessa, Jessica E; Williams, James C; Lingeman, James E
2018-04-01
We hypothesized that adding sodium bicarbonate (bicarb) to normal saline (NS) irrigation during ureteroscopy in patients with uric acid (UA) nephrolithiasis may assist in dissolving small stone fragments produced during laser lithotripsy. In vitro testing was performed to determine whether dissolution of UA fragments could be accomplished within 1 hour. In total 100% UA renal calculi were fragmented, filtered, and separated by size. Fragment sizes were <0.5 mm and 0.5 to 1 mm. Similar amounts of stone material were agitated in solution at room temperature. Four solutions were tested (NS, NS +1 ampule bicarb/L, NS +2, NS +3). Both groups were filtered to remove solutions after fixed periods. Filtered specimens were dried and weighed. Fragment dissolution rates were calculated as percent removed per hour. Additional testing was performed to determine whether increasing the temperature of solution affected dissolution rates. For fragments <0.5 mm, adding 2 or 3 bicarb ampules/L NS produced a dissolution rate averaging 91% ± 29% per hour. This rate averaged 226% faster than NS alone. With fragments 0.5 to 1 mm, addition of 2 or 3 bicarb ampules/L NS yielded a dissolution rate averaging 22% ± 7% per hour, which was nearly five times higher than NS alone. There was a trend for an increase in mean dissolution rate with higher temperature but this increase was not significant (p = 0.30). The addition of bicarbonate to NS more than doubles the dissolution rate of UA stone fragments and fragments less than 0.5 mm can be completely dissolved within 1 hour. Addition of bicarb to NS irrigation is a simple and inexpensive approach that may assist in the dissolution of UA fragments produced during ureteroscopic laser lithotripsy. Further studies are needed to determine whether a clinical benefit exists.
Fujimoto, Yumi; Hirai, Nobuaki; Takatani-Nakase, Tomoka; Takahashi, Koichi
2016-01-01
The aim of this study was to prepare and evaluate solid dispersion tablets containing a poorly water-soluble drug using porous calcium silicate (PCS) by a wet granulation method. Nifedipine (NIF) was used as the model poorly water-soluble drug. Solid dispersion tablets were prepared with the wet granulation method using ethanol and water by a high-speed mixer granulator. The binder and disintegrant were selected from 7 and 4 candidates, respectively. The dissolution test was conducted using the JP 16 paddle method. The oral absorption of NIF was studied in fasted rats. Xylitol and crospovidone were selected as the binder and disintegrant, respectively. The dissolution rates of NIF from solid dispersion formulations were markedly enhanced compared with NIF powder and physical mixtures. Powder X-ray diffraction (PXRD) confirmed the reduced crystallinity of NIF in the solid dispersion formulations. Fourier transform infrared (FT-IR) showed the physical interaction between NIF and PCS in the solid dispersion formulations. NIF is present in an amorphous state in granules prepared by the wet granulation method using water. The area under the plasma concentration-time curve (AUC) and peak concentration (C(max)) values of NIF after dosing rats with the solid dispersion granules were significantly greater than those after dosing with NIF powder. The solid dispersion formulations of NIF prepared with PCS using the wet granulation method exhibited accelerated dissolution rates and superior oral bioavailability. This method is very simple, and may be applicable to the development of other poorly water-soluble drugs.
Size and performance of anoxic limestone drains to neutralize acdic mine drainagei
Cravotta, C.A.
2003-01-01
Acidic mine drainage (AMD) can be neutralized effectively in underground, anoxic limestone drains (ALDs). Owing to reaction between the AMD and limestone (CaCO3), the pH and concentrations of alkalinity and calcium increase asymptotically with detention time in the ALD, while concentrations of sulfate, ferrous iron, and manganese typically are unaffected. This paper introduces a method to predict the alkalinity produced within an ALD and to estimate the mass of limestone required for its construction on the basis of data from short-term, closed-container (cubitainer) tests. The cubitainer tests, which used an initial mass of 4 kg crushed limestone completely inundated with 2.8 L AMD, were conducted for 11 to 16 d and provided estimates for the initial and maximum alkalinities and corresponding rates of alkalinity production and limestone dissolution. Long-term (5-11 yr) data for alkalinity and CaCO3 flux at the Howe Bridge, Morrison, and Buck Mountain ALDs in Pennsylvania, USA, indicate that rates of alkalinity production and limestone dissolution under field conditions were comparable with those in cubitainers filled with limestone and AMD from each site. The alkalinity of effluent and intermediate samples along the flow path through the ALDs and long-term trends in the residual mass of limestone and the effluent alkalinity were estimated as a function of the computed detention time within the ALD and second-order dissolution rate models for cubitainer tests. Thus, cubitainer tests can be a useful tool for designing ALDs and predicting their performance.
Solubility Enhancement of Raloxifene Using Inclusion Complexes and Cogrinding Method
Patil, Payal H.; Belgamwar, Veena S.; Patil, Pratibha R.; Surana, Sanjay J.
2013-01-01
The objective of the present work was to enhance the solubility and dissolution of practically water-insoluble drug raloxifene HCl (RLX), for the same two approaches that were used. In the first approach, drug was kneaded with hydroxypropyl-β-cyclodextrin (HPβCD), and in the second one drug was cogrinded with modified guar gum (MGG). The drug-cyclodextrin complex and drug-MGG cogrind mixtures were characterized by differential scanning calorimetry, X-ray diffraction studies, scanning electron microscopy, and Fourier transform infrared spectroscopy. The solubility and dissolution study reveals that solubility and dissolution rate of RLX remarkably increased in both methods. It was concluded that the prepared inclusion complex showed a remarkable increase in solubility and dissolution of poorly water-soluble drug raloxifene. In the cogrinding mixture, a natural modified gum is used as a surfactant and enhances the solubility and dissolution of RLX without requiring addition of organic solvent or high temperature for its preparation; thus, process is less cumbersome and cost effective. But when both methods were compared; HPβCD complexation method showed significant enhancement of drug solubility. PMID:26555984
NASA Astrophysics Data System (ADS)
Mickler, P. J.; Yang, C.; Lu, J.; Reedy, R. C.; Scanlon, B. R.
2012-12-01
Carbon Capture Utilization and Storage projects (CCUS), where CO2 is captured at point sources such as power stations and compressed into a supercritical liquid for underground storage, has been proposed to reduce atmospheric CO2 and mitigate global climate change. Problems may arise from CO2 releases along discreet pathways such as abandoned wells and faults, upwards and into near surface groundwater. Migrating CO2 may inversely impact fresh water resources by increasing mineral solubility and dissolution rates and mobilizing harmful trace elements including As and Pb. This study addresses the impacts on fresh water resources through a combination of laboratory batch experiments, where aquifer sediment are reacted in their corresponding groundwater in 100% CO2 environments, and field push-pull tests where groundwater is equilibrated with 100% CO2, reacted in-situ in the groundwater system, and pulled out for analyses. Batch experiments were performed on aquifer material from carbonate dominated, mixed carbonate/silicalstic, and siliclastic dominated systems. A mixed silicalstic/carbonate system was chosen for the field based push-pull test. Batch experiment results suggest carbonate dissolution increased the concentration of Ca, Mg, Sr, Ba, Mn, U and HCO3- in groundwater. In systems with significant carbonate content, dissolution continued until carbonate saturation was achieved at approximately 1000 hr. Silicate dissolution increased the conc. of Si, K Ni and Co, but at much lower rates than carbonate dissolution. The elements As, Mo, V, Zn, Se and Cd generally show similar behavior where concentrations initially increase but soon drop to levels at or below the background concentrations (~48 hours). A Push-Pull test on one aquifer system produced similar geochemical behavior but observed reaction rates are higher in batch experiments relative to push-pull tests. Release of CO2 from CCUS sites into overlying aquifer systems may adversely impact groundwater quality primarily through carbonate dissolution which releases Ca and elements that substitute for Ca in crystal lattices. Silicate weathering releases primarily Si and K at lower rates. Chemical changes with the addition of CO2 may initially mobilize As, Mo, V, Zn, Se and Cd but these elements become immobile in the lowered pH water and sorb onto aquifer minerals. A combined laboratory batch experiment and field push-pull test in fresh water aquifers overlying CCUS projects will best characterize the response of the aquifer to increased pCO2. The long experimental duration of the batch experiments may allow reactions to reach equilibrium however; reaction rates may be artificially high due to increased mineral surface areas. Field based push-pull tests offer a more realistic water rock ratio and test a much larger volume of aquifer material but the test must be shorter in duration because the high pCO2 water is subject to mixing with low pCO2 background water and migration away from the test well with groundwater flow. A comparison of the two methods best characterizes the potential effects on groundwater chemistry
Wells, Kevin A; Losin, William G
2008-07-01
Difficulty swallowing is a common problem in the clinical setting, particularly in elderly patients, and can significantly affect an individual's ability to maintain a proper level of nutrition. The purpose of this in vitro study was to determine if mixing duloxetine enteric-coated pellets in food substances is an acceptable alternative method for administering this oral formulation to patients with swallowing difficulties. To determine whether administration in food substances with varying pH values (applesauce and apple juice, pH = approximately 3.5; chocolate pudding, pH = approximately 5.5-6.0) affects the enteric coating of the formulation, duloxetine pellets (ie, the contents of a 20-mg duloxetine capsule) were exposed to applesauce, apple juice, and chocolate pudding at room temperature and tested in triplicate for potency and impurities; for dissolution, 6 replicates were tested. To assess product stability and integrity of the enteric coating, potency, impurities, and dissolution tests of the pellets were conducted and compared with pellets not exposed to food. The duloxetine pellets were extracted from the food material using a solution of 0.1 normal (N) hydrochloric acid (HCl) prepared from concentrated HCl (commercially available) and deionized water. For the potency and impurities tests, a 40:60 solution of acetonitrile and pH 8.0 phosphate buffer was used as the sample solvent to extract the active pharmaceutical ingredient from the formulation to prepare the samples for testing. The amount of active pharmaceutical ingredient released (in vitro dissolution) from the pellets after exposure to the food substances was determined using 2 media solutions, 0.1 N HCl followed by pH 6.8 phosphate buffer. Applesauce and chocolate pudding were selected as vehicles for oral administration, while apple juice was intended to be used as a wash for a nasogastric tube. Mean (SD) potency results for the 20-mg capsule strength were 20.256 (0.066), 20.222 (0.163), and 19.961 (0.668) mg/capsule for the comparator not exposed to food, the sample exposed to applesauce, and the sample exposed to apple juice, respectively. However, exposure to chocolate pudding altered the integrity of the pellet's enteric coating (mean [SD] potency results, 17.780 [1.605] mg/capsule). Results of impurities testing suggested that none of the test foods caused significant degradation of the drug product. Mean dissolution results found that after 2 hours in 0.1 N HCl, < or = 1% of duloxetine was released from the comparator and pellets exposed to applesauce and apple juice. However, the mean dissolution profile of the sample exposed to pudding reported near-total release (90%) after 2 hours in 0.1 N HCl during the gastric challenge portion of the dissolution test. Results from this study found that the enteric coating of duloxetine pellets mixed with applesauce or apple juice was not negatively affected. The pellets were stable at room temperature for < or = 2 hours and should quantitatively allow delivery of the full capsule dose, provided that the pellet integrity is maintained (ie, not crushed, chewed, or otherwise broken). Therefore, mixing duloxetine pellets with applesauce or apple juice appears to be an acceptable vehicle for administration. However, exposing the pellets to chocolate pudding damaged the pellets' enteric coating, suggesting that pudding may be an unacceptable vehicle for administration.
Tay, Justin Yong Soon; Liew, Celine Valeria; Heng, Paul Wan Sia
2018-04-22
Dissolution testing for inhalers were previously conducted either on unfractionated drug-carrier powders or drug of specific aerodynamic particle size. In this study, the collection of the full fine particle fraction (FPF) was attempted on a single stage. Capsules containing 30 mg of 2% salbutamol sulfate (SS) was tested to have a FPF of 9 ± 1% using the full set of Andersen cascade impactor (ACI) and a modified Rotahaler® capable of achieving 4.0 kPa pressure drop at 60 L/min air flow rate. A truncated ACI comprising the USP throat, pre-separator, stage 0, stage 4, stage F, polytetrafluoroethylene funnel (TF) and small collection plate (sCP) was found to be capable of achieving a FPF of 9% collected on TF and sCP. An adhesive tape was used to collect the FPF from the TF and sCP and held in place by an enhancer cell in a 200 mL round bottom vessel containing 50 mL Gamble's solution with 0.2 v/v, % Tween 80. Dissolution testing of SS and Seretide® showed burst release of SS and salmeterol while sustained release of fluticasone. This study demonstrated a reproducible method which may be used for evaluation of the full FPF of orally inhaled products. Copyright © 2018 Elsevier B.V. All rights reserved.
New chemolysis for urological calcium phosphate calculi – a study in vitro
Xiang-bo, Zhang; Zhi-ping, Wang; Jian-min, Duan; Jian-zhong, Lu; Bao-liang, Ma
2005-01-01
Background Advances in techniques have left very few indications for open surgical extraction of urinary stones currently. These advances notwithstanding, the search continues for medical approaches to urinary stone management. In this study, we perform an in vitro study analyzing the efficiency and prospect of two new complex solutions in urological calcium phosphate calculi dissolution. Methods Eighteen stones composed mainly of calcium phosphates were taken from patients who underwent kidney stone surgery. These stones were large enough (weight range 0.514–0.928 g) to be fragmented and matched equally into six groups. Chemolysis of phosphate stones was done with six different solvents and was repeated 3 times with 6 stones for each solution. At 24, 48 and 72 h, reduction in weight, percentage weight change, and dissolution rate; the dissolution rates at pH 5.0, 7.0 and 8.5 for each solution, using different cations (Na+, K+ or Ca2+), according to different dilutions (1:1, 1:2, 1:3, 1:4) of S1 and S2 were simultaneously determined. Results Calcium phosphate calculi were poorly dissolved by Phys and Art, and they had a low dissolution rate in pH 8.5 EDTA. The most effective solutions were S1, S2 and R, with 72 h mean dissolution rates: 5.75 ± 0.44 mg/hr (S1), 5.2 ± 0.63 mg/hr (S2), 4.55 ± 0.46 mg/hr (R) ( ± s, p < 0.01 R, S1 and S2 vs Phys, Art and EDTA; p < 0.05, S1 vs R, LSD-test). The mean percentage weight loss at 72 h was: 52.1 ± 15.75 % (S1), 44.4 ± 7.37 % (S2) and 40.5 ± 3.67 % (R) ( ± s, p < 0.01 R, S1 and S2 vs Phys, Art and EDTA, LSD-test). Diluted twice, S1 and S2 had even better effectiveness than their initial solution. The additive of Na+, K+ or Ca2+ greatly reduced the dissolution rates of S1, S2. Conclusion Our data indicate that test solutions S1 and S2 are effective solvents in the chemolysis of calcium phosphate stones. At twice dilutions, these solutions are even more useful in the treatment of stone disease. PMID:15907215
Talari, Roya; Varshosaz, Jaleh; Mostafavi, Seyed Abolfazl; Nokhodchi, Ali
2009-01-01
The micronization using milling process to enhance dissolution rate is extremely inefficient due to a high energy input, and disruptions in the crystal lattice which can cause physical or chemical instability. Therefore, the aim of the present study is to use in situ micronization process through pH change method to produce micron-size gliclazide particles for fast dissolution hence better bioavailability. Gliclazide was recrystallized in presence of 12 different stabilizers and the effects of each stabilizer on micromeritic behaviors, morphology of microcrystals, dissolution rate and solid state of recrystallized drug particles were investigated. The results showed that recrystallized samples showed faster dissolution rate than untreated gliclazide particles and the fastest dissolution rate was observed for the samples recrystallized in presence of PEG 1500. Some of the recrystallized drug samples in presence of stabilizers dissolved 100% within the first 5 min showing at least 10 times greater dissolution rate than the dissolution rate of untreated gliclazide powders. Micromeritic studies showed that in situ micronization technique via pH change method is able to produce smaller particle size with a high surface area. The results also showed that the type of stabilizer had significant impact on morphology of recrystallized drug particles. The untreated gliclazide is rod or rectangular shape, whereas the crystals produced in presence of stabilizers, depending on the type of stabilizer, were very fine particles with irregular, cubic, rectangular, granular and spherical/modular shape. The results showed that crystallization of gliclazide in presence of stabilizers reduced the crystallinity of the samples as confirmed by XRPD and DSC results. In situ micronization of gliclazide through pH change method can successfully be used to produce micron-sized drug particles to enhance dissolution rate.
Kamberi, Marika; Tran, Thu-Ngoc
2012-11-01
High-throughput 96-well solid phase extraction (SPE) plate with C-18 reversed phase sorbent followed by UV-visible (UV-Vis) microplate reader was applied to the analysis of hydrophobic drugs in surfactant-containing dissolution media, which are often used to evaluate the in-vitro drug release of drug eluting stents (DES). Everolimus and dissolution medium containing Triton X-405 were selected as representatives, and the appropriate SPE conditions (adsorption, washing and elution) were investigated to obtain a practical and reliable sample clean-up. It was shown that the developed SPE procedure was capable of removing interfering components (Triton X-405 and its impurities), allowing for an accurate automated spectrophotometric analysis to be performed. The proposed UV-Vis spectrophotometric method yielded equivalent results compared to a classical LC analysis method. Linear regression analysis indicated that both methods have the ability to obtain test results that are directly proportional to the concentration of analyte in the sample within the selected range of 1.0-10 μg/ml for everolimus, with a coefficient of correlation (r(2)) value of >0.998 and standard deviation of the residuals (Syx) of <2%. The individual recoveries of everolimus ranged from 97 to 104% for the UV-Vis spectrophotometric method and from 98 to 102 for the HPLC method, respectively. The 95% CI of the mean recovery for the UV-Vis spectrophotometric method was 99-102% and for the HPLC method was 99-101%. No statistical difference was found between the mean recoveries of the methods (p=0.42). Hence the methods are free from interference due to Triton and other chemicals present in the dissolution medium. The variation in the amount of everolimus estimated by UV-Vis spectrophotometric and HPLC methods was ≤3.5%, and the drug release profiles obtained by both methods were found to be equivalent by evaluation with two-one-sided t-test (two-tailed, p=0.62; mean of differences, 0.17; 95% CI, 0.62-0.96) and similarity factor f2 (f2 value, 87). The excellent conformity of the results makes UV-Vis spectrophotometer an ideal tool for analyzing the drugs in the media containing surfactants, after SPE. The 96-well SPE plates in combination with UV-Vis microplate reader provide a high throughput method for the determination of in-vitro drug release profile of DES. Switching from HPLC to UV-Vis spectrophotometer microplate reader assay reduces the solvent consumption and labor required for the sample analyses. This directly impacts the profitability of the laboratory. Copyright © 2012 Elsevier B.V. All rights reserved.
Low temperature dissolution flowsheet for plutonium metal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W. E.; Almond, P. M.; Rudisill, T. S.
2016-05-01
The H-Canyon flowsheet used to dissolve Pu metal for PuO 2 production utilizes boiling HNO 3. SRNL was requested to develop a complementary dissolution flowsheet at two reduced temperature ranges. The dissolution and H 2 generation rates of Pu metal were investigated using a dissolving solution at ambient temperature (20-30 °C) and for an intermediate temperature of 50-60 °C. Additionally, the testing included an investigation of the dissolution rates and characterization of the off-gas generated from the ambient temperature dissolution of carbon steel cans and the nylon bags that contain the Pu metal when charged to the dissolver.
A novel determination of calcite dissolution kinetics in seawater
NASA Astrophysics Data System (ADS)
Subhas, Adam V.; Rollins, Nick E.; Berelson, William M.; Dong, Sijia; Erez, Jonathan; Adkins, Jess F.
2015-12-01
We present a novel determination of the dissolution kinetics of inorganic calcite in seawater. We dissolved 13 C -labeled calcite in unlabeled seawater, and traced the evolving δ13 C composition of the fluid over time to establish dissolution rates. This method provides sensitive determinations of dissolution rate, which we couple with tight constraints on both seawater saturation state and surface area of the dissolving minerals. We have determined dissolution rates for two different abiotic calcite materials and three different grain sizes. Near-equilibrium dissolution rates are highly nonlinear, and are well normalized by geometric surface area, giving an empirical dissolution rate dependence on saturation state (Ω) of: This result substantiates the non-linear response of calcite dissolution to undersaturation. The bulk dissolution rate constant calculated here is in excellent agreement with those determined in far from equilibrium and dilute solution experiments. Plots of dissolution versus undersaturation indicates the presence of at least two dissolution mechanisms, implying a criticality in the calcite-seawater system. Finally, our new rate determination has implications for modeling of pelagic and seafloor dissolution. Nonlinear dissolution kinetics in a simple 1-D lysocline model indicate a possible transition from kinetic to diffusive control with increasing water depth, and also confirm the importance of respiration-driven dissolution in setting the shape of the calcite lysocline.
Lin, Zhongqiang; Zhou, Deliang; Hoag, Stephen; Qiu, Yihong
2016-03-01
Bioequivalence (BE) studies are often required to ensure therapeutic equivalence for major product and manufacturing changes. Waiver of a BE study (biowaiver) is highly desired for such changes. Current regulatory guidelines allow for biowaiver of proportionally similar lower strengths of an extended release (ER) product provided it exhibits similar dissolution to the higher strength in multimedia. The objective of this study is to demonstrate that (1) proportionally similar strengths of ER tablets exhibiting similar in vitro dissolution profiles do not always assure BE and (2) different strengths that do not meet the criteria for dissolution profile similarity may still be bioequivalent. Four marketed ER tablets were used as model drug products. Higher and lower (half) strength tablets were prepared or obtained from commercial source. In vitro drug release was compared using multi-pH media (pH 1.2, 4.5, 6.8) per regulatory guidance. In vivo performance was assessed based on the available in vivo BE data or established in vitro-in vivo relationships. This study demonstrated that the relationship between in vitro dissolution and in vivo performance is complex and dependent on the characteristics of specific drug molecules, product design, and in vitro test conditions. As a result, proportionally similar strengths of ER dosage forms that meet biowaiver requirements per current regulatory guidelines cannot ensure bioequivalence in all cases. Thus, without an established relationship between in vitro and in vivo performance, granting biowaiver based on passing in vitro tests may result in the approval of certain bioinequivalent products, presenting risks to patients. To justify any biowaiver using in vitro test, it is essential to understand the effects of drug properties, formulation design, product characteristics, test method, and its in vivo relevance. Therefore, biowaiver requirements of different strengths of ER dosage forms specified in the current regulatory guidance should be reevaluated to assure consistent safety and efficacy among different strengths.
Hussein, Khaled; Türk, Michael; Wahl, Martin A
2007-03-01
The preparation of drug/cyclodextrin complexes is a suitable method to improve the dissolution of poor soluble drugs. The efficacy of the Controlled Particle Deposition (CPD) as a new developed method to prepare these complexes in a single stage process using supercritical carbon dioxide is therefore compared with other conventional methods. Ibuprofen/beta-cyclodextrin complexes were prepared with different techniques and characterized using FTIR-ATR spectroscopy, powder X-ray diffractometry (PXRD), differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). In addition, the influences of the processing technique on the drug content (HPLC) and the dissolution behavior were studied. Employing the CPD-process resulted in a drug content of 2.8+/-0.22 wt.% in the carrier. The material obtained by CPD showed an improved dissolution rate of ibuprofen at pH 5 compared with the pure drug and its physical mixture with beta-cyclodextrin. In addition CPD material displays the highest dissolution (93.5+/- 2.89% after 75 min) compared to material obtained by co-precipitation (61.3 +/-0.52%) or freeze-drying (90.6 +/-2.54%). This study presents the CPD-technique as a well suitable method to prepare a drug/beta-cyclodextrin complex with improved drug dissolution compared to the pure drug and materials obtained by other methods.
Development and validation of a discriminative dissolution test for nimesulide suspensions.
da Fonseca, Laís Bastos; Labastie, Márcio; de Sousa, Valéria Pereira; Volpato, Nadia Maria
2009-01-01
The dissolution test for oral dosage forms has recently widened to a variety of special dosage forms such as suspensions. For class II drugs, such as nimesulide (NMS), this study is very important because formulation problems may compromise drug bioavailability. In the present work, tests with four brands of commercially available NMS (RA, TS, TB, and TC) have been performed in order to study their dissolution at different conditions. The suspensions have been characterized relatively to particle size, pH, and density besides NMS assay and the amount of drug in solution in the suspension vehicles. The dissolution study was conducted using the following media: simulated intestinal fluid, pH 6.8, containing polysorbate 80 (P80) or sodium lauryl sulfate (SLS); phosphate buffer, pH 7.4, with P80 and aqueous solution of SLS. Concerning the quantitative analysis, the UV-VIS spectrophotometry could have been used in substitution to high-performance liquid chromatography since the methodology had been adequately validated. The influence of the drug particle size distribution was significant on the dissolution profiles of NMS formulations, confirming to be a factor that should be strictly controlled in the development of oral suspensions.
Toward Biopredictive Dissolution for Enteric Coated Dosage Forms.
Al-Gousous, J; Amidon, G L; Langguth, P
2016-06-06
The aim of this work was to develop a phosphate buffer based dissolution method for enteric-coated formulations with improved biopredictivity for fasted conditions. Two commercially available enteric-coated aspirin products were used as model formulations (Aspirin Protect 300 mg, and Walgreens Aspirin 325 mg). The disintegration performance of these products in a physiological 8 mM pH 6.5 bicarbonate buffer (representing the conditions in the proximal small intestine) was used as a standard to optimize the employed phosphate buffer molarity. To account for the fact that a pH and buffer molarity gradient exists along the small intestine, the introduction of such a gradient was proposed for products with prolonged lag times (when it leads to a release lower than 75% in the first hour post acid stage) in the proposed buffer. This would allow the method also to predict the performance of later-disintegrating products. Dissolution performance using the accordingly developed method was compared to that observed when using two well-established dissolution methods: the United States Pharmacopeia (USP) method and blank fasted state simulated intestinal fluid (FaSSIF). The resulting dissolution profiles were convoluted using GastroPlus software to obtain predicted pharmacokinetic profiles. A pharmacokinetic study on healthy human volunteers was performed to evaluate the predictions made by the different dissolution setups. The novel method provided the best prediction, by a relatively wide margin, for the difference between the lag times of the two tested formulations, indicating its being able to predict the post gastric emptying onset of drug release with reasonable accuracy. Both the new and the blank FaSSIF methods showed potential for establishing in vitro-in vivo correlation (IVIVC) concerning the prediction of Cmax and AUC0-24 (prediction errors not more than 20%). However, these predictions are strongly affected by the highly variable first pass metabolism necessitating the evaluation of an absorption rate metric that is more independent of the first-pass effect. The Cmax/AUC0-24 ratio was selected for this purpose. Regarding this metric's predictions, the new method provided very good prediction of the two products' performances relative to each other (only 1.05% prediction error in this regard), while its predictions for the individual products' values in absolute terms were borderline, narrowly missing the regulatory 20% prediction error limits (21.51% for Aspirin Protect and 22.58% for Walgreens Aspirin). The blank FaSSIF-based method provided good Cmax/AUC0-24 ratio prediction, in absolute terms, for Aspirin Protect (9.05% prediction error), but its prediction for Walgreens Aspirin (33.97% prediction error) was overwhelmingly poor. Thus it gave practically the same average but much higher maximum prediction errors compared to the new method, and it was strongly overdiscriminating as for predicting their performances relative to one another. The USP method, despite not being overdiscriminating, provided poor predictions of the individual products' Cmax/AUC0-24 ratios. This indicates that, overall, the new method is of improved biopredictivity compared to established methods.
Østergaard, Jesper; Jensen, Henrik; Larsen, Susan W; Larsen, Claus; Lenke, Jim
2014-11-01
Variable dissolution from sodium salts of drugs containing a carboxylic acid group after passing the acidic environment of the stomach may affect oral bioavailability. The aim of the present proof of concept study was to investigate pH effects in relation to the dissolution of sodium naproxenate in 0.01M hydrochloric acid. For this purpose a UV/vis imaging-based approach capable of measuring microenvironmental pH in the vicinity of the solid drug compact as well as monitoring drug dissolution was developed. Using a pH indicating dye real-time spatially resolved measurement of pH was achieved. Sodium naproxenate, can significantly alter the local pH of the dissolution medium, is eventually neutralized and precipitates as the acidic species naproxen. The developed approach is considered useful for detailed studies of pH dependent dissolution phenomena in dissolution testing. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Baumgartner, Peter O.
A database on Middle Jurassic-Early Cretaceous radiolarians consisting of first and final occurrences of 110 species in 226 samples from 43 localities was used to compute Unitary Associations and probabilistic ranking and scaling (RASC), in order to test deterministic versus probabilistic quantitative biostratigraphic methods. Because the Mesozoic radiolarian fossil record is mainly dissolution-controlled, the sequence of events differs greatly from section to section. The scatter of local first and final appearances along a time scale is large compared to the species range; it is asymmetrical, with a maximum near the ends of the range and it is non-random. Thus, these data do not satisfy the statistical assumptions made in ranking and scaling. Unitary Associations produce maximum ranges of the species relative to each other by stacking cooccurrence data from all sections and therefore compensate for the local dissolution effects. Ranking and scaling, based on the assumption of a normal random distribution of the events, produces average ranges which are for most species much shorter than the maximum UA-ranges. There are, however, a number of species with similar ranges in both solutions. These species are believed to be the most dissolution-resistant and, therefore, the most reliable ones for the definition of biochronozones. The comparison of maximum and average ranges may be a powerful tool to test reliability of species for biochronology. Dissolution-controlled fossil data yield high crossover frequencies and therefore small, statistically insignificant interfossil distances. Scaling has not produced a useful sequence for this type of data.
Kumari, Parveen; Rathi, Pooja; Kumar, Virender; Lal, Jatin; Kaur, Harmeet; Singh, Jasbir
2017-07-01
This study was oriented toward the disintegration profiling of the diclofenac sodium (DS) immediate-release (IR) tablets and development of its relationship with medium permeability k perm based on Kozeny-Carman equation. Batches (L1-L9) of DS IR tablets with different porosities and specific surface area were prepared at different compression forces and evaluated for porosity, in vitro dissolution and particle-size analysis of the disintegrated mass. The k perm was calculated from porosities and specific surface area, and disintegration profiles were predicted from the dissolution profiles of IR tablets by stripping/residual method. The disintegration profiles were subjected to exponential regression to find out the respective disintegration equations and rate constants k d . Batches L1 and L2 showed the fastest disintegration rates as evident from their bi-exponential equations while the rest of the batches L3-L9 exhibited the first order or mono-exponential disintegration kinetics. The 95% confidence interval (CI 95% ) revealed significant differences between k d values of different batches except L4 and L6. Similar results were also spotted for dissolution profiles of IR tablets by similarity (f 2 ) test. The final relationship between k d and k perm was found to be hyperbolic, signifying the initial effect of k perm on the disintegration rate. The results showed that disintegration profiling is possible because a relationship exists between k d and k perm . The later being relatable with porosity and specific surface area can be determined by nondestructive tests.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers.
Wang, Fang; Annable, Michael D; Jawitz, James W
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E=0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution. © 2013.
Field-scale prediction of enhanced DNAPL dissolution based on partitioning tracers
NASA Astrophysics Data System (ADS)
Wang, Fang; Annable, Michael D.; Jawitz, James W.
2013-09-01
The equilibrium streamtube model (EST) has demonstrated the ability to accurately predict dense nonaqueous phase liquid (DNAPL) dissolution in laboratory experiments and numerical simulations. Here the model is applied to predict DNAPL dissolution at a tetrachloroethylene (PCE)-contaminated dry cleaner site, located in Jacksonville, Florida. The EST model is an analytical solution with field-measurable input parameters. Measured data from a field-scale partitioning tracer test were used to parameterize the EST model and the predicted PCE dissolution was compared to measured data from an in-situ ethanol flood. In addition, a simulated partitioning tracer test from a calibrated, three-dimensional, spatially explicit multiphase flow model (UTCHEM) was also used to parameterize the EST analytical solution. The EST ethanol prediction based on both the field partitioning tracer test and the simulation closely matched the total recovery well field ethanol data with Nash-Sutcliffe efficiency E = 0.96 and 0.90, respectively. The EST PCE predictions showed a peak shift to earlier arrival times for models based on either field-measured or simulated partitioning tracer tests, resulting in poorer matches to the field PCE data in both cases. The peak shifts were concluded to be caused by well screen interval differences between the field tracer test and ethanol flood. Both the EST model and UTCHEM were also used to predict PCE aqueous dissolution under natural gradient conditions, which has a much less complex flow pattern than the forced-gradient double five spot used for the ethanol flood. The natural gradient EST predictions based on parameters determined from tracer tests conducted with a complex flow pattern underestimated the UTCHEM-simulated natural gradient total mass removal by 12% after 170 pore volumes of water flushing indicating that some mass was not detected by the tracers likely due to stagnation zones in the flow field. These findings highlight the important influence of well configuration and the associated flow patterns on dissolution.
Estimation of dissolution rate from in vivo studies of synthetic vitreous fibers.
Eastes, W; Potter, R M; Hadley, J G
2000-11-01
Although the dissolution rate of a fiber was originally defined by a measurement of dissolution in simulated lung fluid in vitro, it is feasible to determine it from animal studies as well. The dissolution rate constant for a fiber may be extracted from the decrease in long fiber diameter observed in certain intratracheal instillation experiments or from the observed long fiber retention in short-term biopersistence studies. These in vivo dissolution rates agree well with those measured in vitro for the same fibers. For those special types of fibers, the high-alumina rock wool fibers that could not be measured in vitro, the method provides a way of obtaining a chemical dissolution rate constant from an animal study. The inverse of the in vivo dissolution rate, the fiber dissolution time, correlates well with the weighted half life of long fibers in a biopersistence study, and the in vivo dissolution rate may be estimated accurately from this weighted half-life.
Adachi, Masashi; Hinatsu, Yuta; Kusamori, Kosuke; Katsumi, Hidemasa; Sakane, Toshiyasu; Nakatani, Manabu; Wada, Koichi; Yamamoto, Akira
2015-08-30
Formulation development of poorly water-soluble compounds can be challenging because of incomplete dissolution that causes low and variable bioavailability. Enhancing compound solubility is important and many techniques have been investigated to that end, but they require specific materials and machinery. This study investigates the incorporation of a pH-modifier as a method to increase compound solubility and uses ketoconazole (KZ), which is weakly basic (pKa: 6.5), as a model compound. Organic acids are effective pH-modifiers and are generally used in pharmaceutical industries. We successfully obtained granules containing variable organic acids (KZ/acid granule) using a high-shear mixer. Dissolution tests of the KZ/acid granule resulted in highly enhanced solubility under non-sink conditions. Adding water-soluble acids, such as citric acid (CA) and tartaric acid, resulted in more than 8-fold higher dissolution at pH 6.0 compared to that of KZ only. The granules containing citric acid (KZ/CA granule) improved the dissolution of KZ after oral administration to rats under low gastric acid conditions, where the bioavailability of the KZ/CA granules at elevated gastric pH was comparable with that of KZ only at gastric acidic pH. The incorporation of organic acids would result in effective therapeutic outcomes independent of gastric pH in patients. In addition, higher bioavailability of KZ was observed after oral administration of KZ/CA granules under gastric acidic pH conditions than that of KZ alone. Thus, CA improved the dissolution and absorption rate of KZ after oral administration. Copyright © 2015 Elsevier B.V. All rights reserved.
Cao, Jinxu; Yang, Baixue; Wang, Yumei; Wei, Chen; Wang, Hongyu; Li, Sanming
2017-11-01
The feasibility of polymer brush as drug delivery vehicle was demonstrated with the goal of improving the dissolution and physical stability of poorly water-soluble drugs. Polymer brush CTAB/ZB-1 was synthesized by electrostatic interaction using a physical modification method with anionic poly (propylene-g-styrene sulphonic acid) fiber (ZB-1) as the substrate and cationic hexadecyltrimethylammonium bromide (CTAB) as the modifier. The polymer brush structure of CTAB/ZB-1 was validated by atomic force microscopy (AFM) and the channels of brush provided the drug loading sites. Flurbiprofen (FP), a BCS class II representative drug, was selected as the model poorly water-soluble drug to be loaded into this polymer brush. Then the drug loading and release were systematically investigated. Besides, the transformation from crystalline FP to amorphous state was observed by differential scanning calorimeter (DSC). In vitro dissolution in pure water and pH1.2 HCl media with/without 0.1% sodium dodecyl sulfate (SDS) was tested. Moreover, the optimal formulations (namely carrier/drug ratios) were determined. The results demonstrated prominent improvement of dissolution when FP was released from CTAB/ZB-1. After a long time storage, FP remained amorphous in CTAB/ZB-1 according to DSC determinations and performed an approximately equivalent dissolution compared with fresh samples, suggesting the advantage of CTAB/ZB-1 as carrier in enhancing the physical stability of drugs. The study introduced the versatile easily formulated polymer brush CTAB/ZB-1 and demonstrated the potential of polymer brush as an alternative approach for improving the dissolution and physical stability of poorly water-soluble drugs. Copyright © 2017 Elsevier B.V. All rights reserved.
Nanosizing of drugs: Effect on dissolution rate
Dizaj, S. Maleki; Vazifehasl, Zh.; Salatin, S.; Adibkia, Kh.; Javadzadeh, Y.
2015-01-01
The solubility, bioavailability and dissolution rate of drugs are important parameters for achieving in vivo efficiency. The bioavailability of orally administered drugs depends on their ability to be absorbed via gastrointestinal tract. For drugs belonging to Class II of pharmaceutical classification, the absorption process is limited by drug dissolution rate in gastrointestinal media. Therefore, enhancement of the dissolution rate of these drugs will present improved bioavailability. So far several techniques such as physical and chemical modifications, changing in crystal habits, solid dispersion, complexation, solubilization and liquisolid method have been used to enhance the dissolution rate of poorly water soluble drugs. It seems that improvement of the solubility properties ofpoorly water soluble drugscan translate to an increase in their bioavailability. Nowadays nanotechnology offers various approaches in the area of dissolution enhancement of low aqueous soluble drugs. Nanosizing of drugs in the form of nanoparticles, nanocrystals or nanosuspensions not requiring expensive facilities and equipment or complicated processes may be applied as simple methods to increase the dissolution rate of poorly water soluble drugs. In this article, we attempted to review the effects of nanosizing on improving the dissolution rate of poorly aqueous soluble drugs. According to the reviewed literature, by reduction of drug particle size into nanometer size the total effective surface area is increased and thereby dissolution rate would be enhanced. Additionally, reduction of particle size leads to reduction of the diffusion layer thickness surrounding the drug particles resulting in the increment of the concentration gradient. Each of these process leads to improved bioavailability. PMID:26487886
NASA Astrophysics Data System (ADS)
Li, X. David; Schwartz, Franklin W.
2004-01-01
Previous studies on in situ chemical oxidation of trichloroethylene (TCE) with potassium permanganate indicated that the solid reaction product, Mn oxide, could reduce the permeability of the porous medium and impact the success of dense non-aqueous phase liquid (DNAPL) removal. In order to address the issue of permeability reduction caused by precipitation, this study investigated the mineralogy of Mn oxides and the possibilities of removing the solid precipitates by dissolution. The solid reaction product from the oxidation of TCE by permanganate is semi-amorphous potassium-rich birnessite, which has a layered mineral structure with an interlayer spacing of 7.3 Å. The chemical formula is K 0.854Mn 1.786O 4·1.55H 2O. It has a relatively small specific surface area at 23.6±0.82 m 2/g. Its point of zero charge (pzc) was measured as 3.7±0.4. This birnessite is a relatively active species and could participate in various reactions with existing organic and inorganic matter. The dissolution kinetics of Mn oxide was evaluated in batch experiments using solutions of citric acid, oxalic acid, and ethylenediaminetetraacetic acid (EDTA). Initial dissolution rates were determined to be 0.126 mM/m 2/h for citric acid, 1.35 mM/m 2/h for oxalic acid, and 5.176 mM/m 2/h for EDTA. These rates compare with 0.0025 mM/m 2/h for nitric acid at pH=2. Organic acids dissolve Mn oxide quickly. Reaction rates increase with acid concentration, as tested with citric acid. The dissolution mechanism likely involves proton and ligand-promoted dissolution and reductive dissolution. Citric and oxalic acid can induce ligand-promoted dissolution, while EDTA can induce ligand-promoted and reductive dissolutions. At low pH, proton-promoted dissolution seems to occur with all the acids tested, but this process is not dominant. Reductive dissolution appears to be the most effective process in dissolving the solid, followed by ligand-promoted dissolution. These experiments indicate the significant potential in using these organic acids to remove precipitates formed during the oxidation reaction.
Freezing-Enhanced Dissolution of Iron Oxides: Effects of Inorganic Acid Anions.
Jeong, Daun; Kim, Kitae; Min, Dae Wi; Choi, Wonyong
2015-11-03
Dissolution of iron from mineral dust particles greatly depends upon the type and amount of copresent inorganic anions. In this study, we investigated the roles of sulfate, chloride, nitrate, and perchlorate on the dissolution of maghemite and lepidocrocite in ice under both dark and UV irradiation and compared the results with those of their aqueous counterparts. After 96 h of reaction, the total dissolved iron in ice (pH 3 before freezing) was higher than that in the aqueous phase (pH 3) by 6-28 times and 10-20 times under dark and UV irradiation, respectively. Sulfuric acid was the most efficient in producing labile iron under dark condition, whereas hydrochloric acid induced the most dissolution of the total and ferrous iron in the presence of light. This ice-induced dissolution result was also confirmed with Arizona Test Dust (AZTD). In the freeze-thaw cycling test, the iron oxide samples containing chloride, nitrate, or perchlorate showed a similar extent of total dissolved iron after each cycling while the sulfate-containing sample rapidly lost its dissolution activity with repeating the cycle. This unique phenomenon observed in ice might be related to the freeze concentration of protons, iron oxides, and inorganic anions in the liquid-like ice grain boundary region. These results suggest that the ice-enhanced dissolution of iron oxides can be a potential source of bioavailable iron, and the acid anions critically influence this process.
Predicting the dissolution kinetics of silicate glasses using machine learning
NASA Astrophysics Data System (ADS)
Anoop Krishnan, N. M.; Mangalathu, Sujith; Smedskjaer, Morten M.; Tandia, Adama; Burton, Henry; Bauchy, Mathieu
2018-05-01
Predicting the dissolution rates of silicate glasses in aqueous conditions is a complex task as the underlying mechanism(s) remain poorly understood and the dissolution kinetics can depend on a large number of intrinsic and extrinsic factors. Here, we assess the potential of data-driven models based on machine learning to predict the dissolution rates of various aluminosilicate glasses exposed to a wide range of solution pH values, from acidic to caustic conditions. Four classes of machine learning methods are investigated, namely, linear regression, support vector machine regression, random forest, and artificial neural network. We observe that, although linear methods all fail to describe the dissolution kinetics, the artificial neural network approach offers excellent predictions, thanks to its inherent ability to handle non-linear data. Overall, we suggest that a more extensive use of machine learning approaches could significantly accelerate the design of novel glasses with tailored properties.
On the effects of subsurface parameters on evaporite dissolution (Switzerland)
NASA Astrophysics Data System (ADS)
Zidane, Ali; Zechner, Eric; Huggenberger, Peter; Younes, Anis
2014-05-01
Uncontrolled subsurface evaporite dissolution could lead to hazards such as land subsidence. Observed subsidences in a study area of Northwestern Switzerland were mainly due to subsurface dissolution (subrosion) of evaporites such as halite and gypsum. A set of 2D density driven flow simulations were evaluated along 1000 m long and 150 m deep 2D cross sections within the study area that is characterized by tectonic horst and graben structures. The simulations were conducted to study the effect of the different subsurface parameters that could affect the dissolution process. The heterogeneity of normal faults and its impact on the dissolution of evaporites is studied by considering several permeable faults that include non-permeable areas. The mixed finite element method (MFE) is used to solve the flow equation, coupled with the multipoint flux approximation (MPFA) and the discontinuous Galerkin method (DG) to solve the diffusion and the advection parts of the transport equation.
Enhancement of solubility and dissolution of coenzyme Q10 using solid dispersion formulation.
Nepal, Pushp R; Han, Hyo-Kyung; Choi, Hoo-Kyun
2010-01-04
This study aimed to develop a stable solid dispersion of Coenzyme Q(10) (CoQ(10)) with high aqueous solubility and dissolution rate. Among various carriers screened, poloxamer 407 was most effective to form a superior solid dispersion of CoQ(10) having significantly enhanced solubility. Particularly, solid dispersion of CoQ(10) with poloxamer 407 in the weight ratio of 1:5 prepared by melting method enhanced the solubility of CoQ(10) to the greatest extent. However, it exhibited poor stability and hence Aerosil 200 (colloidal silicon dioxide) was incorporated into the solid dispersion as an adsorbent to inhibit the recrystallization process. The solid dispersion of CoQ(10), poloxamer 407 and Aerosil 200 in the weight ratio of 1:5:6 exhibited improved stability with no significant change in solubility during the 1-month stability test. Moreover, the solid dispersion formulation containing Aerosil 200 significantly enhanced the extent of drug release (approx. 75% release) as well as the dissolution rate of CoQ(10). In conclusion, the present study has developed the stable solid dispersion formulation of CoQ(10) with poloxamer 407 and Aerosil 200 for the enhanced solubility and dissolution of CoQ(10), which could also offer some additional advantages including ease of preparation, good flowability and cost-effectiveness.
Fiberglass goes green: Developing phosphate glass for use in biodegradable composites
NASA Astrophysics Data System (ADS)
Arendt, Christina Lee
Composite materials, such as the glass fiber reinforced polyester thermosets known as "fiberglass," are used in many applications. However, recycling processes for these materials are inefficient and not widely available. Specially engineered degradable polymers offer an opportunity to redesign these composites. Additionally, the composite could be tailored to be multi-use, such that upon degradation, the resulting products could be used as part of a zeoponic substrate (artificial soil) for growing plants. Such a material would be beneficial for long-duration space missions, terraforming, or in other agricultural applications. The research presented in this dissertation focuses on developing phosphate glass for use as the fiber reinforcement for such a composite. Due to the under-utilization of phosphate systems, there is a lack of thermodynamic data on these systems. The modified associate species method of phase diagram calculation was used in an attempt to gain more information about the desired system, as it is a good predictor of the phase relations in oxide melts, slags, and glasses and requires less data than other methods. Further research into the thermodynamic properties of phosphates is still needed to develop accurate phase diagrams and melting temperatures for this system. Seventeen glass formulations were developed and melted. Six of these formulations were chosen for dissolution testing. Of these six, Glass 17 was chosen for intensive testing and characterization. This glass was tested in water, hydrochloric acid solutions, and citric acid solutions. The weight loss was measured and ICP-OES was performed on the leachate solution. Scanning electron microscopy (SEM) and X-ray diffraction were performed on the tested specimens. Shrinking-core models were fit to the dissolution data. Fibers were drawn from the glass and characterized using SEM. The data shows that this glass is not dissolving congruently, as is expected of phosphate glasses. Instead, selective leaching is occurring, leading to the development of a non-protective surface layer during dissolution.
Novel method for screening of enteric film coatings properties with magnetic resonance imaging.
Dorożyński, Przemysław; Jamróz, Witold; Niwiński, Krzysztof; Kurek, Mateusz; Węglarz, Władysław P; Jachowicz, Renata; Kulinowski, Piotr
2013-11-18
The aim of the study is to present the concept of novel method for fast screening of enteric coating compositions properties without the need of preparation of tablets batches for fluid bed coating. Proposed method involves evaluation of enteric coated model tablets in specially designed testing cell with application of MRI technique. The results obtained in the testing cell were compared with results of dissolution studies of mini-tablets coated in fluid bed apparatus. The method could be useful in early stage of formulation development for screening of film coating properties that will shorten and simplify the development works. Copyright © 2013 Elsevier B.V. All rights reserved.
Mathias, Neil R; Xu, Yan; Patel, Dhaval; Grass, Michael; Caldwell, Brett; Jager, Casey; Mullin, Jim; Hansen, Luke; Crison, John; Saari, Amy; Gesenberg, Christoph; Morrison, John; Vig, Balvinder; Raghavan, Krishnaswamy
2013-11-04
Weak base therapeutic agents can show reduced absorption or large pharmacokinetic variability when coadministered with pH-modifying agents, or in achlorhydria disease states, due to reduced dissolution rate and/or solubility at high gastric pH. This is often referred to as pH-effect. The goal of this study was to understand why some drugs exhibit a stronger pH-effect than others. To study this, an API-sparing, two-stage, in vitro microdissolution test was developed to generate drug dissolution, supersaturation, and precipitation kinetic data under conditions that mimic the dynamic pH changes in the gastrointestinal tract. In vitro dissolution was assessed for a chemically diverse set of compounds under high pH and low pH, analogous to elevated and normal gastric pH conditions observed in pH-modifier cotreated and untreated subjects, respectively. Represented as a ratio between the conditions, the in vitro pH-effect correlated linearly with clinical pH-effect based on the Cmax ratio and in a non-linear relationship based on AUC ratio. Additionally, several in silico approaches that use the in vitro dissolution data were found to be reasonably predictive of the clinical pH-effect. To explore the hypothesis that physicochemical properties are predictors of clinical pH-effect, statistical correlation analyses were conducted using linear sequential feature selection and partial least-squares regression. Physicochemical parameters did not show statistically significant linear correlations to clinical pH-effect for this data set, which highlights the complexity and poorly understood nature of the interplay between parameters. Finally, a strategy is proposed for implementation early in clinical development, to systematically assess the risk of clinical pH-effect for new molecular entities that integrates physicochemical analysis and in vitro, in vivo and in silico methods.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
...] International Conference on Harmonisation; Guidance on Q4B Evaluation and Recommendation of Pharmacopoeial Texts... Recommendation of Pharmacopoeial Texts for Use in the ICH Regions; Annex 7: Dissolution Test General Chapter... results of the ICH Q4B evaluation of the Dissolution Test General Chapter harmonized text from each of the...
Wu, M S; Higuchi, W I; Fox, J L; Friedman, M
1976-01-01
The model given in this report and the rotating disk method provide a useful combination in the study of dental enamel and hydroxyapatite dissolution kinetics. The present approach is a significant improvement over earlier studies, and both the ionic activity product that governs the dissolution reaction and the apparent surface dissolution reaction rate constant may be simultaneously obtained. Thus, these investigations have established the baseline for the dissolution rate studies under sink conditions. Concurrent studies, under conditions where the acidic buffer mediums are partially saturated with respect to hydroxyapatite have shown another dissolution site for hydroxyapatite that operates at a higher ionic activity product but has a much smaller apparent surface reaction rate constant. This has raised the question of whether the presence of this second site may interfere with the proper theoretical analysis of the experimental results obtained under sink conditions. A preliminary analysis of the two-site model has shown that the dissolution kinetics of hydroxyapatite under sink conditions is almost completely governed by the sink condition site (KHAP = 10(-124.5), k' = 174) established in this report. The difference between the predicted dissolution rate for the one-site model and the two-site model are generally of the order of 4 to 5% where the experiments are conducted under sink conditions and over the range of variables covered in the present study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vondra, B.L.
1978-08-01
Voloxidation and dissolution studies: rotary-kiln heat-transfer tests are under way using a small rotary kiln along with the development of a mathematical model to determine kiln-heat-flux profiles necessary to maintain a desired temperature gradient. The erosion/corrosion test for evaluating materials of construction is operational. Fuel from a BWR (Big Rock Point) yielded more fine solid residue on dissolution than in previous tests with PWR fuel. Two additional parametric voloxidation tests with H.B. Robinson fuel compared air vs pure oxygen atmospheres at 550{sup 0}C; overall tritium release and subsequent fuel dissolution were equivalent. Thorium dissolution studies: the dissolution rate of thoriamore » in fluoride-catalyzed 8 to 14 M HNO{sub 3} (100{sup 0}C) was max between 0.04 to 0.06 M HF; at higher fluoride concentrations, ThF{sub 4}.5H{sub 2}O precipitated. The rate of zircaloy dissolution continued to increase with increasing fluoride concentration. Stainless-steel-clad (Th,U)0{sub 2} fuel rods irradiated in the NRX reactor were sheared, voloxidized, and dissolved. {le}10% of the tritium was released during voloxidation in air at 600{sup 0}C. Carbon-14 removal from off-gas and fixation: carbon dioxide removal with Linde 13X molecular sieves to less than 100 ppB was experimentally verified using 300 ppM CO in air. Decontamination factors from 3000 to 7500 were obtained for CO{sub 2} removal in the gas-slurry stirred-tank reactor with CA(OH){sub 2}.or Ba(0H){sub 2}/sup .8H2O./. With Ba(OH){sub 2}.H{sub 2}0{sup 2} in a fixed-bed column, decontamination factors of about 30,000 were obtained.« less
Alagdar, Gada Sulaiman A.; Oo, May Kyaw; Sengupta, Pinaki; Mandal, Uttam Kumar; Jaffri, Julian Md.; Chatterjee, Bappaditya
2017-01-01
Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier. Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties. Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent. Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form. PMID:29184827
Use of partial dissolution techniques in geochemical exploration
Chao, T.T.
1984-01-01
Application of partial dissolution techniques to geochemical exploration has advanced from an early empirical approach to an approach based on sound geochemical principles. This advance assures a prominent future position for the use of these techniques in geochemical exploration for concealed mineral deposits. Partial dissolution techniques are classified as single dissolution or sequential multiple dissolution depending on the number of steps taken in the procedure, or as "nonselective" extraction and as "selective" extraction in terms of the relative specificity of the extraction. The choice of dissolution techniques for use in geochemical exploration is dictated by the geology of the area, the type and degree of weathering, and the expected chemical forms of the ore and of the pathfinding elements. Case histories have illustrated many instances where partial dissolution techniques exhibit advantages over conventional methods of chemical analysis used in geochemical exploration. ?? 1984.
Ibrahim, Fawzia; El-Enany, Nahed; El-Shaheny, Rania N; Mikhail, Ibraam E
2015-01-01
The first HPLC method was developed for the simultaneous determination of paracetamol (PC), ascorbic acid (AA), and pseudoephedrine HCl (PE) in their co-formulated tablets. Separation was achieved on a C18 column in 5 min using a mobile phase composed of methanol-0.05 M phosphate buffer (35:65, v/v) at pH 2.5 with UV detection at 220 nm. Linear calibration curves were constructed over concentration ranges of 1.0 - 50.0, 3.0 - 60.0 and 3.0 - 80.0 μg mL(-1) for PC, AA, and PE, respectively. The method was validated and applied for the simultaneous determination of these drugs in their tablets with average % recoveries of 101.17 ± 0.67, 98.34 ± 0.77, and 98.95 ± 1.11%, for PC, AA, and PE, respectively. The proposed method was also used to construct in vitro dissolution profiles of the co-formulated tablets containing the three drugs.
Solubility and dissolution improvement of ketoprofen by emulsification ionic gelation
NASA Astrophysics Data System (ADS)
Rachmaniar, Revika; Tristiyanti, Deby; Hamdani, Syarif; Afifah
2018-02-01
Ketoprofen or [2-(3-benzoylphenyl) propionic acid] is non-steroidal anti-inflammatory (NSAID) and an analgesic which has high permeability and low solubility. The purpose of this work was to improve the solubility and dissolution of poorly water-soluble ketoprofen prepared by emulsification ionic gelation method and utilizing polymer (chitosan) and cross linker (tripolyphosphate, TPP) for particles formulation. The results show that increasing pH value of TPP, higher solubility and dissolution of as-prepared ketoprofen-chitosan was obtained. The solubility in water of ketoprofen-chitosan with pH 6 for TPP increased 2.71-fold compared to untreated ketoprofen. While the dissolution of ketoprofen-chitosan with pH 6 of TPP in simulated gastric fluid without enzyme (0.1 N HCl), pH 4.5 buffer and simulated intestinal fluid without enzyme (phosphate buffer pH 6.8) was increased 1.9-fold, 1.6-fold and 1.2-fold compared to untreated ketoprofen for dissolution time of 30 minutes, respectively. It could be concluded that chitosan and TPP in the emulsification ionic gelation method for ketoprofen preparation effectively increases solubility and dissolution of poorly water-soluble ketoprofen.
Liu, Dandan; Pan, Hao; He, Fengwei; Wang, Xiaoyu; Li, Jinyu; Yang, Xinggang; Pan, Weisan
2015-01-01
The purpose of this work was to explore the particle size reduction effect of carvedilol on dissolution and absorption. Three suspensions containing different sized particles were prepared by antisolvent precipitation method or in combination with an ultrasonication process. The suspensions were characterized for particle size, surface morphology, and crystalline state. The crystalline form of carvedilol was changed into amorphous form after antisolvent precipitation. The dissolution rate of carvedilol was significantly accelerated by a reduction in particle size. The intestinal absorption of carvedilol nanosuspensions was greatly improved in comparison with microsuspensions and solution in the in situ single-pass perfusion experiment. The in vivo evaluation demonstrated that carvedilol nanosuspensions and microsuspensions exhibited markedly increased Cmax (2.09- and 1.48-fold) and AUC0−t (2.11- and 1.51-fold), and decreased Tmax (0.34- and 0.48-fold) in contrast with carvedilol coarse suspensions. Moreover, carvedilol nanosuspensions showed good biocompatibility with the rat gastric mucosa in in vivo gastrointestinal irritation test. The entire results implicated that the dissolution rate and the oral absorption of carvedilol were significantly affected by the particle size. Particle size reduction to form nanosized particles was found to be an efficient method for improving the oral bioavailability of carvedilol. PMID:26508852
Serrano, Dolores R; Persoons, Tim; D'Arcy, Deirdre M; Galiana, Carolina; Dea-Ayuela, Maria Auxiliadora; Healy, Anne Marie
2016-06-30
The aim of this work was to evaluate the influence of crystal habit on the dissolution and in vitro antibacterial and anitiprotozoal activity of sulfadimidine:4-aminosalicylic acid cocrystals. Cocrystals were produced via milling or solvent mediated processes. In vitro dissolution was carried out in the flow-through apparatus, with shadowgraph imaging and mechanistic mathematical models used to observe and simulate particle dissolution. In vitro activity was tested using agar diffusion assays. Cocrystallisation via milling produced small polyhedral crystals with antimicrobial activity significantly higher than sulfadimidine alone, consistent with a fast dissolution rate which was matched only by cocrystals which were milled following solvent evaporation. Cocrystallisation by solvent evaporation (ethanol, acetone) or spray drying produced flattened, plate-like or quasi-spherical cocrystals, respectively, with more hydrophobic surfaces and greater tendency to form aggregates in aqueous media, limiting both the dissolution rate and in vitro activity. Deviation from predicted dissolution profiles was attributable to aggregation behaviour, supported by observations from shadowgraph imaging. Aggregation behaviour during dissolution of cocrystals with different habits affected the dissolution rate, consistent with in vitro activity. Combining mechanistic models with shadowgraph imaging is a valuable approach for dissolution process analysis. Copyright © 2016 Elsevier B.V. All rights reserved.
Imberti, Roberto; De Gregori, Simona; Lisi, Lucia; Navarra, Pierluigi
2014-01-01
Flurbiprofen is a nonsteroidal anti-inflammatory agent preferentially used for local oromucosal treatment of painful and/or inflammatory conditions of the oropharynx such as gingivitis, stomatitis, periodontitis, pharyngitis and laryngitis. In this study, we have investigated the bioavailability of a new generic formulation of flurbiprofen lozenges developed by Epifarma Srl, compared to the originator Benactiv Gola® taken as reference. Within the framework of a formal bioequivalence study, we investigated in particular the putative influence of oral dissolution time (i.e. the time spent suckling the lozenge from its intake to complete dissolution) on the absorption rate, and the contribution of this factor to the total variability of plasma flurbiprofen during absorption. We found that the amount of flurbiprofen absorbed into the systemic circulation is not significantly higher for the test drug compared to that of the reference product. We observed that the length of oral dissolution time is inversely correlated to 10-min flurbiprofen plasma levels in the test but not in the reference formulation. We estimated that oral dissolution time accounts for about 14% of overall variability in flurbiprofen plasma 10 min after test drug administration. © 2014 S. Karger AG, Basel.
Risha, P G; Vervaet, C; Vergote, G; Bortel, L Van; Remon, J P
2003-06-01
The quality of drugs imported into developing countries having a tropical climate may be adversely affected if their formulations have not been optimized for stability under these conditions. The present study investigated the influence of tropical climate conditions (class IV: 40 degrees C, 75% relative humidity) on the drug content, in vitro dissolution and oral bioavailability of different formulations of two essential drugs marketed in Tanzania: diclofenac sodium and ciprofloxacin tablets. Before and after 3 and 6 months storage under class IV conditions the drug content and in vitro dissolution were evaluated using United States Pharmacopoeia (USP) 24 methods. Following a randomized four-period cross-over study, the pharmacokinetic parameters of drug formulations stored for 3 months under class IV conditions were compared with those stored at ambient conditions. Drug content and drug release from all tested ciprofloxacin formulations were within USP-24 requirements and remained stable during storage at simulated tropical conditions. Oral bioavailability was also not influenced by tropical conditions. The dissolution rate of two diclofenac formulations (Diclo 50 manufactured by Camden and Dicloflame 50 manufactured by Intas) reduced significantly during storage under class IV conditions. After oral administration Camden tablets stored for 3 months under class IV conditions showed a reduction in C(max) (90% CI of C(max) ratio: 0.59 - 0.76). This reduction was smaller than expected based on the in vitro tests. Some drug formulations imported into Tanzania are not optimized for stability in a tropical climate. Manufacturers and regulatory authorities should pay more attention to the WHO recommendations for testing the stability of drugs under tropical climate conditions. Efforts should be made to improve the in vitro tests to better predict the bioavailability.
Paixão, Paulo; Gouveia, Luís F; Silva, Nuno; Morais, José A G
2017-03-01
A simulation study is presented, evaluating the performance of the f 2 , the model-independent multivariate statistical distance and the f 2 bootstrap methods in the ability to conclude similarity between two dissolution profiles. Different dissolution profiles, based on the Noyes-Whitney equation and ranging from theoretical f 2 values between 100 and 40, were simulated. Variability was introduced in the dissolution model parameters in an increasing order, ranging from a situation complying with the European guidelines requirements for the use of the f 2 metric to several situations where the f 2 metric could not be used anymore. Results have shown that the f 2 is an acceptable metric when used according to the regulatory requirements, but loses its applicability when variability increases. The multivariate statistical distance presented contradictory results in several of the simulation scenarios, which makes it an unreliable metric for dissolution profile comparisons. The bootstrap f 2 , although conservative in its conclusions is an alternative suitable method. Overall, as variability increases, all of the discussed methods reveal problems that can only be solved by increasing the number of dosage form units used in the comparison, which is usually not practical or feasible. Additionally, experimental corrective measures may be undertaken in order to reduce the overall variability, particularly when it is shown that it is mainly due to the dissolution assessment instead of being intrinsic to the dosage form. Copyright © 2016. Published by Elsevier B.V.
Rapid Radiochemical Methods for Asphalt Paving Material ...
Technical Brief Validated rapid radiochemical methods for alpha and beta emitters in solid matrices that are commonly encountered in urban environments were previously unavailable for public use by responding laboratories. A lack of tested rapid methods would delay the quick determination of contamination levels and the assessment of acceptable site-specific exposure levels. Of special concern are matrices with rough and porous surfaces, which allow the movement of radioactive material deep into the building material making it difficult to detect. This research focuses on methods that address preparation, radiochemical separation, and analysis of asphalt paving materials and asphalt roofing shingles. These matrices, common to outdoor environments, challenge the capability and capacity of very experienced radiochemistry laboratories. Generally, routine sample preparation and dissolution techniques produce liquid samples (representative of the original sample material) that can be processed using available radiochemical methods. The asphalt materials are especially difficult because they do not readily lend themselves to these routine sample preparation and dissolution techniques. The HSRP and ORIA coordinate radiological reference laboratory priorities and activities in conjunction with HSRP’s Partner Process. As part of the collaboration, the HSRP worked with ORIA to publish rapid radioanalytical methods for selected radionuclides in building material matrice
NASA Astrophysics Data System (ADS)
Ohtsuka, Satoshi; Tanno, Takashi; Oka, Hiroshi; Yano, Yasuhide; Kato, Shoichi; Furukawa, Tomohiro; Kaito, Takeji
2018-07-01
A calculation model was constructed to systematically study the effects of environmental conditions (i.e. Cr concentration in sodium, test temperature, axial temperature gradient of fuel pin, and sodium flow velocity) on Cr dissolution behavior. Chromium dissolution was largely influenced by small changes in Cr concentration (i.e. chemical potential of Cr) in liquid sodium in the model calculation. Chromium concentration in sodium coolant, therefore, should be recognized as a critical parameter for the prediction and management of Cr dissolution behavior in the sodium-cooled fast reactor (SFR) core. Because the fuel column length showed no impact on dissolution behavior in the model calculation, no significant downstream effects possibly take place in the SFR fuel cladding tube due to the much shorter length compared with sodium loops in the SFR plant and the large axial temperature gradient. The calculated profile of Cr concentration along the wall-thickness direction was consistent with that measured in BOR-60 irradiation test where Cr concentration in inlet sodium bulk flow was set at 0.07 wt ppm in the calculation.
O'Shea, Joseph P; Nagarsekar, Kalpa; Wieber, Alena; Witt, Vanessa; Herbert, Elisabeth; O'Driscoll, Caitriona M; Saal, Christoph; Lubda, Dieter; Griffin, Brendan T; Dressman, Jennifer B
2017-10-01
Mesoporous silicas (SLC) have demonstrated considerable potential to improve bioavailability of poorly soluble drugs by facilitating rapid dissolution and generating supersaturation. The addition of certain polymers can further enhance the dissolution of these formulations by preventing drug precipitation. This study uses fenofibrate as a model drug to investigate the performance of an SLC-based formulation, delivered with hydroxypropyl methylcellulose acetate succinate (HPMCAS) as a precipitation inhibitor, in pigs. The ability of biorelevant dissolution testing to predict the in vivo performance was also assessed. Fenofibrate-loaded mesoporous silica (FF-SLC), together with HPMCAS, displayed significant improvements in biorelevant dissolution tests relative to a reference formulation consisting of a physical mixture of crystalline fenofibrate with HPMCAS. In vivo assessment in fasted pigs demonstrated bioavailabilities of 86.69 ± 35.37% with combination of FF-SLC and HPMCAS in capsule form and 75.47 ± 14.58% as a suspension, compared to 19.92 ± 9.89% with the reference formulation. A positive correlation was identified between bioavailability and dissolution efficiency. The substantial improvements in bioavailability of fenofibrate from the SLC-based formulations confirm the ability of this formulation strategy to overcome the dissolution and solubility limitations, further raising the prospects of a future commercially available SLC-based formulation. © 2017 Royal Pharmaceutical Society.
NASA Astrophysics Data System (ADS)
Bralower, T. J.; Kump, L. R.; Robinson, M. M.; Self-Trail, J. M.; Zachos, J. C.
2016-12-01
Continental-shelf sediments of the US Atlantic margin experienced a brief episode of carbonate dissolution during the onset of the Paleocene-Eocene Thermal Maximum (PETM). Dissolution is represented by reduced percentages of carbonate, and calcareous microfossil distribution and preservation trends, in cores from Maryland and New Jersey. The base and the top of the dissolution zone are abrupt compared to the gradual nature of the onset of the carbon isotope excursion (CIE). The thickness of the dissolution zone varies from 9 cm in the Bass River core (outer paleoshelf) to 1.6 m in the CamDor core (middle paleoshelf). The decrease in %CaCO3 suggests dissolution locally removed 83 to 100% of the initial biogenic carbonate. Shelf-wide dissolution during the onset of the PETM may be a regional event, associated, for example, with eutrophication. Samples from across the paleoshelf contain abundant fine-grained framboidal pyrite, which suggests photic-zone euxinia occurred before, during, and after the dissolution event. Dissolution may also be associated with oxidation of this pyrite during later exposure to oxidizing groundwaters, although the restricted duration of the dissolution interval argues against this. Alternatively, the dissolution event may have global significance related to surface ocean-water acidification or shoaling of the calcite compensation depth (CCD) to shelf depths. The event began near the onset of the CIE on the shelf, whereas dissolution in deep-sea sections began later. Earlier shelf dissolution is consistent with surface ocean acidification while later deep-sea dissolution is thought to be associated with shoaling of the CCD. In our presentation, we weigh evidence for each of these possibilities and test them using the global dataset.
Kawakami, Kohsaku
2017-06-01
Amorphous solid dispersions (ASDs) are one of the key formulation technologies that aid the development of poorly soluble candidates. However, their dynamic behaviors, including dissolution and crystallization processes, are still full of mystery. Further understanding of these processes should enhance their wider use. Areas covered: The first part of this review describes the current understanding of the dissolution of ASDs, where phase separation behavior is frequently involved and attempts to develop appropriate dissolution tests to achieve an in vitro-in vivo correlation are examined. The second part of this review discusses crystallization of the drug molecule with the eventual aim of establishing an accelerated testing protocol for predicting its physical stability. Expert opinion: The phase separation behavior from the supersaturated state during the dissolution test must be understood, and its relevance to the oral absorption behavior needs to be clarified. Research efforts should focus on the differences between the phase behavior in in vitro and in vivo situations. Initiation time of the crystallization was shown to be predicted only from storage and glass transition temperatures. This finding should encourage the establishment of testing protocol of the physical stability of ASDs.
PEP Support: Laboratory Scale Leaching and Permeate Stability Tests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Renee L.; Peterson, Reid A.; Rinehart, Donald E.
2010-05-21
This report documents results from a variety of activities requested by the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The activities related to caustic leaching, oxidative leaching, permeate precipitation behavior of waste as well as chromium (Cr) leaching are: • Model Input Boehmite Leaching Tests • Pretreatment Engineering Platform (PEP) Support Leaching Tests • PEP Parallel Leaching Tests • Precipitation Study Results • Cr Caustic and Oxidative Leaching Tests. Leaching test activities using the PEP simulant provided input to a boehmite dissolution model and determined the effect of temperature on mass loss during caustic leaching, the reaction rate constantmore » for the boehmite dissolution, and the effect of aeration in enhancing the chromium dissolution during caustic leaching. Other tests were performed in parallel with the PEP tests to support the development of scaling factors for caustic and oxidative leaching. Another study determined if precipitate formed in the wash solution after the caustic leach in the PEP. Finally, the leaching characteristics of different chromium compounds under different conditions were examined to determine the best one to use in further testing.« less
Dissolution behaviour of 238U, 234U and 230Th deposited on filters from personal dosemeters.
Becková, Vera; Malátová, Irena
2008-01-01
Kinetics of dissolution of (238)U, (234)U and (230)Th dust deposited on filters from personal alpha dosemeters was studied by means of a 26-d in vitro dissolution test with a serum ultrafiltrate simulant. Dosemeters had been used by miners at the uranium mine 'Dolní Rozínka' at Rozná, Czech Republic. The sampling flow-rate as declared by the producer is 4 l h(-1) and the sampling period is typically 1 month. Studied filters contained 125 +/- 6 mBq (238)U in equilibrium with (234)U and (230)Th; no (232)Th series nuclides were found. Half-time of rapid dissolution of 1.4 d for (238)U and (234)U and slow dissolution half-times of 173 and 116 d were found for (238)U and (234)U, respectively. No detectable dissolution of (230)Th was found.
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...
2017-02-18
The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.
The durability of high level nuclear waste glasses must be predicted on geological time scales. Waste glass surfaces form hydrogels when in contact with water for varying test durations. As the glass hydrogels age, some exhibit an undesirable resumption of dissolution at long times while others exhibit near steady-state dissolution, that is, nonresumption of dissolution. Resumption of dissolution is associated with the formation of zeolitic phases while nonresumption of dissolution is associated with the formation of clay minerals. Hydrogels with a stoichiometry close to that of imogolite, (Al 2O 3·Si(OH) 4), with ferrihydrite (Fe 2O 3·0.5H 2O), have been shownmore » to be associated with waste glasses that resume dissolution. Aluminosilicate hydrogels with a stoichiometry of allophane-hisingerite ((Al,Fe) 2O 3·1.3-2Si(OH) 4) have been shown to be associated with waste glasses that exhibit near steady-state dissolution at long times. These phases are all amorphous and poorly crystalline and are also found on natural weathered basalt glasses. Interaction of these hydrogels with excess alkali and OH – (strong base) in the leachates, causes the Al 2O 3· nSiO 2 (where n=1-2) hydrogels to mineralize to zeolites. Excess alkali in the leachate is generated by alkali in the glass. As a result, preliminary rate-determining leach layer forming exchange reactions are hypothesized based on these findings.« less
Digitizing Medicines for Remote Capture of Oral Medication Adherence Using Co‐encapsulation
Peloquin, C; Santillo, F; Haubrich, R; Muttera, L; Moser, K; Savage, GM; Benson, CA; Blaschke, TF
2017-01-01
High‐resolution measurement of medication adherence is essential to personalized drug therapy. A US Food and Drug Administration (FDA)‐cleared device, using an edible ingestion sensor (IS), external wearable patch, and paired mobile device can detect and record ingestion events. Oral medications must be combined with an IS to generate precise “digitized‐medication” ingestion records. We developed a Good Manufacturing Practice protocol to repackage oral medications with the IS within certified Capsugel capsules, termed co‐encapsulation (CoE). A randomized bioequivalence study of CoE‐IS‐Rifamate (Isoniazid/Rifampin 150/300 mg) vs. native‐Rifamate was conducted in 12 patients with active Mycobacterium tuberculosis and demonstrated bioequivalence using the population method ratio test (95% confidence interval). Subsequently, CoE‐IS‐medications across all biopharmaceutical classes underwent in vitro dissolution testing utilizing USP and FDA guidelines. CoE‐IS medications tested met USP dissolution specifications and were equivalent to their native formulations. CoE combines oral medications with the IS without altering the quality of the native formulation, generating “digitized” medications for remote capture of dosing histories. PMID:28597911
Feldspar dissolution rates in the Topopah Spring Tuff, Yucca Mountain, Nevada
Bryan, C.R.; Helean, K.B.; Marshall, B.D.; Brady, P.V.
2009-01-01
Two different field-based methods are used here to calculate feldspar dissolution rates in the Topopah Spring Tuff, the host rock for the proposed nuclear waste repository at Yucca Mountain, Nevada. The center of the tuff is a high silica rhyolite, consisting largely of alkali feldspar (???60 wt%) and quartz polymorphs (???35 wt%) that formed by devitrification of rhyolitic glass as the tuff cooled. First, the abundance of secondary aluminosilicates is used to estimate the cumulative amount of feldspar dissolution over the history of the tuff, and an ambient dissolution rate is calculated by using the estimated thermal history. Second, the feldspar dissolution rate is calculated by using measured Sr isotope compositions for the pore water and rock. Pore waters display systematic changes in Sr isotopic composition with depth that are caused by feldspar dissolution. The range in dissolution rates determined from secondary mineral abundances varies from 10-16 to 10-17 mol s-1 kg tuff-1 with the largest uncertainty being the effect of the early thermal history of the tuff. Dissolution rates based on pore water Sr isotopic data were calculated by treating percolation flux parametrically, and vary from 10-15 to 10-16 mol s-1 kg tuff-1 for percolation fluxes of 15 mm a-1 and 1 mm a-1, respectively. Reconciling the rates from the two methods requires that percolation fluxes at the sampled locations be a few mm a-1 or less. The calculated feldspar dissolution rates are low relative to other measured field-based feldspar dissolution rates, possibly due to the age (12.8 Ma) of the unsaturated system at Yucca Mountain; because oxidizing and organic-poor conditions limit biological activity; and/or because elevated silica concentrations in the pore waters (???50 mg L-1) may inhibit feldspar dissolution. ?? 2009 Elsevier Ltd. All rights reserved.
Using SEM Analysis on Ion-Milled Shale Surface to Determine Shale-Fracturing Fluid Interaction
NASA Astrophysics Data System (ADS)
Lu, J.; Mickler, P. J.; Nicot, J. P.
2014-12-01
It is important to document and assess shale-fluid interaction during hydraulic fracturing (HF) in order to understand its impact on flowback water chemistry and rock property. A series of autoclave experiments were conducted to react shale samples from major oil and gas shales with synthetic HF containing various additives. To better determine mineral dissolution and precipitation at the rock-fluid interface, ion-milling technique was applied to create extremely flat rock surfaces that were examined before and after the autoclave experiments using a scanning electron microscope (SEM) coupled with energy dispersive spectroscopy (EDS) detectors. This method is able to reveal a level of detail not observable on broken surface or mechanically polished surface. It allows direct comparison of the same mineral and organic matter particles before and after the reaction experiments. Minerals undergone dissolution and newly precipitated materials are readily determined by comparing to the exact locations before reaction. The dissolution porosity and the thickness of precipitates can be quantified by tracing and measuring the geometry of the pores and precipitates. Changes in porosity and permeability were confirmed by mercury intrusion capillary tests.
Time-controlled release pseudoephedrine tablets: bioavailability and in vitro/in vivo correlations.
Halsas, M; Penttinen, T; Veski, P; Jürjenson, H; Marvola, M
2001-09-01
In chronopharmacotherapy, circadian changes in disease symptoms are taken into account. Press-coated, time-controlled release tablets containing pseudoephedrine hydrochloride as a model drug have been formulated and the suitability of this highly soluble drug in relation to the new drug delivery system was evaluated. Hydroxypropylmethylcellulose was used in the coat of the tablet to adjust drug release. If such a formulation was administered in the evening it would have maximal effect in the early morning, and would be useful for the treatment of nocturnal symptoms. Two cross-over, single-dose bioavailability studies were carried out on eight healthy volunteers. A dissolution test method was developed to establish level A and level C in vitro/in vivo correlation for four formulations. With a low viscosity grade of polymer, peak concentrations were achieved after five hours. The drug was absorbed much more slowly from tablets containing a high viscosity grade polymer, with a plasma peak at ten hours. For further development of the drug delivery system described, a dissolution test method at pH 7.2 at a rotation speed of 150 min-1 is recommended on the basis of level A in vitro/in vivo correlation.
NASA Astrophysics Data System (ADS)
Haddam, N. A.; Michel, E.; Siani, G.; Cortese, G.; Bostock, H. C.; Duprat, J. M.; Isguder, G.
2016-06-01
We present an improved database of planktonic foraminiferal census counts from the Southern Hemisphere oceans (SHO) from 15°S to 64°S. The SHO database combines three existing databases. Using this SHO database, we investigated dissolution biases that might affect faunal census counts. We suggest a depth/ΔCO32- threshold of ~3800 m/ΔCO32- = ~ -10 to -5 µmol/kg for the Pacific and Indian Oceans and ~4000 m/ΔCO32- = ~0 to 10 µmol/kg for the Atlantic Ocean, under which core-top assemblages can be affected by dissolution and are less reliable for paleo-sea surface temperature (SST) reconstructions. We removed all core tops beyond these thresholds from the SHO database. This database has 598 core tops and is able to reconstruct past SST variations from 2° to 25.5°C, with a root mean square error of 1.00°C, for annual temperatures. To inspect how dissolution affects SST reconstruction quality, we tested the data base with two "leave-one-out" tests, with and without the deep core tops. We used this database to reconstruct summer SST (SSST) over the last 20 ka, using the Modern Analog Technique method, on the Southeast Pacific core MD07-3100. This was compared to the SSST reconstructed using the three databases used to compile the SHO database, thus showing that the reconstruction using the SHO database is more reliable, as its dissimilarity values are the lowest. The most important aspect here is the importance of a bias-free, geographic-rich database. We leave this data set open-ended to future additions; the new core tops must be carefully selected, with their chronological frameworks, and evidence of dissolution assessed.
Drašković, Milica; Medarević, Djordje; Aleksić, Ivana; Parojčić, Jelena
2017-05-01
Considering that bitter taste of drugs incorporated in orally disintegrating tablets (ODTs) can be the main reason for avoiding drug therapy, it is of the utmost importance to achieve successful taste-masking. The evaluation of taste-masking effectiveness is still a major challenge. The objective of this study was to mask bitter taste of the selected model drugs by drug particle coating with Eudragit ® E PO, as well as to evaluate taste-masking effectiveness of prepared ODTs using compendial dissolution testing, dissolution in the small-volume shake-flask assembly and trained human taste panel. Model drugs were coated in fluidized bed. Disintequik™ ODT was used as a novel co-processed excipient for ODT preparation. Selected formulations were investigated in vitro and in vivo using techniques for taste-masking assessment. Significantly slower drug dissolution was observed from tablets with coated drug particles during the first 3 min of investigation. Results of in vivo taste-masking assessment demonstrated significant improvement in drug bitterness suppression in formulations with coated drug. Strong correlation between the results of drug dissolution in the small-volume shake-flask assembly and in vivo evaluation data was established (R ≥ 0.970). Drug particle coating with Eudragit ® E PO can be a suitable approach for bitter taste-masking. Strong correlation between in vivo and in vitro results implicate that small-volume dissolution method may be used as surrogate for human panel taste-masking assessment, in the case of physical taste-masking approach application.
Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D
2017-01-01
Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO 2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO 2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L
2012-10-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS class III and BCS class II have been proposed, in particular, BCS class II weak acids. However, a discrepancy between the in vivo BE results and in vitro dissolution results for BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH of 6.0. Further the experimental dissolution of ibuprofen tablets in a low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol l (-1) /pH) was dramatically reduced compared with the dissolution in SIF (the average buffer capacity 12.6 mmol l (-1) /pH). Thus these predictions for the oral absorption of BCS class II acids indicate that the absorption patterns depend largely on the intestinal pH and buffer strength and must be considered carefully for a bioequivalence test. Simulation software may be a very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. Copyright © 2012 John Wiley & Sons, Ltd.
Tsume, Yasuhiro; Langguth, Peter; Garcia-Arieta, Alfredo; Amidon, Gordon L.
2012-01-01
The FDA Biopharmaceutical Classification System guidance allows waivers for in vivo bioavailability and bioequivalence studies for immediate-release solid oral dosage forms only for BCS class I. Extensions of the in vivo biowaiver for a number of drugs in BCS Class III and BCS class II have been proposed, particularly, BCS class II weak acids. However, a discrepancy between the in vivo- BE results and in vitro- dissolution results for a BCS class II acids was recently observed. The objectives of this study were to determine the oral absorption of BCS class II weak acids via simulation software and to determine if the in vitro dissolution test with various dissolution media could be sufficient for in vitro bioequivalence studies of ibuprofen and ketoprofen as models of carboxylic acid drugs. The oral absorption of these BCS class II acids from the gastrointestinal tract was predicted by GastroPlus™. Ibuprofen did not satisfy the bioequivalence criteria at lower settings of intestinal pH=6.0. Further the experimental dissolution of ibuprofen tablets in the low concentration phosphate buffer at pH 6.0 (the average buffer capacity 2.2 mmol L-1/pH) was dramatically reduced compared to the dissolution in SIF (the average buffer capacity 12.6 mmol L -1/pH). Thus these predictions for oral absorption of BCS class II acids indicate that the absorption patterns largely depend on the intestinal pH and buffer strength and must be carefully considered for a bioequivalence test. Simulation software may be very useful tool to aid the selection of dissolution media that may be useful in setting an in vitro bioequivalence dissolution standard. PMID:22815122
2013-01-01
Background The use of substandard and degraded medicines is a major public health problem in developing countries such as Cambodia. A collaborative study was conducted to evaluate the quality of amoxicillin–clavulanic acid preparations under tropical conditions in a developing country. Methods Amoxicillin-clavulanic acid tablets were obtained from outlets in Cambodia. Packaging condition, printed information, and other sources of information were examined. The samples were tested for quantity, content uniformity, and dissolution. Authenticity was verified with manufacturers and regulatory authorities. Results A total of 59 samples were collected from 48 medicine outlets. Most (93.2%) of the samples were of foreign origin. Using predetermined acceptance criteria, 12 samples (20.3%) were non-compliant. Eight (13.6%), 10 (16.9%), and 20 (33.9%) samples failed quantity, content uniformity, and dissolution tests, respectively. Samples that violated our observational acceptance criteria were significantly more likely to fail the quality tests (Fisher’s exact test, p < 0.05). Conclusions Improper packaging and storage conditions may reduce the quality of amoxicillin–clavulanic acid preparations at community pharmacies. Strict quality control measures are urgently needed to maintain the quality of amoxicillin–clavulanic acid in tropical countries. PMID:23773420
Liu, Tiaotiao; Hao, Jingqiang; Yang, Baixue; Hu, Beibei; Cui, Zhixiang; Li, Sanming
2018-05-01
The addition of surfactant in tablet was a well-defined approach to improve drug dissolution rate. While the selected surfactant played a vital role in improving the wettability of tablet by medium, it was equally important to improve the dissolution rate by permeation effect due to production of pores or the reduced inter-particle adhesion. Furthermore, understanding the mechanism of dissolution rate increased was significant. In this work, contact angle measurement was taken up as an alternative approach for understanding the dissolution rate enhancement for tablet containing surfactant. Ethylcellulose, as a substrate, was used to prepare tablet. Four surfactants, sodium dodecyl sulfate (SDS), sodium dodecylbenzenesulfonate (SDBS), dodecyltrimethylammonium bromide (DTAB), and sodium lauryl sulfonate (SLS), were used. Berberine hydrochloride, metformin hydrochloride, and rutin were selected as model drugs. The contact angle of tablet in the absence and presence of surfactant was measured to explore the mechanism. The dissolution test was investigated to verify the mechanism and to establish a correlation with the contact angle. The result showed that the mechanism was the penetration effect rather than the wetting effect. The dissolution increased with a reduction in the contact angle. DTAB was found to obtain the highest level of dissolution enhancement and the lowest contact angle, while SDS, SDBS, and SLS were found to be the less effective in both dissolution enhancement and contact angle decrease. Therefore, contact angle was a good indicator for dissolution behavior besides exploring the mechanism of increased dissolution, which shows great potential in formula screening.
On the present and future of dissolution-DNP
NASA Astrophysics Data System (ADS)
Ardenkjaer-Larsen, Jan Henrik
2016-03-01
Dissolution-DNP is a method to create solutions of molecules with nuclear spin polarization close to unity. The many orders of magnitude signal enhancement have enabled many new applications, in particular in vivo MR metabolic imaging. The method relies on solid state dynamic nuclear polarization at low temperature followed by a dissolution to produce the room temperature solution of highly polarized spins. This work describes the present and future of dissolution-DNP in the mind of the author. The article describes some of the current trends in the field as well as outlines some of the areas where new ideas will make an impact. Most certainly, the future will take unpredicted directions, but hopefully the thoughts presented here will stimulate new ideas that can further advance the field.
Nanomaterial Dispersion/Dissolution Characterization: Scientific Operating Procedure SOP-F-1
2016-05-01
ER D C/ EL S R- 16 -1 Environmental Consequences of Nanotechnologies Nanomaterial Dispersion/Dissolution Characterization Scientific...Nanotechnologies ERDC/EL SR-16-1 May 2016 Nanomaterial Dispersion/Dissolution Characterization Scientific Operating Procedure SOP-F-1 Lesley Miller...diagnostic application. While microscopy represents the only available method for measuring particle size, this is very labor intensive and prone to
A Review: Pharmaceutical and Pharmacokinetic Aspect of Nanocrystalline Suspensions.
Shah, Dhaval A; Murdande, Sharad B; Dave, Rutesh H
2016-01-01
Nanocrystals have emerged as a potential formulation strategy to eliminate the bioavailability-related problems by enhancing the initial dissolution rate and moderately super-saturating the thermodynamic solubility. This review contains an in-depth knowledge of, the processing method for formulation, an accurate quantitative assessment of the solubility and dissolution rates and their correlation to observe pharmacokinetic data. Poor aqueous solubility is considered the major hurdle in the development of pharmaceutical compounds. Because of a lack of understanding with regard to the change in the thermodynamic and kinetic properties (i.e., solubility and dissolution rate) upon nanosizing, we critically reviewed the literatures for solubility determination to understand the significance and accuracy of the implemented analytical method. In the latter part, we reviewed reports that have quantitatively studied the effect of the particle size and the surface area change on the initial dissolution rate enhancement using alternative approaches besides the sink condition dissolution. The lack of an apparent relationship between the dissolution rate enhancement and the observed bioavailability are discussed by reviewing the reported in vivo data on animal models along with the particle size and food effect. The review will provide comprehensive information to the pharmaceutical scientist in the area of nanoparticulate drug delivery.
Electrochemical Dissolution of Tungsten Carbide in NaCl-KCl-Na2WO4 Molten Salt
NASA Astrophysics Data System (ADS)
Zhang, Liwen; Nie, Zuoren; Xi, Xiaoli; Ma, Liwen; Xiao, Xiangjun; Li, Ming
2018-02-01
Tungsten carbide was utilized as anode to extract tungsten in a NaCl-KCl-Na2WO4 molten salt, and the electrochemical dissolution was investigated. Although the molten salt electrochemical method is a short process method of tungsten extraction from tungsten carbide in one step, the dissolution efficiency and current efficiency are quite low. In order to improve the dissolution rate and current efficiency, the sodium tungstate was added as the active substance. The dissolution rate, the anode current efficiency, and the cathode current efficiency were calculated with different contents of sodium tungstate addition. The anodes prior to and following the reaction, as well as the product, were analyzed through X-ray diffraction, scanning electron microscopy, and energy dispersive spectrometry. The results demonstrated that the sodium tungstate could improve the dissolution rate and the current efficiency, due to the addition of sodium tungstate decreasing the charge transfer resistance in the electrolysis system. Due to the fact that the addition of sodium tungstate could remove the carbon during electrolysis, pure tungsten powders with 100 nm diameter were obtained when the content of sodium tungstate was 1.0 pct.
Emami, Shahram; Adibkia, Khosro; Barzegar-Jalali, Mohammad; Siahi-Shadbad, Mohammadreza
2018-04-04
This study explores the preparation and investigation of dissolution properties of piroxicam cocrystals. Differential scanning calorimetry (DSC) was used to determine the capability of resorcinol (RES), methylparaben (MPB), and vanillin (VAN) to form cocrystals with piroxicam (PRX). Generation of cocrystals was attempted by liquid assisted grinding and slurry methods. Cocrystals were characterized by thermal methods, powder X-ray diffraction, and Fourier-transform infrared spectroscopy. Apparent solubility, intrinsic dissolution rate (IDR), and powder dissolution profile of cocrystals were compared with anhydrous piroxicam, piroxicam monohydrate (PRXMH), and previously reported piroxicam-succinic acid cocrystal. Contact angles and particle sizes of the studied solids were also measured. Based on the DSC screening results, we prepared and characterized PRX-RES and PRX-MPB cocrystals. Interestingly, the cocrystals not only failed to improve apparent solubility and IDR of PRX but also showed lower values than PRX that were attributed to induction of phase transformation of PRX to PRXMH. In contrary, cocrystals performed better than PRX in powder dissolution studies. The higher dissolution rates of cocrystals were explained by improved wettability and reduced sizes. This study has highlighted the complexity of solid state properties of cocrystals and has provided new evidence for the in-solution stability issues of cocrystals.
Xu, Hai-Bo; Zhao, Dao-Yuan; Qin, Chao; Li, Yu-Jiao; Dong, Chang-Xun
2014-01-01
Size fractions of soil aggregates in Lake Tai region were collected by the low-energy ultrasonic dispersion and the freeze-desiccation methods. The dissolution of aluminum and changes of pH in soil solution during sorption of Cu2+ and changes of the dissolution of aluminum at different pH in the solution of Cu2+ by aggregates were studied by the equilibrium sorption method. The results showed that in the process of Cu2+ sorption by aggregates, the aluminum was dissoluted and the pH decreased. The elution amount of aluminum and the decrease of pH changed with the sorption of Cu2+, both increasing with the increase of Cu2+ sorption. Under the same conditions, the dissolution of aluminum and the decrease of pH were in the order of coarse silt fraction > silt fraction > sand fraction > clay fraction, which was negatively correlated with the amount of iron oxide, aluminum and organic matter. It suggested that iron oxide, aluminum and organic matters had inhibitory and buffering effect on the aluminum dissolution and the decrease of pH during the sorption of Cu2+.
Meyer, Jess M.
2017-01-01
Previous research finds that marriage is associated with better health and lower mortality, and one of the mechanisms underlying this association is health-related selection out of marriage. Using longitudinal survey data from 2,348 couples from the Fragile Families and Child Wellbeing Study, we examine whether certain health behaviors—smoking and binge drinking—are associated with risk of union dissolution among couples with young children. We use discrete time hazard models to test whether associations between health behaviors and union dissolution differ between married and cohabiting parents. We find no statistically significant association between binge drinking and union dissolution for either cohabiting or married couples. Parental smoking, however, is associated with union dissolution. On average, married and cohabiting couples in which both parents smoke have a higher risk of union dissolution than couples in which neither parent smokes. Additionally, father’s smoking (in couples in which the mother does not smoke) is associated with union dissolution, but only for married couples. These findings illustrate the importance of considering the health behaviors of both partners and provide further evidence of differences in union dissolution dynamics between married and cohabiting couples. PMID:28796826
Meyer, Jess M; Percheski, Christine
2017-01-01
Previous research finds that marriage is associated with better health and lower mortality, and one of the mechanisms underlying this association is health-related selection out of marriage. Using longitudinal survey data from 2,348 couples from the Fragile Families and Child Wellbeing Study, we examine whether certain health behaviors-smoking and binge drinking-are associated with risk of union dissolution among couples with young children. We use discrete time hazard models to test whether associations between health behaviors and union dissolution differ between married and cohabiting parents. We find no statistically significant association between binge drinking and union dissolution for either cohabiting or married couples. Parental smoking, however, is associated with union dissolution. On average, married and cohabiting couples in which both parents smoke have a higher risk of union dissolution than couples in which neither parent smokes. Additionally, father's smoking (in couples in which the mother does not smoke) is associated with union dissolution, but only for married couples. These findings illustrate the importance of considering the health behaviors of both partners and provide further evidence of differences in union dissolution dynamics between married and cohabiting couples.
McGrail, Bernard P.; Martin, Paul F.; Lindenmeier, Clark W.
1999-01-01
The present invention is a method and apparatus for measuring coupled flow, transport and reaction processes under liquid unsaturated flow conditions. The method and apparatus of the present invention permit distinguishing individual precipitation events and their effect on dissolution behavior isolated to the specific event. The present invention is especially useful for dynamically measuring hydraulic parameters when a chemical reaction occurs between a particulate material and either liquid or gas (e.g. air) or both, causing precipitation that changes the pore structure of the test material.
Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz
NASA Technical Reports Server (NTRS)
Gratz, A. J.; Manne, S.; Hansma, P. K.
1991-01-01
The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.
Simonella, Lucio E; Gaiero, Diego M; Palomeque, Miriam E
2014-10-01
Iron is an essential micronutrient for phytoplankton growth and is supplied to the remote areas of the ocean mainly through atmospheric dust/ash. The amount of soluble Fe in dust/ash is a major source of uncertainty in modeling-Fe dissolution and deposition to the surface ocean. Currently in the literature, there exist almost as many different methods to estimate fractional solubility as researchers in the field, making it difficult to compare results between research groups. Also, an important constraint to evaluate Fe solubility in atmospheric dust is the limited mass of sample which is usually only available in micrograms to milligrams amounts. A continuous flow (CF) method that can be run with low mass of sediments (<10mg) was tested against a standard method which require about 1g of sediments (BCR of the European Union). For validation of the CF experiment, we run both methods using South American surface sediment and deposited volcanic ash. Both materials tested are easy eroded by wind and are representative of atmospheric dust/ash exported from this region. The uncertainty of the CF method was obtained from seven replicates of one surface sediment sample, and shows very good reproducibility. The replication was conducted on different days in a span of two years and ranged between 8 and 22% (i.e., the uncertainty for the standard method was 6-19%). Compared to other standardized methods, the CF method allows studies of dissolution kinetic of metals and consumes less reagents and time (<3h). The method validated here is suggested to be used as a standardized method for Fe solubility studies on dust/ash. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of sodium lauryl sulfate in dissolution media on dissolution of hard gelatin capsule shells.
Zhao, Fang; Malayev, Vyacheslav; Rao, Venkatramana; Hussain, Munir
2004-01-01
Sodium lauryl sulfate (SLS) is a commonly used surfactant in dissolution media for poorly water soluble drugs. However, it has occasionally been observed that SLS negatively impacts the dissolution of drug products formulated in gelatin capsules. This study investigated the effect of SLS on the dissolution of hard gelatin capsule shells. The USP paddle method was used with online UV monitoring at 214 nm (peptide bond). Empty size #0 capsule shells were held to the bottom of the dissolution vessel by magnetic three-prong sinkers. SLS significantly slowed down the dissolution of gelatin shells at pH < 5. Visually, the gelatin shells transformed into some less-soluble precipitate under these conditions. This precipitate was found to contain a higher sulfur content than the gelatin control sample by elemental analysis, indicating that SLS is part of the precipitate. Additionally, the slowdown of capsule shell dissolution was shown to be dependent on the SLS concentration and the ionic strength of the media. SLS interacts with gelatin to form a less-soluble precipitate at pH < 5. The use of SLS in dissolution media at acidic pH should be carefully evaluated for gelatin capsule products.
Wang, Bing; Bredael, Gerard; Armenante, Piero M
2018-03-25
The hydrodynamic characteristics of a mini vessel and a USP 2 dissolution testing system were obtained and compared to predict the tablet-liquid mass transfer coefficient from velocity distributions near the tablet and establish the dynamic operating conditions under which dissolution in mini vessels could be conducted to generate concentration profiles similar to those in the USP 2. Velocity profiles were obtained experimentally using Particle Image Velocimetry (PIV). Computational Fluid Dynamics (CFD) was used to predict the velocity distribution and strain rate around a model tablet. A CFD-based mass transfer model was also developed. When plotted against strain rate, the predicted tablet-liquid mass transfer coefficient was found to be independent of the system where it was obtained, implying that a tablet would dissolve at the same rate in both systems provided that the concentration gradient between the tablet surface and the bulk is the same, the tablet surface area per unit liquid volume is identical, and the two systems are operated at the appropriate agitation speeds specified in this work. The results of this work will help dissolution scientists operate mini vessels so as to predict the dissolution profiles in the USP 2, especially during the early stages of drug development. Copyright © 2018 Elsevier B.V. All rights reserved.
Padgett, Mark C; Tick, Geoffrey R; Carroll, Kenneth C; Burke, William R
2017-03-01
The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions >0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. <0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Padgett, Mark C.; Tick, Geoffrey R.; Carroll, Kenneth C.; Burke, William R.
2017-03-01
The influence of chemical structure on NAPL mixture nonideality evolution, rate-limited dissolution, and contaminant mass flux was examined. The variability of measured and UNIFAC modeled NAPL activity coefficients as a function of mole fraction was compared for two NAPL mixtures containing structurally-different contaminants of concern including toluene (TOL) or trichloroethene (TCE) within a hexadecane (HEXDEC) matrix. The results showed that dissolution from the NAPL mixtures transitioned from ideality for mole fractions > 0.05 to nonideality as mole fractions decreased. In particular, the TCE generally exhibited more ideal dissolution behavior except at lower mole fractions, and may indicate greater structural/polarity similarity between the two compounds. Raoult's Law and UNIFAC generally under-predicted the batch experiment results for TOL:HEXDEC mixtures especially for mole fractions ≤ 0.05. The dissolution rate coefficients were similar for both TOL and TCE over all mole fractions tested. Mass flux reduction (MFR) analysis showed that more efficient removal behavior occurred for TOL and TCE with larger mole fractions compared to the lower initial mole fraction mixtures (i.e. < 0.2). However, compared to TOL, TCE generally exhibited more efficient removal behavior over all mole fractions tested and may have been the result of structural and molecular property differences between the compounds. Activity coefficient variability as a function of mole fraction was quantified through regression analysis and incorporated into dissolution modeling analyses for the dynamic flushing experiments. TOL elution concentrations were modeled (predicted) reasonable well using ideal and equilibrium assumptions, but the TCE elution concentrations could not be predicted using the ideal model. Rather, the dissolution modeling demonstrated that TCE elution was better described by the nonideal model whereby NAPL-phase activity coefficient varied as a function of COC mole fraction. For dynamic column flushing experiments, dissolution rate kinetics can vary significantly with changes in NAPL volume and surface area. However, under conditions whereby NAPL volume and area are not significantly altered during dissolution, mixture nonideality effects may have a greater relative control on dissolution (elution) and MFR behavior compared to kinetic rate limitations.
Hepa filter dissolution process
Brewer, Ken N.; Murphy, James A.
1994-01-01
A process for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal.
Dissolution Rates and Mineral Lifetimes of Phosphate Containing Minerals and Implications for Mars
NASA Astrophysics Data System (ADS)
Adcock, C. T.; Hausrath, E.
2011-12-01
The objectives of NASA's Mars Exploration Program include exploring the planet's habitability and the possibility of past, present, or future life. This includes investigating "possible supplies of bioessential elements" [1]. Phosphate is one such bioessential element for life as we understand it. Phosphate is also abundant on Mars [2], and the phosphate rich minerals chlorapatite, fluorapatite, and merrillite have been observed in Martian meteorites [3]. Surface rock analyses from the MER Spirit also show the loss of a phosphate rich mineral from the rocks Wishstone and Watchtower at Gusev Crater [4,5], implying mineral dissolution. Dissolution rates of phosphate containing minerals are therefore important for characterizing phosphate mobility and bioavailability on Mars. Previous studies have measured dissolution rates of fluorapatite [6-8]. However, chlorapatite and merrillite (a non-terrestrial mineral similar to whitlockite) are more common phosphate minerals found in Martian meteorites [3], and few dissolution data exist for these minerals. We have begun batch dissolution experiments on chlorapatite, synthesized using methods of [9], and whitlockite, synthesized using a method modified from [10]. Additionally, we are dissolving Durango fluorapatite to compare to dissolution rates in literature, and natural Palermo whitlockite to compare to dissolution rates of our synthesized whitlockite. Batch dissolution experiments were performed after [8], using a 0.01 molar KNO3 solution with 0.1500g-0.3000g mineral powders and starting solution volumes of 180ml in LDPE reaction vessels. HNO3 or KOH were used to adjust initial pH as required. Dissolution rates are calculated from the rate of change of elemental concentration in solution as a function of time, and normalized to the mineral surface area as measured by BET. Resulting rates will be used to calculate mineral lifetimes for the different phosphate minerals under potential Mars-like aqueous conditions, and in future reactive transport modeling.
Kristin, Forner; René, Holm; Boontida, Morakul; Buraphacheep, Junyaprasert Varaporn; Maximilian, Ackermann; Johanna, Mazur; Peter, Langguth
2017-04-01
In order to save time and resources in early drug development, in vitro methods that correctly predict the formulation effect on oral drug absorption are necessary. The aim of this study was to 1) evaluate various BCS class II drug formulations with in vitro methods and in vivo in order to 2) determine which in vitro method best correlates with the in vivo results. Clarithromycin served as model compound in formulations with different particle sizes and content of excipients. The performed in vitro experiments were dissolution and dissolution/permeation experiments across two types of membrane, Caco-2 cells and excised rat intestinal sheets. The in vivo study was performed in rats. The oral absorption was enhanced by downsizing drug particles and by increasing the excipient concentration. This correlated strongly with the flux across Caco-2 cells but not with the other in vitro experiments. The insufficient correlation with the dissolution experiments can be partly explained by excipient caused problems during the filtration step. The very poor correlation of the in vivo data with the flux across excised rat intestinal sheets might be due to an artificially enlarged mucus layer ex vivo. In conclusion, downsizing BCS class II drug particles and the addition of surfactants enhanced the in vivo absorption, which was best depicted by dissolution/permeation experiments across Caco-2 cells. This setup is proposed as best model to predict the in vivo formulation effect. Also, this is the first study to evaluate the impact of the nature of the permeation membrane in dissolution/permeation experiments. Copyright © 2017 Elsevier B.V. All rights reserved.
Jiang, Mao-Yuan; Zhang, Zhen; Shi, Jin-Feng; Zhang, Jin-Ming; Fu, Chao-Mei; Lin, Xia; Liu, Yu-Mei
2018-03-01
To preliminarily investigate the dissolution behavior of Fuzi Lizhong pill, provide the basis for its quality control and lay foundation for in vivo dissolution behavior by determining the dissolution rate of liquiritin and glycyrrhizic acid. High-performance liquid chromatography (HPLC) method for simultaneous content determination of the two active ingredients of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was established; The dissolution amount of these two active ingredients in fifteen batches of Fuzi Lizhong pill from five manufacturers was obtained at different time points, and then the cumulative dissolution rate was calculated and cumulative dissolution curve was drawn. The similarity of cumulative dissolution curve of different batches was evaluated based on the same factory, and the similarity of cumulative dissolution curve of different factories was evaluated based on the same active ingredients. The dissolution model of Fuzi Lizhong pill based on two kinds of active ingredients was established by fitting with the dissolution data. The best dissolution medium was 0.25% sodium lauryl sulfate. The dissolution behavior of liquiritin and glycyrrhizic acid in Fuzi Lizhong pill was basically the same and sustained release in 48 h. Three batches of the factories (factory 2, factory 3, factory 4 and factory 5) appeared to be similar in dissolution behavior, indicating similarity in dissolution behavior in most factories. Two of the three batches from factory 1 appeared to be not similar in dissolution behavior of liquiritin and glycyrrhizic acid. The dissolution data of the effective ingredients from different factories were same in fitting, and Weibull model was the best model in these batches. Fuzi Lizhong pill in 15 batches from 5 factories showed sustained release in 48 h, proving obviously slow releasing characteristics "pill is lenitive and keeps a long-time efficacy". The generally good dissolution behavior also suggested that quality of different batches from most factories was stable. The dissolution behavior of liquiritin and glycyrrhizic acid in different factories was different, suggesting that the source of medicinal materials and preparation technology parameters in five factories were different. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
Aini, Nurul; Rahayu, Dyah Utami Cahyaning; Budianto, Emil
2018-04-01
The limitation of amoxicillin trihydrate in the treatment of H. pylori bacteria is relatively short retention time in the stomach. The FDDS (Floating Drug Delivery System) amoxicillin trihydrate into a chitosan-poly(N-vinylcaprolactam) full-Ipn hydrogel matrix using a pore-forming agent KHCO3 is expected to overcome these limitations. The pore-forming agent to be used is 15% KHCO3 compound. Chemical kinetics approach is performed to determine the dissolution mechanism of amoxicillin trihydrate from K-PNVCL hydrogel in vitro on gastric pH and characterization using SEM performed to confirm the dissolution mechanism. Hydrogels with the addition of pore-forming agents will be loading in situ loading and post loading. Fourier Transform Infra Red (FTIR) spectroscopy was used to characterize K-PNVCL and UV-Vis hydrogels used to calculate the efficiency of encapsulation and drug dissolution rate in K-PNVCL hydrogel. Hydrogel K-PNVCL / KHCO3 that encapsulated by in situ loading method resulted in an encapsulation efficiency of 93.5% and dissolution of 93.4%. While the Hydrogel K-PNVCL / KHCO3 which is drug encapsulation resulted in an encapsulation efficiency of 87.2% with dissolution of 81.5%. Chemical kinetics approach to in situ encapsulation of loading and post loading shows the dissolution mechanism occurring in the K-PNVCL / KHCO3 hydrogel matrix occurs by diffusion. Observation using optical microscope and SEM showed the mechanism of drug dissolution in Hydrogel K-PNVCL occurred by diffusion.
Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling
2017-08-22
Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.
Reddy, Nallagundla H S; Patnala, Srinivas; Löbenberg, Raimar; Kanfer, Isadore
2014-10-01
Biowaivers are recommended for immediate-release solid oral dosage forms using dissolution testing as a surrogate for in vivo bioequivalence studies. Several guidance are currently available (the World Health Organization (WHO), the US FDA, and the EMEA) where the conditions are described. In this study, definitions, criteria, and methodologies according to the WHO have been applied. The dissolution performances of immediate-release metronidazole, zidovudine, and amoxicillin products purchased in South African and Indian markets were compared to the relevant comparator pharmaceutical product (CPP)/reference product. The dissolution performances were studied using US Pharmacopeia (USP) apparatus 2 (paddle) set at 75 rpm in each of three dissolution media (pH1.2, 4.5, and 6.8). Concentrations of metronidazole, zidovudine, and amoxicillin in each dissolution media were determined by HPLC. Of the 11 metronidazole products tested, only 8 could be considered as very rapidly dissolving products as defined by the WHO, whereas 2 of those products could be considered as rapidly dissolving products but did not comply with the f 2 acceptance criteria in pH 6.8. All 11 zidovudine products were very rapidly dissolving, whereas in the case of the 14 amoxicillin products tested, none of those products met any of the WHO criteria. This study indicates that not all generic products containing the same biopharmaceutics classification system (BCS) I drug and in similar strength and dosage form are necessarily in vitro equivalent. Hence, there is a need for ongoing market surveillance to determine whether marketed generic products containing BCS I drugs meet the release requirements to confirm their in vitro bioequivalence to the respective reference product.
Novel silk fibroin films prepared by formic acid/hydroxyapatite dissolution method.
Ming, Jinfa; Liu, Zhi; Bie, Shiyu; Zhang, Feng; Zuo, Baoqi
2014-04-01
Bombyx mori silk fibroin from the silkworm was firstly found to be soluble in formic acid/hydroxyapatite system. The rheological behavior of silk fibroin solution was significantly influenced by HAp contents in dissolved solution. At the same time, silk fibroin nanofibers were observed in dissolved solution with 103.6±20.4nm in diameter. Moreover, the structure behavior of SF films prepared by formic acid/hydroxyapatite dissolution method was examined. The secondary structure of silk fibroin films was attributed to silk II structure (β-sheet), indicating that the hydroxyapatite contents in dissolved solution were not significantly affected by the structure of silk fibroin. The X-ray diffraction results exhibited obviously hydroxyapatite crystalline nature existing in silk fibroin films; however, when the hydroxyapatite content was 5.0wt.% in dissolved solution, some hydroxyapatite crystals were converted to calcium hydrogen phosphate dehydrate in silk fibroin dissolution process. This result was also confirmed by Fourier transform infrared analysis and DSC measurement. In addition, silk fibroin films prepared by this dissolution method had higher breaking strength and extension at break. Based on these analyses, an understanding of novel SF dissolution method may provide an additional tool for designing and synthesizing advanced materials with more complex structures, which should be helpful in different fields, including biomaterial applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Rudrangi, Shashi Ravi Suman; Trivedi, Vivek; Mitchell, John C; Wicks, Stephen Richard; Alexander, Bruce David
2015-10-15
The purpose of this study was to evaluate a single-step, organic solvent-free supercritical fluid process for the preparation of olanzapine-methyl-β-cyclodextrin complexes with an express goal to enhance the dissolution properties of olanzapine. The complexes were prepared by supercritical carbon dioxide processing, co-evaporation, freeze drying and physical mixing. The prepared complexes were then analysed by differential scanning calorimetry, X-ray powder diffraction, scanning electron microscopy, solubility and dissolution studies. Computational molecular docking studies were performed to study the formation of molecular inclusion complexation of olanzapine with methyl-β-cyclodextrin. All the binary mixtures of olanzapine with methyl-β-cyclodextrin, except physical mixture, exhibited a faster and greater extent of drug dissolution than the drug alone. Products obtained by the supercritical carbon dioxide processing method exhibited the highest apparent drug dissolution. The characterisation by different analytical techniques suggests complete complexation or amorphisation of olanzapine and methyl-β-cyclodextrin complexes prepared by supercritical carbon dioxide processing method. Therefore, organic solvent-free supercritical carbon dioxide processing method proved to be novel and efficient for the preparation of solid inclusion complexes of olanzapine with methyl-β-cyclodextrin. The preliminary data also suggests that the complexes of olanzapine with methyl-β-cyclodextrin will lead to better therapeutic efficacy due to better solubility and dissolution properties. Copyright © 2015 Elsevier B.V. All rights reserved.
How good is cola for dissolution of gastric phytobezoars?
Lee, Beom Jae; Park, Jong-Jae; Chun, Hoon Jai; Kim, Ji Hoon; Yeon, Jong Eun; Jeen, Yoon Tae; Kim, Jae Seon; Byun, Kwan Soo; Lee, Sang Woo; Choi, Jae Hyun; Kim, Chang Duck; Ryu, Ho Sang; Bak, Young-Tae
2009-01-01
AIM: To evaluate the efficacy of cola treatment for gastric phytobezoars, including diospyrobezoars. METHODS: A total of 17 patients (range: 48 to 78 years) with symptomatic gastric phytobezoars treated with cola and adjuvant endoscopic therapy were reviewed. Three liters of cola lavage (10 cases) or drink (7 cases) were initially used, and then endoscopic fragmentation was done for the remnant bezoars by using a lithotripsy basket or a polypectomy snare. The overall success of dissolving a gastric phytobezoars with using three liters of cola and the clinical and endoscopic findings were compared retrospectively between four cases of complete dissolution by using only cola and 13 cases of partial dissolution with cola. RESULTS: After 3 L of cola lavage or drinking, a complete dissolution of bezoars was achieved in four patients (23.5%), while 13 cases (76.5%) were only partially dissolved. Phytobezoars (4 of 6 cases) were observed more frequently than diospyrobezoars (0 of 11) in the group that underwent complete dissolution (P = 0.006). Gender, symptom duration, size of bezoar and method of cola administration were not significantly different between the two groups. Twelve of 13 patients with residual bezoars were completely treated with a combination of cola and endoscopic fragmentation. CONCLUSION: The rate of complete dissolution with three liters of cola was 23.5%, but no case of diospyrobezoar was completely dissolved using this method. However, pretreatment with cola may be helpful and facilitate endoscopic fragmentation of gastric phytobezoars. PMID:19437568
NASA Astrophysics Data System (ADS)
Paul, S.; Syrek-Gerstenkorn, B.
2017-01-01
Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.
Model of dissolution in the framework of tissue engineering and drug delivery.
Sanz-Herrera, J A; Soria, L; Reina-Romo, E; Torres, Y; Boccaccini, A R
2018-05-22
Dissolution phenomena are ubiquitously present in biomaterials in many different fields. Despite the advantages of simulation-based design of biomaterials in medical applications, additional efforts are needed to derive reliable models which describe the process of dissolution. A phenomenologically based model, available for simulation of dissolution in biomaterials, is introduced in this paper. The model turns into a set of reaction-diffusion equations implemented in a finite element numerical framework. First, a parametric analysis is conducted in order to explore the role of model parameters on the overall dissolution process. Then, the model is calibrated and validated versus a straightforward but rigorous experimental setup. Results show that the mathematical model macroscopically reproduces the main physicochemical phenomena that take place in the tests, corroborating its usefulness for design of biomaterials in the tissue engineering and drug delivery research areas.
NASA Astrophysics Data System (ADS)
Myers, M.; Stalker, L.; LaForce, T.; Pejcic, B.; Dyt, C.; Ho, K.; Ennis-King, J.
2013-12-01
Residual trapping, that is CO2 held in the rock pore space due to capillarity, is an important storage mechanism in geo-sequestration of over the short to medium term (up to 1000 years). As such residual CO2 saturation is a critical reservoir parameter for assessing the storage capacity and security of carbon capture and storage (CCS). As a component of the CO2CRC's Residual Gas Saturation and Dissolution Test at the CO2CRC Otway Project site in Victoria (Australia), we have recently tested a suite of reactive esters (triacetin, tripropionin and propylene glycol diacetate) in a single well chemical tracer test to determine residual CO2 saturation. The goal of this project was to assess and validate a suite of possible tests that could be implemented to determine residual CO2 saturation. For this test, the chemical tracers were injected with a saturated CO2/water mixture into the formation (that is already at residual CO2 saturation) where they were allowed to 'soak' for approximately 10 days allowing for the partial hydrolysis of the esters to their corresponding carboxylic acids and alcohols. Water containing the tracers was then produced from the well resulting in over 600 tracer samples over a period of 12 hours. A selection of these samples were analysed for tracer content and to establish tracer breakthrough curves. To understand the behaviour of these chemical tracers in the downhole environment containing residually trapped supercritical CO2 and formation water, it is necessary to determine the supercritical CO2/water partition coefficients. We have previously determined these in the laboratory (Myers et al., 2012) and they are used here to model the tracer behaviour and provide an estimate of the residual CO2 saturation. Two different computational simulators were used to analyse the tracer breakthrough profiles. The first is based on simple chromatographic retardation and has been used extensively in single well chemical tracer tests to determine residual oil saturation and the second is based on TOUGH2. The estimates of residual saturation given by these models were similar giving a very low residual CO2 saturation value. We suspect that this low value might be due to CO2 being inadvertently dissolved in the near wellbore region prior to this test. This possible dissolution of CO2 may be attributed to the complexity of the multi-test sequence (including other tracer tests prior to this particular test) used in the overall program at of the Residual Gas Saturation and Dissolution Test. References Myers, M., Stalker, L., Ross, A., Dyt, C., Ho, K.-B., 2012. Method for the determination of residual carbon dioxide saturation using reactive ester tracers. Applied Geochemistry 27, 2148-2156.
Field demonstration of CO2 leakage detection in potable aquifers with a pulselike CO2-release test.
Yang, Changbing; Hovorka, Susan D; Delgado-Alonso, Jesus; Mickler, Patrick J; Treviño, Ramón H; Phillips, Straun
2014-12-02
This study presents two field pulselike CO2-release tests to demonstrate CO2 leakage detection in a shallow aquifer by monitoring groundwater pH, alkalinity, and dissolved inorganic carbon (DIC) using the periodic groundwater sampling method and a fiber-optic CO2 sensor for real-time in situ monitoring of dissolved CO2 in groundwater. Measurements of groundwater pH, alkalinity, DIC, and dissolved CO2 clearly deviated from their background values, showing responses to CO2 leakage. Dissolved CO2 observed in the tests was highly sensitive in comparison to groundwater pH, DIC, and alkalinity. Comparison of the pulselike CO2-release tests to other field tests suggests that pulselike CO2-release tests can provide reliable assessment of geochemical parameters indicative of CO2 leakage. Measurements by the fiber-optic CO2 sensor, showing obvious leakage signals, demonstrated the potential of real-time in situ monitoring of dissolved CO2 for leakage detection at a geologic carbon sequestration (GCS) site. Results of a two-dimensional reactive transport model reproduced the geochemical measurements and confirmed that the decrease in groundwater pH and the increases in DIC and dissolved CO2 observed in the pulselike CO2-release tests were caused by dissolution of CO2 whereas alkalinity was likely affected by carbonate dissolution.
Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.
Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B
1997-06-01
Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.
Dissolution properties of co-amorphous drug-amino acid formulations in buffer and biorelevant media.
Heikkinen, A T; DeClerck, L; Löbmann, K; Grohganz, H; Rades, T; Laitinen, R
2015-07-01
Co-amorphous formulations, particularly binary drug-amino acid mixtures, have been shown to provide enhanced dissolution for poorly-soluble drugs and improved physical stability of the amorphous state. However, to date the dissolution properties (mainly intrinsic dissolution rate) of the co-amorphous formulations have been tested only in buffers and their supersaturation ability remain unexplored. Consequently, dissolution studies in simulated intestinal fluids need to be conducted in order to better evaluate the potential of these systems in increasing the oral bioavailability of biopharmaceutics classification system class II drugs. In this study, solubility and dissolution properties of the co-amorphous simvastatin-lysine, gibenclamide-serine, glibenclamide-threonine and glibenclamide-serine-threonine were studied in phosphate buffer pH 7.2 and biorelevant media (fasted and fed state simulated intestinal fluids (FaSSIF and FeSSIF, respectively)). The co-amorphous formulations were found to provide a long-lasting supersaturation and improve the dissolution of the drugs compared to the crystalline and amorphous drugs alone in buffer. Similar improvement, but in lesser extent, was observed in biorelevant media suggesting that a dissolution advantage observed in aqueous buffers may overestimate the advantage in vivo. However, the results show that, in addition to stability advantage shown earlier, co-amorphous drug-amino acid formulations provide dissolution advantage over crystalline drugs in both aqueous and biorelevant conditions.
Effects of polyphosphates and fluoride on hydroxyapatite dissolution: A pH-stat investigation.
do Amaral, Jackeline Gallo; Delbem, Alberto Carlos Botazzo; Pessan, Juliano Pelim; Manarelli, Michele Mauricio; Barbour, Michele E
2016-03-01
This study investigated the immediate and sustained effect of sodium trimetaphosphate (TMP) and sodium hexametaphosphate (HMP) associated or not with fluoride (F) on hydroxyapatite (HA) dissolution using an erosion-like model, considering as well as the influence of salivary coating. Baseline dissolution rates were determined for HA discs using a pH-stat system. In the first set of experiments, HA discs were treated with 1100μgF/mL, 1% or 8% of HMP, 1% or 8% of TMP and 1100μgF/mL associated with 1% or 8% of HMP or TMP, totaling 9 groups (n=8). In a second phase, HA discs were kept in pooled human saliva at 37°C for 2h before treatment with deionised water and 1100μgF/mL associated with 1% or 8% of HMP or TMP, totaling 5 groups (n=8). The post-treatment dissolution rate was determined from three consecutive 30-min assays. Data were analysed using 2 and 3-way ANOVA followed by Fisher and Holm-Sidak methods, respectively (α=0.05). All test solutions promoted reduction in HA dissolution rate when compared to baseline control in the first post-treatment run (p<0.001). However, a synergistic effect was only observed between fluoride and 1% HMP. Moreover, the duration of inhibitory effect was greater when 8% HMP and 1 or 8% HMP associated with F were assessed (p<0.001). The presence of salivary coating led to higher protection for all groups when compared to discs without coating (p<0.001). The reduction of HA dissolution rate, as well as the duration of this effect were influenced by fluoride, type and concentration of phosphate salt and the presence of a salivary coating. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zupančič, Špela; Potrč, Tanja; Baumgartner, Saša; Kocbek, Petra; Kristl, Julijana
2016-12-01
Nanofibers combined with an antimicrobial represent a powerful strategy for treatment of various infections. Local infections usually have a low fluid volume available for drug release, whereas pharmacopoeian dissolution tests include a much larger receptor volume. Therefore, the development of novel drug-release methods that more closely resemble the in-vivo conditions is necessary. We first developed novel biocompatible and biodegradable chitosan/polyethylene oxide nanofibers using environmentally friendly electrospinning of aqueous polymer solutions, with the inclusion of the antimicrobial metronidazole. Here, the focus is on the characterization of these nanofibers, which have high potential for bioadhesion and retention at the site of application. These can be used where prolonged retention of the delivery system at an infected target site is needed. Drug release was studied using three in-vitro methods: a dissolution apparatus (Apparatus 1 of the European Pharmacopoeia), vials, and a Franz diffusion cell. In contrast to other studies, here the Franz diffusion cell method was modified to introduce a small volume of medium with the nanofibers in the donor compartment, where the nanofibers swelled, eroded, and released the metronidazole, which then diffused into the receptor compartment. This set-up with nanofibers in a limited amount of medium released the drug more slowly compared to the other two in-vitro methods that included larger volumes of medium. These findings show that drug release from nanofibers strongly depends on the release method used. Therefore, in-vitro test methods should closely resemble the in-vivo conditions for more accurate prediction of drug release at a therapeutic site. Copyright © 2016 Elsevier B.V. All rights reserved.
Kim, Tae Hwan; Shin, Soyoung; Bulitta, Jürgen B; Youn, Yu Seok; Yoo, Sun Dong; Shin, Beom Soo
2017-01-03
Establishing a level A in vitro-in vivo correlation (IVIVC) for a drug with complex absorption kinetics is challenging. The objective of the present study was to develop an IVIVC approach based on population pharmacokinetic (POP-PK) modeling that incorporated physiologically relevant absorption kinetics. To prepare three extended release (ER) tablets of loxoprofen, three types of hydroxypropyl methylcellulose (HPMC 100, 4000, and 15000 cps) were used as drug release modifiers, while lactose and magnesium stearate were used as the diluent and lubricant, respectively. An in vitro dissolution test in various pH conditions showed that loxoprofen dissolution was faster at higher pH. The in vivo pharmacokinetics of loxoprofen was assessed following oral administration of the different loxoprofen formulations to Beagle dogs (n = 22 in total). Secondary peaks or shoulders were observed in many of the individual plasma concentration vs time profiles after ER tablet administration, which may result from secondary absorption in the intestine due to a dissolution rate increase under intestinal pH compared to that observed at stomach pH. In addition, in vivo oral bioavailability was found to decrease with prolonged drug dissolution, indicating site-specific absorption. Based on the in vitro dissolution and in vivo absorption data, a POP-PK IVIVC model was developed using S-ADAPT software. pH-dependent biphasic dissolution kinetics, described using modified Michaelis-Menten kinetics with varying V max , and site-specific absorption, modeled using a changeable absorbed fraction parameter, were applied to the POP-PK IVIVC model. To experimentally determine the biphasic dissolution profiles of the ER tablets, another in vitro dissolution test was conducted by switching dissolution medium pH based on an in vivo estimate of gastric emptying time. The model estimated, using linear regression, that in vivo initial maximum dissolution rate (V max (0) in vivo ) was highly correlated (r 2 > 0.998) with in vitro (V max (0) in vitro ), indicating that in vivo dissolution profiles obtained from POP-PK modeling could be converted to in vitro dissolution profiles and vice versa. Monte Carlo simulations were performed for model validation, and prediction errors for C max and AUC were all within the acceptable range (90 to 110%) according to the FDA guidelines. The developed model was successfully applied for the prediction of in vivo pharmacokinetics of a loxoprofen double-layered tablet using the in vitro dissolution profile. In conclusion, a level A IVIVC approach was developed and validated using population modeling that accounted for pH-dependent dissolution and site-specific absorption. Excellent correlations were observed between in vitro and in vivo dissolution profiles. This new approach holds great promise for the establishment of IVIVCs for drug and formulation development where absorption kinetics strongly depend on complex physiologically absorption processes.
Meshali, M; El-Sabbagh, H; Ghanem, A; Foda, A
1983-06-01
The dissolution rates of trimethoprim (T), and sulphamethoxazole (S), from different brands of tablets and suspensions were studied at pH = 1.1 and 7.2. The bioavailabilities of both drugs in humans were studied by the urine excretion method. The dissolution rates were dependent on the pH of the dissolution medium, the solubilities of the drugs at the pH involved, the dosage form and the brand studied. While the dissolution rates of T from all brands studied were consistent with their pH-dependent solubility, those of S were not. The dissolution rates of S from suspensions were found to be equal at pH = 7.2, but different at pH = 1.1. A correlation existed between the dissolution rate of T at pH = 1.1 from tablets and the excretion rate in humans. With S, however, no such correlation was observed at either pH.
A New Method to Determine the Half-Life for Penicillin Using Microcalorimeter
NASA Astrophysics Data System (ADS)
Li, Z. X.; Zhao, W. W.
2015-01-01
The dissolution process of penicillin in normal saline and isotonic glucose solution was reported using a microcalorimeter. Both the integral and differential heats of solution were measured. The quantitative relationships between the amount of heat released and the quantity of dissolved penicillin were established. Meanwhile, the kinetics and the half-life of the dissolution processes as well as the enthalpy of solution, the entropy of dissolution, and the free energy of dissolution were determined. The results showed that a change of the solvent from normal saline to isotonic glucose solution had little effect on the half-life of penicillin in the dissolution process, and there was no significant difference between the stabilities of penicillin in isotonic glucose solution and normal saline. Moreover, the dissolution process of penicillin in isotonic glucose solution followed the first-order kinetics. These results could provide a theoretical basis for the clinical applications of penicillin.
Collier, J W; Shah, R B; Bryant, A R; Habib, M J; Khan, M A; Faustino, P J
2011-02-20
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (L-T(4)) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250 mm × 3.9 mm) using a 0.01 M phosphate buffer (pH 3.0)-methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 μL and the column temperature was maintained at 28°C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r(2)>0.99) over the analytical range of 0.08-0.8 μg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for L-T(4) over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. Published by Elsevier B.V.
Collier, J.W.; Shah, R.B.; Bryant, A.R.; Habib, M.J.; Khan, M.A.; Faustino, P.J.
2011-01-01
A rapid, selective, and sensitive gradient HPLC method was developed for the analysis of dissolution samples of levothyroxine sodium tablets. Current USP methodology for levothyroxine (l-T4) was not adequate to resolve co-elutants from a variety of levothyroxine drug product formulations. The USP method for analyzing dissolution samples of the drug product has shown significant intra- and inter-day variability. The sources of method variability include chromatographic interferences introduced by the dissolution media and the formulation excipients. In the present work, chromatographic separation of levothyroxine was achieved on an Agilent 1100 Series HPLC with a Waters Nova-pak column (250mm × 3.9mm) using a 0.01 M phosphate buffer (pH 3.0)–methanol (55:45, v/v) in a gradient elution mobile phase at a flow rate of 1.0 mL/min and detection UV wavelength of 225 nm. The injection volume was 800 µL and the column temperature was maintained at 28 °C. The method was validated according to USP Category I requirements. The validation characteristics included accuracy, precision, specificity, linearity, and analytical range. The standard curve was found to have a linear relationship (r2 > 0.99) over the analytical range of 0.08–0.8 µg/mL. Accuracy ranged from 90 to 110% for low quality control (QC) standards and 95 to 105% for medium and high QC standards. Precision was <2% at all QC levels. The method was found to be accurate, precise, selective, and linear for l-T4 over the analytical range. The HPLC method was successfully applied to the analysis of dissolution samples of marketed levothyroxine sodium tablets. PMID:20947276
HEPA filter dissolution process
Brewer, K.N.; Murphy, J.A.
1994-02-22
A process is described for dissolution of spent high efficiency particulate air (HEPA) filters and then combining the complexed filter solution with other radioactive wastes prior to calcining the mixed and blended waste feed. The process is an alternate to a prior method of acid leaching the spent filters which is an inefficient method of treating spent HEPA filters for disposal. 4 figures.
Tomita, Takashi; Kohda, Yukinao; Kudo, Kenzo
2018-01-01
For patients with dysphagia in medical facilities and nursing homes, food thickeners are routinely used to aid the ingestion of medicines such as tablets. However, some types of thickeners affect the disintegration and dissolution of tablets, such as rapidly-disintegrating magnesium oxide tablets and donepezil hydrochloride orally disintegrating tablets. Additionally, delayed disintegration and dissolution of tablets affect a drug's efficacy. As an example, with Voglibose orally disintegrating tablets, marked differences are observed in changes in glucose levels during glucose tolerance testing. When using food thickeners to aid tablet ingestion, it is therefore necessary to select a product that has little effect on drug disintegration, dissolution, and activity.
Tran, Phuong Ha-Lien; Tran, Thao Truong-Dinh; Lee, Kyoung-Ho; Kim, Dong-Jin; Lee, Beom-Jin
2010-05-01
Although the solid dispersion method has been known to increase the dissolution rate of poorly water-soluble drugs by dispersing them in hydrophilic carriers, one obstacle of the solid dispersion method is its limited solubilization capacity, especially for pH-dependent soluble drugs. pH-modified solid dispersion, in which pH modifiers are incorporated, may be a useful method for increasing the dissolution rate of weakly acidic or basic drugs. Sufficient research, including the most recent reports, was undertaken in this review. How could the inclusion of the pH the pH modifiers in the solid dispersion system change drug structural behaviors, molecular interactions, microenvironmental pH, and/or release rate of pH modifiers, relating with the enhanced dissolution of weakly acidic or weakly basic drugs with poor water solubility? These questions have been investigated to determine the dissolution-modulating mechanism of pH modifiers in solid dispersion containing weakly acidic or basic drugs. It is believed that step-by-step mechanistic approaches could provide the ultimate solution for solubilizing several poorly water-soluble drugs with pH-dependent solubility from a solid dispersion system, as well as provide ideas for developing future dosage systems.
Sathigari, Sateesh Kumar; Ober, Courtney A; Sanganwar, Ganesh P; Gupta, Ram B; Babu, R Jayachandra
2011-07-01
Itraconazole (ITZ) microflakes were produced by supercritical antisolvent (SAS) method and simultaneously mixed with pharmaceutical excipients in a single step to prevent drug agglomeration. Simultaneous ITZ particle formation and mixing with fast-flo lactose (FFL) was performed in a high-pressure stirred vessel at 116 bar and 40 °C by the SAS-drug excipient mixing (SAS-DEM) method. The effects of stabilizers, such as sodium dodecyl sulfate and poloxamer 407 (PLX), on particle formation and drug dissolution were studied. Drug-excipient formulations were characterized for surface morphology, crystallinity, drug-excipient interactions, drug content uniformity, and drug dissolution rate. Mixture of drug microflakes and FFL formed by the SAS-DEM process shows that the process was successful in overcoming drug-drug agglomeration. PLX produced crystalline drug flakes in loose agglomerates with superior dissolution and flow properties even at higher drug loadings. Characterization studies confirmed the crystallinity of the drug and absence of chemical interactions during the SAS process. The dissolution of ITZ was substantially higher due to SAS and SAS-DEM processes; this improvement can be attributed to the microflake particle structures, effective deagglomeration, and wetting of the drug flakes with the excipients. Copyright © 2011 Wiley-Liss, Inc. and the American Pharmacists Association
Glube, Natalie; Moos, Lea von; Duchateau, Guus
2013-01-01
Purpose In vitro disintegration and dissolution are routine methods used to assess the performance and quality of oral dosage forms. The purpose of the current work was to determine the potential for interaction between capsule shell material and a green tea extract and the impact it can have on the release. Methods A green tea extract was formulated into simple powder-in-capsule formulations of which the capsule shell material was either of gelatin or HPMC origin. The disintegration times were determined together with the dissolution profiles in compendial and biorelevant media. Results All formulations disintegrated within 30 min, meeting the USP criteria for botanical formulations. An immediate release dissolution profile was achieved for gelatin capsules in all media but not for the specified HPMC formulations. Dissolution release was especially impaired for HPMCgell at pH 1.2 and for both HPMC formulations in FeSSIF media suggesting the potential for food interactions. Conclusions The delayed release from studied HPMC capsule materials is likely attributed to an interaction between the catechins, the major constituents of the green tea extract, and the capsule shell material. An assessment of in vitro dissolution is recommended prior to the release of a dietary supplement or clinical trial investigational product to ensure efficacy. PMID:25755998
Sawicki, E; Schellens, J H M; Beijnen, J H; Nuijen, B
2016-11-01
Dissolution from the pharmaceutical formulation is a prerequisite for complete and consistent absorption of any orally administered drug, including anticancer agents (oncolytics). Poor dissolution of an oncolytic can result in low oral bioavailability, high variability in blood concentrations and with that suboptimal or even failing therapy. This review discusses pharmaceutical formulation aspects and absorption pharmacokinetics of currently licensed orally administered oncolytics. In nearly half of orally dosed oncolytics poor dissolution is likely to play a major role in low and unpredictable absorption. Dissolution-limited drug absorption can be improved with a solid dispersion which is a formulation method that induces super-saturated drug dissolution and with that it enhances in vivo absorption. This review discusses formulation principles with focus on the solid dispersion technology and how it works to enhance drug absorption. There are currently three licensed orally dosed oncolytics formulated as a solid dispersion (everolimus, vemurafenib and regorafenib) and these formulations result in remarkably improved dissolution and absorption compared to what can be achieved with conventional formulations of the respective oncolytics. Because of the successful implementation of these three solid dispersion formulations, we encourage the application of this formulation method for poorly soluble oral oncolytics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Yan, Hong-Mei; Zhang, Zhen-Hai; Jiang, Yan-Rong; Ding, Dong-Mei; Sun, E; Jia, Xiao-Bin
2014-04-01
Tanshinone IIA (TSIIA) on solid dispersions (SDs) has thermodynamical instability of amorphous drug. Ternary solid dispersions (tSDs) can extend the stability of the amorphous form of drug. Poloxamer 188 was used as a SD carrier. Nano-CaCO3 played an important role in adsorption of biomolecules and is being developed for a host of biotechnological applications. The aim of the present study was to investigate the dissolution behavior and accelerated stability of TSIIA on solid dispersions (SDs) by the use of ternary systems with nano-CaCO3 and poloxamer 188. The TSIIA tSDs were prepared by a spray-drying method. First, the effect of combination of poloxamer 188 and nano-CaCO3 on TSIIA dissolution was studied. Subsequently, a set of complementary techniques (DSC, XRPD, SEM and FTIR) was used to monitor the physical changes of TSIIA in the SDs. Finally, stability test was carried out under the conditions 40°C/75% RH for 6 months. The characterization of tSDs by differential scanning calorimetry analysis (DSC) and X-ray powder diffraction (XRPD) showed that TSIIA was present in its amorphous form. Fourier transforms infrared spectroscopy (FTIR) suggested the presence of interactions between TSIIA and carriers in tSDs. Improvement in the dissolution rate was observed for all SDs. The stability study conducted on SDs with nano-CaCO3 showed stable drug content and dissolution behavior, over the period of 6 months as compared with freshly prepared SDs. SDs preparation with nano-CaCO3 and poloxamer 188 may be a promising approach to enhance the dissolution and stability of TSIIA.
Bikiaris, Dimitrios N
2011-12-01
The absorption of poorly water-soluble drugs, when presented in the crystalline state to the gastrointestinal tract, is typically dissolution rate-limited, and according to BCS these drugs belong mainly to class II. Both dissolution kinetics and solubility are particle size dependent. Nowadays, various techniques are available to the pharmaceutical industry for dissolution rate enhancement of such drugs. Among such techniques, nanosuspensions and drug formulation in solid dispersions are those with the highest interest. This review discusses strategies undertaken over the last 10 years, which have been applied for the dissolution enhancement of poorly water-soluble drugs; such processes include melt mixing, electrospinning, microwave irradiation and the use of inorganic nanoparticles. Many problems in this field still need to be solved, mainly the use of toxic solvents, and for this reason the use of innovative new procedures and materials will increase over the coming years. Melt mixing remains extremely promising for the preparation of SDs and will probably become the most used method in the future for the preparation of solid drug dispersions.
Liu, Nan; Higashi, Kenjirou; Ueda, Keisuke; Moribe, Kunikazu
2017-10-15
Various ternary Guest 2/(Guest 1/γ-cyclodextrin (CD)) complexes were prepared using a cogrinding and subsequent heating method, wherein Guest 1 was incorporated in the cavity of γ-CD and Guest 2 was incorporated into the intermolecular spaces between γ-CD columns. Dissolution fluxes of Guest 1 and Guest 2 from all ternary complexes were almost identical. The dissolution flux of flurbiprofen (Guest 1) from the ternary complexes depended on the solubility of Guest 2 drugs (naproxen
Dissolution Studies of Papaverine Hydrochloride from Tablets in Three Pharmacopoeia Apparatuses.
Polski, Andrzej; Kasperek, Regina; Rogowska, Magdalena; Iwaniak, Karol; Sobòtka-Polska, Karolina; Poleszak, Ewa
2015-01-01
In tablet production, the most important aspects are the physical properties of the tablets and their dissolution studies, which can be performed in four pharmacopoeial apparatuses. There are differences between them in construction and action, so differences in the results obtained are possible. The aim of the study was to compare the release of a model drug substance (papaverine hydrochloride) from tablets in three pharmacopoeial dissolution apparatus: a basket, a paddle (closed system) and flow-through cell (open system). The one series of tablets were produced by direct compression in a tablet press. The physical properties of the tablets (weight and size uniformity test, friability and hardness tests, disintegration time test), drug content and the release study of papaverine hydrochloride from tablets were studied in three dissolution apparatuses. The content of the active substance was studied spectrophotometrically. All tablets met the pharmacopoeic requirements. Over 80% of the model substance released from the tablets after 14 min in flow through the cell apparatus, while in the basket and paddle apparatuses after about 7 min 30 sec. After 20 min, the amount of the substance released in all apparatuses was over 90%. The release profiles of the drug substance in paddle and basket apparatuses were similar, while in the flow-through cell apparatus it was slightly slower. When the study conditions and composition of the tablets are the same, the release profile of the drug can be affected by the type of dissolution apparatus.
Brokenhearts: Dissolution of Romantic Relationships.
ERIC Educational Resources Information Center
Meeker, F. B.; La Fong, Carl
Results of an investigation examining the dissolution of romantic relationships are analyzed. Men and women (N=105) who had ended romantic relationships were surveyed in structured individual interviews. Commonalities and differences in respondents' perceptions of the experience were examined. Specific tests were made of a corollary to Waller's…
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2011 CFR
2011-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2013 CFR
2013-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2014 CFR
2014-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2012 CFR
2012-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
21 CFR 343.90 - Dissolution and drug release testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
...) Aspirin capsules. Aspirin capsules must meet the dissolution standard for aspirin capsules as contained in the United States Pharmacopeia (USP) 23 at page 132. (c) Aspirin delayed-release capsules and aspirin delayed-release tablets. Aspirin delayed-release capsules and aspirin delayed-release tablets must meet...
Fagerlund, S; Hupa, L; Hupa, M
2013-02-01
A continuous flow measurement system with sensitive on-line ion analysis has been applied to study the initial dissolution behaviour of biocompatible glasses in Tris. Altogether 16 glasses with widely varying compositions were studied. The measurement system allowed for quantitative determination of the time-dependent rates of dissolution of sodium, potassium, calcium, magnesium, silicon and phosphorus during the first 10-15 min in contact with Tris solution. The dissolution rates of the different ions showed significant glass to glass variations, but all glasses studied showed one of four distinct dissolution patterns. The ion dissolution rates after an exposure of 1000 s, expressed as the normalized surface-specific mass loss rates, were compared with the in vitro and in vivo reactivity of the glasses as predicted by models in the literature. The results showed a clear correlation between the dissolution rates of the glasses in Tris and their reactivity as measured by other different methods. Consequently, the measured short-term dissolution patterns could be used to determine which glasses are suitable as bioactive, biodegradable, or inert biomaterials for medical devices. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Effect of Food Thickener on Dissolution and Laxative Activity of Magnesium Oxide Tablets in Mice.
Tomita, Takashi; Goto, Hidekazu; Yoshimura, Yuya; Kato, Kazushige; Yoshida, Tadashi; Tanaka, Katsuya; Sumiya, Kenji; Kohda, Yukinao
2016-01-01
The present study examined the dissolution of magnesium oxide (MgO) from MgO tablets placed in a food thickening agent (food thickener) and its effects on laxative activity. We prepared mixtures of MgO tablets suspended in an aqueous suspension and food thickeners in order to evaluate the dissolution of MgO. The results of the dissolution tests revealed that agar-based food thickeners did not affect the MgO dissolution. In contrast, some xanthan gum-based food-thickener products show dissolution rates with certain mixtures containing disintegrated MgO tablets suspended in a food thickener that decrease over time. However, other xanthan gum-based food-thickener products show dissolution rates that decrease immediately after mixing, regardless of the time they were allowed to stand. In order to investigate the laxative activity of MgO, we orally administered a mixture of MgO suspension and food thickener to mice and observed their bowel movements. The animal experiments showed that when agar-based food thickeners were used, the laxative activity of MgO was not affected, but it decreased when xanthan gum-based food thickeners were used.
How does natural groundwater flow affect CO2 dissolution in saline aquifers?
NASA Astrophysics Data System (ADS)
Rosenzweig, R.; Michel-Meyer, I.; Tsinober, A.; Shavit, U.
2017-12-01
The dissolution of supercritical CO2 in aquifer brine is one of the most important trapping mechanisms in CO2 geological storage. Diffusion-limited dissolution is a very slow process. However, since the CO2-rich water is slightly denser than the CO2-free water, when CO2-free water is overlaid by heavier CO2-rich water, convective instability results in fingers of dense CO2-rich water that propagate downwards, causing CO2-unsaturated water to move upwards. This convection process significantly accelerates the dissolution rate of CO2 into the aquifer water.Most previous works have neglected the effect of natural groundwater flow and assumed it has no effect on the dissolution dynamics. However, it was found that in some of the saline aquifers groundwater flow rate, although small, is not zero. In this research, we study the effect of groundwater flow on dissolution by performing laboratory experiments in a bead pack cell using a mixture of methanol and ethylene-glycol as a CO2 analog while varying the water horizontal flow rate. We find that water horizontal flow decreases the number of fingers, their wavelength and their propagation velocity. When testing high water flow rates, no fingers were developed and the dissolution process was entirely diffusive. The effect of water flow on the dissolution rate did not show a clear picture. When increasing the horizontal flow rate the convective dissolution flux slightly decreased and then increased again. It seems that the combination of density-driven flow, water horizontal flow, mechanical dispersion and molecular diffusion affect the dissolution rate in a complex and non-monotonic manner. These intriguing dynamics should be further studied to understand their effect on dissolution trapping.
Tanomaru-Filho, Mário; Silveira, Bruna Ramos Franco; Martelo, Roberta Bosso; Guerreiro-Tanomaru, Juliane Maria
2015-11-01
To evaluated the tissue dissolution of sodium hypochlorite (NaOCl) and peracetic acid (PA) solutions at different concentrations, with or without ultrasonic agitation. The following solutions were analyzed: 2.5% NaOCl, 0.5, 1 and 2% PA, 1% PA associated with 6.5% hydrogen peroxide (HP) and saline. Fragments of bovine pulp tissue with 25 ± 2g mg were immersed into test tubes containing 4 mL of the solutions for 10 minutes. In the groups with agitation, pulp tissues were submitted to 2 cycles of 1 minute of ultrasonic agitation. The specimens were weighed after the removal from the solutions. The percentage of mass loss was calculated according to the difference of mass before and after exposure to solutions. Data were submitted to ANOVA and Tukey tests (p < 0.05). A total of 2.5% NaOCl with or without agitation showed the higher tissue dissolution (between 64.5 and 67% of mass reduction) (p < 0.005). By comparing the PA solutions, the concentrations of 1 and 2% with or without agitation and the concentration of 0.5% with agitation showed similar dissolution activity (between 35.4 and 44% of mass reduction). The use of the ultrasonic agitation promoted an increase of the dissolution ability only for 0.5% PA. Peracetic acid solution has pulp tissue dissolution. However, this ability is lower than 2.5% NaOCl solution. The sodium hypochlorite solution shows higher ability to dissolve tissue than PA.
Van Nijlen, T; Brennan, K; Van den Mooter, G; Blaton, N; Kinget, R; Augustijns, P
2003-03-26
The purpose of this study was to enhance the dissolution rate of artemisinin in order to improve the intestinal absorption characteristics. The effect of: (1) micronisation and (2) formation of solid dispersions with PVPK25 was assessed in an in vitro dissolution system [dissolution medium: water (90%), ethanol (10%) and sodium lauryl sulphate (0.1%)]. Coulter counter analysis was used to measure particle size. X-ray diffraction and DSC were used to analyse the physical state of the powders. Micronisation by means of a jet mill and supercritical fluid technology resulted in a significant decrease in particle size as compared to untreated artemisinin. All powders appeared to be crystalline. The dissolution rate of the micronised forms improved in comparison to the untreated form, but showed no difference in comparison to mechanically ground artemisinin. Solid dispersions of artemisinin with PVPK25 as a carrier were prepared by the solvent method. Both X-ray diffraction and DSC showed that the amorphous state was reached when the amount of PVPK25 was increased to 67%. The dissolution rate of solid dispersions with at least 67% of PVPK25 was significantly improved in comparison to untreated and mechanically ground artemisinin. Modulation of the dissolution rate of artemisinin was obtained by both particle size reduction and formation of solid dispersions. The effect of particle size reduction on the dissolution rate was limited. Solid dispersions could be prepared by using a relatively small amount of PVPK25. The formation of solid dispersions with PVPK25 as a carrier appears to be a promising method to improve the intestinal absorption characteristics of artemisinin. Copyright 2003 Elsevier Science B.V.
Pennings, F H; Kwee, B L S; Vromans, H
2006-01-01
Gelatin exhibits cross-linking upon storage at stress conditions. Capsules stored at these conditions fail to show appropriate in vitro dissolution. The aim of this study is to show the effect of surfactants in the medium on the disintegration of the gelatin capsule. This is demonstrated in the presence and absence of the enzymes pancreatin and pepsin, the function of which is to improve the dissolution. Sodium lauryl sulfate (SLS) and Tween 80 are tested as surfactants. When SLS is used in the medium, dissolution is significantly hampered due to the formation of a less soluble precipitate of gelatin. Compared to SLS, Tween 80 shows far better disintegration and solubility results in dissolution media with neutral or low pH. Therefore, it is concluded in this study that Tween 80 is preferred when a surfactant is necessary to comply with sink condition requirements.
Lalani, Mirza; Kaur, Harparkash; Mohammed, Nader; Mailk, Naiela; van Wyk, Albert; Jan, Sakhi; Kakar, Rishtya Meena; Mojadidi, Mohammed Khalid; Leslie, Toby
2015-01-01
Good-quality antimalarials are crucial for the effective treatment and control of malaria. A total of 7,740 individual and packaged tablets, ampoules, and syrups were obtained from 60 randomly selected public (N = 35) and private outlets (N = 25) in Afghanistan. Of these, 134 samples were screened using the Global Pharma Health Fund (GPHF) MiniLab® in Kabul with 33/126 (26%) samples failing the MiniLab® disintegration test. The quality of a subsample (N = 37) of cholorquine, quinine, and sulfadoxine/pyrimethamine tablets was assessed by in vitro dissolution testing following U.S. Pharmacopeia (USP) monographs at a bioanalytical laboratory in London, United Kingdom. Overall, 12/32 (32%) samples of sulfadoxine/pyrimethamine and quinine were found not to comply with the USP tolerance limits. Substandard antimalarials were available in Afghanistan demonstrating that continuous monitoring of drug quality is warranted. However, in Afghanistan as in many low-income countries, capacity to determine and monitor drug quality using methods such as dissolution testing needs to be established to empower national authorities to take appropriate action in setting up legislation and regulation. PMID:25897070
Adolescent Sexuality and the Risk of Marital Dissolution
ERIC Educational Resources Information Center
Paik, Anthony
2011-01-01
This research investigates whether first sexual intercourse during adolescence is associated with increased risk of first marriage dissolution and tests whether the results are consistent with causal or selection explanations. Drawing on a sample of 3,793 ever-married women from the 2002 National Survey of Family Growth, this study estimated…
Bacterial growth on a superhydrophobic surface containing silver nanoparticles
NASA Astrophysics Data System (ADS)
Heinonen, S.; Nikkanen, J.-P.; Laakso, J.; Raulio, M.; Priha, O.; Levänen, E.
2013-12-01
The antibacterial effect of silver can be exploited in the food and beverage industry and medicinal applications to reduce biofouling of surfaces. Very small amount of silver ions are enough to destructively affect the metabolism of bacteria. Moreover, superhydrophobic properties could reduce bacterial adhesion to the surface. In this study we fabricated superhydrophobic surfaces that contained nanosized silver particles. The superhydrophobic surfaces were manufactured onto stainless steel as combination of ceramic nanotopography and hydrophobication by fluorosilane. Silver nanoparticles were precipitated onto the surface by a chemical method. The dissolution of silver from the surface was tested in an aqueous environment under pH values of 1, 3, 5, 7, 9, 11 and 13. The pH value was adjusted with nitric acid and ammonia. It was found that dissolution rate of silver increased as the pH of the solution altered from the pH of de-ionized water to lower and higher pH values but dissolution occurred also in de-ionized water. The antimicrobial potential of this coating was investigated using bacterial strains isolated from the brewery equipment surfaces. The results showed that the number of bacteria adhering onto steel surface was significantly reduced (88%) on the superhydrophobic silver containing coating.
Pestieau, Aude; Evrard, Brigitte
2017-05-01
For many decades, one of the most critical issues in the pharmaceutical industry has been the poor solubility of some drugs. Indeed, a prerequisite for drug absorption is the presence of dissolved drug at the absorption site and this can be challenging for compounds with low aqueous solubility such as BCS class II (low solubility, high permeability) and IV (low solubility, low permeability) compounds. If the development of oral delivery formulations of these compounds is frequently challenging to formulation scientists in the pharmaceutical industry, the in vitro evaluation of these new formulations is also a great challenge. One alternative approach to overcome the problems encountered with conventional dissolution methods is the use of biphasic dissolution systems. This review provides an overview of the origin and the evolution over time of the biphasic systems and the growing interest among scientists regarding their suitability for establishing in vitro-in vivo correlations. The evolution of these systems and their applications from the 1960s to the present day, such as in system variants and improvements, analysis of complex formulations, discriminatory power, bio-relevance, precipitation and supersaturation visualization, etc. will be discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation
Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan
2017-01-01
Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 32 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate. PMID:29071222
Pharmaceutical Cocrystal of Piroxicam: Design, Formulation and Evaluation.
Panzade, Prabhakar; Shendarkar, Giridhar; Shaikh, Sarfaraj; Balmukund Rathi, Pavan
2017-09-01
Purpose: Cocrystallisation of drug with coformers is a promising approach to alter the solid sate properties of drug substances like solubility and dissolution. The objective of the present work was to prepare, formulate and evaluate the piroxicam cocrystal by screening various coformers. Methods: Cocrystals of piroxicam were prepared by dry grinding method. The melting point and solubility of crystalline phase was determined. The potential cocrystal was characterized by DSC, IR, XRPD. Other pharmaceutical properties like solubility and dissolution rate were also evaluated. Orodispersible tablets of piroxicam cocrystal were formulated, optimized and evaluated using 3 2 factorial design. Results: Cocrystals of piroxicam-sodium acetate revealed the variation in melting points and solubility. The cocrystals were obtained in 1:1 ratio with sodium acetate. The analysis of Infrared explicitly indicated the shifting of characteristic bands of piroxicam. The X-Ray Powder Diffraction pattern denoted the crystallinity of cocrystals and noteworthy difference in 2θ value of intense peaks. Differential scanning calorimetry spectra of cocrystals indicated altered endotherms corresponding to melting point. The pH solubility profile of piroxicam showed sigmoidal curve, which authenticated the pKa-dependent solubility. Piroxicam cocrystals also exhibited a similar pH-solubility profile. The cocrystals exhibited faster dissolution rate owing to cocrystallization as evident from 30% increase in the extent of dissolution. The orodispersible tablets of piroxicam cocrystals were successfully prepared by direct compression method using crosscarmelose sodium as superdisintegrant with improved disintegration time (30 sec) and dissolution rate. Conclusion: The piroxicam cocrystal with modified properties was prepared with sodium acetate and formulated as orodispersible tablets having faster disintegration and greater dissolution rate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
Jantzen, Carol M.; Trivelpiece, Cory L.; Crawford, Charles L.; ...
2017-02-18
Glass corrosion data from the ALTGLASS™ database were used to determine if gel compositions, which evolve as glass systems corrode, are correlated with the generation of zeolites and subsequent increase in the glass dissolution rate at long times. The gel compositions were estimated based on the difference between the elemental glass starting compositions and the measured elemental leachate concentrations from the long-term product consistency tests (ASTM C1285) at various stages of dissolution, ie, reaction progress. A well-characterized subset of high level waste glasses from the database was selected: these glasses had been leached for 15-20 years at reaction progresses upmore » to ~80%. The gel composition data, at various reaction progresses, were subjected to a step-wise regression, which demonstrated that hydrogel compositions with Si*/Al* ratios of <1.0 did not generate zeolites and maintained low dissolution rates for the duration of the experiments. Glasses that formed hydrogel compositions with Si^*/Al^* ratios ≥1, generated zeolites accompanied by a resumption in the glass dissolution rate. Finally, the role of the gel Si/Al ratio, and the interactions with the leachate, provides the fundamental understanding needed to predict if and when the glass dissolution rate will increase due to zeolitization.« less
Preparation and Characterization of Liquisolid Compacts for Improved Dissolution of Telmisartan
Narra, Nataraj; Rama Rao, Tadikonda
2014-01-01
The objective of the present work was to obtain pH independent and improved dissolution profile for a poorly soluble drug, telmisartan using liquisolid compacts. Liquisolid compacts were prepared using Transcutol HP as vehicle, Avicel PH102 as carrier, and Aerosil 200 as a coating material. The formulations were evaluated for drug excipient interactions, change in crystallinity of drug, flow properties, and general quality control tests of tablets using Fourier transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC), X-ray diffraction (XRD), angle of repose, and various pharmacopoeial tests. In vitro dissolution studies were performed at three pH conditions (1.2, 4.5 and 7.4). Stability studies were performed at 40°C and 75% RH for three months. The formulation was found to comply with Indian pharmacopoeial limits for tablets. FTIR studies confirmed no interaction between drug and excipients. XRD and DSC studies indicate change/reduction in crystallinity of drug. Dissolution media were selected based on the solubility studies. The optimized formulation showed pH independent release profile with significant improvement (P < 0.005) in dissolution compared to plain drug and conventional marketed formulation. No significant difference was seen in the tablet properties, and drug release profile after storage for 3 months. PMID:25371826
Multicomponent amorphous nanofibers electrospun from hot aqueous solutions of a poorly soluble drug.
Yu, Deng-Guang; Gao, Li-Dong; White, Kenneth; Branford-White, Christopher; Lu, Wei-Yue; Zhu, Li-Min
2010-11-01
To design and fabricate multicomponent amorphous electrospun nanofibers for synergistically improving the dissolution rate and permeation profiles of poorly water-soluble drugs. Nanofibers were designed to be composed of a poorly water soluble drug, helicid, a hydrophilic polymer polyvinylpyrrolidone as filament-forming matrix, sodium dodecyl sulfate as transmembrane enhancer and mannitol as taste masking agent, and were prepared from hot aqueous co-dissolving solutions of them. An elevated temperature electrospinning process was developed to fabricate the composite nanofibers, which were characterized using FESEM, DSC, XRD, ATR-FTIR, in vitro dissolution and permeation tests. The composite nanofibers were homogeneous with smooth surfaces and uniform structure, and the components were combined together in an amorphous state because of the favorable interactions such as hydrogen bonding, electrostatic interaction and hydrophobic interactions among them. In vitro dissolution and permeation tests demonstrated that the composite nanofibers had a dissolution rate over 26-fold faster than that of crude helicid particles and a 10-fold higher permeation rate across sublingual mucosa. A new type of amorphous material in the form of nanofibers was prepared from hot aqueous solutions of multiple ingredients using an electrospinning process. The amorphous nanofibers were able to improve the dissolution rate and permeation rate of helicid.
Pepin, Xavier J H; Flanagan, Talia R; Holt, David J; Eidelman, Anna; Treacy, Don; Rowlings, Colin E
2016-09-06
In silico absorption modeling has been performed, to assess the impact of in vitro dissolution on in vivo performance for ZURAMPIC (lesinurad) tablets. The dissolution profiles of lesinurad tablets generated using the quality control method were used as an input to a GastroPlus model to estimate in vivo dissolution in the various parts of the GI tract and predict human exposure. A model was set up, which accounts for differences of dosage form transit, dissolution, local pH in the GI tract, and fluid volumes available for dissolution. The predictive ability of the model was demonstrated by confirming that it can reproduce the Cmax observed for independent clinical trial. The model also indicated that drug product batches that pass the proposed dissolution specification of Q = 80% in 30 min are anticipated to be bioequivalent to the clinical reference batch. To further explore the dissolution space, additional simulations were performed using a theoretical dissolution profile below the proposed specification. The GastroPlus modeling indicates that such a batch will also be bioequivalent to standard clinical batches despite having a dissolution profile, which would fail the proposed dissolution specification of Q = 80% in 30 min. This demonstrates that the proposed dissolution specification sits comfortably within a region of dissolution performance where bioequivalence is anticipated and is not near an edge of failure for dissolution, providing additional confidence to the proposed specifications. Finally, simulations were performed using a virtual drug substance batch with a particle size distribution at the limit of the proposed specification for particle size. Based on these simulations, such a batch is also anticipated to be bioequivalent to clinical reference, demonstrating that the proposed specification limits for particle size distribution would give products bioequivalent to the pivotal clinical batches.
NASA Astrophysics Data System (ADS)
Santillan, Julius Joseph; Shichiri, Motoharu; Itani, Toshiro
2016-03-01
This work focuses on the application of a high speed atomic force microscope (HS-AFM) for the in situ visualization / quantification of the resist dissolution process. This technique, as reported in the past, has provided useful pointers on the formation of resist patterns during dissolution. This paper discusses about an investigation made on the quantification of what we refer to as "dissolution unit size" or the basic units of patterning material dissolution. This was done through the establishment of an originally developed analysis method which extracts the difference between two succeeding temporal states of the material film surface (images) to indicate the amount of change occurring in the material film at a specific span of time. Preliminary experiments with actual patterning materials were done using a positive-tone EUV model resist composed only of polyhydroxystyrene (PHS)-based polymer with a molecular weight of 2,500 and a polydispersity index of 1.2. In the absence of a protecting group, the material was utilized at a 50nm film thickness with post application bake of 90°C/60s. The resulting film is soluble in the alkali-based developer even without exposure. Results have shown that the dissolution components (dissolution unit size) of the PHS-based material are not of fixed size. Instead, it was found that aside from one constantly dissolving unit size, another, much larger dissolution unit size trend also occurs during material dissolution. The presence of this larger dissolution unit size suggests an occurrence of "polymer clustering". Such polymer clustering was not significantly present during the initial stages of dissolution (near the original film surface) but becomes more persistently obvious after the dissolution process reaches a certain film thickness below the initial surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Illangasekare, Tissa; Trevisan, Luca; Agartan, Elif
2015-03-31
Carbon Capture and Storage (CCS) represents a technology aimed to reduce atmospheric loading of CO 2 from power plants and heavy industries by injecting it into deep geological formations, such as saline aquifers. A number of trapping mechanisms contribute to effective and secure storage of the injected CO 2 in supercritical fluid phase (scCO 2) in the formation over the long term. The primary trapping mechanisms are structural, residual, dissolution and mineralization. Knowledge gaps exist on how the heterogeneity of the formation manifested at all scales from the pore to the site scales affects trapping and parameterization of contributing mechanismsmore » in models. An experimental and modeling study was conducted to fill these knowledge gaps. Experimental investigation of fundamental processes and mechanisms in field settings is not possible as it is not feasible to fully characterize the geologic heterogeneity at all relevant scales and gathering data on migration, trapping and dissolution of scCO 2. Laboratory experiments using scCO 2 under ambient conditions are also not feasible as it is technically challenging and cost prohibitive to develop large, two- or three-dimensional test systems with controlled high pressures to keep the scCO 2 as a liquid. Hence, an innovative approach that used surrogate fluids in place of scCO 2 and formation brine in multi-scale, synthetic aquifers test systems ranging in scales from centimeter to meter scale developed used. New modeling algorithms were developed to capture the processes controlled by the formation heterogeneity, and they were tested using the data from the laboratory test systems. The results and findings are expected to contribute toward better conceptual models, future improvements to DOE numerical codes, more accurate assessment of storage capacities, and optimized placement strategies. This report presents the experimental and modeling methods and research results.« less
Time-dependent Enhanced Corrosion of Ti6Al4V in the Presence of H2O2 and Albumin.
Zhang, Yue; Addison, Owen; Yu, Fei; Troconis, Brendy C Rincon; Scully, John R; Davenport, Alison J
2018-02-16
There is increasing concern regarding the biological consequences of metal release from implants. However, the mechanisms underpinning implant surface degradation, especially in the absence of wear, are often poorly understood. Here the synergistic effect of albumin and H 2 O 2 on corrosion of Ti6Al4V in physiological saline is studied with electrochemical methods. It is found that albumin induces a time-dependent dissolution of Ti6Al4V in the presence of H 2 O 2 in physiology saline. Potentiostatic polarisation measurements show that albumin supresses dissolution in the presence of H 2 O 2 at short times (<24 h) but over longer time periods (120 h) it significantly accelerates corrosion, which is attributed to albumin-catalysed dissolution of the corrosion product layer resulting in formation of a thinner oxide film. Dissolution of Ti6Al4V in the presence of albumin and H 2 O 2 in physiological saline is also found to be dependent on potential: the titanium ion release rate is found to be higher (0.57 µg/cm 2 ) at a lower potential (90 mV), where the oxide capacitance and resistance inferred from Electrochemical Impedance Spectroscopy also suggests a less resistant oxide film. The study highlights the importance of using more realistic solutions, and considering behaviour over longer time periods when testing corrosion resistance of metallic biomaterials.
Puthli, Shivanand; Vavia, Pradeep
2009-01-01
The aim of this study was to formulate and characterize a microparticulate system of progestin-only contraceptive. Another objective was to evaluate the effect of gamma radio-sterilization on in vitro and in vivo drug release characteristics. Levonorgestrel (LNG) microspheres were fabricated using poly(lactide-co-glycolide) (PLGA) by a novel solvent evaporation technique. The formulation was optimized for drug/polymer ratio, emulsifier concentration, and process variables like speed of agitation and evaporation method. The drug to polymer ratio of 1:5 gave the optimum encapsulation efficiency. Speed of agitation influenced the spherical shape of the microparticles, lower speeds yielding less spherical particles. The speed did not have a significant influence on the drug payloads. A combination of stabilizers viz. methyl cellulose and poly vinyl alcohol with in-water solvent evaporation technique yielded microparticles without any free drug crystals on the surface. This aspect significantly eliminated the in vitro dissolution "burst effect". The residual solvent content was well within the regulatory limits. The microparticles passed the test for sterility and absence of pyrogens. In vitro dissolution conducted on the product before and after gamma radiation sterilization at 2.5 Mrad indicated no significant difference in the drug release patterns. The drug release followed zero-order kinetics in both static and agitation conditions of dissolution testing. The in vivo studies conducted in rabbits exhibited LNG release up to 1 month duration with drug levels maintained within the effective therapeutic window.
Nacsa, A; Ambrus, R; Berkesi, O; Szabó-Révész, P; Aigner, Z
2008-11-04
The majority of active pharmaceutical ingredients are poorly soluble in water. The rate-determining step of absorption is the dissolution of these drugs. Inclusion complexation with cyclodextrin derivatives can lead to improved aqueous solubility and bioavailability of pharmacons due to the formation of co-crystals through hydrogen-bonding between the components. Inclusion complexes of loratadine were prepared by a convenient new method involving microwave irradiation and the products were compared with those of a conventional preparation method. Dissolution studies demonstrated that the solubility and rate of dissolution of loratadine increased in both of the methods used. The interactions between the components were investigated by thermal analysis and Fourier Transform Infrared studies. The microwave treatment did not cause any chemical changes in the loratadine molecule.
Assessment of pharmaceutical quality of furosemide tablets from multinational markets.
Qureshi, S A; McGilveray, I J
1998-11-01
This report describes results of a collaborative study in which samples of the 40-mg strength of furosemide tablets were evaluated following a common protocol based on British (BP), European (Ph. Eur.), and US Pharmacopoeial (USP) specifications. Several tests, including identification, uniformity of mass, and dissolution, were performed. In total, excluding Lasix lots, results for 162 lots obtained from 115 manufacturers or suppliers were submitted. Also, 23 laboratories identified and submitted data for 34 lots of Lasix products available in their countries. There were no reported abnormalities in the physical test requirements of the products analyzed. The summaries (n, mean, and 95% CI) of the assay results for the "standard sample" (a common sample), Lasix lots from participating countries, and for all other furosemide products, respectively, are as follows: 30, 99.8%, 96-104; 33, 100.0%, 94-106; and 162, 99.6, 94-105. About half (approximately 62%) of the reported uniformity of mass results based on tablet weights were in the range 150-175 mg/tablet. However, there appears to be notable variability in tablet weights that would result in significant differences in the ratios (0.14 to 0.40) of active ingredient to excipient. The reported disintegration times ranged from 0 (instantaneous) to 18 min, with most less than 1 min. The drug dissolution testing was conducted with phosphate buffer at pH 5.8 (USP recommended). Another test was conducted with acetate buffer at pH 4.6 (noncompendial). There appears to be remarkable similarity in overall percentage of drug release from the three types of products (standard sample, Lasix lots, and other products). Although apparently there is a very wide spread in dissolution characteristics of the products tested, the analyses of variance did not detect differences among the products tested and, to this extent, would not indicate differences in bioavailability characteristics for most of these products. It is observed that about 20-38% of the variability in dissolution testing is not product related (i.e., it is from the dissolution testing itself), while the remaining 62-80% variability is product related (manufacturing, formulation, etc). The results of this multinational collaborative study showed that most of the furosemide products available in different countries met the required pharmaceutical quality standards, including drug-release characteristics. Based on an extensive statistical analysis, the main concern from the study was that the high variability in drug dissolution testing would require wide tolerance standards (e.g., pharmacopoeial standards). This may result in lack of needed discriminating ability of the test in revealing the impacts of formulation and manufacturing changes on in vitro, and perhaps in vivo, drug-release characteristics.
Stojković, Aleksandra; Tajber, Lidia; Paluch, Krzysztof J; Djurić, Zorica; Parojčić, Jelena; Corrigan, Owen I
2014-03-01
Ciprofloxacin bioavailability may be reduced when ciprofloxacin is co-administered with metallic ion containing preparations. In our previous study, physicochemical interaction between ciprofloxacin and ferrous sulphate was successfully simulated in vitro. In the present work, comparative in vitro ciprofloxacin solubility and dissolution studies were performed in the reactive media containing aluminium hydroxide, calcium carbonate or zinc sulphate. Solid phases collected from the dissolution vessel with aluminium hydroxide, calcium carbonate and zinc sulphate were investigated for their properties. The results obtained indicate that different types of adducts may form and retard ciprofloxacin solubility and dissolution. In the case of aluminium, no phase changes were observed. The solid phase generated in the presence of calcium carbonate was identified as hydrated ciprofloxacin base. Similarly to iron, a new complex consistent with Zn(SO4)2(Cl)2(ciprofloxacin)2 × nH2O stoichiometry was generated in the presence of relatively high concentrations of ciprofloxacin hydrochloride and zinc sulphate, indicating that small volume dissolution experiments can be useful for biorelevant dissolution tests.
Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G
2016-08-01
Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.
Fukui, Atsuko; Fujii, Ryuta; Yonezawa, Yorinobu; Sunada, Hisakazu
2007-11-01
In the pharmaceutical preparation of a controlled release drug, it is very important and necessary to understand the release properties. The dissolution test is a very important and useful method for understanding and predicting drug-release properties. It was readily confirmed in the previous paper that the release process could be assessed quantitatively by a combination of the square-root time law and cube-root law equations for ethylcellulose (EC) matrix granules of phenylpropanolamine hydrochloride (PPA). In this paper EC layered granules were used in addition to EC matrix. The relationship between release property and the concentration of PPA in plasma after administration using beagle dogs were examined. Then it was confirmed that the correlativity for EC layered granules and EC matrix were similar each other. Therefore, it was considered that the dissolution test is useful for prediction of changes in concentration of PPA in the blood with time. And it was suggested that EC layered granules were suitable as a controlled release system as well as EC matrix.
Acoustic activation of water-in-oil microemulsions for controlled salt dissolution.
Baxamusa, Salmaan; Ehrmann, Paul; Ong, Jemi
2018-06-18
The dynamic nature of the oil-water interface allows for sequestration of material within the dispersed domains of a microemulsion. Microstructural changes should therefore change the dissolution rate of a solid surface in a microemulsion. We hypothesize that microstructural changes due to formulation and cavitation in an acoustic field will enable control over solid dissolution rates. Water-in-oil microemulsions were formulated using cyclohexane, water, Triton X-100, and hexanol. The microstructure and solvation properties of Winsor Type IV formulations were characterized. Dissolution rates of KH 2 PO 4 (KDP), were measured. A kinetic analysis isolated the effect of the microstructure, and rate enhancements due to cavitation effects on the microstructure were characterized by measuring dissolution rates in an ultrasonic field. Dispersed aqueous domains of 2-6 nm radius dissolve a solid block of KDP at 0-10 nm/min. Dissolution rate is governed not by the domain-surface collision frequency but rather by a dissolution probability per domain-surface encounter. Higher probabilities are correlated with larger domains. Rapid and reversible dissolution rate increases of up to 270× were observed under ultrasonic conditions, with <20% of the increase due to bulk heating effects. The rest is attributed to cavitation-induced changes to the domain microstructure, providing a simple method for remotely activating and de-activating dissolution. Copyright © 2018 Elsevier Inc. All rights reserved.
A Conserving Discretization for the Free Boundary in a Two-Dimensional Stefan Problem
NASA Astrophysics Data System (ADS)
Segal, Guus; Vuik, Kees; Vermolen, Fred
1998-03-01
The dissolution of a disk-likeAl2Cuparticle is considered. A characteristic property is that initially the particle has a nonsmooth boundary. The mathematical model of this dissolution process contains a description of the particle interface, of which the position varies in time. Such a model is called a Stefan problem. It is impossible to obtain an analytical solution for a general two-dimensional Stefan problem, so we use the finite element method to solve this problem numerically. First, we apply a classical moving mesh method. Computations show that after some time steps the predicted particle interface becomes very unrealistic. Therefore, we derive a new method for the displacement of the free boundary based on the balance of atoms. This method leads to good results, also, for nonsmooth boundaries. Some numerical experiments are given for the dissolution of anAl2Cuparticle in anAl-Cualloy.
How good is cola for dissolution of gastric phytobezoars?
Lee, Beom-Jae; Park, Jong-Jae; Chun, Hoon-Jai; Kim, Ji-Hoon; Yeon, Jong-Eun; Jeen, Yoon-Tae; Kim, Jae-Seon; Byun, Kwan-Soo; Lee, Sang-Woo; Choi, Jae-Hyun; Kim, Chang-Duck; Ryu, Ho-Sang; Bak, Young-Tae
2009-05-14
To evaluate the efficacy of cola treatment for gastric phytobezoars, including diospyrobezoars. A total of 17 patients (range: 48 to 78 years) with symptomatic gastric phytobezoars treated with cola and adjuvant endoscopic therapy were reviewed. Three liters of cola lavage (10 cases) or drink (7 cases) were initially used, and then endoscopic fragmentation was done for the remnant bezoars by using a lithotripsy basket or a polypectomy snare. The overall success of dissolving a gastric phytobezoars with using three liters of cola and the clinical and endoscopic findings were compared retrospectively between four cases of complete dissolution by using only cola and 13 cases of partial dissolution with cola. After 3 L of cola lavage or drinking, a complete dissolution of bezoars was achieved in four patients (23.5%), while 13 cases (76.5%) were only partially dissolved. Phytobezoars (4 of 6 cases) were observed more frequently than diospyrobezoars (0 of 11) in the group that underwent complete dissolution (P = 0.006). Gender, symptom duration, size of bezoar and method of cola administration were not significantly different between the two groups. Twelve of 13 patients with residual bezoars were completely treated with a combination of cola and endoscopic fragmentation. The rate of complete dissolution with three liters of cola was 23.5%, but no case of diospyrobezoar was completely dissolved using this method. However, pretreatment with cola may be helpful and facilitate endoscopic fragmentation of gastric phytobezoars.
Chojnacka, Aleksandra; Ghaffar, Abdul; Feilden, Andrew; Treacher, Kevin; Janssen, Hans-Gerd; Schoenmakers, Peter
2011-11-14
Knowledge on the solubility behaviour and dissolution rate of speciality and commodity polymers is very important for the use of such materials in high-tech applications. We have developed methods for the quantification and characterization of dissolved copolymers of N-vinyl-2-pyrrolidone (VP) and vinyl acetate (VA) during dissolution in water. The methods are based on pyrolysis (Py) performed in a programmed-temperature vaporization injector with subsequent identification and quantification of the components in the pyrolysate using capillary gas chromatography-mass spectrometry (GC-MS). By injecting large volumes and applying cryo-focussing at the top of the column, low detection limits could be achieved. The monomer ratio was found to have the greatest effect on the dissolution rate of the PVP-co-VA copolymers. The material with the highest amount of VA (50%) dissolves significantly slower than the other grades. Size-exclusion chromatography (SEC) and Py-GC-MS were used to measure molecular weights and average chemical compositions, respectively. Combined off-line SEC//Py-GC-MS was used to determine the copolymer composition (VP/VA ratio), as a function of the molecular weight for the pure polymers. In the dissolution experiments, a constant VP/VA ratio across the dissolution curve was observed for all copolymers analysed. This suggests a random distribution of the two monomers over the molecules. Copyright © 2011 Elsevier B.V. All rights reserved.
M. Badr-Eldin, Shaimaa; A. Ahmed, Tarek; R Ismail, Hatem
2013-01-01
Objective(s): The aim of this work was to investigate the effect of the natural and the chemically modified form of cyclodextrins namely; β-cyclodextrin (β-CD) and hydroxypropyl-β-cyclodextrin (HP-β-CD) respectively on the solubility and dissolution rate of aripiprazole; an antipsychotic medication showing poor aqueous solubility. Materials and Methods: Phase solubility of aripiprazole with the studied CDs and the complexation efficiency values (CE) which reflect the solubilizing power of the CDs towards the drug was performed. Solid binary systems of aripiprazole with CDs were prepared by kneading, microwave irradiation and freeze-drying techniques at 1:1 and 1:2 (drug to CD) molar ratios. Drug-CD physical mixtures were also prepared in the same molar ratios for comparison. The dissolution of aripiprazole-binary systems was carried out to select the most appropriate CD type, molar ratio and preparation technique. Results: Phase solubility study indicated formation of higher order complexes and the complexation efficiency values was higher for HP-β-CD compared to β-CD. Drug dissolution study revealed that aripiprazole dissolution was increased upon increasing the CD molar ratio and, the freeze-drying technique was superior to the other studied methods especially when combined with the HP-β-CD. The cyclodextrin type, preparation technique and molar ratio exhibited statistically significant effect on the drug dissolution at P≤ 0.05. Conclusion: The freeze-dried system prepared at molar ratio 1:2 (drug: CD) can be considered as efficient tool for enhancing aripiprazole dissolution with the possibility of improving its bioavailability. PMID:24570827
Wenzel, Tim; Stillhart, Cordula; Kleinebudde, Peter; Szepes, Anikó
2017-08-01
Drug load plays an important role in the development of solid dosage forms, since it can significantly influence both processability and final product properties. The percolation threshold of the active pharmaceutical ingredient (API) corresponds to a critical concentration, above which an abrupt change in drug product characteristics can occur. The objective of this study was to identify the percolation threshold of a poorly water-soluble drug with regard to the dissolution behavior from immediate release tablets. The influence of the API particle size on the percolation threshold was also studied. Formulations with increasing drug loads were manufactured via roll compaction using constant process parameters and subsequent tableting. Drug dissolution was investigated in biorelevant medium. The percolation threshold was estimated via a model dependent and a model independent method based on the dissolution data. The intragranular concentration of mefenamic acid had a significant effect on granules and tablet characteristics, such as particle size distribution, compactibility and tablet disintegration. Increasing the intragranular drug concentration of the tablets resulted in lower dissolution rates. A percolation threshold of approximately 20% v/v could be determined for both particle sizes of the API above which an abrupt decrease of the dissolution rate occurred. However, the increasing drug load had a more pronounced effect on dissolution rate of tablets containing the micronized API, which can be attributed to the high agglomeration tendency of micronized substances during manufacturing steps, such as roll compaction and tableting. Both methods that were applied for the estimation of percolation threshold provided comparable values.
A method for preparation and cleaning of uniformly sized arsenopyrite particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
A method for preparation and cleaning of uniformly sized arsenopyrite particles
Parthasarathy, Hariprasad; Baltrus, John P; Dzombak, David A; ...
2014-10-11
The oxidative dissolution of sulfide minerals, such as arsenopyrite (FeAsS), is of critical importance in many geochemical systems. A comprehensive understanding of their dissolution rates entails careful preparation of the mineral surface. Measurements of dissolution rates of arsenic from arsenopyrite are dependent on the size and degree of oxidation of its particles, among other factors. In this work, a method was developed for preparation and cleaning of arsenopyrite particles with size range of 150–250 μm. Four different cleaning methods were evaluated for effectiveness based on the removal of oxidized species of iron (Fe), arsenic (As) and sulfur (S) from themore » surface. The percentage oxidation of the surface was determined using X-ray photoelectron spectroscopy (XPS), and surface stoichiometry was measured using scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS). Results indicate that sonicating the arsenopyrite particles and then cleaning them with 12N HCl followed by 50% ethanol, and drying in nitrogen was the most effective method. This method was successful in greatly reducing the oxide species of Fe while completely removing oxides of As and S from the arsenopyrite surface. Although sonication and acid cleaning have been widely used for mineral preparation, the method described in this study can significantly reduce grain size heterogeneity as well as surface oxidation, which enables greater control in surface and dissolution experiments.« less
In vitro dissolution kinetic study of theophylline from hydrophilic and hydrophobic matrices.
Maswadeh, Hamzah M; Semreen, Mohammad H; Abdulhalim, Abdulatif A
2006-01-01
Oral dosage forms containing 300 mg theophylline in matrix type tablets, were prepared by direct compression method using two kinds of matrices, glycerylbehenate (hydrophobic), and (hydroxypropyl)methyl cellulose (hydrophilic). The in vitro release kinetics of these formulations were studied at pH 6.8 using the USP dissolution apparatus with the paddle assemble. The kinetics of the dissolution process were studied by analyzing the dissolution data using four kinetic equations, the zero-order equation, the first-order equation, the Higuchi square root equation and the Hixson-Crowell cube root law. The analysis of the dissolution kinetic data for the theophylline preparations in this study shows that it follows the first order kinetics and the release process involves erosion / diffusion and an alteration in the surface area and diameter of the matrix system, as well as in the diffusion path length from the matrix drug load during the dissolution process. This relation is best described by the use of both the first-order equation and the Hixson-Crowell cube root law.
The mechanisms of drug release from solid dispersions in water-soluble polymers.
Craig, Duncan Q M
2002-01-14
Solid dispersions in water-soluble carriers have attracted considerable interest as a means of improving the dissolution rate, and hence possibly bioavailability, of a range of hydrophobic drugs. However, despite the publication of numerous original papers and reviews on the subject, the mechanisms underpinning the observed improvements in dissolution rate are not yet understood. In this review the current consensus with regard to the solid-state structure and dissolution properties of solid dispersions is critically assessed. In particular the theories of carrier- and drug-controlled dissolution are highlighted. A model is proposed whereby the release behaviour from the dispersions may be understood in terms of the dissolution or otherwise of the drug into the concentrated aqueous polymer layer adjacent to the solid surface, including a derivation of an expression to describe the release of intact particles from the dispersions. The implications of a deeper understanding of the dissolution mechanisms are discussed, with particular emphasis on optimising the choice of carrier and manufacturing method and the prediction of stability problems.
Spousal Dissimilarity, Race, and Marital Dissolution
ERIC Educational Resources Information Center
Clarkwest, Andrew
2007-01-01
I test the claims that spousal differences in ideational, behavioral, and other traits contribute to elevated rates of marital dissolution among African Americans. Using data from 3 waves of the National Survey of Families and Households (N = 5,424), I find that African American spouses experience high levels of dissimilarity in traits that may…
Premarital Cohabitation and Marital Dissolution: An Examination of Recent Marriages
ERIC Educational Resources Information Center
Manning, Wendy D.; Cohen, Jessica A.
2012-01-01
An ongoing question remains for family researchers: Why does a positive association between cohabitation and marital dissolution exist when one of the primary reasons to cohabit is to test relationship compatibility? Drawing on recently collected data from the 2006-2008 National Survey of Family Growth, the authors examined whether premarital…
Tsutsumi, Shunichirou; Iida, Motoo; Tada, Norio; Kojima, Takashi; Ikeda, Yukihiro; Moriwaki, Toshiya; Higashi, Kenjirou; Moribe, Kunikazu; Yamamoto, Keiji
2011-12-15
Miconazole salts and cocrystals were studied to improve the physicochemical properties of miconazole. Maleate, hemifumarate, and hemisuccinate were prepared and characterized by powder X-ray diffractometry, differential scanning calorimetry, and single crystal X-ray diffractometry. The intrinsic dissolution rate and stability of each miconazole crystal form were compared to those of freebase and nitrate to evaluate the optimal crystal form. Crystal structure analysis indicated that maleate was a salt formed by proton transfer from the acid to the imidazole group of miconazole. Hemifumarate and hemisuccinate were determined to be cocrystals formed by hydrogen bonding between the acids and the base in their crystal lattices. Intrinsic dissolution tests showed that the formation of salts and cocrystals improved the dissolution rate of miconazole. Stability tests of preliminary formulations prepared with each crystal form indicated that maleate and hemifumarate were unstable at 80°C and generated a specific degraded product, i.e., a Michael adduct, between miconazole and the acids. Hemisuccinate had a superior intrinsic dissolution rate and stability, and is thus considered a promising crystal form of miconazole. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Yuliasmi, S.; Pardede, T. R.; Nerdy; Syahputra, H.
2017-03-01
Oil palm midrib is one of the waste generated by palm plants containing 34.89% cellulose. Cellulose has the potential to produce microcrystalline cellulose can be used as an excipient in tablet formulations by direct compression. Microcrystalline cellulose is the result of a controlled hydrolysis of alpha cellulose, so the alpha cellulose extraction process of oil palm midrib greatly affect the quality of the resulting microcrystalline cellulose. The purpose of this study was to compare the microcrystalline cellulose produced from alpha cellulose extracted from oil palm midrib by two different methods. Fisrt delignization method uses sodium hydroxide. Second method uses a mixture of nitric acid and sodium nitrite, and continued with sodium hydroxide and sodium sulfite. Microcrystalline cellulose obtained by both method was characterized separately, including organoleptic test, color reagents test, dissolution test, pH test and determination of functional groups by FTIR. The results was compared with microcrystalline cellulose which has been available on the market. The characterization results showed that microcrystalline cellulose obtained by first method has the most similar characteristics to the microcrystalline cellulose available in the market.
Kulinowski, Piotr; Dorozyński, Przemysław; Jachowicz, Renata; Weglarz, Władysław P
2008-11-04
Controlled release (CR) dosage forms are often based on polymeric matrices, e.g., sustained-release tablets and capsules. It is crucial to visualise and quantify processes of the hydrogel formation during the standard dissolution study. A method for imaging of CR, polymer-based dosage forms during dissolution study in vitro is presented. Imaging was performed in a non-invasive way by means of the magnetic resonance imaging (MRI). This study was designed to simulate in vivo conditions regarding temperature, volume, state and composition of dissolution media. Two formulations of hydrodynamically balanced systems (HBS) were chosen as model CR dosage forms. HBS release active substance in stomach while floating on the surface of the gastric content. Time evolutions of the diffusion region, hydrogel formation region and "dry core" region were obtained during a dissolution study of L-dopa as a model drug in two simulated gastric fluids (i.e. in fed and fasted state). This method seems to be a very promising tool for examining properties of new formulations of CR, polymer-based dosage forms or for comparison of generic and originator dosage forms before carrying out bioequivalence studies.
Influence of essential onion oil on tin and chromium dissolution from tinplate.
Nincević Grassino, A; Grabarić, Z; Pezzani, A; Fasanaro, G; Lo Voi, A
2009-07-01
During food and beverage packaging in tinplate cans the dissolution of tin and chromium into food content may occur. To protect metallic surface different corrosion inhibitors are recommended, nowadays particularly a new group of natural products is of interest. In this work the influence of essential onion oil (EOO) on metals dissolution (tin and chromium) from tinplate sheets before food canning was investigated. The analyses were performed by galvanostatic method and atomic absorption spectroscopy. The values of tin obtained for the internal surface of tinplate covered with EOO (7.31-9.76 gm(-2)) are lower than the values when dioctyl sebacate oil (DOS), as a protective tinplate surface layer for food caning, was used (9.24-11.03 gm(-2)). Obviously, the presence of EOO diminished more efficiently then DOS oil the dissolution of tin in electrolyte during galvanostatic analyses. The efficiency of EOO as corrosion inhibitor was even more pronounced in the case of chromium where the dissolution from 1.8-2.5 mgm(-2) (DOS oil) was lowered to 1.0-1.3 mgm(-2) (EOO). Correlation of results obtained with two different physico-chemical methods was satisfying.
Clinopyroxene dissolution in basaltic melt
NASA Astrophysics Data System (ADS)
Chen, Yang; Zhang, Youxue
2009-10-01
The history of magmatic systems may be inferred from reactions between mantle xenoliths and host basalt if the thermodynamics and kinetics of the reactions are quantified. To study diffusive and convective clinopyroxene dissolution in silicate melts, diffusive clinopyroxene dissolution experiments were conducted at 0.47-1.90 GPa and 1509-1790 K in a piston-cylinder apparatus. Clinopyroxene saturation is found to be roughly determined by MgO and CaO content. The effective binary diffusivities, DMgO and DCaO, and the interface melt saturation condition, C0MgO×C0CaO, are extracted from the experiments. DMgO and DCaO show Arrhenian dependence on temperature. The pressure dependence is small and not resolved within 0.47-1.90 GPa. C0MgO×C0CaO in the interface melt increases with increasing temperature, but decreases with increasing pressure. Convective clinopyroxene dissolution, where the convection is driven by the density difference between the crystal and melt, is modeled using the diffusivities and interface melt saturation condition. Previous studies showed that the convective dissolution rate depends on the thermodynamics, kinetics and fluid dynamics of the system. Comparing our results for clinopyroxene dissolution to results from a previous study on convective olivine dissolution shows that the kinetic and fluid dynamic aspects of the two minerals are quite similar. However, the thermodynamics of clinopyroxene dissolution depends more strongly on the degree of superheating and composition of the host melt than that of olivine dissolution. The models for clinopyroxene and olivine dissolution are tested against literature experiments on mineral-melt interaction. They are then applied to previously proposed reactions between Hawaii basalts and mantle minerals, mid-ocean ridge basalts and mantle minerals, and xenoliths digestion in a basalt at Kuandian, Northeast China.
NASA Astrophysics Data System (ADS)
Cordara, T.; Szenknect, S.; Claparede, L.; Podor, R.; Mesbah, A.; Lavalette, C.; Dacheux, N.
2017-12-01
UO2 pellets were prepared by densification of oxides obtained from the conversion of the oxalate precursor. Then characterized in order to perform a multiparametric study of the dissolution in nitric acid medium. In this frame, for each sample, the densification rate, the grain size and the specific surface area of the prepared pellets were determined prior to the final dissolution experiments. By varying the concentration of the nitric acid solution and temperature, three different and successive steps were identified during the dissolution. Under the less aggressive conditions considered, a first transient step corresponding to the dissolution of the most reactive phases was observed at the solid/solution interface. Then, for all the tested conditions, a steady state step was established during which the normalised dissolution rate was found to be constant. It was followed by a third step characterized by a strong and continuous increase of the normalised dissolution rate. The duration of the steady state, also called "induction period", was found to vary drastically as a function of the HNO3 concentration and temperature. However, independently of the conditions, this steady state step stopped at almost similar dissolved material weight loss and dissolved uranium concentration. During the induction period, no important evolution of the topology of the solid/liquid interface was evidenced authorizing the use of the starting reactive specific surface area to evaluate the normalised dissolution rates thus the chemical durability of the sintered pellets. From the multiparametric study of UO2 dissolution proposed, oxidation of U(IV) to U(VI) by nitrate ions at the solid/liquid interface constitutes the limiting step in the overall dissolution mechanism associated to this induction period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detwiler, Russell
Fractures provide flow paths that can potentially lead to fast migration of fluids or contaminants. A number of energy-related applications involve fluid injections that significantly perturb both the pressures and chemical composition of subsurface fluids. These perturbations can cause both mechanical deformation and chemical alteration of host rocks with potential for significant changes in permeability. In fractured rock subjected to coupled chemical and mechanical stresses, it can be difficult to predict the sign of permeability changes, let alone the magnitude. This project integrated experimental and computational studies to improve mechanistic understanding of these coupled processes and develop and test predictivemore » models and monitoring techniques. The project involved three major components: (1) study of two-phase flow processes involving mass transfer between phases and dissolution of minerals along fracture surfaces (Detwiler et al., 2009; Detwiler, 2010); (2) study of fracture dissolution in fractures subjected to normal stresses using experimental techniques (Ameli, et al., 2013; Elkhoury et al., 2013; Elkhoury et al., 2014) and newly developed computational models (Ameli, et al., 2014); (3) evaluation of electrical resistivity tomography (ERT) as a method to detect and quantify gas leakage through a fractured caprock (Breen et al., 2012; Lochbuhler et al., 2014). The project provided support for one PhD student (Dr. Pasha Ameli; 2009-2013) and partially supported a post-doctoral scholar (Dr. Jean Elkhoury; 2010-2013). In addition, the project provided supplemental funding to support collaboration with Dr. Charles Carrigan at Lawrence Livermore National Laboratory in connection with (3) and supported one MS student (Stephen Breen; 2011-2013). Major results from each component of the project include the following: (1) Mineral dissolution in fractures occupied by two fluid phases (e.g., oil-water or water-CO{sub 2}) causes changes in local capillary forces and redistribution of fluids. These coupled processes enhance channel formation and the potential for development of fast flow paths through fractures. (2) Dissolution in fractures subjected to normal stress can result in behaviors ranging from development of dissolution channels and rapid permeability increases to fracture healing and significant permeability decreases. The timescales associated with advective transport of dissolved ions in the fracture, mineral dissolution rates, and diffusion within the adjacent porous matrix dictate the sign and magnitude of the resulting permeability changes. Furthermore, a high--resolution mechanistic model that couples elastic deformation of contacts and aperture-dependent dissolution rates predicts the range of observed behaviors reasonably well. (3) ERT has potential as a tool for monitoring gas leakage in deep formations. Using probabilistic inversion methods further enhances the results by providing uncertainty estimates of inverted parameters.« less
Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for preformulation.
Alsenz, Jochem; Haenel, Elisabeth; Anedda, Aline; Du Castel, Pauline; Cirelli, Giorgio
2016-05-25
This study describes a novel Miniaturized INtrinsic DISsolution Screening (MINDISS) assay for measuring disk intrinsic dissolution rates (DIDR). In MINDISS, compacted mini disks of drugs (2-5mg/disk) are prepared in custom made holders with a surface area of 3mm(2). Disks are immersed, pellet side down, into 0.35ml of appropriate dissolution media per well in 96-well microtiter plates, media are stirred and disk-holders are transferred to new wells after defined periods of time. After filtration, drug concentration in dissolution media is quantified by Ultra Performance Liquid Chromatography (UPLC) and solid state property of the disk is characterized by Raman spectroscopy. MINDISS was identified as an easy-to-use tool for rapid, parallel determination of DIDR of compounds that requires only small amounts of compound and of dissolution medium. Results obtained with marketed drugs in MINDISS correlate well with large scale DIDR methods and indicate that MINDISS can be used for (1) rank-ordering of compounds by intrinsic dissolution in late phase discovery and early development, (2) comparison of polymorphic forms and salts, (3) screening and selection of appropriate dissolution media, and (4) characterization of the intestinal release behavior of compounds along the gastro intestinal tract by changing biorelevant media during experiments. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Basu, Nandita B.; Fure, Adrian D.; Jawitz, James W.
2008-07-01
Simulations of nonpartitioning and partitioning tracer tests were used to parameterize the equilibrium stream tube model (ESM) that predicts the dissolution dynamics of dense nonaqueous phase liquids (DNAPLs) as a function of the Lagrangian properties of DNAPL source zones. Lagrangian, or stream-tube-based, approaches characterize source zones with as few as two trajectory-integrated parameters, in contrast to the potentially thousands of parameters required to describe the point-by-point variability in permeability and DNAPL in traditional Eulerian modeling approaches. The spill and subsequent dissolution of DNAPLs were simulated in two-dimensional domains having different hydrologic characteristics (variance of the log conductivity field = 0.2, 1, and 3) using the multiphase flow and transport simulator UTCHEM. Nonpartitioning and partitioning tracers were used to characterize the Lagrangian properties (travel time and trajectory-integrated DNAPL content statistics) of DNAPL source zones, which were in turn shown to be sufficient for accurate prediction of source dissolution behavior using the ESM throughout the relatively broad range of hydraulic conductivity variances tested here. The results were found to be relatively insensitive to travel time variability, suggesting that dissolution could be accurately predicted even if the travel time variance was only coarsely estimated. Estimation of the ESM parameters was also demonstrated using an approximate technique based on Eulerian data in the absence of tracer data; however, determining the minimum amount of such data required remains for future work. Finally, the stream tube model was shown to be a more unique predictor of dissolution behavior than approaches based on the ganglia-to-pool model for source zone characterization.
Li, Juan-Juan; Cheng, Ling; Shen, Gang; Qiu, Ling; Shen, Cheng-Ying; Zheng, Juan; Xu, Rong; Yuan, Hai-Long
2018-01-01
The present study was designed to improve storage stability and oral bioavailability of Ganneng dropping pills (GNDP) by transforming lignans of Herpetospermum caudigerum (HL) composed of herpetrione (HPE) and herpetin (HPN) into nanosuspension (HL-NS), the main active ingredient of GNDP, HL-NS was prepared by high pressure homogenization and lyophilized to transform into solid nanoparticles (HL nanoparticles), and then the formulated HL nanoparticles were perfused into matrix to obtain NS-GNDP by melting method. For a period of 3 months, the content uniformity, storage stability and pharmacokinetics test in vivo of NS-GNDP were evaluated and compared with regular GNDP at room temperature. The results demonstrated that uniformity of dosage units of NS-GNDP was acceptable according to the criteria of Chinese Pharmacopoeia 2015J. Physical stability of NS-GNDP was investigated systemically using photon correlation spectroscopy (PCS), zeta potential measurement, and scanning electron microscopy (SEM). There was a slight increase in particles and PI of HL-NS re-dispersed from NS-GNDP after storage for 3 months, compared with new formulated NS-GNDP, which indicated a good redispersibility of the NS-GNDP containing HL-NS after storage. Besides, chemical stability of NS-GNDP was studied and the results revealed that HPE and HPN degradation was less when compared with that of GNDP, providing more than 99% of drug residue after storage for 3 months. In the dissolution test in vitro, NS-GNDP remarkably exhibited an increased dissolution velocity compared with GNDP and no distinct dissolution difference existed within 3 months. The pharmacokinetic study showed that HPE and HPN in NS-GNDP exhibited a significant increase in AUC 0-t , C max and decrease in T max when compared with regular GNDP. These results indicated that NS-GNDP possessed superiority with improved storage stability and increased dissolution rate and oral bioavailability. Copyright © 2018 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Miao, Xiaoqing; Sun, Changshan; Jiang, Tongying; Zheng, Li; Wang, Tianyi; Wang, Siling
2011-01-01
The aim of this study was to develop cilostazol (CLT) nanocrystals intended to improve its dissolution rate and enhance its bioavailability. In this study, CLT nanosuspension was prepared by the anti-solvent and high-pressure homogenization method. The effects of the production parameters, such as the stabilizer concentration, pressure and number of cycles, were investigated. Characterization of the product was performed by scanning electron microscopy (SEM), Nitrogen adsorption, differential scanning calorimetry (DSC), X-ray powder diffraction analysis (XRPD), X-ray Photoelectron Spectroscopy (XPS), particle size analysis and dissolution testing. Additionally, the comparison studies of oral bioavailability in beagle dogs of three type tables were performed. The images of SEM showed a spherical smooth CLT powder, and Nitrogen adsorption test revealed spray dried powder were porous with high BET surface area compared with that of raw CLT. DSC and XRPD results demonstrated that the combination of preferred polymorph B and C of CLT were prepared successfully, the saturation solubility of the nanosized crystalline powder is about 5 fold greater than that of raw CLT, and the dissolution rate was enhanced 4 fold than that of raw CLT. The Cmax and AUC0-48h of CLT nanosized crystalline tablets were 2.1 fold and 1.9 fold, and 3.0 fold and 2.3 fold compared with those of the nanosized tablets and commercial tablets, respectively. The anti-solvent-high-pressure homogenization technique was employed successfully to produce cilostazol nanosuspensions. The bioavailability of CLT tablets prepared using spray dried nanosized crystalline powder after oral administration to dogs was markedly increased compared with that produced by nanosized tablets and commercial tablets, because of its greater dissolution rate owing to its transition of the crystalline state to form C and form B, reduced particle size and porous structure with increased surface area.
NASA Astrophysics Data System (ADS)
Martena, Valentina; Censi, Roberta; Hoti, Ela; Malaj, Ledjan; Di Martino, Piera
2012-12-01
The objective of this study is to select very simple and well-known laboratory scale methods able to reduce particle size of indomethacin until the nanometric scale. The effect on the crystalline form and the dissolution behavior of the different samples was deliberately evaluated in absence of any surfactants as stabilizers. Nanocrystals of indomethacin (native crystals are in the γ form) (IDM) were obtained by three laboratory scale methods: A (Batch A: crystallization by solvent evaporation in a nano-spray dryer), B (Batch B-15 and B-30: wet milling and lyophilization), and C (Batch C-20-N and C-40-N: Cryo-milling in the presence of liquid nitrogen). Nanocrystals obtained by the method A (Batch A) crystallized into a mixture of α and γ polymorphic forms. IDM obtained by the two other methods remained in the γ form and a different attitude to the crystallinity decrease were observed, with a more considerable decrease in crystalline degree for IDM milled for 40 min in the presence of liquid nitrogen. The intrinsic dissolution rate (IDR) revealed a higher dissolution rate for Batches A and C-40-N, due to the higher IDR of α form than γ form for the Batch A, and the lower crystallinity degree for both the Batches A and C-40-N. These factors, as well as the decrease in particle size, influenced the IDM dissolution rate from the particle samples. Modifications in the solid physical state that may occur using different particle size reduction treatments have to be taken into consideration during the scale up and industrial development of new solid dosage forms.
El Hamshary, Marwa S; Salem, Omar H; El Nashar, Rasha M
2010-01-01
Two ion-selective sensors of the plastic membrane type were prepared for the determination of oxybutynin hydrochloride (OxCl). They depend on the incorporation of the ion-associates with phosphotungestic acid or phosphomolybdic acid in a PVC matrix. A comparative study is made between their performance characteristics in batch and FIA conditions. The sensors have nearly the same usable concentration, temperature and pH range. They have a wide range of selectivity and can be applied for the determination of the relevant drug with nearly the same precision and accuracy in vitro. Dissolution testing was applied using the sensors; this offers a simple, rapid, cheap way out of sophisticated and high cost instruments used in the pharmacopeial method using HPLC. The investigated drug was determined in its pure and pharmaceutical preparations. The results were accurate and precise, as indicated by the recovery values and coefficients of variation.
NASA Astrophysics Data System (ADS)
Cihan, A.; Illangasekare, T. H.; Zhou, Q.; Birkholzer, J. T.; Rodriguez, D.
2010-12-01
The capillary and dissolution trapping processes are believed to be major trapping mechanisms during CO2 injection and post-injection in heterogeneous subsurface environments. These processes are important at relatively shorter time periods compared to mineralization and have a strong impact on storage capacity and leakage risks, and they are suitable to investigate at reasonable times in the laboratory. The objectives of the research presented is to investigate the effect of the texture transitions and variability in heterogeneous field formations on the effective capillary and dissolution trapping at the field scale through multistage analysis comprising of experimental and modeling studies. A series of controlled experiments in intermediate-scale test tanks are proposed to investigate the key processes involving (1) viscous fingering of free-phase CO2 along high-permeability (or high-K) fast flow pathways, (2) dynamic intrusion of CO2 from high-K zones into low-K zones by capillarity (as well as buoyancy), (3) diffusive transport of dissolved CO2 into low-K zones across large interface areas, and (4) density-driven convective mass transfer into CO2-free regions. The test tanks contain liquid sampling ports to measure spatial and temporal changes in concentration of dissolved fluid as the injected fluid migrates. In addition to visualization and capturing images through digital photography, X-ray and gamma attenuation methods are used to measure phase saturations. Heterogeneous packing configurations are created with tightly packed sands ranging from very fine to medium fine to mimic sedimentary rocks at potential storage formations. Effect of formation type, injection pressure and injection rate on trapped fluid fraction are quantified. Macroscopic variables such as saturation, pressure and concentration that are measured will be used for testing the existing macroscopic models. The applicability of multiphase flow theories will be evaluated by comparing with the experimental data. Existing upscaling methodologies will be tested using experimental data for accurately estimating parameters of the large-scale heterogeneous porous media. This paper presents preliminary results from the initial-stage experiments and the modeling analysis. In the future, we will design and conduct a comprehensive set of experiments for improving the fundamental understanding of the processes, and refine and calibrate the models simulating the effective capillary and dissolution trapping with an ultimate goal to design efficient and safe storage schemes.
Improving Crotalidae polyvalent immune Fab reconstitution times.
Quan, Asia N; Quan, Dan; Curry, Steven C
2010-06-01
Crotalidae polyvalent immune Fab (CroFab) is used to treat rattlesnake envenomations in the United States. Time to infusion may be a critical factor in the treatment of these bites. Per manufacturer's instructions, 10 mL of sterile water for injection (SWI) and hand swirling are recommended for reconstitution. We wondered whether completely filling vials with 25 mL of SWI would result in shorter reconstitution times than using 10-mL volumes and how hand mixing compared to mechanical agitation of vials or leaving vials undisturbed. Six sets of 5 vials were filled with either 10 mL or 25 mL. Three mixing techniques were used as follows: undisturbed; agitation with a mechanical agitator; and continuous hand rolling and inverting of vials. Dissolution was determined by observation and time to complete dissolution for each vial. Nonparametric 2-tailed P values were calculated. Filling vials completely with 25 mL resulted in quicker dissolution than using 10-mL volumes, regardless of mixing method (2-tailed P = .024). Mixing by hand was shorter than other methods (P < .001). Reconstitution with 25 mL and hand mixing resulted in the shortest dissolution times (median, 1.1 minutes; range, 0.9-1.3 minutes). This appeared clinically important because dissolution times using 10 mL and mechanical rocking of vials (median, 26.4 minutes) or leaving vials undisturbed (median, 33.6 minutes) was several-fold longer. Hand mixing after filling vials completely with 25 mL results in shorter dissolution times than using 10 mL or other methods of mixing and is recommended, especially when preparing initial doses of CroFab. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Dynamics of basaltic glass dissolution - Capturing microscopic effects in continuum scale models
NASA Astrophysics Data System (ADS)
Aradóttir, E. S. P.; Sigfússon, B.; Sonnenthal, E. L.; Björnsson, G.; Jónsson, H.
2013-11-01
The method of 'multiple interacting continua' (MINC) was applied to include microscopic rate-limiting processes in continuum scale reactive transport models of basaltic glass dissolution. The MINC method involves dividing the system up to ambient fluid and grains, using a specific surface area to describe the interface between the two. The various grains and regions within grains can then be described by dividing them into continua separated by dividing surfaces. Millions of grains can thus be considered within the method without the need to explicity discretizing them. Four continua were used for describing a dissolving basaltic glass grain; the first one describes the ambient fluid around the grain, while the second, third and fourth continuum refer to a diffusive leached layer, the dissolving part of the grain and the inert part of the grain, respectively. The model was validated using the TOUGHREACT simulator and data from column flow through experiments of basaltic glass dissolution at low, neutral and high pH values. Successful reactive transport simulations of the experiments and overall adequate agreement between measured and simulated values provides validation that the MINC approach can be applied for incorporating microscopic effects in continuum scale basaltic glass dissolution models. Equivalent models can be used when simulating dissolution and alteration of other minerals. The study provides an example of how numerical modeling and experimental work can be combined to enhance understanding of mechanisms associated with basaltic glass dissolution. Column outlet concentrations indicated basaltic glass to dissolve stoichiometrically at pH 3. Predictive simulations with the developed MINC model indicated significant precipitation of secondary minerals within the column at neutral and high pH, explaining observed non-stoichiometric outlet concentrations at these pH levels. Clay, zeolite and hydroxide precipitation was predicted to be most abundant within the column.
Zaid, Abdel Naser; Assali, Mohyeddin; Qaddomi, Aiman; Ghanem, Mashhour; Zaaror, Yara Abu
2014-01-01
The aim of this study was to develop an extemporaneous valsartan suspension (80 mg valsartan/5 mL) starting from commercial tablets (80-mg/ tablet). A high-performance liquid chromatographic system was used for the analysis and quantification of valsartan in the samples studied. Samples of valsartan suspension for analysis were prepared as reported by the validated high-performance liquid chromatographic method and the dissolution tests were performed according to the U.S. Food and Drug Administration's method. The high-performance liquid chromatographic assay indicated that the 80-mg/5-mL valsartan suspension was stable for 30 days when stored at long-term and accelerated storage conditions. Valsartan release profile showed that approximately 85% of valsartan dissolved after 10 minutes and, accordingly, the calculation of similarity factor was not necessary. It is possible for the pharmacist to crush valsartan 80-mg tablets and prepare a suspension which has dosage flexibility that can be calculated according to body-surface area, kidney, and liver functions, without affecting the chemical stability of the active ingredient nor its dissolution profile and also have a cost-effective dosage form.
Atomistic Computer Simulations of Water Interactions and Dissolution of Inorganic Glasses
Du, Jincheng; Rimsza, Jessica
2017-09-01
Computational simulations at the atomistic level play an increasing important role in understanding the structures, behaviors, and the structure-property relationships of glass and amorphous materials. In this paper, we reviewed atomistic simulation methods ranging from first principles calculations and ab initio molecular dynamics (AIMD), to classical molecular dynamics (MD) and meso-scale kinetic Monte Carlo (KMC) simulations and their applications to glass-water interactions and glass dissolutions. Particularly, the use of these simulation methods in understanding the reaction mechanisms of water with oxide glasses, water-glass interfaces, hydrated porous silica gels formation, the structure and properties of multicomponent glasses, and microstructure evolution aremore » reviewed. Here, the advantages and disadvantageous of these methods are discussed and the current challenges and future direction of atomistic simulations in glass dissolution are presented.« less
Sodium sulfate - Deposition and dissolution of silica
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1989-01-01
The hot-corrosion process for SiO2-protected materials involves deposition of Na2SO4 and dissolution of the protective SiO2 scale. Dew points for Na2SO4 deposition are calculated as a function of pressure, sodium content, and sulfur content. Expected dissolution regimes for SiO2 are calculated as a function of Na2SO4 basicity. Controlled-condition burner-rig tests on quartz verify some of these predicted dissolution regimes. The basicity of Na2SO4 is not always a simple function of P(SO3). Electrochemical measurements of an (Na2O) show that carbon creates basic conditions in Na2SO4, which explains the extensive corrosion of SiO2-protected materials containing carbon, such as SiC.
Hydrogen dissolution in palladium: A resistometric study under pressure
NASA Astrophysics Data System (ADS)
Magnouche, A.; Fromageau, R.
1984-09-01
The hydrogen solubility in palladium in equilibrium with H2 gas has been measured, between room temperature and 540 °C, using a resistometric method, for pressures ranging between 0.01 and 10 MPa. In these conditions, the experimentally determined values of the solubility and of the dissolution enthalpy exhibit very close agreement with those obtained by other methods (calorimetry, volumetry, etc.), or after electrolytic charging. This good agreement demonstrates the validity of the resistometric method for determination of the solubility of hydrogen in metals.
Results of Characterization and Retrieval Testing on Tank 241-C-110 Heel Solids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callaway, William S.
2013-09-30
Nine samples of heel solids from tank 241-C-110 were delivered to the 222-S Laboratory for characterization and dissolution testing. After being drained thoroughly, the sample solids were primarily white to light-brown with minor dark-colored inclusions. The maximum dimension of the majority of the solids was <2 mm; however, numerous pieces of aggregate, microcrystalline, and crystalline solids with maximum dimensions ranging from 5-70 mm were observed. In general, the larger pieces of aggregate solids were strongly cemented. Natrophosphate [Na{sub 7}F(PO{sub 4}){sub 2}°19H{sub 2}O] was the dominant solid phase identified in the heel solids. Results of chemical analyses suggested that 85-87 wt%more » of the heel solids were the fluoridephosphate double salt. The average bulk density measured for the heel solids was 1.689 g/mL; the reference density of natrophosphate is 1.71 g/mL. Dissolution tests on composite samples indicate that 94 to 97 wt% of the tank 241-C-110 heel solids can be retrieved by dissolution in water. Dissolution and recovery of the soluble components in 1 kg (0.59 L) of the heel solids required the addition of ≈9.5 kg (9.5 L) of water at 15 °C and ≈4.4 kg (4.45 L) of water at 45 °C. Calculations performed using the Environmental Simulation Program indicate that dissolution of the ≈0.86 kg of natrophosphate in each kilogram of the tank 241-C-110 heel solids would require ≈9.45 kg of water at 15 °C and ≈4.25 kg of water at 45 °C. The slightly larger quantities of water determined to be required to retrieve the soluble components in 1 kg of the heel solids are consistent with that required for the dissolution of solids composed mainly of natrophosphate with a major portion of the balance consisting of highly soluble sodium salts. At least 98% of the structural water, soluble phosphate, sodium, fluoride, nitrate, carbonate, nitrite, sulfate, oxalate, and chloride in the test composites was dissolved and recovered in the dissolution tests. Most of the {sup 99}Tc and {sup 137}Cs present in the initial heel solids composites was removed in the water dissolution tests. The estimated activities/weights of {sup 129}I, {sup 234}U, {sup 235}U, {sup 236}U, and {sup 238}U in the dry residual solids were <25% of the weights/activities in the initial composite solids. Gibbsite and nordstrandite [both Al(OH){sub 3}] were the major solid phases identified in the solids remaining after completion of the dissolution tests. Chemical analysis indicated that the residual solids may have contained up to 62 wt% Al(OH){sub 3}. Significant quantities of unidentified phosphate-, iron-, bismuth-, silicon-, and strontium- bearing species were also present in the residual solids. The reference density of gibbsite (and nordstrandite) is 2.42 g/mL. The measured density of the residual solids, 2.65 g/mL, would be a reasonable value for solids containing gibbsite as the major component with minor quantities of other, higher density solids. Sieve analysis indicated that 22.2 wt% of the residual solids were discrete particles >710 μm in size, and 77.8 wt% were particulates <710 μm in size. Light-scattering measurements suggested that nearly all of the <710-μm particulates with diameters >12 μm were weakly bound aggregates of particles with diameters <2 μm. The <710-μm residual solids settled very slowly when dispersed in reagent water. The physical appearance of a suspension containing ≈0.4 vol% of the solids in pure water changed very little over a period of 46.5 hours. It should be noted that the distribution of particle sizes in the residual solids and the observed settling behavior were both strongly influenced by the procedures followed in the dissolution tests.« less
The dissolution of quartz in dilute aqueous solutions of organic acids at 25°C
Bennett, P.C.; Melcer, M.E.; Siegel, D.I.; Hassett, J.P.
1988-01-01
The dissolution of quartz in dilute aqueous solutions of organic acids at 25° and standard pressure was investigated by the batch dissolution method. The bulk dissolution rate of quartz in 20 mmole/Kg citrate solutions at pH 7 was 8 to 10 times faster than that in pure water. After 1750 hours the concentration of dissolved silica in the citrate solution was 167 μmole/Kg compared to 50 μmole/Kg in water and a 20 mmole/Kg solution of acetate at pH 7. Solutions of salicylic, oxalic, and humic acids also accelerated the dissolution of quartz in aqueous solution at pH 7. The rate of dissolution in organic acids decreased sharply with decreasing pH.The possibility of a silica-organic acid complex was investigated using UV-difference spectroscopy. Results suggest that dissolved silica is complexed by citrate, oxalate and pyruvate at pH 7 by an electron-donor acceptor complex, whereas no complexation occurs between silica and acetate, lactate, malonate, or succinate. Three models are proposed for the solution and surface complexation of silica by organic acid anions which result in the accelerated dissolution and increased solubility of quartz in organic rich water.
A semi-analytical method for simulating transient contaminant transport originating from the dissolution of multicomponent nonaqueous phase liquid (NAPL) pools in three-dimensional, saturated, homogeneous porous media is presented. Each dissolved component may undergo first-order...
Formulation and Solid State Characterization of Nicotinamide-based Co-crystals of Fenofibrate
Shewale, Sheetal; Shete, A. S.; Doijad, R. C.; Kadam, S. S.; Patil, V. A.; Yadav, A. V.
2015-01-01
The present investigation deals with formulation of nicotinamide-based co-crystals of fenofibrate by different methods and solid-state characterization of the prepared co-crystals. Fenofibrate and nicotinamide as a coformer in 1:1 molar ratio were used to formulate molecular complexes by kneading, solution crystallization, antisolvent addition and solvent drop grinding methods. The prepared molecular complexes were characterized by powder X-ray diffractometry, differential scanning calorimetry, Fourier transform infrared spectroscopy, nuclear magnetic resonance spectroscopy and in vitro dissolution study. Considerable improvement in the dissolution rate of fenofibrate from optimized co-crystal formulation was due to an increased solubility that is attributed to the super saturation from the fine co-crystals is faster because of large specific surface area of small particles and prevention of phase transformation to pure fenofibrate. In vitro dissolution study showed that the formation of co-crystals improves the dissolution rate of fenofibrate. Nicotinamide forms the co-crystals with fenofibrate, theoretically and practically. PMID:26180279
Effect of Four Commonly Used Dissolution Media Surfactants on Pancreatin Proteolytic Activity.
Guncheva, Maya; Stippler, Erika
2017-05-01
Proteolytic enzymes are often used in dissolution testing of cross-linked gelatin capsules that do not conform to the dissolution specification. Their catalytic activity, however, can be affected when they are added to a dissolution media containing solubility enhancers, such as surfactants. The aim of this study was to assess the activity of pancreatic proteases in presence of four commonly used surfactants. We found that pancreatin exhibits remarkable proteolytic activity in the presence of Tween 80, even at the concentrations as high as 250 times its critical micelle concentration (cmc) in water, whereas, Triton X-100 enhanced the proteolytic activity of pancreatin when added at concentrations above its cmc in water. Both surfactants are non-ionic surfactants. On the other hand, sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB), which are ionic surfactants, have a detrimental effect on the proteolytic activity of pancreatin. For example, a 50% reduction of the pancreatin activity was found in samples which contain a minor amount of SDS (0.05% w/v) in comparison to a surfactant-free reaction. Additionally, no activity was observed for the pancreatin-SDS samples which were incubated for 30 min at 40°C prior to testing. CTAB had an impact on pancreatin activity at concentrations higher than its cmc. Data from this manuscript can be used as a benchmark for optimization of the dissolution procedures that require use of both surfactants and enzymes.
Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria
2018-01-01
Background Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Methods Semi-crystalline nanoparticles (NPs) of 90–110 nm diameter for APSP and 65–75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. Results The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Conclusion Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug. PMID:29491706
Slutzky-Goldberg, Iris; Hanut, Aiham; Matalon, Shlomo; Baev, Valery; Slutzky, Hagay
2013-08-01
Sodium hypochlorite (NaOCl) and calcium hydroxide (Ca[OH]2) have tissue dissolution capacity. The aim of this study was to evaluate the potential effect of dentin on their tissue dissolution capacity in a novel dentin model. Dentin models were prepared from 25 freshly extracted human molar teeth; the crowns were separated from the roots, and a rectangular inner shape was prepared. Pulp tissue samples adjusted to similar weights of 6.5 ± 0.2 mg were randomly divided into 6 groups: NaOCl groups in test tubes or dentin models for 1 hour, Ca(OH)2 groups in test tubes or dentin models for 1 week, and control groups saline in test tubes or dentin models for 1 week. The final weights after the experimental period were checked and compared with the initial weights. The differences were statistically analyzed. The tissue dissolution capacity of Ca(OH)2 was affected by the presence of dentin. Similarly, NaOCl lost its effect on the pulp tissue after incubation in dentin. Comparison between all test groups showed highly significant differences (P < .001). Dentin has a detrimental effect on the ability of NaOCl and Ca(OH)2 to dissolve pulp tissue. The dentin model appears to be an efficient tool for the study of interactions between local endodontic medicaments, dentin, and pulp tissue. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Dissolution Behaviour of Metal Elements from Several Types of E-waste Using Leaching Test
NASA Astrophysics Data System (ADS)
Nor, Nik Hisyamudin Muhd; Amira Nordin, Nurul; Mohamad, Fariza; Jaibee, Shafizan; Ismail, Al Emran; Omar, Badrul; Fauzi Ahmad, Mohd; Rahim, Abd Khalil Abd; Kamaruddin, Muhamad Khalif Ikhwan Mohd; Turan, Faiz Mohd; Abu Bakar, Elmi; Yokoyama, Seiji
2017-08-01
Rapid development of the electrical and electronic was increasing annually due to the demand by the human being. Increasing production of electrical and electronic product led to the increasing of electric and electronic waste or can be called as the e-waste. The UN Environment Programme estimates that the world generates 20-50 million tons of the e-waste each year and the amount is raising three times faster than other forms of municipal waste. This study is focusing on the investigation of the dissolution behaviour of metal element from several types of e-waste by hydrometallurgical process. Leaching test was conducted on the e-waste by using acid as the reagent solution. Prior to the leaching test, manual dismantling, separation, and crushing process were carried out to the e-waste. The e-waste were characterized by Scanning Electron Microcopy (SEM) and the Energy Dispersive X-ray Spectroscopy (EDX) to define the elements inside the sample of e-waste. While the liquid residue from leaching test was analyzed by using Inductively Couple Plasma-Mass Spectrometer (ICP-MS) to define the dissolution behaviour of the metal element that contain in the e-waste. It was found that the longest time for dismantling process was the dismantling of laptop. The dissolution behaviour of Fe, Al, Zn and Pb elements in the e-waste has affected to the increase of pH. The increasing pH led to the reduction of the metals element during leaching process.
Divorce and Adult Psychological Well-Being: Clarifying the Role of Gender and Child Age
ERIC Educational Resources Information Center
Williams, Kristi; Dunne-Bryant, Alexandra
2006-01-01
Substantial evidence indicates that marital dissolution has negative consequences for adult well-being. Because most research focuses on the average consequences of divorce, we know very little about factors that moderate this association. The present study tests the hypothesis that the effects of marital dissolution on adult well-being are…
Variations in Divorce Rates by Community Size: A Test of the Social Integration Explanation.
ERIC Educational Resources Information Center
Shelton, Beth Anne
1987-01-01
Found a strong correlation between residential mobility rate and a measure of marital dissolution. Concluded that community size and marital dissolution correlated positively because of higher levels of residential mobility in large cities and urban areas than in small cities and rural areas. Found high residential mobility both an indicator and a…
ERIC Educational Resources Information Center
Derman, Aysegul; Eilks, Ingo
2016-01-01
Understanding students' cognitive structures in a specific knowledge domain helps to determine the ''what, how and why'' features of such knowledge, so that we can take these structures into consideration in teaching. The purpose of the present study was to identify students' cognitive structures about solution and dissolution concepts. The study…
Students' Understanding of Salt Dissolution: Visualizing Animation in the Chemistry Classroom
NASA Astrophysics Data System (ADS)
Malkoc, Ummuhan
The present study explored the effect of animation implementation in learning a chemistry topic. 135 high school students taking chemistry class were selected for this study (quasi-experimental groups = 67 and control groups = 68). Independent samples t-tests were run to compare animation and control groups between and within the schools. The over-arching finding of this research indicated that when science teachers used animations while teaching salt dissolution phenomena, students will benefit the application of animations. In addition, the findings informed the TPACK framework on the idea that visual tools are important in students' understanding of salt dissolution concepts.
Dissolution of spent nuclear fuel in carbonate-peroxide solution
NASA Astrophysics Data System (ADS)
Soderquist, Chuck; Hanson, Brady
2010-01-01
This study shows that spent UO2 fuel can be completely dissolved in a room temperature carbonate-peroxide solution apparently without attacking the metallic Mo-Tc-Ru-Rh-Pd fission product phase. In parallel tests, identical samples of spent nuclear fuel were dissolved in nitric acid and in an ammonium carbonate, hydrogen peroxide solution. The resulting solutions were analyzed for strontium-90, technetium-99, cesium-137, europium-154, plutonium, and americium-241. The results were identical for all analytes except technetium, where the carbonate-peroxide dissolution had only about 25% of the technetium that the nitric acid dissolution had.
[Application of β-cyclodextrin in the formulation of ODT tablets containing ibuprofen].
Zimmer, Łukasz; Kasperek, Regina; Poleszak, Ewa
2014-01-01
Oral disintegrating tablet (ODT) dissolves or disintegrates in saliva and then it is swallowed. Diluent in direct compression formulation has a dual role: it increases bulk of the dosage form and it promotes binding of the constituent particles of the formulation. Hence, selection of diluent is important in tablets produced by direct compression method. The aim of this work was to exame feasibility of preparing and optimizing oral disintegrating tablet formulation using β-cyclodextrin as a diluent. 400 mg round tablets were prepared by direct compression method on single punch tablet press using flat plain-face. 60% β-CD and MCC (microcrystalline cellulose - MCC-Vivapur 102) were used at different proportions for all the formulations. 5% of Kollidon CL was added as superdisintegrant. The eight formulations prepared were assessed for weight variation, thickness, disintegration time, hardness and dissolution rate according to FP IX. A dissolution test was performed at 37ºC using the paddle method at 50 rpm with 900 mL phosphate buffer (pH 6.8) as a dissolution medium. The content of ibuprofen sodium was found inside the ± 5% of the theoretical value. Hardness values of presented tablets were in the range 0.11-0.15 kG/mm2. Friability of the tablets lower than 1% indicates that the developed formulations can be processed and handled without excessive care. Disintegration time was in the range of 86 to 161 s. The results confirm the good mechanical properties of tablets containing β-CD. A composition with 20% β-CD and 40% MCC fulfilled a maximum requisite of an optimum formulation. These properties were similar to Ludiflash, the formulation used for comparison purposes. In the present study, higher concentration of β cyclodextrin was found to improve the hardness of tablets without increasing the disintegration time.
Biomimetic Dissolution: A Tool to Predict Amorphous Solid Dispersion Performance.
Puppolo, Michael M; Hughey, Justin R; Dillon, Traciann; Storey, David; Jansen-Varnum, Susan
2017-11-01
The presented study describes the development of a membrane permeation non-sink dissolution method that can provide analysis of complete drug speciation and emulate the in vivo performance of poorly water-soluble Biopharmaceutical Classification System class II compounds. The designed membrane permeation methodology permits evaluation of free/dissolved/unbound drug from amorphous solid dispersion formulations with the use of a two-cell apparatus, biorelevant dissolution media, and a biomimetic polymer membrane. It offers insight into oral drug dissolution, permeation, and absorption. Amorphous solid dispersions of felodipine were prepared by hot melt extrusion and spray drying techniques and evaluated for in vitro performance. Prior to ranking performance of extruded and spray-dried felodipine solid dispersions, optimization of the dissolution methodology was performed for parameters such as agitation rate, membrane type, and membrane pore size. The particle size and zeta potential were analyzed during dissolution experiments to understand drug/polymer speciation and supersaturation sustainment of felodipine solid dispersions. Bland-Altman analysis was performed to measure the agreement or equivalence between dissolution profiles acquired using polymer membranes and porcine intestines and to establish the biomimetic nature of the treated polymer membranes. The utility of the membrane permeation dissolution methodology is seen during the evaluation of felodipine solid dispersions produced by spray drying and hot melt extrusion. The membrane permeation dissolution methodology can suggest formulation performance and be employed as a screening tool for selection of candidates to move forward to pharmacokinetic studies. Furthermore, the presented model is a cost-effective technique.
Desai, Divyakant; Wong, Benjamin; Huang, Yande; Tang, Dan; Hemenway, Jeffrey; Paruchuri, Srinivasa; Guo, Hang; Hsieh, Daniel; Timmins, Peter
2015-01-01
To investigate the influence of the pH of the dissolution medium on immediate release 850 mg metformin hydrochloride tablets. A traditional wet granulation method was used to manufacture metformin hydrochloride tablets with or without a disintegrant. Tablet dissolution was conducted using the USP apparatus I at 100 rpm. In spite of its pH-independent high solubility, metformin hydrochloride tablets dissolved significantly slower in 0.1 N HCl (pH 1.2) and 50 mM pH 4.5 acetate buffer compared with 50 mM pH 6.8 phosphate buffer, the dissolution medium in the USP. Metformin hydrochloride API compressed into a round 1200 mg disk showed a similar trend. When basket rotation speed was increased from 100 to 250 rpm, the dissolution of metformin hydrochloride tablets was similar in all three media. Incorporation of 2% w/w crospovidone in the tablet formulation improved the dissolution although the pH-dependent trend was still evident, but incorporation of 2% w/w croscarmellose sodium resulted in rapid pH-independent tablet dissolution. In absence of a disintegrant in the tablet formulation, the dissolution was governed by the erosion-diffusion process. Even for a highly soluble drug, a super-disintegrant was needed in the formulation to overcome the diffusion layer limitation and change the dissolution mechanism from erosion-diffusion to disintegration.
Controlled evaluation of silver nanoparticle dissolution using atomic force microscopy.
Kent, Ronald D; Vikesland, Peter J
2012-07-03
Incorporation of silver nanoparticles (AgNPs) into an increasing number of consumer products has led to concern over the potential ecological impacts of their unintended release to the environment. Dissolution is an important environmental transformation that affects the form and concentration of AgNPs in natural waters; however, studies on AgNP dissolution kinetics are complicated by nanoparticle aggregation. Herein, nanosphere lithography (NSL) was used to fabricate uniform arrays of AgNPs immobilized on glass substrates. Nanoparticle immobilization enabled controlled evaluation of AgNP dissolution in an air-saturated phosphate buffer (pH 7.0, 25 °C) under variable NaCl concentrations in the absence of aggregation. Atomic force microscopy (AFM) was used to monitor changes in particle morphology and dissolution. Over the first day of exposure to ≥10 mM NaCl, the in-plane AgNP shape changed from triangular to circular, the sidewalls steepened, the in-plane radius decreased by 5-11 nm, and the height increased by 6-12 nm. Subsequently, particle height and in-plane radius decreased at a constant rate over a 2-week period. Dissolution rates varied linearly from 0.4 to 2.2 nm/d over the 10-550 mM NaCl concentration range tested. NaCl-catalyzed dissolution of AgNPs may play an important role in AgNP fate in saline waters and biological media. This study demonstrates the utility of NSL and AFM for the direct investigation of unaggregated AgNP dissolution.
Beyer, Andreas; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Leopold, Claudia S
2017-06-30
Improvement of the physicochemical properties of amorphous active pharmaceutical ingredients (APIs) applying the concept of co-amorphisation is a promising alternative to the use of polymer glass solutions. In co-amorphous systems, the physical stability and the dissolution rate of the involved components may be improved in comparison to the respective single amorphous phases. However, for the co-amorphous naproxen-indomethacin model system it has been reported that recrystallization could not be prevented for more than 112days regardless of the applied preparation method and blend ratio In the present study, it was thus tested if the physicochemical properties of co-amorphous naproxen-indomethacin could be optimized by incorporation of the naproxen sodium into the system. Three different co-amorphous systems in nine different molar ratios were prepared by quench-cooling: naproxen-indomethacin (NI), naproxen-sodium-naproxen-indomethacin (NSNI) and naproxen-sodium-indomethacin (NSI). The samples were analyzed by XRPD, FTIR, DSC and by intrinsic dissolution experiments to investigate the influence of naproxen-sodium on the resulting physicochemical properties of the systems. With the three systems, fully amorphous samples with single glass transition temperatures could be prepared with naproxen molar fractions up to 0.7. The NSI and NSNI systems showed up to about 40°C higher Tgs than the NI system. Furthermore, no recrystallization occurred during 270d of storage with the NSI and NSNI samples that were initially amorphous. Moreover, with the NSI system, the intrinsic dissolution rate of naproxen and indomethacin was improved by a factor of 2 compared to the unmodified NI system. In conclusion, the physical stability as well as the dissolution rate was significantly improved if partial or full exchange of naproxen by its sodium salt was performed, which may present a general optimization method to improve co-amorphous systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Jarosite dissolution rates in perchlorate brine
NASA Astrophysics Data System (ADS)
Legett, Carey; Pritchett, Brittany N.; Elwood Madden, Andrew S.; Phillips-Lander, Charity M.; Elwood Madden, Megan E.
2018-02-01
Perchlorate salts and the ferric sulfate mineral jarosite have been detected at multiple locations on Mars by both landed instruments and orbiting spectrometers. Many perchlorate brines have eutectic temperatures <250 K, and may exist as metastable or stable liquids for extended time periods, even under current Mars surface conditions. Therefore, jarosite-bearing rocks and sediments may have been altered by perchlorate brines. Here we measured jarosite dissolution rates in 2 M sodium perchlorate brine as well as dilute water at 298 K to determine the effects of perchlorate anions on jarosite dissolution rates and potential reaction products. We developed a simple method for determining aqueous iron concentrations in high salinity perchlorate solutions using ultraviolet-visible spectrophotometry that eliminates the risk of rapid oxidation reactions during analyses. Jarosite dissolution rates in 2 M perchlorate brine determined by iron release rate (2.87 × 10-12 ±0.85 × 10-12 mol m-2 s-1) were slightly slower than the jarosite dissolution rate measured in ultrapure (18.2 MΩ cm-1) water (5.06 × 10-12 mol m-2 s-1) using identical methods. No additional secondary phases were observed in XRD analyses of the reaction products. The observed decrease in dissolution rate may be due to lower activity of water (ɑH2O = 0.9) in the 2 M NaClO4 brine compared with ultrapure water (ɑH2O = 1). This suggests that the perchlorate anion does not facilitate iron release, unlike chloride anions which accelerated Fe release rates in previously reported jarosite and hematite dissolution experiments. Since dissolution rates are slower in perchlorate-rich solutions, jarosite is expected to persist longer in perchlorate brines than in dilute waters or chloride-rich brines. Therefore, if perchlorate brines dominate aqueous fluids on the surface of Mars, jarosite may remain preserved over extended periods of time, despite active aqueous processes.
Toward an In Vivo Dissolution Methodology: A Comparison of Phosphate and Bicarbonate Buffers
Sheng, Jennifer J.; McNamara, Daniel P.; Amidon, Gordon L.
2011-01-01
Purpose To evaluate the difference between the pharmaceutical phosphate buffers and the gastrointestinal bicarbonates in dissolution of ketoprofen and indomethacin, to illustrate the dependence of buffer differential on biopharmaceutical properties of BCS II weak acids, and to recommend phosphate buffers equivalent to bicarbonates. Methods The intrinsic dissolution rates of, ketoprofen and indomethacin, were experimentally measured using rotating disk method at 37°C in USP SIF/FaSSIF and various concentrations of bicarbonates. Theoretical models including an improved reaction plane model and a film model were applied to estimate the surrogate phosphate buffers equivalent to the bicarbonates. Results Experimental results show that the intrinsic dissolution rates of ketoprofen and indomethacin, in USP and FaSSIF phosphate buffers are 1.5–3.0 times of that in the 15 mM bicarbonates. Theoretical analysis demonstrates that the buffer differential is largely dependent on the drug pKa and secondly on solubility, and weakly dependent on the drug diffusivity. Further, in accordance with the drug pKa, solubility and diffusivity, simple phosphate surrogate was proposed to match an average bicarbonate value (15 mM) of the upper gastrointestinal region. Specifically, phosphate buffers of 13–15 mM and 3–4 mM were recommended for ketoprofen and indomethacin, respectively. For both ketoprofen and indomethacin, the intrinsic dissolution using the phosphate surrogate buffers closely approximated the 15 mM bicarbonate buffer. Conclusions This work demonstrates the substantial difference between pharmaceutical phosphates and physiological bicarbonates in determining the drug intrinsic dissolution rates of BCS II weak acids, such as ketoprofen and indomethacin. Surrogate phosphates were recommended in order to closely reflect the in vivo dissolution of ketoprofen and indomethacin in gastrointestinal bicarbonates, which has significant implications for defining buffer systems for BCS II weak acids in developing in vitro bioequivalence dissolution methodology. PMID:19183104
Jiang, Zhen-Yu; Deng, Hai-Ying; Yu, Zhi-Jun; Ni, Jun-Yan; Kang, Si-He
2016-01-01
Background: The dosage of herb ultrafine particle (UFP) depended on the increased level of its dissolution, toxicity, and efficacy. Objective: The dissolution, antibacterial activity, and cytotoxicity of Coptidis rhizoma (CR) UFP were compared with those of traditional decoction (TD). Materials and Methods: The dissolution of berberine (BBR) of CR TD and UFP was determined by high-performance liquid chromatography. The antibacterial activity of CR extract was assayed by plate-hole diffusion and broth dilution method; the inhibitory effect of rat serums against bacteria growth was evaluated after orally given CR UFP or TD extract. The cytotoxicity of CR extract was evaluated by 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide assay. Results: The dissolution amount of BBR from CR UFP increased 6–8-folds in comparison to TD at 2 min, the accumulative amount of BBR in both UFP and TD group increased in a time-dependent manner. The minimal inhibitory concentrations and minimal bactericidal concentrations of CR UFP extract decreased to 1/2~1/4 of those of TD extract. The inhibitory effect of rat serums against bacteria growth decreased time-dependently, and no statistical difference was observed between two groups at each time point. The 50% cytotoxic concentrations of UFP extract increased 1.66~1.97 fold than those of TD. Conclusions: The antibacterial activity and cytotoxicity of CR UFP increased in a dissolution-effect manner in vitro, the increased level of cytotoxicity was lower than that of antibacterial activity, and the inhibitory effect of rat serums containing drugs of UFP group did not improve. SUMMARY Ultrafine grinding process caused a rapid increase of BBR dissolution from CR.The antibacterial activity and cytotoxicity of UFP extract in vitro increased in a dissolution-effect manner, but the cytotoxicity increased lower than the antibacterial activity.The antibacterial activity of rat serums of UFP group did not improve in comparison to that of TD group PMID:26941540
Sun, Weiwei; Pan, Baoliang
2017-06-15
This study investigates the effects of micro-environment modification and polymer type on the in-vitro dissolution behavior and in-vivo performance of micro-environment pH modifying solid dispersions (pH M -SD) for the poorly water-soluble model drug Toltrazuril (TOL). Various pH M -SDs were prepared using Ca(OH) 2 as a pH-modifier in hydrophilic polymers, including polyethylene glycol 6000 (PEG6000), polyvinylpyrrolidone k30 (PVPk30) and hydroxypropyl methylcellulose (HPMC). Based on the results of physicochemical characterizations and in-vitro dissolution testing, the representative ternary (Ca(OH) 2 :TOL:PEG6000/HPMC/PVPk30=1:8:24, w/w/w) and binary (TOL:PVPk30=1:3, w/w) solid dispersions were selected and optimized to perform in-vivo pharmacokinetic study. The micro-environment pH modification improved the in-vitro water-solubility and in-vivo bioavailability of parent drug TOL. Furthermore, the addition of alkalizers not only enhanced the release and absorption of prototype drug, but also promoted the generation of active metabolites, including toltrazuril sulfoxide (TOLSO) and toltrazuril sulfone (TOLSO 2 ). The in-vitro dissolution profiles and in-vivo absorption, distribution and metabolism behaviors of the pH M -SDs varied with polymer type. Moreover, in-vivo bioavailability of three active pharmaceutical ingredients increased with an increase in in-vitro dissolution rates of the drug from the pH M -SDs prepared with various polymers. Therefore, a non-sink in-vitro dissolution method can be used to predict the in-vivo performance of pH M -SDs formulated with various polymers with trend consistency. In-vitro and in-vivo screening procedures revealed that the pH M -SD composed of Ca(OH) 2 , TOL and PVPk30 at a weight ratio of 1:8:24, of which the safety was adequately proved via histopathological examination, may be a promising candidate for providing better clinical outcomes. Copyright © 2017. Published by Elsevier B.V.
Composition, Respirable Fraction and Dissolution Rate of 24 Stone Wool MMVF with their Binder.
Wohlleben, Wendel; Waindok, Hubert; Daumann, Björn; Werle, Kai; Drum, Melanie; Egenolf, Heiko
2017-08-07
Man-made vitreous fibres (MMVF) are produced on a large scale for thermal insulation purposes. After extensive studies of fibre effects in the 1980ies and 1990ies, the composition of MMVF was modified to reduce the fibrotic and cancerogenic potential via reduced biopersistence. However, occupational risks by handling, applying, disposing modern MMVF may be underestimated as the conventional regulatory classification -combining composition, in-vivo clearance and effects- seems to be based entirely on MMVF after removal of the binder. Here we report the oxide composition of 23 modern MMVF from Germany, Finland, UK, Denmark, Russia, China (five different producers) and one pre-1995 MMVF. We find that most of the investigated modern MMVF can be classified as "High-alumina, low-silica wool", but several were on or beyond the borderline to "pre-1995 Rock (Stone) wool". We then used well-established flow-through dissolution testing at pH 4.5 and pH 7.4, with and without binder, at various flow rates, to screen the biosolubility of 14 MMVF over 32 days. At the flow rate and acidic pH of reports that found 47 ng/cm 2 /h dissolution rate for reference biopersistent MMVF21 (without binder), we find rates from 17 to 90 ng/cm 2 /h for modern MMVF as customary in trade (with binder). Removing the binder accelerates the dissolution significantly, but not to the level of reference biosoluble MMVF34. We finally simulated handling or disposing of MMVF and measured size fractions in the aerosol. The respirable fraction of modern MMVF is low, but not less than pre-1995 MMVF. The average composition of modern stone wool MMVF is different from historic biopersistent MMVF, but to a lesser extent than expected. The dissolution rates measured by abiotic methods indicate that the binder has a significant influence on dissolution via gel formation. Considering the content of respirable fibres, these findings imply that the risk assessment of modern stone wool may need to be revisited based on in-vivo studies of MMFV as marketed (with binder).
Biowaiver monographs for immediate release solid oral dosage forms: piroxicam.
Shohin, Igor E; Kulinich, Julia I; Ramenskaya, Galina V; Abrahamsson, Bertil; Kopp, Sabine; Langguth, Peter; Polli, James E; Shah, Vinod P; Groot, D W; Barends, Dirk M; Dressman, Jennifer B
2014-02-01
Literature and experimental data relevant to the decision to allow a waiver of in vivo bioequivalence (BE) testing for the approval of immediate release (IR) solid oral dosage forms containing piroxicam in the free acid form are reviewed. Piroxicam solubility and permeability, its therapeutic use and therapeutic index, pharmacokinetic properties, data related to the possibility of excipient interactions and reported BE/bioavailability (BA), and corresponding dissolution data are taken into consideration. The available data suggest that according to the current biopharmaceutics classification system (BCS) and all current guidances, piroxicam would be assigned to BCS Class II. The extent of piroxicam absorption seems not to depend on manufacturing conditions or excipients, so the risk of bioinequivalence in terms of area under the curve (AUC) is very low, but the rate of absorption (i.e., BE in terms of Cmax ) can be affected by the formulation. Current in vitro dissolution methods may not always reflect differences in terms of Cmax for BCS Class II weak acids; however, minor differences in absorption rate of piroxicam would not subject the patient to unacceptable risks: as piroxicam products may be taken before or after meals, the rate of absorption cannot be considered crucial to drug action. Therefore, a biowaiver for IR piroxicam solid oral dosage form is considered feasible, provided that (a) the test product contains only excipients, which are also present in IR solid oral drug products containing piroxicam, which have been approved in ICH or associated countries, for instance, those presented in Table 3 of this paper; (b) both the test and comparator drug products dissolve 85% in 30 min or less at pH 1.2, 4.5, and 6.8; and (c) the test product and comparator show dissolution profile similarity in pH 1.2, 4.5, and 6.8. When not all of these conditions can be fulfilled, BE of the products should be established in vivo. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
NASA Astrophysics Data System (ADS)
Singha, Somdutta; Ghosh, Swapankumar
2017-09-01
Carbon nanotubes in all forms are very much insoluble in both organic and inorganic solvents due to its high agglomeration and entangled morphology. General methods for dissolution of single-walled carbon nanotubes (SWNTs) are mostly associated with complexation or polymerization or addition of macromolecules which change the physical or chemical properties of SWNTs and the pristine nature of SWNTs is lost. Dissolution of SWNTs in a solvent like aniline is practiced here which is a very simple reaction method. Here aniline is capable to form a SWNT-aniline charge transfer complex without attachment of macromolecules or polymer which is also soluble in other organic solvents. Solvation of SWNTs by this method is also capable of maintaining the similarity between the structure of SWNTs before and after the dissolution, which means that the pristine nature of SWNTs is preserved. Formation of charge transfer complex in this reaction has been proven by UV-Vis/NIR absorption and photoluminescence spectroscopy. Raman spectroscopy and electron microscopy (FESEM and TEM) are the evidences for protection of the pristine nature of SWNTs even after high-temperature complexation reaction with aniline and also after solubilization in organic solvents.
Chen, Haihan; Grassian, Vicki H
2013-09-17
Atmospheric organic acids potentially display different capacities in iron (Fe) mobilization from atmospheric dust compared with inorganic acids, but few measurements have been made on this comparison. We report here a laboratory investigation of Fe mobilization of coal fly ash, a representative Fe-containing anthropogenic aerosol, and Arizona test dust, a reference source material for mineral dust, in pH 2 sulfuric acid, acetic acid, and oxalic acid, respectively. The effects of pH and solar radiation on Fe dissolution have also been explored. The relative capacities of these three acids in Fe dissolution are in the order of oxalic acid > sulfuric acid > acetic acid. Oxalate forms mononuclear bidentate ligand with surface Fe and promotes Fe dissolution to the greatest extent. Photolysis of Fe-oxalate complexes further enhances Fe dissolution with the concomitant degradation of oxalate. These results suggest that ligand-promoted dissolution of Fe may play a more significant role in mobilizing Fe from atmospheric dust compared with proton-assisted processing. The role of atmospheric organic acids should be taken into account in global-biogeochemical modeling to better access dissolved atmospheric Fe deposition flux at the ocean surface.
Elevated CO2 affects shell dissolution rate but not calcification rate in a marine snail.
Nienhuis, Sarah; Palmer, A Richard; Harley, Christopher D G
2010-08-22
As CO(2) levels increase in the atmosphere, so too do they in the sea. Although direct effects of moderately elevated CO(2) in sea water may be of little consequence, indirect effects may be profound. For example, lowered pH and calcium carbonate saturation states may influence both deposition and dissolution rates of mineralized skeletons in many marine organisms. The relative impact of elevated CO(2) on deposition and dissolution rates are not known for many large-bodied organisms. We therefore tested the effects of increased CO(2) levels--those forecast to occur in roughly 100 and 200 years--on both shell deposition rate and shell dissolution rate in a rocky intertidal snail, Nucella lamellosa. Shell weight gain per day in live snails decreased linearly with increasing CO(2) levels. However, this trend was paralleled by shell weight loss per day in empty shells, suggesting that these declines in shell weight gain observed in live snails were due to increased dissolution of existing shell material, rather than reduced production of new shell material. Ocean acidification may therefore have a greater effect on shell dissolution than on shell deposition, at least in temperate marine molluscs.
NASA Astrophysics Data System (ADS)
Nurjannah, Yanah; Budianto, Emil
2018-04-01
Heliobacter pylori (H.pylori) is a type of bacteria that causes inflammation in the lining of the stomach. The treatment of the bacterial infection by using conventional medicine which is amoxicillin trihidrate has a very short retention time in the stomach which is about 1-1,5 hours. Floating drug delivery system is expected to have a long retention time in the stomach so the efficiency of drug can be achieved. In this study, has been synthesized matrix of semi-IPN chitosan-Poly(N-vinil pyrrolidone) hydrogel with a pore-forming agent of CaCO3 under optimum conditions. Amoxicillin is encapsulated in a matrix hydrogel to be applied as a floating drug delivery system by in situ loading and post loading methods. The encapsulation efficiency and dissolution of in situ loading and post loading hydrogels are performed in vitro on gastric pH. In situ loading hydrogel shows higer percentage of encapsulation efficiency and dissolution compared to post loading hydrogel. The encapsulation efficiency of in situ and post loading hydrogels were 92,1% and 89,4%, respectively. The aim of drug dissolution by mathematical equation model is to know kinetics and the mecanism of dissolution. The kinetics release of in situ hydrogel tends to follow first order kinetics, while the post loading hydrogel follow the Higuchi model. The dissolution mecanism of hydrogels is erosion.
Solaiman, Amanda; Tatari, Adam Keenan; Elkordy, Amal Ali
2017-07-01
Poor drug solubility and dissolution rate remain to be one of the major problems facing pharmaceutical scientists, with approximately 40% of drugs in the industry categorised as practically insoluble or poorly water soluble. This in turn can lead to serious delivery challenges and poor bioavailability. The aim of this research was to investigate the effects of the surfactants, poloxamer 407 (P407) and caprol® PGE 860 (CAP), at various concentrations (0.1, 0.5, 1 and 3% w/v) on the enhancement of the dissolution properties of poorly water-soluble drug, naproxen, using in situ micronisation by solvent change method and freeze-drying. The extent at which freeze-drying influences the dissolution rate of naproxen microcrystals is investigated in this study by comparison with desiccant-drying. All formulations were evaluated and characterised using particle size analysis and morphology, in vitro dissolution studies, differential scanning calorimetry (DSC), and Fourier transform infra-red (FT-IR) spectroscopy. An increase in poloxamer 407 concentration in freeze-dried formulations led to enhancement of drug dissolution compared to desiccator-dried formulations, naproxen/caprol® PGE 860 formulations and untreated drug. DSC and FT-IR results show no significant chemical interactions between drug and poloxamer 407, with only very small changes to drug crystallinity. On the other hand, caprol® PGE 860 showed some interactions with drug components, alterations to the crystal lattice of naproxen, and poor dissolution profiles using both drying methods, making it a poor choice of excipient.
Calcite dissolution rate spectra measured by in situ digital holographic microscopy.
Brand, Alexander S; Feng, Pan; Bullard, Jeffrey W
2017-09-01
Digital holographic microscopy in reflection mode is used to track in situ , real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s -1 . Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates ( e.g. , 0.1 µmol m -2 s -1 to 0.3 µmol m -2 s -1 ). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.
Calcite dissolution rate spectra measured by in situ digital holographic microscopy
NASA Astrophysics Data System (ADS)
Brand, Alexander S.; Feng, Pan; Bullard, Jeffrey W.
2017-09-01
Digital holographic microscopy in reflection mode is used to track in situ, real-time nanoscale topography evolution of cleaved (104) calcite surfaces exposed to flowing or static deionized water. The method captures full-field holograms of the surface at frame rates of up to 12.5 s-1. Numerical reconstruction provides 3D surface topography with vertical resolution of a few nanometers and enables measurement of time-dependent local dissolution fluxes. A statistical distribution, or spectrum, of dissolution rates is generated by sampling multiple area domains on multiple crystals. The data show, as has been demonstrated by Fischer et al. (2012), that dissolution is most fully described by a rate spectrum, although the modal dissolution rate agrees well with published mean dissolution rates (e.g., 0.1 μmol m-2 s-1 to 0.3 μmol m-2 s-1). Rhombohedral etch pits and other morphological features resulting from rapid local dissolution appear at different times and are heterogeneously distributed across the surface and through the depth. This makes the distribution in rates measured on a single crystal dependent both on the sample observation field size and on time, even at nominally constant undersaturation. Statistical analysis of the inherent noise in the DHM measurements indicates that the technique is robust and that it likely can be applied to quantify and interpret rate spectra for the dissolution or growth of other minerals.
Dissolution of explosive compounds TNT, RDX, and HMX under continuous flow conditions.
Wang, Chao; Fuller, Mark E; Schaefer, Charles; Caplan, Jeffrey L; Jin, Yan
2012-05-30
2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) are common contaminants around active military firing ranges. Dissolution of these compounds is usually the first step prior to their spreading in subsurface environments. Nevertheless, dissolution of individual TNT, RDX, and HMX under continuous flow conditions has not been well investigated. This study applied spectral confocal microscopy to observe and quantify the dissolution of TNT, RDX, and HMX (<100 μm crystals) in micromodel channels. Dissolution models were developed to describe the changes of their radii, surface areas, volumes, and specific surface areas as a function of time. Results indicated that a model incorporating a resistance term that accounts for the surface area in direct contact with the channel surfaces (and hence, was not exposed to the flowing water) described the dissolution processes well. The model without the resistance term, however, could not capture the observed data at the late stage of TNT dissolution. The model-fitted mass transfer coefficients were in agreement with the previous reports. The study highlights the importance of including the resistance term in the dissolution model and illustrates the utility of the newly developed spectral imaging method for quantification of mass transfer of TNT, RDX, and HMX. Copyright © 2012 Elsevier B.V. All rights reserved.
Kulinowski, Piotr; Woyna-Orlewicz, Krzysztof; Obrał, Jadwiga; Rappen, Gerd-Martin; Haznar-Garbacz, Dorota; Węglarz, Władysław P; Jachowicz, Renata; Wyszogrodzka, Gabriela; Klaja, Jolanta; Dorożyński, Przemysław P
2016-02-29
The purpose of the research was to investigate the effect of the manufacturing process of the controlled release hydrophilic matrix tablets on their hydration behavior, internal structure and drug release. Direct compression (DC) quetiapine hemifumarate matrices and matrices made of powders obtained by dry granulation (DG) and high shear wet granulation (HS) were prepared. They had the same quantitative composition and they were evaluated using X-ray microtomography, magnetic resonance imaging and biorelevant stress test dissolution. Principal results concerned matrices after 2 h of hydration: (i) layered structure of the DC and DG hydrated tablets with magnetic resonance image intensity decreasing towards the center of the matrix was observed, while in HS matrices layer of lower intensity appeared in the middle of hydrated part; (ii) the DC and DG tablets retained their core and consequently exhibited higher resistance to the physiological stresses during simulation of small intestinal passage than HS formulation. Comparing to DC, HS granulation changed properties of the matrix in terms of hydration pattern and resistance to stress in biorelevant dissolution apparatus. Dry granulation did not change these properties-similar hydration pattern and dissolution in biorelevant conditions were observed for DC and DG matrices. Copyright © 2015 Elsevier B.V. All rights reserved.
Medarević, Djordje P; Kleinebudde, Peter; Djuriš, Jelena; Djurić, Zorica; Ibrić, Svetlana
2016-01-01
This study for the first time demonstrates combined application of mixture experimental design and artificial neural networks (ANNs) in the solid dispersions (SDs) development. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs were prepared by solvent casting method to improve carbamazepine dissolution rate. The influence of the composition of prepared SDs on carbamazepine dissolution rate was evaluated using d-optimal mixture experimental design and multilayer perceptron ANNs. Physicochemical characterization proved the presence of the most stable carbamazepine polymorph III within the SD matrix. Ternary carbamazepine-Soluplus®-poloxamer 188 SDs significantly improved carbamazepine dissolution rate compared to pure drug. Models developed by ANNs and mixture experimental design well described the relationship between proportions of SD components and percentage of carbamazepine released after 10 (Q10) and 20 (Q20) min, wherein ANN model exhibit better predictability on test data set. Proportions of carbamazepine and poloxamer 188 exhibited the highest influence on carbamazepine release rate. The highest carbamazepine release rate was observed for SDs with the lowest proportions of carbamazepine and the highest proportions of poloxamer 188. ANNs and mixture experimental design can be used as powerful data modeling tools in the systematic development of SDs. Taking into account advantages and disadvantages of both techniques, their combined application should be encouraged.
Otsuka, Yuta; Yamamoto, Masahiro; Tanaka, Hideji; Otsuka, Makoto
2015-01-01
Theophylline anhydrate (TA) in tablet formulation is transformed into monohydrate (TH) at high humidity and the phase transformation affected dissolution behavior. Near-infrared spectroscopic (NIR) method is applied to predict the change of pharmaceutical properties of TA tablets during storage at high humidity. The tablet formulation containing TA, lactose, crystalline cellulose and magnesium stearate was compressed at 4.8 kN. Pharmaceutical properties of TA tables were measured by NIR, X-ray diffraction analysis, dissolution test and tablet hardness. TA tablet was almost 100% transformed into TH after 24 hours at RH 96%. The pharmaceutical properties of TA tablets, such as tablet hardness, 20 min dissolution amount (D20) and increase of tablet weight (TW), changed with the degree of hydration. Calibration models for TW, tablet hardness and D20 to predict the pharmaceutical properties at high-humidity conditions were developed on the basis of the NIR spectra by partial least squares regression analysis. The relationships between predicted and actual measured values for TW, tablet hardness and D20 had straight lines, respectively. From the results of NIR-chemometrics, it was confirmed that these predicted models had high accuracy to monitor the tablet properties during storage at high humidity.
NASA Astrophysics Data System (ADS)
Prem Ananth, K.; Nathanael, A. Joseph; Jose, Sujin P.; Oh, Tae Hwan; Mangalaraj, D.; Ballamurugan, A. M.
2015-10-01
Hydroxyapatite (HAp) and β-tricalcium phosphate (β-TCP) bioactive materials have been used as individual coatings on steel implants employed in the fields of orthopedics and dentistry due to their excellent properties, which foster effective healing of the repair site. However, slow dissolution of HAp and fairly little fast dissolution of β-TCP present a major obstacle for such applications and this leads to the focus on the investigation of a mixture of HAp and β-TCP composite that forms biphasic calcium phosphate (BCP). The BCP coatings were achieved by thickness controlled electrophoretic deposition on piranha treated 316L SS. This method is well controlled and the anticipated dissolution rate could be attained with faster formation of new bone at the implant site, when compared to the individual HAp or β-TCP coating. The structural, functional, morphological and elemental composition of the coatings were characterized by using various analytical techniques. The BCP coating has been shown to have a role in obstructing the corrosion to a greater extent when in contact with SBF solution. The BCP coating also shows excellent in vitro and mechanical properties and osteoblasts cellular tests revealed that the coating was more effective in improving biocompatibility. This makes it an ideal candidate material for hard tissue replacement.
Carbohydrate-electrolyte drinks exhibit risks for human enamel surface loss
Passos, Vanara Florêncio; Lima, Juliana Paiva Marques; Santiago, Sérgio Lima; Rodrigues, Lidiany Karla Azevedo
2016-01-01
Objectives The aim of this investigation was to give insights into the impact of carbohydrate-electrolyte drinks on the likely capacity of enamel surface dissolution and the influence of human saliva exposure as a biological protective factor. Materials and Methods The pH, titratable acidity (TA) to pH 7.0, and buffer capacity (β) of common beverages ingested by patients under physical activity were analyzed. Then, we randomly distributed 50 specimens of human enamel into 5 groups. Processed and natural coconut water served as controls for testing three carbohydrate-electrolyte drinks. In all specimens, we measured surface microhardness (Knoop hardness numbers) and enamel loss (profilometry, µm) for baseline and after simulated intake cycling exposure model. We also prepared areas of specimens to be exposed to human saliva overnight prior to the simulated intake cycling exposure. The cycles were performed by alternated immersions in beverages and artificial saliva. ANOVA two-way and Tukey HDS tests were used. Results The range of pH, TA, and β were 2.85 - 4.81, 8.33 - 46.66 mM/L and 3.48 - 10.25 mM/L × pH, respectively. The highest capacity of enamel surface dissolution was found for commercially available sports drinks for all variables. Single time human saliva exposure failed to significantly promote protective effect for the acidic attack of beverages. Conclusions In this study, carbohydrate-electrolyte drinks usually consumed during endurance training may have a greater capacity of dissolution of enamel surface depending on their physicochemical proprieties associated with pH and titratable acidity. PMID:27847745
FY2016 ILAW Glass Corrosion Testing with the Single-Pass Flow-Through Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neeway, James J.; Asmussen, Robert M.; Parruzot, Benjamin PG
The inventory of immobilized low-activity waste (ILAW) produced at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) will be disposed of at the near-surface, on-site Integrated Disposal Facility (IDF). When groundwater comes into contact with the waste form, the glass will corrode and radionuclides will be released into the near-field environment. Because the release of the radionuclides is dependent on the dissolution rate of the glass, it is important that the performance assessment (PA) model accounts for the dissolution rate of the glass as a function of various chemical conditions. To accomplish this, an IDF PA model based onmore » Transition State Theory (TST) can be employed. The model is able to account for changes in temperature, exposed surface area, and pH of the contacting solution as well as the effect of silicon concentrations in solution, specifically the activity of orthosilicic acid (H4SiO4), whose concentration is directly linked to the glass dissolution rate. In addition, the IDF PA model accounts for the alkali-ion exchange process as sodium is leached from the glass and into solution. The effect of temperature, pH, H4SiO4 activity, and the rate of ion-exchange can be parameterized and implemented directly into the PA rate law model. The rate law parameters are derived from laboratory tests with the single-pass flow-through (SPFT) method. To date, rate law parameters have been determined for seven ILAW glass compositions, thus additional rate law parameters on a wider range of compositions will supplement the existing body of data for PA maintenance activities. The data provided in this report can be used by ILAW glass scientists to further the understanding of ILAW glass behavior, by IDF PA modelers to use the rate law parameters in PA modeling efforts, and by Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program.« less
Cravotta,, Charles A.; Watzlaf, George R.
2002-01-01
Data on the construction characteristics and the composition of influent and effluent at 13 underground, limestone-filled drains in Pennsylvania and Maryland are reported to evaluate the design and performance of limestone drains for the attenuation of acidity and dissolved metals in acidic mine drainage. On the basis of the initial mass of limestone, dimensions of the drains, and average flow rates, the initial porosity and average detention time for each drain were computed. Calculated porosity ranged from 0.12 to 0.50 with corresponding detention times at average flow from 1.3 to 33 h. The effectiveness of treatment was dependent on influent chemistry, detention time, and limestone purity. At two sites where influent contained elevated dissolved Al (>5 mg/liter), drain performance declined rapidly; elsewhere the drains consistently produced near-neutral effluent, even when influent contained small concentrations of dissolved Fe^+ (<5 mg/liter). Rates of limestone dissolution computed on the basis of average long-term Ca ion flux normalized by initial mass and purity of limestone at each of the drains ranged from 0.008 to 0.079 year-1. Data for alkalinity concentration and flux during 11-day closed-container tests using an initial mass of 4kg crushed limestone and a solution volume of 2.3 liter yielded dissolution rate constants that were comparable to these long-term field rates. An analytical method is proposed using closed-container test data to evaluate long-term performance (longevity) or to estimate the mass of limestone needed for a limestone treatment. This method condisers flow rate, influent alkalinity, steady-state alkalinity of effluent, and desired effluent alkalinity or detention time at a future time(s) and aplies first-order rate laws for limestone dissolution (continuous) and production of alkalinity (bounded).
Liu, Fang; Shokrollahi, Honaz
2015-05-15
Proton-pump inhibitor (PPI) products based on enteric coated multiparticulates are design to meet the needs of patients who cannot swallow tablets such as children and older adults. Enteric coated PPI preparations exhibit delays in in vivo absorption and onset of antisecretory effects, which is not reflected by the rapid in vitro dissolution in compendial pH 6.8 phosphate buffer commonly used for assessment of these products. A more representative and physiological medium, pH 6.8 mHanks bicarbonate buffer, was used in this study to evaluate the in vitro dissolution of enteric coated multiparticulate-based PPI products. Commercially available omeprazole, lansoprazole and esomeprazole products were subject to dissolution tests using USP-II apparatus in pH 4.5 phosphate buffer saline for 45 min (acid stage) followed by pH 6.8 phosphate buffer or pH 6.8 mHanks bicarbonate buffer. In pH 6.8 phosphate buffer, all nine tested products displayed rapid and comparable dissolution profiles meeting the pharmacopeia requirements for delayed release preparations. In pH 6.8 mHanks buffer, drug release was delayed and failed the pharmacopeia requirements from most enteric coated preparations. Despite that the same enteric polymer, methacrylic acid-ethyl acrylate copolymer (1:1), was applied to all commercial multiparticulate-based products, marked differences were observed between dissolution profiles of these preparations. The use of pH 6.8 physiological bicarbonate (mHanks) buffer can serve as a useful tool to provide realistic and discriminative in vitro release assessment of enteric coated PPI preparations and to assist rational formulation development of these products. Copyright © 2015 Elsevier B.V. All rights reserved.
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-01-01
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant. PMID:28368030
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-04-03
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.
NASA Astrophysics Data System (ADS)
Li, Shanshan; Lin, Xiang; Xu, Kailin; He, Jiawei; Yang, Hongqin; Li, Hui
2017-04-01
This work aimed to investigate the co-grinding effects of β-cyclodextrin (β-CD) and cucurbit[7]uril (CB[7]) on crystalline zaltoprofen (ZPF) in tablet formulation. Crystalline ZPF was prepared through anti-solvent recrystallization and fully analyzed through single-crystal X-ray diffraction. Co-ground dispersions and mono-ground ZPF were prepared using a ball grinding process. Results revealed that mono-ground ZPF slightly affected the solid state, solubility, and dissolution of crystalline ZPF. Co-ground dispersions exhibited completely amorphous states and elicited a significant reinforcing effect on drug solubility. UV-vis spectroscopy, XRPD, FT-IR, DSC, ssNMR, and molecular docking demonstrated the interactions in the amorphous product. Hardness tests on blank tablets with different β-CD and CB[7] contents suggested the addition of β-CD or CB[7] could enhance the compressibility of the powder mixture. Disintegration tests showed that CB[7] could efficiently shorten the disintegrating time. Dissolution tests indicated that β-CD and CB[7] could accelerate the drug dissolution rate via different mechanisms. Specifically, CB[7] could accelerate the dissolution rate by improving disintegration and β-CD showed a distinct advantage in solubility enhancement. Based on the comparative study on β-CD and CB[7] for tablet formulation combined with co-grinding, we found that CB[7] could be considered a promising drug delivery, which acted as a disintegrant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
William F. Bauer; Brian K. Schuetz; Gary M. Huestis
2012-09-01
Assessing the extent of internal dose is of concern whenever workers are exposed to airborne radionuclides or other contaminants. Internal dose determinations depend upon a reasonable estimate of the expected biological half-life of the contaminants in the respiratory tract. One issue with refractory elements is determining the dissolution rate of the element. Actinides such as plutonium (Pu) and Americium (Am) tend to be very refractory and can have biological half-lives of tens of years. In the event of an exposure, the dissolution rates of the radionuclides of interest needs to be assessed in order to assign the proper internal dosemore » estimates. During the November 2011 incident at the Idaho National Laboratory (INL) involving a ZPPR fuel plate, air filters in a constant air monitor (CAM) and a giraffe filter apparatus captured airborne particulate matter. These filters were used in dissolution rate experiments to determine the apparent dissolution half-life of Pu and Am in simulated biological fluids. This report describes these experiments and the results. The dissolution rates were found to follow a three term exponential decay equation. Differences were noted depending upon the nature of the biological fluid simulant. Overall, greater than 95% of the Pu and 93% of the Am were in a very slow dissolving component with dissolution half-lives of over 10 years.« less
NASA Astrophysics Data System (ADS)
Syed, Mohammed Irfan
Ketoconazole is one of the most widely prescribed oral antifungal drugs for the systemic treatment of various fungal infections. However, due its hydrophobic nature and poor solubility profiles in the gastro-intestinal fluids, variations in its bioavailability have been documented. Therefore, to enhance its dissolution in the biological fluids, this study was initiated to develop and evaluate Nanoparticles and Solid Dispersion forms of the drug. Nanoparticles of ketoconazole were developed by Wet Bead Milling technique using PVP-10k as the stabilizing material at a weight ratio of (2:1). Solid dispersion powder was prepared by Hot Melt method using PEG-8000 at a weight ratio of (1:2). A commercial product containing 200mg of ketoconazole tablet and pure drug powder were used as the control for comparison purposes. The dissolution studies were carried out in SGF, SIF, USP; and SIF with 0.2% sodium lauryl sulfate using the USP-II method for a 2 hours period. Physical characterizations were carried out using SEM, DSC, XRD and FTIR studies. Wet Bead Milling method yielded nanoparticles in the particles size range of (100-300nm.). First all samples were evaluated for their in-vitro dissolution in SGF at pH=1.2. After 15 minutes, the amounts of drug dissolved were observed to be 27% from both the pure powder and commercial tablet (control), 29% from solid dispersion and 100% from the Nanoparticles dosage form. This supports the fact that Nanoparticles had a strong influence on the dissolution rate of the drug and exhibited much faster dissolution of ketoconazole. When the same formulations were studied in the SIF, USP medium, the control formulation gave 3%, solid dispersion 8% and Nanoparticles 8% drug dissolution after 2 hours period. This could be because the weakly basic ketoconazole drug remained un-dissociated in the alkaline medium. Since this medium was unable to clearly distinguish the dissolution profiles from different formulation of the drug, the SIF solution was modified to include 0.02%, 0.05% and 0.1% sodium lauryl sulfate. Here, after 2 hours, the amount of drug dissolved was calculated to be 10% from controls, 21% from solid dispersion and 36% from nanoparticles in SIF with 0.02% SLS. Drug release was 20% from controls, 41% from solid dispersion and 52% from nanoparticle formulation in SIF with 0.05% SLS. Whereas amount of drug released in SIF with 0.1% SLS showed 21% from the control, 62% from solid dispersion and 85% from Nanoparticles respectively. This data supports that the ketoconazole Nanoparticles and its solid-dispersion exhibit many fold increase in dissolution of the drug, which could lead to a less variable and enhanced in-vivo drug absorption profiles. In addition, the data from the Physical Characterization (DSC, XRD and FTIR) supports that there were no interaction within the ingredients occurred in Nanoparticles and solid-dispersion formulations of the drug sample. Wet Bead Milling and Hot Melt methods proved useful in developing the Nanoparticles and solid dispersion form of ketoconazole. Results from particle size analysis were in correlation with data obtained from Scanning electron Microscopy and size of the nanoparticles was below 100nm. The dissolution studies with the modified simulated intestinal fluid (SIF) exhibited several fold increase in the dissolution of the drug compared to the pure drug powder and the commercial products used as the control. Also, the results from the physical characterization studies clearly support the stability of ketoconazole in both of these formulations.
A Novel Approach to Experimental Studies of Mineral Dissolution Kinetics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zhu; William E. Seyfried
2005-01-01
Currently, DOE is conducting pilot CO{sub 2} injection tests to evaluate the concept of geological sequestration. One strategy that potentially enhances CO{sub 2} solubility and reduces the risk of CO{sub 2} leak back to the surface is dissolution of indigenous minerals in the geological formation and precipitation of secondary carbonate phases, which increases the brine pH and immobilizes CO{sub 2}. Clearly, the rates at which these dissolution and precipitation reactions occur directly determine the efficiency of this strategy. However, one of the fundamental problems in modern geochemistry is the persistent two to five orders of magnitude discrepancy between laboratory-measured andmore » field derived feldspar dissolution rates. To date, there is no real guidance as to how to predict silicate reaction rates for use in quantitative models. Current models for assessment of geological carbon sequestration have generally opted to use laboratory rates, in spite of the dearth of such data for compositionally complex systems, and the persistent disconnect between lab and field applications. Therefore, a firm scientific basis for predicting silicate reaction kinetics in CO{sub 2} injected geological formations is urgently needed to assure the reliability of the geochemical models used for the assessments of carbon sequestration strategies. The funded experimental and theoretical study attempts to resolve this outstanding scientific issue by novel experimental design and theoretical interpretation to measure silicate dissolution rates and iron carbonate precipitation rates at conditions pertinent to geological carbon sequestration. In the first year of the project, we have successfully developed a sample preparation method and completed three batch feldspar dissolution experiments at 200 C and 300 bars. The changes of solution chemistry as dissolution experiments progressed were monitored with on-line sampling of the aqueous phase at the constant temperature and pressure. These data allow calculating overall apparent feldspar dissolution rates and secondary mineral precipitation rates as a function of saturation states. State-of-the-art atomic resolution transmission electron microscopy (TEM), scanning electron microscopy, and electron microprobe was used to characterize the reactants (feldspars before experiments). We experimented with different sample preparation methods for TEM study, and found excellent images and chemical resolution with reactants, which shows promise of the technology and establishes the baseline for comparison with products (feldspars after the experiments). Preliminary electron microscopic characterization shows that the reacted feldspars have etch pits and are covered with secondary sheet silicate phases. Reaction-path geochemical modeling is used to interpret the experimental results. We have established the software and database, and are making great progress. Also during the first year, our education goal of graduate student training has been achieved. A Ph. D. student at Indiana University is progressing well in the degree program and has taken geochemical modeling, SEM, and TEM courses, which will facilitate research in the second and third year. A Ph. D. student at University of Minnesota is progressing well in conducting the experiments, and is near graduation. With the success of training of graduate students and excellent experimental data in the first year, we anticipate a more fruitful year in the second year.« less
Friuli, Valeria; Bruni, Giovanna; Musitelli, Giorgio; Conte, Ubaldo; Maggi, Lauretta
2018-01-01
The purpose of this investigation is to determine how the dissolution media may influence the release rate of an insoluble drug in in vitro conditions. Some oral dosage forms containing ibuprofen, a molecule that shows pH-dependent solubility, are tested. They are evaluated in different media to simulate the gastrointestinal transit at paddle rotation speeds of 50 and 100 rpm. Moreover, the potential effect of different ethanol concentrations on drug release is tested. The dissolution profiles of the tablets show a similar behavior in water (pH 1.0) and phosphate buffer (pH 4.5) where the 2 doses are not completely dissolved. The soft capsules show a different behavior: a certain amount of ibuprofen, which is in solution inside the capsule, reprecipitates in water and in the pH 4.5 buffer. Instead, ibuprofen dissolves rapidly in the pH 6.8 buffer from all the formulations. In the water-ethanol solutions, the dissolution curves show a valuable increase in the drug dissolved at higher ethanol concentrations. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daniel, W.E.; Best, D.R.
1995-12-01
Vitrification has been identified as one potential option for the e materials such as Americium (Am), Curium (Cm), Neptunium (Np), and Plutonium (Pu). A process is being developed at the Savannah River Site to safely vitrify all of the highly radioactive Am/Cm material and a portion of the fissile (Pu) actinide materials stored on site. Vitrification of the Am/Cm will allow the material to be transported and easily stored at the Oak Ridge National Laboratory. The Am/Cm glass has been specifically designed to be (1) highly durable in aqueous environments and (2) selectively attacked by nitric acid to allow recoverymore » of the valuable Am and Cm isotopes. A similar glass composition will allow for safe storage of surplus plutonium. This paper will address the composition, relative durability, and dissolution rate characteristics of the actinide glass, Loeffler Target, that will be used in the Americium/Curium Vitrification Project at Westinghouse Savannah River Company near Aiken, South Carolina. The first part discusses the tests performed on the Loeffler Target Glass concerning instantaneous dissolution rates. The second part presents information concerning pseudo-activation energy for the one week glass dissolution process.« less
Cai, Cuifang; Liu, Muhua; Li, Yun; Guo, Bei; Chang, Hui; Zhang, Xiangrong; Yang, Xiaoxu; Zhang, Tianhong
2016-01-01
In this study, to enhance the dissolution rate and oral bioavailability of bifendate, a silica-supported solid dispersion (SD) of bifendate was prepared using supercritical carbon dioxide (ScCO2) technology. The properties of bifendate-silica SD were characterized by differential scanning calorimetry (DSC), X-ray diffraction (X-RD) and scanning electron microscopy. The pharmacokinetic study was carried out in beagle dogs using commercial bifendate dropping pills as a reference which is a conventional SD formulation of bifendate and PEG6000. A novel method of Ultra Performance Convergence Chromatography-tandem mass spectrometry (UPC(2)™-MS/MS) method was applied to determine bifendate concentration in plasma. The amorphous state of bifendate in bifendate-silica SD was revealed in X-RD and DSC when the ratios of bifendate and silica were 1:15 and 1:19, respectively. In vitro dissolution rate was significantly improved with cumulative release of 67% within 20 min relative to 8% for the physical mixture of bifendate and silica, and which was also higher than the commercial dropping pill of 52%. After storage at 75% relative humidity (RH) for 10 d, no recrystallization was found and reduced dissolution rate was obtained due to the absorption of moisture. In pharmacokinetic study, Cmax and AUC0-t for bifendate-silica SD were 153.1 ng/ml and 979.8 ng h/ml, respectively. AUC0-t of bifendate-silica SDs was ∼1.6-fold higher than that of the commercial dropping pills. These results suggest that adsorbing bifendate onto porous silica via ScCO2 technique could be a feasible method to enhance oral bioavailability together with a higher dissolution rate.
PROCESS OF DISSOLVING ZIRCONIUM ALLOYS
Shor, R.S.; Vogler, S.
1958-01-21
A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.
Oromucosal film preparations: classification and characterization methods.
Preis, Maren; Woertz, Christina; Kleinebudde, Peter; Breitkreutz, Jörg
2013-09-01
Recently, the regulatory authorities have enlarged the variety of 'oromucosal preparations' by buccal films and orodispersible films. Various film preparations have entered the market and pharmacopoeias. Due to the novelty of the official monographs, no standardized characterization methods and quality specifications are included. This review reports the methods of choice to characterize oromucosal film preparations with respect to biorelevant characterization and quality control. Commonly used dissolution tests for other dosage forms are not transferable for films in all cases. Alternatives and guidance on decision, which methods are favorable for film preparations are discussed. Furthermore, issues about requirements for film dosage forms are reflected. Oromucosal film preparations offer a wide spectrum of opportunities. There are a lot of suggestions in the literature on how to control the quality of these innovative products, but no standardized tests are available. Regulatory authorities need to define the standards and quality requirements more precisely.
Combined Experimental and Computational Approach to Predict the Glass-Water Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M.; Bacon, Diana H.
2011-10-01
The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic timescales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models be validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test B, and pressurized unsaturated flow (PUF)], thereby reducingmore » the duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year-long PUF experiment was conducted with the Subsurface Transport Over Reactive Multiphases (STORM) code. Results show that parameterization of the computer model by combining direct bench scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year-long test duration, the rate decreased from 0.2 to 0.01 g/(m2 day) based on B release for low-activity waste glass LAWA44. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by four orders of magnitude) and suggests that the gel-layer properties are less protective under these dynamic conditions.« less
Combined Experimental and Computational Approach to Predict the Glass-Water Reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pierce, Eric M; Bacon, Diana
2011-01-01
The use of mineral and glass dissolution rates measured in laboratory experiments to predict the weathering of primary minerals and volcanic and nuclear waste glasses in field studies requires the construction of rate models that accurately describe the weathering process over geologic time-scales. Additionally, the need to model the long-term behavior of nuclear waste glass for the purpose of estimating radionuclide release rates requires that rate models are validated with long-term experiments. Several long-term test methods have been developed to accelerate the glass-water reaction [drip test, vapor hydration test, product consistency test-B, and pressurized unsaturated flow (PUF)], thereby reducing themore » duration required to evaluate long-term performance. Currently, the PUF test is the only method that mimics the unsaturated hydraulic properties expected in a subsurface disposal facility and simultaneously monitors the glass-water reaction. PUF tests are being conducted to accelerate the weathering of glass and validate the model parameters being used to predict long-term glass behavior. A one-dimensional reactive chemical transport simulation of glass dissolution and secondary phase formation during a 1.5-year long PUF experiment was conducted with the subsurface transport over reactive multi-phases code. Results show that parameterization of the computer model by combining direct bench-scale laboratory measurements and thermodynamic data provides an integrated approach to predicting glass behavior over the length of the experiment. Over the 1.5-year long test duration, the rate decreased from 0.2 to 0.01 g/(m2 d) base on B release. The observed decrease is approximately two orders of magnitude higher than the decrease observed under static conditions with the SON68 glass (estimated to be a decrease by 4 orders of magnitude) and suggest the gel-layer properties are less protective under these dynamic conditions.« less
Dissolution Kinetics of Meta-Torbernite under Circum-neutral to Alkaline Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; McNamara, Bruce K.; Bacon, Diana H.
2009-12-21
Autunite group minerals have been identified in contaminated sediments as the long-term controlling phase of uranium. Meta-torbernite, has been identified in subsurface environments which were subjected to co-contaminant disposal practices from past nuclear weapons and fuel operations. Under these conditions the mobility of uranium in subsurface pore waters is limited by the rate of meta-torbernite dissolution; however, there are no known investigations which report the dissolution behavior of meta-torbernite. The purpose of this investigation was to conduct a series of single-pass flow-through (SPFT) tests to 1) quantify the effect of temperature (23 - 90oC) and pH (6 -10) on meta-torbernitemore » dissolution, 2) compare the dissolution of meta-torbernite to other autunite-group minerals, and 3) evaluate the effect of aqueous phosphate on the dissolution kinetics of meta-torbernite. Results presented here illustrate meta-torbernite dissolution rates increase by ~100X over the pH interval of 6 to 10 (eta = 0.59 ± 0.07), irrespective of temperature. The power law coefficient for meta-torbernite, eta = 0.59 ± 0.07, is greater than that quantified for Ca-meta-autunite, eta = 0.42 ± 0.12. This suggests the stability of meta-torbernite is greater than that of meta-autunite, which is reflected in the predicted stability constants. The rate equation for the dissolution of meta-torbernite as a function of aqueous phosphate concentration is log rdissol (mol m-2 sec-1) = -4.7 x 10-13 + 4.1 x 10-10 [PO43-].« less
Krieg, Brian J; Taghavi, Seyed Mohammad; Amidon, Gordon L; Amidon, Gregory E
2015-09-01
Bicarbonate is the main buffer in the small intestine and it is well known that buffer properties such as pKa can affect the dissolution rate of ionizable drugs. However, bicarbonate buffer is complicated to work with experimentally. Finding a suitable substitute for bicarbonate buffer may provide a way to perform more physiologically relevant dissolution tests. The dissolution of weak acid and weak base drugs was conducted in bicarbonate and phosphate buffer using rotating disk dissolution methodology. Experimental results were compared with the predicted results using the film model approach of (Mooney K, Mintun M, Himmelstein K, Stella V. 1981. J Pharm Sci 70(1):22-32) based on equilibrium assumptions as well as a model accounting for the slow hydration reaction, CO2 + H2 O → H2 CO3 . Assuming carbonic acid is irreversible in the dehydration direction: CO2 + H2 O ← H2 CO3 , the transport analysis can accurately predict rotating disk dissolution of weak acid and weak base drugs in bicarbonate buffer. The predictions show that matching the dissolution of weak acid and weak base drugs in phosphate and bicarbonate buffer is possible. The phosphate buffer concentration necessary to match physiologically relevant bicarbonate buffer [e.g., 10.5 mM (HCO3 (-) ), pH = 6.5] is typically in the range of 1-25 mM and is very dependent upon drug solubility and pKa . © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.
Kaale, Eliangiringa; Hope, Samuel M; Jenkins, David; Layloff, Thomas
2016-01-01
To assess the quality of cotrimoxazole tablets produced by a Tanzanian manufacturer by a newly instituted quality assurance programme. Tablets underwent a diffuse reflectance spectroscopy procedure with periodic quality assessment confirmation by assay and dissolution testing using validated HPTLC techniques (including weight variation and disintegration evaluations). Based on results from the primary test methods, the first group of product was <80% compliant, whereas subsequent groups reached >99% compliance. This approach provides a model for rapidly assuring product quality of future procurements of other products that is more cost-effective than traditional pharmaceutical testing techniques. © 2015 John Wiley & Sons Ltd.
Formulation development and optimization: Encapsulated system of Atenolol and Glyburide.
Maboos, Madiha; Yousuf, Rabia Ismail; Shoaib, Muhammad Harris
2016-03-01
Objective of this study is to develop; tablet-in-a capsule system, to deliver Atenolol 25mg and Glyburide 5mg in the hard gelatin capsule. In order to improve patient compliance and reduce problems associated with complex therapeutic regimen Atenolol (cardio-selective beta-blocker) and Glyburide (anti-diabetic; sulfonylurea) are commonly, prescribed to the diabetic hypertensive patient. Metgod: In present work six different formulations of Atenolol (AF1-AF6) and Glyburide (GF1-GF6) were prepared by direct compression method using Avicel, Lactose DC, Crospovidone and Magnesium Stearate in different proportions and encapsulated in hard gelatin shells. Post compression parameters i.e. weight variation, diameter variation, thickness variation, hardness variation, % friability, disintegration, % drug release were determined at different pH 1.2, 4.5 and 6.8, and subjected to dissolution profile comparison through similarity factor (ƒ2). Stability studies were performed and shelf lives were calculated by R-Gui Stab R console 2.15.2 and determined to be 15 and 27 months for Atenolol and Glyburide respectively. The percentage drug contents of Atenolol and Glyburide were estimated spectrophotometerically at 286 nm and 314.7 nm respectively. Formulations CF1-CF6 (encapsulated) were subjected to weight variation, disintegration and dissolution tests and subjected to model dependant analysis for dissolution studies. The simultaneous quantitation of Atenolol and Glyburide for content assay was done by HPLC method of analysis. formulation CF6 is showing highest coefficient of correlation values for all models applied. So we can conclude that the proposed system can improve patient compliance by increasing the ease of administration of two drugs together.
Kinetics of dissolution of thorium and uranium doped britholite ceramics
NASA Astrophysics Data System (ADS)
Dacheux, N.; Du Fou de Kerdaniel, E.; Clavier, N.; Podor, R.; Aupiais, J.; Szenknect, S.
2010-09-01
In the field of immobilization of actinides in phosphate-based ceramics, several thorium and uranium doped britholite samples were submitted to leaching tests. The normalized dissolution rates determined for several pH values, temperatures and acidic media from the calcium release range from 4.7 × 10 -2 g m -2 d -1 to 21.6 g m -2 d -1. Their comparison with that determined for phosphorus, thorium and uranium revealed that the dissolution is clearly incongruent for all the conditions examined. Whatever the leaching solution considered, calcium and phosphorus elements were always released with higher RL values than the other elements (Nd, Th, U). Simultaneously, thorium was found to quickly precipitate as alteration product, leading to diffusion phenomena for uranium. For all the media considered, the uranium release is higher than that of thorium, probably due to its oxidation from tetravalent oxidation state to uranyl. Moreover, the evaluation of the partial order related to proton concentration and the apparent energy of activation suggest that the reaction of dissolution is probably controlled by surface chemical reactions occurring at the solid/liquid interface. Finally, comparative leaching tests performed in sulphuric acid solutions revealed a significant influence of such media on the chemical durability of the leached pellets, leading to higher normalized dissolution rates for all the elements considered. On the basis of the results of chemical speciation, this difference was mainly explained in the light of higher complexion constants by sulfate ions compared to nitrate, chloride and phosphate.
NASA Astrophysics Data System (ADS)
Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon
2014-05-01
A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution ( i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested (-2°C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.
Uchida, Takahiro; Yoshida, Miyako; Hazekawa, Mai; Haraguchi, Tamami; Furuno, Hiroyuki; Teraoka, Makoto; Ikezaki, Hidekazu
2013-09-01
The purpose of this study was to evaluate and compare the palatability of 10 formulations (the original manufacturer's formulation and nine generics) of amlodipine orally disintegrating tablets (ODTs) by means of human gustatory sensation testing, disintegration/dissolution testing and the evaluation of bitterness intensity using a taste sensor. Initially, the palatability, dissolution and bitterness intensity of the ODTs were evaluated in gustatory sensation tests. Second, the disintegration times of the ODTs were measured using the OD-mate, a newly developed apparatus for measuring the disintegration of ODTs, and lastly, the bitterness intensities were evaluated using an artificial taste sensor. Using factor analysis, the factors most affecting the palatability of amlodipine ODTs were found to be disintegration and taste. There was high correlation between the disintegration times of the 10 amlodipine ODTs estimated in human gustatory testing and those found using the OD-mate. The bitterness intensities of amlodipine ODTs 10, 20 and 30 s after starting the conventional brief dissolution test and the values determined by the taste sensor were highly correlated with the bitterness intensities determined in gustatory sensation testing. The OD-mate and the taste sensor may be useful for predicting the disintegration and bitterness intensity of amlodipine ODTs in the mouth. © 2013 Royal Pharmaceutical Society.
Production of pure indinavir free base nanoparticles by a supercritical anti-solvent (SAS) method.
Imperiale, Julieta C; Bevilacqua, Gabriela; Rosa, Paulo de Tarso Vieira E; Sosnik, Alejandro
2014-12-01
This work investigated the production of pure indinavir free base nanoparticles by a supercritical anti-solvent method to improve the drug dissolution in intestine-like medium. To increase the dissolution of the drug by means of a supercritical fluid processing method. Acetone was used as solvent and supercritical CO2 as antisolvent. Products were characterized by dynamic light scattering (size, size distribution), scanning electron microscopy (morphology), differential scanning calorimetry (thermal behaviour) and X-rays diffraction (crystallinity). Processed indinavir resulted in particles of significantly smaller size than the original drug. Particles showed at least one dimension at the nanometer scale with needle or rod-like morphology. Results of X-rays powder diffraction suggested the formation of a mixture of polymorphs. Differential scanning calorimetry analysis showed a main melting endotherm at 152 °C. Less prominent transitions due to the presence of small amounts of bound water (in the raw drug) or an unstable polymorph (in processed IDV) were also visible. Finally, drug particle size reduction significantly increased the dissolution rate with respect to the raw drug. Conversely, the slight increase of the intrinsic solubility of the nanoparticles was not significant. A supercritical anti-solvent method enabled the nanonization of indinavir free base in one single step with high yield. The processing led to faster dissolution that would improve the oral bioavailability of the drug.
Dissolution enhancement of efavirenz by solid dispersion and PEGylation techniques
Madhavi, B. Bindu; Kusum, B.; Chatanya, CH. Krishna; Madhu, M. Naga; Harsha, V. Sri; Banji, David
2011-01-01
Background: Efavirenz is the preferred nonnucleotide reverse transcriptase inhibitor for first-line antiretroviral treatment in many countries. It is orally active and is specific for human immunodeficiency virus type 1. Its effectiveness can be attributed to its long half-life, which is 52–76 h after multiple doses. The drug is having poor water solubility. The formulation of poorly soluble drug for oral delivery will be one of the biggest challenges for formulation scientists in the research field. Among the available approaches, the solid dispersion technique has often proved to be the most commonly used method in improving dissolution and bioavailability of the drugs because of its simplicity and economy in preparation and evaluation. Materials and Methods: Solid dispersions were prepared by solvent evaporation and physical mixture methods by using polyethylene glycol as the hydrophilic carrier and PEGylated product was also prepared. The prepared products were evaluated for various parameters, such as polymer interaction, saturation solubility study, and drug release studies. The drug release data were analyzed by fitting it into various kinetic models. Results: There is an improvement in the dissolution from 16% to 70% with solid dispersion technology. Higuchi model was found to be the best fit model. Conclusion: Solid dispersion is the simple, efficient, and economic method to improve the dissolution of the poorly water-soluble drugs. PMID:23071917
Crystal forms of the hydrogen oxalate salt of o-desmethylvenlafaxine.
Dichiarante, Elena; Curzi, Marco; Giaffreda, Stefano L; Grepioni, Fabrizia; Maini, Lucia; Braga, Dario
2015-06-01
To prepare new crystalline forms of the antidepressant o-desmethylvenlafaxine salt as potential new commercial forms and evaluate their physicochemical properties, in particular the dissolution rate. A new hydrogen oxalate salt of o-desmethylvenlafaxine hydrogen oxalate (ODV-OX) was synthesized, and a polymorph screening was performed using different solvents and crystallization conditions. Crystalline forms were characterized by a combination of solid-state techniques: X-ray powder diffraction, differential scanning calorimetry, thermogravimetric analysis, FT-IR spectroscopy and single crystal X-ray diffraction. The stability of all crystalline phases was tested under International Conference on Harmonisation (ICH) conditions (40°C and 75% Relative Humidity (RH)) for 1 week. Dissolution tests were performed on the hydrogen oxalate salt ODV-OX Form 1 and compared with dissolution test on the commercial form of the succinate salt of o-desmethylvenlafaxine. Five crystalline forms of ODV-OX were isolated, namely three hydrated forms (Form 1, Form 2, Form 3) and two anhydrous forms (Form 4 and Form 5). Comparative solubility tests on ODV-OX Form 1 and o-desmethylvenlafaxine succinate evidenced a significant increase in solubility for the hydrogen oxalate salt (142 g/l) with respect to the succinate salt (70 g/l). © 2015 Royal Pharmaceutical Society.
Willis, Catherine; Rubin, Jacob
1987-01-01
A moving boundary problem which arises during transport with precipitation-dissolution reactions is solved by three different numerical methods. Two of these methods (one explicit and one implicit) are based on an integral formulation of mass balance and lead to an approximation of a weak solution. These methods are compared to a front-tracking scheme. Although the two approaches are conceptually different, the numerical solutions showed good agreement. As the ratio of dispersion to convection decreases, the methods based on the integral formulation become computationally more efficient. Specific reactions were modeled to examine the dependence of the system on the physical and chemical parameters. Although the water flow rate does not explicitly appear in the equation for the velocity of the moving boundary, the speed of the boundary depends more on the flux rate than on the dispersion coefficient. The discontinuity in the gradient of the solute concentration profile at the boundary increases with convection and with the initial concentration of the mineral. Our implicit method is extended to allow participation of the solutes in complexation reactions as well as the precipitation-dissolution reaction. This extension is easily made and does not change the basic method.
Mohana Raghava Srivalli, K.; Lakshmi, P.K.; Balasubramaniam, J.
2012-01-01
Lamotrigine is a BCS class II drug with pH dependent solubility. The bilayered gastric mucoadhesive tablets of lamotrigine were designed such that the drug and controlled release polymers were incorporated in the upper layer and the lower layer had the mucoadhesive polymers. The major ingredients selected for the upper layer were the drug and control release polymer (either HPMC K15M or polyox) while the lower MA layer predominantly comprised of Carbopol 974P. A 23 full factorial design was constructed for this study and the tablets were optimized for parameters like tablet size, shape, ex vivo mucoadhesive properties and unidirectional drug release. Oval tablets with an average size of 14 mm diameter were set optimum. Maximum mucoadhesive bond strength of 79.3 ± 0.91 * 103 dyn/cm2 was achieved with carbopol when used in combination with a synergistic resin polymer. All the tested formulations presented a mucoadhesion time of greater than 12 h. The incorporation of methacrylic polymers in the lower layer ensured unidirectional drug release from the bilayered tablets. The unidirectional drug release was confirmed after comparing the dissolution results of paddle method with those of a modified basket method. Model independent similarity and dissimilarity factor methods were used for the comparison of dissolution results. Controlled drug release profiles with zero order kinetics were obtained with polyox and HPMC K15M which reported t90% at 6th and 12th hours, respectively. The “n” value with polyox was 0.992 and that with HPMC K15M was 0.946 indicating an approximate case II transport. These two formulations showed the potential for oral administration of lamotrigine as bilayered gastric mucoadhesive tablets by yielding highest similarity factor values, 96.06 and 92.47, respectively, between the paddle and modified basket method dissolution release profiles apart from reporting the best tablet physical properties and maximum mucoadhesive strength. PMID:24109205
Venkatesh, S; Li, J; Xu, Y; Vishnuvajjala, R; Anderson, B D
1996-10-01
The selection of cosalane (NSC 658586) by the National Cancer Institute for further development as a potential drug candidate for the treatment of AIDS led to the exploration of the solubility behavior of this extremely hydrophobic drug, which has an intrinsic solubility (S0 approaching 1 ng/ml. This study describes attempts to reliably measure the intrinsic solubility of cosalane and examine its pH-solubility behavior. S0 was estimated by 5 different strategies: (a) direct determination in an aqueous suspension: (b) facilitated dissolution; (c) estimation from the octanol/water partition coefficient and octanol solubility (d) application of an empirical equation based on melting point and partition coefficient; and (e) estimation from the hydrocarbon solubility and functional group contributions for transfer from hydrocarbon to water. S0 estimates using these five methods varied over a 5 x 107-fold range Method (a) yielded the highest values, two-orders of magnitude greater than those obtained by method (b) (facilitated dissolution. 1.4 +/- 0.5 ng/ml). Method (c) gave a value 20-fold higher while that from method (d) was in fair agreement with that from facilitated dissolution. Method (e) yielded a value several orders-of-magnitude lower than other methods. A molecular dynamics simulation suggests that folded conformations not accounted for by group contributions may reduce cosalane's effective hydrophobicity. Ionic equilibria calculations for this weak diprotic acid suggested a 100-fold increase in solubility per pH unit increase. The pH-solubility profile of cosalane at 25 degrees C agreed closely with theory. These studies highlight the difficulty in determining solubility of very poorly soluble compounds and the possible advantage of the facilitated dissolution method. The diprotic nature of cosalane enabled a solubility enhancement of > 107-fold by simple pH adjustment.
Tai, Yiping; McBride, Murray B; Li, Zhian
2013-03-30
In the present study, we evaluated a commonly employed modified Bureau Communautaire de Référence (BCR test) 3-step sequential extraction procedure for its ability to distinguish forms of solid-phase Pb in soils with different sources and histories of contamination. When the modified BCR test was applied to mineral soils spiked with three forms of Pb (pyromorphite, hydrocerussite and nitrate salt), the added Pb was highly susceptible to dissolution in the operationally-defined "reducible" or "oxide" fraction regardless of form. When three different materials (mineral soil, organic soil and goethite) were spiked with soluble Pb nitrate, the BCR sequential extraction profiles revealed that soil organic matter was capable of retaining Pb in more stable and acid-resistant forms than silicate clay minerals or goethite. However, the BCR sequential extraction for field-collected soils with known and different sources of Pb contamination was not sufficiently discriminatory in the dissolution of soil Pb phases to allow soil Pb forms to be "fingerprinted" by this method. It is concluded that standard sequential extraction procedures are probably not very useful in predicting lability and bioavailability of Pb in contaminated soils. Copyright © 2013 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Lazzarini, Annaluisa Fantola; Lazzarini, Ennio
1983-01-01
Background information and procedures are provided for an experiment designed to introduce (1) crystal defects and their reactivity upon crystal dissolution; (2) hydrates electron and its reactivity; (3) application of radiochemical method of analysis; and (4) the technique of competitive kinetics. Suggested readings and additional experiments are…
NASA Technical Reports Server (NTRS)
Walker, J. C.; Opdyke, B. C.
1995-01-01
Short-term imbalances in the global cycle of shallow water calcium carbonate deposition and dissolution may be responsible for much of the observed Pleistocene change in atmospheric carbon dioxide content. However, any proposed changes in the alkalinity balance of the ocean must be reconciled with the sedimentary record of deep-sea carbonates. The possible magnitude of the effect of shallow water carbonate deposition on the dissolution of pelagic carbonate can be tested using numerical simulations of the global carbon cycle. Boundary conditions can be defined by using extant shallow water carbonate accumulation data and pelagic carbonate deposition/dissolution data. On timescales of thousands of years carbonate deposition versus dissolution is rarely out of equilibrium by more than 1.5 x 10(13) mole yr-1. Results indicate that the carbonate chemistry of the ocean is rarely at equilibrium on timescales less than 10 ka. This disequilibrium is probably due to sea level-induced changes in shallow water calcium carbonate deposition/dissolution, an interpretation that does not conflict with pelagic sedimentary data from the central Pacific.
NASA Astrophysics Data System (ADS)
Fu, Liang; Shi, Shu-Yun; Chen, Xiao-Qing
2017-07-01
The concentration of twelve trace elements in the water decoction of medicine food homology plants (MFHP) was determined by inductively coupled plasma-tandem mass spectrometry (ICP-MS/MS). Water decoctions of MFHP were analyzed directly using the MS/MS mode after acidification by 1% (v/v) nitric acid. The polyatomic interferences were eliminated by oxygen mass shift, oxygen on-mass, and ammonia mass shift. The accuracy of the method was verified by analysis of standard reference materials. This method was utilized to investigate the water decoction composition of 16 common Chinese MFHPs. The trace elements in the water decoctions of different MFHPs presented significantly different dissolution ratios. The dissolution ratio of V was the lowest (4.21%-14.86%), whereas Zn showed the highest dissolution ratio (24.87%-86.80%). In addition, the dissolution ratio of heavy metallic elements in most MFHP was equal to or was lower than 30%. Therefore, consumption of MHFP decoction could decrease the heavy metal intake associated with MFHP use and reduce the risk of heavy metal poisoning.
Sai Gouthami, Kodukula; Kumar, Dinesh; Thipparaboina, Rajesh; Chavan, Rahul B; Shastri, Nalini R
2015-08-01
Improvement in dissolution of the drugs having poor solubility is a challenge in pharmaceutical industry. Micronization is one technique, employed for dissolution enhancement of cilostazol, a BCS class II drug. However, the obtained micronized drug possesses poor flowability. The aim of this study was to improve the dissolution rate and flow properties of cilostazol by crystal engineering, using habit modification method and compare with micronized cilostazol bulk drug. Simulation studies were performed to predict the effect of solvents on cilostazol crystal habit. Cilostazol crystals with different habits were prepared by solvent:anti-solvent crystallization technique. SEM, FTIR, DSC, TGA and PXRD were used for solid state characterization. The results revealed that cilostazol re-crystallized from methanol-hexane system were hexagonal and ethanol-hexane system gave rods. Cilostazol engineered habits showed increased dissolution rate than unprocessed drug but similar dissolution rate when compared to micronized cilostazol. Micronized cilostazol showed a dissolution efficiency of 75.58% where as cilostazol recrystallized from methanol-hexane and ethanol-hexane systems resulted in a dissolution efficiency of 72.63% and 68.63%, respectively. In addition, crystal engineering resulted in improved flow properties of re-crystallized habits when compared to micronized form of the drug. In conclusion, crystal engineering by habit modification show potential for dissolution enhancement with an added advantage of improved flow properties over micronization technique, for poorly soluble drugs like cilostazol. Copyright © 2015 Elsevier B.V. All rights reserved.
Magnetic resonance imaging of tablet dissolution.
Nott, Kevin P
2010-01-01
Magnetic resonance imaging (MRI) is the technique of choice for measuring hydration, and its effects, during dissolution of tablets since it non-invasively maps (1)H nuclei associated with 'mobile' water. Although most studies have used MRI systems with high-field superconducting magnets, low-field laboratory-based instruments based on permanent magnet technology are being developed that provide key data for the formulation scientist. Incorporation of dissolution hardware, in particular the United States Pharmacopeia (USP) apparatus 4 flow-through cell, allows measurements under controlled conditions for comparison against other dissolution methods. Furthermore, simultaneous image acquisition and measurement of drug concentration allow direct comparison of the drug release throughout the hydration process. The combination of low-field MRI with USP-4 apparatus provides another tool to aid tablet formulation. Copyright 2009 Elsevier B.V. All rights reserved.
Wang, F; Hidaka, T; Oishi, T; Osumi, S; Tsubota, J; Tsuno, H
2011-01-01
To test whether hyperthermophilic treatment promotes polylactide (PLA) dissolution and methane conversion under anaerobic digestion conditions, a single thermophilic control reactor (55 °C) and a two-phase system consisting of a hyperthermophilic reactor (80 °C) and a thermophilic reactor (55 °C) were continuously fed with a mixture of PLA and artificial kitchen garbage. In Runs 1 and 2, the PLA dissolution ratios in the two-phase system were 79.2 ± 6.5% and 85.2 ± 7.0%, respectively, higher than those of the control. Batch experimental results indicated that hyperthermophilic treatment could promote PLA dissolution to a greater degree as compared with single thermophilic treatment and that ammonia addition also had a promotional effect on PLA dissolution. In the two-phase system, after hyperthermophilic treatment, dissolved PLA was converted to methane gas under the subsequent thermophilic condition.
NASA Astrophysics Data System (ADS)
de Azevedo Jacqueline, Resende; Fabienne, Espitalier; Jean-Jacques, Letourneau; Inês, Ré Maria
2017-08-01
LASSBio-294 (3,4-methylenedioxybenzoyl-2-thienylhydrazon) is a poorly soluble drug which has been proposed to have major advantages over other cardiotonic drugs. Poorly water soluble drugs present limited bioavailability due to their low solubility and dissolution rate. An antisolvent crystallization processing can improve the dissolution rate by decreasing the crystals particle size. However, LASSBio-294 is also poorly soluble in organic solvents and this operation is limited. In order to open new perspectives to improve dissolution rate, this work has investigated LASSBio-294 in terms of its antisolvent crystallization in 1-ethyl-3-methylimidazolium methyl phosphonate [emim][CH3O(H)PO2] as solvent and water as antisolvent. Two modes of mixing are tested in stirred vessel with different pre-mixers (Roughton or T-mixers) in order to investigate the mixing effect on the crystal properties (crystalline structure, particle size distribution, residual solvent and in vitro dissolution rate). Smaller drug particles with unchanged crystalline structure were obtained. Despite the decrease of the elementary particles size, the recrystallized particles did not achieve a better dissolution profile. However, this study was able to highlight a certain number of findings such as the impact of the hydrodynamic conditions on the crystals formation and the presence of a gel phase limiting the dissolution rate.
NASA Astrophysics Data System (ADS)
Reitman, Nadine G.; Ge, Shemin; Mueller, Karl
2014-09-01
Groundwater flow is an important control on subsurface evaporite (salt) dissolution. Salt dissolution can drive faulting and associated subsidence on the land surface and increase salinity in groundwater. This study aims to understand the groundwater flow system of Gypsum Canyon watershed in the Paradox Basin, Utah, USA, and whether or not groundwater-driven dissolution affects surface deformation. The work characterizes the groundwater flow and solute transport systems of the watershed using a three-dimensional (3D) finite element flow and transport model, SUTRA. Spring samples were analyzed for stable isotopes of water and total dissolved solids. Spring water and hydraulic conductivity data provide constraints for model parameters. Model results indicate that regional groundwater flow is to the northwest towards the Colorado River, and shallow flow systems are influenced by topography. The low permeability obtained from laboratory tests is inconsistent with field observed discharges, supporting the notion that fracture permeability plays a significant role in controlling groundwater flow. Model output implies that groundwater-driven dissolution is small on average, and cannot account for volume changes in the evaporite deposits that could cause surface deformation, but it is speculated that dissolution may be highly localized and/or weaken evaporite deposits, and could lead to surface deformation over time.
Role of fiber dissolution in biological activity in rats.
Eastes, W; Hadley, J G
1994-12-01
This report deals with the role of dissolution in removing long fibers from the lung and with a mathematical model that predicts chronic effects in rats following inhalation or intraperitoneal (i.p.) injection of fibers. Results of intratracheal instillation studies and inhalation studies in rats demonstrate clearly that long vitreous fibers dissolve in vivo at about the same rate measured in vitro in fluid designed to stimulate the extracellular lung fluid. For the glass, rock, and slag wool fibers tested, dissolution removed most of the fibers longer than 20 microns inhaled into the rats' lungs within 6 months after both short-term (5 days) and long-term (1 to 2 years) exposures. A mathematical model was developed that is based on fiber dissolution and allows one to predict the development of chronic lung diseases in rats. The model predicted the incidence of fibrosis and lung tumors in a series of recent inhalation studies and tumors following ip injection to within about the error of the experiments. The model suggests that all fibers, regardless of their dissolution rate in lung fluid, can produce tumors after ip injection because the dose can be unlimited by this route. After inhalation, in contrast, dissolution of many types of long vitreous fibers occurs rapidly, and disease does not ensue for these fibers.
Control of Drug Dissolution Rate from Film Dosage Forms Containing Valsartan.
Murata, Yoshifumi; Kofuji, Kyoko; Maida, Chieko
2016-01-01
Film dosage forms (FDs) containing valsartan (VST), a popular antihypertensive drug, were prepared using a casting method with sodium alginate and other polysaccharides as the film base. Drug dissolution profiles of the FDs were investigated in limited medium. The FDs were 170-200 μm thick and were easy to handle. All FDs immediately swelled and disintegrated in the medium. About 23% of the VST incorporated into the FD prepared with 1.5% sodium alginate dissolved at 5 min. The initial dissolution rate of VST increased upon the addition of chitosan to the film base; this effect was not observed in the case of chitin. On the other hand, the rate apparently decreased upon modification with alginic acid. In addition, the solubility of VST in the dissolution medium was changed by the addition of chitosan or alginic acid. FDs prepared with polysaccharides are useful for simplifying the administration of drugs to patients, and the drug dissolution rate from FDs can be controlled by modification.
Fracture Dissolution of Carbonate Rock: An Innovative Process for Gas Storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
James W. Castle; Ronald W. Falta; David Bruce
2006-10-31
The goal of the project is to develop and assess the feasibility and economic viability of an innovative concept that may lead to commercialization of new gas-storage capacity near major markets. The investigation involves a new approach to developing underground gas storage in carbonate rock, which is present near major markets in many areas of the United States. Because of the lack of conventional gas storage and the projected growth in demand for storage capacity, many of these areas are likely to experience shortfalls in gas deliverability. Since depleted gas reservoirs and salt formations are nearly non-existent in many areas,more » alternatives to conventional methods of gas storage are required. The need for improved methods of gas storage, particularly for ways to meet peak demand, is increasing. Gas-market conditions are driving the need for higher deliverability and more flexibility in injection/withdrawal cycling. In order to meet these needs, the project involves an innovative approach to developing underground storage capacity by creating caverns in carbonate rock formations by acid dissolution. The basic concept of the acid-dissolution method is to drill to depth, fracture the carbonate rock layer as needed, and then create a cavern using an aqueous acid to dissolve the carbonate rock. Assessing feasibility of the acid-dissolution method included a regional geologic investigation. Data were compiled and analyzed from carbonate formations in six states: Indiana, Ohio, Kentucky, West Virginia, Pennsylvania, and New York. To analyze the requirements for creating storage volume, the following aspects of the dissolution process were examined: weight and volume of rock to be dissolved; gas storage pressure, temperature, and volume at depth; rock solubility; and acid costs. Hydrochloric acid was determined to be the best acid to use because of low cost, high acid solubility, fast reaction rates with carbonate rock, and highly soluble products (calcium chloride) that allow for the easy removal of calcium waste from the well. Physical and chemical analysis of core samples taken from prospective geologic formations for the acid dissolution process confirmed that many of the limestone samples readily dissolved in concentrated hydrochloric acid. Further, some samples contained oily residues that may help to seal the walls of the final cavern structure. These results suggest that there exist carbonate rock formations well suited for the dissolution technology and that the presence of inert impurities had no noticeable effect on the dissolution rate for the carbonate rock. A sensitivity analysis was performed for characteristics of hydraulic fractures induced in carbonate formations to enhance the dissolution process. Multiple fracture simulations were conducted using modeling software that has a fully 3-D fracture geometry package. The simulations, which predict the distribution of fracture geometry and fracture conductivity, show that the stress difference between adjacent beds is the physical property of the formations that has the greatest influence on fracture characteristics by restricting vertical growth. The results indicate that by modifying the fracturing fluid, proppant type, or pumping rate, a fracture can be created with characteristics within a predictable range, which contributes to predicting the geometry of storage caverns created by acid dissolution of carbonate formations. A series of three-dimensional simulations of cavern formation were used to investigate three different configurations of the acid-dissolution process: (a) injection into an open borehole with production from that same borehole and no fracture; (b) injection into an open borehole with production from that same borehole, with an open fracture; and (c) injection into an open borehole connected by a fracture to an adjacent borehole from which the fluids are produced. The two-well configuration maximizes the overall mass transfer from the rock to the fluid, but it results in a complex cavern shape. Numerical simulations were performed to evaluate the ability of storage caverns produced by the acid-dissolution method to store natural gas. In addition, analyses were conducted to evaluate cavern stability during gas injection and withdrawal from storage caverns created in carbonate formations by the acid-dissolution method. The stability analyses were conducted using FLAC2D, a commercially available geotechnical analysis and design software. The analyses indicate that a tall cylindrical cavern with a domed roof and floor will be stable under the expected range of in situ and operational conditions. This result suggests that it should be feasible to avoid mechanical instabilities that could potentially diminish the effectiveness of the storage facility. The feasibility of using pressure transients measured at the ground surface was investigated as a means to evaluate (Abstract truncated)« less
Sahibzada, Muhammad Umar Khayam; Sadiq, Abdul; Faidah, Hani S; Khurram, Muhammad; Amin, Muhammad Usman; Haseeb, Abdul; Kakar, Maria
2018-01-01
Berberine is an isoquinoline alkaloid widely used in Ayurveda and traditional Chinese medicine to treat illnesses such as hypertension and inflammatory conditions, and as an anticancer and hepato-protective agent. Berberine has low oral bioavailability due to poor aqueous solubility and insufficient dissolution rate, which can reduce the efficacy of drugs taken orally. In this study, evaporative precipitation of nanosuspension (EPN) and anti-solvent precipitation with a syringe pump (APSP) were used to address the problems of solubility, dissolution rate and bioavailability of berberine. Semi-crystalline nanoparticles (NPs) of 90-110 nm diameter for APSP and 65-75 nm diameter for EPN were prepared and then characterized using differential scanning calorimetry (DSC) and X-ray powder diffractometry (XRD). Thereafter, drug content solubility and dissolution studies were undertaken. Berberine and its NPs were evaluated for their antibacterial activity. The results indicate that the NPs have significantly increased solubility and dissolution rate due to conversion of the crystalline structure to a semi-crystalline form. Berberine NPs produced by both APSP and EPN methods have shown promising activities against Gram-positive and Gram-negative bacteria, and yeasts, with NPs prepared through the EPN method showing superior results compared to those made with the APSP method and the unprocessed drug.
NASA Astrophysics Data System (ADS)
Nakagawa, S.; Kneafsey, T. J.; Daley, T. M.; Freifeld, B. M.
2010-12-01
Geological sequestration of CO2 requires accurate monitoring of the spatial distribution and pore-level saturation of super-critical (sc-) CO2 for both optimizing reservoir performance and satisfying regulatory requirements. Fortunately, thanks to the high compliance of sc-CO2 compared to brine under in-situ temperatures and pressures, injection of sc-CO2 into initially brine-saturated rock will lead to significant reductions in seismic velocity and increased attenuation of seismic waves. Because of the frequency-dependent nature of this relationship, its determination requires testing at low frequencies (10 Hz-10 kHz) that are not usually employed in the laboratory. In this paper, we present the changes in seismic wave velocities and attenuation in sandstone cores during sc-CO2 core flooding and during subsequent brine re-injection and CO2 removal via convection and dissolution. The experiments were conducted at frequencies near 1 kHz using a variation of the acoustic resonant bar technique, called the Split Hopkinson Resonant Bar (SHRB) method, which allows measurements under elevated temperatures and pressures (up to 120°C, 35 MPa), using a short (several cm long) core. Concurrent x-ray CT scanning reveals sc-CO2 saturation and distribution within the cores. The injection experiments revealed different CO2 patch size distributions within the cores between the injection phase and the convection/dissolution phase of the tests. The difference was reflected particularly in the P-wave velocities and attenuation. Also, compared to seismic responses, which were separately measured during a gas CO2 injection/drainage test, the seismic responses from the sc-CO2 test showed measurable changes over a wider range of brine saturation. Considering the proximity of the frequency band employed by our measurement to the field seismic measurements, this result implies that seismic monitoring of sc-CO2, if constrained by laboratory data and interpreted using a proper petrophysical model, can be conducted with greater accuracy for determining the sc-CO2 saturation and distribution within reservoir rock, than typically predicted by the Gassmann model and/or by a natural gas reservoir analogue.
González-García, I; García-Arieta, A; Merino-Sanjuan, M; Mangas-Sanjuan, V; Bermejo, M
2018-07-01
Regulatory guidelines recommend that, when a level A IVIVC is established, dissolution specification should be established using averaged data and the maximum difference between AUC and C max between the reference and test formulations cannot be greater than 20%. However, averaging data assumes a loss of information and may reflect a bias in the results. The objective of the current work is to present a new approach to establish dissolution specifications using a new methodology (individual approach) instead of average data (classical approach). Different scenarios were established based on the relationship between in vitro-in vivo dissolution rate coefficient using a level A IVIVC of a controlled release formulation. Then, in order to compare this new approach with the classical one, six additional batches were simulated. For each batch, 1000 simulations of a dissolution assay were run. C max ratios between the reference formulation and each batch were calculated showing that the individual approach was more sensitive and able to detect differences between the reference and the batch formulation compared to the classical approach. Additionally, the new methodology displays wider dissolution specification limits than the classical approach, ensuring that any tablet from the new batch would generate in vivo profiles which its AUC or C max ratio will be out of the 0.8-1.25 range, taking into account the in vitro and in vivo variability of the new batches developed. Copyright © 2018 Elsevier B.V. All rights reserved.
Tian, Bin; Zhang, Ling; Pan, Zhendong; Gou, Jingxin; Zhang, Yu; Tang, Xing
2014-11-20
The purpose of this work was to compare the effect of temperature and relative humidity (RH) on the physical stability and dissolution of solid dispersions. Cinnarizine-Soluplus(®) solid dispersions (SDs) at three different drug loadings (10, 20 and 35 wt%) were prepared by hot melt extrusion and exposed to stress conditions: high temperatures (40 and 60 °C), high relative humidities (75% and 94% RH) and accelerated conditions (40 °C/75% RH) for 30 days, or stored at 25 °C for up to 5 months. Changes in solid state and dissolution of SDs were investigated by differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and dissolution testing. For samples under stress conditions, the results showed a reduced dissolution and a recrystallization of the drug with an increased crystallinity in the order of 40 °C/75% RH, >60 °C/0% RH, >25 °C/94% RH, >40 °C/0% RH, >25 °C/75% RH. For samples stored at 25 °C, nonlinear physical aging was observed and the dissolution also decreased although the SDs were still amorphous. The results indicated that temperature and humidity seemed to have comparable effects on the crystallization of cinnarizine-Soluplus(®) SDs. It is not reasonable to regard recrystallization as a sign of reduced dissolution, and glass transition temperature (Tg) may be a good indicator of the changes in dissolution. Copyright © 2014 Elsevier B.V. All rights reserved.
Azharshekoufeh, Leila; Shokri, Javad; Barzegar-Jalali, Mohammad; Javadzadeh, Yousef
2017-01-01
Introduction: The potential of combining liquisolid and co-grinding technologies (liquiground technique) was investigated to improve the dissolution rate of a water-insoluble agent (glibenclamide) with formulation-dependent bioavailability. Methods: To this end, different formulations of liquisolid tablets with a wide variety of non-volatile solvents contained varied ratios of drug: solvent and dissimilar carriers were prepared, and then their release profiles were evaluated. Furthermore, the effect of size reduction by ball milling on the dissolution behavior of glibenclamide from liquisolid tablets was investigated. Any interaction between the drug and the excipient or crystallinity changes during formulation procedure was also examined using X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results: The present study revealed that classic liquisolid technique did not significantly affect the drug dissolution profile as compared to the conventional tablets. Size reduction obtained by co-grinding of liquid medication was more effective than the implementation of liquisolid technique in enhancing the dissolution rate of glibenclamide. The XRD and DSC data displayed no formation of complex or any crystallinity changes in both formulations. Conclusion: An enhanced dissolution rate of glibenclamide is achievable through the combination of liquisolid and co-grinding technologies.
Dorożyński, Przemysław; Kulinowski, Piotr; Jamróz, Witold; Juszczyk, Ewelina
2014-12-30
The objectives of the work included: presentation of magnetic resonance imaging (MRI) and fractal analysis based approach to comparison of dosage forms of different composition, structure, and assessment of the influence of the compositional factors i.e., matrix type, excipients etc., on properties and performance of the dosage form during drug dissolution. The work presents the first attempt to compare MRI data obtained for tablet formulations of different composition and characterized by distinct differences in hydration and drug dissolution mechanisms. The main difficulty, in such a case stems from differences in hydration behavior and tablet's geometry i.e., swelling, cracking, capping etc. A novel approach to characterization of matrix systems i.e., quantification of changes of geometrical complexity of the matrix shape during drug dissolution has been developed. Using three chosen commercial modified release tablet formulations with diclofenac sodium we present the method of parameterization of their geometrical complexity on the base of fractal analysis. The main result of the study is the correlation between the hydrating tablet behavior and drug dissolution - the increase of geometrical complexity expressed as fractal dimension relates to the increased variability of drug dissolution results. Copyright © 2014 Elsevier B.V. All rights reserved.
Effect of Cr2O3 Pickup on Dissolution of Lime in Converter Slag
NASA Astrophysics Data System (ADS)
Yan, Wei; Chen, Weiqing; Zhao, Xiaobo; Yang, Yindong; McLean, Alex
2017-09-01
Application of low-nickel laterite ore containing chromium as charging material for ironmaking can reduce raw material costs, but result in an increase of chromium content in the hot metal and hence, Cr2O3 content in the steelmaking slag, which subsequently causes many problems related to lime dissolution for the steelmaking operation. In this work, a rotating cylinder method was employed to study the effect of Cr2O3 on lime dissolution in steelmaking slag. The lime dissolution mechanism, rate control step and affecting factors, including slag basicity, FeOx and B2O3 content, and the formation of phases at reacted layer, were discussed. It was found that mass transfer was the rate control step in slag phase, increase of Cr2O3 and slag basicity delayed lime dissolution due to the formation of high-melting temperature phases of FeO · Cr2O3 spinel and 2CaO · SiO2 at the slag/lime reacted interface. Addition of B2O3 promoted lime dissolution and suppressed formation of FeO · Cr2O3 spinel.
Improved Dissolution and Oral Bioavailability of Celecoxib by a Dry Elixir System.
Cho, Kwan Hyung; Jee, Jun-Pil; Yang, Da A; Kim, Sung Tae; Kang, Dongjin; Kim, Dae-Young; Sim, Taeyong; Park, Sang Yeob; Kim, Kyeongsoon; Jang, Dong-Jin
2018-02-01
The purpose of this study was to develop and evaluate a dry elixir (DE) system for enhancing the dissolution rate and oral bioavailability of celecoxib. DE system has been used for improving solubility, oral bioavailability of poorly water-soluble drugs. The encapsulated drugs or solubilized drugs in the matrix are rapidly dissolved due to the co-solvent effect, resting in both an enhanced dissolution and bioavailability. DEs containing celecoxib were prepared by spray-drying method and characterized by morphology, drug/ethanol content, drug crystallinity, dissolution rate and oral bioavailability. The ethanol content and drug content in DE system could be easily altered by controlling the spraydrying conditions. The dissolution profile of celecoxib from DE proved to be much higher than that of celecoxib powder due to the nano-structured matrix, amorphous state and encapsulated ethanol. The bioavailability of celecoxib from DEs was compared with celecoxib powder alone and commercial product (Celebrex®) in rats. In particular, blood concentrations of celecoxib form DE formulation were much greater than those of native celecoxib and market product. The data demonstrate that the DE system could provide an useful solid dosage form to enhance the solubility, dissolution rate and oral bioavailability of celecoxib.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zavarin, M.; Zhao, P.; Joseph, C.
2015-05-27
The testing of nuclear weapons at the Nevada National Security Site (NNSS), formerly the Nevada Test Site (NTS), has led to the deposition of substantial quantities of plutonium into the environment. Approximately 2.8 metric tons (3.1×10 4 TBq) of Pu were deposited in the NNSS subsurface as a result of underground nuclear testing. While 3H is the most abundant anthropogenic radionuclide deposited in the NNSS subsurface (4.7×10 6 TBq), plutonium is the most abundant from a molar standpoint. The only radioactive elements in greater molar abundance are the naturally occurring K, Th, and U isotopes. 239Pu and 240Pu represent themore » majority of alpha-emitting Pu isotopes. The extreme temperatures associated with underground nuclear tests and the refractory nature of Pu results in most of the Pu (98%) being sequestered in melted rock, referred to as nuclear melt glass (Iaea, 1998). As a result, Pu release to groundwater is controlled, in large part, by the leaching (or dissolution) of nuclear melt glass over time. The factors affecting glass dissolution rates have been studied extensively. The dissolution of Pu-containing borosilicate nuclear waste glasses at 90ºC has been shown to lead to the formation of dioctahedral smectite colloids. Colloid-facilitated transport of Pu at the NNSS has been observed. Recent groundwater samples collected from a number of contaminated wells have yielded a wide range of Pu concentrations from 0.00022 to 2.0 Bq/L. While Pu concentrations tend to fall below the Maximum Contaminant Level (MCL) established by the Environmental Protection Agency (EPA) for drinking water (0.56 Bq/L), we do not yet understand what factors limit the Pu concentration or its transport behavior. To quantify the upper limit of Pu concentrations produced as a result of melt glass dissolution and determine the nature of colloids and Pu associations, we performed a 3 year nuclear melt glass dissolution experiment across a range of temperatures (25-200 °C) that represent hydrothermal conditions representative of the underground nuclear test cavities (when groundwater has re-saturated the nuclear melt glass and glass dissolution occurs). Colloid loads and Pu concentrations were monitored along with the mineralogy of both the colloids and the secondary mineral phases. The intent was to establish an upper limit for Pu concentrations at the NNSS, provide context regarding the Pu concentrations observed at the NNSS to date and the Pu concentrations that may be observed in the future. The results provide a conceptual model for the risks posed by Pu migration at the NNSS.« less
Parker, Alexander S; Al Botros, Rehab; Kinnear, Sophie L; Snowden, Michael E; McKelvey, Kim; Ashcroft, Alexander T; Carvell, Mel; Joiner, Andrew; Peruffo, Massimo; Philpotts, Carol; Unwin, Patrick R
2016-08-15
A combination of scanning electrochemical cell microscopy (SECCM) and atomic force microscopy (AFM) is used to quantitatively study the acid-induced dissolution of dental enamel. A micron-scale liquid meniscus formed at the end of a dual barrelled pipette, which constitutes the SECCM probe, is brought into contact with the enamel surface for a defined period. Dissolution occurs at the interface of the meniscus and the enamel surface, under conditions of well-defined mass transport, creating etch pits that are then analysed via AFM. This technique is applied to bovine dental enamel, and the effect of various treatments of the enamel surface on acid dissolution (1mM HNO3) is studied. The treatments investigated are zinc ions, fluoride ions and the two combined. A finite element method (FEM) simulation of SECCM mass transport and interfacial reactivity, allows the intrinsic rate constant for acid-induced dissolution to be quantitatively determined. The dissolution of enamel, in terms of Ca(2+) flux ( [Formula: see text] ), is first order with respect to the interfacial proton concentration and given by the following rate law: [Formula: see text] , with k0=0.099±0.008cms(-1). Treating the enamel with either fluoride or zinc ions slows the dissolution rate, although in this model system the partly protective barrier only extends around 10-20nm into the enamel surface, so that after a period of a few seconds dissolution of modified surfaces tends towards that of native enamel. A combination of both treatments exhibits the greatest protection to the enamel surface, but the effect is again transient. Copyright © 2016 Elsevier Inc. All rights reserved.
Tan, Q Y; Xu, M L; Wu, J Y; Yin, H F; Zhang, J Q
2012-04-01
A novel pyridostigmine bromide poly (lactic acid) nanoparticles (PBPNPs) was prepared to obtain sustained release characteristics of PB. A central composite design approach was employed for process optimization. The in vitro release studies were carried out by dialysis method and conducted using four different dissolution media. Similar factor method was investigated for dissolution profile comparison. Multiple linear regression analysis for process optimization revealed that the optimal PBPNPs were obtained where the values of the amount of PB (X1, mg), PLA concentration (X2, % w:v), and PVA concentration (X3, % w:v) were 49.20 mg, 3.31% and 3.41%, respectively. The average particle size and zeta potential of PBPNPs with the optimized formulation were 722.9 +/- 4.3 nm, and -25.12 +/- 1.2 mV, respectively. PBPNPs provided an initial burst of drug release followed by a very slow release over an extended period of time (72 h). Compared with free PB, PBPNPs had a significantly lower release rate of PB in vitro. The in vitro release profile of the PBPNPs could be described by Weibull models, regardless of type of dissolution medium. Statistical significance of similarity between every two dissolution profiles of PBPNPs in different dissolution media was found, and the difference between the curves of PBPNPs and pure PB was statistically significant.
Bikiaris, Dimitrios N
2011-11-01
In recent years, the number of active pharmaceutical ingredients with high therapeutic impact, but very low water solubility, has increased significantly. Thus, a great challenge for pharmaceutical technology is to create new formulations and efficient drug-delivery systems to overcome these dissolution problems. Drug formulation in solid dispersions (SDs) is one of the most commonly used techniques for the dissolution rate enhancement of poorly water-soluble drugs. Generally, SDs can be defined as a dispersion of active ingredients in molecular, amorphous and/or microcrystalline forms into an inert carrier. This review covers literature which states that the dissolution enhancement of SDs is based on the fact that drugs in the nanoscale range, or in amorphous phase, dissolve faster and to a greater extent than micronized drug particles. This is in accordance to the Noyes-Whitney equation, while the wetting properties of the used polymer may also play an important role. The main factors why SD-based pharmaceutical products on the market are steadily increasing over the last few years are: the recent progress in various methods used for the preparation of SDs, the effect of evolved interactions in physical state of the drug and formulation stability during storage, the characterization of the physical state of the drug and the mechanism of dissolution rate enhancement.
Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao
2016-01-01
This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL.
A probabilistic assessment of calcium carbonate export and dissolution in the modern ocean
NASA Astrophysics Data System (ADS)
Battaglia, G.; Steinacher, M.; Joos, F.
2015-12-01
The marine cycle of calcium carbonate (CaCO3) is an important element of the carbon cycle and co-governs the distribution of carbon and alkalinity within the ocean. However, CaCO3 fluxes and mechanisms governing CaCO3 dissolution are highly uncertain. We present an observationally-constrained, probabilistic assessment of the global and regional CaCO3 budgets. Parameters governing pelagic CaCO3 export fluxes and dissolution rates are sampled using a Latin-Hypercube scheme to construct a 1000 member ensemble with the Bern3D ocean model. Ensemble results are constrained by comparing simulated and observation-based fields of excess dissolved calcium carbonate (TA*). The minerals calcite and aragonite are modelled explicitly and ocean-sediment fluxes are considered. For local dissolution rates either a strong, a weak or no dependency on CaCO3 saturation is assumed. Median (68 % confidence interval) global CaCO3 export is 0.82 (0.67-0.98) Gt PIC yr-1, within the lower half of previously published estimates (0.4-1.8 Gt PIC yr-1). The spatial pattern of CaCO3 export is broadly consistent with earlier assessments. Export is large in the Southern Ocean, the tropical Indo-Pacific, the northern Pacific and relatively small in the Atlantic. Dissolution within the 200 to 1500 m depth range (0.33; 0.26-0.40 Gt PIC yr-1) is substantially lower than inferred from the TA*-CFC age method (1 ± 0.5 Gt PIC yr-1). The latter estimate is likely biased high as the TA*-CFC method neglects transport. The constrained results are robust across a range of diapycnal mixing coefficients and, thus, ocean circulation strengths. Modelled ocean circulation and transport time scales for the different setups were further evaluated with CFC11 and radiocarbon observations. Parameters and mechanisms governing dissolution are hardly constrained by either the TA* data or the current compilation of CaCO3 flux measurements such that model realisations with and without saturation-dependent dissolution achieve skill. We suggest to apply saturation-independent dissolution rates in Earth System Models to minimise computational costs.
Thomas, Dennis G; Smith, Jordan N; Thrall, Brian D; Baer, Donald R; Jolley, Hadley; Munusamy, Prabhakaran; Kodali, Vamsi; Demokritou, Philip; Cohen, Joel; Teeguarden, Justin G
2018-01-25
The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles and ion dosimetry on cellular toxicology. We developed ISD3, an extension of our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. We applied the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media affects the initial rate of dissolution and the resulting near-steady state ion concentration in solution for the systems we have studied. By combining experiments and modeling, we were able to quantify the influence of proteins on silver particle solubility, determine the relative amounts of silver ions and particles in exposed cells, and demonstrate the influence of particle size changes resulting from dissolution on particle delivery to cells in culture. ISD3 is modular and can be adapted to new applications by replacing descriptions of dissolution, sedimentation and boundary conditions with those appropriate for particles other than silver.
Borba, Paola Aline Amarante; Pinotti, Marihá; de Campos, Carlos Eduardo Maduro; Pezzini, Bianca Ramos; Stulzer, Hellen Karine
2016-02-10
The solid dispersion technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs, however it depends on a suitable carrier selection. The work explored the use of the biopolymer sodium alginate (SA) as a potential carrier in solid dispersions (SD). The data demonstrated that SA was able to improve the biopharmaceutical properties of the BCS II drug telmisartan (TEL) of low solubility even using relative small drug:polymer ratio. A solid state grinding process was used to prepare the solid dispersions (SD) during 45 min. The SD were prepared in different proportions of drug and carrier of 1:1, 1:3, 1:5, 1:7 and 1:9 (mass/mass). DSC, XRPD, FTIR and Raman confirmed the presence of molecular interactions between TEL and the carrier. FTIR supports the presence of hydrogen bonds between TEL and the carrier. SD_1:5, SD_1:7 and SD_1:9 enhanced the dissolution rate of the drug releasing more than 80% of the drug in just 30 min (83%, 84% and 87%). The the t-test results demonstrated equal dissolution efficiency values for SD_1:7 and Micardis(®), however the similarity (f2) and difference (f1) fit factors showed that the SD and Micardis(®) are statistically different. The physical stability studies demonstrated that SD using sodium alginate as a carrier remained unchanged during the period of 90 days at room temperature, showing that the sodium alginate acts as a good anti plasticizer agent, preventing the drug recrystallization. Copyright © 2015 Elsevier Ltd. All rights reserved.
In vitro dissolution of uranium oxide by baboon alveolar macrophages.
Poncy, J L; Metivier, H; Dhilly, M; Verry, M; Masse, R
1992-01-01
In vitro cellular dissolution tests for insoluble forms of uranium oxide are technically difficult with conventional methodology using adherent alveolar macrophages. The limited number of cells per flask and the slow dissolution rate in a large volume of nutritive medium are obvious restricting factors. Macrophages in suspension cannot be substituted because they represent different and poorly reproducible functional subtypes with regard to activation and enzyme secretion. Preliminary results on the dissolution of uranium oxide using immobilized alveolar macrophages are promising because large numbers of highly functional macrophages can be cultured in a limited volume. Cells were obtained by bronchoalveolar lavages performed on baboons (Papio papio) and then immobilized after the phagocytosis of uranium octoxide (U3O8) particles in alginate beads linked with Ca2+. The dissolution rate expressed as percentage of initial uranium content in cells was 0.039 +/- 0.016%/day for particles with a count median geometric diameter of 3.84 microns(sigma g = 1.84). A 2-fold increase in the dissolution rate was observed when the same number of particles was immobilized without macrophages. These results, obtained in vitro, suggest that the U3O8 preparation investigated should be assigned to inhalation class Y as recommended by the International Commission on Radiological Protection. Future experiments are intended to clarify this preliminary work and to examine the dissolution characteristics of other particles such as uranium dioxide. It is recommended that the dissolution rate should be measured over an interval of 3 weeks, which is compatible with the survival time of immobilized cells in culture and may reveal transformation states occurring with aging of the particles. PMID:1396447
Modified cleaning method for biomineralized components
NASA Astrophysics Data System (ADS)
Tsutsui, Hideto; Jordan, Richard W.
2018-02-01
The extraction and concentration of biomineralized components from sediment or living materials is time consuming and laborious and often involves steps that remove either the calcareous or siliceous part, in addition to organic matter. However, a relatively quick and easy method using a commercial cleaning fluid for kitchen drains, sometimes combined with a kerosene soaking step, can produce remarkable results. In this study, the method is applied to sediments and living materials bearing calcareous (e.g., coccoliths, foraminiferal tests, holothurian ossicles, ichthyoliths, and fish otoliths) and siliceous (e.g., diatom valves, silicoflagellate skeletons, and sponge spicules) components. The method preserves both components in the same sample, without etching or partial dissolution, but is not applicable to unmineralized components such as dinoflagellate thecae, tintinnid loricae, pollen, or plant fragments.
Sadeghi, Fatemeh; Ashofteh, Mohammad; Homayouni, Alireza; Abbaspour, Mohammadreza; Nokhodchi, Ali; Garekani, Hadi Afrasiabi
2016-11-01
Curcumin with a vast number of pharmacological activities is a poorly water soluble drug which its oral bioavailability is profoundly limited by its dissolution or solubility in GI tract. Curcumin could be a good anticancer drug if its solubility could be increased. Therefore, the aim of the present study was to increase the dissolution rate of curcumin by employing antisolvent crystallization technique and to investigate the effect of polyvinyl pyrrolidone K30 (PVP) as colloidal particles in crystallization medium on resultant particles. Curcumin was crystalized in the presence of different amounts of PVP by antisolvent crystallization method and their physical mixtures were prepared for comparison purposes. The samples were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR). The solubility and dissolution of the treated and untreated curcumin were also determined. Antisolvent crystallization of curcumin led to the formation of particles with no definite geometric shape. It was interesting to note that the DSC and XRPD studies indicated the formation of a new polymorph and less crystallinity for particles crystallized in the absence of PVP. However, the crystallized curcumin in the presence of PVP was completely amorphous. All crystalized curcumin samples showed much higher dissolution rate compared to untreated curcumin. The amount of curcumin dissolved within 10 for treated curcumin in the presence of PVP (1:1 curcumin:PVP) was 7 times higher than untreated curcumin and this enhancement in the dissolution for curcumin samples crystallized in the absence of PVP was around 5 times. Overall' the results of this study showed that antisolvent crystallization method in the absence or presence of small amounts of PVP is very efficient in increasing the dissolution rate of curcumin to achieve better efficiency for curcumin. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Montgomery, S. D.; Mckibben, M. A.
2011-12-01
Tungsten, an emerging contaminant, has no EPA standard for its permissible levels in drinking water. At sites in California, Nevada, and Arizona there may be a correlation between elevated levels of tungsten in drinking water and clusters of childhood acute lymphocytic leukemia (ALL). Developing a better understanding of how tungsten is released from rocks into surface and groundwaters is therefore of growing environmental interest. Knowledge of tungstate ore mineral weathering processes, particularly the rates of dissolution of scheelite (CaWO4) in groundwater, could improve models of how tungsten is released and transported in natural waters. Our research is focusing on experimental determination of the rates and products of tungstate mineral dissolution in synthetic groundwater, as a function of temperature, pH and mineral surface area. The initial rate method is being used to develop rate laws. Batch reactor experiments are conducted within constant temperature circulation baths over a pH range of 2-9. Cleaned scheelite powder with grain diameters of 106-150um is placed between two screens in a sample platform and then placed inside a two liter Teflon vessel filled with synthetic groundwater. Ports on the vessel allow sample extraction, temperature and pH measurement, gas inflow, and water circulation. Aliquots of solution are taken periodically for product analysis by ICP -MS. Changes in mineral surface characteristics are monitored using SEM and EDS methods. Results so far reveal that the dissolution of scheelite is incongruent at both neutral and low pH. Solid tungstic acid forms on scheelite mineral surfaces under acidic conditions, implying that this phase controls the dissolution rate in acidic environments. The influence of dissolved CO2 and resultant calcium carbonate precipitation on the dissolution of scheelite at higher pH is also being investigated. The rate law being developed for scheelite dissolution will be useful in reactive-transport computer codes designed to model tungsten contamination in a variety of surface and groundwater settings.
Kanak, B.E.; Stephenson, M.J.
1980-01-11
A method is described for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.
Method for improving dissolution efficiency in gas-absorption and liquid extraction processes
Kanak, Brant E.; Stephenson, Michael J.
1981-01-01
This invention is a method for improving dissolution efficiency in processes in which a feed fluid is introduced to a zone where it is contacted with a liquid solvent for preferentially removing a component of the feed and where part of the solvent so contacted undergoes transfer into the feed fluid to saturate the same. It has been found that such transfer significantly impairs dissolution efficiency. In accordance with the invention, an amount of the above-mentioned solvent is added to the feed fluid being introduced to the contact zone, the solvent being added in an amount sufficient to effect reduction or elimination of the above-mentioned transfer. Preferably, the solvent is added to the feed fluid in an amount saturating or supersaturating the feed fluid under the conditions prevailing in the contact zone.
Effect of hydrophobic inclusions on polymer swelling kinetics studied by magnetic resonance imaging.
Gajdošová, Michaela; Pěček, Daniel; Sarvašová, Nina; Grof, Zdeněk; Štěpánek, František
2016-03-16
The rate of drug release from polymer matrix-based sustained release formulations is often controlled by the thickness of a gel layer that forms upon contact with dissolution medium. The effect of formulation parameters on the kinetics of elementary rate processes that contribute to gel layer formation, such as water ingress, polymer swelling and erosion, is therefore of interest. In the present work, gel layer formation has been investigated by magnetic resonance imaging (MRI), which is a non-destructive method allowing direct visualization of effective water concentration inside the tablet and its surrounding. Using formulations with Levetiracetam as the active ingredient, HPMC as a hydrophilic matrix former and carnauba wax (CW) as a hydrophobic component in the matrix system, the effect of different ratios of these two ingredients on the kinetics of gel formation (MRI) and drug release (USP 4 like dissolution test) has been investigated and interpreted using a mathematical model. Copyright © 2016 Elsevier B.V. All rights reserved.
Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.
Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin
2017-02-01
Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Effect of Grinding on the Solid-State Stability and Particle Dissolution of Acyclovir Polymorphs.
Magnoni, Federico; Gigliobianco, Maria Rosa; Vargas Peregrina, Dolores; Censi, Roberta; Di Martino, Piera
2017-10-01
The present work investigated the solid state change of 4 acyclovir polymorphs when ground at room temperature (Method A) and under cryo-grinding in the presence of liquid nitrogen (Method B). Modifications in particle size and shape (evaluated by scanning electron microscopy) and in the water content (evaluated by thermal analysis) were related to transitions at the solid state, as confirmed by X-ray powder diffractometry. Anhydrous Form I was stable under grinding by both Methods A and B. The anhydrous Form II was stable during grinding under Method A, whereas it was progressively converted to the hydrate Form V during grinding under Method B. The hydrate Form V was stable under Method A, whereas it was converted to the anhydrous Form I after 15 min and then to the hydrate Form VI after 45 min of grinding. The hydrate Form VI proved to be stable under grinding by both Methods A and B. Thus, Form I and VI were the only forms that yielded a sizeable decrease in particle size under grinding, with a consequent increase in particle dissolution rate, while maintaining solid state physicochemical stability. Form I treated under Method B grinding gave the best dissolution rate. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Jung, Hojung; Singh, Gurpreet; Espinoza, D. Nicolas; Wheeler, Mary F.
2018-02-01
Subsurface CO2 injection and storage alters formation pressure. Changes of pore pressure may result in fault reactivation and hydraulic fracturing if the pressure exceeds the corresponding thresholds. Most simulation models predict such thresholds utilizing relatively homogeneous reservoir rock models and do not account for CO2 dissolution in the brine phase to calculate pore pressure evolution. This study presents an estimation of reservoir capacity in terms of allowable injection volume and rate utilizing the Frio CO2 injection site in the coast of the Gulf of Mexico as a case study. The work includes laboratory core testing, well-logging data analyses, and reservoir numerical simulation. We built a fine-scale reservoir model of the Frio pilot test in our in-house reservoir simulator IPARS (Integrated Parallel Accurate Reservoir Simulator). We first performed history matching of the pressure transient data of the Frio pilot test, and then used this history-matched reservoir model to investigate the effect of the CO2 dissolution into brine and predict the implications of larger CO2 injection volumes. Our simulation results -including CO2 dissolution- exhibited 33% lower pressure build-up relative to the simulation excluding dissolution. Capillary heterogeneity helps spread the CO2 plume and facilitate early breakthrough. Formation expansivity helps alleviate pore pressure build-up. Simulation results suggest that the injection schedule adopted during the actual pilot test very likely did not affect the mechanical integrity of the storage complex. Fault reactivation requires injection volumes of at least about sixty times larger than the actual injected volume at the same injection rate. Hydraulic fracturing necessitates much larger injection rates than the ones used in the Frio pilot test. Tested rock samples exhibit ductile deformation at in-situ effective stresses. Hence, we do not expect an increase of fault permeability in the Frio sand even in the presence of fault reactivation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Dennis G.; Smith, Jordan N.; Thrall, Brian D.
The development of particokinetic models describing the delivery of insoluble or poorly soluble nanoparticles to cells in liquid cell culture systems has improved the basis for dose-response analysis, hazard ranking from high-throughput systems, and now allows for translation of exposures across in vitro and in vivo test systems. Complimentary particokinetic models that address processes controlling delivery of both particles and released ions to cells, and the influence of particle size changes from dissolution on particle delivery for cell-culture systems would help advance our understanding of the role of particles ion dosimetry on cellular toxicology. We developed ISD3, an extension ofmore » our previously published model for insoluble particles, by deriving a specific formulation of the Population Balance Equation for soluble particles. ISD3 describes the time, concentration and particle size dependent dissolution of particles, their delivery to cells, and the delivery and uptake of ions to cells in in vitro liquid test systems. The model is modular, and can be adapted by application of any empirical model of dissolution, alternative approaches to calculating sedimentation rates, and cellular uptake or treatment of boundary conditions. We apply the model to calculate the particle and ion dosimetry of nanosilver and silver ions in vitro after calibration of two empirical models, one for particle dissolution and one for ion uptake. The results demonstrate utility and accuracy of the ISD3 framework for dosimetry in these systems. Total media ion concentration, particle concentration and total cell-associated silver time-courses were well described by the model, across 2 concentrations of 20 and 110 nm particles. ISD3 was calibrated to dissolution data for 20 nm particles as a function of serum protein concentration, but successfully described the media and cell dosimetry time-course for both particles at all concentrations and time points. We also report the finding that protein content in media has effects both on the initial rate of dissolution and the resulting near-steady state ion concentration in solution.« less